WorldWideScience

Sample records for solutal partition coefficients

  1. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    Science.gov (United States)

    Jakobtorweihen, S.; Zuniga, A. Chaides; Ingram, T.; Gerlach, T.; Keil, F. J.; Smirnova, I.

    2014-07-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  2. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    International Nuclear Information System (INIS)

    Jakobtorweihen, S.; Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-01-01

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations

  3. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C.; Joyce, Kevin P.; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing (R=0.98 for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining R=0.73 compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to R=0.93. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple pK_{ {a}} correction improved agreement with experiment from R=0.54 to R=0.66, despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  4. SAMPL5: 3D-RISM partition coefficient calculations with partial molar volume corrections and solute conformational sampling.

    Science.gov (United States)

    Luchko, Tyler; Blinov, Nikolay; Limon, Garrett C; Joyce, Kevin P; Kovalenko, Andriy

    2016-11-01

    Implicit solvent methods for classical molecular modeling are frequently used to provide fast, physics-based hydration free energies of macromolecules. Less commonly considered is the transferability of these methods to other solvents. The Statistical Assessment of Modeling of Proteins and Ligands 5 (SAMPL5) distribution coefficient dataset and the accompanying explicit solvent partition coefficient reference calculations provide a direct test of solvent model transferability. Here we use the 3D reference interaction site model (3D-RISM) statistical-mechanical solvation theory, with a well tested water model and a new united atom cyclohexane model, to calculate partition coefficients for the SAMPL5 dataset. The cyclohexane model performed well in training and testing ([Formula: see text] for amino acid neutral side chain analogues) but only if a parameterized solvation free energy correction was used. In contrast, the same protocol, using single solute conformations, performed poorly on the SAMPL5 dataset, obtaining [Formula: see text] compared to the reference partition coefficients, likely due to the much larger solute sizes. Including solute conformational sampling through molecular dynamics coupled with 3D-RISM (MD/3D-RISM) improved agreement with the reference calculation to [Formula: see text]. Since our initial calculations only considered partition coefficients and not distribution coefficients, solute sampling provided little benefit comparing against experiment, where ionized and tautomer states are more important. Applying a simple [Formula: see text] correction improved agreement with experiment from [Formula: see text] to [Formula: see text], despite a small number of outliers. Better agreement is possible by accounting for tautomers and improving the ionization correction.

  5. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  6. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    Directory of Open Access Journals (Sweden)

    Liao Hsuan-Yu

    2016-01-01

    Full Text Available The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05. An empirical model, consisting of the molecular weight and the polarizability, was developed to appropriately predict the partition coefficients of organic compounds. The empirical model for estimating the PDMS-gas partition coefficient will contribute to the practical applications of the SPME technique.

  7. The influence of hydrogen bonding on partition coefficients

    Science.gov (United States)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  8. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  9. Limiting partition coefficients of solutes in biphasic trihexyltetradecylphosphonium chloride ionic liquid-supercritical CO2 system: measurement and LSER-based correlation

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Roth, Michal

    2007-01-01

    Roč. 111, č. 26 (2007), s. 7620-7625 ISSN 1520-6106 R&D Projects: GA AV ČR KJB400310504; GA ČR GA203/05/2106; GA ČR GA203/07/0886 Institutional research plan: CEZ:AV0Z40310501 Keywords : phosphonium ionic liquid * supercritical carbon dioxide * solute partition coefficient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.086, year: 2007

  10. Influence of the structure of bile acids on their partition coefficient in dibutyl ether and chloroform

    Directory of Open Access Journals (Sweden)

    Sebenji Ana S.

    2015-01-01

    Full Text Available Bile acids are well known natural surfactants able to modify the per­meability of biological membranes. The logarithm of partition coefficient between, tradi­tionally used, n-octanol and water is a measure of lipophilicity as a predictor of solute membrane partitioning. The aim of this work was to determine partition coefficients of bile acids in a mixture of water and chloroform and dibutyl ether at different pH values and with addition of different concentrations of sodium ions, and to examine the influence of the structure of bile acid nucleus on measured partition coefficients. Partition coefficients of three bile acid salts were determined using shake-flask method and the concentration of bile acids was determined after twelve hours of shaking at the room temperature in aqueous and organic layer using reversed phase HPLC with DAD detector on 210 nm. For all three analysed bile acid salts values of logP are lower in dibutyl ether than in chloroform. At certain pH values, curves representing the dependence of partition coeffi­cient on pH value intersect, and these are the pH values for which partition coefficients are the same for both solvents. Increasing the solution ionic strength, this intersection is shifted toward lower pH values. It is found that, for both organic solvents, after the addition of hy­droxyl group in the steroid nucleus (i.e. if the bile acid is less hydrophobic the value of logP falls, especially if more hydroxyl groups are present. With chloroform as a solvent, system quickly comes to excess with electrolyte ions than with dibutyl ether. [Projekat Ministarstva nauke Republike Srbije, br. 172021

  11. Prediction of Partition Coefficients of Organic Compounds for SPME/PDMS

    OpenAIRE

    Liao Hsuan-Yu; Huang Miao-Ling; Lu Yu-Ting; Chao Keh-Ping

    2016-01-01

    The partition coefficients of 51 organic compounds between SPME/PDMS and gas were compiled from the literature sources in this study. The effect of physicochemical properties and descriptors on the partitioning process of partition coefficients was explicated by the correlation analysis. The PDMS-gas partition coefficients were well correlated to the molecular weight of organic compounds (r = 0.832, p < 0.05). An empirical model, consisting of the molecular weight and the polarizability, was ...

  12. Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations.

    Science.gov (United States)

    Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J

    2012-07-07

    The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.

  13. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides.

    Science.gov (United States)

    Shoeib, Mahiba; Harner, Tom

    2002-05-01

    Octanol-air partition coefficients (Koa) were measured directly for 19 organochlorine (OC) pesticides over the temperature range of 5 to 35 degrees C. Values of log Koa at 25 degrees C ranged over three orders of magnitude, from 7.4 for hexachlorobenzene to 10.1 for 1,1-dichloro-2,2-bis(p-chlorophenyl) ethane. Measured values were compared to values calculated as KowRT/H (where R is the ideal gas constant [8.314 J mol(-1) K(-1)], T is absolute temperature, and H is Henry's law constant) were, in general, larger. Discrepancies of up to three orders of magnitude were observed, highlighting the need for direct measurements of Koa. Plots of Koa versus inverse absolute temperature exhibited a log-linear correlation. Enthalpies of phase transition between octanol and air (deltaHoa) were determined from the temperature slopes and were in the range of 56 to 105 kJ mol(-1) K(-1). Activity coefficients in octanol (gamma(o)) were determined from Koa and reported supercooled liquid vapor pressures (pL(o)), and these were in the range of 0.3 to 12, indicating near-ideal solution behavior. Differences in Koa values for structural isomers of hexachlorocyclohexane were also explored. A Koa-based model was described for predicting the partitioning of OC pesticides to aerosols and used to calculate particulate fractions at 25 and -10 degrees C. The model also agreed well with experimental results for several OC pesticides that were equilibrated with urban aerosols in the laboratory. A log-log regression of the particle-gas partition coefficient versus Koa had a slope near unity, indicating that octanol is a good surrogate for the aerosol organic matter.

  14. Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni-Cu sulfide bodies by fractional crystallization of sulfide liquid

    DEFF Research Database (Denmark)

    Barnes, S.J.; Makovicky, E.; Makovicky, M.

    1996-01-01

    of the system. There is a positive correlation between the partition coefficients and sulfur content of the monosulfide solid solution and between the partition coefficients and the sulfur content of the liquid. In sulfur-saturated and sulfur-over-saturated experimental systems, the metals behave in a manner...... (Alexo, Abitibi Greenstone Belt) and a zoned tholeiite-related ore (Oktyabr'sky, Noril'sk region, Siberia). In both cases, the experimental partition coefficients numerically model the composition zones of the actual ores. This supports the model of fractional crystallization of a monosulfide solid...

  15. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    Science.gov (United States)

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    International Nuclear Information System (INIS)

    Hung, Wei-Nung; Chiou, Cary T.; Lin, Tsair-Fuh

    2014-01-01

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K tw ) are measured. • Measured K tw values are nearly the same as the respective K ow . • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K tw ) for organic compounds, the log K tw values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K tw determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K tw are closely related to their respective log K ow (octanol–water), with log K ow = 1.9 to 6.5. A significant difference is observed between the present and early measured log K tw for compounds with log K ow > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K aw/lipid ) are virtually identical to the respective log K tw values, which manifests the dominant lipid-partition effect of the compounds with algae

  17. Accurate potentiometric determination of lipid membrane-water partition coefficients and apparent dissociation constants of ionizable drugs: electrostatic corrections.

    Science.gov (United States)

    Elsayed, Mustafa M A; Vierl, Ulrich; Cevc, Gregor

    2009-06-01

    Potentiometric lipid membrane-water partition coefficient studies neglect electrostatic interactions to date; this leads to incorrect results. We herein show how to account properly for such interactions in potentiometric data analysis. We conducted potentiometric titration experiments to determine lipid membrane-water partition coefficients of four illustrative drugs, bupivacaine, diclofenac, ketoprofen and terbinafine. We then analyzed the results conventionally and with an improved analytical approach that considers Coulombic electrostatic interactions. The new analytical approach delivers robust partition coefficient values. In contrast, the conventional data analysis yields apparent partition coefficients of the ionized drug forms that depend on experimental conditions (mainly the lipid-drug ratio and the bulk ionic strength). This is due to changing electrostatic effects originating either from bound drug and/or lipid charges. A membrane comprising 10 mol-% mono-charged molecules in a 150 mM (monovalent) electrolyte solution yields results that differ by a factor of 4 from uncharged membranes results. Allowance for the Coulombic electrostatic interactions is a prerequisite for accurate and reliable determination of lipid membrane-water partition coefficients of ionizable drugs from potentiometric titration data. The same conclusion applies to all analytical methods involving drug binding to a surface.

  18. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto [Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700 Linares, Jaén (Spain); Adroher-Benítez, Irene [Grupo de Física de Fluidos y Biocoloides, Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain)

    2014-05-28

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated.

  19. Size-exclusion partitioning of neutral solutes in crosslinked polymer networks: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Quesada-Pérez, Manuel; Maroto-Centeno, José Alberto; Adroher-Benítez, Irene

    2014-01-01

    In this work, the size-exclusion partitioning of neutral solutes in crosslinked polymer networks has been studied through Monte Carlo simulations. Two models that provide user-friendly expressions to predict the partition coefficient have been tested over a wide range of volume fractions: Ogston's model (especially devised for fibrous media) and the pore model. The effects of crosslinking and bond stiffness have also been analyzed. Our results suggest that the fiber model can acceptably account for size-exclusion effects in crosslinked gels. Its predictions are good for large solutes if the fiber diameter is assumed to be the effective monomer diameter. For solutes sizes comparable to the monomer dimensions, a smaller fiber diameter must be used. Regarding the pore model, the partition coefficient is poorly predicted when the pore diameter is estimated as the distance between adjacent crosslinker molecules. On the other hand, our results prove that the pore sizes obtained from the pore model by fitting partitioning data of swollen gels are overestimated

  20. Lipid–water partition coefficients and correlations with uptakes by algae of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Wei-Nung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 30011, Taiwan (China); Chiou, Cary T., E-mail: carychio@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China); U.S. Geological Survey, Denver Federal Center, Denver, CO 80225 (United States); Lin, Tsair-Fuh, E-mail: tflin@mail.ncku.edu.tw [Department of Environmental Engineering and Sustainable Environment Research Laboratory, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-08-30

    Graphical abstract: - Highlights: • Partition coefficients of contaminants with lipid triolein (K{sub tw}) are measured. • Measured K{sub tw} values are nearly the same as the respective K{sub ow}. • Sorption of the contaminants to a dry algal powder is similarly measured. • Algal uptake of a compound occurs primarily by partition into the algal lipid. - Abstract: In view of the scarcity of the lipid–water partition coefficients (K{sub tw}) for organic compounds, the log K{sub tw} values for many environmental contaminants were measured using ultra-pure triolein as the model lipid. Classes of compounds studied include alkyl benzenes, halogenated benzenes, short-chain chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. In addition to log K{sub tw} determination, the uptakes of these compounds from water by a dry algal species were measured to evaluate the lipid effect on the algal uptake. The measured log K{sub tw} are closely related to their respective log K{sub ow} (octanol–water), with log K{sub ow} = 1.9 to 6.5. A significant difference is observed between the present and early measured log K{sub tw} for compounds with log K{sub ow} > ∼5, which is attributed to the presence and absence of a triolein microemulsion in water affecting the solute partitioning. The observed lipid-normalized algae–water distribution coefficients (log K{sub aw/lipid}) are virtually identical to the respective log K{sub tw} values, which manifests the dominant lipid-partition effect of the compounds with algae.

  1. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients

    Science.gov (United States)

    Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.

    2017-09-01

    We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.

  2. Experimental determination of the partitioning coefficient of β-pinene oxidation products in SOAs.

    Science.gov (United States)

    Hohaus, Thorsten; Gensch, Iulia; Kimmel, Joel; Worsnop, Douglas R; Kiendler-Scharr, Astrid

    2015-06-14

    The composition of secondary organic aerosols (SOAs) formed by β-pinene ozonolysis was experimentally investigated in the Juelich aerosol chamber. Partitioning of oxidation products between gas and particles was measured through concurrent concentration measurements in both phases. Partitioning coefficients (Kp) of 2.23 × 10(-5) ± 3.20 × 10(-6) m(3) μg(-1) for nopinone, 4.86 × 10(-4) ± 1.80 × 10(-4) m(3) μg(-1) for apoverbenone, 6.84 × 10(-4) ± 1.52 × 10(-4) m(3) μg(-1) for oxonopinone and 2.00 × 10(-3) ± 1.13 × 10(-3) m(3) μg(-1) for hydroxynopinone were derived, showing higher values for more oxygenated species. The observed Kp values were compared with values predicted using two different semi-empirical approaches. Both methods led to an underestimation of the partitioning coefficients with systematic differences between the methods. Assuming that the deviation between the experiment and the model is due to non-ideality of the mixed solution in particles, activity coefficients of 4.82 × 10(-2) for nopinone, 2.17 × 10(-3) for apoverbenone, 3.09 × 10(-1) for oxonopinone and 7.74 × 10(-1) for hydroxynopinone would result using the vapour pressure estimation technique that leads to higher Kp. We discuss that such large non-ideality for nopinone could arise due to particle phase processes lowering the effective nopinone vapour pressure such as diol- or dimer formation. The observed high partitioning coefficients compared to modelled results imply an underestimation of SOA mass by applying equilibrium conditions.

  3. Estimation of octanol/water partition coefficients using LSER parameters

    Science.gov (United States)

    Luehrs, Dean C.; Hickey, James P.; Godbole, Kalpana A.; Rogers, Tony N.

    1998-01-01

    The logarithms of octanol/water partition coefficients, logKow, were regressed against the linear solvation energy relationship (LSER) parameters for a training set of 981 diverse organic chemicals. The standard deviation for logKow was 0.49. The regression equation was then used to estimate logKow for a test of 146 chemicals which included pesticides and other diverse polyfunctional compounds. Thus the octanol/water partition coefficient may be estimated by LSER parameters without elaborate software but only moderate accuracy should be expected.

  4. A New Approach on Estimation of Solubility and n-Octanol/ Water Partition Coefficient for Organohalogen Compounds

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2008-06-01

    Full Text Available The aqueous solubility (logW and n-octanol/water partition coefficient (logPOW are important properties for pharmacology, toxicology and medicinal chemistry. Based on an understanding of the dissolution process, the frontier orbital interaction model was suggested in the present paper to describe the solvent-solute interactions of organohalogen compounds and a general three-parameter model was proposed to predict the aqueous solubility and n-octanol/water partition coefficient for the organohalogen compounds containing nonhydrogen-binding interactions. The model has satisfactory prediction accuracy. Furthermore, every item in the model has a very explicit meaning, which should be helpful to understand the structure-solubility relationship and may be provide a new view on estimation of solubility.

  5. Xenon tissue/blood partition coefficient for pig urinary bladder

    DEFF Research Database (Denmark)

    Nielsen, K K; Bülow, J; Nielsen, S L

    1990-01-01

    In four landrace pigs the tissue/blood partition coefficient (lambda) for xenon (Xe) for the urinary bladder was calculated after chemical analysis for lipid, water and protein content and determination of the haematocrit. The coefficients varied from bladder to bladder owing to small differences...

  6. The partition coefficients of 133Xe between blood and bone

    International Nuclear Information System (INIS)

    Lahtinen, T.; Karjalainen, P.; Vaeaenaenen, A.; Lahtinen, R.; Alhava, E.M.

    1981-01-01

    The partition coefficients of 133 Xe between blood and haematopoietic bone marrow and homogenised bone have been determined in vitro. The partition coefficient lambda 1 corresponding to haematopoietic marrow was 0.95 ml g -1 while that corresponding to homogenised bone was a function of age, lambda 2 = 3.11 + 0.049(age)(ml g -1 ). These data can be used for calculating regional blood flow in healthy human femur by means of a simple 133 Xe radionuclide method. (author)

  7. Determination of partition coefficient and analysis of nitrophenols by three-phase liquid-phase microextraction coupled with capillary electrophoresis.

    Science.gov (United States)

    Sanagi, Mohd Marsin; Miskam, Mazidatulakmam; Wan Ibrahim, Wan Aini; Hermawan, Dadan; Aboul-Enein, Hassan Y

    2010-07-01

    A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.

  8. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    Science.gov (United States)

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model

  9. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models.

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  10. Solvation free energies and partition coefficients with the coarse-grained and hybrid all-atom/coarse-grained MARTINI models

    Science.gov (United States)

    Genheden, Samuel

    2017-10-01

    We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0.55 and 0.75 and significant. There is also no difference between the results when using the non-polarizable and polarizable water model, although we identify some improvements when using the polarizable model with the AA/CG solutes. In contrast to the estimated solvation energies, the estimated partition coefficients are generally excellent with both the CG and hybrid AA/CG models, giving mean absolute deviations between 0.67 and 0.90 log units and correlation coefficients larger than 0.85. We analyze the error distribution further and suggest avenues for improvements.

  11. Experimental partition determination of octanol-water coefficients of ...

    African Journals Online (AJOL)

    An electrochemical method based on square wave voltammetry was developed for the measurement of octanol-water partition coefficient, LogP, for ten ferrocene derivatives. Measured LogP values ranged over two orders of magnitude, between 2.18 for 1- ferrocenylethanol and 4.38 for ferrocenyl-2-nitrophenyl.

  12. n-Alcohol/Water Partition Coefficients for Decachlorobiphenyl (PCB 209)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (Kow) for highly hydrophobic chemicals are extremely difficult and are rarely made, in part due to the large volumes of water typically needed to quantify these compounds in the aqueous phase. An extrapolation approach using ...

  13. Estimation of Partition Coefficients of Benzene, Toluene, Ethylbenzene, and ρ-Xylene by Consecutive Extraction with Solid Phase Microextraction

    International Nuclear Information System (INIS)

    Eom, In Yong

    2011-01-01

    The results show that the partition coefficients of the BTEX compound can be estimated using the SPME method under the consecutive extraction mode. The proposed technique is much simpler than previously reported methods. Its novelty is that it eliminated the calibration step in the GC/FID, i. e., liquid injection method. The use of the autosampler for the SPME fiber can facilitate the adoption of consecutive extractions; thus, it allows estimation of the partition coefficients of various analytes. Recently, GC/MS has increasingly been used in analytical laboratories; this may facilitate the identification of an unknown analyte as well as the computation of the corresponding partition coefficients with the proposed method. It is very important to use partition coefficients of organic pollutants to predict their fate in the environment. A liquid-liquid extraction technique was used to determine the partition coefficients of organic compounds between water and organic solvent. The concentration of the target compounds must be determined after equilibrium is established between the two phases. The partition coefficients can be estimated using the capacity factors of HPLC and GC

  14. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  15. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Science.gov (United States)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  16. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    Science.gov (United States)

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  17. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample

    International Nuclear Information System (INIS)

    Kil Yong Lee; Burnett, W.C.

    2013-01-01

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 deg C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods. (author)

  18. Molecular Descriptors Family on Structure Activity Relationships 6. Octanol-Water Partition Coefficient of Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2006-01-01

    Full Text Available Octanol-water partition coefficient of two hundred and six polychlorinated biphenyls was model by the use of an original method based on complex information obtained from compounds structure. The regression analysis shows that best results are obtained in four-varied model (r2 = 0.9168. The prediction ability of the model was studied through leave-one-out analysis (r2cv(loo = 0.9093 and in training and test sets analysis. Modeling the octanol-water partition coefficient of polychlorinated biphenyls by integration of complex structural information provide a stable and performing four-varied model, allowing us to make remarks about relationship between structure of polychlorinated biphenyls and associated octanol-water partition coefficients.

  19. Partition coefficient n-octanol/water of propranolol and atenolol at different temperatures: Experimental and theoretical studies

    International Nuclear Information System (INIS)

    Mohsen-Nia, M.; Ebrahimabadi, A.H.; Niknahad, B.

    2012-01-01

    Highlights: ► n-Octanol/water partition coefficients of propranolol and atenolol were measured. ► The effect of temperature on the partition coefficient was studied. ► The equilibrium data were correlated using the NRTL and UNIQUAC activity models. ► The binary interaction parameters of the activity models were reported. ► It is concluded that propranolol is more hydrophobic than the atenolol at 298.15 K. - Abstract: The n-octanol/water partition coefficients of propranolol and atenolol were experimentally determined by ultraviolet (UV) spectroscopy at T = (298.15, 310.15 and 314.15) K. All measurements were made at the maximum wavelength corresponding to maximum absorption. The results showed that the n-octanol/water partition coefficients of propranolol and atenolol increase with the increase of temperature. The experimental data of this work were also used to examine the phase equilibrium correlating capability of some liquid-phase models. The equilibrium experimental data were correlated using the NRTL and UNIQUAC activity coefficient models and the binary interaction parameters were reported. The average root-mea n-square deviations (RMSD) between the experimental and calculated mass fractions of the (n-octanol + propranolol + water) and (n-octanol + atenolol + water) systems were determined. From the partition coefficients obtained, it is concluded that propranolol (log P ow = 3.12 ± 0.14) is more hydrophobic than the atenolol (log P ow = 0.16 ± 0.01) at T = 298.15 K.

  20. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  1. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  2. Alkylarylnitrosoureas--stability in aqueous solution, partition coefficient, alkylating activity and its relationship to SCE induction in Chinese hamster V 79-E cells.

    Science.gov (United States)

    Mendel, J; Thust, R; Schwarz, H

    1982-01-01

    The alkylating activity, chemical stability in aqueous solution (pH 7.0; 37 degrees C), and partition coefficient (octanol/water) of the following compounds were determined: 1-methyl-3-phenyl-1-nitrosourea (MPNU), 1-ethyl-3-phenyl-1-nitrosourea (EPNU), 1-isopropyl-3-phenyl-1-nitrosourea (i-PrPNU), 1-methyl-3-(p-fluorophenyl)-1-nitrosourea (F-MPNU), 1-methyl-3-(p-chlorophenyl)-1-nitrosourea (Cl-MPNU), 1-methyl-3-(p-bromophenyl)-1-nitrosourea (Br-MPNU), 1,3-dimethyl-3-phenyl-1-nitrosourea (DMPNU), and 1-methyl-3-naphthyl-1-nitrosocarbamate (NCA). 1-Methyl-1-nitrosourea (MNU) and 1-ethyl-1-nitrosourea (ENU) were used for the comparison. THe rate of decomposition in aqueous solution is discussed concerning the influences of the substituents at the 1- and 3-N-atom. The mono- and disubstituted N-nitrosoureas showed a coarse correlation between alkylating activity and SCE induction in Chinese hamster V 79-E cells. On the other hand, this correlation is missing in the case of NCA, which is a potent SCE inducer despite relatively low alkylating activity. DMPNU is the strongest SCE inducer, but this compound shows a high stability in aqueous solution and, consequently, we were not able to detect an alkylating activity.

  3. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  4. Octanol-air partition coefficients of polybrominated biphenyls.

    Science.gov (United States)

    Hongxia, Zhao; Jingwen, Chen; Xie, Quan; Baocheng, Qu; Xinmiao, Liang

    2009-03-01

    The octanol-air partition coefficients (K(OA)) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p'-DDT) as a reference substance. The internal energies of phase change from octanol to air (Delta(OA)U) were calculated for the six compounds and were in the range from 74 to 116 kJ mol(-1). Simple regression equations of log K(OA) versus relative retention times (RRTs) on gas chromatography (GC), and log K(OA) versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r(2)) were greater than 0.985 at 283.15K and 298.15K. Thus the K(OA) values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.

  5. Optimisation-Based Solution Methods for Set Partitioning Models

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel

    The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...

  6. Potential of the octanol-water partition coefficient (logP) to predict the dermal penetration behaviour of amphiphilic compounds in aqueous solutions.

    Science.gov (United States)

    Korinth, Gintautas; Wellner, Tanja; Schaller, Karl Heinz; Drexler, Hans

    2012-11-23

    Aqueous amphiphilic compounds may exhibit enhanced skin penetration compared with neat compounds. Conventional models do not predict this percutaneous penetration behaviour. We investigated the potential of the octanol-water partition coefficient (logP) to predict dermal fluxes for eight compounds applied neat and as 50% aqueous solutions in diffusion cell experiments using human skin. Data for seven other compounds were accessed from literature. In total, seven glycol ethers, three alcohols, two glycols, and three other chemicals were considered. Of these 15 compounds, 10 penetrated faster through the skin as aqueous solutions than as neat compounds. The other five compounds exhibited larger fluxes as neat applications. For 13 of the 15 compounds, a consistent relationship was identified between the percutaneous penetration behaviour and the logP. Compared with the neat applications, positive logP were associated with larger fluxes for eight of the diluted compounds, and negative logP were associated with smaller fluxes for five of the diluted compounds. Our study demonstrates that decreases or enhancements in dermal penetration upon aqueous dilution can be predicted for many compounds from the sign of logP (i.e., positive or negative). This approach may be suitable as a first approximation in risk assessments of dermal exposure. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Determination of Partition Coefficients of Selected Model Migrants between Polyethylene and Polypropylene and Nanocomposite Polypropylene

    Directory of Open Access Journals (Sweden)

    Pablo Otero-Pazos

    2016-01-01

    Full Text Available Studies on nanoparticles have focused the attention of the researchers because they can produce nanocomposites that exhibit unexpected hybrid properties. Polymeric materials are commonly used in food packaging, but from the standpoint of food safety, one of the main concerns on the use of these materials is the potential migration of low molecular substances from the packaging into the food. The key parameters of this phenomenon are the diffusion and partition coefficients. Studies on migration from food packaging with nanomaterials are very scarce. This study is focused on the determination of partition coefficients of different model migrants between the low-density polyethylene (LDPE and polypropylene (PP and between LDPE and nanocomposite polypropylene (naPP. The results show that the incorporation of nanoparticles in polypropylene increases the mass transport of model migrants from LDPE to naPP. This quantity of migrants absorbed into PP and naPP depends partially on the nature of the polymer and slightly on the chemical features of the migrant. Relation (RPP/naPP between partition coefficient KLDPE/PP and partition coefficient KLDPE/naPP at 60°C and 80°C shows that only BHT at 60°C has a RPP/naPP less than 1. On the other hand, bisphenol A has the highest RPP/naPP with approximately 50 times more.

  8. Determination of uranium partition coefficients of a semi-arid soil in Bahia

    International Nuclear Information System (INIS)

    Fernandes, Heloisa H.F.; Pontedeiro, Elizabeth M.; Su, Jian

    2013-01-01

    In mining and processing industries, the subsurface is one of the most vulnerable compartments to environmental contamination. Understanding the interactions between soil and contaminants is critical for predicting the possible environmental impacts caused by mining and milling operations. One of the main parameters used for this purpose is the partition (or distribution) coefficient, K d , which allows a relatively simple modeling approach by grouping various sorption phenomena into a single value. However, this parameter is strongly influenced by the physical and chemical characteristics of the medium, such as soil type, pH and solution composition. Thus, this study aims to assess the values of K d for uranium of typical soils from Bahia's semi-arid region using two different types of solute, one being a standard solution of uranyl acetate and one the liquor of uranium generated during processing. To calculate this parameter, batch adsorption experiments were carried out and adsorption isotherms (linear, Langmuir and Freundlich) were constructed using the Mathematica software. Results obtained for a single type of soil showed reduced values of K d for a liquor containing uranium when compared to values obtained with the uranyl acetate solution. This indicates that uranium from liquor is less adsorbed onto soil particles, and hence may move more quickly into the subsurface. (author)

  9. Partition coefficients of organics between water and carbon dioxide revisited: Correlation with solute molecular descriptors and solvent cohesive properties

    Czech Academy of Sciences Publication Activity Database

    Roth, Michal

    2016-01-01

    Roč. 50, č. 23 (2016), s. 12857-12863 ISSN 0013-936X R&D Projects: GA ČR(CZ) GA16-03749S Institutional support: RVO:68081715 Keywords : partitioning between water and supercritical CO2 * organic solutes * K-factor modeling * linear solvation energy relationship Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.198, year: 2016

  10. Partitioning high-level waste from alkaline solution: A literature survey

    International Nuclear Information System (INIS)

    Marsh, S.F.

    1993-05-01

    Most chemical partitioning procedures are designed for acidic feed solutions. However, the high-level waste solutions in the underground storage tanks at US Department of Energy defense production sites are alkaline. Effective partitioning procedures for alkaline solutions could decrease the need to acidify these solutions and to dissolve the solids in acid, which would simplify subsequent processing and decrease the generation of secondary waste. The author compiles candidate technologies from his review of the chemical literature, experience, and personal contacts. Several of these are recommended for evaluation

  11. Determination of uranium partition coefficients of a semi-arid soil in Bahia

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Heloisa H.F.; Pontedeiro, Elizabeth M.; Su, Jian, E-mail: heloisa@lasme.coppe.ufrj.br, E-mail: bettinadulley@hotmail.com, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Cursos de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos de Engenharia; Dourado, Eneida R.G., E-mail: eneida@inb.gov.br [Industrias Nucleares do Brasil (INB), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    In mining and processing industries, the subsurface is one of the most vulnerable compartments to environmental contamination. Understanding the interactions between soil and contaminants is critical for predicting the possible environmental impacts caused by mining and milling operations. One of the main parameters used for this purpose is the partition (or distribution) coefficient, K{sub d}, which allows a relatively simple modeling approach by grouping various sorption phenomena into a single value. However, this parameter is strongly influenced by the physical and chemical characteristics of the medium, such as soil type, pH and solution composition. Thus, this study aims to assess the values of K{sub d} for uranium of typical soils from Bahia's semi-arid region using two different types of solute, one being a standard solution of uranyl acetate and one the liquor of uranium generated during processing. To calculate this parameter, batch adsorption experiments were carried out and adsorption isotherms (linear, Langmuir and Freundlich) were constructed using the Mathematica software. Results obtained for a single type of soil showed reduced values of K{sub d} for a liquor containing uranium when compared to values obtained with the uranyl acetate solution. This indicates that uranium from liquor is less adsorbed onto soil particles, and hence may move more quickly into the subsurface. (author)

  12. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    Science.gov (United States)

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  13. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  14. Trophic Magnification of PCBs and Its Relationship to the Octanol−Water Partition Coefficient

    Science.gov (United States)

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ15...

