WorldWideScience

Sample records for solute-transport model moc3d

  1. DRAGON solutions to the 3D transport benchmark over a range in parameter space

    International Nuclear Information System (INIS)

    Martin, Nicolas; Hebert, Alain; Marleau, Guy

    2010-01-01

    DRAGON solutions to the 'NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space' are discussed in this paper. A description of the benchmark is first provided, followed by a detailed review of the different computational models used in the lattice code DRAGON. Two numerical methods were selected for generating the required quantities for the 729 configurations of this benchmark. First, S N calculations were performed using fully symmetric angular quadratures and high-order diamond differencing for spatial discretization. To compare S N results with those of another deterministic method, the method of characteristics (MoC) was also considered for this benchmark. Comparisons between reference solutions, S N and MoC results illustrate the advantages and drawbacks of each methods for this 3-D transport problem.

  2. Axial SPN and radial MOC coupled whole core transport calculation

    International Nuclear Information System (INIS)

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  3. 3-D Whole-Core Transport Calculation with 3D/2D Rotational Plane Slicing Method

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Han Jong; Cho, Nam Zin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Use of the method of characteristics (MOC) is very popular due to its capability of heterogeneous geometry treatment and widely used for 2-D core calculation, but direct extension of MOC to 3-D core is not so attractive due to huge calculational cost. 2-D/1-D fusion method was very successful for 3-D calculation of current generation reactor types (highly heterogeneous in radial direction but piece-wise homogeneous in axial direction). In this paper, 2-D MOC concept is extended to 3-D core calculation with little modification of an existing 2-D MOC code. The key idea is to suppose 3-D geometry as a set of many 2-D planes like a phone-directory book. Dividing 3-D structure into a large number of 2-D planes and solving each plane with a simple 2-D SN transport method would give the solution of a 3-D structure. This method was developed independently at KAIST but it is found that this concept is similar with that of 'plane tracing' in the MCCG-3D code. The method developed was tested on the 3-D C5G7 OECD/NEA benchmark problem and compared with the 2-D/1-D fusion method. Results show that the proposed method is worth investigating further. A new approach to 3-D whole-core transport calculation is described and tested. By slicing 3-D structure along characteristic planes and solving each 2-D plane problem, we can get 3-D solution. The numerical test results indicate that the new method is comparable with the 2D/1D fusion method and outperforms other existing methods. But more fair comparison should be done in similar discretization level.

  4. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    International Nuclear Information System (INIS)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L.

    2013-01-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  5. A 2D/1D coupling neutron transport method based on the matrix MOC and NEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Zheng, Y.; Wu, H.; Cao, L. [School of Nuclear Science and Technology, Xi' an Jiaotong University, No. 28, Xianning West Road, Xi' an, Shaanxi 710049 (China)

    2013-07-01

    A new 2D/1D coupling method based on the matrix MOC method (MMOC) and nodal expansion method (NEM) is proposed for solving the three-dimensional heterogeneous neutron transport problem. The MMOC method, used for radial two-dimensional calculation, constructs a response matrix between source and flux with only one sweep and then solves the linear system by using the restarted GMRES algorithm instead of the traditional trajectory sweeping process during within-group iteration for angular flux update. Long characteristics are generated by using the customization of commercial software AutoCAD. A one-dimensional diffusion calculation is carried out in the axial direction by employing the NEM method. The 2D and ID solutions are coupled through the transverse leakage items. The 3D CMFD method is used to ensure the global neutron balance and adjust the different convergence properties of the radial and axial solvers. A computational code is developed based on these theories. Two benchmarks are calculated to verify the coupling method and the code. It is observed that the corresponding numerical results agree well with references, which indicates that the new method is capable of solving the 3D heterogeneous neutron transport problem directly. (authors)

  6. Improvement of transport-corrected scattering stability and performance using a Jacobi inscatter algorithm for 2D-MOC

    International Nuclear Information System (INIS)

    Stimpson, Shane; Collins, Benjamin; Kochunas, Brendan

    2017-01-01

    The MPACT code, being developed collaboratively by the University of Michigan and Oak Ridge National Laboratory, is the primary deterministic neutron transport solver being deployed within the Virtual Environment for Reactor Applications (VERA) as part of the Consortium for Advanced Simulation of Light Water Reactors (CASL). In many applications of the MPACT code, transport-corrected scattering has proven to be an obstacle in terms of stability, and considerable effort has been made to try to resolve the convergence issues that arise from it. Most of the convergence problems seem related to the transport-corrected cross sections, particularly when used in the 2D method of characteristics (MOC) solver, which is the focus of this work. Here in this paper, the stability and performance of the 2-D MOC solver in MPACT is evaluated for two iteration schemes: Gauss-Seidel and Jacobi. With the Gauss-Seidel approach, as the MOC solver loops over groups, it uses the flux solution from the previous group to construct the inscatter source for the next group. Alternatively, the Jacobi approach uses only the fluxes from the previous outer iteration to determine the inscatter source for each group. Consequently for the Jacobi iteration, the loop over groups can be moved from the outermost loop-as is the case with the Gauss-Seidel sweeper-to the innermost loop, allowing for a substantial increase in efficiency by minimizing the overhead of retrieving segment, region, and surface index information from the ray tracing data. Several test problems are assessed: (1) Babcock & Wilcox 1810 Core I, (2) Dimple S01A-Sq, (3) VERA Progression Problem 5a, and (4) VERA Problem 2a. The Jacobi iteration exhibits better stability than Gauss-Seidel, allowing for converged solutions to be obtained over a much wider range of iteration control parameters. Additionally, the MOC solve time with the Jacobi approach is roughly 2.0-2.5× faster per sweep. While the performance and stability of the Jacobi

  7. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  8. Acceleration and higher order schemes of a characteristic solver for the solution of the neutron transport equation in 3D axial geometries

    International Nuclear Information System (INIS)

    Sciannandrone, Daniele

    2015-01-01

    The topic of our research is the application of the Method of Long Characteristics (MOC) to solve the Neutron Transport Equation in three-dimensional axial geometries. The strength of the MOC is in its precision and versatility. As a drawback, it requires a large amount of computational resources. This problem is even more severe in three dimensional geometries, for which unknowns reach the order of tens of billions for assembly-level calculations. The first part of the research has dealt with the development of optimized tracking and reconstruction techniques which take advantage of the regularities of three-dimensional axial geometries. These methods have allowed a strong reduction of the memory requirements and a reduction of the execution time of the MOC calculation. The convergence of the iterative scheme has been accelerated with a lower order transport operator (DPN) which is used for the initialization of the solution and for solving the synthetic problem during MOC iterations. The algorithms for the construction and solution of the MOC and DPN operators have been accelerated by using shared-memory parallel paradigms which are more suitable for standard desktop working stations. An important part of this research has been devoted to the implementation of scheduling techniques to improve the parallel efficiency. The convergence of the angular quadrature formula for three-dimensional cases is also studied. Some of these formulas take advantage of the reduced computational costs of the treatment of planar directions and the vertical direction to speed up the algorithm. The verification of the MOC solver has been done by comparing results with continuous-in-energy Monte Carlo calculations. For this purpose a coupling of the 3D MOC solver with the Subgroup method is proposed to take into account the effects of cross sections resonances. The full calculation of a FBR assembly requires about 2 h of execution time with differences of few pcm with respect to the

  9. Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics

    International Nuclear Information System (INIS)

    Marin-Lafleche, A.; Smith, M. A.; Lee, C.

    2013-01-01

    A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)

  10. Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Lafleche, A.; Smith, M. A.; Lee, C. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States)

    2013-07-01

    A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)

  11. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    International Nuclear Information System (INIS)

    Chen Qichang; Wu Hongchun; Cao Liangzhi

    2008-01-01

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively

  12. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qichang; Wu Hongchun [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Cao Liangzhi [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China)], E-mail: caolz@mail.xjtu.edu.cn

    2008-10-15

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively.

  13. The OpenMOC method of characteristics neutral particle transport code

    International Nuclear Information System (INIS)

    Boyd, William; Shaner, Samuel; Li, Lulu; Forget, Benoit; Smith, Kord

    2014-01-01

    Highlights: • An open source method of characteristics neutron transport code has been developed. • OpenMOC shows nearly perfect scaling on CPUs and 30× speedup on GPUs. • Nonlinear acceleration techniques demonstrate a 40× reduction in source iterations. • OpenMOC uses modern software design principles within a C++ and Python framework. • Validation with respect to the C5G7 and LRA benchmarks is presented. - Abstract: The method of characteristics (MOC) is a numerical integration technique for partial differential equations, and has seen widespread use for reactor physics lattice calculations. The exponential growth in computing power has finally brought the possibility for high-fidelity full core MOC calculations within reach. The OpenMOC code is being developed at the Massachusetts Institute of Technology to investigate algorithmic acceleration techniques and parallel algorithms for MOC. OpenMOC is a free, open source code written using modern software languages such as C/C++ and CUDA with an emphasis on extensible design principles for code developers and an easy to use Python interface for code users. The present work describes the OpenMOC code and illustrates its ability to model large problems accurately and efficiently

  14. Synergism of the method of characteristic, R-functions and diffusion solution for accurate representation of 3D neutron interactions in research reactors using the AGENT code system

    International Nuclear Information System (INIS)

    Hursin, Mathieu; Xiao Shanjie; Jevremovic, Tatjana

    2006-01-01

    This paper summarizes the theoretical and numerical aspects of the AGENT code methodology accurately applied for detailed three-dimensional (3D) multigroup steady-state modeling of neutron interactions in complex heterogeneous reactor domains. For the first time we show the fine-mesh neutron scalar flux distribution in Purdue research reactor (that was built over forty years ago). The AGENT methodology is based on the unique combination of the three theories: the method of characteristics (MOC) used to simulate the neutron transport in two-dimensional (2D) whole core heterogeneous calculation, the theory of R-functions used as a mathematical tool to describe the true geometry and fuse with the MOC equations, and one-dimensional (1D) higher-order diffusion correction of 2D transport model to account for full 3D heterogeneous whole core representation. The synergism between the radial 2D transport and the 1D axial transport (to take into account the axial neutron interactions and leakage), called the 2D/1D method (used in DeCART and CHAPLET codes), provides a 3D computational solution. The unique synergism between the AGENT geometrical algorithm capable of modeling any current or future reactor core geometry and 3D neutron transport methodology is described in details. The 3D AGENT accuracy and its efficiency are demonstrated showing the eigenvalues, point-wise flux and reaction rate distributions in representative reactor geometries. The AGENT code, comprising this synergism, represents a building block of the computational system, called the virtual reactor. Its main purpose is to perform 'virtual' experiments and demonstrations of various mainly university research reactor experiments

  15. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  16. Radon transport modelling: User's guide to RnMod3d

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2000-01-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It canalso be used for flux calculations of radon...... decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning ofradon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may...... be anisotropic. This guide includes benchmark tests based on simpleproblems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality....

  17. Modelling copper solvent extraction from acidic sulphate solutions using MOC 45

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    1998-05-01

    Full Text Available A mathematical model to predict the extraction has been developed for the Cu-MOC 45 system. The model consists of sets of nonlinear mass action and mass balance equations where the dimerization of the oxime was also considered. The predictive model calculated the equilibrium concentrations from the total oxime concentration, total copper concentration, initial pH value and the O/A volume phase ratio. The model suggests that the extraction of copper can be defined by the existence of two species into the organic solution: CuR2 (kext = 4.2 and Cu(HR22 (kext = 10.000- The initial oxime concentration defines the predominancy in the organic solution of both species. The model can be used to predict copper extraction isotherm as well as copper stripping with sulphuric acid.

    Se desarrolla un modelo matemático para predecir el proceso de extracción en el sistema Cu-MOC 45. El modelo consiste en un conjunto de ecuaciones en el que se considera la dimerización de la oxima. El modelo permite predecir la extracción a partir de las concentraciones totales de la oxima y del cobre, del pH inicial y de la relación de fases O/A. La extracción de cobre responde a la existencia de dos especies en la fase orgánica: CuR2 (kext = 4,2 y Cu(HR22 (kext = 10.000. La predominancia de una u otra especie en esta fase depende de la concentración inicial de la oxima. El modelo también puede predecir las isotermas de extracción y la reextracción de cobre mediante ácido sulfúrico.

  18. Neutron transport study based on assembly modular ray tracing MOC method

    International Nuclear Information System (INIS)

    Tian Chao; Zheng Youqi; Li Yunzhao; Li Shuo; Chai Xiaoming

    2015-01-01

    It is difficulty for the MOC method based on Cell Modular Ray Tracing to deal with the irregular geometry such as the water gap between the PWR lattices. Hence, the neutron transport code NECP-Medlar based on Assembly Modular Ray Tracing is developed. CMFD method is used to accelerate the transport calculation. The numerical results of the 2D C5G7 benchmark and typical PWR lattice prove that NECP-Medlar has an excellent performance in terms of accuracy and efficiency. Besides, NECP-Medlar can describe clearly the flux distribution of the lattice with water gap. (authors)

  19. Radon transport modelling: User's guide to RnMod3d

    International Nuclear Information System (INIS)

    Andersen, C.E.

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  20. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  1. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    Science.gov (United States)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  2. Numerical modelling of coupled fluid, heat, and solute transport in deformable fractured rock

    International Nuclear Information System (INIS)

    Chan, T.; Reid, J.A.K.

    1987-01-01

    This paper reports on a three-dimensional (3D) finite-element code, MOTIF (model of transport in fractured/porous media), developed to model the coupled processes of groundwater flow, heat transport, brine transport, and one-species radionuclide transport in geological media. Three types of elements are available: a 3D continuum element, a planar fracture element that can be oriented in any arbitrary direction in 3D space or pipe flow in 3D space, and a line element for simulating fracture flow in 2D space or pipe flow in 3D space. As a quality-assurance measure, the MOTIF code was verified by comparison of its results with analytical solutions and other published numerical solutions

  3. Radon transport modelling: User's guide to RnMod3d

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2000-08-01

    RnMod3d is a numerical computer model of soil-gas and radon transport in porous media. It can be used, for example, to study radon entry from soil into houses in response to indoor-outdoor pressure differences or changes in atmospheric pressure. It can also be used for flux calculations of radon from the soil surface or to model radon exhalation from building materials such as concrete. The finite-volume model is a technical research tool, and it cannot be used meaningfully without good understanding of the involved physical equations. Some understanding of numerical mathematics and the programming language Pascal is also required. Originally, the code was developed for internal use at Risoe only. With this guide, however, it should be possible for others to use the model. Three-dimensional steady-state or transient problems with Darcy flow of soil gas and combined generation, radioactive decay, diffusion and advection of radon can be solved. Moisture is included in the model, and partitioning of radon between air, water and soil grains (adsorption) is taken into account. Most parameters can change in time and space, and transport parameters (diffusivity and permeability) may be anisotropic. This guide includes benchmark tests based on simple problems with known solutions. RnMod3d has also been part of an international model intercomparison exercise based on more complicated problems without known solutions. All tests show that RnMod3d gives results of good quality. (au)

  4. Modeling of solvent extraction equilibrium of Cu(II from sulphuric Acid solution with MOC-55TD

    Directory of Open Access Journals (Sweden)

    Alguacil, F. J.

    1999-06-01

    Full Text Available The extraction of Cu(II from acidic sulphate aqueous solutions using the commercial MOC-55TD extractant is studied. A predictive model, which consists in a set of non-linear mass action and mass balance equations is proposed. The model was solved using a tailor-made equation-solving program. The extraction of copper can be described by the formation of CuR2 species (log Kext= 0.717 ± 0.03 in the organic phase. The copper equilibrium isotherm was also obtained at 20°C.

    Se estudia la extracción de Cu(II de disoluciones acuosas acidas, en medio sulfato, mediante la oxima comercial MOC-55TD. Se propone un modelo para predecir la extracción del metal; este modelo consiste en una serie de ecuaciones no lineales de acción de masas y balance de masas. El modelo se resolvió empleando un programa de ordenador específicamente definido para este tipo de equilibrios. La extracción de cobre se describe por la formación de la especie CuR2 (log Kext= 0,717 ± 0,03 en la fase orgánica. Se ha obtenido la isoterma de extracción de cobre a 20 °C.

  5. Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS

    Science.gov (United States)

    Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.

    2013-01-01

    The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.

  6. Research on an efficient preconditioner using GMRES method for the MOC

    International Nuclear Information System (INIS)

    Takeda, Satoshi; Kitada, Takanori; Smith, Michael A.

    2011-01-01

    The modeling accuracy of reactor analysis techniques has improved considerably with the progressive improvements in computational capabilities. The method of characteristics (MOC) solves the neutron transport equation using tracking lines which simulates the neutron paths. The MOC is an accurate calculation method and is becoming a major solver because of the rapid advancement of the computer. In this methodology, the transport equation is discretized into many spatial meshes and energy wise groups. And the discretization generates a large system which needs a lot of computational costs. To reduce computational costs of MOC calculation, we investigate the Generalized Minimal RESidual (GMRES) method as an accelerator and developed an efficient preconditioner for the MOC calculation. The preconditioner we developed was made by simplifying rigorous preconditioner. And the efficiency was verified by comparing the number of iterations which is calculated by one dimensional MOC code

  7. Application of the multigrid amplitude function method for time-dependent transport equation using MOC

    International Nuclear Information System (INIS)

    Tsujita, K.; Endo, T.; Yamamoto, A.

    2013-01-01

    An efficient numerical method for time-dependent transport equation, the mutigrid amplitude function (MAF) method, is proposed. The method of characteristics (MOC) is being widely used for reactor analysis thanks to the advances of numerical algorithms and computer hardware. However, efficient kinetic calculation method for MOC is still desirable since it requires significant computation time. Various efficient numerical methods for solving the space-dependent kinetic equation, e.g., the improved quasi-static (IQS) and the frequency transform methods, have been developed so far mainly for diffusion calculation. These calculation methods are known as effective numerical methods and they offer a way for faster computation. However, they have not been applied to the kinetic calculation method using MOC as the authors' knowledge. Thus, the MAF method is applied to the kinetic calculation using MOC aiming to reduce computation time. The MAF method is a unified numerical framework of conventional kinetic calculation methods, e.g., the IQS, the frequency transform, and the theta methods. Although the MAF method is originally developed for the space-dependent kinetic calculation based on the diffusion theory, it is extended to transport theory in the present study. The accuracy and computational time are evaluated though the TWIGL benchmark problem. The calculation results show the effectiveness of the MAF method. (authors)

  8. MPACT Theory Manual, Version 2.2.0

    Energy Technology Data Exchange (ETDEWEB)

    Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jabaay, Daniel [Univ. of Michigan, Ann Arbor, MI (United States); Kelley, Blake W. [Univ. of Michigan, Ann Arbor, MI (United States); Clarno, Kevin T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kim, Kang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kochunas, Brendan [Univ. of Michigan, Ann Arbor, MI (United States); Larsen, Edward W. [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Zhouyu [Univ. of Michigan, Ann Arbor, MI (United States); Martin, William R. [Univ. of Michigan, Ann Arbor, MI (United States); Palmtag, Scott [Core Physics, Inc., Cary, NC (United States); Rose, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Saller, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Stimpson, Shane [Univ. of Michigan, Ann Arbor, MI (United States); Trahan, Travis [Univ. of Michigan, Ann Arbor, MI (United States); Wang, J. W. [Univ. of Michigan, Ann Arbor, MI (United States); Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Young, Mitchell [Univ. of Michigan, Ann Arbor, MI (United States); Zhu, Ang [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-06-09

    This theory manual describes the three-dimensional (3-D) whole-core, pin-resolved transport calculation methodology employed in the MPACT code. To provide sub-pin level power distributions with sufficient accuracy, MPACT employs the method of characteristics (MOC) solutions in the framework of a 3-D coarse mesh finite difference (CMFD) formulation. MPACT provides a 3D MOC solution, but also a 2D/1D solution in which the 2D planar solution is provided by MOC and the axial coupling is resolved by one-dimensional (1-D) lower order (diffusion or P3) solutions. In Chapter 2 of the manual, the MOC methodology is described for calculating the regional angular and scalar fluxes from the Boltzmann transport equation. In Chapter 3, the 2D/1D methodology is described, together with the description of the CMFD iteration process involving dynamic homogenization and solution of the multigroup CMFD linear system. A description of the MPACT depletion algorithm is given in Chapter 4, followed by a discussion of the subgroup and ESSM resonance processing methods in Chapter 5. The final Chapter 6 describes a simplified thermal hydraulics model in MPACT.

  9. Development of 2-D/1-D fusion method for three-dimensional whole-core heterogeneous neutron transport calculations

    International Nuclear Information System (INIS)

    Lee, Gil Soo

    2006-02-01

    To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1

  10. Advanced quadratures and periodic boundary conditions in parallel 3D Sn transport

    International Nuclear Information System (INIS)

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-01-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric ( 2 o) and Pn-Tn (>S 2 o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  11. New Three-Dimensional Neutron Transport Calculation Capability in STREAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Youqi [Xi' an Jiaotong University, Xi' an (China); Choi, Sooyoung; Lee, Deokjung [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    The method of characteristics (MOC) is one of the best choices for its powerful capability in the geometry modeling. To reduce the large computational burden in 3D MOC, the 2D/1D schemes were proposed and have achieved great success in the past 10 years. However, such methods have some instability problems during the iterations when the neutron leakage for axial direction is large. Therefore, full 3D MOC methods were developed. A lot of efforts have been devoted to reduce the computational costs. However, it still requires too much memory storage and computational time for the practical modeling of a commercial size reactor core. Recently, a new approach for the 3D MOC calculation without transverse integration has been implemented in the STREAM code. In this approach, the angular flux is expressed as a basis function expansion form of only axial variable z. A new approach based on the axial expansion and 2D MOC sweeping to solve the 3D neutron transport equation is implemented in the STREAM code. This approach avoids using the transverse integration in the traditional 2D/1D scheme of MOC calculation. By converting the 3D equation into the 2D form of angular flux expansion coefficients, it also avoids the complex 3D ray tracing. Current numerical tests using two benchmarks show good accuracy of the new method.

  12. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  13. Particle-tracking code (track3d) for convective solute transport modelling in the geosphere: Description and user`s manual; Programme de reperage de particules (track3d) pour la modelisation du transport par convection des solutes dans la geosphere: description et manuel de l`utilisateur

    Energy Technology Data Exchange (ETDEWEB)

    Nakka, B W; Chan, T

    1994-12-01

    A deterministic particle-tracking code (TRACK3D) has been developed to compute convective flow paths of conservative (nonreactive) contaminants through porous geological media. TRACK3D requires the groundwater velocity distribution, which, in our applications, results from flow simulations using AECL`s MOTIF code. The MOTIF finite-element code solves the transient and steady-state coupled equations of groundwater flow, solute transport and heat transport in fractured/porous media. With few modifications, TRACK3D can be used to analyse the velocity distributions calculated by other finite-element or finite-difference flow codes. This report describes the assumptions, limitations, organization, operation and applications of the TRACK3D code, and provides a comprehensive user`s manual.

  14. Assessment of applications of transport models on regional scale solute transport

    Science.gov (United States)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  15. MICADO: Parallel implementation of a 2D-1D iterative algorithm for the 3D neutron transport problem in prismatic geometries

    International Nuclear Information System (INIS)

    Fevotte, F.; Lathuiliere, B.

    2013-01-01

    The large increase in computing power over the past few years now makes it possible to consider developing 3D full-core heterogeneous deterministic neutron transport solvers for reference calculations. Among all approaches presented in the literature, the method first introduced in [1] seems very promising. It consists in iterating over resolutions of 2D and ID MOC problems by taking advantage of prismatic geometries without introducing approximations of a low order operator such as diffusion. However, before developing a solver with all industrial options at EDF, several points needed to be clarified. In this work, we first prove the convergence of this iterative process, under some assumptions. We then present our high-performance, parallel implementation of this algorithm in the MICADO solver. Benchmarking the solver against the Takeda case shows that the 2D-1D coupling algorithm does not seem to affect the spatial convergence order of the MOC solver. As for performance issues, our study shows that even though the data distribution is suited to the 2D solver part, the efficiency of the ID part is sufficient to ensure a good parallel efficiency of the global algorithm. After this study, the main remaining difficulty implementation-wise is about the memory requirement of a vector used for initialization. An efficient acceleration operator will also need to be developed. (authors)

  16. Verification of MC{sup 2}-3 Doppler Sample Models in ZPPR-15 D Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Jae; Hartanto, Donny; Kim, Sang Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the change of reaction rate and broadened cross section were estimated by as-built MCNP models for metallic uranium sample in ZPPR-15D using ENDF/B-VII.0 library, and the results were compared with deterministic calculations provided in previous work. The Doppler broadening is an instant feedback mechanism that improves safety and stability for both thermal and fast reactors. Therefore, the accuracy of Doppler coefficient becomes an important parameter in reactor design as well as in the safety analysis. The capability of the Doppler worth calculation by a modern computer code suites such as MC2-3 and DIF3DVARIANT, has been validated against the Zero Power Physics Reactor-15 (ZPPR-15) Doppler worth measurement experiments. For the same experiments, our previous work suggested four different MC2-3 Doppler sample models for enhanced accuracy, which are combinations of heterogeneous models and the super cell approach. The MOC and MOC-SPC models showed the smallest error in estimating the U-238 total cross section of Doppler sample N-11, and the Doppler broadening effects are well applied to the cross section compared to other two models, HOM and SPC. The effects of the super cell approach can be hardly seen, since the broadened cross section is almost the same with and without the super cell approach. Comparing the transition of reaction density, MOC and MOC-SPC models also show similar behavior as MCNP's with minor errors. As a conclusion, we could obtain more consistent broadened cross section as well as reaction density transition by providing heterogeneous models from MC2-3's MOC module.

  17. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  18. Coupling ANIMO and MT3DMS for 3D regional-scale modeling of nutrient transport in soil and groundwater

    Science.gov (United States)

    Janssen, G.; Del Val Alonso, L.; Groenendijk, P.; Griffioen, J.

    2012-12-01

    We developed an on-line coupling between the 1D/quasi-2D nutrient transport model ANIMO and the 3D groundwater transport model code MT3DMS. ANIMO is a detailed, process-oriented model code for the simulation of nitrate leaching to groundwater, N- and P-loads on surface waters and emissions of greenhouse gasses. It is the leading nutrient fate and transport code in the Netherlands where it is used primarily for the evaluation of fertilization related legislation. In addition, the code is applied frequently in international research projects. MT3DMS is probably the most commonly used groundwater solute transport package worldwide. The on-line model coupling ANIMO-MT3DMS combines the state-of-the-art descriptions of the biogeochemical cycles in ANIMO with the advantages of using a 3D approach for the transport through the saturated domain. These advantages include accounting for regional lateral transport, considering groundwater-surface water interactions more explicitly, and the possibility of using MODFLOW to obtain the flow fields. An additional merit of the on-line coupling concept is that it preserves feedbacks between the saturated and unsaturated zone. We tested ANIMO-MT3DMS by simulating nutrient transport for the period 1970-2007 in a Dutch agricultural polder catchment covering an area of 118 km2. The transient groundwater flow field had a temporal resolution of one day and was calculated with MODFLOW-MetaSWAP. The horizontal resolution of the model grid was 100x100m and consisted of 25 layers of varying thickness. To keep computation times manageable, we prepared MT3DMS for parallel computing, which in itself is a relevant development for a large community of groundwater transport modelers. For the parameterization of the soil, we applied a standard classification approach, representing the area by 60 units with unique combinations of soil type, land use and geohydrological setting. For the geochemical parameterization of the deeper subsurface, however, we

  19. Field applications of the channel network model, CHAN3D

    International Nuclear Information System (INIS)

    Khademi, B.; Gylling, B.; Moreno, L.; Neretnieks, I.

    1998-01-01

    The Channel Network model and its computer implementation, CHAN3D, was developed to simulate fluid flow and transport of solutes in fractured media. The model has been used to interpret field experiments of flow and transport in small and in large scale. It may also be used for safety assessments of repositories for nuclear and other hazardous wastes. In this case, CHAN3D has been coupled to a compartment model, NUCTRAN, to describe the near field of the repository. The model is based on field observations, which indicate that the flow and solute transport take place in a three-dimensional network of connected channels. The channels have very different properties and they are generated in the model from observed stochastic distributions. This allows us to represent the large heterogeneity of the flow distribution commonly observed in fractured media. Solute transport is modelled considering advection and rock interactions such as matrix diffusion and sorption within the interior of the rock. Objects such as fracture zones, tunnels and release sources can be incorporated in the model

  20. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  1. An acceleration technique for 2D MOC based on Krylov subspace and domain decomposition methods

    International Nuclear Information System (INIS)

    Zhang Hongbo; Wu Hongchun; Cao Liangzhi

    2011-01-01

    Highlights: → We convert MOC into linear system solved by GMRES as an acceleration method. → We use domain decomposition method to overcome the inefficiency on large matrices. → Parallel technology is applied and a matched ray tracing system is developed. → Results show good efficiency even in large-scale and strong scattering problems. → The emphasis is that the technique is geometry-flexible. - Abstract: The method of characteristics (MOC) has great geometrical flexibility but poor computational efficiency in neutron transport calculations. The generalized minimal residual (GMRES) method, a type of Krylov subspace method, is utilized to accelerate a 2D generalized geometry characteristics solver AutoMOC. In this technique, a form of linear algebraic equation system for angular flux moments and boundary fluxes is derived to replace the conventional characteristics sweep (i.e. inner iteration) scheme, and then the GMRES method is implemented as an efficient linear system solver. This acceleration method is proved to be reliable in theory and simple for implementation. Furthermore, as introducing no restriction in geometry treatment, it is suitable for acceleration of an arbitrary geometry MOC solver. However, it is observed that the speedup decreases when the matrix becomes larger. The spatial domain decomposition method and multiprocessing parallel technology are then employed to overcome the problem. The calculation domain is partitioned into several sub-domains. For each of them, a smaller matrix is established and solved by GMRES; and the adjacent sub-domains are coupled by 'inner-edges', where the trajectory mismatches are considered adequately. Moreover, a matched ray tracing system is developed on the basis of AutoCAD, which allows a user to define the sub-domains on demand conveniently. Numerical results demonstrate that the acceleration techniques are efficient without loss of accuracy, even in the case of large-scale and strong scattering

  2. GLOBEC NEP MOCNESS Plankton (MOC1) Data, 2000-2002

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GLOBEC (GLOBal Ocean ECosystems Dynamics) NEP (Northeast Pacific) California Current Program MOCNESS Plankton (MOC1) Data The MOCNESS is based on the Tucker Trawl...

  3. The dependence of the oceans MOC on mesoscale eddy diffusivities: A model study

    Science.gov (United States)

    Marshall, John; Scott, Jeffery R.; Romanou, Anastasia; Kelley, Maxwell; Leboissetier, Anthony

    2017-01-01

    The dependence of the depth and strength of the ocean's global meridional overturning cells (MOC) on the specification of mesoscale eddy diffusivity (K) is explored in two ocean models. The GISS and MIT ocean models are driven by the same prescribed forcing fields, configured in similar ways, spun up to equilibrium for a range of K 's and the resulting MOCs mapped and documented. Scaling laws implicit in modern theories of the MOC are used to rationalize the results. In all calculations the K used in the computation of eddy-induced circulation and that used in the representation of eddy stirring along neutral surfaces, is set to the same value but is changed across experiments. We are able to connect changes in the strength and depth of the Atlantic MOC, the southern ocean upwelling MOC, and the deep cell emanating from Antarctica, to changes in K.

  4. ALGE3D: A Three-Dimensional Transport Model

    Science.gov (United States)

    Maze, G. M.

    2017-12-01

    Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.

  5. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    International Nuclear Information System (INIS)

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-01-01

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  6. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  7. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    International Nuclear Information System (INIS)

    Hoffman, Adam J.; Lee, John C.

    2016-01-01

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.

  8. Parallel 3-D method of characteristics in MPACT

    International Nuclear Information System (INIS)

    Kochunas, B.; Dovvnar, T. J.; Liu, Z.

    2013-01-01

    A new parallel 3-D MOC kernel has been developed and implemented in MPACT which makes use of the modular ray tracing technique to reduce computational requirements and to facilitate parallel decomposition. The parallel model makes use of both distributed and shared memory parallelism which are implemented with the MPI and OpenMP standards, respectively. The kernel is capable of parallel decomposition of problems in space, angle, and by characteristic rays up to 0(104) processors. Initial verification of the parallel 3-D MOC kernel was performed using the Takeda 3-D transport benchmark problems. The eigenvalues computed by MPACT are within the statistical uncertainty of the benchmark reference and agree well with the averages of other participants. The MPACT k eff differs from the benchmark results for rodded and un-rodded cases by 11 and -40 pcm, respectively. The calculations were performed for various numbers of processors and parallel decompositions up to 15625 processors; all producing the same result at convergence. The parallel efficiency of the worst case was 60%, while very good efficiency (>95%) was observed for cases using 500 processors. The overall run time for the 500 processor case was 231 seconds and 19 seconds for the case with 15625 processors. Ongoing work is focused on developing theoretical performance models and the implementation of acceleration techniques to minimize the number of iterations to converge. (authors)

  9. Influence of 3D printing on transport : a theory and experts judgment based conceptual model

    NARCIS (Netherlands)

    Boon, Wouter; Van Wee, Bert

    2017-01-01

    Consumer 3D printing is on the rise and has the potential to significantly change the transport and logistics sector. Current literature on 3D printing and transport studies does not provide a systematic model of the impact of 3D printing on transport and related (policy relevant) areas, such as

  10. Modified Mixed Lagrangian-Eulerian Method Based on Numerical Framework of MT3DMS on Cauchy Boundary.

    Science.gov (United States)

    Suk, Heejun

    2016-07-01

    MT3DMS, a modular three-dimensional multispecies transport model, has long been a popular model in the groundwater field for simulating solute transport in the saturated zone. However, the method of characteristics (MOC), modified MOC (MMOC), and hybrid MOC (HMOC) included in MT3DMS did not treat Cauchy boundary conditions in a straightforward or rigorous manner, from a mathematical point of view. The MOC, MMOC, and HMOC regard the Cauchy boundary as a source condition. For the source, MOC, MMOC, and HMOC calculate the Lagrangian concentration by setting it equal to the cell concentration at an old time level. However, the above calculation is an approximate method because it does not involve backward tracking in MMOC and HMOC or allow performing forward tracking at the source cell in MOC. To circumvent this problem, a new scheme is proposed that avoids direct calculation of the Lagrangian concentration on the Cauchy boundary. The proposed method combines the numerical formulations of two different schemes, the finite element method (FEM) and the Eulerian-Lagrangian method (ELM), into one global matrix equation. This study demonstrates the limitation of all MT3DMS schemes, including MOC, MMOC, HMOC, and a third-order total-variation-diminishing (TVD) scheme under Cauchy boundary conditions. By contrast, the proposed method always shows good agreement with the exact solution, regardless of the flow conditions. Finally, the successful application of the proposed method sheds light on the possible flexibility and capability of the MT3DMS to deal with the mass transport problems of all flow regimes. © 2016, National Ground Water Association.

  11. Molecular and genetic characterization of the rhizopine catabolism (mocABRC) genes of Rhizobium meliloti L5-30.

    Science.gov (United States)

    Rossbach, S; Kulpa, D A; Rossbach, U; de Bruijn, F J

    1994-10-17

    Rhizopine (L-3-O-methyl-scyllo-inosamine, 3-O-MSI) is a symbiosis-specific compound, which is synthesized in nitrogen-fixing nodules of Medicago sativa induced by Rhizobium meliloti strain L5-30. 3-O-MSI is thought to function as an unusual growth substrate for R. meliloti L5-30, which carries a locus (mos) responsible for its synthesis closely linked to a locus (moc) responsible for its degradation. Here, the essential moc genes were delimited by Tn5 mutagenesis and shown to be organized into two regions, separated by 3 kb of DNA. The DNA sequence of a 9-kb fragment spanning the two moc regions was determined, and four genes were identified that play an essential role in rhizopine catabolism (mocABC and mocR). The analysis of the DNA sequence and the amino acid sequence of the deduced protein products revealed that MocA resembles NADH-dependent dehydrogenases. MocB exhibits characteristic features of periplasmic-binding proteins that are components of high-affinity transport systems. MocC does not share significant homology with any protein in the database. MocR shows homology with the GntR class of bacterial regulator proteins. These results suggest that the mocABC genes are involved in the uptake and subsequent degradation of rhizopine, whereas mocR is likely to play a regulatory role.

  12. User's guide to revised method-of-characteristics solute-transport model (MOC--version 31)

    Science.gov (United States)

    Konikow, Leonard F.; Granato, G.E.; Hornberger, G.Z.

    1994-01-01

    The U.S. Geological Survey computer model to simulate two-dimensional solute transport and dispersion in ground water (Konikow and Bredehoeft, 1978; Goode and Konikow, 1989) has been modified to improve management of input and output data and to provide progressive run-time information. All opening and closing of files are now done automatically by the program. Names of input data files are entered either interactively or using a batch-mode script file. Names of output files, created automatically by the program, are based on the name of the input file. In the interactive mode, messages are written to the screen during execution to allow the user to monitor the status and progress of the simulation and to anticipate total running time. Information reported and updated during a simulation include the current pumping period and time step, number of particle moves, and percentage completion of the current time step. The batch mode enables a user to run a series of simulations consecutively, without additional control. A report of the model's activity in the batch mode is written to a separate output file, allowing later review. The user has several options for creating separate output files for different types of data. The formats are compatible with many commercially available applications, which facilitates graphical postprocessing of model results. Geohydrology and Evaluation of Stream-Aquifer Relations in the Apalachicola-Chattahoochee-Flint River Basin, Southeastern Alabama, Northwestern Florida, and Southwestern Georgia By Lynn J. Torak, Gary S. Davis, George A. Strain, and Jennifer G. Herndon Abstract The lower Apalachieola-Chattahoochec-Flint River Basin is underlain by Coastal Plain sediments of pre-Cretaceous to Quaternary age consisting of alternating units of sand, clay, sandstone, dolomite, and limestone that gradually thicken and dip gently to the southeast. The stream-aquifer system consism of carbonate (limestone and dolomite) and elastic sediments

  13. 3D modeling of high-Tc superconductors by finite element software

    International Nuclear Information System (INIS)

    Zhang Min; Coombs, T A

    2012-01-01

    A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-T c superconducting (HTS) system. The model is characterized by the E–J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.

  14. Three-Dimensional Finite-Volume ELLAM Implementation

    National Research Council Canada - National Science Library

    Heberton, C. I; Russell, T. F; Konikow, L. F; Hornberger, G. Z

    2006-01-01

    ... of the U.S. Geological Survey (USGS) MODFLOW/MOC3D ground-water modeling package. The USGS ELLAM code simulates solute transport in ground water for a single dissolved constituent subject to advective transport, hydrodynamic dispersion...