  15. Octanol-water partition coefficients for predicting the effects of tannins in ruminant nutrition.

    Science.gov (United States)

    Mueller-Harvey, Irene; Mlambo, Victor; Sikosana, Joe L N; Smith, Tim; Owen, Emyr; Brown, Ron H

    2007-07-11

    Tannins can cause beneficial or harmful nutritional effects, but their great diversity has until now prevented a rational distinction between tannin structures and their nutritional responses. An attempt has been made to study this problem by examining the octanol-water solubilities of tannins. A relatively simple HPLC method has been developed for screening mixtures of plant tannins for their octanol-water partition coefficients (Kow coefficients). Tannins were isolated from the fruits and leaves of different Acacia, Calliandra, Dichrostachys, and Piliostigma species, which are known to produce beneficial or harmful effects. The Kow coefficients of these tannins ranged from 0.061 to 13.9, average coefficients of variation were 9.2% and recoveries were 107%. Acacia nilotica fruits and leaves had the highest Kow coefficients, that is, 2.0 and 13.9, respectively. These A. nilotica products also have high concentrations of tannins. The combined effects of high octanol solubilities and high tannin concentrations may explain their negative effects on animal nutrition and health. It is known that compounds with high octanol solubilities are more easily absorbed into tissues, and it is, therefore, proposed that such compounds are more likely to cause toxicity problems especially if consumed in large quantities. According to the literature, tannins in human foods tend to have low Kow coefficients, and this was confirmed for the tannins in Piliostigma thonningii fruits. Therefore, unconventional feeds or browse products should be screened not only for their tannin concentrations but also for low octanol-water partition coefficients in order to identify nutritionally safe feeds and to avoid potentially toxic feeds.

  16. Ionization constants by curve fitting: determination of partition and distribution coefficients of acids and bases and their ions.

    Science.gov (United States)

    Clarke, F H; Cahoon, N M

    1987-08-01

    A convenient procedure has been developed for the determination of partition and distribution coefficients. The method involves the potentiometric titration of the compound, first in water and then in a rapidly stirred mixture of water and octanol. An automatic titrator is used, and the data is collected and analyzed by curve fitting on a microcomputer with 64 K of memory. The method is rapid and accurate for compounds with pKa values between 4 and 10. Partition coefficients can be measured for monoprotic and diprotic acids and bases. The partition coefficients of the neutral compound and its ion(s) can be determined by varying the ratio of octanol to water. Distribution coefficients calculated over a wide range of pH values are presented graphically as "distribution profiles". It is shown that subtraction of the titration curve of solvent alone from that of the compound in the solvent offers advantages for pKa determination by curve fitting for compounds of low aqueous solubility.

  17. REE Partition Coefficients from Synthetic Diogenite-Like Enstatite and the Implications of Petrogenetic Modeling

    Science.gov (United States)

    Schwandt, C. S.; McKay, G. A.

    1996-01-01

    Determining the petrogenesis of eucrites (basaltic achondrites) and diogenites (orthopyroxenites) and the possible links between the meteorite types was initiated 30 years ago by Mason. Since then, most investigators have worked on this question. A few contrasting theories have emerged, with the important distinction being whether or not there is a direct genetic link between eucrites and diogenites. One theory suggests that diogenites are cumulates resulting from the fractional crystallization of a parent magma with the eucrites crystallizing, from the residual magma after separation from the diogenite cumulates. Another model proposes that diogenites are cumulates formed from partial melts derived from a source region depleted by the prior generation of eucrite melts. It has also been proposed that the diogenites may not be directly linked to the eucrites and that they are cumulates derived from melts that are more orthopyroxene normative than the eucrites. This last theory has recently received more analytical and experimental support. One of the difficulties with petrogenetic modeling is that it requires appropriate partition coefficients for modeling because they are dependent on temperature, pressure, and composition. For this reason, we set out to determine minor- and trace-element partition coefficients for diogenite-like orthopyroxene. We have accomplished this task and now have enstatite/melt partition coefficients for Al, Cr, Ti, La, Ce, Nd, Sm, Eu, Dy, Er, Yb, and La.

  18. Apparent partition coefficient in octanol-water and binding percentage to BSA of 153Sm(113,117Snm) complexes

    International Nuclear Information System (INIS)

    Yang Yuqing; Luo Shunzhong; Wang Guanquan; He Jiaheng; Bing Wenzeng; Pu Manfei; Wei Hongyuan; Wang Wenjin

    2004-01-01

    Apparent partition coefficient in octanol-water and binding percentage to BSA of 153 Sm-NTMP, 153 Sm-HEDTMP, 153 Sm-DCTMP, 153 Sm-EDTMP, 153 Sm-DTPMP, 113,117 Sn m -EDTMP, 113,117 Sn m -HEDTMP, 113,117 Sn m -DTPMP are measured. The results show that there is a linear relationship between the relative magnitude of the apparent partition coefficient in octanol-water and the relative magnitude of the binding percentage to BSA of these 153 Sm( 113,117 Sn m ) complexes. This linear relationship provides a new method for determination of the apparent partition coefficient in octanol-water of 153 Sm( 113,117 Sn m ) complexes of this kind. This linear relationship also implicates that hydrophobic force plays an important role in the binding of 153 Sm( 113,117 Sn m ) complexes to BSA

  19. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  20. QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES.

    Science.gov (United States)

    Toropov, A A; Toropova, A P; Raska, I

    2008-04-01

    Simplified molecular input line entry system (SMILES) has been utilized in constructing quantitative structure-property relationships (QSPR) for octanol/water partition coefficient of vitamins and organic compounds of different classes by optimal descriptors. Statistical characteristics of the best model (vitamins) are the following: n=17, R(2)=0.9841, s=0.634, F=931 (training set); n=7, R(2)=0.9928, s=0.773, F=690 (test set). Using this approach for modeling octanol/water partition coefficient for a set of organic compounds gives a model that is statistically characterized by n=69, R(2)=0.9872, s=0.156, F=5184 (training set) and n=70, R(2)=0.9841, s=0.179, F=4195 (test set).

  1. Determination of Partition coefficients for a Mixture of Volatile Organic Compounds in Rats and Humans at Different Life Stages

    National Research Council Canada - National Science Library

    Mahle, Deidre A; Gearhart, Jeffrey M; Godfrey, Richard J; Mattie, David R; Cook, Robert S; Grisby, Claude C

    2004-01-01

    .... Partition coefficients (PCs) are an integral component of pharmacokinetic models and determining differences in tissue partitioning of volatile organic chemicals across life stages can help reduce the uncertainty in risk assessment...

  2. The double isotope technique for in vivo determination of the tissue-to-blood partition coefficient for xenon in human subcutaneous adipose tissue--an evaluation

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Astrup, A; Bülow, J

    1985-01-01

    the partition coefficient found by the double isotope technique, significantly lower values are obtained than if the in vitro determined coefficient is used. This difference is explained mainly by local dilution when injecting xenon subcutaneously. In short-term studies, utilization of the double isotope...... technique reduces the coefficient of variation on average flow determinations, thus an improvement in accuracy of local blood flow estimation can be obtained compared to the method in which an average partition coefficient is used. For long-term studies a partition coefficient of 7.5 ml g-1 seems valid.......Local subcutaneous 133xenon (133Xe) elimination was registered in the human forefoot in 34 patients. The tissue/blood partition coefficient for Xe was estimated individually by simultaneous registration of 133Xe and [131I]antipyrine ([131I]AP) washout from the same local depot. When measured...

  3. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Science.gov (United States)

    2010-07-01

    ... using the CLogP3 computer program in paragraph (e)(9) of this section. 4 Hawker and Connell (1988... (B) Constant temperature bath with circulation pump-bath and capable of controlling temperature to 25...-partition coefficient correlation. Environmental Science and Technology 14:1227-1229 (1980). (2) Bruggemann...

  4. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    Science.gov (United States)

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Simple Method to Determine the Partition Coefficient of Naphthenic Acid in Oil/Water

    DEFF Research Database (Denmark)

    Bitsch-Larsen, Anders; Andersen, Simon Ivar

    2008-01-01

    The partition coefficient for technical grade naphthenic acid in water/n-decane at 295 K has been determined (K-wo = 2.1 center dot 10(-4)) using a simple experimental technique with large extraction volumes (0.09 m(3) of water). Furthermore, nonequilibrium values at different pH values...

  6. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenjuan, E-mail: Wenjuan.Wei@cstb.fr [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); Mandin, Corinne [University of Paris-Est, Scientific and Technical Center for Building (CSTB), Health and Comfort Department, French Indoor Air Quality Observatory (OQAI), 84 Avenue Jean Jaurès, Champs sur Marne, 77447 Marne la Vallée Cedex 2 (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); Blanchard, Olivier [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Mercier, Fabien [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Pelletier, Maud [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); Le Bot, Barbara [EHESP-School of Public Health, Sorbonne Paris Cité, Rennes (France); LERES-Environment and Health Research Laboratory (Irset and EHESP Technologic Platform), Rennes (France); INSERM-U1085, Irset-Research Institute for Environmental and Occupational Health, Rennes (France); and others

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25 °C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R > 0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6 °C, while it increased by up to 750% when the indoor temperature increased from 15 °C to 30 °C. - Highlights: • A theoretical relationship between K{sub p} and temperature was developed. • The relationship was based on the SVOC absorptive mechanism. • The temperature impact was quantified by a dimensionless analysis.

  7. Calculation of the octanol-water partition coefficient of armchair polyhex BN nanotubes

    Science.gov (United States)

    Mohammadinasab, E.; Pérez-Sánchez, H.; Goodarzi, M.

    2017-12-01

    A predictive model for determination partition coefficient (log P) of armchair polyhex BN nanotubes by using simple descriptors was built. The relationship between the octanol-water log P and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory electric moments and physico-chemical properties of those nanotubes are calculated.

  8. Metal partitioning and uptake in central Ontario forests

    International Nuclear Information System (INIS)

    Watmough, Shaun A.; Dillon, Peter J.; Epova, Ekaterina N.

    2005-01-01

    Evaluation of the potential environmental risk posed by metals depends to a great extent on modeling the fate and mobility of metals with soil-solution partitioning coefficients (K d ). However, the effect of biological cycling on metal partitioning is rarely considered in standard risk assessments. We determined soil-solution partitioning coefficients for 5 metals (Cd, Zn, Pb, Co and Ni) at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH aq varied from 3.9 to 8.1. Foliage from the dominant tree species and forest floor samples were also collected from each site to compare their metal levels with K d predictions. Analogous to other studies, log K d values for all metals were predicted by empirical linear regression with soil pH (r 2 = 0.66-0.72), demonstrating that metal partitioning between soil and soil solution can be reliably predicted for relatively unpolluted forest mineral soils by soil pH. In contrast, whereas the so-called bioavailable water-soluble metal fraction could be predicted from soil pH, metal concentrations in foliage and the forest floor at each site were not consistently related to pH. Risk assessment of metals should take into account the role of biota in metal cycling and partitioning in forests, particularly if metal bio-accumulation and chronic toxicity in the food chain, rather than metal mobility in soils, are of primary concern. - Metal cycling by plants should be considered in risk assessment studies

  9. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    Science.gov (United States)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  10. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    Science.gov (United States)

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  11. A new modeling and solution approach for the number partitioning problem

    Directory of Open Access Journals (Sweden)

    Bahram Alidaee

    2005-01-01

    Full Text Available The number partitioning problem has proven to be a challenging problem for both exact and heuristic solution methods. We present a new modeling and solution approach that consists of recasting the problem as an unconstrained quadratic binary program that can be solved by efficient metaheuristic methods. Our approach readily accommodates both the common two-subset partition case as well as the more general case of multiple subsets. Preliminary computational experience is presented illustrating the attractiveness of the method.

  12. Solute partitioning between the ionic liquid 1-n-butyl-3-methylimidazolium tetrafluoroborate and supercritical CO.sub.2./sub. from capillary-column chromatography

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Roth, Michal

    2005-01-01

    Roč. 109, č. 31 (2005), s. 15165-15171 ISSN 1520-6106 R&D Projects: GA AV ČR(CZ) KJB400310504 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid - supercritical CO2 system * solute partition coefficient * linear solvation energy relationship Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.033, year: 2005

  13. High-throughput determination of octanol/water partition coefficients using a shake-flask method and novel two-phase solvent system.

    Science.gov (United States)

    Morikawa, Go; Suzuka, Chihiro; Shoji, Atsushi; Shibusawa, Yoichi; Yanagida, Akio

    2016-01-05

    A high-throughput method for determining the octanol/water partition coefficient (P(o/w)) of a large variety of compounds exhibiting a wide range in hydrophobicity was established. The method combines a simple shake-flask method with a novel two-phase solvent system comprising an acetonitrile-phosphate buffer (0.1 M, pH 7.4)-1-octanol (25:25:4, v/v/v; AN system). The AN system partition coefficients (K(AN)) of 51 standard compounds for which log P(o/w) (at pH 7.4; log D) values had been reported were determined by single two-phase partitioning in test tubes, followed by measurement of the solute concentration in both phases using an automatic flow injection-ultraviolet detection system. The log K(AN) values were closely related to reported log D values, and the relationship could be expressed by the following linear regression equation: log D=2.8630 log K(AN) -0.1497(n=51). The relationship reveals that log D values (+8 to -8) for a large variety of highly hydrophobic and/or hydrophilic compounds can be estimated indirectly from the narrow range of log K(AN) values (+3 to -3) determined using the present method. Furthermore, log K(AN) values for highly polar compounds for which no log D values have been reported, such as amino acids, peptides, proteins, nucleosides, and nucleotides, can be estimated using the present method. The wide-ranging log D values (+5.9 to -7.5) of these molecules were estimated for the first time from their log K(AN) values and the above regression equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance

    Science.gov (United States)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.

  15. Diffusion coefficients of paracetamol in aqueous solutions

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Barros, Marisa C.F.; Veríssimo, Luís M.P.; Santos, Cecilia I.A.V.; Cabral, Ana M.T.D.P.V.; Gaspar, Gualter D.; Esteso, Miguel A.

    2012-01-01

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, D m 0 , and ionized forms, D ± 0 , of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm −3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  16. Myocardial T1 mapping and determination of partition coefficients at 3 tesla: comparison between gadobenate dimeglumine and gadofosveset trisodium

    Directory of Open Access Journals (Sweden)

    Marcelo Souto Nacif

    2018-01-01

    Full Text Available Abstract Objective: To compare an albumin-bound gadolinium chelate (gadofosveset trisodium and an extracellular contrast agent (gadobenate dimeglumine, in terms of their effects on myocardial longitudinal (T1 relaxation time and partition coefficient. Materials and Methods: Study subjects underwent two imaging sessions for T1 mapping at 3 tesla with a modified look-locker inversion recovery (MOLLI pulse sequence to obtain one pre-contrast T1 map and two post-contrast T1 maps (mean 15 and 21 min, respectively. The partition coefficient was calculated as ΔR1myocardium /ΔR1blood , where R1 is 1/T1. Results: A total of 252 myocardial and blood pool T1 values were obtained in 21 healthy subjects. After gadolinium administration, the myocardial T1 was longer for gadofosveset than for gadobenate, the mean difference between the two contrast agents being −7.6 ± 60 ms (p = 0.41. The inverse was true for the blood pool T1, which was longer for gadobenate than for gadofosveset, the mean difference being 56.5 ± 67 ms (p < 0.001. The partition coefficient (λ was higher for gadobenate than gadofosveset (0.41 vs. 0.33, indicating slower blood pool washout for gadofosveset than for gadobenate. Conclusion: Myocardial T1 times did not differ significantly between gadobenate and gadofosveset. At typical clinical doses of the contrast agents, partition coefficients were significantly lower for the intravascular contrast agent than for the extravascular agent.

  17. Partition coefficients of some purine derivatives and its application to pharmacokinetics.

    Science.gov (United States)

    Chrzanowska, M; Sobiak, J; Kuehn, M; Dorawa, E; Hermann, T

    2009-12-01

    Metazathioprine (MAZA), a methylated derivative of azathioprine (AZA), demonstrated the greatest values of apparent and specific partition coefficients in n-octanol/phosphate buffer at pH 5.7 and pH 7.4 among purine derivatives such as 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) and AZA. Introduction of a methyl group into the imidazole ring of AZA increases lipophilic properties of MAZA compared to AZA. Mass balance of purine derivatives in n-octanol and in phosphate buffer indicated their chemical stability in those media.

  18. Determination of partition coefficients using 1 H NMR spectroscopy and time domain complete reduction to amplitude-frequency table (CRAFT) analysis.

    Science.gov (United States)

    Soulsby, David; Chica, Jeryl A M

    2017-08-01

    We have developed a simple, direct and novel method for the determination of partition coefficients and partitioning behavior using 1 H NMR spectroscopy combined with time domain complete reduction to amplitude-frequency tables (CRAFT). After partitioning into water and 1-octanol using standard methods, aliquots from each layer are directly analyzed using either proton or selective excitation NMR experiments. Signal amplitudes for each compound from each layer are then extracted directly from the time domain data in an automated fashion and analyzed using the CRAFT software. From these amplitudes, log P and log D 7.4 values can be calculated directly. Phase, baseline and internal standard issues, which can be problematic when Fourier transformed data are used, are unimportant when using time domain data. Furthermore, analytes can contain impurities because only a single resonance is examined and need not be UV active. Using this approach, we examined a variety of pharmaceutically relevant compounds and determined partition coefficients that are in excellent agreement with literature values. To demonstrate the utility of this approach, we also examined salicylic acid in more detail demonstrating an aggregation effect as a function of sample loading and partition coefficient behavior as a function of pH value. This method provides a valuable addition to the medicinal chemist toolbox for determining these important constants. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Chromatographic retention prediction and octanol-water partition coefficient determination of monobasic weak acidic compounds in ion-suppression reversed-phase liquid chromatography using acids as ion-suppressors.

    Science.gov (United States)

    Ming, Xin; Han, Shu-ying; Qi, Zheng-chun; Sheng, Dong; Lian, Hong-zhen

    2009-08-15

    Although simple acids, replacing buffers, have been widely applied to suppress the ionization of weakly ionizable acidic analytes in reversed-phase liquid chromatography (RPLC), none of the previously reported works focused on the systematic studies about the retention behavior of the acidic solutes in this ion-suppression RPLC mode. The subject of this paper was therefore to investigate the retention behavior of monobasic weak acidic compounds using acetic, perchloric and phosphoric acids as the ion-suppressors. The apparent octanol-water partition coefficient (K" ow) was proposed to calibrate the octanol-water partition coefficient (K(ow)) of these weak acidic compounds, which resulted in a better linear correlation with log k(w), the logarithm of the hypothetical retention factor corresponding to neat aqueous fraction of hydroorganic mobile phase. This log K" ow-log k w linear correlation was successfully validated by the results of monocarboxylic acids and monohydrating phenols, and moreover by the results under diverse experimental conditions for the same solutes. This straightforward relationship not only can be used to effectively predict the retention values of weak acidic solutes combined with Snyder-Soczewinski equation, but also can offer a promising medium for directly measuring K(ow) data of these compounds via Collander equation. In addition, the influence of the different ion-suppressors on the retention of weak acidic compounds was also compared in this RPLC mode.

  20. Polymers as reference partitioning phase: polymer calibration for an analytically operational approach to quantify multimedia phase partitioning

    DEFF Research Database (Denmark)

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe

    2016-01-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning......-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients...

  1. A critical compilation and review of default soil solid/liquid partition coefficients, Kd, for use in environmental assessments

    International Nuclear Information System (INIS)

    Thibault, D.H.; Sheppard, M.I.; Smith, P.A.

    1990-03-01

    Environmental assessments of the Canadian concept for disposal of nuclear fuel waste in plutonic rock formations require analyses of the migration of nuclides from the disposal vault to the biosphere. Analyses of nuclide migration via groundwater through the geosphere, unconsolidated overburden and soil use models requiring solid/liquid partition coefficients (K d ) to describe the interaction of the nuclides with the solid materials. This report presents element-specific soil solid/liquid partition coefficients based on a detailed survey of the literature. Values for clays, silt, sand and organic soils are summarized. Partition coefficients for the following elements are presented: americium, antimony, arsenic, barium, boron, cadmium, calcium, carbon, cerium, cesium, chromium, cobalt, copper, curium, europium, iodine, iron, lead, lithium, manganese, molybdenum, neptunium, nickel, niobium, palladium, phosphorus, plutonium, polonium, radium, ruthenium, samarium, selenium, silver, strontium, technetium, tellurium, terbium, thorium, tin, tritium, uranium, zinc, and zirconium. The values compiled in this study are compared with earlier K d value compendiums and are the values recommended for the use in the soil, deep sediment and overburden models for the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

  2. QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Raska, Ivan; Benfenati, Emilio

    2010-04-01

    Three different splits into the subtraining set (n = 22), the set of calibration (n = 21), and the test set (n = 12) of 55 antineoplastic agents have been examined. By the correlation balance of SMILES-based optimal descriptors quite satisfactory models for the octanol/water partition coefficient have been obtained on all three splits. The correlation balance is the optimization of a one-variable model with a target function that provides both the maximal values of the correlation coefficient for the subtraining and calibration set and the minimum of the difference between the above-mentioned correlation coefficients. Thus, the calibration set is a preliminary test set. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  3. Determination of solid-liquid partition coefficients (Kd) for the herbicides inspiration and trifluralin in five UK agricultural soils

    International Nuclear Information System (INIS)

    Cooke, Cindy M.; Shaw, George; Collins, Chris D.

    2004-01-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14 C-isoproturon and 14 C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K d values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K d range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K d range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances

  4. Stochastic modeling of phosphorus transport in the Three Gorges Reservoir by incorporating variability associated with the phosphorus partition coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lei; Fang, Hongwei; Xu, Xingya; He, Guojian; Zhang, Xuesong; Reible, Danny

    2017-08-01

    Phosphorus (P) fate and transport plays a crucial role in the ecology of rivers and reservoirs in which eutrophication is limited by P. A key uncertainty in models used to help manage P in such systems is the partitioning of P to suspended and bed sediments. By analyzing data from field and laboratory experiments, we stochastically characterize the variability of the partition coefficient (Kd) and derive spatio-temporal solutions for P transport in the Three Gorges Reservoir (TGR). We formulate a set of stochastic partial different equations (SPDEs) to simulate P transport by randomly sampling Kd from the measured distributions, to obtain statistical descriptions of the P concentration and retention in the TGR. The correspondence between predicted and observed P concentrations and P retention in the TGR combined with the ability to effectively characterize uncertainty suggests that a model that incorporates the observed variability can better describe P dynamics and more effectively serve as a tool for P management in the system. This study highlights the importance of considering parametric uncertainty in estimating uncertainty/variability associated with simulated P transport.

  5. Evaluation of alternative approaches for measuring n-octanol/water partition coefficients for methodologically challenging chemicals (MCCs)

    Science.gov (United States)

    Measurements of n-octanol/water partition coefficients (KOW) for highly hydrophobic chemicals, i.e., greater than 108, are extremely difficult and are rarely made, in part because the vanishingly small concentrations in the water phase require extraordinary analytical sensitivity...

  6. Determination and importance of temperature dependence of retention coefficient (RPHPLC) in QSAR model of nitrazepams' partition coefficient in bile acid micelles.

    Science.gov (United States)

    Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan

    2011-02-15

    Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Soil-water partition coefficients for uranium and thorium: a systematic study of Tummalapalle mining site, India

    International Nuclear Information System (INIS)

    Dalvi, Aditi; Verma, Rakesh; Kumar, Sangita D.; Reddy, A.V.R.

    2012-01-01

    The simplest and most common parameter for modeling radionuclide mobility in soils is the partition coefficient (K d ). The soil-water partition coefficient for radionuclide is affected by numerous geochemical parameters like pH, sorption to clays, presence of organic matter, iron oxides, other soil constituents and the chemical forms of the radionuclide as well as oxidation/reduction conditions and major ion chemistry. In these studies radionuclides uranium and thorium were systematically assessed for their behaviour in the soils from Tummalapalle mining site. Physico-chemical characteristics such as chemical composition, pH, CaCO 3 content and organic carbon were determined for soils and synthetic groundwater samples. Oven dried soil samples (1g) were taken in polycarbonate tube and washed with synthetic ground water till the pH of the supernatant solution remained unchanged. The soil sample was then equilibrated with 30 mL of synthetic ground water spiked with an element of interest. The pH was adjusted to its initial value by addition of small increments of dilute NaOH/HNO 3 . The tubes containing samples were gently shaken for 72 h at room temperature. On completion of the experiment, it was centrifuged using high-speed centrifugation for 30 min and the aqueous phase was separated and analysed. The blank was processed in the same manner without adding soil. Determination of U and Th in the supernatant was carried out using ICPMS. The K d of thorium was found to be two-three order of magnitude higher than that of uranium for both the soil samples assessed in this study. The presence of carbonates and organic carbon in the groundwater has a significant effect on the K d of uranium. The K d values for uranium were found to be hundred fold lower in the presence of carbonates. (author)

  8. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2013-10-30

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  9. Spatially Partitioned Embedded Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.; MacDonald, Colin B.; Ruuth, Steven J.

    2013-01-01

    We study spatially partitioned embedded Runge--Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in nonembedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to nonphysical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted nonoscillatory spatial discretizations. Numerical experiments are provided to support the theory.

  10. Zone fluidics for measurement of octanol-water partition coefficient of drugs.

    Science.gov (United States)

    Wattanasin, Panwadee; Saetear, Phoonthawee; Wilairat, Prapin; Nacapricha, Duangjai; Teerasong, Saowapak

    2015-02-20

    A novel zone fluidics (ZF) system for the determination of the octanol-water partition coefficient (Pow) of drugs was developed. The ZF system consisted of a syringe pump with a selection valve, a holding column, a silica capillary flow-cell and an in-line spectrophotometer. Exact microliter volumes of solvents (octanol and phosphate buffer saline) and a solution of the drug, sandwiched between air segments, were sequentially loaded into the vertically aligned holding column. Distribution of the drug between the aqueous and octanol phases occurred by the oscillation movement of the syringe pump piston. Phase separation occurred due to the difference in densities. The liquid zones were then pushed into the detection flow cell. In this method, absorbance measurements in only one of the phase (octanol or aqueous) were employed, which together with the volumes of the solvents and pure drug sample, allowed the calculation of the Pow. The developed system was applied to the determination of the Pow of some common drugs. The log (Pow) values agreed well with a batch method (R(2)=0.999) and literature (R(2)=0.997). Standard deviations for intra- and inter-day analyses were both less than 0.1log unit. This ZF system provides a robust and automated method for screening of Pow values in the drug discovery process. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    International Nuclear Information System (INIS)

    Le, T.T. Yen; Hendriks, A. Jan

    2014-01-01

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  12. Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T. Yen, E-mail: YenLe@science.ru.nl; Hendriks, A. Jan

    2014-08-15

    Soil properties, i.e., pH and contents of soil organic matter (SOM), dissolved organic carbon (DOC), clay, oxides, and reactive metals, are required inputs to both mechanistic and empirical modeling in assessing metal solid-solution partitioning. Several of these properties are rarely measured in site-specific risk assessment. We compared the uncertainties induced by lacking data on these soil properties in estimating metal soil solution concentrations. The predictions by the Orchestra framework were more sensitive to lacking soil property data than the predictions by the transfer functions. The deviations between soil solution concentrations of Cd, Ni, Zn, Ba, and Co estimated with measured SOM and those estimated with generic SOM by the Orchestra framework were about 10 times larger than the deviations in the predictions by the transfer functions. High uncertainties were induced by lacking data in assessing solid-solution partitioning of oxy-anions like As, Mo, Sb, Se, and V. Deviations associated with lacking data in predicting soil solution concentrations of these metals by the Orchestra framework reached three-to-six orders of magnitude. The solid-solution partitioning of metal cations was strongly influenced by pH and contents of organic matter, oxides, and reactive metals. Deviations of more than two orders of magnitude were frequently observed between the estimates of soil solution concentrations with the generic values of these properties and the estimates based on the measured data. Reliable information on these properties is preferred to be included in the assessment by either the Orchestra framework or transfer functions. - Highlights: • Estimates of metal solid-solution partitioning sensitive to soil property data. • Uncertainty mainly due to lacking reactive metal contents, pH, and organic matter. • Soil solution concentrations of oxy-anions highly influenced by oxide contents. • Clay contents had least effects on solid-solution partitioning

  13. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    Science.gov (United States)

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  14. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  15. Field determination and QSPR prediction of equilibrium-status soil/vegetation partition coefficient of PCDD/Fs.

    Science.gov (United States)

    Li, Li; Wang, Qiang; Qiu, Xinghua; Dong, Yian; Jia, Shenglan; Hu, Jianxin

    2014-07-15

    Characterizing pseudo equilibrium-status soil/vegetation partition coefficient KSV, the quotient of respective concentrations in soil and vegetation of a certain substance at remote background areas, is essential in ecological risk assessment, however few previous attempts have been made for field determination and developing validated and reproducible structure-based estimates. In this study, KSV was calculated based on measurements of seventeen 2,3,7,8-substituted PCDD/F congeners in soil and moss (Dicranum angustum), and rouzi grass (Thylacospermum caespitosum) of two background sites, Ny-Ålesund of the Arctic and Zhangmu-Nyalam region of the Tibet Plateau, respectively. By both fugacity modeling and stepwise regression of field data, the air-water partition coefficient (KAW) and aqueous solubility (SW) were identified as the influential physicochemical properties. Furthermore, validated quantitative structure-property relationship (QSPR) model was developed to extrapolate the KSV prediction to all 210 PCDD/F congeners. Molecular polarizability, molecular size and molecular energy demonstrated leading effects on KSV. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Determination of solid-liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils.

    Science.gov (United States)

    Cooke, Cindy M; Shaw, George; Collins, Chris D

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.

  17. Determination of the air/water partition coefficient of groundwater radon using liquid scintillation counter

    International Nuclear Information System (INIS)

    Lee, K.Y.; Yoon, Y.Y.; Ko, K.S.

    2010-01-01

    A method was studied for measuring air/water partition coefficient (K air/water ) of groundwater radon by a simple procedure using liquid scintillation counter (LSC). In contrast conventional techniques such as equilibrium partitioning in a closed system or air striping methods, the described method allow for a simple and uncomplicated determination of the coefficient. The (K air/water ) of radon in pure water has been well known quantitatively over a wide range of temperatures. In this work, groundwater samples having high radon concentration instead of distilled water have been used to determine the (K air/water ) of radon in the temperature range of 0-25. Aqueous phase in a closed system was used in this study instead of gaseous phase in conventional methods. Three kinds of groundwater taken from different geologic environments were used to investigate the effect of groundwater properties. With the aim to evaluate the reproducibility of the data an appropriate number of laboratory experiments have been carried out. The results show that tie (K air/water ) of radon in the groundwater is smaller than that in the pure water. However, the temperature effect on the coefficient is similar in the groundwater and the pure water. The method using aqueous phase in a closed system by LSC can be used to determine the (K air/water ) of radon in various groundwaters with a simple procedure. The results will be presented at the NAC-IV conference

  18. The partitioning of uranium and neptunium onto hydrothermally altered concrete

    International Nuclear Information System (INIS)

    Zhao, P.; Allen, P.G.; Sylwester, E.R.; Viani, B.E.

    2000-01-01

    Partition coefficients (K d ) of U(VI) and Np(V) on untreated and hydrothermally altered concrete were measured in 0.01 M NaCl and 0.01 M NaHCO 3 solutions as functions of concentration of the radionuclides, pH, and time. The partition coefficients for both U(VI) and Np(V) on hydrothermally altered concrete are significantly lower than those on untreated concrete. The partition of both U(VI) and Np(V) are pH dependent, although the pH dependence does not appear to reflect precipitation of U and Np-bearing phases. Both sorption and precipitation are likely processes controlling partitioning of U to concrete; sorption is the most likely process controlling the partitioning of Np to concrete. The presence of 0.01 M carbonate species in solution decreases K d of U(VI) for both hydrothermally altered and untreated concrete from ≥ 10 4 mL/g to ∝ 400 to 1000 mL/g indicating a significant impact on U(VI) sorption. In contrast, the presence of carbonate only reduced the K d of Np(V) by one order of magnitude or less. X-ray absorption spectroscopy analysis of U/concrete mixtures at different pHs and times indicate that uranyl ions are partitioned as monomeric species on untreated concrete, but oligomeric species on hydrothermally altered concrete. Similar analysis of Np/concrete mixtures shows that about half of the partitioned Np(V) is reduced to Np(IV) over a period of 6 months. (orig.)

  19. Determination of partition and diffusion coefficient of formaldehyde in selected building materials and impact of relative humidity

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  20. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ondo, Daniel; Barankova, Eva [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dohnal, Vladimir, E-mail: dohnalv@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-08-15

    Highlights: > Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. > Complex stabilities reflect host-guest size matching and hydrophobic interaction. > Presence of halogens in the guest molecule stabilizes the binding. > Thermodynamic origin of the binding varies greatly among the systems studied. > Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (K{sub GL}) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, {alpha},{alpha},{alpha}-trifluorotoluene, and toluene in aqueous solutions of natural {alpha}-, {beta}-, and {gamma}-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  1. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    Science.gov (United States)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  2. Novel medium-throughput technique for investigating drug-cyclodextrin complexation by pH-metric titration using the partition coefficient method.

    Science.gov (United States)

    Dargó, Gergő; Boros, Krisztina; Péter, László; Malanga, Milo; Sohajda, Tamás; Szente, Lajos; Balogh, György T

    2018-05-05

    The present study was aimed to develop a medium-throughput screening technique for investigation of cyclodextrin (CD)-active pharmaceutical ingredient (API) complexes. Dual-phase potentiometric lipophilicity measurement, as gold standard technique, was combined with the partition coefficient method (plotting the reciprocal of partition coefficients of APIs as a function of CD concentration). A general equation was derived for determination of stability constants of 1:1 CD-API complexes (K 1:1,CD ) based on solely the changes of partition coefficients (logP o/w N -logP app N ), without measurement of the actual API concentrations. Experimentally determined logP value (-1.64) of 6-deoxy-6[(5/6)-fluoresceinylthioureido]-HPBCD (FITC-NH-HPBCD) was used to estimate the logP value (≈ -2.5 to -3) of (2-hydroxypropyl)-ß-cyclodextrin (HPBCD). The results suggested that the amount of HPBCD can be considered to be inconsequential in the octanol phase. The decrease of octanol volume due to the octanol-CD complexation was considered, thus a corrected octanol-water phase ratio was also introduced. The K 1:1,CD values obtained by this developed method showed a good accordance with the results from other orthogonal methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  4. Determination of solid-liquid partition coefficients (K{sub d}) for the herbicides inspiration and trifluralin in five UK agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Cindy M. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)]. E-mail: cindy.cooke@imperial.ac.uk; Shaw, George [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom); Collins, Chris D. [Department of Environmental Science and Technology, Faculty of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY (United Kingdom)

    2004-12-01

    Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of {sup 14}C-isoproturon and {sup 14}C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (K{sub d} values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (K{sub d} range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (K{sub d} range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography. - Capsule: Herbicide soil sorption described by a dual-phase adsorption model reflected soil partitioning, as influenced by soil OC and humic substances.

  5. Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction.

    Science.gov (United States)

    Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria

    2014-02-21

    Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity (journal)

    Science.gov (United States)

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50% and 70% RH). A dynamic dual-chamber test meth...

  7. Kinetics of Solute Partitioning During Intercritical Annealing of a Medium-Mn Steel

    Science.gov (United States)

    Kamoutsi, H.; Gioti, E.; Haidemenopoulos, Gregory N.; Cai, Z.; Ding, H.

    2015-11-01

    The evolution of austenite fraction and solute partitioning (Mn, Al, and C) during intercritical annealing was calculated for a medium-Mn steel containing 11 pct Mn. Austenite growth takes place in three stages. The first stage is growth under non-partitioning local equilibrium (NPLE) controlled by carbon diffusion in ferrite. The second stage is growth under partitioning local equilibrium (PLE) controlled by diffusion of Mn in ferrite. The third stage is shrinkage of austenite under PLE controlled by diffusion of Mn in austenite. During PLE growth, the austenite is progressively enriched in Mn. Compositional spikes evolve early during NPLE growth and broaden with annealing temperature and time.

  8. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining 'slow stirring' and solid phase micro extraction

    NARCIS (Netherlands)

    Jonker, Michiel T O

    Octanol-water partition coefficients (Kow ) are widely used in fate and effects modelling of chemicals. Still, high quality experimental Kow data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and

  9. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Correlation of the octanol/water partition coefficient with clearance halftimes of intratracheally instilled aromatic hydrocarbons in rats

    International Nuclear Information System (INIS)

    Bond, J.A.; Baker, S.M.; Bechtold, W.E.

    1985-01-01

    Studies on the lung retention of polycyclic aromatic hydrocarbons (PAH) after inhalation have indicated that, in general, the PAH are rapidly cleared from the respiratory tract. Clearance of the PAH from the lungs is best described as bi-phasic, with the long-term component of the clearance curve having a half-time of greater than 24 h. The purpose of this study was to determine whether a relationship exists between the lipophilicity (as measured by the octanol/water partition coefficient, P) of various PAH and the short-term and long-term clearance half-times of PAH in rat lungs. Female F344/Crl rats were administered intratracheally 1 nmol of 14 C-labelled anthracene (AN), benz (a) anthracene (BA), 1-nitropyrene (NP), 6-nitrobenzo (a) pyrene (6-NBP), or dibenzo (c, g) carbazole (DBC). At various times after instillation rats were sacrificed and the amount of 14 C from rat lungs following instillation of the different PAH was biphasic. In all cases, greater than 85% of the initial dose instilled was cleared with a half-time of less than 1 h. The half-times for clearance of the residual 14 C (1-15% of the dose) were 26, 30, 36, 53 and 63 h for AN, NP, 6-NBP, BA and DCB, respectively. The log of the octanol-water partition coefficients for the different PAH examined ranged from 4.1 (AN) to 6.05 (DBC). Plots of the octanol/water coefficients vs. the long-term clearance half-time for the PAH indicated a linear correlation (p 2 =0.96). The results from this study indicate that the greater the lipophilicity of the PAH, the slower the long-term clearance of a small fraction (1-15%) of PAH from rat lungs. These data suggest that predictions of long-term lung clearance can be made for PAH with log octanol-water partition coefficients between 4 and 6. (author)

  11. Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide

    International Nuclear Information System (INIS)

    Domańska, Urszula; Lukoshko, Elena Vadimovna

    2014-01-01

    Highlights: • Measurements of activity coefficients at infinite dilution using GLC. • Sixty one organic solvents in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. • High selectivity for heptane/thiophene, or pyridine, or 1-nitropropane. • The excess thermodynamic functions and the gas–liquid partition coefficients were presented. • Possible entrainer for the extraction of sulphur and nitrogen-compounds from alkanes. -- Abstract: The activity coefficients at infinite dilution, γ 13 ∞ , for 61 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, water, thiophene, ethers, ketones, esters, aldehyde, acetonitrile, pyridine and 1-nitropropane in the ionic liquid (IL) 1-butyl-1-methylmorpholinium tricyanomethanide, [BMMOR][TCM] were determined by gas–liquid chromatography at six temperatures within the range of (318.15 to 368.15) K. The thermodynamic functions at infinite dilution as partial molar excess Gibbs free energy ΔG 1 E,∞ , enthalpy ΔH 1 E,∞ , and entropy term T ref ΔS 1 E,∞ were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The density of [BMMOR][TCM] was measured over the temperature range (288.15 to 368.15) K. The gas–liquid partition coefficient K L was calculated for all solutes. The values of selectivity and capacity for a few separation problems such as hexane/benzene, cyclohexane/benzene, heptane/thiophene at T = 328.15 K were calculated from γ 13 ∞ and compared to literature values for similar ionic liquids, viz. N-methyl-2-pyrrolidinone (NMP), and sulfolane. In comparison with the previously measured values for [BMPYR][TCM], the morpholinium IL presents high selectivity for the separation of aromatic hydrocarbons from aliphatic hydrocarbons, and especially thiophene, or piridine from heptane with a slightly lower capacity. New data show that [BMMOR][TCM] IL may be proposed as an alternative solvent for the separation of

  12. Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide

    International Nuclear Information System (INIS)

    Domańska, Urszula; Lukoshko, Elena Vadimovna

    2013-01-01

    Highlights: • Measurements of activity coefficients at infinite dilution using GLC. • 62 organic solvents and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide. • High capacity for thiophene, 1.37 at T = 328.15 K. • Possible entrainer for extraction of sulfur, or nitrogen compounds from fuels. • The excess thermodynamic functions and the gas–liquid partition coefficients were calculated. -- Abstract: The activity coefficients at infinite dilution, γ 13 ∞ , for 62 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, water, thiophene, ethers, ketones, acetonitrile, pyridine and 1-nitropropane in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM] were determined by gas–liquid chromatography at six temperatures over the range of (318.15 to 368.15) K. The partial molar excess Gibbs free energy, ΔG 1 E ∞, enthalpy ΔH 1 E ∞, and entropy term T ref ΔS 1 E ,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The densities of [BMPYR][TCM] were measured within temperature range from 318.15 K to 368.15 K. The gas–liquid partition coefficients, K L were calculated for all solutes. The values of selectivity for few separation problems as hexane/benzene, cyclohexane/benzene, heptane/thiophene were calculated from γ 13 ∞ and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, and other ionic liquids based on [BMPYR] + cation. In comparison with the former measured ILs, [BMPYR][TCM] present quite high selectivity for the separation of aromatic hydrocarbons and aliphatics hydrocarbons, an average capacity for benzene. The data presented here shows that [BMPYR][TCM] ionic liquid can be used as an alternative solvent for the separation of thiophene from the aliphatic hydrocarbons

  13. Evaluation of the ability of arsenic species to traverse cell membranes by simple diffusion using octanol-water and liposome-water partition coefficients.

    Science.gov (United States)

    Chávez-Capilla, Teresa; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-11-01

    Arsenic metabolism in living organisms is dependent on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative influx and efflux route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. Using octanol-water and liposome-water partition coefficients, the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thio-methylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes was investigated. Molecular modelling of arsenic species was used to explain the results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. Trivalent arsenic species and thio-pentavalent arsenic species showed higher partition coefficients, suggesting that they can easily traverse cell membranes by passive simple diffusion. Given the higher toxicity of these species compared to oxo-pentavalent arsenic species, this study provides evidence supporting the risk associated with human exposure to trivalent and thio-arsenic species. Copyright © 2016. Published by Elsevier B.V.

  14. Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network

    International Nuclear Information System (INIS)

    Konoz, Elahe; Golmohammadi, Hassan

    2008-01-01

    An artificial neural network (ANN) was constructed and trained for the prediction of air-to-blood partition coefficients of volatile organic compounds. The inputs of this neural network are theoretically derived descriptors that were chosen by genetic algorithm (GA) and multiple linear regression (MLR) features selection techniques. These descriptors are: R maximal autocorrelation of lag 1 weighted by atomic Sanderson electronegativities (R1E+), electron density on the most negative atom in molecule (EDNA), maximum partial charge for C atom (MXPCC), surface weighted charge partial surface area (WNSA1), fractional charge partial surface area (FNSA2) and atomic charge weighted partial positive surface area (PPSA3). The standard errors of training, test and validation sets for the ANN model are 0.095, 0.148 and 0.120, respectively. Result obtained showed that nonlinear model can simulate the relationship between structural descriptors and the partition coefficients of the molecules in data set accurately

  15. Numerical study of partitions effect on multiplicity of solutions in an infinite channel periodically heated from below

    International Nuclear Information System (INIS)

    Abourida, B.; Hasnaoui, M.

    2005-01-01

    Laminar natural convection in an infinite horizontal channel heated periodically from below and provided with thin adiabatic partitions on its lower wall, is investigated numerically. The effect of these partitions on the multiplicity of solutions and heat transfer characteristics in the computational domain is studied. The parameters of the study are the Rayleigh number (10 2 Ra 4.9 x 10 6 ) and the height of the partitions (0 B = h'/H' 1/2). The results obtained in the case of air (Pr = 0.72) as working fluid show that depending on the governing parameters, the existence of multiple solutions is possible. Important differences in terms of heat transfer are observed between two different solutions

  16. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    Science.gov (United States)

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  17. Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors.

    Science.gov (United States)

    Sabour, Mohammad Reza; Moftakhari Anasori Movahed, Saman

    2017-02-01

    The soil sorption partition coefficient logK oc is an indispensable parameter that can be used in assessing the environmental risk of organic chemicals. In order to predict soil sorption partition coefficient for different and even unknown compounds in a fast and accurate manner, a radial basis function neural network (RBFNN) model was developed. Eight topological descriptors of 800 organic compounds were used as inputs of the model. These 800 organic compounds were chosen from a large and very diverse data set. Generalized Regression Neural Network (GRNN) was utilized as the function in this neural network model due to its capability to adapt very quickly. Hence, it can be used to predict logK oc for new chemicals, as well. Out of total data set, 560 organic compounds were used for training and 240 to test efficiency of the model. The obtained results indicate that the model performance is very well. The correlation coefficients (R2) for training and test sets were 0.995 and 0.933, respectively. The root-mean square errors (RMSE) were 0.2321 for training set and 0.413 for test set. As the results for both training and test set are extremely satisfactory, the proposed neural network model can be employed not only to predict logK oc of known compounds, but also to be adaptive for prediction of this value precisely for new products that enter the market each year. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Prediction of thermodynamic properties of solute elements in Si solutions using first-principles calculations

    International Nuclear Information System (INIS)

    Iwata, K.; Matsumiya, T.; Sawada, H.; Kawakami, K.

    2003-01-01

    The method is presented to predict the activity coefficients and the interaction parameters of the solute elements in infinite dilute Si solutions by the use of first-principles calculations based on density functional theory. In this method, the regular solution model is assumed. The calculated activity coefficients in solid Si are converted to those in molten Si by the use of the solid-liquid partition coefficients. Furthermore, the interaction parameters in solid Si solutions are calculated and compared with reported experimental values of those in liquid Si solutions. The results show that the calculated activity coefficients and interaction parameters of Al, Fe, Ti and Pb in Si solutions are in good agreement with the tendency of the experiments. However, the calculations have some quantitative discrepancy from the experiments. It is expected that consideration of the excess entropy would reduce this discrepancy

  19. Evaluation of long-range transport potential of selected brominated flame retardants with measured 1-octanol-air partition coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jeong; Kwon, Jung Hwan [Div. of Environmental Science and Ecological Engineering, Korea University, Seoul (Korea, Republic of)

    2016-10-15

    Various alternative flame retardants are used in many countries since polybrominated diphenyl ethers (PBDEs) were classified as persistent organic pollutants (POPs). However, difficulties in the evaluation of the long-range transport potential (LRTP) of the alternatives are related to the lack of information on their physicochemical properties, which govern their environmental fates and transport. Based on the simulation of LRTP using OECD P{sub OV} and LRTP Screening Tool, five alternative brominated flame retardants (BFRs) (hexabromobenzene [HBB], 2,3,4,5,6-pentabromotoluene [PBT], 2,3,4,5,6-pentabromoethylbenzene [PBEB], 2-ethylhexyl 2,3,4,5-tetrabromobenzoate [TBB], and 1,2,4,5-tetrabromo-3,6-dimethylbenzene [TBX]), and 3 PBDEs (BDE-28, BDE-47, and BDE-99) were chosen to perform a refined assessment. This was done using an experimentally measured 1-octanol–air partition coefficient (K{sub OA}) for the calculation of the air–water partition coefficient (K{sub AW}) required for the model. The four selected alternative BFRs (HBB, PBT, PBEB, TBX) have K{sub OA} values close to the in silico estimation used in the screening evaluation. On the other hand, the measured K{sub OA} value for TBB was two orders of magnitude lower than the estimated value used in the screening simulation. The refined simulation showed that characteristic travel distance (CTD) and transfer efficiency (TE) for HBB, PBT, PBEB, and TBX were greater than those for BDE-28, whereas CTD and TE for TBB were lower than those for BDE-28. This suggested that TBB has a lower LRTP than BDE-28, considering the refined partition coefficients.

  20. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2013-01-01

    Highlights: • γ ∞ and K L for 65 solutes in the IL [C 2 OHmim][FAP] were determined by IGC. • Partial molar thermodynamics functions ΔG 1 E,∞ , ΔH 1 E,∞ and ΔS 1 E,∞ were calculated. • Selectivities and capacities for alkanes/thiophene separation problems were calculated. • LFER system constants as a function of T for [C 2 OHmim][FAP] were calculated. • Results were compared to other ILs based on the same cation and anion. -- Abstract: This work presents new data of activity coefficients at infinite dilution, γ ∞ of different organic solutes and water in the 1-(2-hydroxyethyl)-3-methylimidazolium trifluorotris(perfluoroethyl)phosphate, [C 2 OHmim][FAP] ionic liquid. Values of γ ∞ were determined for 65 organic solutes, including alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, aldehydes, acetonitrile and water by inverse gas chromatography within the temperature range from (318.15 to 368.15) K. The basic thermodynamic functions, such as partial molar excess Gibbs energies, ΔG 1 E,∞ , enthalpies, ΔH 1 E,∞ and entropies, ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ ∞ values obtained over the temperature range. Additionally the gas–liquid partition coefficients, K L were determined. Experimental values of gas–liquid partition coefficients were used to determine the coefficients in the Abraham solvation parameter model (LFER). Results are compared to previously investigated ionic liquids with the same [C 2 OHmim] + cation and [FAP] − anion. The selectivity and capacity at infinite dilution for alkanes/thiophene extraction problems were calculated from experimental γ ∞ values to verify the possibility of investigated ionic liquid as an entrainer in liquid–liquid extraction

  1. Bioaccumulation Patterns Of PCBs In A Temperate, Freshwater Food Web And Their Relationshop To The Octanol-Water Partition Coefficient (Presentation)

    Science.gov (United States)

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism tropic position (TP) at the Lake Hartwell Superfund site (South Carolina, USA). We measured PCBs (127 congeners) and stable isotopes (δ

  2. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    Science.gov (United States)

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  3. The complex formation-partition and partition-association models of solvent extraction of ions

    International Nuclear Information System (INIS)

    Siekierski, S.

    1976-01-01

    Two models of the extraction process have been proposed. In the first model it is assumed that the partitioning neutral species is at first formed in the aqueous phase and then transferred into the organic phase. The second model is based on the assumption that equivalent amounts of cations are at first transferred from the aqueous into the organic phase and then associated to form a neutral molecule. The role of the solubility parameter in extraction and the relation between the solubility of liquid organic substances in water and the partition of complexes have been discussed. The extraction of simple complexes and complexes with organic ligands has been discussed using the first model. Partition coefficients have been calculated theoretically and compared with experimental values in some very simple cases. The extraction of ion pairs has been discussed using the partition-association model and the concept of single-ion partition coefficients. (author)

  4. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowska, Marta; Acree, William E.; Baker, Gary A.

    2011-01-01

    Research highlights: → Measurements of activity coefficients at infinite dilution using GLC. → 36 organic solvents and water in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB]. → Possible entrainer for different separation processes. → The partial molar excess thermodynamic functions at infinite dilution were calculated. - Abstract: The activity coefficients at infinite dilution, γ 13 ∞ , for 36 solutes, including alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, ethers, acetone, and water, in the ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate, [EMIM][TCB], were determined by gas-liquid chromatography at temperatures from 298.15 K to 358.15 K. These values are compared to those previously published for selected solutes in the same ionic liquid. The values of the partial molar excess Gibbs free energy ΔG 1 E,∞ , enthalpy ΔH 1 E,∞ , and entropy ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. Three gas-liquid partition coefficients, K L were calculated for all solutes and the Abraham solvation parameter model is discussed. The values of the selectivity for different separation problems were calculated from γ 13 ∞ and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, 1-decyl-3-methylimidazolium tetracyanoborate, [DMIM][TCB], and additional ionic liquids.

  5. Partitioning of organochlorine pesticides from water to polyethylene passive samplers

    International Nuclear Information System (INIS)

    Hale, Sarah E.; Martin, Timothy J.; Goss, Kai-Uwe; Arp, Hans Peter H.; Werner, David

    2010-01-01

    The mass transfer rates and equilibrium partitioning behaviour of 14 diverse organochlorine pesticides (OCP) between water and polyethylene (PE) passive samplers, cut from custom made PE sheets and commercial polyethylene plastic bags, were quantified. Overall mass transfer coefficients, k O , estimated PE membrane diffusion coefficients, D PE , and PE-water partitioning coefficients, K PE-water, are reported. In addition, the partitioning of three polycyclic aromatic hydrocarbons (PAHs) from water to PE is quantified and compared with literature values. K PE-water values agreed mostly within a factor of two for both passive samplers and also with literature values for the reference PAHs. As PE is expected to exhibit similar sorption behaviour to long-chain alkanes, PE-water partitioning coefficients were compared to hexadecane-water partitioning coefficients estimated with the SPARC online calculator, COSMOtherm and a polyparameter linear free energy relationship based on the Abraham approach. The best correlation for all compounds tested was with COSMOtherm estimated hexadecane-water partitioning coefficients. - The partitioning of organochlorine pesticides between single phase polyethylene passive samplers and water is quantified.

  6. An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents

    Science.gov (United States)

    Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn

    2013-01-01

    Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…

  7. Determination of octanol-water partition coefficients of polar polycyclic aromatic compounds (N-PAC) by high performance liquid chromatography

    DEFF Research Database (Denmark)

    Helweg, C.; Nielsen, T.; Hansen, P.E.

    1997-01-01

    Prediction of 1-octanol water partition coefficients for a range of polar N-PAC from HPLC capacity coefficients has been investigated. Two commercially available columns, an ODS column and a Diol column were tested with water-methanol eluents. The best prediction of log K-ow for N-PAC was achieve...... with size and log K-ow for N-PAC was 1.1-1.3 lower than log K-ow for the equivalent PAH. Shielding of the nitrogen atom in the N-PAC compounds caused an increase in log K-ow. (C) 1997 Elsevier Science Ltd....

  8. Rapid analysis of dissolved methane, ethylene, acetylene and ethane using partition coefficients and headspace-gas chromatography.

    Science.gov (United States)

    Lomond, Jasmine S; Tong, Anthony Z

    2011-01-01

    Analysis of dissolved methane, ethylene, acetylene, and ethane in water is crucial in evaluating anaerobic activity and investigating the sources of hydrocarbon contamination in aquatic environments. A rapid chromatographic method based on phase equilibrium between water and its headspace is developed for these analytes. The new method requires minimal sample preparation and no special apparatus except those associated with gas chromatography. Instead of Henry's Law used in similar previous studies, partition coefficients are used for the first time to calculate concentrations of dissolved hydrocarbon gases, which considerably simplifies the calculation involved. Partition coefficients are determined to be 128, 27.9, 1.28, and 96.3 at 30°C for methane, ethylene, acetylene, and ethane, respectively. It was discovered that the volume ratio of gas-to-liquid phase is critical to the accuracy of the measurements. The method performance can be readily improved by reducing the volume ratio of the two phases. Method validation shows less than 6% variation in accuracy and precision except at low levels of methane where interferences occur in ambient air. Method detection limits are determined to be in the low ng/L range for all analytes. The performance of the method is further tested using environmental samples collected from various sites in Nova Scotia.

  9. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  10. Control of methanol vapours in a biotrickling filter: performance analysis and experimental determination of partition coefficient.

    Science.gov (United States)

    Avalos Ramirez, Antonio; Peter Jones, J; Heitz, Michéle

    2009-02-01

    Methanol vapours were treated in a biotrickling filter (BTF) packed with inert polypropylene spheres. The effects of the nitrogen concentration in the nutrient solution, the empty bed residence time (EBRT) and the methanol inlet concentration, on the BTF performance, were all examined. The elimination capacity (EC), the biomass and the carbon dioxide production rates were all increased with the rising of the nitrogen concentration and the EBRT. The EC also rose with increasing methanol inlet load (IL) when the methanol inlet concentration and the EBRT were varied, from 0.3 to 37.0 g m(-3), and from 20 to 65 s, respectively. The BTF reached its maximum EC level of 2160 g m(-3) h(-1) when it was operated at an IL level of 3700 g m(-3) h(-1). The input methanol was removed through two mechanisms: biodegradation and absorption in the liquid phase. The partition coefficient for the methanol in the BTF was determined at five EBRTs and along the packed bed. It generally followed the Henry model, having an average value of 2.64 x 10(-4)[mol L(-1)](gas)/[mol L(-1)](liquid).

  11. Effect of Atomic Charges on Octanol–Water Partition Coefficient Using Alchemical Free Energy Calculation

    Directory of Open Access Journals (Sweden)

    Koji Ogata

    2018-02-01

    Full Text Available The octanol–water partition coefficient (logPow is an important index for measuring solubility, membrane permeability, and bioavailability in the drug discovery field. In this paper, the logPow values of 58 compounds were predicted by alchemical free energy calculation using molecular dynamics simulation. In free energy calculations, the atomic charges of the compounds are always fixed. However, they must be recalculated for each solvent. Therefore, three different sets of atomic charges were tested using quantum chemical calculations, taking into account vacuum, octanol, and water environments. The calculated atomic charges in the different environments do not necessarily influence the correlation between calculated and experimentally measured ∆Gwater values. The largest correlation coefficient values of the solvation free energy in water and octanol were 0.93 and 0.90, respectively. On the other hand, the correlation coefficient of logPow values calculated from free energies, the largest of which was 0.92, was sensitive to the combination of the solvation free energies calculated from the calculated atomic charges. These results reveal that the solvent assumed in the atomic charge calculation is an important factor determining the accuracy of predicted logPow values.

  12. Solute trapping of Ge in Al

    International Nuclear Information System (INIS)

    Smith, P.M.; West, J.A.; Aziz, M.J.

    1992-01-01

    This paper reports on partitioning during rapid solidification of dilute Al-Ge alloys. Implanted thin films of Al have been pulsed-laser melted to obtain solidification at velocities in the range of 0.01 ms to 3.3 m/s, as measured by the transient conductance technique. Previous and subsequent Rutherford Backscattering depth profiling of the Ge solute in the Al alloys has been used to determine the nonequilibrium partition coefficient k. A significant degree of lateral film growth during solidification confines determination of k to the placing of an upper bound of 0.22 on k for solidification velocities in this range. The authors place a lower limit of 10 m/s on the diffusive velocity, which locates the transition from solute partitioning to solute trapping in the Continuous Growth Model

  13. Radionuclides distribution coefficient of soil to soil-solution

    International Nuclear Information System (INIS)

    1990-06-01

    The present book addresses various issues related with the coefficient of radionuclides distribution between soil and soil solution. It consists of six sections and two appendices. The second section, following an introductory one, describes the definition of the coefficient and a procedures of its calculation. The third section deals with the application of the distribution coefficient to the prediction of movements of radionuclides through soil. Various methods for measuring the coefficient are described in the fourth section. The next section discusses a variety of factors (physical and chemical) that can affect the distribution coefficient. Measurements of the coefficient for different types of oils are listed in the sixth section. An appendix is attached to the book to show various models that can be helpful in applying the coefficient of distribution of radionuclides moving from soil into agricultural plants. (N.K.)

  14. Estimation of the soil-water partition coefficient normalized to organic carbon for ionizable organic chemicals

    DEFF Research Database (Denmark)

    Franco, Antonio; Trapp, Stefan

    2008-01-01

    The sorption of organic electrolytes to soil was investigated. A dataset consisting of 164 electrolytes, composed of 93 acids, 65 bases, and six amphoters, was collected from literature and databases. The partition coefficient log KOW of the neutral molecule and the dissociation constant pKa were...... calculated by the software ACD/Labs®. The Henderson-Hasselbalch equation was applied to calculate dissociation. Regressions were developed to predict separately for the neutral and the ionic molecule species the distribution coefficient (Kd) normalized to organic carbon (KOC) from log KOW and pKa. The log...... KOC of strong acids (pKa correlated to these parameters. The regressions derived for weak acids and bases (undissociated at environmental pH) were similar. The highest sorption was found for strong bases (pKa > 7.5), probably due to electrical interactions. Nonetheless, their log KOC...

  15. Explicit solutions of two nonlinear dispersive equations with variable coefficients

    International Nuclear Information System (INIS)

    Lai Shaoyong; Lv Xiumei; Wu Yonghong

    2008-01-01

    A mathematical technique based on an auxiliary equation and the symbolic computation system Matlab is developed to construct the exact solutions for a generalized Camassa-Holm equation and a nonlinear dispersive equation with variable coefficients. It is shown that the variable coefficients of the derivative terms in the equations cause the qualitative change in the physical structures of the solutions

  16. Exact solutions to a nonlinear dispersive model with variable coefficients

    International Nuclear Information System (INIS)

    Yin Jun; Lai Shaoyong; Qing Yin

    2009-01-01

    A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.

  17. A novel method for the determination of adsorption partition coefficients of minor gases in a shale sample by headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Hu, Hui-Chao; Chai, Xin-Sheng; Pan, Lei; Xiao, Xian-Ming

    2013-10-04

    A novel method has been developed for the determination of adsorption partition coefficient (Kd) of minor gases in shale. The method uses samples of two different sizes (masses) of the same material, from which the partition coefficient of the gas can be determined from two independent headspace gas chromatographic (HS-GC) measurements. The equilibrium for the model gas (ethane) was achieved in 5h at 120°C. The method also involves establishing an equation based on the Kd at higher equilibrium temperature, from which the Kd at lower temperature can be calculated. Although the HS-GC method requires some time and effort, it is simpler and quicker than the isothermal adsorption method that is in widespread use today. As a result, the method is simple and practical and can be a valuable tool for shale gas-related research and applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Determination of the partition coefficient between dissolved organic carbon and seawater using differential equilibrium kinetics.