  15. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    Science.gov (United States)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  16. FALL3D: A computational model for transport and deposition of volcanic ash

    Science.gov (United States)

    Folch, A.; Costa, A.; Macedonio, G.

    2009-06-01

    FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic ashes and lapilli. The model solves the advection-diffusion-sedimentation (ADS) equation on a structured terrain-following grid using a second-order finite differences (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor and for the particle terminal settling velocities can be used. The code, written in FORTRAN 90, is available in both serial and parallel versions for Windows and Unix/Linux/Mac X operating systems (OS). A series of pre- and post-process utility programs and OS-dependent scripts to launch them are also included in the FALL3D distribution package. Although the model has been designed to forecast volcanic ash concentration in the atmosphere and ash loading at ground, it can also be used to model the transport of any kind of airborne solid particles. The model inputs are meteorological data, topography, grain-size distribution, shape and density of particles, and mass rate of particle injected into the atmosphere. Optionally, FALL3D can be coupled with the output of the meteorological processor CALMET, a diagnostic model which generates 3-D time-dependent zero-divergence wind fields from mesoscale forecasts incorporating local terrain effects. The FALL3D model can be a tool for short-term ash deposition forecasting and for volcanic fallout hazard assessment. As an example, an application to the 22 July 1998 Etna eruption is also presented.

  17. From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms

    Science.gov (United States)

    Bodin, Jacques

    2015-03-01

    In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.

  18. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    International Nuclear Information System (INIS)

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-01-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  19. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)

    2016-12-01

    A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.

  20. Development of solute transport models in YMPYRÄ framework to simulate solute migration in military shooting and training areas

    Science.gov (United States)

    Warsta, L.; Karvonen, T.

    2017-12-01

    There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the

  1. A three-dimensional neutron transport benchmark solution

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Kornreich, D.E.

    1993-01-01

    For one-group neutron transport theory in one dimension, several powerful analytical techniques have been developed to solve the neutron transport equation, including Caseology, Wiener-Hopf factorization, and Fourier and Laplace transform methods. In addition, after a Fourier transform in the transverse plane and formulation of a pseudo problem, two-dimensional (2-D) and three-dimensional (3-D) problems can be solved using the techniques specifically developed for the one-dimensional (1-D) case. Numerical evaluation of the resulting expressions requiring an inversion in the transverse plane have been successful for 2-D problems but becomes exceedingly difficult in the 3-D case. In this paper, we show that by using the symmetry along the beam direction, a 2-D problem can be transformed into a 3-D problem in an infinite medium. The numerical solution to the 3-D problem is then demonstrated. Thus, a true 3-D transport benchmark solution can be obtained from a well-established numerical solution to a 2-D problem

  2. Mathematical modeling of solute transport in the subsurface

    International Nuclear Information System (INIS)

    Naymik, T.G.

    1987-01-01

    A review of key works on solute transport models indicates that solute transport processes with the exception of advection are still poorly understood. Solute transport models generally do a good job when they are used to test scientific concepts and hypotheses, investigate natural processes, systematically store and manage data, and simulate mass balance of solutes under certain natural conditions. Solute transport models generally are not good for predicting future conditions with a high degree of certainty, or for determining concentrations precisely. The mathematical treatment of solute transport far surpasses their understanding of the process. Investigations of the extent of groundwater contamination and methods to remedy existing problems show the along-term nature of the hazard. Industrial organic compounds may be immiscible in water, highly volatile, or complexed with inorganic as well as other organic compounds; many remain stable in nature almost indefinitely. In the worst case, future disposal of hazardous waste may be restricted to deep burial, as is proposed for radioactive wastes. For investigations pertinent to transport of radionuclides from a geologic repository, the process cannot be fully understood without adequate thermodynamic and kinetic data bases

  3. An evaluation of the Cray T3D programming paradigms in atmospheric chemistry/transport models

    NARCIS (Netherlands)

    J.G. Blom (Joke); C. Keßler (Carsten); J.G. Verwer (Jan)

    1996-01-01

    textabstractIn this paper we compare the different programming paradigms available on the Cray T3D for the implementation of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to convert existing codes to the T3D and the portability of the resulting

  4. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  5. The secret to successful solute-transport modeling

    Science.gov (United States)

    Konikow, Leonard F.

    2011-01-01

    Modeling subsurface solute transport is difficult—more so than modeling heads and flows. The classical governing equation does not always adequately represent what we see at the field scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex field problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-flow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efficiency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-flow problems. However, numerical errors can be kept within acceptable limits if sufficient computational effort is expended. But impractically long

  6. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  7. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  8. MODIS volcanic ash retrievals vs FALL3D transport model: a quantitative comparison

    Science.gov (United States)

    Corradini, S.; Merucci, L.; Folch, A.

    2010-12-01

    Satellite retrievals and transport models represents the key tools to monitor the volcanic clouds evolution. Because of the harming effects of fine ash particles on aircrafts, the real-time tracking and forecasting of volcanic clouds is key for aviation safety. Together with the security reasons also the economical consequences of a disruption of airports must be taken into account. The airport closures due to the recent Icelandic Eyjafjöll eruption caused millions of passengers to be stranded not only in Europe, but across the world. IATA (the International Air Transport Association) estimates that the worldwide airline industry has lost a total of about 2.5 billion of Euro during the disruption. Both security and economical issues require reliable and robust ash cloud retrievals and trajectory forecasting. The intercomparison between remote sensing and modeling is required to assure precise and reliable volcanic ash products. In this work we perform a quantitative comparison between Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of volcanic ash cloud mass and Aerosol Optical Depth (AOD) with the FALL3D ash dispersal model. MODIS, aboard the NASA-Terra and NASA-Aqua polar satellites, is a multispectral instrument with 36 spectral bands operating in the VIS-TIR spectral range and spatial resolution varying between 250 and 1000 m at nadir. The MODIS channels centered around 11 and 12 micron have been used for the ash retrievals through the Brightness Temperature Difference algorithm and MODTRAN simulations. FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of volcanic particles that outputs, among other variables, cloud column mass and AOD. Three MODIS images collected the October 28, 29 and 30 on Mt. Etna volcano during the 2002 eruption have been considered as test cases. The results show a general good agreement between the retrieved and the modeled volcanic clouds in the first 300 km from the vents. Even if the

  9. FALL3D: A Computational Model for Trans-port and Deposition of Volcanic Ash

    OpenAIRE

    Folch, A.; Costa, A.; Macedonio, G.

    2008-01-01

    FALL3D is a 3-D time-dependent Eulerian model for the transport and deposition of 8 volcanic ash. The model solves the advection-diffusion-sedimentation (ADS) equa- 9 tion on a structured terrain-following grid using a second-order Finite Differences 10 (FD) explicit scheme. Different parameterizations for the eddy diffusivity tensor 11 and for the particle terminal settling velocities can be used. The code, written 12 in FORTRAN 90, is available in both serial and parallel ver...

  10. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway.

    Science.gov (United States)

    Bahar, M; de Majnik, J; Wexler, M; Fry, J; Poole, P S; Murphy, P J

    1998-11-01

    Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD and MocE contain motifs corresponding to a TOL-like oxygenase and a [2Fe-2S] Rieske-like ferredoxin, respectively. The mocF gene encodes a ferredoxin reductase that would complete the oxygenase system, but is not essential for rhizopine catabolism. We propose a rhizopine catabolic model whereby MocB transports rhizopine into the cell and MocDE and MocF (or a similar protein elsewhere in the genome), under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine (SI). MocA, an NAD(H)-dependent dehydrogenase, and MocC continue the catabolic process. Compounds formed then enter the inositol catabolic pathway.

  11. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    OpenAIRE

    Hansen , K. M.; Christensen , J. H.; Brandt , J.; Frohn , L. M.; Geels , C.

    2004-01-01

    International audience; The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of...

  12. The Esri 3D city information model

    International Nuclear Information System (INIS)

    Reitz, T; Schubiger-Banz, S

    2014-01-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases

  13. TORT-TD/ATTICA3D: a coupled neutron transport and thermal hydraulics code system for 3-D transient analysis of gas cooled high temperature reactors

    International Nuclear Information System (INIS)

    Lapins, J.; Seubert, A.; Buck, M.; Bader, J.; Laurien, E.

    2011-01-01

    Comprehensive safety studies of high temperature gas cooled reactors (HTR) require full three dimensional coupled treatments of both neutron kinetics and thermal-hydraulics. In a common effort, GRS and IKE developed the coupled code system TORT-TD/ATTICA3D for pebble bed type HTR that connects the 3-D transient discrete-ordinates transport code TORT-TD with the 3-D porous medium thermal-hydraulics code ATTICA3D. In this paper, the physical models and calculation capabilities of TORT-TD and ATTICA3D are presented, focusing on model improvements in ATTICA3D and extensions made in TORT-TD related to HTR application. For first applications, the OECD/NEA/NSC PBMR-400 benchmark has been chosen. Results obtained with TORT-TD/ATTICA3D will be shown for transient exercises, e.g. control rod withdrawal and a control rod ejection. Results are compared to other benchmark participants' solutions with special focus on fuel temperature modelling features of ATTICA3D. The provided “grey-curtain” nuclear cross section libraries have been used. First results on 3-D effects during a control rod withdrawal transient will be presented. (author)

  14. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    Science.gov (United States)

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland

  15. Development and applications of the channel network model for simulations of flow and solute transport in fractured rock

    International Nuclear Information System (INIS)

    Gylling, B.

    1997-01-01

    The Channel Network model and its computer implementation, the code CHAN3D, for simulations of fluid flow and transport of solutes have been developed. The tool may be used for performance and safety assessments of deep lying repositories in fractured rocks for nuclear and other hazardous wastes, e.g. chemical wastes. It may also be used to simulate and interpret field experiments of flow and transport in large or small scale. Fluid flow and solute transport in fractured media are of interest in the performance assessment of a repository for hazardous waste, located at depth in crystalline rock, with potential release of solutes. Fluid flow in fractured rock is found to be very unevenly distributed due to the heterogeneity of the medium. The water will seek the easiest path, channels, under a prevailing pressure gradient. Solutes in the flowing water may be transported through preferential paths and migrate from the water in the fractures into the stagnant water in the rock matrix. There, sorbing solutes may be sorbed on the micro surfaces within the matrix. The diffusion into the matrix and the sorption process may significantly retard the transport of species and increase the time available for radionuclide decay. Channelling and matrix diffusion contribute to the dispersion of solutes in the water. Important for performance assessment is that channeling may cause a portion of the solutes to arrive much faster than the rest of the solutes. Simulations of field experiments at the Aespoe Hard Rock Laboratory using the Channel Network model have been performed. The application of the model to the site and the simulation results of the pumping and tracer tests are presented. The results show that the model is capable of describing the hydraulic gradient and of predicting flow rates and tracer transport obtained in the experiments. The data requirements for the Channel Network model have been investigated to determine which data are the most important for predictions

  16. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  17. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  18. Investigation on the MOC with a linear source approximation scheme in three-dimensional assembly

    International Nuclear Information System (INIS)

    Zhu, Chenglin; Cao, Xinrong

    2014-01-01

    Method of characteristics (MOC) for solving neutron transport equation has already become one of the fundamental methods for lattice calculation of nuclear design code system. At present, MOC has three schemes to deal with the neutron source of the transport equation: the flat source approximation of the step characteristics (SC) scheme, the diamond difference (DD) scheme and the linear source (LS) characteristics scheme. The MOC for SC scheme and DD scheme need large storage space and long computing time when they are used to calculate large-scale three-dimensional neutron transport problems. In this paper, a LS scheme and its correction for negative source distribution were developed and added to DRAGON code. This new scheme was compared with the SC scheme and DD scheme which had been applied in this code. As an open source code, DRAGON could solve three-dimensional assembly with MOC method. Detailed calculation is conducted on two-dimensional VVER-1000 assembly under three schemes of MOC. The numerical results indicate that coarse mesh could be used in the LS scheme with the same accuracy. And the LS scheme applied in DRAGON is effective and expected results are achieved. Then three-dimensional cell problem and VVER-1000 assembly are calculated with LS scheme and SC scheme. The results show that less memory and shorter computational time are employed in LS scheme compared with SC scheme. It is concluded that by using LS scheme, DRAGON is able to calculate large-scale three-dimensional problems with less storage space and shorter computing time

  19. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    Science.gov (United States)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  20. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  1. An efficient quasi-3D particle tracking-based approach for transport through fractures with application to dynamic dispersion calculation.

    Science.gov (United States)

    Wang, Lichun; Cardenas, M Bayani

    2015-08-01

    The quantitative study of transport through fractured media has continued for many decades, but has often been constrained by observational and computational challenges. Here, we developed an efficient quasi-3D random walk particle tracking (RWPT) algorithm to simulate solute transport through natural fractures based on a 2D flow field generated from the modified local cubic law (MLCL). As a reference, we also modeled the actual breakthrough curves (BTCs) through direct simulations with the 3D advection-diffusion equation (ADE) and Navier-Stokes equations. The RWPT algorithm along with the MLCL accurately reproduced the actual BTCs calculated with the 3D ADE. The BTCs exhibited non-Fickian behavior, including early arrival and long tails. Using the spatial information of particle trajectories, we further analyzed the dynamic dispersion process through moment analysis. From this, asymptotic time scales were determined for solute dispersion to distinguish non-Fickian from Fickian regimes. This analysis illustrates the advantage and benefit of using an efficient combination of flow modeling and RWPT. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  3. An analytical discrete-ordinates solution for an improved one-dimensional model of three-dimensional transport in ducts

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    2015-01-01

    Highlights: • An improved 1-D model of 3-D particle transport in ducts is studied. • The cases of isotropic and directional incidence are treated with the ADO method. • Accurate numerical results are reported for ducts of circular cross section. • A comparison with results of other authors is included. • The ADO method is found to be very efficient. - Abstract: An analytical discrete-ordinates solution is developed for the problem of particle transport in ducts, as described by a one-dimensional model constructed with two basis functions. Two types of particle incidence are considered: isotropic incidence and incidence described by the Dirac delta distribution. Accurate numerical results are tabulated for the reflection probabilities of semi-infinite ducts and the reflection and transmission probabilities of finite ducts. It is concluded that the developed solution is more efficient than commonly used numerical implementations of the discrete-ordinates method.

  4. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  5. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  6. A quasilinear model for solute transport under unsaturated flow

    International Nuclear Information System (INIS)

    Houseworth, J.E.; Leem, J.

    2009-01-01

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  7. In vivo high-affinity uptake and axonal transport of D-(2,3-/sup 3/H)aspartate in excitatory neurons

    Energy Technology Data Exchange (ETDEWEB)

    Storm-Mathisen, J.; Wold, J.E. (Oslo Univ. (Norway))

    1981-12-28

    D-(2,3-/sup 3/H)aspartate ((/sup 3/H)D-Asp) at ..mu..M concentrations in Krebs' solution was infused intracerebrally in rats, mice and hamsters. Neuropil sites in the hippocampal formation, septum and neostriatum, known to receive excitatory nerve inputs with glutamate and aspartate as putative transmitters, showed strong autoradiographic labeling after intraventricular infusions. There was evidence for retrograde axonal transport to pyramidal cell bodies in hippocampus CA3 and neocortex. Infusions into the hilus fasciae dentatae led to anterograde axonal transport of (/sup 3/H)D-Asp in the mossy fibers.

  8. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  9. Albedo and heat transport in 3-D model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-08-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion years ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun paradox" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-D model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. In order to do so, we have appropriately modified an intermediate complexity climate model that couples a statistical-dynamical atmosphere model (involving parameterizations of the dynamics to an ocean general circulation model and a thermodynamic-dynamic sea-ice model. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today, which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterization of the ice-albedo feedback for 1-D model simulations of the early Archean and thus the faint young Sun problem.

  10. MOC's Highest Resolution View of Mars Pathfinder Landing Site

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] (A) Mars Pathfinder site, left: April 1998; right: January 2000. [figure removed for brevity, see original site] (B) top: April 1998; bottom: January 2000.Can Mars Global Surveyor's 1.5 meter (5 ft) per pixel camera be used to find any evidence as to the fate of the Mars Polar Lander that was lost on December 3, 1999? One way to find out is to look for one of the other Mars landers and determine what, if anything, can be seen. There have been three successful Mars lander missions: Viking 1 (July 1976), Viking 2 (September 1976), and Mars Pathfinder (July 1997). Of these, the location of Mars Pathfinder is known the best because there are several distinct landmarks visible in the lander's images that help in locating the spacecraft. The MGS MOC Operations Team at Malin Space Science Systems has been tasked since mid-December 1999 with looking for the lost Polar Lander. Part of this effort has been to test the capabilities of MOC by taking a picture of the landing site of Mars Pathfinder.An attempt to photograph the Pathfinder site was made once before, in April 1998, by turning the entire MGS spacecraft so that the camera could point at the known location of the Mars Pathfinder lander. Turning the MGS spacecraft like this is not a normal operation--it takes considerable planning, and disrupts the on-going, normal acquisition of science data. It took 3 attempts to succeed, but on April 22, 1998, MOC acquired the picture seen on the left side of Figure A, above. The three near-by major landmarks that were visible to the Pathfinder's cameras are labeled here (North Peak, Big Crater, Twin Peaks). It was known at the time that this image was not adequate to see the Pathfinder lander because the camera was not in focus and had a resolution of only 3.3 meters (11 ft) per pixel. In this and all other images shown here, north is up. All views of the 1998 MOC image are illuminated from the lower right, all views of the 2000 MOC

  11. Transport of fluid and solutes in the body II. Model validation and implications.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.

  12. Two-Dimensional (2D Slices Encryption-Based Security Solution for Three-Dimensional (3D Printing Industry

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-05-01

    Full Text Available Nowadays, three-dimensional (3D printing technology is applied to many areas of life and changes the world based on the creation of complex structures and shapes that were not feasible in the past. But, the data of 3D printing is often attacked in the storage and transmission processes. Therefore, 3D printing must be ensured security in the manufacturing process, especially the data of 3D printing to prevent attacks from hackers. This paper presents a security solution for 3D printing based on two-dimensional (2D slices encryption. The 2D slices of 3D printing data is encrypted in the frequency domain or in the spatial domain by the secret key to generate the encrypted data of 3D printing. We implemented the proposed solution in both the frequency domain based on the Discrete Cosine Transform and the spatial domain based on geometric transform. The entire 2D slices of 3D printing data is altered and secured after the encryption process. The proposed solution is responsive to the security requirements for the secured storage and transmission. Experimental results also verified that the proposed solution is effective to 3D printing data and is independent on the format of 3D printing models. When compared to the conventional works, the security and performance of the proposed solution is also better.

  13. A 3D Monte Carlo code for plasma transport in island divertors

    International Nuclear Information System (INIS)

    Feng, Y.; Sardei, F.; Kisslinger, J.; Grigull, P.

    1997-01-01

    A fully 3D self-consistent Monte Carlo code EMC3 (edge Monte Carlo 3D) for modelling the plasma transport in island divertors has been developed. In a first step, the code solves a simplified version of the 3D time-independent plasma fluid equations. Coupled to the neutral transport code EIRENE, the EMC3 code has been used to study the particle, energy and neutral transport in W7-AS island divertor configurations. First results are compared with data from different diagnostics (Langmuir probes, H α cameras and thermography). (orig.)

  14. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media

    International Nuclear Information System (INIS)

    Holford, D.J.

    1994-01-01

    This document is a user's manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water

  15. MO-B-19A-01: MOC: A How-To Guide

    International Nuclear Information System (INIS)

    Ibbott, G; Seibert, J; Allison, J; Frey, G

    2014-01-01

    Medical physicists who were certified in 2002 or later, as well as those who become certified in the future, are enrolled in Maintenance of Certification. Many physicists with life-time certificates have voluntarily enrolled in MOC, as have physicists who volunteer their time to participate in the ABR exam development and administration processes. MOC consists of four components: Part 1, Professional standing; Part 2, Lifelong learning and self-assessment; Part 3, Cognitive expertise; and Part 4, Practice quality improvement. These four components together evaluate six competencies: Medical knowledge, patient care and procedural skills, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Parts 1, 2, and 3 of MOC are fairly straightforward, although many participants have questions about the process for attesting to professional standing, the opportunities for obtaining self-assessed continuing education, and the timing of the cognitive exam. MOC participants also have questions about Part 4, Practice Quality Improvement. PQI projects are powerful tools for improving the quality and safety of the environments in which we practice medical physics. In the current version of MOC known as “Continuous Certification” a medical physicist must have completed a PQI project within the previous three years, at the time of the ABR's annual look-back each March. For the first “full” annual look-back in March 2016, diplomates will be given an additional year, so that a PQI project completed in 2012, 2013, 2014, or 2015 will fulfill this requirement. Each component of MOC will be addressed, and the specifics of interest to medical physicists will be discussed. Learning Objectives: Understand the four components and six competencies evaluated by MOC. Become familiar with the annual requirements of Continuous Certification. Learn about opportunities for Practice Quality Improvement projects

  16. MO-B-19A-01: MOC: A How-To Guide

    Energy Technology Data Exchange (ETDEWEB)

    Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States); Seibert, J [UC Davis Medical Center, Sacramento, CA (United States); Allison, J [Georgia Regents University, Augusta, GA (Georgia); Frey, G [The American Board of Radiology, Charleston, SC (United States)

    2014-06-15

    Medical physicists who were certified in 2002 or later, as well as those who become certified in the future, are enrolled in Maintenance of Certification. Many physicists with life-time certificates have voluntarily enrolled in MOC, as have physicists who volunteer their time to participate in the ABR exam development and administration processes. MOC consists of four components: Part 1, Professional standing; Part 2, Lifelong learning and self-assessment; Part 3, Cognitive expertise; and Part 4, Practice quality improvement. These four components together evaluate six competencies: Medical knowledge, patient care and procedural skills, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice. Parts 1, 2, and 3 of MOC are fairly straightforward, although many participants have questions about the process for attesting to professional standing, the opportunities for obtaining self-assessed continuing education, and the timing of the cognitive exam. MOC participants also have questions about Part 4, Practice Quality Improvement. PQI projects are powerful tools for improving the quality and safety of the environments in which we practice medical physics. In the current version of MOC known as “Continuous Certification” a medical physicist must have completed a PQI project within the previous three years, at the time of the ABR's annual look-back each March. For the first “full” annual look-back in March 2016, diplomates will be given an additional year, so that a PQI project completed in 2012, 2013, 2014, or 2015 will fulfill this requirement. Each component of MOC will be addressed, and the specifics of interest to medical physicists will be discussed. Learning Objectives: Understand the four components and six competencies evaluated by MOC. Become familiar with the annual requirements of Continuous Certification. Learn about opportunities for Practice Quality Improvement projects

  17. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications

    International Nuclear Information System (INIS)

    Tran Ngoc, T.D.

    2008-07-01

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  18. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Directory of Open Access Journals (Sweden)

    K. M. Hansen

    2004-01-01

    Full Text Available The Danish Eulerian Hemispheric Model (DEHM is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  19. Modelling atmospheric transport of α-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-07-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs.

  20. Two-level MOC calculation scheme in APOLLO2 for cross-section library generation for LWR hexagonal assemblies

    International Nuclear Information System (INIS)

    Petrov, Nikolay; Todorova, Galina; Kolev, Nikola; Damian, Frederic

    2011-01-01

    The accurate and efficient MOC calculation scheme in APOLLO2, developed by CEA for generating multi-parameterized cross-section libraries for PWR assemblies, has been adapted to hexagonal assemblies. The neutronic part of this scheme is based on a two-level calculation methodology. At the first level, a multi-cell method is used in 281 energy groups for cross-section definition and self-shielding. At the second level, precise MOC calculations are performed in a collapsed energy mesh (30-40 groups). In this paper, the application and validation of the two-level scheme for hexagonal assemblies is described. Solutions for a VVER assembly are compared with TRIPOLI4® calculations and direct 281g MOC solutions. The results show that the accuracy is close to that of the 281g MOC calculation while the CPU time is substantially reduced. Compared to the multi-cell method, the accuracy is markedly improved. (author)

  1. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model.

    Science.gov (United States)

    Khoh-Reiter, Su; Jessen, Bart A

    2009-07-28

    Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 microL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic solutions are not likely to cause

  2. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    Directory of Open Access Journals (Sweden)

    Jessen Bart A

    2009-07-01

    Full Text Available Abstract Background Benzalkonium chloride (BAC is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC and olopatadine (0.01% BAC was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T cell cultures, expression levels (mRNA and protein of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC

  3. Modeling atrazine transport in soil columns with HYDRUS-1D

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2011-09-01

    Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.

  4. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  5. A cross-platform solution for light field based 3D telemedicine.

    Science.gov (United States)

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  7. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  8. Mathematical Model of Ion Transport in Electrodialysis Process

    Directory of Open Access Journals (Sweden)

    F.S. Rohman

    2010-10-01

    Full Text Available Mathematical models of ion transport in electrodialysis process is reviewed and their basics concept is discussed. Three scales of ion transport reviewed are: 1 ion transport in the membrane, where two approaches are used, the irreversible thermodynamics and modeling of the membrane material; 2 ion transport in a three-layer system composed of a membrane with two adjoining diffusion layers; and 3 coupling with hydraulic flow system in an electrodialysis 2D and 3D cell, where the differential equation of convectivediffusion is used. Most of the work carried out in the past implemented NP equations since relatively easily coupled with other equations describing hydrodynamic conditions and ion transport in the surrounding solutions, chemical reactions in the solutions and the membrane, boundary and other conditions. However, it is limited to point ionic transport in homogenous and uniformly - grainy phases of structure. © 2008 BCREC UNDIP. All rights reserved.[Received: 21 January 2008, Accepted: 10 March 2008][How to Cite: F.S. Rohman, N. Aziz (2008. Mathematical Model of Ion Transport in Electrodialysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 3(1-3: 3-8. doi:10.9767/bcrec.3.1-3.7122.3-8][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7122.3-8 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7122 ] 

  9. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  10. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  11. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  12. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6D, 6E, 6F and 6F2

    International Nuclear Information System (INIS)

    Hodgkinson, David

    2007-09-01

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to modelling solute transport in fractured rock. The objectives of Task 6 are: To assess simplifications used in Performance Assessment (PA) models. To determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models. To support the design of Site Characterisation (SC) programmes to ensure that the results have optimal value for performance assessment calculations. To improve the understanding of site-specific flow and transport behaviour at different scales using site characterisation models. The present report is concerned with Tasks 6D, 6E, 6F and 6F2. It follows on from two previous reviews of Tasks 6A, 6B and 6B2, and Task 6C. In Task 6D the transport of tracers through a fracture network is modelled using the conditions of the C2 TRUE-Block Scale tracer test, based on the synthetic structural model developed in Task 6C. Task 6E extends the Task 6D transport calculations to a reference set of PA time scales and boundary conditions. Task 6F consists of a series of 'benchmark' studies on single features from the Task 6C hydrostructural model in order to improve the understanding of differences between the participating models. Task 6F2 utilises models set up for Tasks 6E and 6F to perform additional sensitivity studies with the aim of increasing the understanding of how models behave, the reason for differences in modelling results, and the sensitivity of models to various assumptions and parameter values. Eight modelling teams representing five organisations participated in this exercise using Discrete Fracture Network (DFN), continuum and channel network concepts implemented in a range of different codes and

  13. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Tasks 6D, 6E, 6F and 6F2

    Energy Technology Data Exchange (ETDEWEB)

    Hodgkinson, David (Quintessa, Henley-on-Thames (GB))

    2007-09-15

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization and performance assessment approaches to modelling solute transport in fractured rock. The objectives of Task 6 are: To assess simplifications used in Performance Assessment (PA) models. To determine how, and to what extent, experimental tracer and flow experiments can constrain the range of parameters used in PA models. To support the design of Site Characterisation (SC) programmes to ensure that the results have optimal value for performance assessment calculations. To improve the understanding of site-specific flow and transport behaviour at different scales using site characterisation models. The present report is concerned with Tasks 6D, 6E, 6F and 6F2. It follows on from two previous reviews of Tasks 6A, 6B and 6B2, and Task 6C. In Task 6D the transport of tracers through a fracture network is modelled using the conditions of the C2 TRUE-Block Scale tracer test, based on the synthetic structural model developed in Task 6C. Task 6E extends the Task 6D transport calculations to a reference set of PA time scales and boundary conditions. Task 6F consists of a series of 'benchmark' studies on single features from the Task 6C hydrostructural model in order to improve the understanding of differences between the participating models. Task 6F2 utilises models set up for Tasks 6E and 6F to perform additional sensitivity studies with the aim of increasing the understanding of how models behave, the reason for differences in modelling results, and the sensitivity of models to various assumptions and parameter values. Eight modelling teams representing five organisations participated in this exercise using Discrete Fracture Network (DFN), continuum and channel network concepts implemented in a range of different

  14. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  15. Modeling of water and solute transport under variably saturated conditions: state of the art

    International Nuclear Information System (INIS)

    Lappala, E.G.

    1980-01-01

    This paper reviews the equations used in deterministic models of mass and energy transport in variably saturated porous media. Analytic, quasi-analytic, and numerical solution methods to the nonlinear forms of transport equations are discussed with respect to their advantages and limitations. The factors that influence the selection of a modeling method are discussed in this paper; they include the following: (1) the degree of coupling required among the equations describing the transport of liquids, gases, solutes, and energy; (2) the inclusion of an advection term in the equations; (3) the existence of sharp fronts; (4) the degree of nonlinearity and hysteresis in the transport coefficients and boundary conditions; (5) the existence of complex boundaries; and (6) the availability and reliability of data required by the models

  16. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  17. Comparison of 2D and 3D Neutron Transport Analyses on Yonggwang Unit 3 Reactor

    International Nuclear Information System (INIS)

    Maeng, Aoung Jae; Kim, Byoung Chul; Lim, Mi Joung; Kim, Kyung Sik; Jeon, Young Kyou; Yoo, Choon Sung

    2012-01-01

    10 CFR Part 50 Appendix H requires periodical surveillance program in the reactor vessel (RV) belt line region of light water nuclear power plant to check vessel integrity resulting from the exposure to neutron irradiation and thermal environment. Exact exposure analysis of the neutron fluence based on right modeling and simulations is the most important in the evaluation. Traditional 2 dimensional (D) and 1D synthesis methodologies have been widely applied to evaluate the fast neutron (E > 1.0 MeV) fluence exposure to RV. However, 2D and 1D methodologies have not provided accurate fast neutron fluence evaluation at elevations far above or below the active core region. RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries) program for 3D geometries calculation was therefore developed both by Westinghouse Electronic Company, USA and Korea Reactor Integrity Surveillance Technology (KRIST) for the analysis of In-Vessel Surveillance Test and Ex-Vessel Neutron Dosimetry (EVND). Especially EVND which is installed at active core height between biological shielding material and concrete also evaluates axial neutron fluence by placing three dosimetries each at Top, Middle and Bottom part of the angle representing maximum neutron fluence. The EVND programs have been applied to the Korea Nuclear Plants. The objective of this study is therefore to compare the 3D and the 2D Neutron Transport Calculations and Analyses on the Yonggwang unit 3 Reactor as an example

  18. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  19. HYDRA-3D: a model for studying hydrogen transport in containments

    International Nuclear Information System (INIS)

    Prakash, P.; Mishra, A.; Das, M.; Srinivasan, G.R.

    1994-01-01

    The development of a 3D computer code HYDRA-3D for studying hydrogen transport in containment systems is described in this paper. The time-dependent conservation equations for mixture mass, mixture momentum, mixture energy and species mass are solved using finite difference technique. Effects of molecular diffusion and turbulence have been taken into account. Sample calculations involving steam injection in a cubical compartment show reasonable trends in pressure and species concentrations throughout the computation domain. (author). 5 refs., 6 figs

  20. Development of a consistent Monte Carlo-deterministic transport methodology based on the method of characteristics and MCNP5

    International Nuclear Information System (INIS)

    Karriem, Z.; Ivanov, K.; Zamonsky, O.

    2011-01-01

    This paper presents work that has been performed to develop an integrated Monte Carlo- Deterministic transport methodology in which the two methods make use of exactly the same general geometry and multigroup nuclear data. The envisioned application of this methodology is in reactor lattice physics methods development and shielding calculations. The methodology will be based on the Method of Long Characteristics (MOC) and the Monte Carlo N-Particle Transport code MCNP5. Important initial developments pertaining to ray tracing and the development of an MOC flux solver for the proposed methodology are described. Results showing the viability of the methodology are presented for two 2-D general geometry transport problems. The essential developments presented is the use of MCNP as geometry construction and ray tracing tool for the MOC, verification of the ray tracing indexing scheme that was developed to represent the MCNP geometry in the MOC and the verification of the prototype 2-D MOC flux solver. (author)

  1. Peritoneal fluid transport in CAPD patients with different transport rates of small solutes.

    Science.gov (United States)

    Sobiecka, Danuta; Waniewski, Jacek; Weryński, Andrzej; Lindholm, Bengt

    2004-01-01

    Continuous ambulatory peritoneal dialysis (CAPD) patients with high peritoneal solute transport rate often have inadequate peritoneal fluid transport. It is not known whether this inadequate fluid transport is due solely to a too rapid fall of osmotic pressure, or if the decreased effectiveness of fluid transport is also a contributing factor. To analyze fluid transport parameters and the effectiveness of dialysis fluid osmotic pressure in the induction of fluid flow in CAPD patients with different small solute transport rates. 44 CAPD patients were placed in low (n = 6), low-average (n = 13), high-average (n = 19), and high (n = 6) transport groups according to a modified peritoneal equilibration test (PET). The study involved a 6-hour peritoneal dialysis dwell with 2 L 3.86% glucose dialysis fluid for each patient. Radioisotopically labeled serum albumin was added as a volume marker.The fluid transport parameters (osmotic conductance and fluid absorption rate) were estimated using three mathematical models of fluid transport: (1) Pyle model (model P), which describes ultrafiltration rate as an exponential function of time; (2) model OS, which is based on the linear relationship of ultrafiltration rate and overall osmolality gradient between dialysis fluid and blood; and (3) model G, which is based on the linear relationship between ultrafiltration rate and glucose concentration gradient between dialysis fluid and blood. Diffusive mass transport coefficients (K(BD)) for glucose, urea, creatinine, potassium, and sodium were estimated using the modified Babb-Randerson-Farrell model. The high transport group had significantly lower dialysate volume and glucose and osmolality gradients between dialysate and blood, but significantly higher K(BD) for small solutes compared with the other transport groups. Osmotic conductance, fluid absorption rate, and initial ultrafiltration rate did not differ among the transport groups for model OS and model P. Model G yielded

  2. The American Board of Radiology Maintenance of Certification (MOC) Program in Radiologic Physics

    International Nuclear Information System (INIS)

    Thomas, Stephen R.; Hendee, William R.; Paliwal, Bhudatt R.

    2005-01-01

    Maintenance of Certification (MOC) recognizes that in addition to medical knowledge, several essential elements involved in delivering quality care must be developed and maintained throughout one's career. The MOC process is designed to facilitate and document the professional development of each diplomate of The American Board of Radiology (ABR) through its focus on the essential elements of quality care in Diagnostic Radiology and its subspecialties, and in the specialties of Radiation Oncology and Radiologic Physics. The initial elements of the ABR-MOC have been developed in accord with guidelines of The American Board of Medical Specialties. All diplomates with a ten-year, time-limited primary certificate in Diagnostic Radiologic Physics, Therapeutic Radiologic Physics, or Medical Nuclear Physics who wish to maintain certification must successfully complete the requirements of the appropriate ABR-MOC program for their specialty. Holders of multiple certificates must meet ABR-MOC requirements specific to the certificates held. Diplomates with lifelong certificates are not required to participate in the MOC, but are strongly encouraged to do so. MOC is based on documentation of individual participation in the four components of MOC: (1) professional standing, (2) lifelong learning and self-assessment, (3) cognitive expertise, and (4) performance in practice. Within these components, MOC addresses six competencies: medical knowledge, patient care, interpersonal and communication skills, professionalism, practice-based learning and improvement, and systems-based practice

  3. Mathematical model formulation and validation of water and solute transport in whole hamster pancreatic islets.

    Science.gov (United States)

    Benson, James D; Benson, Charles T; Critser, John K

    2014-08-01

    Optimization of cryopreservation protocols for cells and tissues requires accurate models of heat and mass transport. Model selection often depends on the configuration of the tissue. Here, a mathematical and conceptual model of water and solute transport for whole hamster pancreatic islets has been developed and experimentally validated incorporating fundamental biophysical data from previous studies on individual hamster islet cells while retaining whole-islet structural information. It describes coupled transport of water and solutes through the islet by three methods: intracellularly, intercellularly, and in combination. In particular we use domain decomposition techniques to couple a transmembrane flux model with an interstitial mass transfer model. The only significant undetermined variable is the cellular surface area which is in contact with the intercellularly transported solutes, Ais. The model was validated and Ais determined using a 3×3 factorial experimental design blocked for experimental day. Whole islet physical experiments were compared with model predictions at three temperatures, three perfusing solutions, and three islet size groups. A mean of 4.4 islets were compared at each of the 27 experimental conditions and found to correlate with a coefficient of determination of 0.87±0.06 (mean ± SD). Only the treatment variable of perfusing solution was found to be significant (p<0.05). We have devised a model that retains much of the intrinsic geometric configuration of the system, and thus fewer laboratory experiments are needed to determine model parameters and thus to develop new optimized cryopreservation protocols. Additionally, extensions to ovarian follicles and other concentric tissue structures may be made. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    Science.gov (United States)

    Hansen, K. M.; Christensen, J. H.; Brandt, J.; Frohn, L. M.; Geels, C.

    2004-03-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The α-isomer of the pesticide hexachlorocyclohexane (α-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of α-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs.

  5. Modeling study of solute transport in the unsaturated zone. Information and data sets. Volume 1

    International Nuclear Information System (INIS)

    Polzer, W.L.; Fuentes, H.R.; Springer, E.P.; Nyhan, J.W.

    1986-05-01

    The Environmental Science Group (HSE-12) is conducting a study to compare various approaches of modeling water and solute transport in porous media. Various groups representing different approaches will model a common set of transport data so that the state of the art in modeling and field experimentation can be discussed in a positive framework with an assessment of current capabilities and future needs in this area of research. This paper provides information and sets of data that will be useful to the modelers in meeting the objectives of the modeling study. The information and data sets include: (1) a description of the experimental design and methods used in obtaining solute transport data, (2) supporting data that may be useful in modeling the data set of interest, and (3) the data set to be modeled

  6. Regional flow and solute transport modeling for site suitability. Part I

    International Nuclear Information System (INIS)

    Rowe, J.; Miller, I.