    Science.gov (United States)

    Kim, Du Yung; Kwon, Jung-Hwan

    2018-05-04

    Because the freely dissolved fraction of highly hydrophobic organic chemicals is bioavailable, knowing the partition coefficient between dissolved organic carbon and water (K DOCw ) is crucial to estimate the freely dissolved fraction from the total concentration. A kinetic method was developed to obtain K DOCw that required a shorter experimental time than equilibrium methods. The equilibrium partition coefficients of four polychlorinated biphenyls (PCBs) (2,4,4'-trichlorobiphenyl (PCB 28), 2,2',3,5'-tetrachlorobiphenyl (PCB 44), 2,2',4,5,5'-pentachlorobiphenyl (PCB 101), and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153)) between dissolved organic carbon and seawater (K DOCsw ) were determined using seawater samples from the Korean coast. The log K DOCsw values of PCB 28 were measured by equilibrating PCB 28, the least hydrophobic congener, with seawater samples, and the values ranged from 6.60 to 7.20. For the more hydrophobic PCBs (PCB 44, PCB 101, and PCB 153), kinetic experiments were conducted to determine the sorption rate constants (k 2 ) and their log K DOCsw values were obtained by comparing their k 2 with that of PCB 28. The calculated log K DOCsw values were 6.57-7.35 for PCB 44, 6.23-7.44 for PCB 101, and 6.35-7.73 for PCB 153. The validity of the proposed method was further confirmed using three less hydrophobic polycyclic aromatic hydrocarbons. This kinetic method shortened the experimental time to obtain the K DOCsw values of the more hydrophobic PCBs, which did not reach phase equilibrium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants.

    Science.gov (United States)

    Pintado-Herrera, Marina G; Lara-Martín, Pablo A; González-Mazo, Eduardo; Allan, Ian J

    2016-09-01

    There is a growing interest in assessing the concentration and distribution of new nonregulated organic compounds (emerging contaminants) in the environment. The measurement of freely dissolved concentrations using conventional approaches is challenging because of the low concentrations that may be encountered and their temporally variable emissions. Absorption-based passive sampling enables the estimation of freely dissolved concentrations of hydrophobic contaminants of emerging concern in water. In the present study, calibration was undertaken for 2 polymers, low-density polyethylene (LDPE) and silicone rubber for 11 fragrances, 5 endocrine-disrupting compounds, 7 ultraviolet (UV) filters, and 8 organophosphate flame retardant compounds. Batch experiments were performed to estimate contaminant diffusion coefficients in the polymers (Dp ), which in general decreased with increasing molecular weight. The values for fragrances, endocrine-disrupting compounds, and UV filters were in ranges similar to those previously reported for polycyclic aromatic hydrocarbons, but were 1 order of magnitude lower for organophosphate flame retardant compounds. Silicone rubber had higher Dp values than LDPE and was therefore selected for further experiments to calculate polymer/water partition coefficients (KPW ). The authors observed a positive correlation between log KPW and log octanol/water partition coefficient values. Field testing of silicone rubber passive samplers was undertaken though exposure in the River Alna (Norway) for an exposure time of 21 d to estimate freely dissolved concentration. Some fragrances and UV filters were predominant over other emerging and regulated contaminants, at levels up to 1600 ng L(-1) for galaxolide and 448 ng L(-1) for octocrylene. Environ Toxicol Chem 2016;35:2162-2172. © 2016 SETAC. © 2016 SETAC.

  20. Bayesian approach to estimate AUC, partition coefficient and drug targeting index for studies with serial sacrifice design.

    Science.gov (United States)

    Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William

    2014-03-01

    The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.

  1. Prediction of octanol-water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network.

    Science.gov (United States)

    Golmohammadi, Hassan

    2009-11-30

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structure of 141 organic compounds to their octanol-water partition coefficients (log P(o/w)). A genetic algorithm was applied as a variable selection tool. Modeling of log P(o/w) of these compounds as a function of theoretically derived descriptors was established by multiple linear regression (MLR), partial least squares (PLS), and artificial neural network (ANN). The best selected descriptors that appear in the models are: atomic charge weighted partial positively charged surface area (PPSA-3), fractional atomic charge weighted partial positive surface area (FPSA-3), minimum atomic partial charge (Qmin), molecular volume (MV), total dipole moment of molecule (mu), maximum antibonding contribution of a molecule orbital in the molecule (MAC), and maximum free valency of a C atom in the molecule (MFV). The result obtained showed the ability of developed artificial neural network to prediction of partition coefficients of organic compounds. Also, the results revealed the superiority of ANN over the MLR and PLS models. Copyright 2009 Wiley Periodicals, Inc.

  2. Partition of selected food preservatives in fish oil-water systems

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan; Leth, Torben

    2010-01-01

    The partition coefficients (Kow) of benzoic acid and sorbic acid in systems of fish oil (sand eel)–water, fish oil–buffer solution, rape oil–water and olive oil–water were experimentally determined in a temperature range from 5 to 43 °C and pH from 4.5 to 6.5 °C. The dimerization of benzoic acid...... in fish oil–water system was observed at 25 °C. Two modifications have been made to the Nordic Food Analysis Standard for the determination of sorbic acid by HPLC. The experimental results show that the Kow of benzoic acid and sorbic acid in fish oil–buffer system is ca. 100 times lower than that in fish...... oil–water system. The Kow values of benzoic acid and sorbic acid in fish oil and water system decrease with increasing system pH values. The partition coefficients of plant origin and fish origin oils are in the same order of magnitude even though their molecular structures are very different....

  3. Development of polyparameter linear free energy relationship models for octanol-air partition coefficients of diverse chemicals.

    Science.gov (United States)

    Jin, Xiaochen; Fu, Zhiqiang; Li, Xuehua; Chen, Jingwen

    2017-03-22

    The octanol-air partition coefficient (K OA ) is a key parameter describing the partition behavior of organic chemicals between air and environmental organic phases. As the experimental determination of K OA is costly, time-consuming and sometimes limited by the availability of authentic chemical standards for the compounds to be determined, it becomes necessary to develop credible predictive models for K OA . In this study, a polyparameter linear free energy relationship (pp-LFER) model for predicting K OA at 298.15 K and a novel model incorporating pp-LFERs with temperature (pp-LFER-T model) were developed from 795 log K OA values for 367 chemicals at different temperatures (263.15-323.15 K), and were evaluated with the OECD guidelines on QSAR model validation and applicability domain description. Statistical results show that both models are well-fitted, robust and have good predictive capabilities. Particularly, the pp-LFER model shows a strong predictive ability for polyfluoroalkyl substances and organosilicon compounds, and the pp-LFER-T model maintains a high predictive accuracy within a wide temperature range (263.15-323.15 K).

  4. Separation of very hydrophobic analytes by micellar electrokinetic chromatography IV. Modeling of the effective electrophoretic mobility from carbon number equivalents and octanol-water partition coefficients.

    Science.gov (United States)

    Huhn, Carolin; Pyell, Ute

    2008-07-11

    It is investigated whether those relationships derived within an optimization scheme developed previously to optimize separations in micellar electrokinetic chromatography can be used to model effective electrophoretic mobilities of analytes strongly differing in their properties (polarity and type of interaction with the pseudostationary phase). The modeling is based on two parameter sets: (i) carbon number equivalents or octanol-water partition coefficients as analyte descriptors and (ii) four coefficients describing properties of the separation electrolyte (based on retention data for a homologous series of alkyl phenyl ketones used as reference analytes). The applicability of the proposed model is validated comparing experimental and calculated effective electrophoretic mobilities. The results demonstrate that the model can effectively be used to predict effective electrophoretic mobilities of neutral analytes from the determined carbon number equivalents or from octanol-water partition coefficients provided that the solvation parameters of the analytes of interest are similar to those of the reference analytes.

  5. Determining octanol-water partition coefficients for extremely hydrophobic chemicals by combining "slow stirring" and solid-phase microextraction.

    Science.gov (United States)

    Jonker, Michiel T O

    2016-06-01

    Octanol-water partition coefficients (KOW ) are widely used in fate and effects modeling of chemicals. Still, high-quality experimental KOW data are scarce, in particular for very hydrophobic chemicals. This hampers reliable assessments of several fate and effect parameters and the development and validation of new models. One reason for the limited availability of experimental values may relate to the challenging nature of KOW measurements. In the present study, KOW values for 13 polycyclic aromatic hydrocarbons were determined with the gold standard "slow-stirring" method (log KOW 4.6-7.2). These values were then used as reference data for the development of an alternative method for measuring KOW . This approach combined slow stirring and equilibrium sampling of the extremely low aqueous concentrations with polydimethylsiloxane-coated solid-phase microextraction fibers, applying experimentally determined fiber-water partition coefficients. It resulted in KOW values matching the slow-stirring data very well. Therefore, the method was subsequently applied to a series of 17 moderately to extremely hydrophobic petrochemical compounds. The obtained KOW values spanned almost 6 orders of magnitude, with the highest value measuring 10(10.6) . The present study demonstrates that the hydrophobicity domain within which experimental KOW measurements are possible can be extended with the help of solid-phase microextraction and that experimentally determined KOW values can exceed the proposed upper limit of 10(9) . Environ Toxicol Chem 2016;35:1371-1377. © 2015 SETAC. © 2015 SETAC.

  6. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    Directory of Open Access Journals (Sweden)

    Jishan Fan

    2013-04-01

    Full Text Available Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. That is, we gave a gradient estimate for parabolic equations of divergence forms with piecewise smooth coefficients. The coefficients are assumed to be independent of time and their discontinuities are likewise the previous elliptic equations. As an application of this estimate, we also gave a pointwise gradient estimate for the fundamental solution of a parabolic operator with piecewise smooth coefficients. Both gradient estimates are independent of the distances between manifolds of discontinuities.

  7. Anion and cation partitioning between olivine, plagioclase phenocrysts and the host magma

    International Nuclear Information System (INIS)

    Yurimoto, Hisayoshi; Sueno, Shigeho

    1984-01-01

    Partition coefficients for -1, -2, -3, +1, +2, +3, +4 and +5 valent ions between the groundmass of tholeiite basalt and coexisting olivine and plagioclase phenocrysts from the Mid-Atlantic Ridge have been determined by secondary ion mass spectrometry. The present cation partitioning strongly supports the 'crystal structure control' mechanism. The partition coefficient for an anion is also under control of the crystal structure, so that each of the cation and anion positions in the crystal structure gives rise to a parabola-shaped peak on the partition coefficient vs. ionic radius diagram. (author)

  8. Investigation of 1-alkanols in organised solutions

    Directory of Open Access Journals (Sweden)

    Nadia Bashir

    2011-12-01

    Full Text Available Conductometric behaviour of 1-alkanols (C5-C10 in organised solutions of sodium dodecylbenzenesulfonate (SDBS is investigated. Interaction of each alkanol with anionic surfactant is reflected in terms of association constants, Kc. It is observed that self-assembly of SDBS is induced by the alkanol addition. The depression in critical micelle concentration (CMC of SDBS caused by each alkanol is translated to partition coefficient, Kc by using interaction coefficient. The dimensionless partition coefficient, Kx is utilized to highlight the energy efficiency of the solubilization process. The results indicate that even longer chain alkanols prefer interfacial area for their residence. The relative solubility of each alkanol is enhanced with increasing SDBS concentration. Such basic information could be vital for development of nano-scale assemblies for specific delivery of water soluble drugs.

  9. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  10. Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index.

    Science.gov (United States)

    Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca

    2011-01-01

    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (I(SET)). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the I(SET) in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P.

  11. Limiting partition coefficients of sulfur-containing aromatics in a biphasic [bmim][MeSO4]-supercritical CO(2) system

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Šťavíková, Lenka; Karásek, Pavel; Roth, Michal

    2011-01-01

    Roč. 56, č. 3 (2011), s. 527-531 ISSN 0021-9568 R&D Projects: GA ČR GA203/08/1465 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solute partitioning Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.693, year: 2011

  12. Determination of chemical solute transport parameters effecting radiostrontium interbed sediments

    International Nuclear Information System (INIS)

    Hemming, C.; Bunde, R.L.; Rosentreter, J.J.

    1993-01-01

    The extent to which radionuclides migrate in an aquifer system is a function of various physical, chemical, and biological processes. A measure of this migration rate is of primary concern when locating suitable storage sites for such species. Parameters including water-rock interactions, infiltration rates, chemical phase modification, and biochemical reactions all affect solute transport. While these different types of chemical reactions can influence solute transport in subsurface waters, distribution coefficients (Kd) can be send to effectively summarize the net chemical factors which dictate transport efficiency. This coefficient describes the partitioning of the solute between the solution and solid phase. Methodology used in determining and interpreting the distribution coefficient for radiostrontium in well characterized sediments will be presented

  13. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf; Astrup, A

    1987-01-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue...... was found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh...... correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates...

  14. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    Science.gov (United States)

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  15. Improved creep strength of nickel-base superalloys by optimized γ/γ′ partitioning behavior of solid solution strengthening elements

    International Nuclear Information System (INIS)

    Pröbstle, M.; Neumeier, S.; Feldner, P.; Rettig, R.; Helmer, H.E.; Singer, R.F.; Göken, M.

    2016-01-01

    Solid solution strengthening of the γ matrix is one key factor for improving the creep strength of single crystal nickel-base superalloys at high temperatures. Therefore a strong partitioning of solid solution hardening elements to the matrix is beneficial for high temperature creep strength. Different Rhenium-free alloys which are derived from CMSX-4 are investigated. The alloys have been characterized regarding microstructure, phase compositions as well as creep strength. It is found that increasing the Titanium (Ti) as well as the Tungsten (W) content causes a stronger partitioning of the solid solution strengtheners, in particular W, to the γ phase. As a result the creep resistance is significantly improved. Based on these ideas, a Rhenium-free alloy with an optimized chemistry regarding the partitioning behavior of W is developed and validated in the present study. It shows comparable creep strength to the Rhenium containing second generation alloy CMSX-4 in the high temperature / low stress creep regime and is less prone to the formation of deleterious topologically close packed (TCP) phases. This more effective usage of solid solution strengtheners can enhance the creep properties of nickel-base superalloys while reducing the content of strategic elements like Rhenium.

  16. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis

    NARCIS (Netherlands)

    Ho-Dac-Pannekeet, M. M.; Koopmans, J. G.; Struijk, D. G.; Krediet, R. T.

    1997-01-01

    The intrinsic permeability of the peritoneal membrane can be functionally represented by the restriction coefficient (RC). The RC can be calculated as the exponent of the power relation between the mass transfer area coefficients (MTACs) of various solutes and their free diffusion coefficients in

  17. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  18. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK).

    Science.gov (United States)

    Zia, Afia; van den Berg, Leon; Ahmad, Muhammad Nauman; Riaz, Muhammad; Zia, Dania; Ashmore, Mike

    2018-05-31

    A significant body of knowledge suggests that soil solution pH and dissolved organic carbon (DOC) strongly influence metal concentrations and speciation in porewater, however, these effects vary between different metals. This study investigated the factors influencing soil and soil solution concentrations of copper (Cu), lead (Pb), nickel (Ni) and zinc (Zn) under field conditions in upland soils from UK having a wide range of pH, DOC and organic matter contents. The study primarily focussed on predicting soil and soil solution metal concentrations from the data on total soil metal concentrations (HNO 3 extracts) and soil and soil solution properties (pH, DOC and organic matter content). We tested the multiple regression models proposed by Tipping et al. (2003) to predict heavy metal concentrations in soil solutions and the results indicated a better fit (higher R 2 values) in both studies for Pb compared to the Zn and Cu concentrations. Both studies observed consistent negative relationships of metals with pH and loss on ignition (LOI) suggesting an increase in soil solution metal concentrations with increasing acidity. The positive relationship between Pb concentrations in porewater and HNO 3 extracts was similar for both studies, however, similar relationships were not found for the Zn and Cu concentrations because of the negative coefficients for these metals in our study. The results of this study conclude that the predictive equations of Tipping et al. (2003) may not be applicable to the field sites where the range of DOC and metal concentrations is much lower than their study. Our study also suggests that the extent to which metals are partitioned into soil solution is lower in soils with a higher organic matter contents due to binding of these metals to soil organic matter. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Solutions of the spin coefficient equations with nongeodesic eigenrays

    International Nuclear Information System (INIS)

    Kota, J.; Lukacs, B.; Perjes, Z.

    1982-01-01

    Among the many significant results obtained by spin coefficient techniques in general relativity, the exact integrals of gravitational equations have enjoyed particular attention. These integration procedures were first carried out with respect to a congruence of null geodesic curves. The authors show that spin coefficient equations can sometimes be exactly solved when the selected null congruence is nongeodesic. They derive metrics with this property and, among them, a new solution of the coupled Einstein-Maxwell equations. (Auth.)

  20. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  1. Fuzzy solution of the linear programming problem with interval coefficients in the constraints

    OpenAIRE

    Dorota Kuchta

    2005-01-01

    A fuzzy concept of solving the linear programming problem with interval coefficients is proposed. For each optimism level of the decision maker (where the optimism concerns the certainty that no errors have been committed in the estimation of the interval coefficients and the belief that optimistic realisations of the interval coefficients will occur) another interval solution of the problem will be generated and the decision maker will be able to choose the final solution having a complete v...

  2. Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Arantes Furtado, Filipe; Vieira Coelho, Gerson Luiz

    2012-01-01

    Highlights: ► Two approaches were proposed using SPME on determination of infinite dilution activity coefficients. ► Infinite dilution activity coefficients of nine solutes in solvent furfural at T = (298.15, 308.15, and 318.15) K. ► Fiber–gas partition coefficients of nine solutes on PDMS at T = (298.15, 308.15, and 318.15) K. ► Optical microscopy analysis and statistical tests to measure possible damages on fiber coating. ► Advantages and limitations of methodology proposed were discussed. - Abstract: A new methodology using the headspace solid phase microextraction (HS-SPME) technique has been used to evaluate the infinite dilution activity coefficient (γ 12 ∞ ) of nine hydrocarbons (alkanes, cycloalkanes, and aromatics) in furfural solvent. The main objective of this study was to validate a faster and lower cost methodology expanding the use of HS-SPME to determine infinite dilution activity of solutes in organic solvents. Two approaches were proposed for the determination of γ 12 ∞ in order to use this technique (HS-SPME). In addition, the fiber–gas partition coefficients (K fg ) for each analyte at each of the studied temperatures were determined. The activity and partition coefficients have been reported at temperatures of (298.15, 308.15, and 318.15) K. The data were compared with the literature infinite dilution data determined by other methods such as liquid–gas chromatography (GLC) and gas stripping. Partial molar excess enthalpies of mixing at infinite dilution for each solute have been determined. The fibers were tested before and after each experiment, using statistical methods to ensure that their properties do not change during the experiments. The fibers were also analyzed by optical microscopy to evaluate possible surface damage by comparing them with new fibers. The activity coefficient values correlated well with the data in the literature and showed average deviations less than 10%.

  3. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  4. A Quantitative Property-Property Relationship for Estimating Packaging-Food Partition Coefficients of Organic Compounds

    DEFF Research Database (Denmark)

    Huang, L.; Ernstoff, Alexi; Xu, H.

    2017-01-01

    Organic chemicals encapsulated in beverage and food packaging can migrate to the food and lead to human exposures via ingestion. The packaging-food (Kpf) partition coefficient is a key parameter to estimate the chemical migration from packaging materials. Previous studies have simply set Kpf to 1...... or 1000, or provided separate linear correlations for several discrete values of ethanol equivalencies of food simulants (EtOH-eq). The aim of the present study is to develop a single quantitative property-property relationship (QPPR) valid for different chemical-packaging combinations and for water...... because only two packaging types are included. This preliminary QPPR demonstrates that the Kpf for various chemicalpackaging-food combinations can be estimated by a single linear correlation. Based on more than 1000 collected Kpf in 15 materials, we will present extensive results for other packaging types...

  5. Predicting volume of distribution with decision tree-based regression methods using predicted tissue:plasma partition coefficients.

    Science.gov (United States)

    Freitas, Alex A; Limbu, Kriti; Ghafourian, Taravat

    2015-01-01

    Volume of distribution is an important pharmacokinetic property that indicates the extent of a drug's distribution in the body tissues. This paper addresses the problem of how to estimate the apparent volume of distribution at steady state (Vss) of chemical compounds in the human body using decision tree-based regression methods from the area of data mining (or machine learning). Hence, the pros and cons of several different types of decision tree-based regression methods have been discussed. The regression methods predict Vss using, as predictive features, both the compounds' molecular descriptors and the compounds' tissue:plasma partition coefficients (Kt:p) - often used in physiologically-based pharmacokinetics. Therefore, this work has assessed whether the data mining-based prediction of Vss can be made more accurate by using as input not only the compounds' molecular descriptors but also (a subset of) their predicted Kt:p values. Comparison of the models that used only molecular descriptors, in particular, the Bagging decision tree (mean fold error of 2.33), with those employing predicted Kt:p values in addition to the molecular descriptors, such as the Bagging decision tree using adipose Kt:p (mean fold error of 2.29), indicated that the use of predicted Kt:p values as descriptors may be beneficial for accurate prediction of Vss using decision trees if prior feature selection is applied. Decision tree based models presented in this work have an accuracy that is reasonable and similar to the accuracy of reported Vss inter-species extrapolations in the literature. The estimation of Vss for new compounds in drug discovery will benefit from methods that are able to integrate large and varied sources of data and flexible non-linear data mining methods such as decision trees, which can produce interpretable models. Graphical AbstractDecision trees for the prediction of tissue partition coefficient and volume of distribution of drugs.

  6. Partitioning of resveratrol between pentane and DMSO

    DEFF Research Database (Denmark)

    Shen, Chen; Stein, Paul C.; Klösgen-Buchkremer, Beate Maria

    2015-01-01

    Partitioning of trans-3,5,4′-trihydroxy-stilbene (resveratrol) between n-pentane and DMSO was investigated as a contribution to understand the interaction between resveratrol and biomembranes. In order to determine the partition coefficient P* of resveratrol between pentane and DMSO, resveratrol ...

  7. Solution of heat equation with variable coefficient using derive

    CSIR Research Space (South Africa)

    Lebelo, RS

    2008-09-01

    Full Text Available In this paper, the method of approximating solutions of partial differential equations with variable coefficients is studied. This is done by considering heat flow through a one-dimensional model with variable cross-sections. Two cases...

  8. Searching for optimal integer solutions to set partitioning problems using column generation

    OpenAIRE

    Bredström, David; Jörnsten, Kurt; Rönnqvist, Mikael

    2007-01-01

    We describe a new approach to produce integer feasible columns to a set partitioning problem directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of the columns formed. In our approach we aim to generate the columns forming the optimal integer solution while simultaneously solving the LP relaxation. By this we can re...

  9. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  10. Solute partitioning between 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid and supercritical CO2

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Roth, Michal

    2012-01-01

    Roč. 57, č. 4 (2012), s. 1064-1071 ISSN 0021-9568 R&D Projects: GA ČR(CZ) GAP206/11/0138 Institutional research plan: CEZ:AV0Z40310501 Keywords : ionic liquid * supercritical carbon dioxide * solute partitioning Subject RIV: BJ - Thermodynamics Impact factor: 2.004, year: 2012

  11. New Explicit Solutions of (1 + 1)-Dimensional Variable-Coefficient Broer-Kaup System

    International Nuclear Information System (INIS)

    Yan Zhilian; Zhou Jianping

    2010-01-01

    By using the compatibility method, many explicit solutions of the (1 + 1)-dimensional variable-coefficient Broer-Kaup system are constructed, which include new solutions expressed by error function, Bessel function, exponential function, and Airy function. Some figures of the solutions are given by the symbolic computation system Maple. (general)

  12. A procedure to create isoconcentration surfaces in low-chemical-partitioning, high-solute alloys

    International Nuclear Information System (INIS)

    Hornbuckle, B.C.; Kapoor, M.; Thompson, G.B.

    2015-01-01

    A proximity histogram or proxigram is the prevailing technique of calculating 3D composition profiles of a second phase in atom probe tomography. The second phase in the reconstruction is delineated by creating an isoconcentration surface, i.e. the precipitate–matrix interface. The 3D composition profile is then calculated with respect to this user-defined isoconcentration surface. Hence, the selection of the correct isoconcentration surface is critical. In general, the preliminary selection of an isoconcentration value is guided by the visual observation of a chemically partitioned second phase. However, in low-chemical -partitioning systems, such a visual guide is absent. The lack of a priori composition information of the precipitate phase may further confound the issue. This paper presents a methodology of selecting an appropriate elemental species and subsequently obtaining an isoconcentration value to create an accurate isoconcentration surface that will act as the precipitate–matrix interface. We use the H-phase precipitate in the Ni–Ti–Hf shape memory alloy as our case study to illustrate the procedure. - Highlights: • A procedure for creating accurate isoconcentration surface for low-chemical-partitioning, high-solute alloys. • Determine the appropriate element to create the isosconcentration surface. • Subsequently identify the accurate isoconcentration value to create an isoconcentration surface.

  13. Topological string partition functions as polynomials

    International Nuclear Information System (INIS)

    Yamaguchi, Satoshi; Yau Shingtung

    2004-01-01

    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)

  14. Purification of biomaterials by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  15. A layer model of ethanol partitioning into lipid membranes.

    Science.gov (United States)

    Nizza, David T; Gawrisch, Klaus

    2009-06-01

    The effect of membrane composition on ethanol partitioning into lipid bilayers was assessed by headspace gas chromatography. A series of model membranes with different compositions have been investigated. Membranes were exposed to a physiological ethanol concentration of 20 mmol/l. The concentration of membranes was 20 wt% which roughly corresponds to values found in tissue. Partitioning depended on the chemical nature of polar groups at the lipid/water interface. Compared to phosphatidylcholine, lipids with headgroups containing phosphatidylglycerol, phosphatidylserine, and sphingomyelin showed enhanced partitioning while headgroups containing phosphatidylethanolamine resulted in a lower partition coefficient. The molar partition coefficient was independent of a membrane's hydrophobic volume. This observation is in agreement with our previously published NMR results which showed that ethanol resides almost exclusively within the membrane/water interface. At an ethanol concentration of 20 mmol/l in water, ethanol concentrations at the lipid/water interface are in the range from 30-15 mmol/l, corresponding to one ethanol molecule per 100-200 lipids.

  16. Molar extinction coefficients of solutions of some organic compounds

    Indian Academy of Sciences (India)

    (C4H8O2), succinimide (C4H5NO2) as estimated from the measured absorbance of. 7 radiations in their ... species in the solution and ε is called the molar absorptivity or extinction coefficient. (l mol-1cm-1 or ... Integration of eq. (4) leads to.

  17. An effective method for finding special solutions of nonlinear differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Qin Maochang; Fan Guihong

    2008-01-01

    There are many interesting methods can be utilized to construct special solutions of nonlinear differential equations with constant coefficients. However, most of these methods are not applicable to nonlinear differential equations with variable coefficients. A new method is presented in this Letter, which can be used to find special solutions of nonlinear differential equations with variable coefficients. This method is based on seeking appropriate Bernoulli equation corresponding to the equation studied. Many well-known equations are chosen to illustrate the application of this method

  18. Halogenated methyl-phenyl ethers (anisoles) in the environment: determination of vapor pressures, aqueous solubilities, Henry's law constants, and gas/water- (Kgw), n-octanol/water- (Kow) and gas/n-octanol (Kgo) partition coefficients.

    Science.gov (United States)

    Pfeifer, O; Lohmann, U; Ballschmiter, K

    2001-11-01

    Halogenated methyl-phenyl ethers (methoxybenzenes, anisoles) are ubiquitous organics in the environment although they are not produced in industrial quantities. Modelling the fate of organic pollutants such as halogenated anisoles requires a knowledge of the fundamental physico-chemical properties of these compounds. The isomer-specific separation and detection of 60 of the 134 possible congeners allowing an environmental fingerprinting are reported in this study. The vapor pressure p0(L) of more than 60 and further physico-chemical properties of 26 available congeners are given. Vapor pressures p0(L), water solubilities S(L)W, and n-octanol/water partition coefficients Kow were determined by capillary HR-GC (High Resolution Gas Chromatography) on a non-polar phase and by RP-HPLC (Reversed Phase High Performance Liquid Chromatography) on a C18 phase with chlorobenzenes as reference standards. From these experimental data the Henry's law constants H, and the gas/water Kgw and gas/n-octanol Kgo partition coefficients were calculated. We found that vapor pressures, water solubilities, and n-octanol/water partition coefficients of the halogenated anisoles are close to those of the chlorobenzenes. A similar environmental fate of both groups can, therefore, be predicted.

  19. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.

    Directory of Open Access Journals (Sweden)

    Devin W McBride

    Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.

  20. Determination of radon partition coefficients between water and different kinds of NAPLs for use in analysis of residual soil NAPLs

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Sarah Andresa; Ferreira, Ângela Fortini Macedo, E-mail: sarah_andresa@hotmail.com [Universidade Federal de Migas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Franklin, Mariza Ramalho; Ferreira, Paulo Roberto Rocha [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Zildete, E-mail: zildeter7@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Different studies indicate the applicability of natural radon as a tracer in the determination of contaminated environments by Non-Aqueous Phase Liquids (NAPLs). Such use being due to the non-homogeneous distribution of this element between water, air and NAPL. Thus, it is known that the concentration of radon in a given soil / aquifer and in a given area may indicate that such site is contaminated by NAPL. However, the simple measurement of radon concentration activity allows only a qualitative evaluation of the area contaminated in study. For a quantitative estimate of the NAPL saturation in the pore space, it is necessary to know the radon partition coefficients between the coexisting phases, considering the kind of NAPL present. The present study, the radon partitioning coefficients between air, water and diverse types of NAPL mixtures, such as gasoline, diesel fuel, alcohol, kerosene and olive oil was measured. In a closed system, was applied an analytical method based on the distribution of the radon between the present phases with the use of a system of Flow Injection Analysis (FIA). The measurement of the specific activity of radon was performed by using an AlphaGUARD monitor. It is observed that, in the presence of NAPL, the concentration of radon in water and air is significantly lower than in its absence, indicating a negative correlation and allowing the evaluation of the contamination of the area by NAPL. (author)

  1. Determination of radon partition coefficients between water and different kinds of NAPLs for use in analysis of residual soil NAPLs

    International Nuclear Information System (INIS)

    Bonfim, Sarah Andresa; Ferreira, Ângela Fortini Macedo; Rocha, Zildete

    2017-01-01

    Different studies indicate the applicability of natural radon as a tracer in the determination of contaminated environments by Non-Aqueous Phase Liquids (NAPLs). Such use being due to the non-homogeneous distribution of this element between water, air and NAPL. Thus, it is known that the concentration of radon in a given soil / aquifer and in a given area may indicate that such site is contaminated by NAPL. However, the simple measurement of radon concentration activity allows only a qualitative evaluation of the area contaminated in study. For a quantitative estimate of the NAPL saturation in the pore space, it is necessary to know the radon partition coefficients between the coexisting phases, considering the kind of NAPL present. The present study, the radon partitioning coefficients between air, water and diverse types of NAPL mixtures, such as gasoline, diesel fuel, alcohol, kerosene and olive oil was measured. In a closed system, was applied an analytical method based on the distribution of the radon between the present phases with the use of a system of Flow Injection Analysis (FIA). The measurement of the specific activity of radon was performed by using an AlphaGUARD monitor. It is observed that, in the presence of NAPL, the concentration of radon in water and air is significantly lower than in its absence, indicating a negative correlation and allowing the evaluation of the contamination of the area by NAPL. (author)

  2. Determination and prediction of octanol-air partition coefficients for organophosphate flame retardants.

    Science.gov (United States)

    Wang, Qingzhi; Zhao, Hongxia; Wang, Yan; Xie, Qing; Chen, Jingwen; Quan, Xie

    2017-11-01

    Organophosphate flame retardants (OPFRs) have attracted wide concerns due to their toxicities and ubiquitous occurrence in the environment. In this work, Octanol-air partition coefficient (K OA ) for 14 OPFRs including 4 halogenated alkyl-, 5 aryl- and 5 alkyl-OPFRs, were estimated as a function of temperature using a gas chromatographic retention time (GC-RT) method. Their log K OA-GC values and internal energies of phase transfer (Δ OA U/kJmol -1 ) ranged from 8.03 to 13.0 and from 69.7 to 149, respectively. Substitution pattern and molar volume (V M ) were found to be capable of influencing log K OA-GC values of OPFRs. The halogenated alkyl-OPFRs had higher log K OA-GC values than aryl- or alkyl-OPFRs. The bigger the molar volume was, the greater the log K OA-GC values increased. In addition, a predicted model of log K OA-GC versus different relative retention times (RRTs) was developed with a high cross-validated value (Q 2 (cum) ) of 0.951, indicating a good predictive ability and stability. Therefore, the log K OA-GC values of the remaining OPFRs can be predicted by using their RRTs on different GC columns. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Determination of 1-octanol-air partition coefficient using gaseous diffusion in the air boundary layer.