    1979-12-01

    The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown

  7. Regional flow and solute transport modeling for site suitability. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, J.; Miller, I.

    1979-12-01

    The nature of regional flow systems in large sedimentary basins will largely determine the effectiveness of regional flow as a barrier to radionuclide escape from deep geologic repositories. The purpose of the work reported herein and the proposed future work is to develop a methodology for evaluating regional flow barriers by using numerical models. The Williston Basin was chosen as an archetype case for the regional modeling study. However, due to the simplified nature of the study, the results are not meant to represent the behavior of a repository actually placed within the Williston Basin. The major components of this Phase I study are: (1) assembly and reduction of available data; (2) formulation of a simplified geohydrologic model; (3) computer simulation of fluid flow; and (4) computer simulation of solute transport. As of this report, the first two items are essentially completed. Computer simulation of fluid flow will require some revision and further study, which will be done in the second phase of this study. Computer simulation of solute transport has been considered only on a very preliminary basis. Important conclusions of this Phase I study are as follows. Assembly and reduction of data require an extensive work effort. Generally, the parameters describing fluid flow are poorly known on a regional basis and those describing solute transport are unknown.

  8. A Service-oriented FPGA-based 3D Model Acquisition System

    Directory of Open Access Journals (Sweden)

    MACHIDON, O. M.

    2015-11-01

    Full Text Available This paper proposes a non-contact, low cost 3D scanning solution using laser striping. The solution is composed of two main parts: the hardware setup - used for acquiring the object's 3D surface information, and the software part - that processes the information and obtains the 3D model representation of the object. We propose two major improvements over the traditional scanning solutions: the 3D information acquisition is based on a reconfigurable hardware platform - a Xilinx Spartan 6 FPGA - which adds flexibility and scalability to the scanning process, while the 3D model reconstruction is remotely available "as a Service", by the means of a web interface that abstracts away the complexity of the underlying processes and improves the performance, while granting easy sharing between users. By separating data capture process from the 3D model reconstruction tasks the system gains in portability - a feature that is absent for most existing solutions. The service-oriented approach brings on a performance gain, since the computational intensive tasks are handled by dedicated servers and ease of use of the system, because the user does not have to bother managing and using the software tools locally.

  9. Implementation of Solute Transport in the Vadose Zone into the `HYDRUS Package for MODFLOW'

    Science.gov (United States)

    Simunek, J.; Beegum, S.; Szymkiewicz, A.; Sudheer, K. P.

    2017-12-01

    The 'HYDRUS package for MODFLOW' was developed by Seo et al. (2007) and Twarakavi et al. (2008) to simultaneously evaluate transient water flow in both unsaturated and saturated zones. The package, which is based on the HYDRUS-1D model (Šimůnek et al., 2016) simulating unsaturated water flow in the vadose zone, was incorporated into MODFLOW (Harbaugh et al., 2000) simulating saturated groundwater flow. The HYDRUS package in the coupled model can be used to represent the effects of various unsaturated zone processes, including infiltration, evaporation, root water uptake, capillary rise, and recharge in homogeneous or layered soil profiles. The coupled model is effective in addressing spatially-variable saturated-unsaturated hydrological processes at the regional scale, allowing for complex layering in the unsaturated zone, spatially and temporarily variable water fluxes at the soil surface and in the root zone, and with alternating recharge and discharge fluxes (Twarakavi et al., 2008). One of the major limitations of the coupled model was that it could not be used to simulate at the same time solute transport. However, solute transport is highly dependent on water table fluctuations due to temporal and spatial variations in groundwater recharge. This is an important concern when the coupled model is used for analyzing groundwater contamination due to transport through the unsaturated zone. The objective of this study is to integrate the solute transport model (the solute transport part of HYDRUS-1D for the unsaturated zone and MT3DMS (Zheng and Wang, 1999; Zheng, 2009) for the saturated zone) into an existing coupled water flow model. The unsaturated zone component of the coupled model can consider solute transport involving many biogeochemical processes and reactions, including first-order degradation, volatilization, linear or nonlinear sorption, one-site kinetic sorption, two-site sorption, and two-kinetic sites sorption (Šimůnek and van Genuchten, 2008

  10. Monte Carlo impurity transport modeling in the DIII-D transport

    International Nuclear Information System (INIS)

    Evans, T.E.; Finkenthal, D.F.

    1998-04-01

    A description of the carbon transport and sputtering physics contained in the Monte Carlo Impurity (MCI) transport code is given. Examples of statistically significant carbon transport pathways are examined using MCI's unique tracking visualizer and a mechanism for enhanced carbon accumulation on the high field side of the divertor chamber is discussed. Comparisons between carbon emissions calculated with MCI and those measured in the DIII-D tokamak are described. Good qualitative agreement is found between 2D carbon emission patterns calculated with MCI and experimentally measured carbon patterns. While uncertainties in the sputtering physics, atomic data, and transport models have made quantitative comparisons with experiments more difficult, recent results using a physics based model for physical and chemical sputtering has yielded simulations with about 50% of the total carbon radiation measured in the divertor. These results and plans for future improvement in the physics models and atomic data are discussed

  11. Synergism of the method of characteristics and CAD technology for neutron transport calculation

    International Nuclear Information System (INIS)

    Chen, Z.; Wang, D.; He, T.; Wang, G.; Zheng, H.

    2013-01-01

    The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, a new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)

  12. Solute transport model for radioisotopes in layered soil

    International Nuclear Information System (INIS)

    Essel, P.

    2010-01-01

    The study considered the transport of a radioactive solute in solution from the surface of the earth down through the soil to the ground water when there is an accidental or intentional spillage of a radioactive material on the surface. The finite difference method was used to model the spatial and temporal profile of moisture content in a soil column using the θ-based Richard's equation leading to solution of the convective-dispersive equation for non-adsorbing solutes numerically. A matlab code has been generated to predict the transport of the radioactive contaminant, spilled on the surface of a vertically heterogeneous soil made up of two layers to determine the residence time of the solute in the unsaturated zone, the time it takes the contaminant to reach the groundwater and the amount of the solute entering the groundwater in various times and the levels of pollution in those times. The model predicted that, then there is a spillage of 7.2g of tritium, on the surface of the ground at the study area, it will take two years for the radionuclide to enter the groundwater and fifteen years to totally leave the unsaturated zone. There is therefore the need to try as much as possible to avoid intentional or accidental spillage of the radionuclide since it has long term effect. (au)

  13. ABS 3D printed solutions for cryogenic applications

    Science.gov (United States)

    Bartolomé, E.; Bozzo, B.; Sevilla, P.; Martínez-Pasarell, O.; Puig, T.; Granados, X.

    2017-03-01

    3D printing has become a common, inexpensive and rapid prototyping technique, enabling the ad hoc fabrication of complex shapes. In this paper, we demonstrate that 3D printed objects in ABS can be used at cryogenic temperatures, offering flexible solutions in different fields. Firstly, a thermo-mechanical characterization of ABS 3D printed specimens at 77 K is reported, which allowed us to delimit the type of cryogenic uses where 3D printed pieces may be implemented. Secondly, we present three different examples where ABS 3D printed objects working at low temperatures have provided specific solutions: (i) SQUID inserts for angular magnetometry (low temperature material characterization field); (ii) a cage support for a metamaterial ;magnetic concentrator; (superconductivity application), and (iii) dedicated tools for cryopreservation in assisted reproductive techniques (medicine field).

  14. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  15. MT3DMS: Model use, calibration, and validation

    Science.gov (United States)

    Zheng, C.; Hill, Mary C.; Cao, G.; Ma, R.

    2012-01-01

    MT3DMS is a three-dimensional multi-species solute transport model for solving advection, dispersion, and chemical reactions of contaminants in saturated groundwater flow systems. MT3DMS interfaces directly with the U.S. Geological Survey finite-difference groundwater flow model MODFLOW for the flow solution and supports the hydrologic and discretization features of MODFLOW. MT3DMS contains multiple transport solution techniques in one code, which can often be important, including in model calibration. Since its first release in 1990 as MT3D for single-species mass transport modeling, MT3DMS has been widely used in research projects and practical field applications. This article provides a brief introduction to MT3DMS and presents recommendations about calibration and validation procedures for field applications of MT3DMS. The examples presented suggest the need to consider alternative processes as models are calibrated and suggest opportunities and difficulties associated with using groundwater age in transport model calibration.

  16. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

    International Nuclear Information System (INIS)

    Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.

    2003-01-01

    In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

  17. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  18. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    Science.gov (United States)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air

  19. GRRR. The EXPECT groundwater model for transport of solutes

    NARCIS (Netherlands)

    Meijers R; Sauter FJ; Veling EJM; van Grinsven JJM; Leijnse A; Uffink GJM; MTV; CWM; LBG

    1994-01-01

    In this report the design and first test results are presented of the EXPECT groundwater module for transport of solutes GRRR (GRoundwater source Receptor Relationships). This model is one of the abiotic compartment modules of the EXPECT model. The EXPECT model is a tool for scenario development

  20. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  1. MPACT VERA Input User s Manual, Version 2.2.0

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Fitzgerald, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Graham, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Jabaay, Daniel [Univ. of Michigan, Ann Arbor, MI (United States); Kelley, Blake W. [Univ. of Michigan, Ann Arbor, MI (United States); Kim, Kang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kochunas, Brendan [Univ. of Michigan, Ann Arbor, MI (United States); Kulesza, Joel A. [Univ. of Michigan, Ann Arbor, MI (United States); Larsen, Edward W. [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Zhouyu [Univ. of Michigan, Ann Arbor, MI (United States); Martin, William R. [Univ. of Michigan, Ann Arbor, MI (United States); Nelson, Adam G. [Univ. of Michigan, Ann Arbor, MI (United States); Palmtag, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Saller, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Stimpson, Shane G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trahan, Travis [Univ. of Michigan, Ann Arbor, MI (United States); Wang, J. W. [Univ. of Michigan, Ann Arbor, MI (United States); Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Young, Mitchell [Univ. of Michigan, Ann Arbor, MI (United States); Zhu, Ang [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-06-09

    The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.

  2. MPACT Standard Input User s Manual, Version 2.2.0

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Benjamin S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Fitzgerald, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Gehin, Jess C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Godfrey, Andrew T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Graham, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Jabaay, Daniel [Univ. of Michigan, Ann Arbor, MI (United States); Kelley, Blake W. [Univ. of Michigan, Ann Arbor, MI (United States); Kim, Kang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kochunas, Brendan [Univ. of Michigan, Ann Arbor, MI (United States); Kulesza, Joel A. [Univ. of Michigan, Ann Arbor, MI (United States); Larsen, Edward W. [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Yuxuan [Univ. of Michigan, Ann Arbor, MI (United States); Liu, Zhouyu [Univ. of Michigan, Ann Arbor, MI (United States); Martin, William R. [Univ. of Michigan, Ann Arbor, MI (United States); Nelson, Adam G. [Univ. of Michigan, Ann Arbor, MI (United States); Palmtag, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rose, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Saller, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Stimpson, Shane G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Trahan, Travis [Univ. of Michigan, Ann Arbor, MI (United States); Wang, J. W. [Univ. of Michigan, Ann Arbor, MI (United States); Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Young, Mitchell [Univ. of Michigan, Ann Arbor, MI (United States); Zhu, Ang [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-01

    The MPACT (Michigan PArallel Charactistics based Transport) code is designed to perform high-fidelity light water reactor (LWR) analysis using whole-core pin-resolved neutron transport calculations on modern parallel-computing hardware. The code consists of several libraries which provide the functionality necessary to solve steady-state eigenvalue problems. Several transport capabilities are available within MPACT including both 2-D and 3-D Method of Characteristics (MOC). A three-dimensional whole core solution based on the 2D-1D solution method provides the capability for full core depletion calculations.

  3. 3D modeling of groundwater heat transport in the shallow Westliches Leibnitzer Feld aquifer, Austria

    Science.gov (United States)

    Rock, Gerhard; Kupfersberger, Hans

    2018-02-01

    For the shallow Westliches Leibnitzer feld aquifer (45 km2) we applied the recently developed methodology by Kupfersberger et al. (2017a) to derive the thermal upper boundary for a 3D heat transport model from observed air temperatures. We distinguished between land uses of grass and agriculture, sealed surfaces, forest and water bodies. To represent the heat flux from heated buildings and the mixture between different land surfaces in urban areas we ran the 1D vertical heat conduction module SoilTemp which is coupled to the heat transport model (using FEFLOW) on a time step basis. Over a simulation period of 23 years the comparison between measured and observed groundwater temperatures yielded NSE values ranging from 0.41 to 0.92 including readings at different depths. The model results showed that the thermal input signals lead to distinctly different vertical groundwater temperature distributions. To overcome the influence of specific warm or cold years we introduced the computation of an annual averaged groundwater temperature profile. With respect to the use of groundwater cooling or heating facilities we evaluated the application of vertically averaged statistical groundwater temperature distributions compared to the use of temperature distributions at selected dates. We concluded that the heat transport model serves well as an aquifer scale management tool to optimize the use of the shallow subsurface for thermal purposes and to analyze the impacts of corresponding measures on groundwater temperatures.

  4. Intercalibration of MOCNESS and Bongo nets: Assessing relative efficiency for ichthyoplankton

    Science.gov (United States)

    Johnson, Donna L.; Fogarty, Michael J.

    2013-01-01

    The evaluation of catchability of egg and larval fish with the 0.61-m Bongo and the 1-m2 Multiple Opening and Closing Net Environmental Sensing System (MOCNESS) was conducted as part of a paired station analysis. The two samplers were deployed on 331 stations on Georges Bank during the U.S. GLOBEC program from January through June for years 1996 and 1997. Significant differences were found when combined catches of all eggs and all larvae for each sampler were compared. Overall catches of larvae from the MOCNESS were 3-5 times greater than those from the Bongo. Gear effects were modeled and revealed that the catches in 14 of the 22 dominant taxa were significantly different between sampling gear. The differences between samplers during diel intervals for the taxa were not significantly different.

  5. The MOC Reflex during Active Listening to Speech

    Science.gov (United States)

    Garinis, Angela C.; Glattke, Theodore; Cone, Barbara K.

    2011-01-01

    Purpose: The purpose of this study was to test the hypothesis that active listening to speech would increase medial olivocochlear (MOC) efferent activity for the right vs. the left ear. Method: Click-evoked otoacoustic emissions (CEOAEs) were evoked by 60-dB p.e. SPL clicks in 13 normally hearing adults in 4 test conditions for each ear: (a) in…

  6. Whole core transport calculation for the VHTR hexagonal core

    International Nuclear Information System (INIS)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Joo, H. G.

    2007-01-01

    occupies several cells has no influence on the MOC transport calculation, but it introduces a near singular matrix for a CMFD formulation. This void problem is resolved by introducing a lumped CMR scheme in which the void cells are collapsed to one equation to produce one rebalancing factor. The lumped CMR scheme causes the original CMFD equation not to converge. Therefore, the CMFD calculation is stopped if the residual error of the CMFD solution does not reduce, and return to the radial MOC transport calculation.In the comparison of the computational result with the MCNP code for the VHTR 2-D core problem, DeCART shows about 200 ∼ 500 pcm difference in the eigenvalue, and less than 1.0 % difference in the assembly power distribution. For the computing time, DeCART takes less than 5 hours on a PENTIUM-IV 3.0 GHz personal computer. Those results indicated that the hexagonal module of the DeCART code worked very well within an affordable computing time

  7. Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown.

    Science.gov (United States)

    Nikinmaa, Eero; Sievänen, Risto; Hölttä, Teemu

    2014-09-01

    Tree models simulate productivity using general gas exchange responses and structural relationships, but they rarely check whether leaf gas exchange and resulting water and assimilate transport and driving pressure gradients remain within acceptable physical boundaries. This study presents an implementation of the cohesion-tension theory of xylem transport and the Münch hypothesis of phloem transport in a realistic 3-D tree structure and assesses the gas exchange and transport dynamics. A mechanistic model of xylem and phloem transport was used, together with a tested leaf assimilation and transpiration model in a realistic tree architecture to simulate leaf gas exchange and water and carbohydrate transport within an 8-year-old Scots pine tree. The model solved the dynamics of the amounts of water and sucrose solute in the xylem, cambium and phloem using a fine-grained mesh with a system of coupled ordinary differential equations. The simulations predicted the observed patterns of pressure gradients and sugar concentration. Diurnal variation of environmental conditions influenced tree-level gradients in turgor pressure and sugar concentration, which are important drivers of carbon allocation. The results and between-shoot variation were sensitive to structural and functional parameters such as tree-level scaling of conduit size and phloem unloading. Linking whole-tree-level water and assimilate transport, gas exchange and sink activity opens a new avenue for plant studies, as features that are difficult to measure can be studied dynamically with the model. Tree-level responses to local and external conditions can be tested, thus making the approach described here a good test-bench for studies of whole-tree physiology.

  8. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    International Nuclear Information System (INIS)

    Gustafsson, Lars-Goeran; Sassner, Mona; Bosson, Emma

    2008-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  9. Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  10. Interchain coupling and 3D modeling of trans-polyacetylene

    International Nuclear Information System (INIS)

    Bronold, F.; Saxena, A.; Bishop, A.R.

    1992-01-01

    In spite of the success of the SSH model for trans-polyacetylene in interpreting many experimental results (e.g. optical and magnetic properties) there remain some aspects of the real material which are outside the scope of the simple 1D model. Especially ordering phenomena of doped and undoped trans-polyacetylene as well as transport properties (e.g. electronic and thermal conductivity) are beyond a 1D description. There are many attempts to construct a transport theory for this novel class of materials using solitons or polaxons as the basic ingredients. But so far it is not yet clear whether these typical 1D excitations still exist in crystalline transpolyacetylene. Therefore, to clarify the role which intrinsic self-localized nonlinear excitations characteristic of 1D models play in the bulk (3D) material, we study the stability of a polaronic excitation against interchain coupling. As a preliminary step we consider first two coupled t-(CH) x -chains where the π-electrons are allowed to hop from one chain to the other. Then we introduce a 3D generalization of the SSH model and study a polaron in a 3D crystalline environment

  11. Modeling water flow and solute transport in unsaturated zone inside NSRAWD project

    International Nuclear Information System (INIS)

    Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.

    2015-01-01

    The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation

  12. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    Science.gov (United States)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  13. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    International Nuclear Information System (INIS)

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-01-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S n ) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  14. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Huang, Haowei; Fang, Jingyue; Gong, Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates ( Sn) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  15. Accuracy analysis of automodel solutions for Lévy flight-based transport: from resonance radiative transfer to a simple general model

    Science.gov (United States)

    Kukushkin, A. B.; Sdvizhenskii, P. A.

    2017-12-01

    The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.

  16. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  17. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    International Nuclear Information System (INIS)

    George J. Moridis

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity

  18. Natural and Enhanced Attenuation of Chlorinated Solvents Using RT3D

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian D.; Truex, Michael J.; Clement, T P.

    2006-07-25

    RT3D (Reactive Transport in 3-Dimensions) is a reactive transport code that can be applied to model solute fate and transport for many different purposes. This document specifically addresses application of RT3D for modeling related to evaluation and implementation of Monitored Natural Attenuation (MNA). Selection of MNA as a remedy requires an evaluation process to demonstrate that MNA will meet the remediation goals. The U.S. EPA, through the Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4?17P, provides the regulatory context for the evaluation and implementation of MNA. In a complementary fashion, the context for using fate and transport modeling as part of MNA evaluation is described in the EPA?s technical protocol for chlorinated solvent MNA, the Scenarios Evaluation Tool for Chlorinated Solvent MNA, and in this document. The intent of this document is to describe (1) the context for applying RT3D for chlorinated solvent MNA and (2) the attenuation processes represented in RT3D, (3) dechlorination reactions that may occur, and (4) the general approach for using RT3D reaction modules (including a summary of the RT3D reaction modules that are available) to model fate and transport of chlorinated solvents as part of MNA or for combinations of MNA and selected types of active remediation.

  19. Modeling of water flow and solute transport in unsaturated heterogeneous fields

    International Nuclear Information System (INIS)

    Bresler, E.; Dagan, G.

    1982-01-01

    A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications

  20. User's guide to Model Viewer, a program for three-dimensional visualization of ground-water model results

    Science.gov (United States)

    Hsieh, Paul A.; Winston, Richard B.

    2002-01-01

    Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.

  1. Quantifying uncertainties on the solution model of seismic tomography; Quelle confiance accorder au modele solution de la tomographie de reflexion 3D?

    Energy Technology Data Exchange (ETDEWEB)

    Duffet, C.

    2004-12-01

    Reflection tomography allows the determination of a velocity model that fits the travel time data associated with reflections of seismic waves propagating in the subsurface. A least-square formulation is used to compare the observed travel times and the travel times computed by the forward operator based on a ray tracing. This non-linear optimization problem is solved classically by a Gauss-Newton method based on successive linearization of the forward operator. The obtained solution is only one among many possible models. Indeed, the uncertainties on the observed travel times (resulting from an interpretative event picking on seismic records) and more generally the under-determination of the inverse problem lead to uncertainties on the solution. An a posteriori uncertainty analysis is then crucial to delimit the range of possible solutions that fit, with the expected accuracy, the data and the a priori information. A linearized a posteriori analysis is possible by an analysis of the a posteriori covariance matrix, inverse of the Gauss-Newton approximation of the matrix. The computation of this matrix is generally expensive (the matrix is huge for 3D problems) and the physical interpretation of the results is difficult. Then we propose a formalism which allows to compute uncertainties on relevant geological quantities for a reduced computational time. Nevertheless, this approach is only valid in the vicinity of the solution model (linearized framework) and complex cases may require a non-linear approach. An experimental approach consists in solving the inverse problem under constraints to test different geological scenarios. (author)

  2. Use of MCAM in creating 3D neutronics model for ITER building

    International Nuclear Information System (INIS)

    Zeng Qin; Wang Guozhong; Dang Tongqiang; Long Pengcheng; Loughlin, Michael

    2012-01-01

    Highlights: ► We created a 3D neutronics model of the ITER building. ► The model was produced from the engineering CAD model by MCAM software. ► The neutron flux map in the ITER building was calculated. - Abstract: The three dimensional (3D) neutronics reference model of International Thermonuclear Experimental Reactor (ITER) only defines the tokamak machine and extends to the bio-shield. In order to meet further 3D neutronics analysis needs, it is necessary to create a 3D reference model of the ITER building. Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM) was developed as a computer aided design (CAD) based bi-directional interface program between general CAD systems and Monte Carlo radiation transport simulation codes. With the help of MCAM version 4.8, the 3D neutronics model of ITER building was created based on the engineering CAD model. The calculation of the neutron flux map in ITER building during operation showed the correctness and usability of the model. This model is the first detailed ITER building 3D neutronics model and it will be made available to all international organization collaborators as a reference model.

  3. Performance Improvements for Coarse Mesh Finite Difference Acceleration L3:RTM.PRT.P13.02

    International Nuclear Information System (INIS)

    Collins, Benjamin S.; Hamilton, Steven P.; Stimpson, Shane; Yee, Ben; Larsen, Edward W.; Kochunas, Brendan

    2016-01-01

    The development of VERA-CS in recent years has focused on developing the capability to simulate multiple cycles of operating commercial nuclear power plants. Now that these capabilities have advanced to the point where it is being deployed to users, the focus is on improving the computational performance of various components in VERA-CS. In this work, the focus is on the Coarse Mesh Finite Difference (CMFD) solution in MPACT. CMFD serves multiple purposes in the 2D/1D solution methodology. First, it is a natural mechanism to tie together the radial MOC transport and the axial SP3 solution. Because the CMFD system solves the multigroup three-dimensional core in one system, it pulls together the global response of the system. In addition, the CMFD solution provides a framework to accelerate the convergence of the eigenvalue problem.

  4. Effect of river excavation on a bank filtration site - assessing transient surface water - groundwater interaction by 3D heat and solute transport modelling

    Science.gov (United States)

    Wang, W.; Oswald, S. E.; Munz, M.; Strasser, D.

    2017-12-01

    Bank filtration is widely used either as main- or pre-treatment process for water supply. The colmation of the river bottom as interface to groundwater plays a key role for hydraulic control of flow paths and location of several beneficial attenuation processes, such as pathogen filtration, mixing, biodegradation and sorption. Along the flow path, mixing happens between the `young' infiltrated water and ambient `old' groundwater. To clarify the mechanisms and their interaction, modelling is often used for analysing spatial and temporal distribution of the travelling time, quantifying mixing ratios, and estimating the biochemical reaction rates. As the most comprehensive tool, 2-D or 3-D spatially-explicit modelling is used in several studies, and for area with geological heterogeneity, the adaptation of different natural tracers could constrain the model in respect to model non-uniqueness and improve the interpretation of the flow field. In our study, we have evaluated the influence of a river excavation and bank reconstruction project on the groundwater-surface water exchange at a bank filtration site. With data from years of field site monitoring, we could include besides heads and temperature also the analysis of stable isotope data and ions to differentiate between infiltrated water and groundwater. Thus, we have set up a 3-D transient heat and mass transport groundwater model, taking the strong local geological heterogeneity into consideration, especially between river and water work wells. By transferring the effect of the river excavation into a changing hydraulic conductivity of the riverbed, model could be calibrated against both water head and temperature time-series observed. Finally, electrical conductivity dominated by river input was included as quasi-conservative tracer. The `triple' calibrated, transient model was then used to i) understand the flow field and quantify the long term changes in infiltration rate and distribution brought by the

  5. HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method

    International Nuclear Information System (INIS)

    Advani, S.H.; Lee, J.K.; Lee, T.S.

    2001-01-01

    1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport

  6. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  7. Pore-Scale Hydrodynamics in a Progressively Bioclogged Three-Dimensional Porous Medium: 3-D Particle Tracking Experiments and Stochastic Transport Modeling

    Science.gov (United States)

    Carrel, M.; Morales, V. L.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2018-03-01

    Biofilms are ubiquitous bacterial communities that grow in various porous media including soils, trickling, and sand filters. In these environments, they play a central role in services ranging from degradation of pollutants to water purification. Biofilms dynamically change the pore structure of the medium through selective clogging of pores, a process known as bioclogging. This affects how solutes are transported and spread through the porous matrix, but the temporal changes to transport behavior during bioclogging are not well understood. To address this uncertainty, we experimentally study the hydrodynamic changes of a transparent 3-D porous medium as it experiences progressive bioclogging. Statistical analyses of the system's hydrodynamics at four time points of bioclogging (0, 24, 36, and 48 h in the exponential growth phase) reveal exponential increases in both average and variance of the flow velocity, as well as its correlation length. Measurements for spreading, as mean-squared displacements, are found to be non-Fickian and more intensely superdiffusive with progressive bioclogging, indicating the formation of preferential flow pathways and stagnation zones. A gamma distribution describes well the Lagrangian velocity distributions and provides parameters that quantify changes to the flow, which evolves from a parallel pore arrangement under unclogged conditions, toward a more serial arrangement with increasing clogging. Exponentially evolving hydrodynamic metrics agree with an exponential bacterial growth phase and are used to parameterize a correlated continuous time random walk model with a stochastic velocity relaxation. The model accurately reproduces transport observations and can be used to resolve transport behavior at intermediate time points within the exponential growth phase considered.

  8. Use of MCAM in creating 3D neutronics model for ITER building

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Qin [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang Guozhong, E-mail: mango33@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Dang Tongqiang [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Long Pengcheng [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Loughlin, Michael [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lz-Durance (France)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer We created a 3D neutronics model of the ITER building. Black-Right-Pointing-Pointer The model was produced from the engineering CAD model by MCAM software. Black-Right-Pointing-Pointer The neutron flux map in the ITER building was calculated. - Abstract: The three dimensional (3D) neutronics reference model of International Thermonuclear Experimental Reactor (ITER) only defines the tokamak machine and extends to the bio-shield. In order to meet further 3D neutronics analysis needs, it is necessary to create a 3D reference model of the ITER building. Monte Carlo Automatic Modeling Program for Radiation Transport Simulation (MCAM) was developed as a computer aided design (CAD) based bi-directional interface program between general CAD systems and Monte Carlo radiation transport simulation codes. With the help of MCAM version 4.8, the 3D neutronics model of ITER building was created based on the engineering CAD model. The calculation of the neutron flux map in ITER building during operation showed the correctness and usability of the model. This model is the first detailed ITER building 3D neutronics model and it will be made available to all international organization collaborators as a reference model.

  9. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    -D City model is a very useful for various kinds of applications such as for planning in Navigation, Tourism, Disasters Management, Transportations, Municipality, Urban Environmental Managements and Real-estate industry. So the Construction of Virtual 3-D city models is a most interesting research topic in recent years.

  10. Near-horizon solutions for D3-branes ending on 5-branes

    International Nuclear Information System (INIS)

    Aharony, Ofer; Berdichevsky, Leon; Berkooz, Micha; Shamir, Itamar

    2011-01-01

    We construct the type IIB supergravity solutions describing D3-branes ending on 5-branes, in the near-horizon limit of the D3-branes. Our solutions are holographically dual to the four dimensional (4D) N=4 SU(N) supersymmetric-Yang-Mills (SYM) theory on a half line, at large N and large 't Hooft coupling, with various boundary conditions that preserve half of the supersymmetry. The solutions are limiting cases of the general solutions with the same symmetries constructed in 2007 by D'Hoker, Estes and Gutperle. The classification of our solutions matches exactly with the general classification of boundary conditions for D3-branes ending on 5-branes by Gaiotto and Witten. We use the gravity duals to compute the one-point functions of some chiral operators in the N=4 SYM theory on a half line at strong coupling, and we find that they do not match with the expectation values of the same operators with the same boundary conditions at small 't Hooft coupling. Our solutions may also be interpreted as the gravity duals of 4D N=4 SYM on AdS 4 , with various boundary conditions.

  11. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    Science.gov (United States)

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  12. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    Science.gov (United States)

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  13. Citygml Modelling for Singapore 3d National Mapping

    Science.gov (United States)

    Soon, K. H.; Khoo, V. H. S.

    2017-10-01

    Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.

  14. Development of a Quasi-3D Multiscale Modeling Framework: Motivation, basic algorithm and preliminary results

    Directory of Open Access Journals (Sweden)

    Joon-Hee Jung

    2010-11-01

    Full Text Available A new framework for modeling the atmosphere, which we call the quasi-3D (Q3D multi-scale modeling framework (MMF, is developed with the objective of including cloud-scale three-dimensional effects in a GCM without necessarily using a global cloud-resolving model (CRM. It combines a GCM with a Q3D CRM that has the horizontal domain consisting of two perpendicular sets of channels, each of which contains a locally 3D grid-point array. For computing efficiency, the widths of the channels are chosen to be narrow. Thus, it is crucial to select a proper lateral boundary condition to realistically simulate the statistics of cloud and cloud-associated processes. Among the various possibilities, a periodic lateral boundary condition is chosen for the deviations from background fields that are obtained by interpolations from the GCM grid points. Since the deviations tend to vanish as the GCM grid size approaches that of the CRM, the whole system of the Q3D MMF can converge to a fully 3D global CRM. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application, without changing the formulation of model physics. To evaluate the newly developed Q3D CRM in an efficient way, idealized experiments have been performed using a small horizontal domain. In these tests, the Q3D CRM uses only one pair of perpendicular channels with only two grid points across each channel. Comparing the simulation results with those of a fully 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions, including the vertical distributions of cloud water and precipitants, vertical transports of potential temperature and water vapor, and the variances and covariances of dynamical variables. The main improvement from a corresponding 2D simulation appears in the surface fluxes and the vorticity transports that cause the mean wind to change. A comparison with a simulation using a coarse

  15. Proposal of custom made wrist orthoses based on 3D modelling and 3D printing.

    Science.gov (United States)

    Abreu de Souza, Mauren; Schmitz, Cristiane; Marega Pinhel, Marcelo; Palma Setti, Joao A; Nohama, Percy

    2017-07-01

    Accessibility to three-dimensional (3D) technologies, such as 3D scanning systems and additive manufacturing (like 3D printers), allows a variety of 3D applications. For medical applications in particular, these modalities are gaining a lot of attention enabling several opportunities for healthcare applications. The literature brings several cases applying both technologies, but none of them focus on the spreading of how this technology could benefit the health segment. This paper proposes a new methodology, which employs both 3D modelling and 3D printing for building orthoses, which could better fit the demands of different patients. Additionally, there is an opportunity for sharing expertise, as it represents a trendy in terms of the maker-movement. Therefore, as a result of the proposed approach, we present a case study based on a volunteer who needs an immobilization orthosis, which was built for exemplification of the whole process. This proposal also employs freely available 3D models and software, having a strong social impact. As a result, it enables the implementation and effective usability for a variety of built to fit solutions, hitching useful and smarter technologies for the healthcare sector.

  16. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    International Nuclear Information System (INIS)

    Zhang, X X; Cheng, Y G; Xia, L S; Yang, J D

    2014-01-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories give different n 11 . The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q 11 and M 11 in different moving directions of the dynamic trajectories

  17. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    Science.gov (United States)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  18. Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors

    International Nuclear Information System (INIS)

    Pereira, Paulo J; Moshchalkov, Victor V; Chibotaru, Liviu F

    2014-01-01

    The recently proposed approach for the solution of Ginzburg-Landau (GL) problem for 2D samples of arbitrary shape is, in this article, extended over 3D samples having the shape of (i) a prism with arbitrary base and (ii) a solid of revolution with arbitrary profile. Starting from the set of Laplace operator eigenfunctions of a 2D object, we construct an approximation to or the exact eigenfunctions of the Laplace operator of a 3D structure by applying an extrusion or revolution to these solutions. This set of functions is used as the basis to construct the solutions of the linearized GL equation. These solutions are then used as basis for the non-linear GL equation much like the famous LCAO method. To solve the non-linear equation, we used the Newton-Raphson method starting from the solution of the linear equation, i.e., the nucleation distribution of superconducting condensate. The vector potential approximations typically used in 2D cases, i.e., considering it as corresponding to applied constant field, are in the 3D case harder to justify. For that reason, we use a locally corrected Nystrom method to solve the second Ginzburg-Landau equation. The complete solution of GL problem is then achieved by solving self-consistently both equations

  19. A computational model for simulating solute transport and oxygen consumption along the nephrons

    Science.gov (United States)

    Vallon, Volker; Edwards, Aurélie

    2016-01-01

    The goal of this study was to investigate water and solute transport, with a focus on sodium transport (TNa) and metabolism along individual nephron segments under differing physiological and pathophysiological conditions. To accomplish this goal, we developed a computational model of solute transport and oxygen consumption (QO2) along different nephron populations of a rat kidney. The model represents detailed epithelial and paracellular transport processes along both the superficial and juxtamedullary nephrons, with the loop of Henle of each model nephron extending to differing depths of the inner medulla. We used the model to assess how changes in TNa may alter QO2 in different nephron segments and how shifting the TNa sites alters overall kidney QO2. Under baseline conditions, the model predicted a whole kidney TNa/QO2, which denotes the number of moles of Na+ reabsorbed per moles of O2 consumed, of ∼15, with TNa efficiency predicted to be significantly greater in cortical nephron segments than in medullary segments. The TNa/QO2 ratio was generally similar among the superficial and juxtamedullary nephron segments, except for the proximal tubule, where TNa/QO2 was ∼20% higher in superficial nephrons, due to the larger luminal flow along the juxtamedullary proximal tubules and the resulting higher, flow-induced transcellular transport. Moreover, the model predicted that an increase in single-nephron glomerular filtration rate does not significantly affect TNa/QO2 in the proximal tubules but generally increases TNa/QO2 along downstream segments. The latter result can be attributed to the generally higher luminal [Na+], which raises paracellular TNa. Consequently, vulnerable medullary segments, such as the S3 segment and medullary thick ascending limb, may be relatively protected from flow-induced increases in QO2 under pathophysiological conditions. PMID:27707705

  20. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  1. 3D Modelling and Printing Technology to Produce Patient-Specific 3D Models.

    Science.gov (United States)

    Birbara, Nicolette S; Otton, James M; Pather, Nalini

    2017-11-10

    A comprehensive knowledge of mitral valve (MV) anatomy is crucial in the assessment of MV disease. While the use of three-dimensional (3D) modelling and printing in MV assessment has undergone early clinical evaluation, the precision and usefulness of this technology requires further investigation. This study aimed to assess and validate 3D modelling and printing technology to produce patient-specific 3D MV models. A prototype method for MV 3D modelling and printing was developed from computed tomography (CT) scans of a plastinated human heart. Mitral valve models were printed using four 3D printing methods and validated to assess precision. Cardiac CT and 3D echocardiography imaging data of four MV disease patients was used to produce patient-specific 3D printed models, and 40 cardiac health professionals (CHPs) were surveyed on the perceived value and potential uses of 3D models in a clinical setting. The prototype method demonstrated submillimetre precision for all four 3D printing methods used, and statistical analysis showed a significant difference (p3D printed models, particularly using multiple print materials, were considered useful by CHPs for preoperative planning, as well as other applications such as teaching and training. This study suggests that, with further advances in 3D modelling and printing technology, patient-specific 3D MV models could serve as a useful clinical tool. The findings also highlight the potential of this technology to be applied in a variety of medical areas within both clinical and educational settings. Copyright © 2017 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  2. 3D structure of individual nanocrystals in solution by electron microscopy

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  3. Prototype coupling of the CFD software ansys CFX with the 3D neutron kinetic core model DYN3D - 249

    International Nuclear Information System (INIS)

    Kliem, S.; Rohde, U.; Schutze, J.; Frank, Th.

    2010-01-01

    The CFD code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactor's coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for a small-size test problem confirm the correctness of the implementation of the prototype coupling. This test problem was a mini-core consisting of nine real-size fuel assemblies. Comparison was performed with the DYN3D standalone code. In the steady state, the effective multiplication factor obtained by the ANSYS CFX/DYN3D codes shows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. (authors)

  4. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S

    2016-12-01

    A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.

  5. Stochastic analysis of transport of conservative solutes in caisson experiments

    International Nuclear Information System (INIS)

    Dagan, G.