    Science.gov (United States)

    Ha, Yeonjeong; Kwon, Jung-Hwan

    2010-04-15

    Exact determination of the partition coefficient between 1-octanol and air (K(OA)) is very important because it is a key descriptor for describing the thermodynamic partitioning between the air and organic phases. In spite of its importance, the number and quality of experimental K(OA) values for hydrophobic organic chemicals are limited because of experimental difficulties. Thus, to measure K(OA) values, a high-throughput method was developed that used liquid-phase extraction with 1-octanol drop at the tip of a microsyringe needle. The concentration in the headspace surrounding the 1 muL octanol drop was equilibrated with liquid octanol containing polycyclic aromatic hydrocarbons (PAHs). The change in concentrations of PAHs in the octanol drop was measured to obtain mass transfer rate constants, and these rate constants were then converted into K(OA) values using a film diffusion model. Thirteen polycyclic aromatic hydrocarbons with log K(OA) between 5 and 12 were chosen for the proof of the principle. Experimental determination of log K(OA) was accomplished in 30 h for PAHs with their log K(OA) less than 11. The measured log K(OA) values were very close to those obtained by various experimental and estimation methods in the literature, suggesting that this new method can provide a fast and easy determination of log K(OA) values for many chemicals of environmental interests. In addition, the applicability of the method can be extended to determine Henry's law constant for compounds with low vapor pressure and to estimate gaseous transfer rate of semivolatile compounds for environmental fate modeling.

  4. Determination of solute descriptors by chromatographic methods

    International Nuclear Information System (INIS)

    Poole, Colin F.; Atapattu, Sanka N.; Poole, Salwa K.; Bell, Andrea K.

    2009-01-01

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298 K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  5. Determination of solute descriptors by chromatographic methods.

    Science.gov (United States)

    Poole, Colin F; Atapattu, Sanka N; Poole, Salwa K; Bell, Andrea K

    2009-10-12

    The solvation parameter model is now well established as a useful tool for obtaining quantitative structure-property relationships for chemical, biomedical and environmental processes. The model correlates a free-energy related property of a system to six free-energy derived descriptors describing molecular properties. These molecular descriptors are defined as L (gas-liquid partition coefficient on hexadecane at 298K), V (McGowan's characteristic volume), E (excess molar refraction), S (dipolarity/polarizability), A (hydrogen-bond acidity), and B (hydrogen-bond basicity). McGowan's characteristic volume is trivially calculated from structure and the excess molar refraction can be calculated for liquids from their refractive index and easily estimated for solids. The remaining four descriptors are derived by experiment using (largely) two-phase partitioning, chromatography, and solubility measurements. In this article, the use of gas chromatography, reversed-phase liquid chromatography, micellar electrokinetic chromatography, and two-phase partitioning for determining solute descriptors is described. A large database of experimental retention factors and partition coefficients is constructed after first applying selection tools to remove unreliable experimental values and an optimized collection of varied compounds with descriptor values suitable for calibrating chromatographic systems is presented. These optimized descriptors are demonstrated to be robust and more suitable than other groups of descriptors characterizing the separation properties of chromatographic systems.

  6. Improved models for the prediction of activity coefficients in nearly athermal mixtures .2. A theoretically-based G(E)-model based on the van der Waals partition function

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Georgios, Nikolopoulos; Fredenslund, Aage

    1997-01-01

    of the generalized van der Waals partition function and attempts to account for all non-energetic effects of solutions of both short- and long-chain alkanes, including alkane polymers. Both the free-volume effects and the density-dependent rotational degrees of freedom are considered. The resulting G(E)-model which......, despite its derivation from a partition function resembles the Flory-Huggins formula, is suitable for vapor-liquid and solid-liquid equilibrium calculations for nearly athermal polymer solutions as well as for alkane systems. We show that using plausible assumptions for the free-volume and the external...

  7. Aqueous-gas phase partitioning and hydrolysis of organic iodides

    International Nuclear Information System (INIS)

    Glowa, G.A.; Wren, J.C.

    2003-01-01

    The volatility and decomposition of organic iodides in a reactor containment building are important parameters to consider when assessing the potential consequences of a nuclear reactor accident. However, there are few experimental data available for the volatilities (often reported as partition coefficients) or few rate constants regarding the decomposition (via hydrolysis) of organic iodides. The partition coefficients and hydrolysis rate constants of eight organic iodides, having a range of molecular structures, have been measured in the current studies. This data, and data accumulated in the literature, have been reviewed and discussed to provide guidelines for appropriate organization of organic iodides for the purpose of modelling iodine behaviour under postulated nuclear reactor accident conditions. After assessment of the partition coefficients and their temperature dependences of many classes of organic compounds, it was found that organic iodides could be divided into two categories based upon their volatility relative to molecular iodine. Similarly, hydrolysis rates and their temperature dependences are assigned to the two categories of organic iodides. (author)

  8. A gradient estimate for solutions to parabolic equations with discontinuous coefficients

    OpenAIRE

    Fan, Jishan; Kim, Kyoungsun; Nagayasu, Sei; Nakamura, Gen

    2011-01-01

    Li-Vogelius and Li-Nirenberg gave a gradient estimate for solutions of strongly elliptic equations and systems of divergence forms with piecewise smooth coefficients, respectively. The discontinuities of the coefficients are assumed to be given by manifolds of codimension 1, which we called them emph{manifolds of discontinuities}. Their gradient estimate is independent of the distances between manifolds of discontinuities. In this paper, we gave a parabolic version of their results. T...

  9. Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients

    Directory of Open Access Journals (Sweden)

    Azizollah Babakhani

    2006-10-01

    Full Text Available In the present paper we discuss the existence of positive solutions in the case of multi-term non-autonomous fractional differential equations with polynomial coefficients; the constant coefficient case has been studied in [2]. We consider the equation $$ Big(D^{alpha_n} -sum_{j = 1}^{n - 1} p_j(xD^{alpha_{n - j}}Bigy = f(x, y. $$ We state various conditions on $f$ and $p_j$'s under which this equation has: positive solutions, a unique solution which is positive, and a unique solution which may not be positive.

  10. Data and uncertainty assessment for radionuclide Kd partitioning coefficients in granitic rock for use in SR-Can calculations

    International Nuclear Information System (INIS)

    Crawford, James; Neretnieks, Ivars; Malmstroem, Maria

    2006-10-01

    SKB is currently preparing licence applications related to the proposed deep repository for spent nuclear fuel as well as the encapsulation plant required for canister fabrication. The present report is one of several specific data reports that form the data input to an interim safety report (SR-Can) for the encapsulation plant licence application. This report concerns the derivation and recommendation of generic K d data (i.e. linear partitioning coefficients) for safety assessment modelling of far-field radionuclide transport in fractured granitic rock. The data are derived for typical Swedish groundwater conditions and rock types distinctive of those found on the Simpevarp peninsula and Forsmark. Data have been derived for 8 main elements (Cs, Sr, Ra, Ni, Th, U, Np, Am) and various oxidation states. The data have also been supplied with tentative correction factors to account for artefacts that have not been previously considered in detail in previous compilations. For the main reviewed solutes the data are given in terms of a best estimate K d value assumed to be the median of the aggregate set of selected data. A range corresponding to the 25-75% inter-quartile range is also specified and probable ranges of uncertainty are estimated in the form of an upper and lower limit to the expected variability. Data for an additional 19 elements that have not been reviewed are taken from a previous compilation by Carbol and Engkvist

  11. Correlation and prediction of osmotic coefficient and water activity of aqueous electrolyte solutions by a two-ionic parameter model

    International Nuclear Information System (INIS)

    Pazuki, G.R.

    2005-01-01

    In this study, osmotic coefficients and water activities in aqueous solutions have been modeled using a new approach based on the Pitzer model. This model contains two physically significant ionic parameters regarding ionic solvation and the closest distance of approach between ions in a solution. The proposed model was evaluated by estimating the osmotic coefficients of nine electrolytes in aqueous solutions. The obtained results showed that the model is suitable for predicting the osmotic coefficients in aqueous electrolyte solutions. Using adjustable parameters, which have been calculated from regression between the experimental osmotic coefficient and the results of this model, the water activity coefficients of aqueous solutions were calculated. The average absolute relative deviations of the osmotic coefficients between the experimental data and the calculated results were in agreement

  12. Uranium partitioning under acidic conditions in a sandy soil aquifer

    International Nuclear Information System (INIS)

    Johnson, W.H.; Serkiz, S.M.; Johnson, L.M.

    1995-01-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K d model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data

  13. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    Science.gov (United States)

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  14. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał

    2012-01-01

    Highlights: The and KL for 61 solutes in the ionic liquid [COC2mPIP][NTf2] were determined by IGC at different temperatures. ► The partial molar excess Gibbs energies, enthalpies and entropies at infinite dilution were calculated. ► The selectivities for selected compounds which form azeotropic mixtures were calculated and compared to other ILs. ► LFER system constants as a function of temperature for [COC2mPIP][NTf2] were calculated. - Abstract: The activity coefficients at infinite dilution, γ ∞ and gas–liquid partition coefficients, K L for 61 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, esters, 1-nitropropane, butanal, acetonitrile, and water in the ionic liquid 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide were determined by inverse gas chromatography at the temperatures from (318.15 to 368.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ ∞ values obtained over the temperature range. The selectivities for selected compounds, which form azeotropic mixtures, were calculated from the γ ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion.

  15. Quantitative relationship between the octanol/water partition coefficient and the diffusion limitation of the exchange between adipose and blood.

    Science.gov (United States)

    Levitt, David G

    2010-01-07

    The goal of physiologically based pharmacokinetics (PBPK) is to predict drug kinetics from an understanding of the organ/blood exchange. The standard approach is to assume that the organ is "flow limited" which means that the venous blood leaving the organ equilibrates with the well-stirred tissue compartment. Although this assumption is valid for most solutes, it has been shown to be incorrect for several very highly fat soluble compounds which appear to be "diffusion limited". This paper describes the physical basis of this adipose diffusion limitation and its quantitative dependence on the blood/water (Kbld-wat) and octanol/water (Kow) partition coefficient. Experimental measurements of the time dependent rat blood and adipose concentration following either intravenous or oral input were used to estimate the "apparent" adipose perfusion rate (FA) assuming that the tissue is flow limited. It is shown that the ratio of FA to the anatomic perfusion rate (F) provides a measure of the diffusion limitation. A quantitative relationship between this diffusion limitation and Kbld-wat and Kow is derived. This analysis was applied to previously published data, including the Oberg et. al. measurements of the rat plasma and adipose tissue concentration following an oral dose of a mixture of 13 different polychlorinated biphenyls. Solutes become diffusion limited at values of log Kow greater than about 5.6, with the adipose-blood exchange rate reduced by a factor of about 30 for a solute with a log Kow of 7.36. Quantitatively, a plot of FA/F versus Kow is well described assuming an adipose permeability-surface area product (PS) of 750/min. This PS corresponds to a 0.14 micron aqueous layer separating the well-stirred blood from the adipose lipid. This is approximately equal to the thickness of the rat adipose capillary endothelium. These results can be used to quantitate the adipose-blood diffusion limitation as a function of Kow. This is especially important for the highly

  16. Superfluid Kubo formulas from partition function

    International Nuclear Information System (INIS)

    Chapman, Shira; Hoyos, Carlos; Oz, Yaron

    2014-01-01

    Linear response theory relates hydrodynamic transport coefficients to equilibrium retarded correlation functions of the stress-energy tensor and global symmetry currents in terms of Kubo formulas. Some of these transport coefficients are non-dissipative and affect the fluid dynamics at equilibrium. We present an algebraic framework for deriving Kubo formulas for such thermal transport coefficients by using the equilibrium partition function. We use the framework to derive Kubo formulas for all such transport coefficients of superfluids, as well as to rederive Kubo formulas for various normal fluid systems

  17. Wronskian and Grammian Determinant Solutions for a Variable-Coefficient Kadomtsev-Petviashvili Equation

    International Nuclear Information System (INIS)

    Yao Zhenzhi; Zhu Hongwu; Meng Xianghua; Lue Xing; Shan Wenrui; Tian Bo; Zhang Chunyi

    2008-01-01

    In this paper, we derive the bilinear form for a variable-coefficient Kadomtsev-Petviashvili-typed equation. Based on the bilinear form, we obtain the Wronskian determinant solution, which is proved to be indeed an exact solution of this equation through the Wronskian technique. In addition, we testify that this equation can be reduced to a Jacobi identity by considering its solution as a Grammian determinant by means of Pfaffian derivative formulae

  18. Retention of bile salts in micellar electrokinetic chromatography: relation of capacity factor to octanol-water partition coefficient and critical micellar concentration.

    Science.gov (United States)

    Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E

    2001-12-25

    The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.

  19. Use of the Boron partition coefficient ‘KD’ and B/Ca from planktonic foraminifera in the estimation of past seawater pCO2

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, S.S.; Naidu, P.D.

    We assess the usefulness of the empirical boron partition coefficient, KD and B/Ca measured from planktonic foraminifera in estimation of pCO2 using three different relationships between KD and temperature derived...

  20. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    International Nuclear Information System (INIS)

    Liu Haifei; Wang Li

    2006-01-01

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory

  1. Globally exponential stability and periodic solutions of CNNS with variable coefficients and variable delays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Haifei [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)]. E-mail: hfliu80@126.com; Wang Li [School of Management and Engineering, Nanjing University, Nanjing 210093 (China)

    2006-09-15

    In this Letter, by using the inequality method and the Lyapunov functional method, we analyze the globally exponential stability and the existence of periodic solutions of a class of cellular neutral networks with delays and variable coefficients. Some simple and new sufficient conditions ensuring the existence and uniqueness of globally exponential stability of periodic solutions for cellular neutral networks with variable coefficients and delays are obtained. In addition, one example is also worked out to illustrate our theory.

  2. Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.

    Science.gov (United States)

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2004-11-17

    The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.

  3. Linking biosensor responses to Cd, Cu and Zn partitioning in soils

    International Nuclear Information System (INIS)

    Dawson, J.J.C.; Campbell, C.D.; Towers, W.; Cameron, C.M.; Paton, G.I.

    2006-01-01

    Soils bind heavy metals according to fundamental physico-chemical parameters. Bioassays, using bacterial biosensors, were performed in pore waters extracted from 19 contrasting soils individually amended with Cd, Cu and Zn concentrations related to the EU Sewage Sludge Directive. The biosensors were responsive to pore waters extracted from Zn amended soils but less so to those of Cu and showed no toxicity to pore water Cd at these environmentally relevant amended concentrations. Across the range of soils, the solid-solution heavy metal partitioning coefficient (K d ) decreased (p d values. Gompertz functions of Cu and Zn, K d values against luminescence explained the relationship between heavy metals and biosensors. Consequently, biosensors provide a link between biologically defined hazard assessments of metals and standard soil-metal physico-chemical parameters for determining critical metal loadings in soils. - Biosensors link biological hazard assessments of metals in soils with physico-chemical partitioning

  4. Adsorption of Cu 2+ , As 3+ and Cd 2+ ions from aqueous solution ...

    African Journals Online (AJOL)

    The adsorption of Cu2+, Cd2+ and As3+ ions on eggshell from aqueous solution was studied under batch conditions at 30, 40, 50 and 60oC and concentrations of 10, 20, 30, 60 and 80 mg/l. The partition coefficient for the ions between aqueous solution and chicken eggshell increased with time and with increase in the ...

  5. Partition thermodynamics of ionic surfactants between phosphatidylcholine vesicle and water phases

    Science.gov (United States)

    Chu, Shin-Chi; Hung, Chia-Hui; Wang, Shun-Cheng; Tsao, Heng-Kwong

    2003-08-01

    The partition of ionic surfactants (sodium alkyl sulfate and alkyl trimethyl ammonium bromide) between phosphatidylcholine vesicles and aqueous phase is investigated by simple conductometry under different temperatures. The experimental results can be well represented by the proposed regular solution theory and the thermodynamic parameters satisfy the thermodynamic consistency. The deviation from ideal partition is manifested through the effective interaction energy between lipid and surfactant wb, which is O(kT) large. It is found that wb rises as the alkyl chain is decreased for a specified head group. This is attributed to significant mismatch of chain lengths between surfactant and lipid molecules. The partition coefficient K declines with increasing temperature. The energy barrier from bilayer to aqueous phase, Δμ/kT∝ln K, is in the range of 16-26 kJ/mol. As the alkyl chain length is decreased for a given head group, Δμ is lowered by 1.3-1.5 kJ/mol per methylene group. Two independent analyses are employed to confirm this result. Using the thermodynamic parameters determined from experiments, the internal energy, entropy, and free energy of the partition process can be derived. Partition is essentially driven by the internal energy gain. The solubilizing ability, which is represented by the maximum surfactant-lipid ratio in the bilayer, Reb also decreases in accord with the K parameter. It is because the change in temperature influences the surfactant incorporation into the bilayer more than the formation of micelles.

  6. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM COEFFICIENTS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper mainly deals with a stochastic differential equation (SDE) with random coefficients. Sufficient conditions which guarantee the existence and uniqueness of solutions to the equation are given.

  7. Determination of partition behavior of organic surrogates between paperboard packaging materials and air.

    Science.gov (United States)

    Triantafyllou, V I; Akrida-Demertzi, K; Demertzis, P G

    2005-06-03

    The suitability of recycled paperboard packaging materials for direct food contact applications is a major area of investigation. Chemical contaminants (surrogates) partitioning between recycled paper packaging and foods may affect the safety and health of the consumer. The partition behavior of all possible organic compounds between cardboards and individual foodstuffs is difficult and too time consuming for being fully investigated. Therefore it may be more efficient to determine these partition coefficients indirectly through experimental determination of the partitioning behavior between cardboard samples and air. In this work, the behavior of organic pollutants present in a set of two paper and board samples intended to be in contact with foods was studied. Adsorption isotherms have been plotted and partition coefficients between paper and air have been calculated as a basis for the estimation of their migration potential into food. Values of partition coefficients (Kpaper/air) from 47 to 1207 were obtained at different temperatures. For the less volatile surrogates such as dibutyl phthalate and methyl stearate higher Kpaper/air values were obtained. The adsorption curves showed that the more volatile substances are partitioning mainly in air phase and increasing the temperature from 70 to 100 degrees C their concentrations in air (Cair) have almost doubled. The analysis of surrogates was performed with a method based on solvent extraction and gas chromatographic-flame ionization detection (GC-FID) quantification.

  8. Effect of vehicles and sodium lauryl sulphate on xenobiotic permeability and stratum corneum partitioning in porcine skin

    International Nuclear Information System (INIS)

    Merwe, Deon van der; Riviere, Jim E.

    2005-01-01

    Dermal contact with potentially toxic agricultural and industrial chemicals is a common hazard encountered in occupational, accidental spill and environmental contamination scenarios. Different solvents and chemical mixtures may influence dermal absorption. The effects of sodium lauryl sulphate (SLS) on the stratum corneum partitioning and permeability in porcine skin of 10 agricultural and industrial chemicals in water, ethanol and propylene glycol were investigated. The chemicals were phenol, p-nitrophenol, pentachlorophenol, methyl parathion, ethyl parathion, chlorpyrifos, fenthion, simazine, atrazine and propazine. SLS decreased partitioning into stratum corneum from water for lipophilic compounds, decreased partitioning from propylene glycol and did not alter partitioning from ethanol. SLS effects on permeability were less consistent, but generally decreased permeability from water, increased permeability from ethanol and had an inconsistent effect on permeability from propylene glycol. It was concluded that, for the compounds tested, partitioning into the stratum corneum was determined by the relative solubility of the solute in the donor solvent and the stratum corneum lipids. Permeability, however, reflected the result of successive, complex processes and was not predictable from stratum corneum partitioning alone. Addition of SLS to solvents altered partitioning and absorption characteristics across a range of compounds, which indicates that partition coefficients or skin permeability from neat chemical exposure should be used with caution in risk assessment procedures for chemical mixtures

  9. Partitioning and diffusion of PBDEs through an HDPE geomembrane.

    Science.gov (United States)

    Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison

    2016-09-01

    Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Gas/aerosol Partitioning Parameterisation For Global Modelling: A Physical Interpretation of The Relationship Between Activity Coefficients and Relative Humidity

    Science.gov (United States)

    Metzger, S.; Dentener, F. J.; Lelieveld, J.; Pandis, S. N.

    A computationally efficient model (EQSAM) to calculate gas/aerosol partitioning ofsemi-volatile inorganic aerosol components has been developed for use in global- atmospheric chemistry and climate models; presented at the EGS 2001.We introduce and discuss here the physics behind the parameterisation, upon whichthe EQuilib- rium Simplified Aerosol Model EQSAM is based. The parameterisation,which ap- proximates the activity coefficient calculation sufficiently accurately forglobal mod- elling, is based on a method that directly relates aerosol activitycoefficients to the ambient relative humidity, assuming chemical equilibrium.It therefore provides an interesting alternative for the computationally expensiveiterative activity coefficient calculation methods presently used in thermodynamicgas/aerosol equilibrium mod- els (EQMs). The parameterisation can be used,however, also in dynamical models that calculate mass transfer between theliquid/solid aerosol phases and the gas/phase explicitly; dynamical models oftenincorporate an EQM to calculate the aerosol com- position. The gain of theparameterisation is that the entire system of the gas/aerosol equilibrium partitioningcan be solved non-iteratively, a substantial advantage in global modelling.Since we have already demonstrated at the EGS 2001 that EQSAM yields similarresults as current state-of-the-art equilibrium models, we focus here on a dis- cussionof our physical interpretation of the parameterisation; the identification of theparameters needed is crucial. Given the lag of reliable data, the best way tothor- oughly validate the parameterisation for global modelling applications is theimple- mentation in current state-of-the-art gas/aerosol partitioning routines, whichare embe- ded in e.g. a global atmospheric chemistry transport model, by comparingthe results of the parameterisation against the ones based on the widely used activitycoefficient calculation methods (i.e. Bromley, Kussik-Meissner or Pitzer). Then

  11. Seasonal and particle size-dependent variations in gas/particle partitioning of PCDD/Fs

    International Nuclear Information System (INIS)

    Lee, Se-Jin; Ale, Debaki; Chang, Yoon-Seok; Oh, Jeong-Eun; Shin, Sun Kyoung

    2008-01-01

    This study monitored particle size-dependent variations in atmospheric polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Two gas/particle partitioning models, the subcooled liquid vapor pressure (P L 0 ) and the octanol-air partition coefficient (K OA ) model, were applied to each particle sizes. The regression coefficients of each fraction against the gas/particle partition coefficient (K P ) were similar for separated particles within the same sample set but differed for particles collected during different periods. Gas/particle partitioning calculated from the integral of fractions was similar to that of size-segregated particles and previously measured bulk values. Despite the different behaviors and production mechanisms of atmospheric particles of different sizes, PCDD/F partitioning of each size range was controlled by meteorological conditions such as atmospheric temperature, O 3 and UV, which reflects no source related with certain particle size ranges but mixed urban sources within this city. Our observations emphasize that when assessing environmental and health effects, the movement of PCDD/Fs in air should be considered in conjunction with particle size in addition to the bulk aerosol. - Gas/particle partitioning of atmospheric PCDD/Fs for different particle sizes reflects the impacts of emitters of different size ranges

  12. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    Science.gov (United States)

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  13. The Effect of fO2 on Partition Coefficients of U and Th between Garnet and Silicate Melt

    Science.gov (United States)

    Huang, F.; He, Z.; Schmidt, M. W.; Li, Q.

    2014-12-01

    Garnet is one of the most important minerals controlling partitioning of U and Th in the upper mantle. U is redox sensitive, while Th is tetra-valent at redox conditions of the silicate Earth. U-series disequilibria have provided a unique tool to constrain the time-scales and processes of magmatism at convergent margins. Variation of garnet/meltDU/Th with fO2 is critical to understand U-series disequilibria in arc lavas. However, there is still no systematic experimental study about the effect of fO2 on partitioning of U and Th between garnet and melt. Here we present experiments on partitioning of U, Th, Zr, Hf, Nb, Ta, and REE between garnet and silicate melts at various fO2. The starting material was hydrous haplo-basalt. The piston cylinder experiments were performed with Pt double capsules with C-CO, MnO-Mn3O4 (MM), and hematite-magnetite (HM) buffers at 3 GPa and 1185-1230 oC. The experiments produced garnets with diameters > 50μm and quenched melt. Major elements were measured by EMPA at ETH Zurich. Trace elements were determined using LA-ICP-MS at Northwestern University (Xi'an, China) and SIMS (Cameca1280 at the Institute of Geology and Geophysics, Beijing, China), producing consistent partition coefficient data for U and Th. With fO2 increasing from CCO to MM and HM, garnet/meltDU decreases from 0.041 to 0.005, while garnet/meltDTh ranges from 0.003 to 0.007 without correlation with fO2. Notably, garnet/meltDTh/U increases from 0.136 at CCO to 0.41 at HM. Our results indicate that U is still more compatible than Th in garnet even at the highest fO2 considered for the subarc mantle wedge (~NNO). Therefore, we predict that if garnet is the dominant phase controlling U-Th partitioning during melting of the mantle wedge, melts would still have 230Th excess over 238U. This explains why most young continental arc lavas have 230Th excess. If clinopyroxene is the dominant residual phase during mantle melting, U could be more incompatible than Th at high fO2

  14. Trial function method and exact solutions to the generalized nonlinear Schrödinger equation with time-dependent coefficient

    International Nuclear Information System (INIS)

    Cao Rui; Zhang Jian

    2013-01-01

    In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)

  15. The 'Salting Out' Effect: Investigating the Influence of Both the Nature and Concentration of Salt on the Partition Coefficient of Butan-1,4-Dioic Acid

    Science.gov (United States)

    McCullagh, John

    2018-01-01

    This sixth-form chemistry activity describes how students can use acid-base titrimetry to investigate how adding salt to the aqueous phase may change the value of the partition coefficient of an organic acid between water and 2-methylpropan-1-ol. While the presence of lithium chloride and sodium chloride increases the value of the partition…

  16. Summary of existing information on gamma-ray and X-ray attenuation coefficients of solutions

    DEFF Research Database (Denmark)

    Singh, K.; Gerward, Leif

    2002-01-01

    Accurate values of X-ray and gamma-ray attenuation coefficients of different chemicals are required in spectrometry as well as in many other scientific, engineering and medical disciplines involving photon radiation. The current state of knowledge of experimental and theoretical gamma-ray and X-r......-ray attenuation coefficients in aqueous solutions of salts is presented and exemplified by recent work. The results presented provide a basis for studying X-ray and gamma-ray photon interactions with ions in solution (hydrated ions) rather than ion compounds in solid form....

  17. Determination and prediction of octanol-air partition coefficients of hydroxylated and methoxylated polybrominated diphenyl ethers.

    Science.gov (United States)

    Zhao, Hongxia; Xie, Qing; Tan, Feng; Chen, Jingwen; Quan, Xie; Qu, Baocheng; Zhang, Xin; Li, Xiaona

    2010-07-01

    The octanol-air partition coefficient (K(OA)) of 19 hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and 10 methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were measured as a function of temperature using a gas chromatographic retention time technique. At room temperature (298.15K), log K(OA) ranged from 8.30 for monobrominated OH/MeO-PBDEs to 13.29 for hexabrominated OH/MeO-PBDEs. The internal energies of phase change from octanol to air (Delta(OA)U) for 29 OH/MeO-PBDE congeners ranged from 72 to 126 kJ mol(-1). Using partial least-squares (PLS) analysis, a statistically quantitative structure-property relationship (QSPR) model for logK(OA) of OH/MeO-PBDE congeners was developed based on the 16 fundamental quantum chemical descriptors computed by PM3 Hamiltonian, for which the Q(cum)(2) was about 0.937. The molecular weight (Mw) and energy of the lowest unoccupied molecular orbital (E(LUMO)) were found to be main factors governing the log K(OA). 2010 Elsevier Ltd. All rights reserved.

  18. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    Science.gov (United States)

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  19. The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core

    Science.gov (United States)

    Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II

    2017-12-01

    Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.

  20. The Train Driver Recovery Problem - a Set Partitioning Based Model and Solution Method

    DEFF Research Database (Denmark)

    Rezanova, Natalia Jurjevna; Ryan, David

    2010-01-01

    The need to recover a train driver schedule occurs during major disruptions in the daily railway operations. Based on data from the Danish passenger railway operator DSB S-tog A/S, a solution method to the train driver recovery problem (TDRP) is developed. The TDRP is formulated as a set...... branching strategy using the depth-first search of the Branch & Bound tree. The LP relaxation of the TDRP possesses strong integer properties. We present test scenarios generated from the historical real-life operations data of DSB S-tog A/S. The numerical results show that all but one tested instances...... partitioning problem. We define a disruption neighbourhood by identifying a small set of drivers and train tasks directly affected by the disruption. Based on the disruption neighbourhood, the TDRP model is formed and solved. If the TDRP solution provides a feasible recovery for the drivers within...

  1. Calculation of site affinity constants and cooperativity coefficients for binding of ligands and/or protons to macromolecules. II. Relationships between chemical model and partition function algorithm.

    Science.gov (United States)

    Fisicaro, E; Braibanti, A; Lamb, J D; Oscarson, J L

    1990-05-01

    The relationships between the chemical properties of a system and the partition function algorithm as applied to the description of multiple equilibria in solution are explained. The partition functions ZM, ZA, and ZH are obtained from powers of the binary generating functions Jj = (1 + kappa j gamma j,i[Y])i tau j, where i tau j = p tau j, q tau j, or r tau j represent the maximum number of sites in sites in class j, for Y = M, A, or H, respectively. Each term of the generating function can be considered an element (ij) of a vector Jj and each power of the cooperativity factor gamma ij,i can be considered an element of a diagonal cooperativity matrix gamma j. The vectors Jj are combined in tensor product matrices L tau = (J1) [J2]...[Jj]..., thus representing different receptor-ligand combinations. The partition functions are obtained by summing elements of the tensor matrices. The relationship of the partition functions with the total chemical amounts TM, TA, and TH has been found. The aim is to describe the total chemical amounts TM, TA, and TH as functions of the site affinity constants kappa j and cooperativity coefficients bj. The total amounts are calculated from the sum of elements of tensor matrices Ll. Each set of indices (pj..., qj..., rj...) represents one element of a tensor matrix L tau and defines each term of the summation. Each term corresponds to the concentration of a chemical microspecies. The distinction between microspecies MpjAqjHrj with ligands bound on specific sites and macrospecies MpAqHR corresponding to a chemical stoichiometric composition is shown. The translation of the properties of chemical model schemes into the algorithms for the generation of partition functions is illustrated with reference to a series of examples of gradually increasing complexity. The equilibria examined concern: (1) a unique class of sites; (2) the protonation of a base with two classes of sites; (3) the simultaneous binding of ligand A and proton H to a

  2. Transfer functions for solid solution partitioning of cadmium for Australian soils

    NARCIS (Netherlands)

    Vries, de W.; Mc Laughlin, M.J.; Groenenberg, J.E.