    1995-01-01

    The Los Alamos National Laboratory has conducted in the past a series of experiments of transport of conservative and reactive solutes. The experimental setup and the experimental results are presented in a series of reports. The main aim of the experiments was to validate models of transport of solutes in unsaturated flow at the caisson intermediate scale, which is much larger than the one pertaining to laboratory columns. First attempts to analyze the experimental results were by one-dimensional convective-dispersion models. These models could not explain the observed solute breakthrough curves and particularly the large solute dispersion in the caisson effluent Since there were some question marks about the uniformity of water distribution at the caisson top, the transport experiments were repeated under conditions of saturated flow. In these experiments constant heads were applied at the top and the bottom of the caisson and the number of concentration monitoring stations was quadrupled. The analysis of the measurements by the same one-dimensional model indicated clearly that the fitted dispersivity is much larger than the pore-sole dispersivity and that it grows with the distance in an approximately linear fashion. This led to the conclusion, raised before, that transport in the caisson is dominated by heterogeneity effects, i.e. by spatial variability of the material Such effects cannot be captured by traditional one-dimensional models. In order to account for the effect of heterogeneity, the saturated flow experiments have been analyzed by using stochastic transport modeling. The apparent linear growth of dispersivity with distance suggested that the system behaves like a stratified one. Consequently, the model of Dagan and Bresier has been adopted in order to interpret concentration measurements. In this simple model the caisson is viewed as a bundle of columns of different permeabilities, which are characterized by a p.d.f. (probability denasity function)

  6. Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media

    International Nuclear Information System (INIS)

    Roy Haggerty

    2004-01-01

    Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the

  7. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  8. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  9. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  10. Development of numerical solution techniques in the KIKO3D code

    International Nuclear Information System (INIS)

    Panka, Istvan; Kereszturi, Andras; Hegedus, Csaba

    2005-01-01

    The paper describes the numerical methods applied in KIKO3D three-dimensional reactor dynamics code and present a new, more effective method (Bi-CGSTAB) for accelerating the large sparse matrix equation solution. The convergence characteristics were investigated in a given macro time step of a Control Rod Ejection transient. The results obtained by the old GMRES and new Bi-CGSTAB methods are compared. It is concluded that the real relative errors of the solutions obtained by GMRES or Bi - CGSTAB algorithms are in fact closer together than the estimated relative errors. The KIKO3D-Bi-CGSTAB method converges safely and it is 7-12 % faster than the old KIKO3D-GMRES solution (Authors)

  11. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  12. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  13. Transport of D-D fusion neutrons in thick concrete

    International Nuclear Information System (INIS)

    Ku, L.P.; Kolibal, J.G.

    1982-07-01

    By altering the collision mechanism in the numerical transport calculations, and by constructing an analytical model based on age-diffusion theory, the outstanding feature in the life history of D-D fusion neutrons penetrating deeply into ordinary concrete is shown to be the transport in the 2.3 MeV oxygen anti-resonance. This result is used to assess the impact of the cross-section uncertainties and the uncertainties due to variations in the D-D fusion spectrum and temperature

  14. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  15. The role of Meridional Overturning Circulation (MOC) on Ancient Climates and Implications for Anthropogenic Climate Change

    Science.gov (United States)

    Cumming, M.

    2017-12-01

    Our increasingly robust history of ancient climates indicates that high latitude glaciation is the ultimate product of an episodic cooling trend that began about 100-million years ago rather than a result of a yet-to-be identified modal change. Antarctic geography (continent surrounded by ocean) allowed ice to develop prior to significant glaciation in the Northern Hemisphere (ocean surrounded by land), but global ice volume generally increased as Earth cooled. The question of what caused the Ice Ages should be reframed as to "What caused the Cenozoic Cooling?" Records tell us that changes in temperature and CO2 levels rise and fall together, however it is not clear when CO2 acts as a driver versus when it is primarily an indicator of temperature change. The episodic nature of the cooling trend suggests other more dynamic phenomena are involved. It is proposed that oceanic meridional overturning circulation (MOC) plays a significant role in regulating Earth's surface temperature. Robust MOC has a cooling effect which results from its sequestration of cold waters (together with their increased heat-absorbing potential) below the surface. Unable to better absorb equatorial insolation for great lengths of time, oceanic deep waters are not able to fully compensate for the heat lost by warm-water transport to Polar Regions. A lag-time between cooling and subsequent warming yields lower operating temperatures commensurate with the strength of global MOC. The long-term decline in global temperatures is largely explained by the tectonic reshaping of ocean basins and the connections between them such that MOC has generally, but not uniformly, increased. Geophysically Influenced MOC (GIMOC) has caused a significant proportion of the lowering of global temperatures in the Cenozoic Era. Short-term disruptions in MOC (and subsequent impacts on global temperatures) were likely involved in Late Pleistocene glacial termination events and may already be compounding present

  16. Diffusion approximation for modeling of 3-D radiation distributions

    International Nuclear Information System (INIS)

    Zardecki, A.; Gerstl, S.A.W.; De Kinder, R.E. Jr.

    1985-01-01

    A three-dimensional transport code DIF3D, based on the diffusion approximation, is used to model the spatial distribution of radiation energy arising from volumetric isotropic sources. Future work will be concerned with the determination of irradiances and modeling of realistic scenarios, relevant to the battlefield conditions. 8 refs., 4 figs

  17. Nonrelativistic grey Sn-transport radiative-shock solutions

    International Nuclear Information System (INIS)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-01-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  18. Modelling transport of water and solutes in future wetlands in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)

    2006-03-15

    been analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment.

  19. Modelling transport of water and solutes in future wetlands in Forsmark

    International Nuclear Information System (INIS)

    Vikstroem, Maria; Gustafsson, Lars-Goeran

    2006-03-01

    analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment

  20. On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations

    International Nuclear Information System (INIS)

    Lin Shu; Liao Jinfeng

    2010-01-01

    In this paper, we find various analytic (1+3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.

  1. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    International Nuclear Information System (INIS)

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis

  2. Robust hashing for 3D models

    Science.gov (United States)

    Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin

    2014-02-01

    3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.

  3. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    Science.gov (United States)

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  4. A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. Theory and development

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and

  5. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  6. 3D modelling of the electromagnetic response of geophysical targets using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Debroux, P.S. [Univ. of Arizona, Tucson, AZ (United States). Mining and Geological Engineering Dept.

    1996-05-01

    A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.

  7. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J.

    2016-01-01

    A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940

  8. A 3D transport-based core analysis code for research reactors with unstructured geometry

    International Nuclear Information System (INIS)

    Zhang, Tengfei; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi; Li, Yunzhao

    2013-01-01

    Highlights: • A core analysis code package based on 3D neutron transport calculation in complex geometry is developed. • The fine considerations on flux mapping, control rod effects and isotope depletion are modeled. • The code is proved to be with high accuracy and capable of handling flexible operational cases for research reactors. - Abstract: As an effort to enhance the accuracy in simulating the operations of research reactors, a 3D transport core analysis code system named REFT was developed. HELIOS is employed due to the flexibility of describing complex geometry. A 3D triangular nodal S N method transport solver, DNTR, endows the package the capability of modeling cores with unstructured geometry assemblies. A series of dedicated methods were introduced to meet the requirements of research reactor simulations. Afterwards, to make it more user friendly, a graphical user interface was also developed for REFT. In order to validate the developed code system, the calculated results were compared with the experimental results. Both the numerical and experimental results are in close agreement with each other, with the relative errors of k eff being less than 0.5%. Results for depletion calculations were also verified by comparing them with the experimental data and acceptable consistency was observed in results

  9. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    Science.gov (United States)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  10. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  11. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  12. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    Science.gov (United States)

    Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-01-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  13. Radionuclide transport in fractured porous media -- Analytical solutions for a system of parallel fractures with a kinetic solubility-limited dissolution model

    International Nuclear Information System (INIS)

    Li, S.H.; Chen, C.T.

    1997-01-01

    Analytical solutions are developed for the problem of radionuclide transport in a system of parallel fractures situated in a porous rock matrix. A kinetic solubility-limited dissolution model is used as the inlet boundary condition. The solutions consider the following processes: (a) advective transport in the fractures, (b) mechanical dispersion and molecular diffusion along the fractures, (c) molecular diffusion from a fracture to the porous matrix, (d) molecular diffusion within the porous matrix in the direction perpendicular to the fracture axis, (e) adsorption onto the fracture wall, (f) adsorption within the porous matrix, and (g) radioactive decay. The solutions are based on the Laplace transform method. The general transient solution is in the form of a double integral that is evaluated using composite Gauss-Legendre quadrature. A simpler transient solution that is in the form of a single integral is also presented for the case that assumes negligible longitudinal dispersion along the fractures. The steady-state solutions are also provided. A number of examples are given to illustrate the effects of the following important parameters: (a) fracture spacings, (b) dissolution-rate constants, (c) fracture dispersion coefficient, (d) matrix retardation factor, and (e) fracture retardation factor

  14. Modeling study of solute transport in the unsaturated zone: Workshop proceedings

    International Nuclear Information System (INIS)

    Springer, E.P.; Fuentes, H.R.

    1987-04-01

    Issues addressed were the adequacy of the data for the various models, effectiveness of the models to represent the data, particular information provided by the models, the role of caisson experiments in providing fundamental knowledge of porous-media water flow and solute transport, and the importance of geochemistry to the transport of nonconservative tracers. These proceedings include the presentations made by each of the modelers; the summary document written by the panel; and a transcript of the discussions, both the discussions that followed individual presentations and the general discussion held on the second day. This publication completes the series on the workshop. Volume I in the series (NUREG/CR-4615, Vol. I) contains background information and the data sets provided each modeler

  15. Qualification of the code d{sup 3}f++

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke; Gehrke, Anne; Kroehn, Klaus-Peter; Zhao, Hong

    2017-02-15

    The code d{sup 3}f++ is a modern tool for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. It is applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. The objective of this work is proving the capability of code d{sup 3}f++ to simulate correctly density-driven flow and pollutant transport in large scale, complex geological situations in order to improve the confidence in groundwater modeling in general. The applications presented in this report are related to haline and thermohydraulic groundwater flow and transport in porous or fractured media. Among them are laboratory and field experiments as well as real site studies. The d{sup 3}f++ results are verified by measurements or compared to the results of other density-driven flow codes. Three applications presented are related to Task 8 defined by the Task Force on Groundwater Flow and Transport of Solutes (TF GWFTS) of SKB to investigate the hydraulic interaction of the fractured, granitic host rock and the bentonite clay buffer in a deep geological repository at the Hard Rock Laboratory (HRL) at Aespoe. Presented are the results from work on the Buffer-Rock-Interaction-Experiment (BRIE) in the frame- work of Tasks 8c and 8d and on the Prototype Repository in the framework of Task 8e. Another application refers to a thermal injection and storage experiment in the Borden field research site. These works are focused on heat flow and free surface modeling. A 2d benchmark based on a laboratory experiment concerning formation and degradation of a freshwater gave the possibility to compare the results of various density-driven flow codes. The Waste Isolation Pilot Plant (WIPP) is a repository for transuranic waste in New Mexico, USA. A 6,000 km{sup 2}, basin scale model of the WIPP-Site overburden is present- ed here with the objective to

  16. SRNA-2K5, Proton Transport Using 3-D by Monte Carlo Techniques

    International Nuclear Information System (INIS)

    Ilic, Radovan D.

    2005-01-01

    1 - Description of program or function: SRNA-2K5 performs Monte Carlo transport simulation of proton in 3D source and 3D geometry of arbitrary materials. The proton transport based on condensed history model, and on model of compound nuclei decays that creates in nonelastic nuclear interaction by proton absorption. 2 - Methods: The SRNA-2K5 package is developed for time independent simulation of proton transport by Monte Carlo techniques for numerical experiments in complex geometry, using PENGEOM from PENELOPE with different material compositions, and arbitrary spectrum of proton generated from the 3D source. This package developed for 3D proton dose distribution in proton therapy and dosimetry, and it was based on the theory of multiple scattering. The compound nuclei decay was simulated by our and Russian MSDM models using ICRU 49 and ICRU 63 data. If protons trajectory is divided on great number of steps, protons passage can be simulated according to Berger's Condensed Random Walk model. Conditions of angular distribution and fluctuation of energy loss determinate step length. Physical picture of these processes is described by stopping power, Moliere's angular distribution, Vavilov's distribution with Sulek's correction per all electron orbits, and Chadwick's cross sections for nonelastic nuclear interactions, obtained by his GNASH code. According to physical picture of protons passage and with probabilities of protons transition from previous to next stage, which is prepared by SRNADAT program, simulation of protons transport in all SRNA codes runs according to usual Monte Carlo scheme: (i) proton from the spectrum prepared for random choice of energy, position and space angle is emitted from the source; (ii) proton is loosing average energy on the step; (iii) on that step, proton experience a great number of collisions, and it changes direction of movement randomly chosen from angular distribution; (iv) random fluctuation is added to average energy loss; (v

  17. Steerable sound transport in a 3D acoustic network

    Science.gov (United States)

    Xia, Bai-Zhan; Jiao, Jun-Rui; Dai, Hong-Qing; Yin, Sheng-Wen; Zheng, Sheng-Jie; Liu, Ting-Ting; Chen, Ning; Yu, De-Jie

    2017-10-01

    Quasi-lossless and asymmetric sound transports, which are exceedingly desirable in various modern physical systems, are almost always based on nonlinear or angular momentum biasing effects with extremely high power levels and complex modulation schemes. A practical route for the steerable sound transport along any arbitrary acoustic pathway, especially in a three-dimensional (3D) acoustic network, can revolutionize the sound power propagation and the sound communication. Here, we design an acoustic device containing a regular-tetrahedral cavity with four cylindrical waveguides. A smaller regular-tetrahedral solid in this cavity is eccentrically emplaced to break spatial symmetry of the acoustic device. The numerical and experimental results show that the sound power flow can unimpededly transport between two waveguides away from the eccentric solid within a wide frequency range. Based on the quasi-lossless and asymmetric transport characteristic of the single acoustic device, we construct a 3D acoustic network, in which the sound power flow can flexibly propagate along arbitrary sound pathways defined by our acoustic devices with eccentrically emplaced regular-tetrahedral solids.

  18. Assessment of Delft3D Morphodynamic Model During Duck94

    National Research Council Canada - National Science Library

    Welsch, Charlotte

    2002-01-01

    ... over a wide range of conditions. The Delfi3D 2- DH model utilizes shallow water equations to phase resolve the mean and infragravity motions in combination with an advection diffusion equation for the sediment transport...

  19. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  20. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  1. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  2. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    International Nuclear Information System (INIS)

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-01-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  3. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  4. A massively parallel method of characteristic neutral particle transport code for GPUs

    International Nuclear Information System (INIS)

    Boyd, W. R.; Smith, K.; Forget, B.

    2013-01-01

    Over the past 20 years, parallel computing has enabled computers to grow ever larger and more powerful while scientific applications have advanced in sophistication and resolution. This trend is being challenged, however, as the power consumption for conventional parallel computing architectures has risen to unsustainable levels and memory limitations have come to dominate compute performance. Heterogeneous computing platforms, such as Graphics Processing Units (GPUs), are an increasingly popular paradigm for solving these issues. This paper explores the applicability of GPUs for deterministic neutron transport. A 2D method of characteristics (MOC) code - OpenMOC - has been developed with solvers for both shared memory multi-core platforms as well as GPUs. The multi-threading and memory locality methodologies for the GPU solver are presented. Performance results for the 2D C5G7 benchmark demonstrate 25-35 x speedup for MOC on the GPU. The lessons learned from this case study will provide the basis for further exploration of MOC on GPUs as well as design decisions for hardware vendors exploring technologies for the next generation of machines for scientific computing. (authors)

  5. External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models

    Science.gov (United States)

    Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.

    2011-12-01

    External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.

  6. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  7. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    Science.gov (United States)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by

  8. Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources

    Science.gov (United States)

    Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.

    2015-12-01

    Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.

  9. A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. I. Theory.

    Science.gov (United States)

    Schuff, M M; Gore, J P; Nauman, E A

    2013-05-01

    In order to better understand the mechanisms governing transport of drugs, nanoparticle-based treatments, and therapeutic biomolecules, and the role of the various physiological parameters, a number of mathematical models have previously been proposed. The limitations of the existing transport models indicate the need for a comprehensive model that includes transport in the vessel lumen, the vessel wall, and the interstitial space and considers the effects of the solute concentration on fluid flow. In this study, a general model to describe the transient distribution of fluid and multiple solutes at the microvascular level was developed using mixture theory. The model captures the experimentally observed dependence of the hydraulic permeability coefficient of the capillary wall on the concentration of solutes present in the capillary wall and the surrounding tissue. Additionally, the model demonstrates that transport phenomena across the capillary wall and in the interstitium are related to the solute concentration as well as the hydrostatic pressure. The model is used in a companion paper to examine fluid and solute transport for the simplified case of an axisymmetric geometry with no solid deformation or interconversion of mass.

  10. Development of a version of the reactor dynamics code DYN3D applicable for High Temperature Reactors; Entwicklung einer Version des Reaktordynamikcodes DYN3D fuer Hochtemperaturreaktoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rohde, Ulrich; Apanasevich, Pavel; Baier, Silvio; Duerigen, Susan; Fridman, Emil; Grahn, Alexander; Kliem, Soeren; Merk, Bruno

    2012-07-15

    Based on the reactor dynamics code DYN3D for the simulation of transient processes in Light Water Reactors, a code version DYN3D-HTR for application to graphitemoderated, gas-cooled block-type high temperature reactors has been developed. This development comprises: - the methodical improvement of the 3D steady-state neutron flux calculation for the hexagonal geometry of the HTR fuel element blocks - the development of methods for the generation of homogenised cross section data taking into account the double heterogeneity of the fuel element block structure - the implementation of a 3D model for heat conduction and heat transport in the graphite matrix. The nodal method for neutron flux calculation based on SP3 transport approximation was extended to hexagonal fuel element geometry, where the hexagons are subdivided into triangles, thus the method had finally to be derived for triangular geometry. In triangular geometry, a subsequent subdivision of the hexagonal elements can be considered, and therefore, the effect of systematic mesh refinement can be studied. The algorithm was verified by comparison with Monte Carlo reference solutions, on the node-wise level, as well as also on the pin-wise level. New procedures were developed for the homogenization of the double-heterogeneous fuel element structures. One the one hand, the so-called Reactivity equivalent Physical Transformation (RPT), the two-step homogenization method based on 2D deterministic lattice calculations, was extended to cells with different temperatures of the materials. On the other hand, the progress in development of Monte Carlo methods for spectral calculations, in particular the development of the code SERPENT, opened a new, fully consistent 3D approach, where all details of the structures on fuel particle, fuel compact and fuel block level can be taken into account within one step. Moreover, a 3D heat conduction and heat transport model was integrated into DYN3D to be able to simulate radial

  11. Development of a CAD-based neutron transport code with the method of characteristics

    International Nuclear Information System (INIS)

    Chen Zhenping; Wang Dianxi; He Tao; Wang Guozhong; Zheng Huaqing

    2012-01-01

    The main problem determining whether the method of characteristics (MOC) can be used in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. In this study, a new idea making use of MCAM, which is a Mutlti-Calculation Automatic Modeling for Neutronics and Radiation Transport program developed by FDS Team, for geometry description and ray tracing of particle transport was brought forward to solve the geometry problem mentioned above. Based on the theory and approach as the foregoing statement, a two dimensional neutron transport code was developed which had been integrated into VisualBUS, developed by FDS Team. Several benchmarks were used to verify the validity of the code and the numerical results were coincident with the reference values very well, which indicated the accuracy and feasibility of the method and the MOC code. (authors)

  12. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  13. 3-D modelling and analysis of Dst C-responses in the North Pacific Ocean region, revisited

    DEFF Research Database (Denmark)

    Kuvshinov, A.; Utada, H.; Avdeev, D.

    2005-01-01

    models that are as realistic and detailed as possible. In order to perform the simulations using realistic 3-D models on a routine basis a novel 3-D 'spherical' forward solution has been elaborated in this paper. The solution combines the modified iterative-dissipative method with a conjugate gradient...

  14. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    International Nuclear Information System (INIS)

    Mattsson, Haakan

    2011-05-01

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  15. Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)

    2017-06-21

    The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.

  16. Implementation of 3D models in the Monte Carlo code MCNP

    International Nuclear Information System (INIS)

    Lopes, Vivaldo; Millian, Felix M.; Guevara, Maria Victoria M.; Garcia, Fermin; Sena, Isaac; Menezes, Hugo

    2009-01-01

    On the area of numerical dosimetry Applied to medical physics, the scientific community focuses on the elaboration of new hybrids models based on 3D models. But different steps of the process of simulation with 3D models needed improvement and optimization in order to expedite the calculations and accuracy using this methodology. This project was developed with the aim of optimize the process of introduction of 3D models within the simulation code of radiation transport by Monte Carlo (MCNP). The fast implementation of these models on the simulation code allows the estimation of the dose deposited on the patient organs on a more personalized way, increasing the accuracy with this on the estimates and reducing the risks to health, caused by ionizing radiations. The introduction o these models within the MCNP was made through a input file, that was constructed through a sequence of images, bi-dimensional in the 3D model, generated using the program '3DSMAX', imported by the program 'TOMO M C' and thus, introduced as INPUT FILE of the MCNP code. (author)

  17. Solute transport in aggregated and layered porous media

    International Nuclear Information System (INIS)

    Koch, S.

    1993-01-01

    This work is a contribution to research in soil physics dealing with solute transport in porous media. The influence of structural inhomogeneities on solute transport is investigated. Detailed experiments at the laboratory scale are used to enlighten distinct processes which cannot be studied separately at field scale. Two main aspects are followed up: (i) to show the influence of aggregation of a porous medium on breakthrough time and spreading of an inert tracer and consequences on the estimation of parameter values of models describing solute transport in aggregated systems, (ii) to investigate the influences on the dispersion process when stratification is perpendicular to the direction of flow. Several concepts of modelling solute transport in soil are discussed. Models based on the convection-dispersion equation (CDE) are emphasized because they are used here to model solute transport experiments conducted with aggregated porous media. Stochastic concepts are introduced to show the limitations of the deterministic CDE approaches. Experiments are done in columns containing two kinds of solid phases and were saturated with water. The solid phases are porous and solid glass beads exhibiting a distinctly unimodal or bimodal pore size distribution. Experimental breakthrough curves (BTCs) are modelled with the CDE, a bicontinuum model with a phenomenological mass transfer rate and a bicontinuum spherical diffusion model. Experiments are also done in columns that are unsaturated containing porous materials that are layered. Flow is made at a steady rate. It is shown that layer boundaries have a severe influence on lateral mixing. They may force streamlines to converge or cause a lateral redistribution of solutes. (author) figs., tabs., 122 refs

  18. An efficient flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bingham, Harry B.; Lindberg, Ole

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal......, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental...

  19. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Jacek Waniewski

    2016-01-01

    Full Text Available During peritoneal dialysis (PD, the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87 years; median time on PD 19 (3–100 months underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS, fraction of ultrasmall pores (αu, osmotic conductance for glucose (OCG, and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters. Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  20. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Science.gov (United States)

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87) years; median time on PD 19 (3–100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane. PMID:26989432

  1. Coupled geochemical and solute transport code development

    International Nuclear Information System (INIS)

    Morrey, J.R.; Hostetler, C.J.

    1985-01-01

    A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code

  2. Toward a scalable flexible-order model for 3D nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Ducrozet, Guillaume; Bingham, Harry B.

    For marine and coastal applications, current work are directed toward the development of a scalable numerical 3D model for fully nonlinear potential water waves over arbitrary depths. The model is high-order accurate, robust and efficient for large-scale problems, and support will be included...... for flexibility in the description of structures by the use of curvilinear boundary-fitted meshes. The mathematical equations for potential waves in the physical domain is transformed through $\\sigma$-mapping(s) to a time-invariant boundary-fitted domain which then becomes a basis for an efficient solution...... strategy on a time-invariant mesh. The 3D numerical model is based on a finite difference method as in the original works \\cite{LiFleming1997,BinghamZhang2007}. Full details and other aspects of an improved 3D solution can be found in \\cite{EBL08}. The new and improved approach for three...

  3. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country

  4. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil.

    Science.gov (United States)

    Mohammadi, Mohammad Hossein; Vanclooster, Marnik

    2012-05-01

    Solute transport in partially saturated soils is largely affected by fluid velocity distribution and pore size distribution within the solute transport domain. Hence, it is possible to describe the solute transport process in terms of the pore size distribution of the soil, and indirectly in terms of the soil hydraulic properties. In this paper, we present a conceptual approach that allows predicting the parameters of the Convective Lognormal Transfer model from knowledge of soil moisture and the Soil Moisture Characteristic (SMC), parameterized by means of the closed-form model of Kosugi (1996). It is assumed that in partially saturated conditions, the air filled pore volume act as an inert solid phase, allowing the use of the Arya et al. (1999) pragmatic approach to estimate solute travel time statistics from the saturation degree and SMC parameters. The approach is evaluated using a set of partially saturated transport experiments as presented by Mohammadi and Vanclooster (2011). Experimental results showed that the mean solute travel time, μ(t), increases proportionally with the depth (travel distance) and decreases with flow rate. The variance of solute travel time σ²(t) first decreases with flow rate up to 0.4-0.6 Ks and subsequently increases. For all tested BTCs predicted solute transport with μ(t) estimated from the conceptual model performed much better as compared to predictions with μ(t) and σ²(t) estimated from calibration of solute transport at shallow soil depths. The use of μ(t) estimated from the conceptual model therefore increases the robustness of the CLT model in predicting solute transport in heterogeneous soils at larger depths. In view of the fact that reasonable indirect estimates of the SMC can be made from basic soil properties using pedotransfer functions, the presented approach may be useful for predicting solute transport at field or watershed scales. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The effect of glycerin solution density and viscosity on vibration amplitude of oblique different piezoelectric MC near the surface in 3D modeling

    Science.gov (United States)

    Korayem, A. H.; Abdi, M.; Korayem, M. H.

    2018-06-01

    The surface topography in nanoscale is one of the most important applications of AFM. The analysis of piezoelectric microcantilevers vibration behavior is essential to improve the AFM performance. To this end, one of the appropriate methods to simulate the dynamic behavior of microcantilever (MC) is a numerical solution with FEM in the 3D modeling using COMSOL software. The present study aims to simulate different geometries of the four-layered AFM piezoelectric MCs in 2D and 3D modeling in a liquid medium using COMSOL software. The 3D simulation was done in a spherical container using FSI domain in COMSOL. In 2D modeling by applying Hamilton's Principle based on Euler-Bernoulli Beam theory, the governing motion equation was derived and discretized with FEM. In this mode, the hydrodynamic force was assumed with a string of spheres. The effect of this force along with the squeezed-film force was considered on MC equations. The effect of fluid density and viscosity on the MC vibrations that immersed in different glycerin solutions was investigated in 2D and 3D modes and the results were compared with the experimental results. The frequencies and time responses of MC close to the surface were obtained considering tip-sample forces. The surface topography of MCs different geometries were compared in the liquid medium and the comparison was done in both tapping and non-contact mode. Various types of surface roughness were considered in the topography for MC different geometries. Also, the effect of geometric dimensions on the surface topography was investigated. In liquid medium, MC is installed at an oblique position to avoid damaging the MC due to the squeezed-film force in the vicinity of MC surface. Finally, the effect of MC's angle on surface topography and time response of the system was investigated.

  6. Field-scale water flow and solute transport : SWAP model concepts, parameter estimation and case studies = [Waterstroming en transport van opgeloste stoffen op veldschaal

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale

  7. A 3 D regional scale photochemical air quality model application to a 3 day summertime episode over Paris; Un modele photochimique 3D de qualite de l`air a l`echelle regionale. Application a un episode de 3 jours a Paris en ete

    Energy Technology Data Exchange (ETDEWEB)

    Jaecker-Voirol, A.; Lipphardt, M.; Martin, B.; Quandalle, Ph.; Salles, J. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Carissimo, B.; Dupont, P.M.; Musson-Genon, L.; Riboud, P.M. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Aumont, B.; Bergametti, G.; Bey, I.; Toupanse, G. [Paris-12 Univ., 94 - Creteil (France). Laboratoire interuniversitaire des systemes atmospheriques]|[Paris-7 Univ., 75 (France)

    1998-03-01

    This paper presents AZUR, a 3D Eulerian photochemical air quality model for the simulation of air pollution in urban and semi-urban areas. The model tracks gas pollutant species emitted into the atmosphere by transportation and industrial sources, it computes the chemical reactions of these species under varying meteorological conditions (photolysis, pressure, temperature, humidity), their transport by wind and their turbulent diffusion as a function of air stability. It has a modular software structure which includes several components dedicated to specific processes: MERCURE, a meso-scale meteorological model to compute the wind field, turbulent diffusion coefficients, and other meteorological parameters; MIEL, an emission inventory model describing the pollutant fluxes from automotive transportation, domestic and industrial activities; MoCA a photochemical gas phase model describing the chemistry of ozone, NO{sub x}, an hydrocarbon compounds; AIRQUAL, a 3D Eulerian model describing the transport by mean wind flux and air turbulent diffusion of species in the atmosphere, associated with a Gear type chemical equation solver. The model has been applied to a 3-day summertime episode over Paris area. Simulation results are compared to ground level concentration measurements performed by the local monitoring network (Airparif). (authors) 22 refs.

  8. 2-3D nonlocal transport model in magnetized laser plasmas.

    Science.gov (United States)

    Nicolaï, Philippe; Feugeas, Jean-Luc; Schurtz, Guy

    2004-11-01

    We present a model of nonlocal transport for multidimensional radiation magneto-hydrodynamics codes. This model, based on simplified Fokker-Planck equations, aims at extending the formulae of G Schurtz,Ph.Nicolaï and M. Busquet [Phys. Plasmas,7,4238 (2000)] to magnetized plasmas.The improvements concern various points as the electric field effects on nonlocal transport or conversely the kinetic effects on E field. However the main purpose of this work is to generalize the previous model by including magnetic field effects. A complete system of nonlocal equations is derived from kinetic equations with self-consistent E and B fields. These equations are analyzed and simplified in order to be implemented into large laser fusion codes and coupled to other relevent physics. Finally, our model allows to obtain the deformation of the electron distribution function due to nonlocal effects. This deformation leads to a non-maxwellian function which could be used to compute the influence on other physical processes.

  9. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  10. A theory of general solutions of 3D problems in 1D hexagonal quasicrystals

    International Nuclear Information System (INIS)

    Gao Yang; Xu Sipeng; Zhao Baosheng

    2008-01-01

    A theory of general solutions of three-dimensional (3D) problems is developed for the coupled equilibrium equations in 1D hexagonal quasicrystals (QCs), and two new general solutions, which are called generalized Lekhnitskii-Hu-Nowacki (LHN) and Elliott-Lodge (E-L) solutions, respectively, are presented based on three theorems. As a special case, the generalized LHN solution is obtained from our previous general solution by introducing three high-order displacement functions. For further simplification, considering three cases in which three characteristic roots are distinct or possibly equal to each other, the generalized E-L solution shall take different forms, and be expressed in terms of four quasi-harmonic functions which are very simple and useful. It is proved that the general solution presented by Peng and Fan is consistent with one case of the generalized E-L solution, while does not include the other two cases. It is important to note that generalized LHN and E-L solutions are complete in z-convex domains, while incomplete in the usual non-z-convex domains

  11. Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D

    Science.gov (United States)

    Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery

    2015-01-01

    In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.

  12. Attila calculations for the 3-D C5G7 benchmark extension

    International Nuclear Information System (INIS)

    Wareing, T.A.; McGhee, J.M.; Barnett, D.A.; Failla, G.A.

    2005-01-01

    The performance of the Attila radiation transport software was evaluated for the 3-D C5G7 MOX benchmark extension, a follow-on study to the MOX benchmark developed by the 'OECD/NEA Expert Group on 3-D Radiation Transport Benchmarks'. These benchmarks were designed to test the ability of modern deterministic transport methods to model reactor problems without spatial homogenization. Attila is a general purpose radiation transport software package with an integrated graphical user interface (GUI) for analysis, set-up and postprocessing. Attila provides solutions to the discrete-ordinates form of the linear Boltzmann transport equation on a fully unstructured, tetrahedral mesh using linear discontinuous finite-element spatial differencing in conjunction with diffusion synthetic acceleration of inner iterations. The results obtained indicate that Attila can accurately solve the benchmark problem without spatial homogenization. (authors)

  13. 3D effects on transport and plasma control in the TJ-II stellarator

    Science.gov (United States)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  14. Mathematical modelling of radionuclide transport through fractured rock using numerical inversion of Laplace transforms: applications to INTRACOIN Level 3

    International Nuclear Information System (INIS)

    Hodgkinson, D.P.; Lever, D.A.; England, T.H.

    1984-01-01

    A model for the transport of radionuclides through fractured rock has been developed and used to study a problem which forms part of Level 3 of the INTRACOIN project (the international exercise in which the results from various radionuclide-migration computer programs are compared). The model includes the effects of 1-D advection, dispersion, kinetic and/or equilibrium surface sorption, diffusion into the rock matrix with equilibrium bulk sorption and radioactive decay, and incorporates flexible input and output boundary conditions. It is evaluated by numerically inverting the analytical solution to the Laplace-transformed transport equations. Matrix diffusion was found to be the most important retardation mechanism for Np based on data reflecting the conditions at the Finnsjeeo site in east central Sweden. However, improved data and field testing are required to make the predictions of such models more reliable. (author)

  15. 3D nonlinear modeling of the coupling and phase locking of magnetic Islands in tokamaks

    Science.gov (United States)

    Jardin, Stephen; Ferraro, Nathaniel; Chen, Jin; Pfefferle, David

    2017-10-01

    Many tokamak discharges develop multiple tearing modes possessing different mode numbers. These modes are observed to phase lock to one another, resulting in a flattening of the core toroidal plasma rotation profile, which can have deleterious effects on transport and MHD stability. In order to study these phenomena with minimum assumptions, we use the M3D-C1 3D nonlinear MHD code to perform initial value simulations of the evolution of equilibria unstable to both the 2/1 and 3/2 modes, but having sheared toroidal rotation. Initial attempts to perform these simulations led to numerical instabilities developing once the islands got to a certain size. In order to study the cause of this instability, we developed a small model code that solves a pure convection equation in 1D. We find that an implicit Crank-Nicholson method in time and Hermite Cubic finite elements (as are used in the toroidal direction in the M3D-C1 code) is not a convergent algorithm. Adding a small second order diffusion term, proportional to the velocity, improves the numerical stability properties but is not convergent in the first-derivative of the solution. Instead, adding a much smaller forth-order spatial derivative term proportional to the velocity leads to an algorithm in which both the solution and the first derivative converge as 1/N2,. Adding similar toroidal forth derivative terms to the M3D-C1 code eliminated the numerical instability. This work was supported by US DOE Contract DE-AC02-09-CH11466.

  16. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  17. A 3D thermal runaway propagation model for a large format lithium ion battery module

    International Nuclear Information System (INIS)

    Feng, Xuning; Lu, Languang; Ouyang, Minggao; Li, Jiangqiu; He, Xiangming

    2016-01-01

    In this paper, a 3D thermal runaway (TR) propagation model is built for a large format lithium ion battery module. The 3D TR propagation model is built based on the energy balance equation. Empirical equations are utilized to simplify the calculation of the chemical kinetics for TR, whereas equivalent thermal resistant layer is employed to simplify the heat transfer through the thin thermal layer. The 3D TR propagation model is validated by experiment and can provide beneficial discussions on the mechanisms of TR propagation. According to the modeling analysis of the 3D model, the TR propagation can be delayed or prevented through: 1) increasing the TR triggering temperature; 2) reducing the total electric energy released during TR; 3) enhancing the heat dissipation level; 4) adding extra thermal resistant layer between adjacent batteries. The TR propagation is successfully prevented in the model and validated by experiment. The model with 3D temperature distribution provides a beneficial tool for researchers to study the TR propagation mechanisms and for engineers to design a safer battery pack. - Highlights: • A 3D thermal runaway (TR) propagation model for Li-ion battery pack is built. • The 3D TR propagation model can fit experimental results well. • Temperature distributions during TR propagation are presented using the 3D model. • Modeling analysis provides solutions for the prevention of TR propagation. • Quantified solutions to prevent TR propagation in battery pack are discussed.

  18. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom

    2014-04-01

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

  19. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  20. User manual of the multicompenent variably - saturated flow and transport model HP1

    International Nuclear Information System (INIS)

    Jacques, D.; Simunek, J.

    2005-06-01

    This report describes a new comprehensive simulation tool HP1 (HYDRUS1D-PHREEQC) that was obtained by coupling the HYDRUS-1D one-dimensional variably-saturated water flow and solute transport model with the PHREEQC geochemical code. The HP1 code incorporates modules simulating (1) transient water flow in variably-saturated media, (2) transport of multiple components, and (3) mixed equilibrium/kinetic geochemical reactions. The program numerically solves the Richards equation for variably-saturated water flow and advection-dispersion type equations for heat and solute transport. The flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport equation considers transport due to conduction and convection with flowing water. The solute transport equations consider advective-dispersive transport in the liquid phase. The program can simulate a broad range of low-temperature biogeochemical reactions in water, soil and ground water systems including interactions with minerals, gases, exchangers, and sorption surfaces, based on thermodynamic equilibrium, kinetics, or mixed equilibrium-kinetic reactions. The program may be used to analyze water and solute movement in unsaturated, partially saturated, or fully saturated porous media. The flow region may be composed of nonuniform soils or sediments. Flow and transport can occur in the vertical, horizontal, or a generally inclined direction. The water flow part of the model can deal with prescribed head and flux boundaries, boundaries controlled by atmospheric conditions, as well as free drainage boundary conditions. The governing flow and transport equations were solved numerically using Galerkin-type linear finite element schemes. To test the accuracy of the coupling procedures implemented in HP1, simulation results were compared with (i) HYDRUS-1D for transport problems of multiple components subject to sequential first-order decay, (ii) PHREEQC for steady-state flow conditions, and

  1. Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models

    Science.gov (United States)

    Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.

    2011-09-01

    We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.

  2. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    Science.gov (United States)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  3. Method of Characteristic (MOC) Nozzle Flowfield Solver - User’s Guide and Input Manual Version 2.0

    Science.gov (United States)

    2018-01-01

    TECHNICAL REPORT RDMR-SS-17-13 METHOD OF CHARACTERISTIC (MOC) NOZZLE FLOWFIELD SOLVER—USER’S GUIDE AND INPUT MANUAL VERSION 2.0 Kevin D. Kennedy...1 II. PROGRAM READS AND WRITES ...2 B. Program Reads .................................................................................................. 4 C. Program Writes

  4. Development of parallel 3D discrete ordinates transport program on JASMIN framework

    International Nuclear Information System (INIS)

    Cheng, T.; Wei, J.; Shen, H.; Zhong, B.; Deng, L.

    2015-01-01

    A parallel 3D discrete ordinates radiation transport code JSNT-S is developed, aiming at simulating real-world radiation shielding and reactor physics applications in a reasonable time. Through the patch-based domain partition algorithm, the memory requirement is shared among processors and a space-angle parallel sweeping algorithm is developed based on data-driven algorithm. Acceleration methods such as partial current rebalance are implemented. The correctness is proved through the VENUS-3 and other benchmark models. In the radiation shielding calculation of the Qinshan-II reactor pressure vessel model with 24.3 billion DoF, only 88 seconds is required and the overall parallel efficiency of 44% is achieved on 1536 CPU cores. (author)

  5. Modelling pesticide transport in a shallow groundwater catchment using tritium and helium-3 data

    International Nuclear Information System (INIS)

    Åkesson, Maria; Bendz, David; Carlsson, Christel; Sparrenbom, Charlotte J.; Kreuger, Jenny

    2014-01-01

    Highlights: • A catchment-scale groundwater model is calibrated against 3 H and 3 He data. • Transport of pesticides is modelled using site-specific sorption and degradation data. • Breakthrough of pesticides with low K d -values is successfully simulated. • Model constraints are an effect of a simplified system conceptualisation. - Abstract: Using tritium and helium-3 data for calibration, a 2-D transport model was set up to explain the occurrence of bentazone, dichlorprop, glyphosate, isoproturon, MCPA and metamitron in a small groundwater catchment in southern Sweden. The model was parameterised with site-specific degradation and sorption data to enable transport simulations. Local climatological data and a 21-year record of agricultural pesticide use within the study area were used as boundary conditions. Model output was evaluated against a 7-year long pesticide monitoring data-series from two monitoring wells within the study area. The model successfully predicts observed breakthrough of bentazone, dichlorprop, isoproturon and MCPA. However, it fails to simulate observed occurrences of glyphosate and metamitron. Glyphosate and metamitron exhibit relatively high sorption potential, and their occurrence is suggested to be the result of non-equilibrium preferential flow paths which the model cannot reproduce due the conceptualisation of the system as homogenous and isotropic. The results indicate a promising methodological approach applicable to groundwater contamination risk assessment, and demonstrate the potential for transport model calibration by means of tritium and helium-3 data. Main constraints of the study relate to the relatively simple system conceptualisation, indicating a need for further consideration of physical and chemical heterogeneity

  6. Gray and multigroup radiation transport models for two-dimensional binary stochastic media using effective opacities

    International Nuclear Information System (INIS)

    Olson, Gordon L.

    2016-01-01

    One-dimensional models for the transport of radiation through binary stochastic media do not work in multi-dimensions. Authors have attempted to modify or extend the 1D models to work in multidimensions without success. Analytic one-dimensional models are successful in 1D only when assuming greatly simplified physics. State of the art theories for stochastic media radiation transport do not address multi-dimensions and temperature-dependent physics coefficients. Here, the concept of effective opacities and effective heat capacities is found to well represent the ensemble averaged transport solutions in cases with gray or multigroup temperature-dependent opacities and constant or temperature-dependent heat capacities. In every case analyzed here, effective physics coefficients fit the transport solutions over a useful range of parameter space. The transport equation is solved with the spherical harmonics method with angle orders of n=1 and 5. Although the details depend on what order of solution is used, the general results are similar, independent of angular order. - Highlights: • Gray and multigroup radiation transport is done through 2D stochastic media. • Approximate models for the mean radiation field are found for all test problems. • Effective opacities are adjusted to fit the means of stochastic media transport. • Test problems include temperature dependent opacities and heat capacities • Transport solutions are done with angle orders n=1 and 5.

  7. A full 3D time-dependent electromagnetic model for Roebel cables

    DEFF Research Database (Denmark)

    Rodriguez Zermeno, Victor Manuel; Grilli, Francesco; Sirois, Frederic

    2013-01-01

    High temperature superconductor Roebel cables are well known for their large current capacity and low AC losses. For this reason they have become attractive candidates for many power applications. The continuous transposition of their strands reduces the coupling losses while ensuring better...... is unavoidably a large scale computational problem. In this work, we present a full 3D model of a Roebel cable with 14 strands. The model is based on the H-formulation, widely used for 2D problems. In order to keep the 3D features of the cable (in particular the magnetization currents near the transpositions......), no simplifications are made other than the reduction of the modelled length according to the periodicity of the cable structure. The 3D model is used to study the dependence of AC losses on the amplitude of the AC applied magnetic field or transport current. Beyond the importance of simulating the Roebel cable...

  8. Preliminary modeling for solute transport in a fractured zone at the Korea underground research tunnel (KURT)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung Kyun; Lee, Jaek Wang; Baik, Min Hoon; Jeong, Jong Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-02-15

    Migration tests were performed with conservative tracers in a fractured zone that had a single fracture of about 2.5 m distance at the KURT. To interpret the migration of the tracers in the fractured rock, a solute transport model was developed. A two dimensional variable aperture channel model was adopted to describe the fractured path and hydrology, and a particle tracking method was used for solute transport. The simulation tried not only to develop a migration model of solutes for open flow environments but also to produce ideas for a better understanding of solute behaviours in indefinable fracture zones by comparing them to experimental results. The results of our simulations and experiments are described as elution and breakthrough curves, and are quantified by momentum analysis. The main retardation mechanism of nonsorbing tracers, including matrixdiffusion, was investigated.

  9. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    Science.gov (United States)

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  10. Aespoe Task Force on modelling of groundwater flow and transport of solutes. Review of Task 6C

    International Nuclear Information System (INIS)

    Black, John; Hodgkinson, David

    2005-03-01

    This report forms part of an independent review of the specifications, execution and results of Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes, which is seeking to provide a bridge between site characterization (SC) and performance assessment (PA) approaches to solute transport in fractured rock. The present report is concerned solely with Task 6C, which relates to the construction and parametrisation of a block-scale hydrostructural model of the TRUE Block Scale region of the Aespoe Hard Rock laboratory. The task objectives, specifications and outcome are summarised and reviewed. Also, consideration is given to how the hydrostructural model might affect the outcomes of Task 6D and 6E. The main conclusions of this review are summarised below: The Task 6C hydrostructural model is a more comprehensive approach to quantitatively describing a volume of fractured rock than has been achieved hitherto. The idea of including solute retention characteristics as indices attached to individual fractures is an efficient device resulting in a whole volume of fractured rock described by a few spreadsheets. The hydrostructural model is clearly defined and provides a useful test bed for Tasks 6D and 6E. It would have been beneficial if the specifications for Task 6C had been more clearly defined as a hierarchy of requirements, and performance measures had been defined and evaluated to allow comparison of alternative approaches. The device used to reduce connectivity, namely reducing the average size of background fractures, has the effect of producing a final model with an 'unnatural' gap in the overall distribution of fracture sizes. It appears that the exploratory boreholes could be important conductive structures within the region of the 200 m block even though they are segmented into shorter sections by packers. If correct, this implies that the boreholes should be included explicitly in the model if close replication of TRUE Block

  11. A study on the adsorption and subsurface transport of radioactive solutes in the presence of chelating agents

    International Nuclear Information System (INIS)

    Baik, Min Hoon

    1994-02-01

    In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed

  12. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  13. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Science.gov (United States)

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  14. The Neighboring Column Approximation (NCA) – A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    International Nuclear Information System (INIS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to −150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only −100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5–2 higher compared to a 1D

  15. Towards 3D Cadastre in Serbia: Development of Serbian Cadastral Domain Model

    Directory of Open Access Journals (Sweden)

    Aleksandra Radulović

    2017-10-01

    Full Text Available This paper proposes a Serbian cadastral domain model as the country profile for the real estate cadastre, based on the Land Administration Domain Model (LADM, defined within ISO 19152. National laws and other legal acts were analyzed and the incorrect applications of the law are outlined. The national “Strategy of measures and activities for increasing the quality of services in the field of geospatial data and registration of real property rights in the official state records”, which was adopted in 2017, cites the shortcomings of the existing cadastral information system. The proposed profile can solve several problems with the system, such as the lack of interoperability, mismatch of graphic and alphanumeric data, and lack of an integrated cadastral information system. Based on the existing data, the basic concepts of the Serbian cadastre were extracted and the applicability of LADM was tested on an obtained conceptual model. Upon obtaining positive results, a complete country profile was developed according to valid national laws and rulebooks. A table of mappings of LADM classes and country profile classes is presented in this paper, together with an analysis of the conformance level. The proposed Serbian country profile is completely conformant at the medium level and on several high-level classes. LADM also provides support for three-dimensional (3D representations and 3D registration of rights, so the creation of a country profile for Serbia is a starting point toward a 3D cadastre. Given the existence of buildings with overlapping rights and restrictions in 3D, considering expanding the spatial profile with 3D geometries is necessary. Possible solutions to these situations were analyzed. Since the two-dimensional (2D cadastre in Serbia is not fully formed, the proposed solution is to use the 2D model for simple right situations, and the 3D model for more complex situations.

  16. A non-conforming 3D spherical harmonic transport solver

    Energy Technology Data Exchange (ETDEWEB)

    Van Criekingen, S. [Commissariat a l' Energie Atomique CEA-Saclay, DEN/DM2S/SERMA/LENR Bat 470, 91191 Gif-sur-Yvette, Cedex (France)

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  17. A non-conforming 3D spherical harmonic transport solver

    International Nuclear Information System (INIS)

    Van Criekingen, S.

    2006-01-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  18. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  19. 3D edge energy transport in stellarator configurations

    International Nuclear Information System (INIS)

    McTaggart, N.; Zagorski, R.; Bonnin, X.; Runov, A.; Schneider, R.; Kaiser, T.; Rognlien, T.; Umansky, M.

    2005-01-01

    The finite difference discretization method is used to solve the electron energy transport equation in complex 3D edge geometries using an unstructured grid. This grid is generated by field-line tracing to separate the radial and parallel fluxes and minimize the numerical diffusion connected with the strong anisotropy of the system. The influence of ergodicity on the edge plasma transport in the W7-X stellarator is investigated in this paper. Results show that the combined effect of ergodicity and the radial plasma diffusion leads to the efficient smoothing of the temperature profiles in the finite-β case

  20. Non-diffusive transport in 3-D pressure driven plasma turbulence

    International Nuclear Information System (INIS)

    Del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.

    2005-01-01

    Numerical evidence of non-diffusive transport in 3-dimensional, resistive, pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of tracers is strongly non-Gaussian and exhibits algebraic decaying tails. To describe these results, a transport model using fractional derivative operators in proposed. The model incorporates in a unified way non-locality (i.e., non-Fickian transport), memory effects (i.e., non-Markovian transport), and non-diffusive scaling features known to be present in fusion plasmas. There is quantitative agreement between the model and the turbulent transport numerical calculations. In particular, the model reproduces the shape and space-time scaling of the pdf, and the super-diffusive scaling of the moments. (author)

  1. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  2. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  3. A single continuum approximation of the solute transport in fractured porous media

    International Nuclear Information System (INIS)

    Jeong, J.T.; Lee, K.J.

    1992-01-01

    Solute transport in fractured porous media is described by the single continuum model, i.e., equivalent porous medium model. In this model, one-dimensional solute transport in the fracture and two-dimensional solute transport in the porous rock matrix is considered. The network of fractures embedded in the porous rock matrix is idealized as two orthogonally intersecting families of equally spaced, parallel fractures directed at 45 o to the regional groundwater flow direction. Governing equations are solved by the finite element method, and an upstream weighting technique is used in order to prevent the oscillation of the solution in the case of highly advection dominated transport. Breakthrough curves, similar to those of the one-dimensional solute transport problem in ordinary porous media, are obtained as a function of time according to volume or flux averaging of the concentration profile across the width of the flow region. The equivalent parameters, i.e., porosity and overall coefficient of longitudinal dispersivity, are obtained by a trial-and-error method. Analyses for the non-sorbing solute transport case show that within the range of considered parameters, and except for the region very close to the source, application of the single continuum model in the idealized fracture system is sufficient for modeling solute transport in fractured porous media. This numerical scheme is shown to be applicable to a sorbing solute and radionuclide transport. (author)

  4. A 3D FINITE ELEMENT ANALYSIS OF INCOMPRESSIBLE FLUID FLOW AND CONTAMINANT TRANSPORT THROUGH A POROUS LANDFILL

    Directory of Open Access Journals (Sweden)

    ADEGUN, I. K.

    2014-08-01

    Full Text Available The paper investigated the flow of incompressible fluid and contaminant transport through a Porous Landfill using a numerical technique. A threedimensional finite element analysis technique was adopted for the solution. The problem was based on the Darcy’s Law and the Advection-Dispersion equation. The solutions of the Darcy’s and Advection-Dispersion equations were generated using Finite Element Analysis Software known as COMSOL Multiphysics. This simulation tool tracked the contaminant transport in the Landfill for 360 days at 10 days interval. It first modeled steady-state fluid flow by employing the Darcy’s Law Application Mode and then followed up with a transient solute-transport simulation by employing the Solute-Transport Application Mode from the Earth Science Module of COMSOL. The solution results obtained from this model were found to be in close agreement with reallife data obtained at the 130- million ton Bukit Tagar Mega Sanitary Landfill site, Selangor near Kuala Lumpur, Malaysia. This showed that the model can effectively predict the trends in the distributions of pollutants from a Municipal Solid Waste Landfill into nearby land and water sources. The model is thus applicable to the issues of environmental protection and safety of groundwater.

  5. Mathematical modeling of fluid and solute transport in peritoneal dialysis

    OpenAIRE

    Waniewski, Jacek

    2001-01-01

    Optimization of peritoneal dialysis schedule and dialysis fluid composition needs, among others, methods for quantitative assessment of fluid and solute transport. Furthermore, an integrative quantitative description of physiological processes within the tissue, which contribute to the net transfer of fluid and solutes, is necessary for interpretation of the data and for predictions of the outcome of possible intervention into the peritoneal transport system. The current pro...

  6. A 3-D model of superfluid helium suitable for numerical analysis

    CERN Document Server

    Darve, C; Van Sciver, S W

    2009-01-01

    The two-fluid description is a very successful phenomenological representation of the properties of Helium II. A 3-D model suitable for numerical analysis based on the Landau-Khalatnikov description of Helium II is proposed. In this paper we introduce a system of partial differential equations that is both complete and consistent as well as practical, to be used for a 3-D solution of the flow of Helium II. The development of a 3-D numerical model for Helium II is motivated by the need to validate experimental results obtained by observing the normal component velocity distribution in a Helium II thermal counter-flow using the Particle Image Velocimetry (PIV) technique.

  7. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  8. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  9. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  10. A biomechanical triphasic approach to the transport of nondilute solutions in articular cartilage.

    Science.gov (United States)

    Abazari, Alireza; Elliott, Janet A W; Law, Garson K; McGann, Locksley E; Jomha, Nadr M

    2009-12-16

    Biomechanical models for biological tissues such as articular cartilage generally contain an ideal, dilute solution assumption. In this article, a biomechanical triphasic model of cartilage is described that includes nondilute treatment of concentrated solutions such as those applied in vitrification of biological tissues. The chemical potential equations of the triphasic model are modified and the transport equations are adjusted for the volume fraction and frictional coefficients of the solutes that are not negligible in such solutions. Four transport parameters, i.e., water permeability, solute permeability, diffusion coefficient of solute in solvent within the cartilage, and the cartilage stiffness modulus, are defined as four degrees of freedom for the model. Water and solute transport in cartilage were simulated using the model and predictions of average concentration increase and cartilage weight were fit to experimental data to obtain the values of the four transport parameters. As far as we know, this is the first study to formulate the solvent and solute transport equations of nondilute solutions in the cartilage matrix. It is shown that the values obtained for the transport parameters are within the ranges reported in the available literature, which confirms the proposed model approach.

  11. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  12. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  13. AxiSEM3D: a new fast method for global wave propagation in 3-D Earth models with undulating discontinuities

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; van Driel, M.; Al-Attar, D.

    2016-12-01

    We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models with laterally heterogeneous media and finite boundary perturbations. Our method is a hybrid of pseudo-spectral and spectral element methods (SEM). We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridional equations, which can be solved by a 2-D spectral element method (based on www.axisem.info). Computational efficiency of our method stems from lateral smoothness of global Earth models (with respect to wavelength) as well as axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. All boundary perturbations that violate geometric spherical symmetry, including Earth's ellipticity, topography and bathymetry, undulations of internal discontinuities such as Moho and CMB, are uniformly considered by means of a Particle Relabeling Transformation.The MPI-based high performance C++ code AxiSEM3D, is now available for forward simulations upon 3-D Earth models with fluid outer core, ellipticity, and both mantle and crustal structures. We show novel benchmarks for global wave solutions in 3-D mantle structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period going down to 5s. It is shown that our method runs up to two orders of magnitude faster than the 3-D SEM for such settings, and such computational advantage scales favourably with seismic frequency. By examining wavefields passing through hypothetical Gaussian plumes of varying sharpness, we identify in model-wavelength space the limits where our method may lose its advantage.

  14. Global solutions to random 3D vorticity equations for small initial data

    Science.gov (United States)

    Barbu, Viorel; Röckner, Michael

    2017-11-01

    One proves the existence and uniqueness in (Lp (R3)) 3, 3/2 4p - 6)3 with respect to the time variable. Furthermore, we obtain the pathwise continuous dependence of solutions with respect to the initial data. In particular, one gets a locally unique solution of 3D stochastic Navier-Stokes equation in vorticity form up to some explosion stopping time τ adapted to the Brownian motion.

  15. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    Science.gov (United States)

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  16. A coupled hydrodynamic-hydrochemical modeling for predicting mineral transport in a natural acid drainage system.

    Science.gov (United States)

    Zegers Risopatron, G., Sr.; Navarro, L.; Montserrat, S., Sr.; McPhee, J. P.; Niño, Y.

    2017-12-01

    The geochemistry of water and sediments, coupled with hydrodynamic transport in mountainous channels, is of particular interest in central Chilean Andes due to natural occurrence of acid waters. In this paper, we present a coupled transport and geochemical model to estimate and understand transport processes and fate of minerals at the Yerba Loca Basin, located near Santiago, Chile. In the upper zone, water presentes low pH ( 3) and high concentrations of iron, aluminum, copper, manganese and zinc. Acidity and minerals are the consequence of water-rock interactions in hydrothermal alteration zones, rich in sulphides and sulphates, covered by seasonal snow and glaciers. Downstream, as a consequence of neutral to alkaline lateral water contributions (pH >7) along the river, pH increases and concentration of solutes decreases. The mineral transport model has three components: (i) a hydrodynamic model, where we use HEC-RAS to solve 1D Saint-Venant equations, (ii) a sediment transport model to estimate erosion and sedimentation rates, which quantify minerals transference between water and riverbed and (iii) a solute transport model, based on the 1D OTIS model which takes into account the temporal delay in solutes transport that typically is observed in natural channels (transient storage). Hydrochemistry is solved using PHREEQC, a software for speciation and batch reaction. Our results show that correlation between mineral precipitation and dissolution according to pH values changes along the river. Based on pH measurements (and according to literature) we inferred that main minerals in the water system are brochantite, ferrihydrite, hydrobasaluminite and schwertmannite. Results show that our model can predict the transport and fate of minerals and metals in the Yerba Loca Basin. Mineral dissolution and precipitation process occur for limited ranges of pH values. When pH values are increased, iron minerals (schwertmannite) are the first to precipitate ( 2.5

  17. Preliminary model of fluid and solute distribution and transport during hemorrhage.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    2003-01-01

    The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al., of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%-30% blood volume loss) and large (> 30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse.

  18. Significance of flow clustering and sequencing on sediment transport: 1D sediment transport modelling

    Science.gov (United States)

    Hassan, Kazi; Allen, Deonie; Haynes, Heather

    2016-04-01

    This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume

  19. Simulation Of Seawater Intrusion With 2D And 3D Models: Nauru Island Case Study

    Science.gov (United States)

    Ghassemi, F.; Jakeman, A. J.; Jacobson, G.; Howard, K. W. F.

    1996-03-01

    With the advent of large computing capacities during the past few decades, sophisticated models have been developed for the simulation of seawater intrusion in coastal and island aquifers. Currently, several models are commercially available for the simulation of this problem. This paper describes the mathematical basis and application of the SUTRA and HST3D models to simulate seawater intrusion in Nauru Island, in the central Pacific Ocean. A comparison of the performance and limitations of these two models in simulating a real problem indicates that three-dimensional simulation of seawater intrusion with the HST3D model has the major advantage of being able to specify natural boundary conditions as well as pumping stresses. However, HST3D requires a small grid size and short time steps in order to maintain numerical stability and accuracy. These requirements lead to solution of a large set of linear equations that requires the availability of powerful computing facilities in terms of memory and computing speed. Combined results of the two simulation models indicate a safe pumping rate of 400 m3/d for the aquifer on Nauru Island, where additional fresh water is presently needed for the rehabilitation of mined-out land.

  20. Upgrade to MODFLOW-GUI; addition of MODPATH, ZONEBDGT, and additional MODFLOW packages to the U.S. Geological Survey MODFLOW-96 Graphical-User Interface

    Science.gov (United States)

    Winston, R.B.

    1999-01-01

    This report describes enhancements to a Graphical-User Interface (GUI) for MODFLOW-96, the U.S. Geological Survey (USGS) modular, three-dimensional, finitedifference ground-water flow model, and MOC3D, the USGS three-dimensional, method-ofcharacteristics solute-transport model. The GUI is a plug-in extension (PIE) for the commercial program Argus ONEe. The GUI has been modified to support MODPATH (a particle tracking post-processing package for MODFLOW), ZONEBDGT (a computer program for calculating subregional water budgets), and the Stream, Horizontal-Flow Barrier, and Flow and Head Boundary packages in MODFLOW. Context-sensitive help has been added to make the GUI easier to use and to understand. In large part, the help consists of quotations from the relevant sections of this report and its predecessors. The revised interface includes automatic creation of geospatial information layers required for the added programs and packages, and menus and dialog boxes for input of parameters for simulation control. The GUI creates formatted ASCII files that can be read by MODFLOW-96, MOC3D, MODPATH, and ZONEBDGT. All four programs can be executed within the Argus ONEe application (Argus Interware, Inc., 1997). Spatial results of MODFLOW-96, MOC3D, and MODPATH can be visualized within Argus ONEe. Results from ZONEBDGT can be visualized in an independent program that can also be used to view budget data from MODFLOW, MOC3D, and SUTRA. Another independent program extracts hydrographs of head or drawdown at individual cells from formatted MODFLOW head and drawdown files. A web-based tutorial on the use of MODFLOW with Argus ONE has also been updated. The internal structure of the GUI has been modified to make it possible for advanced users to easily customize the GUI. Two additional, independent PIE?s were developed to allow users to edit the positions of nodes and to facilitate exporting the grid geometry to external programs.

  1. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  2. Origins and nature of non-Fickian transport through fractures

    Science.gov (United States)

    Wang, L.; Cardenas, M. B.

    2014-12-01

    Non-Fickian transport occurs across all scales within fractured and porous geological media. Fundamental understanding and appropriate characterization of non-Fickian transport through fractures is critical for understanding and prediction of the fate of solutes and other scalars. We use both analytical and numerical modeling, including direct numerical simulation and particle tracking random walk, to investigate the origin of non-Fickian transport through both homogeneous and heterogeneous fractures. For the simple homogenous fracture case, i.e., parallel plates, we theoretically derived a formula for dynamic longitudinal dispersion (D) within Poiseuille flow. Using the closed-form expression for the theoretical D, we quantified the time (T) and length (L) scales separating preasymptotic and asymptotic dispersive transport, with T and L proportional to aperture (b) of parallel plates to second and fourth orders, respectively. As for heterogeneous fractures, the fracture roughness and correlation length are closely associated with the T and L, and thus indicate the origin for non-Fickian transport. Modeling solute transport through 2D rough-walled fractures with continuous time random walk with truncated power shows that the degree of deviation from Fickian transport is proportional to fracture roughness. The estimated L for 2D rough-walled fractures is significantly longer than that derived from the formula within Poiseuille flow with equivalent b. Moreover, we artificially generated normally distributed 3D fractures with fixed correlation length but different fracture dimensions. Solute transport through 3D fractures was modeled with a particle tracking random walk algorithm. We found that transport transitions from non-Fickian to Fickian with increasing fracture dimensions, where the estimated L for the studied 3D fractures is related to the correlation length.

  3. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  4. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds

    OpenAIRE

    Okuda, Tetsuji; Baes, Aloysius U.; Nishijima, Wataru; Okada, Mitsumasa

    2001-01-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC into tap water formed insoluble matters. The formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each m...

  5. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    Science.gov (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  6. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  7. Beta-particle dosimetry of the trabecular skeleton using Monte Carlo transport within 3D digital images

    International Nuclear Information System (INIS)

    Jokisch, D.W.; Bouchet, L.G.; Patton, P.W.; Rajon, D.A.; Bolch, W.E.

    2001-01-01

    Presently, skeletal dosimetry models utilized in clinical medicine simulate electron path lengths through skeletal regions based upon distributions of linear chords measured across bone trabeculae and marrow cavities. In this work, a human thoracic vertebra has been imaged via nuclear magnetic resonance (NMR) spectroscopy yielding a three-dimensional voxelized representation of this skeletal site. The image was then coupled to the radiation transport code EGS4 allowing for 3D tracing of electron paths within its true 3D structure. The macroscopic boundaries of the trabecular regions, as well as the cortex of cortical bone surrounding the bone site, were explicitly considered in the voxelized transport model. For the case of a thoracic vertebra, energy escape to the cortical bone became significant at source energies exceeding ∼2 MeV. Chord-length distributions were acquired from the same NMR image, and subsequently used as input for a chord-based dosimetry model. Differences were observed in the absorbed fractions given by the chord-based model and the voxel transport model, suggesting that some of the input chord distributions for the chord-based models may not be accurate. Finally, this work shows that skeletal mass estimates can be made from the same NMR image in which particle transport is performed. This feature allows one to determine a skeletal S-value using absorbed fraction and mass data taken from the same anatomical tissue sample. The techniques developed in this work may be applied to a variety of skeletal sites, thus allowing for the development of skeletal dosimetry models at all skeletal sites for both males and females and as a function of subject age

  8. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  9. Test of 1-D transport models, and their predictions for ITER

    International Nuclear Information System (INIS)

    Mikkelsen, D.; Bateman, G.; Boucher, D.

    2001-01-01

    A number of proposed tokamak thermal transport models are tested by comparing their predictions with measurements from several tokamaks. The necessary data have been provided for a total of 75 discharges from C-mod, DIII-D, JET, JT-60U, T10, and TFTR. A standard prediction methodology has been developed, and three codes have been benchmarked; these 'standard' codes have been relied on for testing most of the transport models. While a wide range of physical transport processes has been tested, no single model has emerged as clearly superior to all competitors for simulating H-mode discharges. In order to winnow the field, further tests of the effect of sheared flows and of the 'stiffness' of transport are planned. Several of the models have been used to predict ITER performance, with widely varying results. With some transport models ITER's predicted fusion power depends strongly on the 'pedestal' temperature, but ∼ 1GW (Q=10) is predicted for most models if the pedestal temperature is at least 4 keV. (author)

  10. Tests of 1-D transport models, and their predictions for ITER

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Bateman, G.; Boucher, D.

    1999-01-01

    A number of proposed tokamak thermal transport models are tested by comparing their predictions with measurements from several tokamaks. The necessary data have been provided for a total of 75 discharges from C-mod, DIII-D, JET, JT-60U, T10, and TFTR. A standard prediction methodology has been developed, and three codes have been benchmarked; these 'standard' codes have been relied on for testing most of the transport models. While a wide range of physical transport processes has been tested, no single model has emerged as clearly superior to all competitors for simulating H-mode discharges. In order to winnow the field, further tests of the effect of sheared flows and of the 'stiffness' of transport are planned. Several of the models have been used to predict ITER performance, with widely varying results. With some transport models ITER's predicted fusion power depends strongly on the 'pedestal' temperature, but ∼ 1GW (Q=10) is predicted for most models if the pedestal temperature is at least 4 keV. (author)

  11. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NARCIS (Netherlands)

    Griffioen, J.|info:eu-repo/dai/nl/091129265; van der Grift, B.|info:eu-repo/dai/nl/373433484; Maas, D.; van den Brink, C.|info:eu-repo/dai/nl/187443416; Zaadnoordijk, J. W.

    2003-01-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated

  12. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  13. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  14. Exact Solutions in 3D New Massive Gravity

    Science.gov (United States)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  15. Nd isotopic structure of the Pacific Ocean 70-30 Ma and numerical evidence for vigorous ocean circulation and ocean heat transport in a greenhouse world

    Science.gov (United States)

    Thomas, Deborah J.; Korty, Robert; Huber, Matthew; Schubert, Jessica A.; Haines, Brian

    2014-05-01

    The oceanic meridional overturning circulation (MOC) is a crucial component of the climate system, impacting heat and nutrient transport, and global carbon cycling. Past greenhouse climate intervals present a paradox because their weak equator-to-pole temperature gradients imply a weaker MOC, yet increased poleward oceanic heat transport appears to be required to maintain these weak gradients. To investigate the mode of MOC that operated during the early Cenozoic, we compare new Nd isotope data with Nd tracer-enabled numerical ocean circulation and coupled climate model simulations. Assimilation of new Nd isotope data from South Pacific Deep Sea Drilling Project and Ocean Drilling Program Sites 323, 463, 596, 865, and 869 with previously published data confirm the hypothesized MOC characterized by vigorous sinking in the South and North Pacific 70 to 30 Ma. Compilation of all Pacific Nd isotope data indicates vigorous, distinct, and separate overturning circulations in each basin until 40 Ma. Simulations consistently reproduce South Pacific and North Pacific deep convection over a broad range of conditions, but cases using strong deep ocean vertical mixing produced the best data-model match. Strong mixing, potentially resulting from enhanced abyssal tidal dissipation, greater interaction of wind-driven internal wave activity with submarine plateaus, or higher than modern values of the geothermal heat flux enable models to achieve enhanced MOC circulation rates with resulting Nd isotope distributions consistent with the proxy data. The consequent poleward heat transport may resolve the paradox of warmer worlds with reduced temperature gradients.

  16. Variable Step Integration Coupled with the Method of Characteristics Solution for Water-Hammer Analysis, A Case Study

    Science.gov (United States)

    Turpin, Jason B.

    2004-01-01

    One-dimensional water-hammer modeling involves the solution of two coupled non-linear hyperbolic partial differential equations (PDEs). These equations result from applying the principles of conservation of mass and momentum to flow through a pipe, and usually the assumption that the speed at which pressure waves propagate through the pipe is constant. In order to solve these equations for the interested quantities (i.e. pressures and flow rates), they must first be converted to a system of ordinary differential equations (ODEs) by either approximating the spatial derivative terms with numerical techniques or using the Method of Characteristics (MOC). The MOC approach is ideal in that no numerical approximation errors are introduced in converting the original system of PDEs into an equivalent system of ODEs. Unfortunately this resulting system of ODEs is bound by a time step constraint so that when integrating the equations the solution can only be obtained at fixed time intervals. If the fluid system to be modeled also contains dynamic components (i.e. components that are best modeled by a system of ODEs), it may be necessary to take extremely small time steps during certain points of the model simulation in order to achieve stability and/or accuracy in the solution. Coupled together, the fixed time step constraint invoked by the MOC, and the occasional need for extremely small time steps in order to obtain stability and/or accuracy, can greatly increase simulation run times. As one solution to this problem, a method for combining variable step integration (VSI) algorithms with the MOC was developed for modeling water-hammer in systems with highly dynamic components. A case study is presented in which reverse flow through a dual-flapper check valve introduces a water-hammer event. The predicted pressure responses upstream of the check-valve are compared with test data.

  17. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient; Migration de particules et de solutes en milieu poreux. Modelisation du transport simultane de particules argileuses et de radionucleides sous l`effet d`un gradient de salinite

    Energy Technology Data Exchange (ETDEWEB)

    Faure, M H

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs.

  18. Colloid transport in porous media: impact of hyper-saline solutions.

    Science.gov (United States)

    Magal, Einat; Weisbrod, Noam; Yechieli, Yoseph; Walker, Sharon L; Yakirevich, Alexander

    2011-05-01

    The transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to that of Dead Sea brines (10(0.9) M) was explored. Migration of microspheres through saturated sand columns of different sizes was studied in laboratory experiments and simulated with mathematical models. Colloid transport was found to be related to the solution salinity as expected. The relative concentration of colloids at the columns outlet decreased (after 2-3 pore volumes) as the solution ionic strength increased until a critical value was reached (ionic strength > 10(-1.8) M) and then remained constant above this level of salinity. The colloids were found to be mobile even in the extremely saline brines of the Dead Sea. At such high ionic strength no energetic barrier to colloid attachment was presumed to exist and colloid deposition was expected to be a favorable process. However, even at these salinity levels, colloid attachment was not complete and the transport of ∼ 30% of the colloids through the 30-cm long columns was detected. To further explore the deposition of colloids on sand surfaces in Dead Sea brines, transport was studied using 7-cm long columns through which hundreds of pore volumes were introduced. The resulting breakthrough curves exhibited a bimodal shape whereby the relative concentration (C/C(0)) of colloids at the outlet rose to a value of 0.8, and it remained relatively constant (for the ∼ 18 pore volumes during which the colloid suspension was flushed through the column) and then the relative concentration increased to a value of one. The bimodal nature of the breakthrough suggests different rates of colloid attachment. Colloid transport processes were successfully modeled using the limited entrapment model, which assumes that the colloid attachment rate is dependent on the concentration of the attached colloids. Application of this model provided confirmation of the colloid aggregation and their accelerated attachment during

  19. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  20. Method of model reduction and multifidelity models for solute transport in random layered porous media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhijie; Tartakovsky, Alexandre M.

    2017-09-01

    This work presents a hierarchical model for solute transport in bounded layered porous media with random permeability. The model generalizes the Taylor-Aris dispersion theory to stochastic transport in random layered porous media with a known velocity covariance function. In the hierarchical model, we represent (random) concentration in terms of its cross-sectional average and a variation function. We derive a one-dimensional stochastic advection-dispersion-type equation for the average concentration and a stochastic Poisson equation for the variation function, as well as expressions for the effective velocity and dispersion coefficient. We observe that velocity fluctuations enhance dispersion in a non-monotonic fashion: the dispersion initially increases with correlation length λ, reaches a maximum, and decreases to zero at infinity. Maximum enhancement can be obtained at the correlation length about 0.25 the size of the porous media perpendicular to flow.

  1. 1.4D quasistatic profile model of transport in a field-reversed configuration (FRC)

    International Nuclear Information System (INIS)

    Steinhauer, L.C.

    1990-01-01

    Global confinement models are useful for determining how a given transport mechanism (dependent on local parameters) translates into global confinement times. Such models are also useful for inferring the overall magnitudes of transport rates, and limited information about their spatial profiles. They are especially important in a field reversed configuration (FRC) where the equilibrium and transport rates are so intimately coupled, and where the flux loss time is such an important factor. An earlier global FRC confinement model, sometimes called QUASI, was based on the assumption of a quasi-steady equilibrium. The equilibrium was assumed to have square-ends with some features of 2D equilibria: (1) equal pressure on inner and outer branches of the flux lines; and (2) average-beta relation. Models of this type have been called 1-1/4D transport models. The same general approach has now been applied in a straightforward way to an equilibrium with realistic axial structure. This might be called a 1.4D quasisteady transport model. The assumed axial structure can be that of an analytic equilibrium, or a more complicated computed equilibrium as desired. The example used here is an elongated Hill's vortex equilibrium. As will be shown later, the equilibrium is reflected by two integral quantities that appear in the quasistatic diffusion equation

  2. Comparison and analysis of 1D/2D/3D neutronics modeling for a fusion reactor

    International Nuclear Information System (INIS)

    Li, J.; Zeng, Q.; Chen, M.; Jiang, J.; Wu, Y.

    2007-01-01

    During the course of analyzing the characteristics for fusion reactors, the refined calculations are needed to confirm that the nuclear design requirements are met. Since the long computational time is consumed, the refined three-dimensional (3D) representation has been used primarily for establishing the baseline reference values, analyzing problems which cannot be reduced by symmetry considerations to lower dimensions, or where a high level of accuracy is desired locally. The two-dimensional (2D) or one-dimensional (1D) description leads itself readily to resolve many problems, such as the studies for the material fraction optimization, or for the blanket size optimization. The purpose of this paper is to find out the differences among different geometric descriptions, which can guide the way to approximate and simplify the computational model. The fusion power reactor named FDS-II was designed as an advanced fusion power reactor to demonstrate and validate the commercialization of fusion power by Institute of Plasma Physics, Chinese Academy of Science. In this contribution, the dual-cooled lithium lead (DLL) blanket of FDS-II was used as a reference for neutronics comparisons and analyses. The geometric descriptions include 1D concentric sphere model, 1D, 2D and 3D cylinder models. The home-developed multi-functional neutronics analysis code system VisualBUS, the Monte Carlo transport code MCNP and nuclear data library HENDL have been used for these analyses. The neutron wall loading distribution, tritium breeding ratio (TBR) and nuclear heat were calculated to evaluate the nuclear performance. The 3D calculation has been used as a comparison reference because it has the least errors in the treatment of geometry. It is suggested that the value of TBR calculated by the 1D approach should be greater than 1.3 to satisfy the practical need of tritium self-sufficiency. The distribution of nuclear heat based on the 2D and 3D models were similar since they all consider

  3. PHARMACOKINETICS AND SCINTIGRAPHY OF INDIUM-111-DTPA-MOC-31 IN SMALL-CELL LUNG-CARCINOMA

    NARCIS (Netherlands)

    KOSTERINK, JGW; DEJONGE, MWA; SMIT, EF; PIERS, DA; KENGEN, RAM; POSTMUS, PE; SHOCHAT, D; GROEN, HJM; THE, HT; DELEIJ, L

    1995-01-01

    Radiolabeled MOC-31 retains its immunoreactivity and shows good in vivo immunolocalization to human SCLC xenografted in nude rats. Methods: We evaluated the immunotargeting properties and safety of In-111-labeled monoclonal antibody (MAb) MOC-31 (125 MBq, 5 mg) in six patients with histologically

  4. Equatorial spread F studies using SAMI3 with two-dimensional and three-dimensional electrostatics

    Directory of Open Access Journals (Sweden)

    H. C. Aveiro

    2013-12-01

    Full Text Available This letter presents a study of equatorial F region irregularities using the NRL SAMI3/ESF model, comparing results using a two-dimensional (2-D and a three-dimensional (3-D electrostatic potential solution. For the 3-D potential solution, two cases are considered for parallel plasma transport: (1 transport based on the parallel ambipolar field, and (2 transport based on the parallel electric field. The results show that the growth rate of the generalized Rayleigh–Taylor instability is not affected by the choice of the potential solution. However, differences are observed in the structures of the irregularities between the 2-D and 3-D solutions. Additionally, the plasma velocity along the geomagnetic field computed using the full 3-D solution shows complex structures that are not captured by the simplified model. This points out that only the full 3-D model is able to fully capture the complex physics of the equatorial F region.