    2011-01-01

    To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption

  3. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  4. Determination of the subcutaneous tissue to blood partition coefficient in patients with severe leg ischaemia by a double isotope washout technique

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Faris, I; Henriksen, O

    1982-01-01

    Knowledge of the tissue to blood partition coefficient (lambda) is essential for calculation of the perfusion coefficient in a single tissue based on measurements of the washout of locally injected isotopes. No measurements of lambda for Xenon in subcutaneous tissue in the leg have been done...... in patients with occlusive arterial disease. In 12 patients with occlusive arterial disease in the legs lambda for Xenon was determined in subcutaneous tissue in the calf region and foot as the ratio between the washout rate constant of 131I-Antipyrine and 133Xe. A mixture of the two indicators was injected....... Mean value was 3.7 ml X g-1 (range: 1 X 7-10 X 7) in the calf and 2 X 7 ml X g-1 (range: 1 X 2-4 X 9) in the foot. It is concluded that lambda measurements are necessary for determination of subcutaneous blood flow from 133Xe washout curves in these patients. Determination of lambda is especially...

  5. [Evaluation of the Peusner's coefficients matrix for polymeric membrane and ternary non-electrolyte solutions].

    Science.gov (United States)

    Jasik-Slęzak, Jolanta; Slęzak-Prochazka, Izabella; Slęzak, Andrzej

    2014-01-01

    A system of network forms of Kedem-Katchalsky (K-K) equations for ternary non-electrolyte solutions is made of eight matrix equations containing Peusner's coefficients R(ij), L(ij), H(ij), W(ij), K(ij), N(ij), S(ij) or P(ij) (i, j ∈ {1, 2, 3}). The equations are the result of symmetric or hybrid transformation of the classic form of K-K equations by the use of methods of Peusner's network thermodynamics (PNT). Calculating concentration dependences of the determinant of Peusner's coefficients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) and P(ij) (i, j ∈ {1, 2, 3}). The material used in the experiment was a hemodialysis Nephrophan membrane with specified transport properties (L(p), σ, Ω) in aqueous glucose and ethanol solution. The method involved equations for determinants of the matrixes coefficients R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}). The objective of calculations were dependences of determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) within the conditions of solution homogeneity upon an average concentration of one component of solution in the membrane (C1) with a determined value of the second component (C2). The method of calculating the determinants of Peusner's coeffcients matrixes R(ij), L(ij), H(ij), W(ij), S(ij), N(ij), K(ij) or P(ij) (i, j ∈ {1, 2, 3}) is a new tool that may be applicable in studies on membrane transport. Calculations showed that the coefficients are sensitive to concentration and composition of solutions separated by a polymeric membrane.

  6. Data and uncertainty assessment for radionuclide K{sub d} partitioning coefficients in granitic rock for use in SR-Can calculations

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, James; Neretnieks, Ivars; Malmstroem, Maria [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-10-15

    SKB is currently preparing licence applications related to the proposed deep repository for spent nuclear fuel as well as the encapsulation plant required for canister fabrication. The present report is one of several specific data reports that form the data input to an interim safety report (SR-Can) for the encapsulation plant licence application. This report concerns the derivation and recommendation of generic K{sub d} data (i.e. linear partitioning coefficients) for safety assessment modelling of far-field radionuclide transport in fractured granitic rock. The data are derived for typical Swedish groundwater conditions and rock types distinctive of those found on the Simpevarp peninsula and Forsmark. Data have been derived for 8 main elements (Cs, Sr, Ra, Ni, Th, U, Np, Am) and various oxidation states. The data have also been supplied with tentative correction factors to account for artefacts that have not been previously considered in detail in previous compilations. For the main reviewed solutes the data are given in terms of a best estimate K{sub d} value assumed to be the median of the aggregate set of selected data. A range corresponding to the 25-75% inter-quartile range is also specified and probable ranges of uncertainty are estimated in the form of an upper and lower limit to the expected variability. Data for an additional 19 elements that have not been reviewed are taken from a previous compilation by Carbol and Engkvist.

  7. Partitioning of naphthalene, methylnaphthalenes and biphenyl between wastewater treatment sludges and water

    International Nuclear Information System (INIS)

    Southworth, G.R.; Keller, J.L.

    1984-01-01

    Partition coefficients (K/sub p/) describing the partitioning of naphthalene, methylnaphthalenes and biphenyl between organic-rich wastes and water were determined using 14 C-tracer techniques as well as high performance liquid chromatographic analysis of the wastes and their aqueous extracts. Results of the two procedures were in good agreement. The concentrations of the specific organics in the wastes were not good predictors of concentrations in aqueous extracts, since K/sub p/ varied among the materials tested. Predictions of k/sub p/ based on organic carbon content of the sludges were well below observed values. Oil content of the wastes and oil-water partition coefficients appeared to be important factors in determining K/sub p/. 11 references, 5 tables

  8. On k-summability of formal solutions for certain partial differential operators with polynomial coefficients

    Directory of Open Access Journals (Sweden)

    Kunio Ichinobe

    2015-01-01

    Full Text Available We study the \\(k\\-summability of divergent formal solutions for the Cauchy problem of certain linear partial differential operators with coefficients which are polynomial in \\(t\\. We employ the method of successive approximation in order to construct the formal solutions and to obtain the properties of analytic continuation of the solutions of convolution equations and their exponential growth estimates.

  9. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  10. Numerical solution for identification of feedback coefficients in nuclear reactors

    International Nuclear Information System (INIS)

    Ebizuka, Yoshie; Sakai, Hideo

    1975-01-01

    Quasilinearization technique was studied to determine the Kinetic parameters of nuclear reactors. The method of solution was generalized to the determination of the parameters contained in a nonlinear system with nonlinear boundary conditions. A computer program, SNR-3, was developed to solve the resulting nonlinear two-point boundary value equations with generalized boundary conditions. In this paper, the problem formulation and the method of solution are explained for a general type of time dependent problem. A flow chart shows the procedure of numerical solution. The method was then applied to the determination of the critical factor and the reactivity feedback coefficients of reactors to investigate the accuracy and the applicability of the present method. The results showed that the present method was considerably successful, but that the random observation error effected the results of the identification. (Aoki, K.)

  11. Partitioning of polychlorinated biphenyls into human cells and adipose tissues: evaluation of octanol, triolein, and liposomes as surrogates.

    Science.gov (United States)

    Quinn, Cristina L; van der Heijden, Stephan A; Wania, Frank; Jonker, Michiel T O

    2014-05-20

    Whereas octanol, triacylglycerides, and liposomes have all been proposed as surrogates for measuring the affinity of hydrophobic organic contaminants to human lipids, no comparative evaluation of their suitability exists. Here we conducted batch sorption experiments with polyoxymethylene passive samplers to determine the partition coefficients at 37 °C of 18 polychlorinated biphenyls (PCBs) from water into (i) triolein (Ktriolein/water), (ii) eight types of liposomes (Kliposome/water), (iii) human abdominal fat tissues (KAFT/water) from seven individuals, and (iv) human MCF-7 cells cultured in vitro (Kcell/water). Differences between KAFT/water among individuals and between Kliposome/water among liposome types were very small and not correlated to structural attributes of the PCBs. Similarly, the length and degree of saturation of the phospholipid carbon chains, the headgroup, and the composition of the liposome did not affect the partitioning of PCBs into the studied liposomes. Whereas Kliposome/water values were similar to literature values of Koctanol/water adjusted to 37 °C, they both were lower than KAFT/water and Kcell/water by a factor of 3 on average. Partitioning of PCBs into triolein on the other hand closely mimicked that into human lipids, for which triolein is thus a better surrogate than either octanol or liposomes. Previously published polyparameter linear free energy relationships for partitioning from water into storage lipids and liposomes predicted the measured partition coefficients with a root-mean-square error of less than 0.15 log units, if the chosen equations and solute descriptors do not allow chlorine substitution in the ortho-position to influence the prediction. By guiding the selection of (i) a surrogate for the experimental determination and (ii) a method for the prediction of partitioning into human lipids, this study contributes to a better assessment of hydrophobic organic contaminant bioaccumulation in humans.

  12. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  13. A thermodynamic model for solid solutions and its application to the C-Fe-Co, C-Fe-Ni and Mn-Cr-Pt solid dilutions

    International Nuclear Information System (INIS)

    Tao, D.P.

    2004-01-01

    Based on the free volume theory and the lattice model, the partition functions of pure solids and their mixtures were expressed. This resulted in the establishment of a thermodynamic model for solid solutions. The model naturally combines the excess entropy and excess enthalpy of a solution by means of new expressions of the configurational partition functions of solids and their mixtures derived from statistical thermodynamics, which is approximate to real solid solutions, that is S E ≠0 (V E ≠0) and H E ≠0. It can describe the thermodynamic properties of partially miscible systems and predict the thermodynamic properties in a multicomponent solid solution system using only the related binary infinite dilute activity coefficients. The predicted activity coefficients from the model are in good agreement with the experimental data of the ternary solid dilutions. This shows that the prediction effect of the proposed model is of better stability and reliability because it has a good physical basis

  14. Interfacial thermodynamics and electrochemistry of protein partitioning in two-phase systems

    NARCIS (Netherlands)

    Fraaije, J.G.E.M.

    1987-01-01

    The subject of this thesis is protein partition between an aqueous salt solution and a surface or an apolair liquid and the concomitant co-partition of small ions. The extent of co-partitioning determines the charge regulation in the protein partitioning process.

    Chapters 2 and 3

  15. On Solutions for Linear and Nonlinear Schrödinger Equations with Variable Coefficients: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Gabriel Amador

    2016-05-01

    Full Text Available In this work, after reviewing two different ways to solve Riccati systems, we are able to present an extensive list of families of integrable nonlinear Schrödinger (NLS equations with variable coefficients. Using Riccati equations and similarity transformations, we are able to reduce them to the standard NLS models. Consequently, we can construct bright-, dark- and Peregrine-type soliton solutions for NLS with variable coefficients. As an important application of solutions for the Riccati equation with parameters, by means of computer algebra systems, it is shown that the parameters change the dynamics of the solutions. Finally, we test numerical approximations for the inhomogeneous paraxial wave equation by the Crank-Nicolson scheme with analytical solutions found using Riccati systems. These solutions include oscillating laser beams and Laguerre and Gaussian beams.

  16. Equilibrium partitioning of drug molecules between aqueous and amino acid ester-based ionic liquids

    International Nuclear Information System (INIS)

    Jing, Jun; Li, Zhiyong; Pei, Yuanchao; Wang, Huiyong; Wang, Jianji

    2013-01-01

    Highlights: ► Partition coefficients of twelve drug molecules in ILs have been determined. ► The possible mechanism has been investigated from 13 C NMR measurements. ► Hydrophobic π–π interaction is the main driving force for the partitioning of drug molecules. -- Abstract: In this work, a series of novel room temperature ionic liquids (ILs) have been synthesized with cheap, naturally α-amino acid ester as cations and bis(trifluoromethylsulfonyl)imide as anion. The glass transition temperature and thermal decomposition temperature of these ILs, partition coefficients of some coumarins and purine alkaloids between water and the amino acid ester-based ILs at T = 298.15 K, and Gibbs energy, enthalpy and entropy changes for the transfer of caffeine and 6,7-dihydroxycoumarin from water to [LeuC 2 ][Tf 2 N] have been determined. It is shown that these ILs are highly effective materials for the extraction of drug compounds like coumarin, 4-hydroxycoumarin, 7-hydroxycoumarin, 3-aminocoumarin, coumarin-3-carboxylic acid, 6,7-dihydroxycoumarin, 6,7-dihydroxy-4-methylcoumarin, caffeine, theobromine, theophylline, inosine, and 2,6-diaminopurine. The partition process is driven by enthalpy term, and partition coefficients of the drug molecules increase with the increase of hydrophobicity of both the drug molecules and the ILs. Furthermore, the possible partition mechanism has been investigated from 13 C NMR measurements

  17. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    Energy Technology Data Exchange (ETDEWEB)

    Kulik, D.; Berner, U.; Curti, E

    2004-03-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  18. Modelling Chemical Equilibrium Partitioning with the GEMS-PSI Code

    International Nuclear Information System (INIS)

    Kulik, D.; Berner, U.; Curti, E.

    2004-01-01

    Sorption, co-precipitation and re-crystallisation are important retention processes for dissolved contaminants (radionuclides) migrating through the sub-surface. The retention of elements is usually measured by empirical partition coefficients (Kd), which vary in response to many factors: temperature, solid/liquid ratio, total contaminant loading, water composition, host-mineral composition, etc. The Kd values can be predicted for in-situ conditions from thermodynamic modelling of solid solution, aqueous solution or sorption equilibria, provided that stoichiometry, thermodynamic stability and mixing properties of the pure components are known (Example 1). Unknown thermodynamic properties can be retrieved from experimental Kd values using inverse modelling techniques (Example 2). An efficient, advanced tool for performing both tasks is the Gibbs Energy Minimization (GEM) approach, implemented in the user-friendly GEM-Selector (GEMS) program package, which includes the Nagra-PSI chemical thermodynamic database. The package is being further developed at PSI and used extensively in studies relating to nuclear waste disposal. (author)

  19. Solute partitioning and interfacial segregation in TiAl-based alloys

    International Nuclear Information System (INIS)

    Larson, D.J.; Miller, M.K.

    1999-01-01

    Atom probe microscopy has been used to investigate elemental partitioning and segregation behavior in a TiAl-based alloy with a variety of alloying additions including Cr, Nb, W and B. These results indicate that in a stress-relieved state (2h at 900 C) and a reheated state (2h at 900 C, 2,184h at 800 C and 2h at 1,210 C) chromium, and to a lesser extent tungsten, is partitioned to the α 2 phase. However, in an annealed state (2h at 900 C and 720 h at 800 C), these elements are partitioned to the γ phase. Segregation of chromium and tungsten to lamellar interfaces is observed in the stress-relieved material, but significant segregation was not observed in material subjected to the other heat treatments. A W- and B-enriched precipitate was observed in the reheated material and provides a possible explanation for the low tungsten concentrations measured in the matrix phases

  20. Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

    Science.gov (United States)

    DiFilippo, Erica L.; Eganhouse, Robert P.

    2010-01-01

    Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future

  1. New Soliton-like Solutions and Multi-soliton Structures for Broer-Kaup System with Variable Coefficients

    International Nuclear Information System (INIS)

    Ji Mingjun; Lue Zhuosheng

    2005-01-01

    By using the further extended tanh method [Phys. Lett. A 307 (2003) 269; Chaos, Solitons and Fractals 17 (2003) 669] to the Broer-Kaup system with variable coefficients, abundant new soliton-like solutions and multi-soliton-like solutions are derived. Based on the derived multi-soliton-like solutions which contain arbitrary functions, some interesting multi-soliton structures are revealed.

  2. Traceable mean activity coefficients and osmotic coefficients in aqueous magnesium chloride solutions at T = 298.15 K up to a molality of 3.0 mol · kg−1

    International Nuclear Information System (INIS)

    Partanen, Jaakko I.

    2013-01-01

    Highlights: • This work reports new equations for thermodynamic activity quantities in aqueous MgCl 2 solutions. • The new equations are functionally the same as those obtained previously solutions of CaCl 2 and uni-univalent electrolytes. • The new activity and osmotic coefficients are fully traceable and transparent. • These new values were tested thoroughly with existing literature data. -- Abstract: The Hückel equation used in this study for the thermodynamic activity quantities in dilute MgCl 2 solutions up to an ionic strength (=I m ) of 1.5 mol · kg −1 contains two parameters being dependent on the electrolyte, i.e., those of B and b 1 . The former is linearly related to the ion-size parameter in the Debye–Hückel equation and the latter is the coefficient of the linear correction term with respect to the molality. For more concentrated solutions up to I m of 9.0 mol · kg −1 , an extended Hückel equation was used. For it, the Hückel equation was extended with a quadratic term in molality, and the coefficient of this term is the third parameter b 2 . Parameters B and b 1 for dilute MgCl 2 solutions were obtained from the isopiestic data of Robinson and Stokes for solutions of this salt and KCl [Trans. Faraday Soc. 36 (1940) 733] by using the previous Hückel parameters for dilute KCl solutions [J. Chem. Eng. Data 54 (2009) 208]. The resulting parameters for MgCl 2 solutions were successfully tested with all isopiestic data available in the literature for dilute solutions of this salt. For less dilute solutions, new values for parameters b 1 and b 2 were determined for the extended version of the Hückel equation of MgCl 2 solutions from the isopiestic data of Rard and Miller [J. Chem. Eng. Data 26 (1981) 38] for NaCl and MgCl 2 solutions but the dilute-solution value for parameter B was used. The previous extended Hückel equation for concentrated NaCl solutions was used in this estimation (see the KCl citation above). In the tests of the

  3. Approximate Solutions of Delay Differential Equations with Constant and Variable Coefficients by the Enhanced Multistage Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    D. Olvera

    2015-01-01

    Full Text Available We expand the application of the enhanced multistage homotopy perturbation method (EMHPM to solve delay differential equations (DDEs with constant and variable coefficients. This EMHPM is based on a sequence of subintervals that provide approximate solutions that require less CPU time than those computed from the dde23 MATLAB numerical integration algorithm solutions. To address the accuracy of our proposed approach, we examine the solutions of several DDEs having constant and variable coefficients, finding predictions with a good match relative to the corresponding numerical integration solutions.

  4. Solution of time dependent atmospheric diffusion equation with a proposed diffusion coefficient

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Essa, KH.S.M.; Aly, SH.

    2004-01-01

    One-dimensional model for the dispersion of passive atmospheric contaminant (not included chemical reactions) in the atmospheric boundary layer is considered. On the basis of the gradient transfer theory (K-theory), the time dependent diffusion equation represents the dispersion of the pollutants is solved analytically. The solution depends on diffusion coefficient K', which is expressed in terms of the friction velocity 'u the vertical coordinate -L and the depth of the mixing layer 'h'. The solution is obtained to either the vertical coordinate 'z' is less or greater than the mixing height 'h'. The obtained solution may be applied to study the atmospheric dispersion of pollutants

  5. Direct Measurements of Gas/Particle Partitioning and Mass Accommodation Coefficients in Environmental Chambers.

    Science.gov (United States)

    Krechmer, Jordan E; Day, Douglas A; Ziemann, Paul J; Jimenez, Jose L

    2017-10-17

    Secondary organic aerosols (SOA) are a major contributor to fine particulate mass and wield substantial influences on the Earth's climate and human health. Despite extensive research in recent years, many of the fundamental processes of SOA formation and evolution remain poorly understood. Most atmospheric aerosol models use gas/particle equilibrium partitioning theory as a default treatment of gas-aerosol transfer, despite questions about potentially large kinetic effects. We have conducted fundamental SOA formation experiments in a Teflon environmental chamber using a novel method. A simple chemical system produces a very fast burst of low-volatility gas-phase products, which are competitively taken up by liquid organic seed particles and Teflon chamber walls. Clear changes in the species time evolution with differing amounts of seed allow us to quantify the particle uptake processes. We reproduce gas- and aerosol-phase observations using a kinetic box model, from which we quantify the aerosol mass accommodation coefficient (α) as 0.7 on average, with values near unity especially for low volatility species. α appears to decrease as volatility increases. α has historically been a very difficult parameter to measure with reported values varying over 3 orders of magnitude. We use the experimentally constrained model to evaluate the correction factor (Φ) needed for chamber SOA mass yields due to losses of vapors to walls as a function of species volatility and particle condensational sink. Φ ranges from 1-4.

  6. Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.

    Science.gov (United States)

    Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P

    2011-05-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.

  7. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    Science.gov (United States)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  8. Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products

    Directory of Open Access Journals (Sweden)

    C. Wang

    2017-06-01

    Full Text Available Gas–particle partitioning governs the distribution, removal, and transport of organic compounds in the atmosphere and the formation of secondary organic aerosol (SOA. The large variety of atmospheric species and their wide range of properties make predicting this partitioning equilibrium challenging. Here we expand on earlier work and predict gas–organic and gas–aqueous phase partitioning coefficients for 3414 atmospherically relevant molecules using COSMOtherm, SPARC Performs Automated Reasoning in Chemistry (SPARC, and poly-parameter linear free-energy relationships. The Master Chemical Mechanism generated the structures by oxidizing primary emitted volatile organic compounds. Predictions for gas–organic phase partitioning coefficients (KWIOM/G by different methods are on average within 1 order of magnitude of each other, irrespective of the numbers of functional groups, except for predictions by COSMOtherm and SPARC for compounds with more than three functional groups, which have a slightly higher discrepancy. Discrepancies between predictions of gas–aqueous partitioning (KW/G are much larger and increase with the number of functional groups in the molecule. In particular, COSMOtherm often predicts much lower KW/G for highly functionalized compounds than the other methods. While the quantum-chemistry-based COSMOtherm accounts for the influence of intra-molecular interactions on conformation, highly functionalized molecules likely fall outside of the applicability domain of the other techniques, which at least in part rely on empirical data for calibration. Further analysis suggests that atmospheric phase distribution calculations are sensitive to the partitioning coefficient estimation method, in particular to the estimated value of KW/G. The large uncertainty in KW/G predictions for highly functionalized organic compounds needs to be resolved to improve the quantitative treatment of SOA formation.

  9. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models.

    Science.gov (United States)

    Chen, Ying; Cai, Xiaoyu; Jiang, Long; Li, Yu

    2016-02-01

    Based on the experimental data of octanol-air partition coefficients (KOA) for 19 polychlorinated biphenyl (PCB) congeners, two types of QSAR methods, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), are used to establish 3D-QSAR models using the structural parameters as independent variables and using logKOA values as the dependent variable with the Sybyl software to predict the KOA values of the remaining 190 PCB congeners. The whole data set (19 compounds) was divided into a training set (15 compounds) for model generation and a test set (4 compounds) for model validation. As a result, the cross-validation correlation coefficient (q(2)) obtained by the CoMFA and CoMSIA models (shuffled 12 times) was in the range of 0.825-0.969 (>0.5), the correlation coefficient (r(2)) obtained was in the range of 0.957-1.000 (>0.9), and the SEP (standard error of prediction) of test set was within the range of 0.070-0.617, indicating that the models were robust and predictive. Randomly selected from a set of models, CoMFA analysis revealed that the corresponding percentages of the variance explained by steric and electrostatic fields were 23.9% and 76.1%, respectively, while CoMSIA analysis by steric, electrostatic and hydrophobic fields were 0.6%, 92.6%, and 6.8%, respectively. The electrostatic field was determined as a primary factor governing the logKOA. The correlation analysis of the relationship between the number of Cl atoms and the average logKOA values of PCBs indicated that logKOA values gradually increased as the number of Cl atoms increased. Simultaneously, related studies on PCB detection in the Arctic and Antarctic areas revealed that higher logKOA values indicate a stronger PCB migration ability. From CoMFA and CoMSIA contour maps, logKOA decreased when substituents possessed electropositive groups at the 2-, 3-, 3'-, 5- and 6- positions, which could reduce the PCB migration ability. These results are

  10. Modular invariant partition functions for toroidally compactified bosonic string

    International Nuclear Information System (INIS)

    Ardalan, F.; Arfaei, H.

    1988-06-01

    We systematically find all the modular invariant partition functions for the toroidally compactified closed bosonic string defined on a subset of a simply laced simple Lie algebra lattice, or equivalently for the closed bosonic string moving on a group manifold with the WZW coefficient k=1. We examine the relation between modular invariance of partition function and the possibility of describing it by an even Lorentzian self dual lattice in our context. (author). 23 refs

  11. Analytical solution for the normal emission portion of the averaged Yarkovsky-O'Keefe-Radzvieskii-Paddack coefficient for a single facet

    Science.gov (United States)

    Albuja, Antonella A.; Scheeres, Daniel J.

    2015-02-01

    The Yarkovsky-O'Keefe-Radzvieskii-Paddack (YORP) effect has been well studied for asteroids. This paper develops an analytic solution to find the normal emission YORP component for a single facet. The solution presented here does not account for self-shadowing or self-heating. The YORP coefficient for all facets can be summed together to find the total coefficient of the asteroid. The normal emission component of YORP has been shown to be the most important for asteroids and it directly affects the rate of change of the asteroid's spin period. The analytical solution found is a sole function of the facet's geometry and the obliquity of the asteroid. This solution is universal for any facet and its orientation. The behaviour of the coefficient is analysed with this analytical solution. The closed-form solution is used to find the total YORP coefficient for the asteroids Apollo and 1998 ML14 whose shape models are composed of different numbers of facets. The results are then compared to published results and those obtained through numerical quadrature for validation.

  12. The importance of applying an appropriate data partitioning

    CERN Document Server

    Dimitrov, Gancho; The ATLAS collaboration

    2015-01-01

    In this presentation are described specific technical solutions put in place in various database applications of the ATLAS experiment at LHC where we make use of several partitioning techniques available in Oracle 11g. With the broadly used range partitioning and its option of automatic interval partitioning we add our own logic in PLSQL procedures and scheduler jobs to sustain data sliding windows in order to enforce various data retention policies. We also make use of the new Oracle 11g reference partitioning in the ATLAS Nightly Build System to achieve uniform data segmentation. However the most challenging was to segment the data of the new ATLAS Distributed Data Management system, which resulted in tens of thousands list type partitions and sub-partitions. Partition and sub-partition management, index strategy, statistics gathering and queries execution plan stability are important factors when choosing an appropriate physical model for the application data management. The so-far accumulated knowledge wi...

  13. Osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Sagert, N.H.; Lau, D.W.P.

    1983-01-01

    Vapor pressure osmometry was used to measure osmotic coefficients of water for thorium nitrate solutions at 25, 37, and 50 o C and at molalities up to 0.2 mol·kg -1 . The data were fitted to three- and four-parameter equations containing limiting-law terms for a 4:1 electrolyte. The variation of the osmotic coefficients as a function of temperature was found to be small. The results are compared to published values for the osmotic coefficients. (author)

  14. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt

    Science.gov (United States)

    Brenan, J. M.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.

    1995-10-01

    In order to more fully establish a basis for quantifying the role of amphibole in trace-element fractionation processes, we have measured pargasite/silicate melt partitioning of a variety of trace elements (Rb, Ba, Nb, Ta, Hf, Zr, Ce, Nd, Sm, Yb), including the first published values for U, Th and Pb. Experiments conducted at 1000°C and 1.5 GPa yielded large crystals free of compositional zoning. Partition coefficients were found to be constant at total concentrations ranging from ˜ 1 to > 100 ppm, indicating Henry's Law is oparative over this interval. Comparison of partition coefficients measured in this study with previous determinations yields good agreement for similar compositions at comparable pressure and temperature. The compatibility of U, Th and Pb in amphibole decreases in the order Pb > Th > U. Partial melting or fractional crystallization of amphibole-bearing assemblages will therefore result in the generation of excesses in 238U activity relative to 230Th, similar in magnitude to that produced by clinopyroxene. The compatibility of Pb in amphibole relative to U or Th indicates that melt generation in the presence of residual amphibole will result in the long-term enrichment in Pb relative to U or Th in the residue. This process is therefore incapable of producing the depletion in Pb relative to U or Th inferred from the Pb isotopic composition of MORB and OIB. Comparison of partition coefficients measured in this study with previous values for clinopyroxene allows some distinction to be made between expected trace-element fractionations produced during dry (cpx present) and wet (cpx + amphibole present) melting. Rb, Ba, Nb and Ta are dramatically less compatible in clinopyroxene than in amphibole, whereas Th, U, Hf and Zr have similar compatibilities in both phases. Interelement fractionations, such as DNb/DBa are also different for clinopyroxene and amphibole. Changes in certain ratios, such as Ba/Nb, Ba/Th, and Nb/Th within comagmatic suites may

  15. Multi-soliton solutions to the modified nonlinear Schrödinger equation with variable coefficients in inhomogeneous fibers

    International Nuclear Information System (INIS)

    Dai, Chao-Qing; Qin, Zhen-Yun; Zheng, Chun-Long

    2012-01-01

    Multi-soliton solutions to the modified nonlinear Schrödinger equation (MNLSE) with variable coefficients (VCs) in inhomogeneous fibers are obtained with the help of mapping transformation, which reduces the VC MNLSE into a constant-coefficient MNLSE. Based on the analytical solutions, one- and two-soliton transmissions in the proper dispersion management systems are discussed. The sustainment of solitons and the disappearance of breathers for the VC MNLSE are first reported here. (paper)

  16. Development of partitioning method : cold experiment with partitioning test facility in NUCEF (I)

    International Nuclear Information System (INIS)

    Yamaguchi, Isoo; Morita, Yasuji; Kondo, Yasuo

    1996-03-01

    A test facility in which about 1.85 x 10 14 Bq of high-level liquid waste can be treated has been completed in 1994 at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) for research and development of Partitioning Method. The outline of the partitioning test facility and support equipments for it which were design terms, constructions, arrangements, functions and inspections were given in JAERI-Tech 94-030. The present report describes the results of the water transfer test and partitioning tests, which are methods of precipitation by denitration, oxalate precipitation, solvent extraction, and adsorption with inorganic ion exchanger, using nitric acid to master operation method of the test facility. As often as issues related to equipments occurred during the tests, they were improved. As to issues related to processes such as being stopped up of columns, their measures of solution were found by testing in laboratories. They were reflected in operation of the Partitioning Test Facility. Their particulars and improving points were described in this report. (author)

  17. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures

    Science.gov (United States)

    Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.

    2017-09-01

    Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.

  18. Experimental study of radium partitioning between anorthite and melt at 1 atm

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S; Burnett, D; Asimow, P; Phinney, D; Hutcheon, I

    2007-03-08

    We present the first experimental radium mineral/melt partitioning data, specifically between anorthite and a CMAS melt at atmospheric pressure. Ion microprobe measurement of coexisting anorthite and glass phases produces a molar D{sub Ra} = 0.040 {+-} 0.006 and D{sub Ra}/D{sub Ba} = 0.23 {+-} 0.05 at 1400 C. Our results indicate that lattice strain partitioning models fit the divalent (Ca, Sr, Ba, Ra) partition coefficient data of this study well, supporting previous work on crustal melting and magma chamber dynamics that has relied on such models to approximate radium partitioning behavior in the absence of experimentally determined values.

  19. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    International Nuclear Information System (INIS)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-01-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found

  20. Molecular theory of chromatography for blocklike solutes in anisotropic stationary phases and its application

    International Nuclear Information System (INIS)

    Yan, Chao; Martire, D.E.