  5. Use of GIS and 3D Modeling for Development and Conceptualization of a Performance Assessment Model for Decommissioning of a Complex Site

    International Nuclear Information System (INIS)

    Esh, D. W.; Gross, A. J.; Thaggard, M.

    2006-01-01

    Geographic Information Systems (GIS) and 3D geo-spatial modeling were employed to facilitate development and conceptualization of a performance assessment (PA) model that will be used to evaluate the health impacts of residual radioactivity at a former nuclear materials processing facility site in New York. Previous operations have resulted in a number of different sources of radiological contamination that must be assessed during site decommissioning. A performance assessment model is being developed to estimate radiological dose to potential receptors through the simulation of the release and transport of radionuclides, and exposure to residual contamination for hundreds to thousands of years in the future. A variety of inputs are required to parameterize the performance assessment model, such as: distance from the waste to surface water bodies, thickness of geologic units for saturated transport, saturated thickness of the geologic units, and spatial and temporal average of percent of waste that is saturated. GIS and 3D modeling are used to analyze and abstract aleatory uncertainty associated with the dimensionality of the geologic system into epistemic uncertainty for one- and two-dimensional process models for flow and transport of radionuclides. Three-dimensional geo-spatial modeling was used to develop the geologic framework and the geometrical representation of the residual contamination within the geologic framework. GIS was used in the initial development and parameterization of the transport pathways, to provide spatial context to the PA model, and to link it to the 3D geologic framework and contamination geometry models. Both the GIS and 3-D modeling were used to interpret the results of runs of the PA model. (authors)

  6. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  7. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  8. Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    KAUST Repository

    Davit, Y.; Wood, B. D.; Debenest, G.; Quintard, M.

    2012-01-01

    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time

  9. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  10. Structural properties of the linkers connecting the N- and C- terminal domains in the MocR bacterial transcriptional regulators

    Directory of Open Access Journals (Sweden)

    Teresa Milano

    2016-12-01

    Full Text Available Peptide inter-domain linkers are peptide segments covalently linking two adjacent domains within a protein. Linkers play a variety of structural and functional roles in naturally occurring proteins. In this work we analyze the sequence properties of the predicted linker regions of the bacterial transcriptional regulators belonging to the recently discovered MocR subfamily of the GntR regulators. Analyses were carried out on the MocR sequences taken from the phyla Actinobacteria, Firmicutes, Alpha-, Beta- and Gammaproteobacteria. The results suggest that MocR linkers display phylum-specific characteristics and unique features different from those already described for other classes of inter-domain linkers. They show an average length significantly higher: 31.8 ± 14.3 residues reaching a maximum of about 150 residues. Compositional propensities displayed general and phylum-specific trends. Pro is dominating in all linkers. Dyad propensity analysis indicate Pro–Pro as the most frequent amino acid pair in all linkers. Physicochemical properties of the linker regions were assessed using amino acid indices relative to different features: in general, MocR linkers are flexible, hydrophilic and display propensity for β-turn or coil conformations. Linker sequences are hypervariable: only similarities between MocR linkers from organisms related at the level of species or genus could be found with sequence searches. The results shed light on the properties of the linker regions of the new MocR subfamily of bacterial regulators and may provide knowledge-based rules for designing artificial linkers with desired properties.

  11. Multi-view and 3D deformable part models.

    Science.gov (United States)

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).

  12. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  13. Classifying supersymmetric solutions in 3D maximal supergravity

    Science.gov (United States)

    de Boer, Jan; Mayerson, Daniel R.; Shigemori, Masaki

    2014-12-01

    String theory contains various extended objects. Among those, objects of codimension two (such as the D7-brane) are particularly interesting. Codimension-two objects carry non-Abelian charges which are elements of a discrete U-duality group and they may not admit a simple spacetime description, in which case they are known as exotic branes. A complete classification of consistent codimension-two objects in string theory is missing, even if we demand that they preserve some supersymmetry. As a step toward such a classification, we study the supersymmetric solutions of 3D maximal supergravity, which can be regarded as an approximate description of the geometry near codimension-two objects. We present a complete classification of the types of supersymmetric solutions that exist in this theory. We found that this problem reduces to that of classifying nilpotent orbits associated with the U-duality group, for which various mathematical results are known. We show that the only allowed supersymmetric configurations are 1/2, 1/4, 1/8, and 1/16 BPS, and determine the nilpotent orbits that they correspond to. One example of 1/16 BPS configurations is a generalization of the MSW system, where momentum runs along the intersection of seven M5-branes. On the other hand, it turns out exceedingly difficult to translate this classification into a simple criterion for supersymmetry in terms of the non-Abelian (monodromy) charges of the objects. For example, it can happen that a supersymmetric solution exists locally but cannot be extended all the way to the location of the object. To illustrate the various issues that arise in constructing supersymmetric solutions, we present a number of explicit examples.

  14. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  15. Modeling the Quiet Time Outflow Solution in the Polar Cap

    Science.gov (United States)

    Glocer, Alex

    2011-01-01

    We use the Polar Wind Outflow Model (PWOM) to study the geomagnetically quiet conditions in the polar cap during solar maximum, The PWOM solves the gyrotropic transport equations for O(+), H(+), and He(+) along several magnetic field lines in the polar region in order to reconstruct the full 3D solution. We directly compare our simulation results to the data based empirical model of Kitamura et al. [2011] of electron density, which is based on 63 months of Akebono satellite observations. The modeled ion and electron temperatures are also compared with a statistical compilation of quiet time data obtained by the EISCAT Svalbard Radar (ESR) and Intercosmos Satellites (Kitamura et al. [2011]). The data and model agree reasonably well. This study shows that photoelectrons play an important role in explaining the differences between sunlit and dark results, ion composition, as well as ion and electron temperatures of the quiet time polar wind solution. Moreover, these results provide validation of the PWOM's ability to model the quiet time ((background" solution.

  16. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    Lin, J.

    2002-01-01

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  17. Solute transport modelling with the variable temporally dependent ...

    Indian Academy of Sciences (India)

    Pintu Das

    2018-02-07

    Feb 7, 2018 ... in a finite domain with time-dependent sources and dis- tance-dependent dispersivities. Also, existing ... solute transport in multi-layered porous media using gen- eralized integral transform technique with .... methods for solving the fractional reaction-–sub-diffusion equation. To solve numerically the Eqs.

  18. High performance 3D neutron transport on peta scale and hybrid architectures within APOLLO3 code

    International Nuclear Information System (INIS)

    Jamelot, E.; Dubois, J.; Lautard, J-J.; Calvin, C.; Baudron, A-M.

    2011-01-01

    APOLLO3 code is a common project of CEA, AREVA and EDF for the development of a new generation system for core physics analysis. We present here the parallelization of two deterministic transport solvers of APOLLO3: MINOS, a simplified 3D transport solver on structured Cartesian and hexagonal grids, and MINARET, a transport solver based on triangular meshes on 2D and prismatic ones in 3D. We used two different techniques to accelerate MINOS: a domain decomposition method, combined with an accelerated algorithm using GPU. The domain decomposition is based on the Schwarz iterative algorithm, with Robin boundary conditions to exchange information. The Robin parameters influence the convergence and we detail how we optimized the choice of these parameters. MINARET parallelization is based on angular directions calculation using explicit message passing. Fine grain parallelization is also available for each angular direction using shared memory multithreaded acceleration. Many performance results are presented on massively parallel architectures using more than 103 cores and on hybrid architectures using some tens of GPUs. This work contributes to the HPC development in reactor physics at the CEA Nuclear Energy Division. (author)

  19. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    International Nuclear Information System (INIS)

    Elert, M.

    1999-05-01

    The 'Aespoe task force on modelling of groundwater flow and transport of solutes' is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  20. Evaluation of modelling of the TRUE-1 radially converging and dipole tests with conservative tracers. The Aespoe task force on modelling of groundwater flow and transport of solutes. Tasks 4C and 4D

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1999-05-01

    The `Aespoe task force on modelling of groundwater flow and transport of solutes` is a forum for the international organisations supporting the Aespoe HRL Project. The purpose of the Task Force is to interact in the area of conceptual and numerical modelling of groundwater flow and solute transport in fractured rock. Task 4 of the Aespoe Modelling Task Force consists of modelling exercises in support of the TRUE-1 tracer tests. In this report, the modelling work performed within Tasks 4C and 4D is evaluated, which comprised predictive modelling of the radially converging tracer tests and dipole tracer tests performed within the TRUE-1 tests using non-sorbing tracers. The tests were performed between packed off boreholes penetrating a water-conducting geological feature with a simple structure (Feature A). These tests are to a great extent preparatory steps for the subsequent tests with sorbing radioactive tracers. In Tasks 4E and 4F of the Aespoe Modelling Task Force predictive modelling of the sorbing tracer tests is performed. Eight modelling teams representing seven organisations have performed predictive modelling using different modelling approaches and models. The modelling groups were initially given data from the site characterisation and data on the experimental set-up of the tracer tests. Based on this information model predictions were performed of drawdown, tracer mass recovery and tracer breakthrough. The performed predictions shows that the concept of Feature A as a singular well-connected feature with limited connectivity to its surroundings is quite adequate for predictions of drawdown in boreholes and conservative tracer breakthrough. Reasonable estimates were obtained using relatively simple models. However, more elaborate models with calibration or conditioning of transmissivities and transport apertures are required for more accurate predictions. The general flow and transport processes are well understood, but the methodology to derive the

  1. PATTERNS UTILIZED IN THE SIMULATION OF UNDERGROUND WATER FLOW AND THE TRANSPORTATION OF POLLUTANTS IN THE BAHLUI DRAINAGE BASIN

    Directory of Open Access Journals (Sweden)

    Ionut Minea

    2012-03-01

    Full Text Available ABSTRACT. – Patterns utilized in the simulation of underground water flow and the transportation of pollutants in the Bahlui drainage basin. In the actual context of accelerate economic development, the excessive exploatation of water resources from the underground and the contamination of these with different water pollutants has become a major problem which has enetered the attention of many researchers. For the evaluation of an underground water flow and pollutants transport sistem we have chosen the package of programs MODFLOW which includes a whole series of applications,such as MOC3D, MT3D, MT3DMS, PEST, UCODE, PMPATH, which allow simulations and multiple recalibrations of the capacity of recharging of the aquifers, the flowing of the water towards wells and drillings the transport of a pollutant agent in the underground or the evaluation of the exchange of water between the hidrographic network and aquifers. The sistem targets both the evaluation of the modelation of the underground flowing and the simulation of a punctual polluation of the canvas of groundwater scenery, in the meadow of the river Bahlui, west from Letcani village.

  2. Effects of turbulent hyporheic mixing on reach-scale solute transport

    Science.gov (United States)

    Roche, K. R.; Li, A.; Packman, A. I.

    2017-12-01

    Turbulence rapidly mixes solutes and fine particles into coarse-grained streambeds. Both hyporheic exchange rates and spatial variability of hyporheic mixing are known to be controlled by turbulence, but it is unclear how turbulent mixing influences mass transport at the scale of stream reaches. We used a process-based particle-tracking model to simulate local- and reach-scale solute transport for a coarse-bed stream. Two vertical mixing profiles, one with a smooth transition from in-stream to hyporheic transport conditions and a second with enhanced turbulent transport at the sediment-water interface, were fit to steady-state subsurface concentration profiles observed in laboratory experiments. The mixing profile with enhanced interfacial transport better matched the observed concentration profiles and overall mass retention in the streambed. The best-fit mixing profiles were then used to simulate upscaled solute transport in a stream. Enhanced mixing coupled in-stream and hyporheic solute transport, causing solutes exchanged into the shallow subsurface to have travel times similar to the water column. This extended the exponential region of the in-stream solute breakthrough curve, and delayed the onset of the heavy power-law tailing induced by deeper and slower hyporheic porewater velocities. Slopes of observed power-law tails were greater than those predicted from stochastic transport theory, and also changed in time. In addition, rapid hyporheic transport velocities truncated the hyporheic residence time distribution by causing mass to exit the stream reach via subsurface advection, yielding strong exponential tempering in the in-stream breakthrough curves at the timescale of advective hyporheic transport through the reach. These results show that strong turbulent mixing across the sediment-water interface violates the conventional separation of surface and subsurface flows used in current models for solute transport in rivers. Instead, the full distribution of

  3. MaSTiS, microorganism and solute transport in streams, model documentation and user manual

    Science.gov (United States)

    In-stream fate and transport of solutes and microorganisms need to be understood to evaluate suitability of waters for agricultural, recreational, and household uses and eventually minimize surface water contamination. Concerns over safety of this water resulted in development of predictive models f...

  4. 3D modeling based on CityEngine

    Science.gov (United States)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  5. Radiological characterisation by means of 3D-laser modelling and positioning of measurements

    International Nuclear Information System (INIS)

    Hedvall, Robert; Johansson, Patrik; Erixon, Peter; Ekenborg, Fredrik; Quanhong, Feng

    2012-01-01

    AB SVAFO is a nuclear waste technology and decommissioning company based in Sweden in the scenic surroundings of Studsvik on the Baltic coast. SVAFO is owned by the Swedish nuclear power industry. MultiInfo 3D Laser Scan Solution AB is a technical consult company focusing on the development and solution of 3D laser scanning techniques and its applications in different fields. For better viewing we are using a 3D-laser modelling of a building, national coordinates and using radiological measurements from a database. It is then possible to visualize the contamination situation in the whole building using a CAD-program. The results will be used for the upcoming R2-reactor decommissioning and for visualisation of dose rates and contamination levels in other nuclear buildings. For better documentation of radioactivity distribution of a decommissioned facility any object in a building can be accurately measured in 3D and visualized in 3D-laser image in a CAD program (e.g. AutoCAD), and then link to a database (e.g. SVALA), which have stored the measurements of radioactivity by other tools (e.g. RFID-tags). The position of any measured object can also be identified in 3D model and laser image, so the situation of contamination levels and distribution can be monitored and visualized in 3D. The results will be used for visualisation of dose rates and contamination levels in other nuclear buildings. AB SVAFO's main business is to take care of formerly state-owned spent nuclear waste at the site, including small amounts of nuclear fuel. Buildings are also included, mainly nuclear waste storage buildings and a research reactor. Some buildings have already been decommissioned with results of contamination shown in long and not very clear tables. With 3D-modelling the results are shown more clear. (authors)

  6. The joint implementation mechanisms (MOC)

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of the joint implementation mechanisms (MOC) is aims to favor the fight against the climatic change, by the implementing of activities, technologies and appropriate techniques emitting less greenhouse gases in south countries and by the possibility of reducing the greenhouse gases emissions for a more economical cost. This guide brings a practical assistance to the projects set-up: the possible concerned projects, the formalization of the project, the methodology, the involvement of the carbon credits in the project financing. (A.L.B.)

  7. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  8. Numerical modeling of solute transport in deformable unsaturated layered soil

    Directory of Open Access Journals (Sweden)

    Sheng Wu

    2017-07-01

    Full Text Available The effect of soil stratification was studied through numerical investigation based on the coupled model of solute transport in deformable unsaturated soil. The theoretical model implied two-way coupled excess pore pressure and soil deformation based on Biot's consolidation theory as well as a one-way coupled volatile pollutant concentration field developed from the advection-diffusion theory. Embedded in the model, the degree of saturation, fluid compressibility, self-weight of the soil matrix, porosity variance, longitudinal dispersion, and linear sorption were computed. Based on simulation results of a proposed three-layer landfill model using the finite element method, the multi-layer effects are discussed with regard to the hydraulic conductivity, shear modulus, degree of saturation, molecular diffusion coefficient, and thickness of each layer. Generally speaking, contaminants spread faster in a stratified field with a soft and highly permeable top layer; soil parameters of the top layer are more critical than the lower layers but controlling soil thicknesses will alter the results. This numerical investigation showed noticeable impacts of stratified soil properties on solute migration results, demonstrating the importance of correctly modeling layered soil instead of simply assuming the averaged properties across the soil profile.

  9. An efficient flexible-order model for 3D nonlinear water waves

    Science.gov (United States)

    Engsig-Karup, A. P.; Bingham, H. B.; Lindberg, O.

    2009-04-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature.

  10. An efficient flexible-order model for 3D nonlinear water waves

    International Nuclear Information System (INIS)

    Engsig-Karup, A.P.; Bingham, H.B.; Lindberg, O.

    2009-01-01

    The flexible-order, finite difference based fully nonlinear potential flow model described in [H.B. Bingham, H. Zhang, On the accuracy of finite difference solutions for nonlinear water waves, J. Eng. Math. 58 (2007) 211-228] is extended to three dimensions (3D). In order to obtain an optimal scaling of the solution effort multigrid is employed to precondition a GMRES iterative solution of the discretized Laplace problem. A robust multigrid method based on Gauss-Seidel smoothing is found to require special treatment of the boundary conditions along solid boundaries, and in particular on the sea bottom. A new discretization scheme using one layer of grid points outside the fluid domain is presented and shown to provide convergent solutions over the full physical and discrete parameter space of interest. Linear analysis of the fundamental properties of the scheme with respect to accuracy, robustness and energy conservation are presented together with demonstrations of grid independent iteration count and optimal scaling of the solution effort. Calculations are made for 3D nonlinear wave problems for steep nonlinear waves and a shoaling problem which show good agreement with experimental measurements and other calculations from the literature

  11. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  12. Application of multiphysics models to efficient design of experiments of solute transport across articular cartilage.

    Science.gov (United States)

    Pouran, Behdad; Arbabi, Vahid; Weinans, Harrie; Zadpoor, Amir A

    2016-11-01

    Transport of solutes helps to regulate normal physiology and proper function of cartilage in diarthrodial joints. Multiple studies have shown the effects of characteristic parameters such as concentration of proteoglycans and collagens and the orientation of collagen fibrils on the diffusion process. However, not much quantitative information and accurate models are available to help understand how the characteristics of the fluid surrounding articular cartilage influence the diffusion process. In this study, we used a combination of micro-computed tomography experiments and biphasic-solute finite element models to study the effects of three parameters of the overlying bath on the diffusion of neutral solutes across cartilage zones. Those parameters include bath size, degree of stirring of the bath, and the size and concentration of the stagnant layer that forms at the interface of cartilage and bath. Parametric studies determined the minimum of the finite bath size for which the diffusion behavior reduces to that of an infinite bath. Stirring of the bath proved to remarkably influence neutral solute transport across cartilage zones. The well-stirred condition was achieved only when the ratio of the diffusivity of bath to that of cartilage was greater than ≈1000. While the thickness of the stagnant layer at the cartilage-bath interface did not significantly influence the diffusion behavior, increase in its concentration substantially elevated solute concentration in cartilage. Sufficient stirring attenuated the effects of the stagnant layer. Our findings could be used for efficient design of experimental protocols aimed at understanding the transport of molecules across articular cartilage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Anti-3D Weapon Model Detection for Safe 3D Printing Based on Convolutional Neural Networks and D2 Shape Distribution

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-03-01

    Full Text Available With the development of 3D printing, weapons are easily printed without any restriction from the production managers. Therefore, anti-3D weapon model detection is necessary issue in safe 3D printing to prevent the printing of 3D weapon models. In this paper, we would like to propose an anti-3D weapon model detection algorithm to prevent the printing of anti-3D weapon models for safe 3D printing based on the D2 shape distribution and an improved convolutional neural networks (CNNs. The purpose of the proposed algorithm is to detect anti-3D weapon models when they are used in 3D printing. The D2 shape distribution is computed from random points on the surface of a 3D weapon model and their geometric features in order to construct a D2 vector. The D2 vector is then trained by improved CNNs. The CNNs are used to detect anti-3D weapon models for safe 3D printing by training D2 vectors which have been constructed from the D2 shape distribution of 3D weapon models. Experiments with 3D weapon models proved that the D2 shape distribution of 3D weapon models in the same class is the same. Training and testing results also verified that the accuracy of the proposed algorithm is higher than the conventional works. The proposed algorithm is applied in a small application, and it could detect anti-3D weapon models for safe 3D printing.

  14. Simulation of unsaturated flow and solute transport at the Las Cruces trench site using the PORFLO-3 computer code

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Wurstner, S.K.

    1991-03-01

    The objective of this work was to test the ability of the PORFLO-3 computer code to simulate water infiltration and solute transport in dry soils. Data from a field-scale unsaturated zone flow and transport experiment, conducted near Las Cruces, New Mexico, were used for model validation. A spatial moment analysis was used to provide a quantitative basis for comparing the mean simulated and observed flow behavior. The scope of this work was limited to two-dimensional simulations of the second experiment at the Las Cruces trench site. Three simulation cases are presented. The first case represents a uniform soil profile, with homogeneous, isotropic hydraulic and transport properties. The second and third cases represent single stochastic realizations of randomly heterogeneous hydraulic conductivity fields, generated from the cumulative probability distribution of the measured data. Two-dimensional simulations produced water content changes that matched the observed data reasonably well. Models that explicitly incorporated heterogeneous hydraulic conductivity fields reproduced the characteristics of the observed data somewhat better than a uniform, homogeneous model. Improved predictions of water content changes at specific spatial locations were obtained by adjusting the soil hydraulic properties. The results of this study should only be considered a qualitative validation of the PORFLO-3 code. However, the results of this study demonstrate the importance of site-specific data for model calibration. Applications of the code for waste management and remediation activities will require site-specific data for model calibration before defensible predictions of unsaturated flow and containment transport can be made. 23 refs., 16 figs., 3 tabs

  15. 3D for Geosciences: Interactive Tangibles and Virtual Models

    Science.gov (United States)

    Pippin, J. E.; Matheney, M.; Kitsch, N.; Rosado, G.; Thompson, Z.; Pierce, S. A.

    2016-12-01

    Point cloud processing provides a method of studying and modelling geologic features relevant to geoscience systems and processes. Here, software including Skanect, MeshLab, Blender, PDAL, and PCL are used in conjunction with 3D scanning hardware, including a Structure scanner and a Kinect camera, to create and analyze point cloud images of small scale topography, karst features, tunnels, and structures at high resolution. This project successfully scanned internal karst features ranging from small stalactites to large rooms, as well as an external waterfall feature. For comparison purposes, multiple scans of the same object were merged into single object files both automatically, using commercial software, and manually using open source libraries and code. Files with format .ply were manually converted into numeric data sets to be analyzed for similar regions between files in order to match them together. We can assume a numeric process would be more powerful and efficient than the manual method, however it could lack other useful features that GUI's may have. The digital models have applications in mining as efficient means of replacing topography functions such as measuring distances and areas. Additionally, it is possible to make simulation models such as drilling templates and calculations related to 3D spaces. Advantages of using methods described here for these procedures include the relatively quick time to obtain data and the easy transport of the equipment. With regard to openpit mining, obtaining 3D images of large surfaces and with precision would be a high value tool by georeferencing scan data to interactive maps. The digital 3D images obtained from scans may be saved as printable files to create physical 3D-printable models to create tangible objects based on scientific information, as well as digital "worlds" able to be navigated virtually. The data, models, and algorithms explored here can be used to convey complex scientific ideas to a range of

  16. Applications of stochastic models to solute transport in fractured rocks

    International Nuclear Information System (INIS)

    Gelhar, L.W.

    1987-01-01

    A stochastic theory for flow and solute transport in a single variable aperture fracture bounded by sorbing porous matrix into which solutes may diffuse, is developed using a perturbation approximation and spectral solution techniques which assume local statistical homogeneity. The theory predicts that the effective aperture of the fracture for mean solute displacement will be larger than the aperture required to calculate the large-scale flow resistance of the fracture. This ratio of apertures is a function of the variance of the logarithm of the apertures. The theory also predicts the macrodispersion coefficient for large-scale transport in the fracture. The resulting macrodispersivity is proportional to the variance of the logaperture and to its correlation scale. When variable surface sorption is included, it is found that the macrodispersivity is increased significantly, in some cases more than an order of magnitude. It is also shown that the effective retardation coefficient for the sorptively heterogeneous fracture is found by simply taking the arithmetic mean of the local surface sorption coefficient. Matrix diffusion is also shown to increase the fracture macrodispesivity at very large times. A reexamination of the results of four different field tracer tests in crystalline rock in Sweden and Canada shows aperture ratios and dispersivities that are consistent with the stochastic theory. The variance of the natural logarithm of the aperture is found to be in the range of 3 to 6 and the correlation scales for logaperture ranges from .2 to 1.2 meters. Detailed recommendations for additional field investigations at scales ranging from a few meters up to a kilometer are presented. (orig.)

  17. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    Science.gov (United States)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  18. dispersion equation parameters of solute transport in agricultural

    African Journals Online (AJOL)

    Jane

    2011-08-31

    Aug 31, 2011 ... fields for predicting soil quality property. Key words: ... The classical approach of modeling solute transport in porous media uses the deterministic ... concentration of the solution in the liquid phase, u0 is the mean velocity and ...

  19. Generalizing Source Geometry of Site Contamination by Simulating and Analyzing Analytical Solution of Three-Dimensional Solute Transport Model

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2014-01-01

    Full Text Available Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.

  20. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Guan, C. [Institute of Hydrology and Water Resources Engineering, Zhejiang University, Hangzhou 310058 (China); Xie, H.J., E-mail: xiehaijian@zju.edu.cn [Institute of Hydrology and Water Resources Engineering, Zhejiang University, Hangzhou 310058 (China); MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wang, Y.Z.; Chen, Y.M.; Jiang, Y.S.; Tang, X.W. [MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058 (China)

    2014-01-01

    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems. - Highlights: •Degradation of contaminants was considered in modeling solute transport in GCL/SL. •Analytical solutions were derived for assessment of GCL/SL with degradation. •Degradation in GCL can be ignored as half-life is larger than 1 year. •Base concentration is more sensitive to half-life of SL than to permeability of SL.

  1. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation

    International Nuclear Information System (INIS)

    Guan, C.; Xie, H.J.; Wang, Y.Z.; Chen, Y.M.; Jiang, Y.S.; Tang, X.W.

    2014-01-01

    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems. - Highlights: •Degradation of contaminants was considered in modeling solute transport in GCL/SL. •Analytical solutions were derived for assessment of GCL/SL with degradation. •Degradation in GCL can be ignored as half-life is larger than 1 year. •Base concentration is more sensitive to half-life of SL than to permeability of SL

  2. Measuring and modeling of a three-dimensional tracer transport in a planted soil column

    Science.gov (United States)

    Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.

    2013-12-01

    Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for

  3. BOT3P: a mesh generation software package for the transport analysis codes Dort, Tort, Twodant, Threedant and MCNP

    International Nuclear Information System (INIS)

    Orsi, R.

    2003-01-01

    Bot3p consists of a set of standard Fortran 77 language programs that gives the users of the deterministic transport codes Dort and Tort some useful diagnostic tools to prepare and check the geometry of their input data files for both Cartesian and cylindrical geometries including graphical display modules. Bot3p produces at the same time the geometrical and material distribution data for the deterministic transport codes Twodant and Threedant and, only in three-dimensional (3D) Cartesian geometry, for the Monte Carlo Transport Code MCNP. This makes it possible to compare directly for the same geometry the effects stemming from the use of different data libraries and solution approaches on transport analysis results. Through the use of Bot3p, radiation transport problems with complex 3D geometrical structures can be modelled easily, as a relatively small amount of engineer-time is required and refinement is achieved by changing few parameters. This tool is useful for solving very large challenging problems. (author)

  4. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  5. Coupling of neutron transport equations. First results; Couplage d`equations en transport neutronique. premiere approche 1D monocinetique

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G.

    1995-07-01

    To achieve whole core calculations of the neutron transport equation, we have to follow this 2 step method: space and energy homogenization of the assemblies; resolution of the homogenized equation on the whole core. However, this is no more valid when accidents occur (for instance depressurization causing locally strong heterogeneous media). One solution consists then in coupling two kinds of resolutions: a fine computation on the damaged cell (fine mesh, high number of energy groups) coupled with a coarse one everywhere else. We only deal here with steady state solutions (which already live in 6D spaces). We present here two such methods: The coupling by transmission of homogenized sections and the coupling by transmission of boundary conditions. To understand what this coupling is, we first restrict ourselves to 1D with respect to space in one energy group. The first two chapters deal with a recall of basic properties of the neutron transport equation. We give at chapter 3 some indications of the behaviour of the flux with respect to the cross sections. We present at chapter 4 some couplings and give some properties. Chapter 5 is devoted to a presentation of some numerical applications. (author). 9 refs., 7 figs.

  6. BOT3P5.2, 3D Mesh Generator and Graphical Display of Geometry for Radiation Transport Codes, Display of Results

    International Nuclear Information System (INIS)

    Orsi, Roberto; Bidaud, Adrien

    2007-01-01

    1 - Description of program or function: BOT3P was originally conceived as a set of standard FORTRAN 77 language programs in order to give the users of the DORT and TORT deterministic transport codes some useful diagnostic tools to prepare and check their input data files. Later versions extended the possibility to produce the geometrical, material distribution and fixed neutron source data to other deterministic transport codes such as TWODANT/THREEDANT of the DANTSYS system, PARTISN and, potentially, to any transport code through BOT3P binary output files that can be easily interfaced (see, for example, the Russian two-dimensional (2D) and three-dimensional (3D) discrete ordinates neutron, photon and charged particle transport codes KASKAD-S-2.5 and KATRIN-2.0). As from Version 5.1 BOT3P contained important additions specifically addressed to radiation transport analysis for medical applications. BOT3P-5.2 contains new graphics capabilities. Some of them enable users to select space sub-domains of the total mesh grid in order to improve the zoom simulation of the geometry, both in 2D cuts and in 3D. Moreover the new BOT3P module (PDTM) may improve the interface of BOT3P geometrical models to transport analysis codes. The following programs are included in the BOT3P software package: GGDM, DDM, GGTM, DTM2, DTM3, RVARSCL, COMPARE, MKSRC, CATSM, DTET, and PDTM. The main features of these different programs are described. 2 - Methods: GGDM and GGTM work similarly from the logical point of view. Since the 3D case is more general, the following description refers to GGTM. All the co-ordinate values that characterise the geometrical scheme at the basis of the 3D transport code geometrical and material model are read, sorted and all stored if different from the neighbouring ones more than an input tolerance established by the user. These co-ordinates are always present in the fine-mesh boundary arrays independently of the mesh grid refinement options, because they

  7. Finite-element discretization of 3D energy-transport equations for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gadau, Stephan

    2007-07-01

    demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used. (orig.)

  8. Fluid flow and convective transport of solutes within the intervertebral disc.

    Science.gov (United States)

    Ferguson, Stephen J; Ito, Keita; Nolte, Lutz P

    2004-02-01

    Previous experimental and analytical studies of solute transport in the intervertebral disc have demonstrated that for small molecules diffusive transport alone fulfils the nutritional needs of disc cells. It has been often suggested that fluid flow into and within the disc may enhance the transport of larger molecules. The goal of the study was to predict the influence of load-induced interstitial fluid flow on mass transport in the intervertebral disc. An iterative procedure was used to predict the convective transport of physiologically relevant molecules within the disc. An axisymmetric, poroelastic finite-element structural model of the disc was developed. The diurnal loading was divided into discrete time steps. At each time step, the fluid flow within the disc due to compression or swelling was calculated. A sequentially coupled diffusion/convection model was then employed to calculate solute transport, with a constant concentration of solute being provided at the vascularised endplates and outer annulus. Loading was simulated for a complete diurnal cycle, and the relative convective and diffusive transport was compared for solutes with molecular weights ranging from 400 Da to 40 kDa. Consistent with previous studies, fluid flow did not enhance the transport of low-weight solutes. During swelling, interstitial fluid flow increased the unidirectional penetration of large solutes by approximately 100%. Due to the bi-directional temporal nature of disc loading, however, the net effect of convective transport over a full diurnal cycle was more limited (30% increase). Further study is required to determine the significance of large solutes and the timing of their delivery for disc physiology.

  9. The PHREEQC modeling of CO{sub 2} transport in highly saline solutions of a final radioactive waste repository; PHREEQC. Modellierung des Transportes von CO{sub 2} in hochsalinaren Loesungen eines Endlagers

    Energy Technology Data Exchange (ETDEWEB)

    Weyand, Torben [Bonn Univ. (Germany); Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Bracke, Guido [Gesellschaft fuer Reaktorsicherheit mbH (GRS), Koeln (Germany); Reichert, Barbara [Bonn Univ. (Germany)

    2014-03-15

    The safe confinement of radioactive materials in the containment providing zone of the host rock (CPRZ) over a period of one million years is required for a final repository for highly radioactive heat-generating waste (BMU 2010). In order to assess the safe containment of radionuclides in the CPRZ a sound understanding of the ongoing processes in a repository is necessary. These processes include the transport and chemical interactions of the radionuclide {sup 14}C in the gas phase and in highly saline solutions in a final repository for radioactive waste. The geochemical code PHREEQC /PAR 13/ was used to study the chemical interactions of CO{sub 2} and {sup 14}C as {sup 14}CO{sub 2} during transport in the gas phase and highly saline solutions. The model and scenario was based on the concept for a repository in Gorleben /BOL 11/. A gas generation of CO{sub 2} containing {sup 14}C was assumed since the disposed containers with the radioactive waste corrode /LAR 13/. The advective transport is triggered by gas generation. The physical dissolution of CO{sub 2}, chemical equilibria with aquatic carbon-containing species (e. g. HCO{sub 3}{sup -}(aq), CO{sub 3}{sup 2-}(aq)) and solid phases (e. g. magnesite, MgCO{sub 3}) coupled with transport were modelled. Due to the addition of dissolved MgCl{sub 2} in the crushed salt backfill of the main drift the aquatic species MgCO{sub 3}(aq) and the mineral MgCO{sub 3}(s) is formed. The influence of CO{sub 2} partial pressure and the chemical interactions in the presence of dissolved Fe{sup 2+}, Ca{sup 2+}, Mg{sup 2+} and K{sup +} were studied. Due to the physical solution, the CO{sub 2} partial pressure has a major influence on the transport of {sup 14}C. In the presence of calcium CaCO{sub 3}(aq), the minerals calcite (CaCO{sub 3}(s)) and dolomite (MgCa(CO{sub 3}){sub 2}(s)) were formed in the highly saline solutions. No siderite (FeCO{sub 3}) in the presence of Fe{sup 2+} was formed. The transport of {sup 14}C was delayed

  10. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah

    2014-01-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... objects. In this research, the authors propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA...

  11. The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients.

    Science.gov (United States)

    Cho, Kyu-Hyang; Do, Jun-Young; Park, Jong-Won; Yoon, Kyung-Woo; Kim, Yong-Lim

    2013-01-01

    Several studies have reported benefits for human peritoneal mesothelial cell function of a neutral-pH dialysate low in glucose degradation products (GDPs). However, the effects of low-GDP solution on ultrafiltration (UF), transport of solutes, and control of body water remain elusive. We therefore investigated the effect of low-GDP solution on UF, solute transport, and control of body water. Among 79 new continuous ambulatory peritoneal dialysis (CAPD) patients, 60 completed a 12-month protocol (28 in a lactate-based high-GDP solution group, 32 in a lactate-based low-GDP solution group). Clinical indices--including 24-hour UF volume (UFV), 24-hour urine volume (UV), residual renal function, and dialysis adequacy--were measured at months 1, 6, and 12. At months 1, 6, and 12, UFV, glucose absorption, 4-hour dialysate-to-plasma (D/P) creatinine, and 1-hour D/P Na(+) were assessed during a modified 4.25% peritoneal equilibration test (PET). Body composition by bioelectric impedance analysis was measured at months 1 and 12 in 26 CAPD patients. Daily UFV was lower in the low-GDP group. Despite similar solute transport and aquaporin function, the low-GDP group also showed lower UFV and higher glucose absorption during the PET. Factors associated with UFV during the PET were lactate-based high-GDP solution and 1-hour D/P Na(+). No differences in volume status and obesity at month 12 were observed, and improvements in hypervolemia were equal in both groups. Compared with the high-GDP group, the low-GDP group had a lower UFV during a PET and a lower daily UFV during the first year after peritoneal dialysis initiation. Although the low-GDP group had a lower daily UFV, no difficulties in controlling edema were encountered.

  12. Tracking techniques for the characteristics method applied to the resolution of the neutrons transport equation in multi scale domains; Techniques de tracage pour la methode des caracteristiques appliquee a la resolution de l'equation du transport des neutrons en domaines multi-dimensionnels

    Energy Technology Data Exchange (ETDEWEB)

    Fevotte, F. [CEA Saclay, Dept. Modelisation de Systemes et Structures (DEN/DANS/DM2S/SERMA), 91 - Gif sur Yvette (France)

    2008-07-01

    At the various stages of a nuclear reactor's life, numerous studies are needed to guaranty the safety and efficiency of the design, analyse the fuel cycle, prepare the dismantlement, and so on. Due to the extreme difficulty to take extensive and accurate measurements in the reactor core, most of these studies are numerical simulations. The complete numerical simulation of a nuclear reactor involves many types of physics: neutronics, thermal hydraulics, materials, control engineering, Among these, the neutron transport simulation is one of the fundamental steps, since it allows computation - among other things - of various fundamental values such as the power density (used in thermal hydraulics computations) or fuel burn-up. The neutron transport simulation is based on the Boltzmann equation, which models the neutron population inside the reactor core. Among the various methods allowing its numerical solution, much interest has been devoted in the past few years to the Method of Characteristics in unstructured meshes (MOC), since it offers a good accuracy and operates in complicated geometries. The aim of this work is to propose improvements of the calculation scheme bound on the two dimensions MOC, in order to decrease the needed resources number. (A.L.B.)

  13. Automated reconstruction of 3D models from real environments

    Science.gov (United States)

    Sequeira, V.; Ng, K.; Wolfart, E.; Gonçalves, J. G. M.; Hogg, D.

    This paper describes an integrated approach to the construction of textured 3D scene models of building interiors from laser range data and visual images. This approach has been implemented in a collection of algorithms and sensors within a prototype device for 3D reconstruction, known as the EST (Environmental Sensor for Telepresence). The EST can take the form of a push trolley or of an autonomous mobile platform. The Autonomous EST (AEST) has been designed to provide an integrated solution for automating the creation of complete models. Embedded software performs several functions, including triangulation of the range data, registration of video texture, registration and integration of data acquired from different capture points. Potential applications include facilities management for the construction industry and creating reality models to be used in general areas of virtual reality, for example, virtual studios, virtualised reality for content-related applications (e.g., CD-ROMs), social telepresence, architecture and others. The paper presents the main components of the EST/AEST, and presents some example results obtained from the prototypes. The reconstructed model is encoded in VRML format so that it is possible to access and view the model via the World Wide Web.

  14. Solution of the neutron transport equation by the collision probability for 3D geometries; Resolution de l`equation du transport pour les neutrons par la methode des probabilites de collision dans le geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B.

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in the interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent and inter-assembly (UO{sub 2}-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author). 30 refs.

  15. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  16. Development of new multigrid schemes for the method of characteristics in neutron transport theory

    International Nuclear Information System (INIS)

    Grassi, G.

    2006-01-01

    This dissertation is based upon our doctoral research that dealt with the conception and development of new non-linear multigrid techniques for the Method of the Characteristics (MOC) within the TDT code. Here we focus upon a two-level scheme consisting of a fine level on which the neutron transport equation is iteratively solved using the MOC algorithm, and a coarse level defined by a more coarsely discretized phase space on which a low-order problem is considered. The solution of this problem is then used in order to correct the angular flux moments resulting from the previous transport iteration. A flux-volume homogenization procedure is employed to evaluate the coarse-level material properties after each transport iteration. This entails the non-linearity of the methods. According to the Generalised Equivalence Theory (GET), additional degrees of freedom are introduced for the low-order problem so that the convergence of the acceleration scheme can be ensured. We present two classes of non-linear methods: transport-like methods and discussion-like methods. Transport-like methods consider a homogenized low-order transport problem on the coarse level. This problem is iteratively solved using the same MOC algorithm as for the transport problem on the fine level. Discontinuity factors are then employed, per region or per surface, in order to reconstruct the currents evaluated by the low-order operator, which ensure the convergence of the acceleration scheme. On the other hand, discussion-like methods consider a low-order problem inspired by diffusion. We studied the non-linear Coarse Mesh Finite Difference (CMFD) method, already present in literature, in the perspective of integrating it into TDT code. Then, we developed a new non-linear method on the model of CMFD. From the latter, we borrowed the idea to establish a simple relation between currents and fluxes in order to obtain a problem involving only coarse fluxes. Finally, those non-linear methods have been

  17. Tracking techniques for the characteristics method applied to the resolution of the neutrons transport equation in multi scale domains

    International Nuclear Information System (INIS)

    Fevotte, F.

    2008-01-01

    At the various stages of a nuclear reactor's life, numerous studies are needed to guaranty the safety and efficiency of the design, analyse the fuel cycle, prepare the dismantlement, and so on. Due to the extreme difficulty to take extensive and accurate measurements in the reactor core, most of these studies are numerical simulations. The complete numerical simulation of a nuclear reactor involves many types of physics: neutronics, thermal hydraulics, materials, control engineering, Among these, the neutron transport simulation is one of the fundamental steps, since it allows computation - among other things - of various fundamental values such as the power density (used in thermal hydraulics computations) or fuel burn-up. The neutron transport simulation is based on the Boltzmann equation, which models the neutron population inside the reactor core. Among the various methods allowing its numerical solution, much interest has been devoted in the past few years to the Method of Characteristics in unstructured meshes (MOC), since it offers a good accuracy and operates in complicated geometries. The aim of this work is to propose improvements of the calculation scheme bound on the two dimensions MOC, in order to decrease the needed resources number. (A.L.B.)

  18. a Proposal for Generalization of 3d Models

    Science.gov (United States)

    Uyar, A.; Ulugtekin, N. N.

    2017-11-01

    In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.

  19. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    Science.gov (United States)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  20. The 3-dimensional core model DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Mittag, S.; Rohde, U.

    1999-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore, the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohydraulic part provide fuel temperatures, coolant temperatures and densities as well as boron concentrations for the calculation of feedback effects on the basis of cross section libraries generated by cell codes. Safety relevant parameters like maximum fuel and cladding temperatures, critical heat flux and degree of cladding oxidation are estimated. DYN3D can analyze RIA initiated by moved control rods and/or perturbations of the coolant flow. Stationary and transient boundary conditions for the coolant flow, the core inlet temperatures and boron concentrations at the core inlet have to be given. For analyzing more complex transients the code DYN3D is coupled with the plant model ATHLET of the GRS. The extensive validation work accomplished for DYN3D is presented in several examples. Some applications of the code are described. (orig.) [Deutsch] Die Verwendung 3-dimensionaler Kernmodelle zur Untersuchung der Sicherheitsreserven bei Uebergangsprozessen und Stoerfaellen in Kernreaktoren vermeidet konservative Annahmen, die bei der Benutzung des Punktmodells oder 1-dimensionaler Modelle erforderlich sind. Aus diesen Gruenden wurde das 3-dimensionale Rechenprogramm DYN3D fuer die Untersuchung von Reaktivitaetsstoerfaellen in thermischen Reaktoren entwickelt. Die Leistungsverteilung wird mit nodalen Methoden fuer hexagonale oder kartesische Geometrie berechnet. Das Brennstabmodell und der thermohydraulische Teil von DYN3D liefert die Brennstofftemperaturen, Kuehlmitteltemperaturen

  1. Mucarnas & Mocárabes. Análisis comparativo.

    OpenAIRE

    Barba Delgado, Manuel Esteban

    2017-01-01

    Análisis de los sistemas constructivos de las cúpulas de mocárabes en occidente y de mucarnas en oriente, con un recorrido histórico, hipótesis de generación y demostración de diferentes situaciones y procesos constructivos y sus razones.

  2. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    transport properties, and hence the guidelines in this report, involve two main categories of parameters: Parameters that characterise the retention properties of geologic materials. These parameters quantify the diffusion and sorption properties of intact and altered rock, fracture coatings and fracture-filling materials, and are described within the framework of the 3D geometric models devised by Geology. Parameters that characterise solute transport along flow paths (flow-related transport parameters). These parameters include the 'F-parameter' and 'water travel time', tw, and parameters that account for spatial variability in diffusion and sorption. The flow-related parameters are obtained by means of particle tracking simulations in groundwater flow models

  3. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  4. Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...

    African Journals Online (AJOL)

    The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...

  5. AxiSEM3D: broadband seismic wavefields in 3-D aspherical Earth models

    Science.gov (United States)

    Leng, K.; Nissen-Meyer, T.; Zad, K. H.; van Driel, M.; Al-Attar, D.

    2017-12-01

    Seismology is the primary tool for data-informed inference of Earth structure and dynamics. Simulating seismic wave propagation at a global scale is fundamental to seismology, but remains as one of most challenging problems in scientific computing, because of both the multiscale nature of Earth's interior and the observable frequency band of seismic data. We present a novel numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. Our method, named AxiSEM3D, is a hybrid of spectral element method and pseudospectral method. It reduces the azimuthal dimension of wavefields by means of a global Fourier series parameterization, of which the number of terms can be locally adapted to the inherent azimuthal smoothness of the wavefields. AxiSEM3D allows not only for material heterogeneities, such as velocity, density, anisotropy and attenuation, but also for finite undulations on radial discontinuities, both solid-solid and solid-fluid, and thereby a variety of aspherical Earth features such as ellipticity, topography, variable crustal thickness, and core-mantle boundary topography. Such interface undulations are equivalently interpreted as material perturbations of the contiguous media, based on the "particle relabelling transformation". Efficiency comparisons show that AxiSEM3D can be 1 to 3 orders of magnitude faster than conventional 3-D methods, with the speedup increasing with simulation frequency and decreasing with model complexity, but for all realistic structures the speedup remains at least one order of magnitude. The observable frequency range of global seismic data (up to 1 Hz) has been covered for wavefield modelling upon a 3-D Earth model with reasonable computing resources. We show an application of surface wave modelling within a state-of-the-art global crustal model (Crust1.0), with the synthetics compared to real data. The high-performance C++ code is released at github.com/AxiSEM3D/AxiSEM3D.

  6. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Sudha Priyanga, G. [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai 603203, Tamilnadu (India)

    2016-02-01

    The structural, electronic, mechanical and superconducting properties of chromium carbide (CrC) and molybdenum carbide (MoC) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties like equilibrium lattice constants and cell volume are in good agreement with available theoretical and experimental data. A pressure induced structural phase transition from tungsten carbide phase (WC) to zinc blende phase (ZB) and then zinc blende phase (ZB) to nickel arsenide phase (NiAs) are observed in both chromium and molybdenum carbides. Electronic structure reveals that these carbides are metallic at ambient condition. All the calculated elastic constants obey the Born–Huang stability criteria, suggesting that they are mechanically stable at normal and high pressure. The super conducting transition temperatures for CrC and MoC in WC phase are found to be 31.12 K and 17.14 K respectively at normal pressure. - Highlights: • Electronic and mechanical properties of CrC and MoC are investigated. • Pressure induced structural phase transition is predicted at high pressure. • Electronic structure reveals that these materials exhibit metallic behaviour. • Debye temperature values are computed for CrC and MoC. • Superconducting transition temperature values are computed.

  7. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  8. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    DEFF Research Database (Denmark)

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  9. Extensions of the 3-dimensional plasma transport code E3D

    International Nuclear Information System (INIS)

    Runov, A.; Schneider, R.; Kasilov, S.; Reiter, D.

    2004-01-01

    One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending beyond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration procedure has been developed for general magnetic configurations including ergodic regions. These local magnetic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations. Here, we discuss new computational aspects of the realization of the algorithm. The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually, the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be eliminated in two steps: first, the longitudinal coordinate x 3 of local magnetic coordinates is modified in such a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates). Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the efficiency of the code is about two orders of magnitude better. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  11. Efficient 3D scene modeling and mosaicing

    CERN Document Server

    Nicosevici, Tudor

    2013-01-01

    This book proposes a complete pipeline for monocular (single camera) based 3D mapping of terrestrial and underwater environments. The aim is to provide a solution to large-scale scene modeling that is both accurate and efficient. To this end, we have developed a novel Structure from Motion algorithm that increases mapping accuracy by registering camera views directly with the maps. The camera registration uses a dual approach that adapts to the type of environment being mapped.   In order to further increase the accuracy of the resulting maps, a new method is presented, allowing detection of images corresponding to the same scene region (crossovers). Crossovers then used in conjunction with global alignment methods in order to highly reduce estimation errors, especially when mapping large areas. Our method is based on Visual Bag of Words paradigm (BoW), offering a more efficient and simpler solution by eliminating the training stage, generally required by state of the art BoW algorithms.   Also, towards dev...

  12. LATIS3D The Gold Standard for Laser-Tissue-Interaction Modeling

    CERN Document Server

    London, R A; Gentile, N A; Kim, B M; Makarewicz, A M; Vincent, L; Yang, Y B

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  13. LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling

    International Nuclear Information System (INIS)

    London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications

  14. Evaluating 3-D and 1-D mathematical models for mass transport in heterogeneous biofilms

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Eberl, H.; van Loosdrecht, M. C. M.

    2000-01-01

    Results from a three dimensional model for heterogeneous biofilms including the numerical solution of hydrodynamics were compared to simplified one dimensional models. A one dimensional model with a variable diffusion coefficient over the thickness of the biofilm was well suited to approximate...... average concentration profiles of three dimensional simulations of rough biofilms. A new compartmentalized one dimensional model is presented that is then used to evaluate effects of pores and channels on microbial competition in heterogeneous biofilms. Surface and pore regions of the biofilm are modeled...... using separate compartments coupled by a convective link. Local concentration profiles from the three dimensional simulations could be adequately reproduced using the compartmentalized one dimensional model. The compartmentalized one dimensional model was then used to evaluate bacterial competition...

  15. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    Science.gov (United States)

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Mass transport in fracture media: impact of the random function model assumed for fractures conductivity

    International Nuclear Information System (INIS)

    Capilla, J. E.; Rodrigo, J.; Gomez Hernandez, J. J.

    2003-01-01

    Characterizing the uncertainty of flow and mass transport models requires the definition of stochastic models to describe hydrodynamic parameters. Porosity and hydraulic conductivity (K) are two of these parameters that exhibit a high degree of spatial variability. K is usually the parameter whose variability influence to a more extended degree solutes movement. In fracture media, it is critical to properly characterize K in the most altered zones where flow and solutes migration tends to be concentrated. However, K measurements use to be scarce and sparse. This fact calls to consider stochastic models that allow quantifying the uncertainty of flow and mass transport predictions. This paper presents a convective transport problem solved in a 3D block of fractured crystalline rock. the case study is defined based on data from a real geological formation. As the scarcity of K data in fractures does not allow supporting classical multi Gaussian assumptions for K in fractures, the non multi Gaussian hypothesis has been explored, comparing mass transport results for alternative Gaussian and non-Gaussian assumptions. The latter hypothesis allows reproducing high spatial connectivity for extreme values of K. This feature is present in nature, might lead to reproduce faster solute pathways, and therefore should be modeled in order to obtain reasonably safe prediction of contaminants migration in a geological formation. The results obtained for the two alternative hypotheses show a remarkable impact of the K random function model in solutes movement. (Author) 9 refs

  17. Three-dimensional two-phase mass transport model for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Yang, W.W.; Zhao, T.S.; Xu, C.

    2007-01-01

    A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance

  18. Landauer-Datta-Lundstrom Generalized Transport Model for Nano electronics

    International Nuclear Information System (INIS)

    Kruglyak, Y.

    2014-01-01

    The Landauer-Datta-Lundstrom electron transport model is briefly summarized. If a band structure is given, the number of conduction modes can be evaluated and if a model for a mean-free-path for backscattering can be established, then the near-equilibrium thermoelectric transport coefficients can be calculated using the final expressions listed below for 1D, 2D, and 3D resistors in ballistic, quasi ballistic, and diffusive linear response regimes when there are differences in both voltage and temperature across the device. The final expressions of thermoelectric transport coefficients through the Fermi-Dirac integrals are collected for 1D, 2D, and 3D semiconductors with parabolic band structure and for 2D graphene linear dispersion in ballistic and diffusive regimes with the power law scattering.

  19. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    A - Nature of problem or function: DOT solves the Boltzmann transport equation in two-dimensional geometries. Principal applications are to neutron and/or photon transport, although the code can be applied to transport problems for any particles not subject to external force fields. Both homogeneous and external-source problems can be solved. Searches on multiplication factor, time absorption, nuclide concentration, and zone thickness are available for reactor problems. Numerous edits and output data sets for subsequent use are available. DOT-3.5 improves the space-scaling algorithm. DOT-3.5/CAB contains group by group UPSCATTER scaling method. DUCT calculates perturbations to the scalar flux caused by the presence of ducts filled with coolant. VIP is a program for cross section sensitivity analysis using two- dimensional discrete ordinates transport calculations. DGRAD calculates the directional flux gradients from DOT-3 diffusion theory flux tapes. In conjunction with VIP and TPERT, it allows the use of diffusion theory fluxes to obtain exact and first-order perturbation reactivity changes. In order to calculate the reactivity associated with changes in reactor compositions using diffusion theory, it is necessary to fold not only the scalar fluxes with the appropriate cross sections, but also the average flux gradients with the diffusion coefficients. Since DOT diffusion theory does not directly calculate these gradients, it was necessary to calculate the needed quantities external to the DOT code. TPERT is a perturbation code to obtain exact and first-order reactivity changes. TPERT is coupled to VIP which generates adjoint forward flux tables using DOT-3 scalar flux tape information. GRTUNCL calculates an analytical first-collision source for subsequent use in DOT. B - Method of solution: The method of discrete ordinates is used. Balance equations are solved for the density of particles moving along discrete directions in each cell of a two-dimensional spatial

  20. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  1. ATP-binding Cassette (ABC) Transport System Solute-binding Protein-guided Identification of Novel d-Altritol and Galactitol Catabolic Pathways in Agrobacterium tumefaciens C58*

    Science.gov (United States)

    Wichelecki, Daniel J.; Vetting, Matthew W.; Chou, Liyushang; Al-Obaidi, Nawar; Bouvier, Jason T.; Almo, Steven C.; Gerlt, John A.

    2015-01-01

    Innovations in the discovery of the functions of uncharacterized proteins/enzymes have become increasingly important as advances in sequencing technology flood protein databases with an exponentially growing number of open reading frames. This study documents one such innovation developed by the Enzyme Function Initiative (EFI; U54GM093342), the use of solute-binding proteins for transport systems to identify novel metabolic pathways. In a previous study, this strategy was applied to the tripartite ATP-independent periplasmic transporters. Here, we apply this strategy to the ATP-binding cassette transporters and report the discovery of novel catabolic pathways for d-altritol and galactitol in Agrobacterium tumefaciens C58. These efforts resulted in the description of three novel enzymatic reactions as follows: 1) oxidation of d-altritol to d-tagatose via a dehydrogenase in Pfam family PF00107, a previously unknown reaction; 2) phosphorylation of d-tagatose to d-tagatose 6-phosphate via a kinase in Pfam family PF00294, a previously orphan EC number; and 3) epimerization of d-tagatose 6-phosphate C-4 to d-fructose 6-phosphate via a member of Pfam family PF08013, another previously unknown reaction. The epimerization reaction catalyzed by a member of PF08013 is especially noteworthy, because the functions of members of PF08013 have been unknown. These discoveries were assisted by the following two synergistic bioinformatics web tools made available by the Enzyme Function Initiative: the EFI-Enzyme Similarity Tool and the EFI-Genome Neighborhood Tool. PMID:26472925

  2. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  3. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  4. MO-F-16A-03: AAPM Online Learning Support of New ABR MOC Requirements

    International Nuclear Information System (INIS)

    Bloch, C; Ogburn, J; Woodward, M

    2014-01-01

    In 2002 the American Board of Radiology (ABR) discontinued issuing lifetime board certification. After that time diplomates received a timelimited certificate and must participate in the Maintenance of Certification (MOC) program in order to maintain their certification. Initially certificates were issued with a 10 year expiration period and the MOC had requirements to be met over that 10 year period. The goal was to demonstrate continuous maintenance of clinical competency, however some diplomates were attempting to fulfill most or all of the requirements near the end of the 10 year period. This failed to meet the continuous aspect of the goal and so the ABR changed to a sliding 3-year window. This was done to recognize that not every year would be the same, but that diplomates should be able to maintain a reasonable average over any 3 year period.A second significant change occurred in 2013. The initial requirements included 20 selfassessment modules (SAMs) over the original 10 year term. SAMs are a special type of continuing education (CE) credit that were an addition to the 250 standard CE credits required over the 10 year period. In 2013, however, the new requirement is 75 CE credits over the previous 3 years, of which 25 must include self-assessment. Effectively this raised the self-assessment requirement from 20 in 10 years to 25 in 3 years. Previously SAMs were an interactive presentation available in limited quantities at live meetings. However, the new requirement is not for SAMs but CE-SA which includes SAMs, but also includes the online quizzes provided at the AAPM online learning center. All credits earned at the AAPM online learning center fulfill the ABR SA requirement.This talk will be an interactive demonstration of the AAPM online learning center along with a discussion of the MOC requirements

  5. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  6. Solution of the neutron transport equation by the collision probability method for 3D geometries; Resolution de l`equation du transport par les neutrons par la methode des probabilites de collision dans les geometries 3D

    Energy Technology Data Exchange (ETDEWEB)

    Oujidi, B

    1996-09-19

    The TDT code solves the multigroup transport equation by the interface-current method for unstructured 2D geometries. This works presents the extension of TDT to the treatment of 3D geometries obtained by axial displacement of unstructured 2D geometries. Three-dimensional trajectories are obtained by lifting the 2D trajectories. The code allows for the definition of macro-domains in the axial direction to be used in interface-current method. Specular and isotropic reflection or translations boundary conditions can be applied to the horizontal boundaries of the domain. Numerical studies have shown the need for longer trajectory cutoffs for trajectories intersecting horizontal boundaries. Numerical applications to the calculation of local power peaks are given in a second part for: the local destruction of a Pyrex absorbent, inter-assembly (U02-MOX) power distortion due to pellet collapsing at the top of the core. Calculations with 16 groups were performed by coupling TDT to the spectral code APOLLO2. One-group comparisons with the Monte Carlo code TRIMARAN2 are also given. (author) 30 refs.

  7. 3D-modeling and 3D-printing explorations on Japanese tea ceremony utensils

    NARCIS (Netherlands)

    Levy, P.D.; Yamada, Shigeru

    2017-01-01

    In this paper, we inquire aesthetical aspects of the Japanese tea ceremony, described as the aesthetics in the imperfection, based on novel fabrication technologies: 3D-modeling and 3D-printing. To do so, 3D-printed utensils (chashaku and chasen) were iteratively designed for the ceremony and were

  8. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  9. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  10. Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications

    Science.gov (United States)

    Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William

    2012-03-01

    Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.

  11. DIF3D-VARIANT 11.0: A Decade of Updates

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States); Lewis, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-04-09

    The DIF3D code has been a workhorse of fast reactor analysis work at Argonne National Laboratory for over 30 years. In 1995, a transport option called VARIANT was added to DIF3D to improve the flux solutions for fast reactor problems. VARIANT performs nodal neutron transport calculations using PN or SPN theory in Cartesian and hexagonal two- and threedimensional geometries. Because of the computing capabilities at that time, VARIANT was restricted to 33 group P3 flux approximations with P1 scattering. Clearly computer memory capabilities have increased since then and thus large space-angle-energy approximations are possible. This manuscript serves as an update to the theory section of the original manual and details more than a decade worth of changes made to DIF3D to make DIF3D 11.0.

  12. The 10-D chiral null model and the relation to 4-D string solutions

    International Nuclear Information System (INIS)

    Behrndt, K.

    1994-12-01

    The chiral null model is a generalization of the fundamental string and gravitational wave background. It is an example of a conformally invariant model in all orders in α' and has unbroken supersymmetries. In a Kaluza-Klein approach we start in 10 dimensions and reduce the model down to 4 dimensions without making any restrictions. The 4-D field content is given by the metric, torsion, dilaton, a moduli field and 6 gauge fields. This model is self-dual and near the singularities asymptotically free. The relation to known IWP, Taub-NUT and rotating black hole solutions is discussed. (orig.)

  13. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  14. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    Science.gov (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  15. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  16. The simulation of a two-dimensional (2D) transport problem in a rectangular region with Lattice Boltzmann method with two-relaxation-time

    Science.gov (United States)

    Sugiyanto, S.; Hardyanto, W.; Marwoto, P.

    2018-03-01

    Transport phenomena are found in many problems in many engineering and industrial sectors. We analyzed a Lattice Boltzmann method with Two-Relaxation Time (LTRT) collision operators for simulation of pollutant moving through the medium as a two-dimensional (2D) transport problem in a rectangular region model. This model consists of a 2D rectangular region with 54 length (x), 27 width (y), and it has isotropic homogeneous medium. Initially, the concentration is zero and is distributed evenly throughout the region of interest. A concentration of 1 is maintained at 9 < y < 18, whereas the concentration of zero is maintained at 0 < y < 9 and 18 < y < 27. A specific discharge (Darcy velocity) of 1.006 is assumed. A diffusion coefficient of 0.8333 is distributed uniformly with a uniform porosity of 0.35. A computer program is written in MATLAB to compute the concentration of pollutant at any specified place and time. The program shows that LTRT solution with quadratic equilibrium distribution functions (EDFs) and relaxation time τa=1.0 are in good agreement result with other numerical solutions methods such as 3DLEWASTE (Hybrid Three-dimensional Lagrangian-Eulerian Finite Element Model of Waste Transport Through Saturated-Unsaturated Media) obtained by Yeh and 3DFEMWATER-LHS (Three-dimensional Finite Element Model of Water Flow Through Saturated-Unsaturated Media with Latin Hypercube Sampling) obtained by Hardyanto.

  17. 3D mathematical modelling of scour around a circular pile in current

    DEFF Research Database (Denmark)

    Roulund, Andreas; Sumer, B. Mutlu; Fredsøe, Jørgen

    1999-01-01

    This paper deals with scour around a circular pile exposed to a steady current. A 3D numerical model incorporated with the k-w,SST closure coupled with the sediment-continuity equation and a bedload sediment transport formula has been used to predict the scour. 3D calculations have also been...... carried out for a plane rigid bottom for reference purpose. The predicted flow features are apparently in fairly good agreement with the experimental data. Early calculations indicate that the model is able to predict the scour properties satisfactorily in the initial stages of the scour process, up...... to scour depth of 0.6-0.7 times the pile diameter. Calculations that describe the entire scour process (including the equilibrium stage) are underway....

  18. DRAGON 3.05D, Reactor Cell Calculation System with Burnup

    International Nuclear Information System (INIS)

    2007-01-01

    1 - Description of program or function: The computer code DRAGON contains a collection of models that can simulate the neutron behavior of a unit cell or a fuel assembly in a nuclear reactor. It includes all of the functions that characterize a lattice cell code, namely: the interpolation of microscopic cross sections supplied by means of standard libraries; resonance self-shielding calculations in multidimensional geometries; multigroup and multidimensional neutron flux calculations that can take into account neutron leakage; transport-transport or transport-diffusion equivalence calculations as well as editing of condensed and homogenized nuclear properties for reactor calculations; and finally isotopic depletion calculations. 2 - Methods: The code DRAGON contains a multigroup flux solver conceived that can use a various algorithms to solve the neutron transport equation for the spatial and angular distribution of the flux. Each of these algorithms is presented in the form of a one-group solution procedure where the contributions from other energy groups are considered as sources. The current release of DRAGON contains five such algorithms. The JPM option that solves the integral transport equation using the J+- method, (interface current method applied to homogeneous blocks); the SYBIL option that solves the integral transport equation using the collision probability method for simple one dimensional (1-D) or two dimensional (2-D) geometries and the interface current method for 2-D Cartesian or hexagonal assemblies; the EXCELL/NXT option to solve the integral transport equation using the collision probability method for more general 2-D geometries and for three dimensional (3-D) assemblies; the MOCC option to solve the transport equation using the method of cyclic characteristics in 2-D Cartesian, and finally the MCU option to solve the transport equation using the method of characteristics (non cyclic) for 3-D Cartesian geometries. The execution of DRAGON is

  19. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D E; Connell, P S [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  20. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  1. Image based 3D city modeling : Comparative study

    Directory of Open Access Journals (Sweden)

    S. P. Singh

    2014-06-01

    Full Text Available 3D city model is a digital representation of the Earth’s surface and it’s related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India. This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can’t do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good

  2. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  3. A 3D Printing Model Watermarking Algorithm Based on 3D Slicing and Feature Points

    Directory of Open Access Journals (Sweden)

    Giao N. Pham

    2018-02-01

    Full Text Available With the increase of three-dimensional (3D printing applications in many areas of life, a large amount of 3D printing data is copied, shared, and used several times without any permission from the original providers. Therefore, copyright protection and ownership identification for 3D printing data in communications or commercial transactions are practical issues. This paper presents a novel watermarking algorithm for 3D printing models based on embedding watermark data into the feature points of a 3D printing model. Feature points are determined and computed by the 3D slicing process along the Z axis of a 3D printing model. The watermark data is embedded into a feature point of a 3D printing model by changing the vector length of the feature point in OXY space based on the reference length. The x and y coordinates of the feature point will be then changed according to the changed vector length that has been embedded with a watermark. Experimental results verified that the proposed algorithm is invisible and robust to geometric attacks, such as rotation, scaling, and translation. The proposed algorithm provides a better method than the conventional works, and the accuracy of the proposed algorithm is much higher than previous methods.

  4. Transport simulations TFTR: Theoretically-based transport models and current scaling

    International Nuclear Information System (INIS)

    Redi, M.H.; Cummings, J.C.; Bush, C.E.; Fredrickson, E.; Grek, B.; Hahm, T.S.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Scott, S.D.; Stratton, B.C.; Synakowski, E.J.; Tang, W.M.; Taylor, G.

    1991-12-01

    In order to study the microscopic physics underlying observed L-mode current scaling, 1-1/2-d BALDUR has been used to simulate density and temperature profiles for high and low current, neutral beam heated discharges on TFTR with several semi-empirical, theoretically-based models previously compared for TFTR, including several versions of trapped electron drift wave driven transport. Experiments at TFTR, JET and D3-D show that I p scaling of τ E does not arise from edge modes as previously thought, and is most likely to arise from nonlocal processes or from the I p -dependence of local plasma core transport. Consistent with this, it is found that strong current scaling does not arise from any of several edge models of resistive ballooning. Simulations with the profile consistent drift wave model and with a new model for toroidal collisionless trapped electron mode core transport in a multimode formalism, lead to strong current scaling of τ E for the L-mode cases on TFTR. None of the theoretically-based models succeeded in simulating the measured temperature and density profiles for both high and low current experiments

  5. Conservative Eulerian-Lagrangian Methods and Mixed Finite Element Methods for Modeling of Groundwater Flow and Transport

    National Research Council Canada - National Science Library

    Russell, Thomas

    2000-01-01

    ... more detailed three-dimensional (3D) simulations than would otherwise be practical. For 3D solute transport, the methods have been implemented and perform as expected on representative test problems...

  6. From 2D to 3D: Using Illumination Cones to Build 3d Face Model

    International Nuclear Information System (INIS)

    Xiao, S S; Jin, M

    2006-01-01

    To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose

  7. Murt user's guide: A hybrid Lagrangian-Eulerian finite element model of multiple-pore-region solute transport through subsurface media

    International Nuclear Information System (INIS)

    Gwo, J.P.; Jardine, P.M.; Yeh, G.T.; Wilson, G.V.

    1995-04-01

    Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoretical background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices

  8. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    Energy Technology Data Exchange (ETDEWEB)

    Dubart, Philippe; Hautot, Felix [AREVA Group, 1 route de la Noue, Gif sur Yvette (France); Morichi, Massimo; Abou-Khalil, Roger [AREVA Group, Tour AREVA-1, place Jean Millier, Paris (France)

    2015-07-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  9. Novel real-time 3D radiological mapping solution for ALARA maximization, D and D assessments and radiological management

    International Nuclear Information System (INIS)

    Dubart, Philippe; Hautot, Felix; Morichi, Massimo; Abou-Khalil, Roger

    2015-01-01

    Good management of dismantling and decontamination (D and D) operations and activities is requiring safety, time saving and perfect radiological knowledge of the contaminated environment as well as optimization for personnel dose and minimization of waste volume. In the same time, Fukushima accident has imposed a stretch to the nuclear measurement operational approach requiring in such emergency situation: fast deployment and intervention, quick analysis and fast scenario definition. AREVA, as return of experience from his activities carried out at Fukushima and D and D sites has developed a novel multi-sensor solution as part of his D and D research, approach and method, a system with real-time 3D photo-realistic spatial radiation distribution cartography of contaminated premises. The system may be hand-held or mounted on a mobile device (robot, drone, e.g). In this paper, we will present our current development based on a SLAM technology (Simultaneous Localization And Mapping) and integrated sensors and detectors allowing simultaneous topographic and radiological (dose rate and/or spectroscopy) data acquisitions. This enabling technology permits 3D gamma activity cartography in real-time. (authors)

  10. Effects of Pisha sandstone content on solute transport in a sandy soil.

    Science.gov (United States)

    Zhen, Qing; Zheng, Jiyong; He, Honghua; Han, Fengpeng; Zhang, Xingchang

    2016-02-01

    In sandy soil, water, nutrients and even pollutants are easily leaching to deeper layers. The objective of this study was to assess the effects of Pisha sandstone on soil solute transport in a sandy soil. The miscible displacement technique was used to obtain breakthrough curves (BTCs) of Br(-) as an inert non-adsorbed tracer and Na(+) as an adsorbed tracer. The incorporation of Pisha sandstone into sandy soil was able to prevent the early breakthrough of both tracers by decreasing the saturated hydraulic conductivity compared to the controlled sandy soil column, and the impeding effects increased with Pisha sandstone content. The BTCs of Br(-) were accurately described by both the convection-dispersion equation (CDE) and the two-region model (T-R), and the T-R model fitted the experimental data slightly better than the CDE. The two-site nonequilibrium model (T-S) accurately fit the Na(+) transport data. Pisha sandstone impeded the breakthrough of Na(+) not only by decreasing the saturated hydraulic conductivity but also by increasing the adsorption capacity of the soil. The measured CEC values of Pisha sandstone were up to 11 times larger than those of the sandy soil. The retardation factors (R) determined by the T-S model increased with increasing Pisha sandstone content, and the partition coefficient (K(d)) showed a similar trend to R. According to the results of this study, Pisha sandstone can successfully impede solute transport in a sandy soil column. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Butterfly effect in 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  12. Correspondence Between One- and Two-Equation Models for Solute Transport in Two-Region Heterogeneous Porous Media

    KAUST Repository

    Davit, Y.

    2012-07-26

    In this work, we study the transient behavior of homogenized models for solute transport in two-region porous media. We focus on the following three models: (1) a time non-local, two-equation model (2eq-nlt). This model does not rely on time constraints and, therefore, is particularly useful in the short-time regime, when the timescale of interest (t) is smaller than the characteristic time (τ 1) for the relaxation of the effective macroscale parameters (i. e., when t ≤ τ 1); (2) a time local, two-equation model (2eq). This model can be adopted when (t) is significantly larger than (τ 1) (i.e., when t≫τ 1); and (3) a one-equation, time-asymptotic formulation (1eq ∞). This model can be adopted when (t) is significantly larger than the timescale (τ 2) associated with exchange processes between the two regions (i. e., when t≫τ 2). In order to obtain insight into this transient behavior, we combine a theoretical approach based on the analysis of spatial moments with numerical and analytical results in several simple cases. The main result of this paper is to show that there is only a weak asymptotic convergence of the solution of (2eq) towards the solution of (1eq ∞) in terms of standardized moments but, interestingly, not in terms of centered moments. The physical interpretation of this result is that deviations from the Fickian situation persist in the limit of long times but that the spreading of the solute is eventually dominating these higher order effects. © 2012 Springer Science+Business Media B.V.

  13. SutraGUI, a graphical-user interface for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Winston, Richard B.; Voss, Clifford I.

    2004-01-01

    This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned

  14. Application of the newly developed 3D transport code r3t to selected field cases

    International Nuclear Information System (INIS)

    Rubel, A.; Fein, E.

    2006-01-01

    To model the transport of contaminants in connexion with long-term safety analyses of repositories for radioactive waste recently the numerical model r 3 t was developed. In the following first applications of r 3 t are presented. The results of modelling of the transport of zinc at the sewage treatment facility in Cape Cod, Massachusetts, and of trace elements in the frame work of the in-situ diffusion experiments DI-A and DR at the underground laboratory Mont Terri are shown. (authors)

  15. GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, MANAGEMENT AND VISUALIZATION

    Directory of Open Access Journals (Sweden)

    I. Toschi

    2017-05-01

    Full Text Available Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA and national mapping agencies (NMA involved in “smart city” applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above – http://seneca.fbk.eu. State-of-the-art processing solutions are investigated in order to (i efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching, (ii derive topologically and geometrically accurate 3D geo-objects (i.e. building models at various levels of detail and (iii link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy and Graz (Austria. Both spatial (i.e. nadir and oblique imagery and non-spatial (i.e. cadastral information and building energy consumptions data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  16. Geospatial Data Processing for 3d City Model Generation, Management and Visualization

    Science.gov (United States)

    Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.

    2017-05-01

    Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.

  17. An assessment of finite element synthesis model using 3D FEM

    International Nuclear Information System (INIS)

    Jagannathan, V.; Rastogi, B.P

    1983-01-01

    For the solution of multigroup diffusion theory equations a code system called FEMSYN has been developed. The code FEMSYN incorporates a finite difference (FD) module, a finite element (FE) module and one module based on single channel flux synthesis (SCFS) method, which uses trial functions generated by either FD or FE method. The 3D problems can be tackled by all the three modules. The 3D FE solutions are cheaper in comparison with fine mesh FD computations and are quite accurate. The accuracy is improved by proper choice of rectangular and triangular right prismatic elements and polynomial order in case of 3D FE analyses. Synthesis method using FE trial functions provides the fastest means of solution for 3D problems. In this paper, the FE synthesis method has been compared with 3D FE technique for the case of IAEA PWR benchmark problem. It is concluded from the above comparison that FE synthesis method can give at negligible computational efforts, accurate eigenvalue estimates and satisfactory prediction of reactor core power profiles

  18. Benchmarking of MCAM 4.0 with the ITER 3D Model

    International Nuclear Information System (INIS)

    Ying Li; Lei Lu; Aiping Ding; Haimin Hu; Qin Zeng; Shanliang Zheng; Yican Wu

    2006-01-01

    Monte Carlo particle transport simulations are widely employed in fields such as nuclear engineering, radio-therapy and space science. Describing and verifying the 3D geometry of fusion devices, however, are among the most complex tasks of MCNP calculation problems in nuclear analysis. The manual modeling of a complex geometry for MCNP code, though a common practice, is an extensive, time-consuming, and error prone task. An efficient solution is to shift the geometric modeling into Computer Aided Design(CAD) systems and to use an interface for MCNP to convert the CAD model to MCNP file. The advantage of this approach lies in the fact that it allows access to full features of modern CAD systems facilitating the geometric modeling and utilizing the existing CAD models. MCAM(MCNP Automatic Modeling System) is an integrated tool for CAD model preprocessing, accurate bi-directional conversion between CAD/MCNP models, neutronics property processing and geometric modeling developed by FDS team in ASIPP and Hefei University of Technology. MCAM4.0 has been extended and enhanced to support various CAD file formats and the preprocessing of CAD model, such as healing, automatic model reconstruction, overlap detection and correction, automatic void modeling. The ITER international benchmark model is provided by ITER international team to compare the CAD/MCNP programs being developed in the ITER participant teams. It is created in CATIA/V5, which has been chosen as the CAD system for ITER design, including all the important parts and components of the ITER device. The benchmark model contains vast curve surfaces, which can fully test the ability of MCNP/CAD codes. The whole processing procedure of this model will be presented in this paper, which includes the geometric model processing, neutroics property processing, converting to MCNP input file, calculating with MCNP and analysis. The nuclear analysis results of the model will be given in the end. Although these preliminary

  19. 3D MODELLING BY LOW-COST RANGE CAMERA: SOFTWARE EVALUATION AND COMPARISON

    Directory of Open Access Journals (Sweden)

    R. Ravanelli

    2017-11-01

    Full Text Available The aim of this work is to present a comparison among three software applications currently available for the Occipital Structure SensorTM; all these software were developed for collecting 3D models of objects easily and in real-time with this structured light range camera. The SKANECT, itSeez3D and Scanner applications were thus tested: a DUPLOTM bricks construction was scanned with the three applications and the obtained models were compared to the model virtually generated with a standard CAD software, which served as reference. The results demonstrate that all the software applications are generally characterized by the same level of geometric accuracy, which amounts to very few millimetres. However, the itSeez3D software, which requires a payment of $7 to export each model, represents surely the best solution, both from the point of view of the geometric accuracy and, mostly, at the level of the color restitution. On the other hand, Scanner, which is a free software, presents an accuracy comparable to that of itSeez3D. At the same time, though, the colors are often smoothed and not perfectly overlapped to the corresponding part of the model. Lastly, SKANECT is the software that generates the highest number of points, but it has also some issues with the rendering of the colors.