    1992-01-01

    DiMarzio's lattice model is successfully applied to describe the equilibrium partitioning of blocklike molecules between an isotropic mobile phase and an anisotropic stationary phase in various types of fluid chromatography to obtain a retention equation. A linear relationship between the logarithm of the solute distribution coefficient and minimum area is predicted. 44 refs., 8 figs., 2 tabs

  1. Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Jacobsen, Stein B.; Remo, John L., E-mail: lschaefer@asu.edu [Harvard University, Department of Earth and Planetary Sciences, 20 Oxford St., Cambridge, MA 02138 (United States)

    2017-02-01

    We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on the metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.

  2. Exchange reactions between a molten salt and a solution of tri-butyl phosphate in a liquid silicone; Reactions d'echange entre un sel fondu et une solution de phosphate de tributyle dans un silicone liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Present interest centred around molten salts can be explained by their possible use in the field of nuclear energy, in particular as a support for fuels and also as reprocessing agents. It seemed of interest to consider the molten salt as a solvent and to study partition phenomena with a second phase stable at high temperatures. The salt chosen is a ternary eutectic of alkali nitrates and the second phase is a solution of tri-butyl phosphate in a liquid silicone. The working temperature is fixed at 150 deg. C. We have studied first of all the stability of the two phases and their mutual solubilities at this temperature. It has been shown that the two solvents are immiscible and stable. We have also described the extraction by the silicone solution of various products in solution in the salt phase, and have determined the partition coefficients and the formulae of the extracted molecules. It has been possible to calculate the partition coefficients of the following ions extracted as nitrates: Li{sup +}, Na{sup +}, K{sup +}, Sr{sup 2+}, Ca{sup 2+}, Ba{sup 2+}, Hg{sup 2+} whose partition coefficients are very low: Mg{sup 2+}, Ni{sup 2+}, Co{sup 2+}, Zn{sup 2+} whose extraction yields are greater than 50 per cent; finally Ce{sup 3+}, La{sup 3+}, UO{sub 2}{sup 2+}, highly extracted. Also the following anions have been extracted in the form of alkali salts: F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}, IO{sub 3}{sup -}, CN{sup -}, SO{sub 4}{sup -}, C{sub 2}O{sub 4}{sup -}, NO{sub 2}{sup -}. Amongst these, only the halogens have non-negligible partition coefficients. In certain particular cases we have been able to study the influence of complex formation on the extraction phenomena. Two applications are described: - The separation of two products by complex formation and extraction (separation of magnesium from cobalt, nickel and zinc); - The calculation of the equilibrium constant of a complex by measurement of the variation in the partition coefficient of the ion complexed

  3. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.

    Science.gov (United States)

    Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-06-01

    Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of the reference solution in the measurement of ion activity coefficients using cells with transference at T = 298.15 K

    International Nuclear Information System (INIS)

    Lladosa, Estela; Arce, Alberto; Wilczek-Vera, Grazyna; Vera, Juan H.

    2010-01-01

    This work reports individual activity coefficients of ions at T = 298.15 K in aqueous solutions obtained from voltage values of the respective half-cell ion-selective-electrode and a single-junction Ag-AgCl reference electrode, filled with different reference solutions at different concentrations. For potassium and chloride ions in KCl aqueous solutions, reference solutions of KCl, NaCl, or CsCl were used. For sodium and chloride ions in aqueous NaCl solutions, reference solutions of CsCl were used. Experimental runs were performed at molalities (1, 2, and 3) m of the reference solution. The concentration of the sample solution was increased, starting from around 1 . 10 -3 m, up to the molality of the reference solution. The values of activity coefficients are calculated using the Henderson equation to estimate the liquid-junction potential. Results show that the ionic activity coefficients are independent of the nature and concentration of reference solution.

  5. Partition Coefficients of Organic Molecules in Squalane and Water/Ethanol Mixtures by Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Lundsgaard, Rasmus; Kontogeorgis, Georgios; Economou, Ioannis G.

    2011-01-01

    coefficient can be estimated for both a small hydrophilic and a hydrophobic organic molecules between squalane (used here to mimic low density poly ethylene) and water/ethanol solutes using thermodynamic integration to calculate the free energy of solvation. Molecular dynamics simulations are performed, using...... the GROMACS software, by slowly decoupling of firstly the electrostatic and then the Lennard–Jones interactions between molecules in the simulation box. These calculations depend very much on the choice of force field. Two force fields have been tested in this work, the TraPPE-UA (united-atom) and the OPLS...

  6. Determination of the Solute Diffusion Coefficient by the Droplet Migration Method

    Energy Technology Data Exchange (ETDEWEB)

    Shan Liu; Jing Teng; Jeongyun Choi

    2007-07-01

    Further analysis of droplet migration in a temperature gradient field indicates that different terms can be used to evaluate the solute diffusion coefficient in liquid (D{sub L}) and that there exists a characteristic curve that can describe the motion of all the droplets for a given composition and temperature gradient. Critical experiments are subsequently conducted in succinonitrile (SCN)-salol and SCN-camphor transparent alloys in order to observe dynamic migration processes of a number of droplets. The derived diffusion coefficients from different terms are the same within experimental error. For SCN-salol alloys, D{sub L} = (0.69 {+-} 0.05) x 10{sup -3} mm{sup 2}/s, and for SCN-camphor alloys, D{sub L} = (0.24 {+-} 0.02) x 10{sup -3} mm{sup 2}/s.

  7. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    Science.gov (United States)

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection. © 2015 American Institute of Chemical Engineers.

  8. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  9. Constraint Programming Approach to the Problem of Generating Milton Babbitt's All-partition Arrays

    DEFF Research Database (Denmark)

    Tanaka, Tsubasa; Bemman, Brian; Meredith, David

    2016-01-01

    elements and corresponding to a distinct integer partition of 12. Constraint programming (CP) is a tool for solving such combinatorial and constraint satisfaction problems. In this paper, we use CP for the first time to formalize this problem in generating an all-partition array. Solving the whole...... of this problem is difficult and few known solutions exist. Therefore, we propose solving two sub-problems and joining these to form a complete solution. We conclude by presenting a solution found using this method. Our solution is the first we are aware of to be discovered automatically using a computer......Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. One part of the problem in generating an all-partition array requires finding a covering of a pitch-class matrix by a collection of sets, each forming a region containing 12 distinct...

  10. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  11. Numerical simulation of solute trapping phenomena using phase-field solidification model for dilute binary alloys

    Directory of Open Access Journals (Sweden)

    Henrique Silva Furtado

    2009-09-01

    Full Text Available Numerical simulation of solute trapping during solidification, using two phase-field model for dilute binary alloys developed by Kim et al. [Phys. Rev. E, 60, 7186 (1999] and Ramirez et al. [Phys. Rev. E, 69, 05167 (2004] is presented here. The simulations on dilute Cu-Ni alloy are in good agreement with one dimensional analytic solution of sharp interface model. Simulation conducted under small solidification velocity using solid-liquid interface thickness (2λ of 8 nanometers reproduced the solute (Cu equilibrium partition coefficient. The spurious numerical solute trapping in solid phase, due to the interface thickness was negligible. A parameter used in analytical solute trapping model was determined by isothermal phase-field simulation of Ni-Cu alloy. Its application to Si-As and Si-Bi alloys reproduced results that agree reasonably well with experimental data. A comparison between the three models of solute trapping (Aziz, Sobolev and Galenko [Phys. Rev. E, 76, 031606 (2007] was performed. It resulted in large differences in predicting the solidification velocity for partition-less solidification, indicating the necessity for new and more acute experimental data.

  12. Determination of the pK values of 5-aminosalicylic acid and N-acetylaminosalicylic acid and comparison of the pH dependent lipid-water partition coefficients of sulphasalazine and its metabolites.

    Science.gov (United States)

    Allgayer, H; Sonnenbichler, J; Kruis, W; Paumgartner, G

    1985-01-01

    Sulphasalazine (SASP), used in the treatment of inflammatory bowel disease, is split into sulphapyridine (SP) and 5-aminosalicylic acid (5-ASA) in the colon. Lower plasma levels of SASP and 5-ASA as compared to those of SP may be due to different absorption rates from the colon because of different pK values and pH dependent lipid-water partition coefficients. In this study we determined the pK values of 5-ASA and its major metabolite, N-acetyl amino-salicylic acid (AcASA), by 13C-NMR spectroscopy and compared the pH dependent apparent benzene-water partition coefficients (Papp) of SASP, SP and 5-ASA with respect to their different plasma levels. The COOH group of 5-ASA had a pK value of 3.0, the -NH3+ group had 6.0, the -OH group 13.9; the -COOH group of AcASA had 2.7 and the -OH group 12.9; The Papp of SASP (0.042 +/- 0.004) and 5-ASA (0.059 +/- 0.01) were significantly lower than that of SP (0.092 +/- 0.03) (at pH 5.5).

  13. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    Science.gov (United States)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  14. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  15. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse

    NARCIS (Netherlands)

    Schröder, T.J.; Hiemstra, T.; Vink, J.P.M.

    2005-01-01

    The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected

  16. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    International Nuclear Information System (INIS)

    Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing

    2005-01-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion

  17. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide

    International Nuclear Information System (INIS)

    Marciniak, Andrzej

    2011-01-01

    Highlights: → The γ 13 ∞ and KL for 46 solutes in the ionic liquid [N-C3OHPY][NTf2] were determined by GLC at different temperatures. → The partial molar excess Gibbs energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated. → The selectivities for aliphatics/aromatics hydrocarbons separation problem were calculated and compared to other ILs, NMP and sulfolane. → The selectivities for selected compounds which form azeotropic mixtures were calculated. - Abstract: The activity coefficients at infinite dilution, γ 13 ∞ and gas-liquid partition coefficients, K L for 46 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, acetic acid, and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide were determined by gas-liquid chromatography at the temperatures from (308.15 to 378.15) K. The partial molar excess Gibbs free energies ΔG 1 E,∞ , enthalpies ΔH 1 E,∞ and entropies ΔS 1 E,∞ at infinite dilution were calculated from the experimental γ 13 ∞ values obtained over the temperature range. The selectivities for aliphatic/aromatic hydrocarbons separation problem were calculated from the γ 13 ∞ and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion, NMP and sulfolane. It was found that the investigated ionic liquid shows much higher selectivity at infinite dilution than the general used organic solvents such as NMP, sulfolane and other ionic liquids. Additionally the selectivities for selected compounds which form azeotropic mixtures were calculated.

  18. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation.

    Science.gov (United States)

    Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen

    2017-12-15

    Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Equilibrium partitioning of macromolecules in confining geometries: Improved universality with a new molecular size parameter

    DEFF Research Database (Denmark)

    Wang, Yanwei; Peters, Günther H.J.; Hansen, Flemming Yssing

    2008-01-01

    structures (CABS), allows the computation of equilibrium partition coefficients as a function of confinement size solely based on a single sampling of the configuration space of a macromolecule in bulk. Superior in computational speed to previous computational methods, CABS is capable of handling slits...... parameter for characterization of spatial confinement effects on macromolecules. Results for the equilibrium partition coefficient in the weak confinement regime depend only on the ratio ofR-s to the confinement size regardless of molecular details....

  20. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  1. Similarity solutions of the Fokker–Planck equation with time-dependent coefficients

    International Nuclear Information System (INIS)

    Lin, W.-T.; Ho, C.-L.

    2012-01-01

    In this work, we consider the solvability of the Fokker–Planck equation with both time-dependent drift and diffusion coefficients by means of the similarity method. By the introduction of the similarity variable, the Fokker–Planck equation is reduced to an ordinary differential equation. Adopting the natural requirement that the probability current density vanishes at the boundary, the resulting ordinary differential equation turns out to be integrable, and the probability density function can be given in closed form. New examples of exactly solvable Fokker–Planck equations are presented, and their properties analyzed. - Highlights: ► Scaling form of the Fokker–Planck equation with time-dependent drift and diffusion coefficients is derived. ► Exact similarity solution of the Fokker–Planck equation is given in closed forms. ► New examples of Fokker–Planck equations exactly solvable by similarity methods are discussed.

  2. Sediment-to-Water Partition Coefficients: the Influence of Physicochemical and Seasonal Factors in Eastern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Yankovich, Tamara L. [International Atomic Energy Agency, P.O. Box 100, 1400 Vienna (Austria); Shultz, Carmen; Hartwig, Dale; Wills, C. Anne [Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0 (Canada); Beresford, Nicholas A. [NERC Centre for Ecology and Hydrology, Lancaster Environment Center, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom); School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom); Wood, Michael D. [School of Environment and Life Sciences, University of Salford, Manchester, M4 4WT (United Kingdom)

    2014-07-01

    Sediments often represent an important reservoir for contaminants, such as radionuclides and metals, in aquatic ecosystems. Consequently, lake, stream, and river sediments can potentially act as significant contributors to the total contaminant exposure and radiological doses received by wildlife. Exposure to contaminated sediments is dependent upon several factors. These include net contaminant inputs to a system through time, the physicochemical attributes of the system, the tendency of each contaminant to partition into the sediments relative to water, the spatial distribution of contaminants in the sediments, and the behaviour or life-style of the biota inhabiting a water body. Increased understanding of such factors and their interactions will lead to improved predictions of the radionuclide exposure received by aquatic biota, particularly benthic organisms. Despite the complexity and the dynamic nature of sediments in general, for practical purposes, in environmental impact assessments (EIAs), it is often assumed that radionuclide activity concentrations in various compartments are at steady state with respect to one another. Therefore, ratios can be used to estimate concentrations in one compartment given a known concentration in another. In the case of sediments, sediment-to-water partition coefficients (K{sub d}) are often applied to estimate the contaminant concentration sorbed to particulate matter relative to the concentration measured in the surface water. However, K{sub d} values often range by several orders of magnitude between sampling locations due to site-specific differences in physicochemical conditions in surface waters, seasonal factors, as well as differences in sediment attributes that can affect contaminant partitioning between the dissolved and particulate phases. Consequently, in conducting EIAs, it becomes necessary to either apply generic K{sub d} values that ensure contaminant concentrations in sediments to which biota are exposed are

  3. An Analytical Solution for the Impact of Vegetation Changes on Hydrological Partitioning Within the Budyko Framework

    Science.gov (United States)

    Zhang, Shulei; Yang, Yuting; McVicar, Tim R.; Yang, Dawen

    2018-01-01

    Vegetation change is a critical factor that profoundly affects the terrestrial water cycle. Here we derive an analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. This is achieved by deriving an analytical expression between leaf area index (LAI) change and the Budyko land surface parameter (n) change, through the combination of a steady state ecohydrological model with an analytical carbon cost-benefit model for plant rooting depth. Using China where vegetation coverage has experienced dramatic changes over the past two decades as a study case, we quantify the impact of LAI changes on the hydrological partitioning during 1982-2010 and predict the future influence of these changes for the 21st century using climate model projections. Results show that LAI change exhibits an increasing importance on altering hydrological partitioning as climate becomes drier. In semiarid and arid China, increased LAI has led to substantial streamflow reductions over the past three decades (on average -8.5% in 1990s and -11.7% in 2000s compared to the 1980s baseline), and this decreasing trend in streamflow is projected to continue toward the end of this century due to predicted LAI increases. Our result calls for caution regarding the large-scale revegetation activities currently being implemented in arid and semiarid China, which may result in serious future water scarcity issues here. The analytical model developed here is physically based and suitable for simultaneously assessing both vegetation changes and climate change induced changes to streamflow globally.

  4. Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Outrata, Jiří; Pathó, R.

    2012-01-01

    Roč. 20, č. 1 (2012), s. 31-59 ISSN 1877-0533 R&D Projects: GA AV ČR IAA100750802 Institutional research plan: CEZ:AV0Z10750506 Institutional support: RVO:67985556 Keywords : shape optimization * Signorini problem * model with given frinction * solution-dependent coefficient of friction * mathematical probrams with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.036, year: 2012 http://library.utia.cas.cz/separaty/2012/MTR/outrata-shape optimization in 2d contact problems with given friction and a solution-dependent coefficient of friction .pdf

  5. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    Science.gov (United States)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D>1) in alkali-poor melt compositions. From our experimental data we present an model that combines

  6. [Application of reversed-phase ion-pair chromatography for universal estimation of octanol-water partition coefficients of acid, basic and amphoteric drugs].

    Science.gov (United States)

    Zhu, Hui; Yang, Ri-Fang; Yun, Liu-Hong; Jiang, Yu; Li, Jin

    2009-09-01

    This paper is to establish a reversed-phase ion-pair chromatography (RP-IPC) method for universal estimation of the octanol/water partition coefficients (logP) of a wide range of structurally diverse compounds including acidic, basic, neutral and amphoteric species. The retention factors corresponding to 100% water (logk(w)) were derived from the linear part of the logk'/phi relationship, using at least four isocratic logk' values containing different organic compositions. The logk(w) parameters obtained were close to the corresponding logP values obtained with the standard "shake flask" methods. The mean deviation for test drugs is 0.31. RP-IPC with trifluoroacetic acid as non classic ion-pair agents can be applicable to determine the logP values for a variety of drug-like molecules with increased accuracy.

  7. Solid-solution partitioning and thionation of diphenylarsinic acid in a flooded soil under the impact of sulfate and iron reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Meng [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tu, Chen [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Hu, Xuefeng; Zhang, Haibo [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Lijuan [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Wei, Jing [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Li, Yuan [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn [Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003 (China); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Christie, Peter [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-11-01

    Diphenylarsinic acid (DPAA) is a major organic arsenic (As) compound derived from abandoned chemical weapons. The solid-solution partitioning and transformation of DPAA in flooded soils are poorly understood but are of great concern. The identification of the mechanisms responsible for the mobilization and transformation of DPAA may help to develop effective remediation strategies. Here, soil and Fe mineral incubation experiments were carried out to elucidate the partitioning and transformation of DPAA in anoxic (without addition of sulfate or sodium lactate) and sulfide (with the addition of sulfate and sodium lactate) soil and to examine the impact of sulfate and Fe(III) reduction on these processes. Results show that DPAA was more effectively mobilized and thionated in sulfide soil than in anoxic soil. At the initial incubation stages (0–4 weeks), 6.7–74.5% of the total DPAA in sulfide soil was mobilized likely by sorption competition with sodium lactate. At later incubation stage (4–8 weeks), DPAA was almost completely released into the solution likely due to the near-complete Fe(III) reduction. Scanning transmission X-ray microscopy (STXM) results provide further direct evidence of elevated DPAA release coupled with Fe(III) reduction in sulfide environments. The total DPAA fraction decreased significantly to 24.5% after two weeks and reached 3.4% after eight weeks in sulfide soil, whereas no obvious elimination of DPAA occurred in anoxic soil at the initial two weeks and the total DPAA fraction decreased to 10.9% after eight weeks. This can be explained in part by the enhanced mobilization of DPAA and sulfate reduction in sulfide soil compared with anoxic soil. These results suggest that under flooded soil conditions, Fe(III) and sulfate reduction significantly promote DPAA mobilization and thionation, respectively, and we suggest that it is essential to consider both sulfate and Fe(III) reduction to further our understanding of the environmental fate of

  8. Radionuclide partitioning in environmental systems: a critical analysis

    International Nuclear Information System (INIS)

    Cremers, A.; Maes, A.

    1986-01-01

    A survey is given of some of the important processes involved in the solid-liquid distribution behaviour of radionuclides in both well-defined adsorbents and multicomponent natural systems. The thermodynamic significance of distribution coefficients is analyzed and the various parameters affecting partition behaviour are discussed in relation to possible retention mechanisms. Attention is being given to factors such as solid/liquid ratio, pH-Eh, reversibility, liquid phase composition and speciation effects. Various processes are discussed such as ion exchange and complex formation involving clays, oxides, humic acids. It is shown that, only in rare cases, Ksub(D) values can be rationalized in terms of process mechanistics. In addition, it is indicated that, in general, radionuclide distribution coefficients cannot be considered as constants unless the conditions are restricted to very small loading intervals. It is furthermore suggested that, in order to produce meaningful data on radionuclide partitioning behaviour, efforts should be made to operate under conditions which are representative for the 'in situ' situation. (author)

  9. Approximation methods for the partition functions of anharmonic systems

    International Nuclear Information System (INIS)

    Lew, P.; Ishida, T.

    1979-07-01

    The analytical approximations for the classical, quantum mechanical and reduced partition functions of the diatomic molecule oscillating internally under the influence of the Morse potential have been derived and their convergences have been tested numerically. This successful analytical method is used in the treatment of anharmonic systems. Using Schwinger perturbation method in the framework of second quantization formulism, the reduced partition function of polyatomic systems can be put into an expression which consists separately of contributions from the harmonic terms, Morse potential correction terms and interaction terms due to the off-diagonal potential coefficients. The calculated results of the reduced partition function from the approximation method on the 2-D and 3-D model systems agree well with the numerical exact calculations

  10. Osmotic and activity coefficients of aqueous NaTcO4 and NaReO4 solutions at 250C

    International Nuclear Information System (INIS)

    Boyd, G.E.

    1978-01-01

    Isopiestic vapor-pressure comparison experiments were performed with aqueous binary sodium perchlorate, pertechnetate, and perrhenate solutions to concentrations of approximately 8.5 m. Osmotic coefficients for these solutions and mean molal ionic activity coefficients for NaTcO 4 and NaReO 4 were derived from the isotonic molalities. Pitzer's treatment was applied to describe the concentration dependence of the osmotic coefficients of NaClO 4 , NaTcO 4 , and NaReO 4 , and the implications of the parameters derived from a least-squares fit are discussed in terms of solvent structure and interionic forces. 4 tables, 1 figure

  11. Determination of solid-liquid partition coefficients (Kd) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal

    International Nuclear Information System (INIS)

    Cooke, Cindy M.; Shaw, George; Lester, John N.; Collins, Chris D.

    2004-01-01

    Two groups of chemicals are currently licensed for use in sheep dip products in the UK. These are organophosphate (OP) insecticides and synthetic pyrethroid (SP) insecticides. SPs are deemed to be less toxic to human health than OPs, although they are approximately 100 times more toxic to some elements of the aquatic environment. Three insecticides were selected for experimental investigation: diazinon, propetamphos (OPs) and cis-permethrin (SP), representative of the active ingredients used in sheep dip formulations, with additional uses in insect control in crops, and for domestic control of flies, mosquitoes, cockroaches, lice, ticks and spiders. The UK Government has recently reviewed agricultural practices relating to the disposal of used sheep dip, because the constituent insecticides are frequently detected in UK watercourses and the presence of these compounds is a severe hazard to the aquatic environment. Standard batch sorption experiments were carried out to investigate insecticide partitioning from water to soil, and the relationship between sorption and soil organic carbon content is discussed. Sorption isotherms and K d values showed that cis-permethrin adsorption was fastest on all five soils investigated, exhibiting the greatest total partitioning to the soil phase (83.8-94.8%) and high resistance to desorption. In comparison, the OP insecticides exhibited moderately strong soil adsorption as evidenced by their K d coefficients (diazinon K d 12-35 and propetamphos K d 9-60), with low sorption reversibility (<15%). Calculation of a hydrological retardation factor in a scenario representative of a typical UK environment suggested that SP insecticides such as cis-permethrin will not migrate in the soil profile due to their virtual immobility and strong soil retention, and thus waste sheep dip disposal to agricultural land should not pose a risk to aquatic life if applied with appropriate controls

  12. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Moucka, Filip [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221 (United States); Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem (Czech Republic); Bratko, Dusan, E-mail: dbratko@vcu.edu; Luzar, Alenka, E-mail: aluzar@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221 (United States)

    2015-03-28

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores.

  13. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    International Nuclear Information System (INIS)

    Moucka, Filip; Bratko, Dusan; Luzar, Alenka

    2015-01-01

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores

  14. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes.

    Science.gov (United States)

    Hilger, Bettina; Fromme, Hermann; Völkel, Wolfgang; Coelhan, Mehmet

    2011-04-01

    Log octanol-water partition coefficients (log Kow) of 40 synthesized polychlorinated n-alkanes (PCAs) with different chlorination degrees were determined using reversed-phase high performance liquid chromatography (RP-HPLC). In addition, log Kow values of a technical mixture namely Cereclor 63L as well as 15 individual in house synthesized C10, C11, and C12 chloroalkanes with known chlorine positions were estimated. Based on these results, the effects of chain length, chlorination degree, and structure were explored. The estimated log Kow values ranged from 4.10 (polychlorinated n-decanes with 50.2% chlorine content) to 11.34 (polychlorinated n-octacosanes with 54.8% chlorine content) for PCAs and from 3.82 (1,2,5,6,9,10-hexachlorodecane) to 7.75 (1,1,1,3,9,11,11,11-octachlorododecane) for the individual chloroalkanes studied. The results showed that log Kow value was influenced linearly at a given chlorine content by chain length, while a polynominal effect was observed in dependence on the chlorination degree of an alkane chain. Chlorine substitution pattern influenced markedly the log Kow value of chloroalkanes.

  15. Development of partitioning method. Adsorption of cesium with mordenite in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Donnet, L.; Morita, Yasuji; Yamagishi, Isao; Kubota, Masumitsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    Adsorption of cesium with mordenite from a acidic solution, typically from a 0.5 mol/L nitric acid solution, was studied to examine the possibility to design a new separation scheme for partitioning of high-level liquid waste. Batch adsorption experiments showed that three mordenites examined (natural mordenite and two synthetic mordenites Zeolon 900Na and 900H) have very close behavior with the parameters of adsorption kinetics, the saturation capacity by Langmuir equation, the distribution coefficient of Cs and adsorption of other elements. In the Cs adsorption with the natural mordenite at 0.5 mol/L nitric acid, distribution coefficient was 1150 ml/g and the saturation capacity was 0.64 mmol/g. In the adsorption of Cs on column using the natural mordenite, the flow rate of the Cs solution modified only the 5% breakthrough point and gave no influence on the total capacity of Cs. Column experiments with a mixed solution of Cs, Rb, Na, Ba, Sr, Cr, Ni, Ru, Rh and Pd showed that cesium was adsorbed very selectively. Only about 4% of rubidium in a molar ratio were retained in the column. The total quantity of Cs and Rb adsorbed was 0.51 mmol/g at 0.5 mol/L nitric acid. Elution of Cs (and Rb) with 4 mol/L nitric acid was performed against the column of the loaded natural mordenite. The adsorbed Cs and Rb were well eluted, and a good mass balance was obtained between the adsorbed quantity by breakthrough curves and the quantity found in the eluate. (author)

  16. Interaction between lactose and cadmium chloride in aqueous solutions as seen by diffusion coefficients measurements

    International Nuclear Information System (INIS)

    Verissimo, Luis M.P.; Gomes, Joselaine C.S.; Romero, Carmen; Esteso, Miguel A.; Sobral, Abilio J.F.N.; Ribeiro, Ana C.F.

    2013-01-01

    Highlights: ► Diffusion coefficients of aqueous systems containing lactose and cadmium chloride. ► Influence of the lactose on the diffusion of cadmium chloride. ► Interactions between Cd 2+ and lactose. -- Abstract: Diffusion coefficients of an aqueous system containing cadmium chloride 0.100 mol · dm −3 and lactose at different concentrations at 25 °C have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell relies on an open-ended capillary method and a conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries, at recorded times. From these results and by ab initio calculations, it was possible to obtain a better understanding of the effect of lactose on transport of cadmium chloride in aqueous solutions

  17. Thermodynamic investigation of the water/n-octanol partition coefficient value of a 5-formyl-1,2-dithiole-3-thione

    International Nuclear Information System (INIS)

    Chollet-Krugler, Marylene; Legouin, Beatrice; Gargadennec, Sylvain; Burgot, Gwenola; Burgot, Jean-Louis

    2004-01-01

    Thermometric titrations performed in suitable conditions permit the determination of the enthalpic and entropic parts of the standard transfer-free enthalpy of a particular 5-formyl-1,2-dithiole-3-thione from water into n-octanol. It may be inferred from this determination that the far too high water/n-octanol log P values of 5-acyl-1,2-dithiole-3-thiones originate in an entropic effect which is in agreement with the hypothesis that these derivatives are more solvated in water than expected and hence with the hypothesis that during partitioning between the two phases, more molecules of water than expected are released from the solvated solute in the aqueous phase. The family of 1,2-dithiole-3-thiones is of growing importance in pharmacology

  18. Thermodynamic investigation of the water/n-octanol partition coefficient value of a 5-formyl-1,2-dithiole-3-thione

    Energy Technology Data Exchange (ETDEWEB)

    Chollet-Krugler, Marylene; Legouin, Beatrice; Gargadennec, Sylvain; Burgot, Gwenola; Burgot, Jean-Louis

    2004-12-15

    Thermometric titrations performed in suitable conditions permit the determination of the enthalpic and entropic parts of the standard transfer-free enthalpy of a particular 5-formyl-1,2-dithiole-3-thione from water into n-octanol. It may be inferred from this determination that the far too high water/n-octanol log P values of 5-acyl-1,2-dithiole-3-thiones originate in an entropic effect which is in agreement with the hypothesis that these derivatives are more solvated in water than expected and hence with the hypothesis that during partitioning between the two phases, more molecules of water than expected are released from the solvated solute in the aqueous phase. The family of 1,2-dithiole-3-thiones is of growing importance in pharmacology.

  19. Equilibrium thermodynamics of the partitioning of non-steroidal anti-inflammatory drugs into human erythrocyte ghost membranes

    International Nuclear Information System (INIS)

    Omran, Ahmed A.

    2013-01-01

    Graphical abstract: Bar diagram representing thermodynamic parameters obtained for the partitioning of NSAIDs into human erythrocyte ghost membranes at physiological pH; 7.4. Highlights: • Partition coefficients of NSAIDs into HEG membranes were determined. • Thermodynamic parameters were evaluated and successfully analyzed. • Partitioning of NSAIDs into HEG membranes was exothermic. • Partitioning of NSAIDs into HEG is spontaneous with negative free energy values. • Identical partitioning enthalpy–entropy driven compensation mechanism was shown. -- Abstract: In this work,second derivative spectrophotometry was applied for determining the partition coefficients (K p s) of four non-steroidal anti-inflammatory drugs (NSAIDs; flufenamic, meclofenamic, mefenamic and niflumic acids) into human erythrocyte ghost (HEG) membranes over a temperature range from (283.2 to 313.2) K. The proposed method allowed the evaluation and direct analyses of thermodynamic parameters; enthalpy (ΔH W→M ), Gibbs energy (ΔG W→M ) and entropy (ΔS W→M ) changes of the partitioning of NSAIDs into HEG membranes. The partitioning of NSAIDs between polar aqueous phase and non-polar lipid bilayer HEG membrane phase was exothermic with negative (ΔH W→M ) which compensated for the changes in (ΔS W→M ). The negative values of (ΔG W→M ) revealed that the partitioning of NSAIDs into HEG, owing to their transfer from polar aqueous phase and non-polar HEG phase is spontaneous. The enthalpy–entropy correlation analysis resulted in a good linearity that suggests an identical partitioning enthalpy–entropy driven compensation mechanism for the studied NSAIDs

  20. Determining metal origins and availability in fluvial deposits by analysis of geochemical baselines and solid-solution partitioning measurements and modelling.