  20. Effects of sorption and temperature on solute transport in unsaturated steady flow

    International Nuclear Information System (INIS)

    Fuentes, H.R.; Polzer, W.L.; Essington, E.H.

    1986-01-01

    It is known that temperature affects physical and chemical processes and that these processes may alter the transport of solutes in the environment. Laboratory column studies were performed in unsaturated flow conditions with a composite pulse containing iodide, cobalt, cesium and strontium each at 10 -3 M. The experiments were performed with Bandelier Tuff and produced breakthrough curves that indicate significant changes in transport due to a temperature change from 25 0 C to 5 0 C for nonconservative solutes. Also, the interpretation of the temperature and sorption data suggest that the differences in transport between 5 0 C and 25 0 C for nonconservative solutes may be predicted in a qualitative manner from batch equilibrium and nonequilibrium sorption data and the theory of sorption used in deriving the modified Freundlich isotherm equation. These effects should be of concern in modeling and management of spills and waste disposal within this range of environmental temperatures

  1. Modeling solute transport in a heterogeneous unsaturated porous medium under dynamic boundary conditions on different spatial scales

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa; Bechtold, Michel

    2013-04-01

    simulations differ in lateral scale reaching from 0.2 m to 1.5 m, while the height of the domain is kept constant to 1.5m. Strong material heterogeneity is realized through vertical layers of coarse and fine sand. Both materials remain permanently under liquid-flow-dominated ('stage1') evaporation conditions. Spatial moments as well as the dilution index (Kitanidis, 1994) are used for quantification of transport behaviour. Results show that, while all simulations led to anomalous transport, infiltration-evaporation cycles lead to faster solute leaching rates than solely infiltration at the same net-infiltration rate in both homogeneous and heterogeneous media. Flow and transport-paths significantly differed between infiltration and evaporation, resulting in lateral water fluxes and hence lateral solute transport. Variation of the width of the model domain shows faster leaching rates for domains with small horizontal extent.

  2. Cellular neural network to the spherical harmonics approximation of neutron transport equation in x-y geometry. Part I: Modeling and verification for time-independent solution

    International Nuclear Information System (INIS)

    Pirouzmand, Ahmad; Hadad, Kamal

    2011-01-01

    Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with P N method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (P N ) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.

  3. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  4. Conceptual and numerical models of groundwater flow and solute transport in fracture zones: Application to the Aspo Island (Sweden)

    International Nuclear Information System (INIS)

    Molinero, J.; Samper, J.

    2003-01-01

    Several countries around the world are considering the final disposal of high-level radioactive waste in deep repositories located in fractured granite formations. Evaluating the long term safety of such repositories requires sound conceptual and numerical models which must consider simultaneously groundwater flow, solute transport and chemical and radiological processes. These models are being developed from data and knowledge gained from in situ experiments carried out at deep underground laboratories such as that of Aspo, Sweden, constructed in fractured granite. The Redox Zone Experiment is one of such experiments performed at Aspo in order to evaluate the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Previous authors interpreted hydrochemical and isotopic data of this experiment using a mass-balance approach based on a qualitative description of groundwater flow conditions. Such an interpretation, however, is subject to uncertainties related to an over-simplified conceptualization of groundwater flow. Here we present numerical models of groundwater flow and solute transport for this fracture zone. The first model is based on previously published conceptual model. It presents noticeable un consistencies and fails to match simultaneously observed draw downs and chloride breakthrough curves. To overcome its limitations, a revised flow and transport model is presented which relies directly on available hydrodynamic and transport parameters, is based on the identification of appropriate flow and transport boundary conditions and uses, when needed, solute data extrapolated from nearby fracture zones. A significant quantitative improvement is achieved with the revised model because its results match simultaneously drawdown and chloride data. Other improvements are qualitative and include: ensuring consistency of hydrodynamic and hydrochemical data and avoiding

  5. Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.

    2015-01-01

    Highlights: • Pu-239 based spectral history method was tested on 3D BWR single assembly case. • Burnup of a BWR fuel assembly was performed with the nodal code DYN3D. • Reference solution was obtained by coupled Monte-Carlo thermal-hydraulic code BGCore. • The proposed method accurately reproduces moderator density history effect for BWR test case. - Abstract: This research focuses on the verification of a recently developed methodology accounting for spectral history effects in 3D full core nodal simulations. The traditional deterministic core simulation procedure includes two stages: (1) generation of homogenized macroscopic cross section sets and (2) application of these sets to obtain a full 3D core solution with nodal codes. The standard approach adopts the branch methodology in which the branches represent all expected combinations of operational conditions as a function of burnup (main branch). The main branch is produced for constant, usually averaged, operating conditions (e.g. coolant density). As a result, the spectral history effects that associated with coolant density variation are not taken into account properly. Number of methods to solve this problem (such as micro-depletion and spectral indexes) were developed and implemented in modern nodal codes. Recently, we proposed a new and robust method to account for history effects. The methodology was implemented in DYN3D and involves modification of the few-group cross section sets. The method utilizes the local Pu-239 concentration as an indicator of spectral history. The method was verified for PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. The purpose of the current work is investigating the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal-hydraulic solvers and

  6. Development of Numerical Grids for UZ Flow and Transport Modeling

    International Nuclear Information System (INIS)

    Hinds, J.

    2001-01-01

    This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The

  7. A multichannel model for the self-consistent analysis of coherent transport in graphene nanoribbons.

    Science.gov (United States)

    Mencarelli, Davide; Pierantoni, Luca; Farina, Marco; Di Donato, Andrea; Rozzi, Tullio

    2011-08-23

    In this contribution, we analyze the multichannel coherent transport in graphene nanoribbons (GNRs) by a scattering matrix approach. We consider the transport properties of GNR devices of a very general form, involving multiple bands and multiple leads. The 2D quantum transport over the whole GNR surface, described by the Schrödinger equation, is strongly nonlinear as it implies calculation of self-generated and externally applied electrostatic potentials, solutions of the 3D Poisson equation. The surface charge density is computed as a balance of carriers traveling through the channel at all of the allowed energies. Moreover, formation of bound charges corresponding to a discrete modal spectrum is observed and included in the model. We provide simulation examples by considering GNR configurations typical for transistor devices and GNR protrusions that find an interesting application as cold cathodes for X-ray generation. With reference to the latter case, a unified model is required in order to couple charge transport and charge emission. However, to a first approximation, these could be considered as independent problems, as in the example. © 2011 American Chemical Society

  8. Some results on the neutron transport and the coupling of equations; Quelques resultats sur le transport neutronique et le couplage d`equations

    Energy Technology Data Exchange (ETDEWEB)

    Bal, G. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    Neutron transport in nuclear reactors is well modeled by the linear Boltzmann transport equation. Its resolution is relatively easy but very expensive. To achieve whole core calculations, one has to consider simpler models, such as diffusion or homogeneous transport equations. However, the solutions may become inaccurate in particular situations (as accidents for instance). That is the reason why we wish to solve the equations on small area accurately and more coarsely on the remaining part of the core. It is than necessary to introduce some links between different discretizations or modelizations. In this note, we give some results on the coupling of different discretizations of all degrees of freedom of the integral-differential neutron transport equation (two degrees for the angular variable, on for the energy component, and two or three degrees for spatial position respectively in 2D (cylindrical symmetry) and 3D). Two chapters are devoted to the coupling of discrete ordinates methods (for angular discretization). The first one is theoretical and shows the well posing of the coupled problem, whereas the second one deals with numerical applications of practical interest (the results have been obtained from the neutron transport code developed at the R and D, which has been modified for introducing the coupling). Next, we present the nodal scheme RTN0, used for the spatial discretization. We show well posing results for the non-coupled and the coupled problems. At the end, we deal with the coupling of energy discretizations for the multigroup equations obtained by homogenization. Some theoretical results of the discretization of the velocity variable (well-posing of problems), which do not deal directly with the purposes of coupling, are presented in the annexes. (author). 34 refs.

  9. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    Science.gov (United States)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0

  10. Global solution to the 3D inhomogeneous nematic liquid crystal flows with variable density

    Science.gov (United States)

    Hu, Xianpeng; Liu, Qiao

    2018-04-01

    In this paper, we investigate the global existence and uniqueness of solution to the 3D inhomogeneous incompressible nematic liquid crystal flows with variable density in the framework of Besov spaces. It is proved that there exists a global and unique solution to the nematic liquid crystal flows if the initial data (ρ0 - 1 ,u0 ,n0 -e3) ∈ M (B˙p,1 3/p - 1 (R3)) × B˙p,1 3/p - 1 (R3) × B˙p,1 3/p (R3) with 1 ≤ p < 6, and satisfies

  11. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    Science.gov (United States)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  12. QUALITY ANALYSIS ON 3D BUIDLING MODELS RECONSTRUCTED FROM UAV IMAGERY

    Directory of Open Access Journals (Sweden)

    M. Jarzabek-Rychard

    2016-06-01

    Full Text Available Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning, a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1 comparing generated SfM point cloud to ALS data; (2 computing internal consistency measures of the reconstruction process; (3 analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  13. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  14. Code-To-Code Benchmarking Of The Porflow And GoldSim Contaminant Transport Models Using A Simple 1-D Domain - 11191

    International Nuclear Information System (INIS)

    Hiergesell, R.; Taylor, G.

    2010-01-01

    An investigation was conducted to compare and evaluate contaminant transport results of two model codes, GoldSim and Porflow, using a simple 1-D string of elements in each code. Model domains were constructed to be identical with respect to cell numbers and dimensions, matrix material, flow boundary and saturation conditions. One of the codes, GoldSim, does not simulate advective movement of water; therefore the water flux term was specified as a boundary condition. In the other code, Porflow, a steady-state flow field was computed and contaminant transport was simulated within that flow-field. The comparisons were made solely in terms of the ability of each code to perform contaminant transport. The purpose of the investigation was to establish a basis for, and to validate follow-on work that was conducted in which a 1-D GoldSim model developed by abstracting information from Porflow 2-D and 3-D unsaturated and saturated zone models and then benchmarked to produce equivalent contaminant transport results. A handful of contaminants were selected for the code-to-code comparison simulations, including a non-sorbing tracer and several long- and short-lived radionuclides exhibiting both non-sorbing to strongly-sorbing characteristics with respect to the matrix material, including several requiring the simulation of in-growth of daughter radionuclides. The same diffusion and partitioning coefficients associated with each contaminant and the half-lives associated with each radionuclide were incorporated into each model. A string of 10-elements, having identical spatial dimensions and properties, were constructed within each code. GoldSim's basic contaminant transport elements, Mixing cells, were utilized in this construction. Sand was established as the matrix material and was assigned identical properties (e.g. bulk density, porosity, saturated hydraulic conductivity) in both codes. Boundary conditions applied included an influx of water at the rate of 40 cm/yr at one

  15. Optically directed molecular transport and 3D isoelectric positioning of amphoteric biomolecules

    International Nuclear Information System (INIS)

    Hafeman, Dean G.; Harkins, James B.; Witkowski, Charles E. II; Lewis, Nathan S.; Brown, Gilbert M.; Warmack, Robert J. Bruce; Thundat, Thomas George

    2006-01-01

    We demonstrate the formation of charged molecular packets and their transport within optically created electrical force-field traps in a pH-buffered electrolyte. We call this process photoelectrophoretic localization and transport (PELT). The electrolyte is in contact with a photoconductive semiconductor electrode and a counterelectrode that are connected through an external circuit. A light beam directed to coordinates on the photoconductive electrode surface produces a photocurrent within the circuit and electrolyte. Within the electrolyte, the photocurrent creates localized force-field traps centered at the illuminated coordinates. Charged molecules, including polypeptides and proteins, electrophoretically accumulate into the traps and subsequently can be transported in the electrolyte by moving the traps over the photoconductive electrode in response to movement of the light beam. The molecules in a single trap can be divided into aliquots, and the aliquots can be directed along multiple routes simultaneously by using multiple light beams. This photoelectrophoretic transport of charged molecules by PELT resembles the electrostatic transport of electrons within force-field wells of solid-state charge-coupled devices. The molecules, however, travel in a liquid electrolyte rather than a solid. Furthermore, we have used PELT to position amphoteric biomolecules in three dimensions. A 3D pH gradient was created in an electrolyte medium by controlling the illumination position on a photoconductive anode where protons were generated electrolytically. Photoelectrophoretic transport of amphoteric molecules through the pH gradient resulted in accumulation of the molecules at their apparent 3D isoelectric coordinates in the medium.

  16. Storing a 3D city model, its levels of detail and the correspondences between objects as a 4D combinatorial map

    NARCIS (Netherlands)

    Arroyo Ohori, G.A.K.; Ledoux, H.; Stoter, J.E.

    2015-01-01

    3D city models of the same region at multiple LODs are encumbered by the lack of links between corresponding objects across LODs. In practice, this causes inconsistency during updates and maintenance problems. A radical solution to this problem is to model the LOD of a model as a dimension in the

  17. Contribution to the development of methods for nuclear reactor core calculations with APOLLO3 code: domain decomposition in transport theory with nonlinear diffusion acceleration for 2D and 3D geometries

    International Nuclear Information System (INIS)

    Lenain, Roland

    2015-01-01

    This thesis is devoted to the implementation of a domain decomposition method applied to the neutron transport equation. The objective of this work is to access high-fidelity deterministic solutions to properly handle heterogeneities located in nuclear reactor cores, for problems' size ranging from color-sets of assemblies to large reactor cores configurations in 2D and 3D. The innovative algorithm developed during the thesis intends to optimize the use of parallelism and memory. The approach also aims to minimize the influence of the parallel implementation on the performances. These goals match the needs of APOLLO3 project, developed at CEA and supported by EDF and AREVA, which must be a portable code (no optimization on a specific architecture) in order to achieve best estimate modeling with resources ranging from personal computer to compute cluster available for engineers analyses. The proposed algorithm is a Parallel Multigroup-Block Jacobi one. Each sub-domain is considered as a multi-group fixed-source problem with volume-sources (fission) and surface-sources (interface flux between the sub-domains). The multi-group problem is solved in each sub-domain and a single communication of the interface flux is required at each power iteration. The spectral radius of the resolution algorithm is made similar to the one of a classical resolution algorithm with a nonlinear diffusion acceleration method: the well-known Coarse Mesh Finite Difference. In this way an ideal scalability is achievable when the calculation is parallelized. The memory organization, taking advantage of shared memory parallelism, optimizes the resources by avoiding redundant copies of the data shared between the sub-domains. Distributed memory architectures are made available by a hybrid parallel method that combines both paradigms of shared memory parallelism and distributed memory parallelism. For large problems, these architectures provide a greater number of processors and the amount of

  18. Electrolyte solution transport in electropolar nanotubes

    International Nuclear Information System (INIS)

    Zhao Jianbing; Culligan, Patricia J; Chen Xi; Qiao Yu; Zhou Qulan; Li Yibing; Tak, Moonho; Park, Taehyo

    2010-01-01

    Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

  19. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  20. Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.

    Science.gov (United States)

    Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna; Lasso, Andras; Cripe, Linnea; Jegatheeswaran, Anusha; Silvestro, Elizabeth; McGowan, Francis X; Mascio, Christopher E; Fuller, Stephanie; Spray, Thomas L; Cohen, Meryl S; Fichtinger, Gabor; Jolley, Matthew A

    2018-03-01

    Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.

  1. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery

    International Nuclear Information System (INIS)

    Qiu Gang; Joshi, Abhijit S.; Dennison, C.R.; Knehr, K.W.; Kumbur, E.C.; Sun Ying

    2012-01-01

    The vanadium redox flow battery (VRFB) has emerged as a viable grid-scale energy storage technology that offers cost-effective energy storage solutions for renewable energy applications. In this paper, a novel methodology is introduced for modeling of the transport mechanisms of electrolyte flow, species and charge in the VRFB at the pore scale of the electrodes; that is, at the level where individual carbon fiber geometry and electrolyte flow are directly resolved. The detailed geometry of the electrode is obtained using X-ray computed tomography (XCT) and calibrated against experimentally determined pore-scale characteristics (e.g., pore and fiber diameter, porosity, and surface area). The processed XCT data is then used as geometry input for modeling of the electrochemical processes in the VRFB. The flow of electrolyte through the pore space is modeled using the lattice Boltzmann method (LBM) while the finite volume method (FVM) is used to solve the coupled species and charge transport and predict the performance of the VRFB under various conditions. An electrochemical model using the Butler–Volmer equations is used to provide species and charge coupling at the surfaces of the carbon fibers. Results are obtained for the cell potential distribution, as well as local concentration, overpotential and current density profiles under galvanostatic discharge conditions. The cell performance is investigated as a function of the electrolyte flow rate and external drawing current. The model developed here provides a useful tool for building the structure–property–performance relationship of VRFB electrodes.

  2. Computational Modelling of Piston Ring Dynamics in 3D

    Directory of Open Access Journals (Sweden)

    Dlugoš Jozef

    2014-12-01

    Full Text Available Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody system (MBS. The MBS model is compared to the finite element method (FEM solution.

  3. Mathematical and physical aspects of controlling the exact solutions of the 3D Gross-Pitaevskii equation

    International Nuclear Information System (INIS)

    Fedele, Renato; Jovanovic, Dusan; De Nicola, Sergio; Eliasson, Bengt; Shukla, Padma K.

    2010-01-01

    The possibility of the decomposition of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) into a pair of coupled Schroedinger-type equations, is investigated. It is shown that, under suitable mathematical conditions, it is possible to construct the exact controlled solutions of the 3D GPE from the solutions of a linear 2D Schroedinger equation coupled with a 1D nonlinear Schroedinger equation (the transverse and longitudinal components of the GPE, respectively). The coupling between these two equations is the functional of the transverse and the longitudinal profiles. The applied method of nonlinear decomposition, called the controlling potential method (CPM), yields the full 3D solution in the form of the product of the solutions of the transverse and longitudinal components of the GPE. It is shown that the CPM constitutes a variational principle and sets up a condition on the controlling potential well. Its physical interpretation is given in terms of the minimization of the (energy) effects introduced by the control. The method is applied to the case of a parabolic external potential to construct analytically an exact BEC state in the form of a bright soliton, for which the quantitative comparison between the external and controlling potentials is presented.

  4. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  5. Solute transport along a single fracture in a porous rock: a simple analytical solution and its extension for modeling velocity dispersion

    Science.gov (United States)

    Liu, Longcheng; Neretnieks, Ivars; Shahkarami, Pirouz; Meng, Shuo; Moreno, Luis

    2018-02-01

    A simple and robust solution is developed for the problem of solute transport along a single fracture in a porous rock. The solution is referred to as the solution to the single-flow-path model and takes the form of a convolution of two functions. The first function is the probability density function of residence-time distribution of a conservative solute in the fracture-only system as if the rock matrix is impermeable. The second function is the response of the fracture-matrix system to the input source when Fickian-type dispersion is completely neglected; thus, the effects of Fickian-type dispersion and matrix diffusion have been decoupled. It is also found that the solution can be understood in a way in line with the concept of velocity dispersion in fractured rocks. The solution is therefore extended into more general cases to also account for velocity variation between the channels. This leads to a development of the multi-channel model followed by detailed statistical descriptions of channel properties and sensitivity analysis of the model upon changes in the model key parameters. The simulation results obtained by the multi-channel model in this study fairly well agree with what is often observed in field experiments—i.e. the unchanged Peclet number with distance, which cannot be predicted by the classical advection-dispersion equation. In light of the findings from the aforementioned analysis, it is suggested that forced-gradient experiments can result in considerably different estimates of dispersivity compared to what can be found in natural-gradient systems for typical channel widths.

  6. Improving 3d Spatial Queries Search: Newfangled Technique of Space Filling Curves in 3d City Modeling

    Science.gov (United States)

    Uznir, U.; Anton, F.; Suhaibah, A.; Rahman, A. A.; Mioc, D.

    2013-09-01

    The advantages of three dimensional (3D) city models can be seen in various applications including photogrammetry, urban and regional planning, computer games, etc.. They expand the visualization and analysis capabilities of Geographic Information Systems on cities, and they can be developed using web standards. However, these 3D city models consume much more storage compared to two dimensional (2D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban objects. In this research, we propose an opponent data constellation technique of space-filling curves (3D Hilbert curves) for 3D city model data representation. Unlike previous methods, that try to project 3D or n-dimensional data down to 2D or 3D using Principal Component Analysis (PCA) or Hilbert mappings, in this research, we extend the Hilbert space-filling curve to one higher dimension for 3D city model data implementations. The query performance was tested using a CityGML dataset of 1,000 building blocks and the results are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a subinterval of the [0, 1] interval to the corresponding portion of the d-dimensional Hilbert's curve, preserves the Lebesgue measure and is Lipschitz continuous. Depending on the applications, several alternatives are possible in order to cluster spatial data together in the third dimension compared to its

  7. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin

    2017-12-22

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  8. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2017-01-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  9. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    Science.gov (United States)

    Cao, Siqin; Zhu, Lizhe; Huang, Xuhui

    2018-04-01

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  10. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei; Yan, Dongming; Li, Er; Dong, Weiming; Wonka, Peter; Zhang, Xiaopeng

    2013-01-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces

  11. ROOFN3D: DEEP LEARNING TRAINING DATA FOR 3D BUILDING RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Wichmann

    2018-05-01

    Full Text Available Machine learning methods have gained in importance through the latest development of artificial intelligence and computer hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and not gridded 3D point cloud data are presented.

  12. Kundt solutions of minimal massive 3D gravity

    Science.gov (United States)

    Deger, Nihat Sadik; Sarıoǧlu, Ã.-zgür

    2015-11-01

    We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.

  13. 3D physical modeling for patterning process development

    Science.gov (United States)

    Sarma, Chandra; Abdo, Amr; Bailey, Todd; Conley, Will; Dunn, Derren; Marokkey, Sajan; Talbi, Mohamed

    2010-03-01

    In this paper we will demonstrate how a 3D physical patterning model can act as a forensic tool for OPC and ground-rule development. We discuss examples where the 2D modeling shows no issues in printing gate lines but 3D modeling shows severe resist loss in the middle. In absence of corrective measure, there is a high likelihood of line discontinuity post etch. Such early insight into process limitations of prospective ground rules can be invaluable for early technology development. We will also demonstrate how the root cause of broken poly-line after etch could be traced to resist necking in the region of STI step with the help of 3D models. We discuss different cases of metal and contact layouts where 3D modeling gives an early insight in to technology limitations. In addition such a 3D physical model could be used for early resist evaluation and selection for required ground-rule challenges, which can substantially reduce the cycle time for process development.

  14. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  15. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow.

    Science.gov (United States)

    Holter, Karl Erik; Kehlet, Benjamin; Devor, Anna; Sejnowski, Terrence J; Dale, Anders M; Omholt, Stig W; Ottersen, Ole Petter; Nagelhus, Erlend Arnulf; Mardal, Kent-André; Pettersen, Klas H

    2017-09-12

    The brain lacks lymph vessels and must rely on other mechanisms for clearance of waste products, including amyloid [Formula: see text] that may form pathological aggregates if not effectively cleared. It has been proposed that flow of interstitial fluid through the brain's interstitial space provides a mechanism for waste clearance. Here we compute the permeability and simulate pressure-mediated bulk flow through 3D electron microscope (EM) reconstructions of interstitial space. The space was divided into sheets (i.e., space between two parallel membranes) and tunnels (where three or more membranes meet). Simulation results indicate that even for larger extracellular volume fractions than what is reported for sleep and for geometries with a high tunnel volume fraction, the permeability was too low to allow for any substantial bulk flow at physiological hydrostatic pressure gradients. For two different geometries with the same extracellular volume fraction the geometry with the most tunnel volume had [Formula: see text] higher permeability, but the bulk flow was still insignificant. These simulation results suggest that even large molecule solutes would be more easily cleared from the brain interstitium by diffusion than by bulk flow. Thus, diffusion within the interstitial space combined with advection along vessels is likely to substitute for the lymphatic drainage system in other organs.

  16. The effect of dietary calcium and vitamin D3 on the duodenal cadmium transport in the rat

    International Nuclear Information System (INIS)

    Moriuchi, Sachiko; Otawara, Yoko; Hosoya, Norimasa; Noda, Setsuko.

    1978-01-01

    The effect of dietary Ca and vitamin D 3 on the duodenal Cd transport was observed in the rat using everted gut sac technique in vitro, 1. Duodenal Cd transport was significantly increased in vitamin D deficient rat, however, it was not influenced by dietary Ca. The duodenal tissue binding and/or uptake of Cd from mucosal incubation medium was neither influenced by vitamin D 3 nor dietary Ca. 2. The transported Cd to serosal medium was very little compared to the Cd binding and/or uptake of duodenal tissue, suggesting two steps mechanism for intestinal Cd transport. The first step is the transfer from mucosal medium to duodenal mucosa and the second step is from duodenal mucosa to serosal medium. The second step was influenced by vitamin D. These results suggested that a significant increase in hepatic Cd accumulation of vitamin D deficient rat could be ascribed to the increase in the intestinal Cd absorption. (author)

  17. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  18. 3D airborne EM modeling based on the spectral-element time-domain (SETD) method

    Science.gov (United States)

    Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.

    2017-12-01

    In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays

  19. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    Science.gov (United States)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  20. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  1. Accuracy of FEM 3-D modeling in the electromagnetic methods; Denjiho ni okeru FEM 3 jigen modeling no seido

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-01

    Analytical methods considering 3-D resistivity distribution, in particular, finite element method (FEM) were studied to improve the reliability of electromagnetic exploration. Integral equation, difference calculus, FEM and hybrid method are generally used as computational 3-D modeling method. FEM is widely used in various fields because FEM can easily handle complicated shapes and boundaries. However, in electromagnetic method, the assumption of continuous electric field is pointed out as important problem. The normal (orthogonal) component of current density should be continuous at the boundary between media with different conductivities, while this means that the normal component of electric field is discontinuous. In FEM, this means that current channeling is not properly considered, resulting in poor accuracy. Unless this problem is solved, FEM modeling is not practical. As one of the solutions, it is promising to specifically incorporate interior boundary conditions into element equation. 4 refs., 11 figs.

  2. The Asymptotic Behaviour of a Stochastic 3D LANS-α Model

    International Nuclear Information System (INIS)

    Caraballo, Tomas; Marquez-Duran, Antonio M.; Real, Jose

    2006-01-01

    The long-time behaviour of a stochastic 3D LANS-α model on a bounded domain is analysed. First, we reformulate the model as an abstract problem. Next, we establish sufficient conditions ensuring the existence of stationary (steady state) solutions of this abstract nonlinear stochastic evolution equation, and study the stability properties of the model. Finally, we analyse the effects produced by stochastic perturbations in the deterministic version of the system (persistence of exponential stability as well as possible stabilisation effects produced by the noise). The general results are applied to our stochastic LANS-α system throughout the paper

  3. 3D Face modeling using the multi-deformable method.

    Science.gov (United States)

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  4. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  5. 3D Strain Modelling of Tear Fault Analogues

    Science.gov (United States)

    Hindle, D.; Vietor, T.

    2005-12-01

    Tear faults can be described as vertical discontinuities, with near fault parallel displacements terminating on some sort of shallow detachment. As such, they are difficult to study in "cross section" i.e. 2 dimensions as is often the case for fold-thrust systems. Hence, little attempt has been made to model the evolution of strain around tear faults and the processes of strain localisation in such structures due to the necessity of describing these systems in 3 dimensions and the problems this poses for both numerical and analogue modelling. Field studies suggest that strain in such regions can be distributed across broad zones on minor tear systems, which are often not easily mappable. Such strain is probably assumed to be due to distributed strain and to displacement gradients which are themselves necessary for the initiation of the tear itself. We present a numerical study of the effects of a sharp, basal discontinutiy parallel to the transport direction in a shortening wedge of material. The discontinuity is represented by two adjacent basal surfaces with strongly contrasting (0.5 and 0.05) friction coefficient. The material is modelled using PFC3D distinct element software for simulating granular material, whose properties are chosen to simulate upper crustal, sedimentary rock. The model geometry is a rectangular bounding box, 2km x 1km, and 0.35-0.5km deep, with a single, driving wall of constant velocity. We show the evolution of strain in the model in horizontal and vertical sections, and interpret strain localization as showing the spontaneous development of tear fault like features. The strain field in the model is asymmetrical, rotated towards the strong side of the model. Strain increments seem to oscillate in time, suggesting achievement of a steady state. We also note that our model cannot be treated as a critical wedge, since the 3rd dimension and the lateral variations of strength rule out this type of 2D approximation.

  6. Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents

    CERN Document Server

    El-Showk, Sheer; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro

    2014-01-01

    We use the conformal bootstrap to perform a precision study of the operator spectrum of the critical 3d Ising model. We conjecture that the 3d Ising spectrum minimizes the central charge c in the space of unitary solutions to crossing symmetry. Because extremal solutions to crossing symmetry are uniquely determined, we are able to precisely reconstruct the first several Z2-even operator dimensions and their OPE coefficients. We observe that a sharp transition in the operator spectrum occurs at the 3d Ising dimension Delta_sigma=0.518154(15), and find strong numerical evidence that operators decouple from the spectrum as one approaches the 3d Ising point. We compare this behavior to the analogous situation in 2d, where the disappearance of operators can be understood in terms of degenerate Virasoro representations.

  7. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  8. Global smooth solutions of 3-D null-form wave equations in exterior domains with Neumann boundary conditions

    Science.gov (United States)

    Jun, Li; Huicheng, Yin

    2018-05-01

    The paper is devoted to investigating long time behavior of smooth small data solutions to 3-D quasilinear wave equations outside of compact convex obstacles with Neumann boundary conditions. Concretely speaking, when the surface of a 3-D compact convex obstacle is smooth and the quasilinear wave equation fulfills the null condition, we prove that the smooth small data solution exists globally provided that the Neumann boundary condition on the exterior domain is given. One of the main ingredients in the current paper is the establishment of local energy decay estimates of the solution itself. As an application of the main result, the global stability to 3-D static compressible Chaplygin gases in exterior domain is shown under the initial irrotational perturbation with small amplitude.

  9. Intercomparison of reactive transport models applied to degradation of a concrete / clay interface

    International Nuclear Information System (INIS)

    Burnol, A.; Blanc, P.; Tournassat, C.; Lassin, A.; Gaucher, E.C.

    2005-01-01

    Full text of publication follows: Assuming a future disposal of spent nuclear fuel in deep geologic formation of Callovian- Oxfordian argillite in France, concrete will be used extensively to construct the disposal chambers in the host formation, and also as radioactive waste containment material. After being sealed, the repository will become saturated with interstitial waters from the Callovian-Oxfordian argillite, which will produce high pH solutions through interaction with the concrete. The aggressiveness of these alkaline solutions may weaken the clay's confinement properties (bentonite and argillite) with respect to long-lived radionuclides by change of the mineralogy. Conversely, the clayey formation with a high partial pressure of CO 2 represents an aggressive media for the concrete. The hydrogeological and chemical reactions of deep-underground systems are therefore intimately coupled and reactive transport models are increasingly used for performance assessment of nuclear waste disposal [1]. The main objective of this study is to present an intercomparison study using different reactive transport codes, where among PHREEQC1D [2], PHAST [3] and TOUGHREACT [4] applied to determine, in space and time, the extension of the alkaline perturbation and the associated degradation of concrete. The calculations were carried out after the definition of a complete mineralogy for both media. The experimental work made in the European Ecoclay II project [5] allowed a selection of reaction paths and of new phases for the thermodynamic database. Calculations were carried out over a simulated period of 100,000 years at different temperatures. Results of the different codes are compared and discussed. [1] De Windt L., Burnol A., Montarnal P., Van Der Lee.J., (2003) Intercomparison of reactive transport models applied to UO 2 oxidative dissolution and uranium migration., Journal of Contaminant Hydrology, 61, 1-4, 303-312; [2] Parkhurst D.L., Appelo C.A.J. (1999) - User

  10. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...... is solved by creating cavities of air and distributing dense materials inside the model. Consequently, the surface is not deformed. However, printing materials with significantly different densities is often not possible and adding cavities of air is often not enough to make the model balance. Consequently...

  11. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    Science.gov (United States)

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  13. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    Science.gov (United States)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  14. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    Science.gov (United States)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  15. Hypovitaminosis D3, Leukopenia, and Human Serotonin Transporter Polymorphism in Anorexia Nervosa and Bulimia Nervosa.

    Science.gov (United States)

    Tasegian, Anna; Curcio, Francesco; Dalla Ragione, Laura; Rossetti, Francesca; Cataldi, Samuela; Codini, Michela; Ambesi-Impiombato, Francesco Saverio; Beccari, Tommaso; Albi, Elisabetta

    2016-01-01

    Vitamin D3 has been described to have different extraskeletal roles by acting as parahormone in obesity, diabetes, cancer, cognitive impairment, and dementia and to have important regulatory functions in innate immunity. There are no studies showing extraskeletal changes associated with hypovitaminosis D3 in eating disorders. Methods. We have analyzed the blood of 18 patients affected by anorexia nervosa and bulimia nervosa collected over a 15-month period. We performed a panel of chemical and clinical analyses: the assay of vitamin D3, the immunoblotting of vitamin D receptor and peroxisome proliferator-activated receptor gamma, and the genotyping of 5-hydroxytryptamine transporter linked polymorphic region. Results. We choose 18 patients with a normal blood test profile such as thyroid hormones, hepatic and renal parameters, triglycerides, proteins, vitamin B12, and folic acid. Among these emerged the case of a woman with long-term anorexia nervosa and the case of a woman with long-term bulimia nervosa both complicated by anxiety and depression, severe hypovitaminosis D3, decrease of vitamin D receptor, leukopenia, and 5-hydroxytryptamine transporter linked polymorphic region short allele. Conclusion. The results induce hypothesising that the severe hypovitaminosis D3 might be responsible for the lack of the inflammatory response and the depressive symptoms in patients with long-term eating disorders.

  16. Development of 3D and 4D Bridge Models and Plans

    Science.gov (United States)

    2018-05-28

    Since 2012, MDOT has been leading national efforts to modernize design development with 3D modeling. Early focus on roadway projects yielded streamlined plan production and digital data for construction. As MDOT pivots to 3D model-centric design, nat...

  17. Gis-Based Smart Cartography Using 3d Modeling

    Science.gov (United States)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  18. Model for diffusion and porewater chemistry in compacted bentonite. Theoretical basis and the solution methodology for the transport model

    International Nuclear Information System (INIS)

    Lehikoinen, J.

    1997-01-01

    This report describes the progress of the computer model for ionic transport in bentonite. The research is part of the project Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency within the Nuclear fission safety program organized by The Commission of the European Communities. The study was started by collecting a comprehensive body of available data on space-charge transport modelling and creating a conceptualization of the problem at hand. The numerical discretization of the governing equations by finite differences was also initiated. This report introduces the theoretical basis for the model, somewhat more elaborated than presented in Progress Report 1/1996, and rectifies a few mistakes appearing in that report. It also gives a brief introduction to the solution methodology of the disc retized governing equations. (orig.) (12 refs.)

  19. Analysis of solute transport in plants using positron emission tomography

    International Nuclear Information System (INIS)

    Partelova, D.

    2016-01-01

    In the first part of the work, geometrically and radiochemically characterized standards (phantoms) imitating the plant tissues and allowing the exact quantification of visualised radioindicator in plant tissues were designed and prepared within the study of visual and analytical characteristics of used positron emission tomograph (microPET system) commercially developed for animal objects at visualization of thin objects. Individual experiments carried out by exposure of excised leaves of tobacco (Nicotiana tabacum L.) or radish (Raphanus sativus L.) in solutions of 2-deoxy-2-fluoro-D-glucose labelled with positron emitter 18 F (2-[ 18 F]FDG) containing 10-, 100-, or 1000-times higher concentrations of D-glucose (c glu ) in comparison with the original 2-[ 18 F]FDG solution showed that the significant changes in visualisation of 2-[ 18 F]FDG distribution as well as in chemical portion of 2-[ 18 F]FDG within the leaf blade were observed as result of increased c glu . In the experiments with the whole plants of tobacco or radish exposed in 2-[ 18 F]FDG solution through the root system, only minimal translocation of 18 F radioactivity into the above-ground parts of plants, also in the case of increased c glu , was observed, which suggest the role of root system as a selective barrier of 2-[ 18 F]FDG transport from roots to the above-ground parts. On the basis of mentioned knowledge and analytical approaches (application of prepared phantoms), the dynamic study of 2-[ 18 F]FDG uptake and transport within the excised leaf of tobacco or whole radish plant was carried out. The description of these processes was realized through the 3D PET images and through the quantification of 2-[ 18 F]FDG distribution within the chosen regions of interest from the point of view of accumulated 18 F radioactivity (in Bq) or amount of D-glucose (in μg) as well. Application of methods of multivariate analysis allows to found the similarities between studied objects mainly from the point

  20. Turnover Time in the Hyporheic Zone as Assessed by 3D Geophysical Imaging

    Science.gov (United States)

    Kohler, B.; Hall, R. O., Jr.; Carr, B.

    2017-12-01

    The hyporheic zone (HZ) is a region of interest in stream hydrology and ecology, however, its heterogeneity across small spatial scales and difficulty to directly measure has hampered researchers' efforts to understand its specific contribution to processes such as solute transport and nutrient retention and removal. In recent years researchers have combined geophysical imaging, such as electrical resistivity tomography (ERT), with tracer additions to directly measure exchange between surface waters and the HZ without physically disrupting natural subsurface flow paths. We conducted constant-rate tracer additions in two small headwater mountain streams while collecting 3D ERT images downstream before, during, after each tracer addition to yield spatially comprehensive models of solute exchange with the HZ through time. From our 3D HZ models, we calculated the active volume of the HZ, normalized to the maximum measured size, for each time step giving a breakthrough curve of tracer abundance in the HZ through time. We then described the tracer's turnover time in the HZ by applying exponential and power decay models to the breakthrough curve of HZ volume in a similar manner that one would for a tracer breakthrough curve in surface waters. Our models suggest that the flushing of solutes from the HZ exhibit multi-domain behavior, where advective and diffusive exchange between HZ and surface waters occur simultaneously and operate at distinctly different rates.