    Science.gov (United States)

    Vijver, Martina G; Spijker, Job; Vink, Jos P M; Posthuma, Leo

    2008-12-01

    Metals in floodplain soils and sediments (deposits) can originate from lithogenic and anthropogenic sources, and their availability for uptake in biota is hypothesized to depend on both origin and local sediment conditions. In criteria-based environmental risk assessments, these issues are often neglected, implying local risks to be often over-estimated. Current problem definitions in river basin management tend to require a refined, site-specific focus, resulting in a need to address both aspects. This paper focuses on the determination of local environmental availabilities of metals in fluvial deposits by addressing both the origins of the metals and their partitioning over the solid and solution phases. The environmental availability of metals is assumed to be a key force influencing exposure levels in field soils and sediments. Anthropogenic enrichments of Cu, Zn and Pb in top layers could be distinguished from lithogenic background concentrations and described using an aluminium-proxy. Cd in top layers was attributed to anthropogenic enrichment almost fully. Anthropogenic enrichments for Cu and Zn appeared further to be also represented by cold 2M HNO3 extraction of site samples. For Pb the extractions over-estimated the enrichments. Metal partitioning was measured, and measurements were compared to predictions generated by an empirical regression model and by a mechanistic-kinetic model. The partitioning models predicted metal partitioning in floodplain deposits within about one order of magnitude, though a large inter-sample variability was found for Pb.

  1. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    Energy Technology Data Exchange (ETDEWEB)

    Nami, Faezeh [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of); Deyhimi, Farzad, E-mail: f-deyhimi@sbu.ac.i [Department of Chemistry, Shahid Beheshti University, G.C., Evin-Tehran 1983963113 (Iran, Islamic Republic of)

    2011-01-15

    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution ({gamma}{sup {infinity}}) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment ({mu}) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 {gamma}{sub Solute}{sup {infinity}}for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R{sup 2}) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  2. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network

    International Nuclear Information System (INIS)

    Nami, Faezeh; Deyhimi, Farzad

    2011-01-01

    To our knowledge, this work illustrates for the first time the ability of artificial neural network (ANN) to predict activity coefficients at infinite dilution for organic solutes in ionic liquids (ILs). Activity coefficient at infinite dilution (γ ∞ ) is a useful parameter which can be used for the selection of effective solvent in the separation processes. Using a multi-layer feed-forward network with Levenberg-Marquardt optimization algorithm, the resulting ANN model generated activity coefficient at infinite dilution data over a temperature range of 298 to 363 K. The unavailable input data concerning softness (S) of organic compounds (solutes) and dipole moment (μ) of ionic liquids were calculated using GAMESS suites of quantum chemistry programs. The resulting ANN model and its validation are based on the investigation of up to 24 structurally different organic compounds (alkanes, alkenes, alkynes, cycloalkanes, aromatics, and alcohols) in 16 common imidazolium-based ionic liquids, at different temperatures within the range of 298 to 363 K (i.e. a total number of 914 γ Solute ∞ for each IL data point). The results show a satisfactory agreement between the predicted ANN and experimental data, where, the root mean square error (RMSE) and the determination coefficient (R 2 ) of the designed neural network were found to be 0.103, 0.996 for training data and 0.128, 0.994 for testing data, respectively.

  3. Protein-polysaccharide interactions: The determination of the osmotic second virial coefficients in aqueous solutions of ß-lactoglobulin and dextran

    NARCIS (Netherlands)

    Schaink, H.M.; Smit, J.A.M.

    2007-01-01

    Solutions containing dextran and solutions containing mixtures of dextran +ß-lactoglobulin are studied by membrane osmometry. The low concentration range of these solutions is considered. From the measured osmotic pressures the virial coefficients are obtained. These are analyzed using the osmotic

  4. Application of partition chromatography method for separation and analysis of actinium radionuclides

    International Nuclear Information System (INIS)

    Sinitsina, G.S.; Shestakova, I.A.; Shestakov, B.I.; Plyushcheva, N.A.; Malyshev, N.A.; Belyatskij, A.F.; Tsirlin, V.A.

    1979-01-01

    The method of partition chromatography is considered with the use of different extractants for the extraction of actinium-227, actinium-225 and actinium-228. It is advisable to extract actinium-227 from the irradiated radium with the help of D2FGFK. The use of 2DEGFK allows us to separate actinium-227 from alkaline and alkaline-earth elements. Amines have a higher radiative stability. An express-method has been developed for the identification of actinium-227 with TOA by its intrinsic α-emission in nonequilibrium preparations of irradiated radium-226 of small activity. Actinium-225 is extracted from uranium-233 with due regard for the fact that U, Th, and Ac are extracted differently by TBP from HNO 3 solutions. With the help of the given procedure one can reach the purifying coefficient of 10 4 . Actinium-228 is extracted from the radiummesothorium preparations by a deposition of decay products, including polonium-210 on the iron hydroxyde. Actinium-228 extraction from the mixture of radium radionuclides is performed by the partition chromatography method on D2EGFK. All the procedures for separation of actinium isotopes by the above methods are described

  5. Exactly soluble models for surface partition of large clusters

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Bugaev, K.A.; Elliott, J.B.

    2007-01-01

    The surface partition of large clusters is studied analytically within a framework of the 'Hills and Dales Model'. Three formulations are solved exactly by using the Laplace-Fourier transformation method. In the limit of small amplitude deformations, the 'Hills and Dales Model' gives the upper and lower bounds for the surface entropy coefficient of large clusters. The found surface entropy coefficients are compared with those of large clusters within the 2- and 3-dimensional Ising models

  6. Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide

    Energy Technology Data Exchange (ETDEWEB)

    Marciniak, Andrzej, E-mail: a.marciniak@ch.pw.edu.pl [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2011-10-15

    Highlights: > The {gamma}{sub 13}{sup {infinity}} and KL for 46 solutes in the ionic liquid [N-C3OHPY][NTf2] were determined by GLC at different temperatures. > The partial molar excess Gibbs energies {Delta}G{sub 1}{sup E,{infinity}}, enthalpies {Delta}H{sub 1}{sup E,{infinity}} and entropies {Delta}S{sub 1}{sup E,{infinity}} at infinite dilution were calculated. > The selectivities for aliphatics/aromatics hydrocarbons separation problem were calculated and compared to other ILs, NMP and sulfolane. > The selectivities for selected compounds which form azeotropic mixtures were calculated. - Abstract: The activity coefficients at infinite dilution, {gamma}{sub 13}{sup {infinity}} and gas-liquid partition coefficients, K{sub L} for 46 solutes: alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols, thiophene, ethers, ketones, acetic acid, and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide were determined by gas-liquid chromatography at the temperatures from (308.15 to 378.15) K. The partial molar excess Gibbs free energies {Delta}G{sub 1}{sup E,{infinity}}, enthalpies {Delta}H{sub 1}{sup E,{infinity}} and entropies {Delta}S{sub 1}{sup E,{infinity}} at infinite dilution were calculated from the experimental {gamma}{sub 13}{sup {infinity}} values obtained over the temperature range. The selectivities for aliphatic/aromatic hydrocarbons separation problem were calculated from the {gamma}{sub 13}{sup {infinity}} and compared to the literature values for other ionic liquids based on bis(trifluoromethylsulfonyl)-amide anion, NMP and sulfolane. It was found that the investigated ionic liquid shows much higher selectivity at infinite dilution than the general used organic solvents such as NMP, sulfolane and other ionic liquids. Additionally the selectivities for selected compounds which form azeotropic mixtures were calculated.

  7. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  8. K Basin Sludge Conditioning Process Testing Partitioning of PCBs in Dissolver Solution After Neutralization/Precipitation (Caustic Adjustment)

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Thornton, B.M.; Hoppe, E.W.; Mong, G.M.; Silvers, K.L.; Slate, S.O.

    1999-01-01

    The purpose of the work described in this report was to gain a better understanding of how PCB congeners present in a simulated K Basin sludge dissolver solution will partition upon neutralization and precipitation (i.e., caustic adjustment). In a previous study (Mong et al. 1998),the entire series of sludge conditioning steps (acid dissolution, filtration, and caustic adjustment) were examined during integrated testing. In the work described here, the caustic adjustment step was isolated to examine the fate of PCBs in more detail within this processing step. For this testing, solutions of dissolver simulant (containing no solids) with a known initial concentration of PCB congeners were neutralized with caustic to generate a clarified supernatant and a settled sludge phase. PCBs were quantified in each phase (including the PCBs associated with the test vessel rinsates), and material balance information was collected

  9. Vertical partitioning of relational OLTP databases using integer programming

    DEFF Research Database (Denmark)

    Amossen, Rasmus Resen

    2010-01-01

    A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...... for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs...... applied to the TPC-C benchmark and the heuristic is shown to obtain solutions with costs close to the ones found using the quadratic program....

  10. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources

    International Nuclear Information System (INIS)

    Reeves, W.R.; McDonald, T.J.; Cizmas, L.; Donnelly, K.C.

    2004-01-01

    Contaminated sediments pose a unique challenge for risk assessment or remediation because the overlying water column may transport contaminants offsite or to ecological receptors. This research compares the behavior of polycyclic aromatic hydrocarbons (PAHs) on marine sediments from two sites. The first site was affected by shipping activities and the second was impacted by a creosote seep. Organic carbon:water partitioning coefficients (K oc values) were measured with three solutions. Desorption was measured using Tenax beads. PAHs from the ship channel had lower K oc values than those from the creosote facility. For example, the average log K oc value of ship channel pyrene was significantly lower than that of creosote facility pyrene (4.39±0.35 and 5.29±0.09, respectively, when tested in 5 mM calcium chloride). These results were consistent with the greater desorption of pyrene, phenanthrene and benzo(a)pyrene from the ship channel than from the creosote facility sediments. Organic compound desorption from sediments can be considered to be a two-stage process, with a labile fraction that desorbs quickly and a refractory fraction that desorbs much more slowly. In both sediments, more than 75% of the benzo(a)pyrene was found to have partitioned into the refractory phase. The amounts of phenanthrene and pyrene that partitioned into the refractory phase were lower. Linear correlations of log K oc with log (C R /C L ) (where C R and C L are the fractions of the compound in the refractory and labile phases, respectively, at time zero) showed that partitioning measurements made with the US EPA's Toxicity Characteristic Leaching Procedure fluid (US EPA, 1996) most closely matched predictions of desorption behavior. The data imply that with a larger data set, it may be possible to relate simple partitioning measurements to desorption behavior. Partitioning measurements were used to predict water concentrations. Despite having higher concentrations of carcinogenic PAHs

  11. Bias in the absorption coefficient determination of a fluorescent dye, standard reference material 1932 fluorescein solution

    International Nuclear Information System (INIS)

    DeRose, Paul C.; Kramer, Gary W.

    2005-01-01

    The absorption coefficient of standard reference material[registered] (SRM[registered]) 1932, fluorescein in a borate buffer solution (pH=9.5) has been determined at λ=488.0, 490.0, 490.5 and 491.0 nm using the US national reference UV/visible spectrophotometer. The purity of the fluorescein was determined to be 97.6% as part of the certification of SRM 1932. The solution measured was prepared gravimetrically by diluting SRM 1932 with additional borate buffer. The value of the absorption coefficient was corrected for bias due to fluorescence that reaches the detector and for dye purity. Bias due to fluorescence was found to be on the order of -1% for both monochromatic and polychromatic (e.g., diode-array based) spectrophotometers

  12. Analysis of polyethoxylated surfactants in microemulsion-oil-water systems III. Fractionation and partitioning of polyethoxylated alcohol surfactants

    International Nuclear Information System (INIS)

    Marquez, N.; Bravo, B.; Ysambertt, F.; Chavez, G.; Subero, N.; Salager, J.L.

    2002-01-01

    Oligomer distribution of polyethoxylated alcohol and polyethoxylated nonylphenol surfactants is studied by normal and reverse-phase high performance liquid chromatography (HPLC). A RP8 column is able to efficiently separate these surfactants according to their alkyl chain (lipophilic) group, while silica and amino columns separate them according to their polyether chain length (hydrophilic group). Polyethoxylated alcohol and polyethoxylated nonylphenol oligomers selectively partition between the microemulsion-oil-water phases of a Winsor III system. Partitioning of these oligomers was analyzed by HPLC with RI detection. The logarithm of the partition coefficient between the water and oil linearly increases with the number of ethylene oxide groups per molecule of oligomer. For a same ethoxylation degree, the partition coefficient of a polyethoxylated tridecanol is found to be higher than the one of the corresponding nonylphenol specie. On the other hand, a polyethoxylated nonylphenol exhibits a higher solubilization than the matching polyethoxylated alcohol

  13. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  14. 1-Soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients

    International Nuclear Information System (INIS)

    Biswas, Anjan

    2009-01-01

    In this Letter, the 1-soliton solution of the Zakharov-Kuznetsov equation with power law nonlinearity and nonlinear dispersion along with time-dependent coefficients is obtained. There are two models for this kind of an equation that are studied. The constraint relation between these time-dependent coefficients is established for the solitons to exist. Subsequently, this equation is again analysed with generalized evolution. The solitary wave ansatz is used to carry out this investigation.

  15. Partitioning of fluorotelomer alcohols to octanol and different sources of dissolved organic carbon.

    Science.gov (United States)

    Carmosini, Nadia; Lee, Linda S

    2008-09-01

    Interest in the environmental fate of fluorotelomer alcohols (FTOHs) has spurred efforts to understand their equilibrium partitioning behavior. Experimentally determined partition coefficients for FTOHs between soil/water and air/water have been reported, but direct measurements of partition coefficients for dissolved organic carbon (DOC)/water (K(doc)) and octanol/ water(K(ow)) have been lacking. Here we measured the partitioning of 8:2 and 6:2 FTOH between one or more types of DOC and water using enhanced solubility or dialysis bag techniques, and also quantified K(ow) values for 4:2 to 8:2 FTOH using a batch equilibration method. The range in measured log K(doc) values for 8:2 FTOH using the enhanced solubility technique with DOC derived from two soils, two biosolids, and three reference humic acids is 2.00-3.97 with the lowest values obtained for the biosolids and an average across all other DOC sources (biosolid DOC excluded) of 3.54 +/- 0.29. For 6:2 FTOH and Aldrich humic acid, a log K(doc) value of 1.96 +/- 0.45 was measured using the dialysis technique. These average values are approximately 1 to 2 log units lower than previously indirectly estimated K(doc) values. Overall, the affinity for DOC tends to be slightly lower than that for particulate soil organic carbon. Measured log K(ow) values for 4:2 (3.30 +/- 0.04), 6:2 (4.54 +/- 0.01), and 8:2 FTOH (5.58 +/- 0.06) were in good agreement with previously reported estimates. Using relationships between experimentally measured partition coefficients and C-atom chain length, we estimated K(doc) and K(ow) values for shorter and longer chain FTOHs, respectively, that we were unable to measure experimentally.

  16. Solute trapping: Comparison of theory with experiment

    International Nuclear Information System (INIS)

    Aziz, M.J.; Tsao, J.Y.; Thompson, M.O.; Peercy, P.S.; White, C.W.

    1986-01-01

    The dependence of the nonequilibrium partition coefficient k of Bi in Si upon solidification velocity v has been measured with sufficient accuracy to distinguish between proposed solute-trapping mechanisms. For the range of measured velocities, 2--14 m/s, we observe a much more gradual increase in k with increasing v than those previously reported and no evidence for a ''saturation'' effect, i.e., dk/dv→0 at k<1. The continuous-growth model of Aziz fits the data quite well; the Aziz stepwise-growth model and the two-level Baker model yield values of dk/dv that are too high

  17. Restoring canonical partition functions from imaginary chemical potential

    Science.gov (United States)

    Bornyakov, V. G.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V. I.

    2018-03-01

    Using GPGPU techniques and multi-precision calculation we developed the code to study QCD phase transition line in the canonical approach. The canonical approach is a powerful tool to investigate sign problem in Lattice QCD. The central part of the canonical approach is the fugacity expansion of the grand canonical partition functions. Canonical partition functions Zn(T) are coefficients of this expansion. Using various methods we study properties of Zn(T). At the last step we perform cubic spline for temperature dependence of Zn(T) at fixed n and compute baryon number susceptibility χB/T2 as function of temperature. After that we compute numerically ∂χ/∂T and restore crossover line in QCD phase diagram. We use improved Wilson fermions and Iwasaki gauge action on the 163 × 4 lattice with mπ/mρ = 0.8 as a sandbox to check the canonical approach. In this framework we obtain coefficient in parametrization of crossover line Tc(µ2B) = Tc(C-ĸµ2B/T2c) with ĸ = -0.0453 ± 0.0099.

  18. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  19. Scalable Partitioning Algorithms for FPGAs With Heterogeneous Resources

    National Research Council Canada - National Science Library

    Selvakkumaran, Navaratnasothie; Ranjan, Abhishek; Raje, Salil; Karypis, George

    2004-01-01

    As FPGA densities increase, partitioning-based FPGA placement approaches are becoming increasingly important as they can be used to provide high-quality and computationally scalable placement solutions...

  20. Atmospheric concentrations and phase partitioning of polycyclic aromatic hydrocarbons in Izmir, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Demircioglu, Eylem; Odabasi, Mustafa [Faculty of Engineering, Department of Environmental Engineering, Dokuz Eylul University, Izmir (Turkey); Sofuoglu, Aysun [Faculty of Engineering, Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce-Urla (Turkey)

    2011-04-15

    Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas-phase total PAH (sum {sub 14}PAH) concentrations were 23.5 ng m{sup -3} for suburban and 109.7 ng m{sup -3} for urban sites while average particle-phase total PAH concentrations were 12.3 and 34.5 ng m{sup -3} for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas-phase and sum {sub 14}PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle-phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno[1,2,3-cd]PY/(indeno[1,2,3-cd]PY + benzo[g,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas-particle partition coefficients (K{sub P}) were compared to the predictions of octanol-air (K{sub OA}) and soot-air (K{sub SA}) partition coefficient models. The correlations between experimental and modeled K{sub P} values were significant (r{sup 2} = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured K{sub P} and soot-based model predictions. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression

    International Nuclear Information System (INIS)

    Ghasemi, Jahanbakhsh; Saaidpour, Saadi

    2007-01-01

    A quantitative structure-property relationship (QSPR) study was performed to develop models those relate the structures of 150 drug organic compounds to their n-octanol-water partition coefficients (log P o/w ). Molecular descriptors derived solely from 3D structures of the molecular drugs. A genetic algorithm was also applied as a variable selection tool in QSPR analysis. The models were constructed using 110 molecules as training set, and predictive ability tested using 40 compounds. Modeling of log P o/w of these compounds as a function of the theoretically derived descriptors was established by multiple linear regression (MLR). Four descriptors for these compounds molecular volume (MV) (geometrical), hydrophilic-lipophilic balance (HLB) (constitutional), hydrogen bond forming ability (HB) (electronic) and polar surface area (PSA) (electrostatic) are taken as inputs for the model. The use of descriptors calculated only from molecular structure eliminates the need for experimental determination of properties for use in the correlation and allows for the estimation of log P o/w for molecules not yet synthesized. Application of the developed model to a testing set of 40 drug organic compounds demonstrates that the model is reliable with good predictive accuracy and simple formulation. The prediction results are in good agreement with the experimental value. The root mean square error of prediction (RMSEP) and square correlation coefficient (R 2 ) for MLR model were 0.22 and 0.99 for the prediction set log P o/w

  2. Managing Network Partitions in Structured P2P Networks

    Science.gov (United States)

    Shafaat, Tallat M.; Ghodsi, Ali; Haridi, Seif

    Structured overlay networks form a major class of peer-to-peer systems, which are touted for their abilities to scale, tolerate failures, and self-manage. Any long-lived Internet-scale distributed system is destined to face network partitions. Consequently, the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems. This makes it a crucial requirement for building any structured peer-to-peer systems to be resilient to network partitions. Although the problem of network partitions and mergers is highly related to fault-tolerance and self-management in large-scale systems, it has hardly been studied in the context of structured peer-to-peer systems. Structured overlays have mainly been studied under churn (frequent joins/failures), which as a side effect solves the problem of network partitions, as it is similar to massive node failures. Yet, the crucial aspect of network mergers has been ignored. In fact, it has been claimed that ring-based structured overlay networks, which constitute the majority of the structured overlays, are intrinsically ill-suited for merging rings. In this chapter, we motivate the problem of network partitions and mergers in structured overlays. We discuss how a structured overlay can automatically detect a network partition and merger. We present an algorithm for merging multiple similar ring-based overlays when the underlying network merges. We examine the solution in dynamic conditions, showing how our solution is resilient to churn during the merger, something widely believed to be difficult or impossible. We evaluate the algorithm for various scenarios and show that even when falsely detecting a merger, the algorithm quickly terminates and does not clutter the network with many messages. The algorithm is flexible as the tradeoff between message complexity and time complexity can be adjusted by a parameter.

  3. An Association-Oriented Partitioning Approach for Streaming Graph Query

    Directory of Open Access Journals (Sweden)

    Yun Hao

    2017-01-01

    Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.

  4. The evaluation of the equilibrium partitioning method using sensitivity distributions of species in water and soil or sediment

    NARCIS (Netherlands)

    Beelen P van; Verbruggen EMJ; Peijnenburg WJGM; ECO

    2002-01-01

    The equilibrium partitioning method (EqP-method) can be used to derive environmental quality standards (like the Maximum Permissible Concentration or the intervention value) for soil or sediment, from aquatic toxicity data and a soil/water or sediment/water partitioning coefficient. The validity of

  5. Quantitative structure-property relationships for octanol-water partition coefficients of polybrominated diphenyl ethers.

    Science.gov (United States)

    Li, Linnan; Xie, Shaodong; Cai, Hao; Bai, Xuetao; Xue, Zhao

    2008-08-01

    Theoretical molecular descriptors were tested against logK(OW) values for polybrominated diphenyl ethers (PBDEs) using the Partial Least-Squares Regression method which can be used to analyze data with many variables and few observations. A quantitative structure-property relationship (QSPR) model was successfully developed with a high cross-validated value (Q(cum)(2)) of 0.961, indicating a good predictive ability and stability of the model. The predictive power of the QSPR model was further cross-validated. The values of logK(OW) for PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied molecular orbital and the net atomic charges on the oxygen atom. All these descriptors have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk property of the molecules represented by molecular surface area is the leading factor, and K(OW) values increase with the increase of molecular surface area. Higher energy of the lowest unoccupied molecular orbital and higher net atomic charge on the oxygen atom of PBDEs result in smaller K(OW). The energy of the lowest unoccupied molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in affecting the partition of PBDEs between octanol and water by influencing the interactions between PBDEs and solvent molecules.

  6. Spectrophotometric Determination of the CuSO4 Soret Coefficient of a CuSO4-H2O Binary Solutions System

    Directory of Open Access Journals (Sweden)

    Ijang Rohman

    2010-06-01

    Full Text Available A spectrophotometric technique for the determination of the CuSO4 soret coefficient of a CuSO4-water binary solutions system is described. A short column of solutions is placed between horizontal metal plates that are held at different temperatures. The subsequent changes in composition due to thermal diffusion are followed by monitoring changes of transmittance near the end of the solutions column. In water, CuSO4 diffuses to the warm compartment of column. The soret coefficient of CuSO4 0.0254 molal in water agrees with the appropriate theory, i.e. 17.60x10-3 °C-1 on the average.

  7. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Stability of coefficients in the Kronecker product of a hook and a rectangle

    International Nuclear Information System (INIS)

    Ballantine, Cristina M; Hallahan, William T

    2016-01-01

    We use recent work of Jonah Blasiak (2012 arXiv:1209.2018) to prove a stability result for the coefficients in the Kronecker product of two Schur functions: one indexed by a hook partition and one indexed by a rectangle partition. We also give nearly sharp bounds for the size of the partition starting with which the Kronecker coefficients are stable. Moreover, we show that once the bound is reached, no new Schur functions appear in the decomposition of Kronecker product. We call this property superstability. Thus, one can recover the Schur decomposition of the Kronecker product from the smallest case in which the superstability holds. The bound for superstability is sharp. Our study of this particular case of the Kronecker product is motivated by its usefulness for the understanding of the quantum Hall effect (Scharf T et al 1994 J. Phys. A: Math. Gen 27 4211–9). (paper)

  9. Integer Solutions of Binomial Coefficients

    Science.gov (United States)

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  10. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  11. Determination of solid-liquid partition coefficients (K{sub d}) for diazinon, propetamphos and cis-permethrin: implications for sheep dip disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, Cindy M.; Shaw, George; Lester, John N.; Collins, Chris D

    2004-08-15

    Two groups of chemicals are currently licensed for use in sheep dip products in the UK. These are organophosphate (OP) insecticides and synthetic pyrethroid (SP) insecticides. SPs are deemed to be less toxic to human health than OPs, although they are approximately 100 times more toxic to some elements of the aquatic environment. Three insecticides were selected for experimental investigation: diazinon, propetamphos (OPs) and cis-permethrin (SP), representative of the active ingredients used in sheep dip formulations, with additional uses in insect control in crops, and for domestic control of flies, mosquitoes, cockroaches, lice, ticks and spiders. The UK Government has recently reviewed agricultural practices relating to the disposal of used sheep dip, because the constituent insecticides are frequently detected in UK watercourses and the presence of these compounds is a severe hazard to the aquatic environment. Standard batch sorption experiments were carried out to investigate insecticide partitioning from water to soil, and the relationship between sorption and soil organic carbon content is discussed. Sorption isotherms and K{sub d} values showed that cis-permethrin adsorption was fastest on all five soils investigated, exhibiting the greatest total partitioning to the soil phase (83.8-94.8%) and high resistance to desorption. In comparison, the OP insecticides exhibited moderately strong soil adsorption as evidenced by their K{sub d} coefficients (diazinon K{sub d} 12-35 and propetamphos K{sub d} 9-60), with low sorption reversibility (<15%). Calculation of a hydrological retardation factor in a scenario representative of a typical UK environment suggested that SP insecticides such as cis-permethrin will not migrate in the soil profile due to their virtual immobility and strong soil retention, and thus waste sheep dip disposal to agricultural land should not pose a risk to aquatic life if applied with appropriate controls.

  12. Adaptive Neuro-Fuzzy Computing Technique for Determining Turbulent Flow Friction Coefficient

    Directory of Open Access Journals (Sweden)

    Mohammad Givehchi

    2013-08-01

    Full Text Available Estimation of the friction coefficient in pipes is very important in many water and wastewater engineering issues, such as distribution of velocity and shear stress, erosion, sediment transport and head loss. In analyzing these problems, knowing the friction coefficient, can obtain estimates that are more accurate. In this study in order to estimate the friction coefficient in pipes, using adaptive neuro-fuzzy inference systems (ANFIS, grid partition method was used. For training and testing of neuro-fuzzy model, the data derived from the Colebrook’s equation was used. In the neuro-fuzzy approach, pipe relative roughness and Reynolds number are considered as input variables and friction coefficient as output variable is considered. Performance of the proposed approach was evaluated by using of the data obtained from the Colebrook’s equation and based on statistical indicators such as coefficient determination (R2, root mean squared error (RMSE and mean absolute error (MAE. The results showed that the adaptive nerou-fuzzy inference system with grid partition method and gauss model as an input membership function and linear as an output function could estimate friction coefficient more accurately than other conditions. The new proposed approach in this paper has capability of application in the practical design issues and can be combined with mathematical and numerical models of sediment transfer or real-time updating of these models.

  13. Influence of biochar on isoproturon partitioning and bioaccessibility in soil.

    Science.gov (United States)

    Reid, B J; Pickering, F L; Freddo, A; Whelan, M J; Coulon, F

    2013-10-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of (14)C-isoproturon ((14)C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon (14)C-IPU partitioning: (14)C-IPU extractability (0.01 M CaCl2) in biochar-amended treatments was reduced to <2% while, (14)C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (KBW of 7.82 × 10(4) L kg(-1)). This was two orders of magnitude greater than the apparent Kfoc value of the soil organic carbon:water (631 L kg(-1)). (14)C-radiorespirometry assays indicated high competence of microorganisms to mineralise (14)C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present (14)C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  15. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  16. QSPR models of n-octanol/water partition coefficients and aqueous solubility of halogenated methyl-phenyl ethers by DFT method.

    Science.gov (United States)

    Zeng, Xiao-Lan; Wang, Hong-Jun; Wang, Yan

    2012-02-01

    The possible molecular geometries of 134 halogenated methyl-phenyl ethers were optimized at B3LYP/6-31G(*) level with Gaussian 98 program. The calculated structural parameters were taken as theoretical descriptors to establish two new novel QSPR models for predicting aqueous solubility (-lgS(w,l)) and n-octanol/water partition coefficient (lgK(ow)) of halogenated methyl-phenyl ethers. The two models achieved in this work both contain three variables: energy of the lowest unoccupied molecular orbital (E(LUMO)), most positive atomic partial charge in molecule (q(+)), and quadrupole moment (Q(yy) or Q(zz)), of which R values are 0.992 and 0.970 respectively, their standard errors of estimate in modeling (SD) are 0.132 and 0.178, respectively. The results of leave-one-out (LOO) cross-validation for training set and validation with external test sets both show that the models obtained exhibited optimum stability and good predictive power. We suggests that two QSPR models derived here can be used to predict S(w,l) and K(ow) accurately for non-tested halogenated methyl-phenyl ethers congeners. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  18. Numerical simulation of ventilation air movement in partitioned offices

    Energy Technology Data Exchange (ETDEWEB)

    Plett, E.G.; Soultogiannis, A.A.; Jouini, D.B. (Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario (Canada))

    1993-01-01

    Good air quality can only be assured throughout an office complex if each workspace receives an adequate supply of ventilation air. The likelihood of achieving this situation would be increased if the building engineer had a means of easily predicting the air movement in each office configuration. A simple computer-based solution to this need is proposed. To this end, the development and validation testing of a numerical solution technique to simulate the ventilation air movement in a room or office is described. The predictions of the two-dimensional, isothermal, inviscid formulation are seen to be in good agreement with experimentally measured airflows in configurations of interest. The computer code is then used to illustrate the airflow in offices served by a single row of supply air diffusers, when partitions are used to divide the space into smaller workspaces. It is observed that the partitions distort the airflow patterns to the extent that it would be difficult to provide desirable ventilation airflows to all the workspaces formed by the partitions. (au) (26 refs.)

  19. Global stability of almost periodic solution of shunting inhibitory cellular neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Chen Ling; Zhao Hongyong

    2008-01-01

    The paper investigates the almost periodicity of shunting inhibitory cellular neural networks with delays and variable coefficients. Several sufficient conditions are established for the existence and globally exponential stability of almost periodic solutions by employing fixed point theorem and differential inequality technique. The results of this paper are new and they complement previously known results

  20. A study of the potential interaction of valsartan with some electrolytes

    African Journals Online (AJOL)

    The effect of electrolytes (salts) on the partition coefficient of valsartan was studied at room temperature. The investigation was done by partitioning valsartan between 1-octanol and electrolyte solutions of varying concentrations. It was found that all the electrolytes increased the partition coefficient of the drug except sodium ...

  1. Island Partition of Distribution System with Distributed Generators Considering Protection of Vulnerable Nodes

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-10-01

    Full Text Available To improve the reliability of power supply in the case of the fault of distribution system with multiple distributed generators (DGs and reduce the influence of node voltage fluctuation on the stability of distribution system operation in power restoration, this paper proposes an island partition strategy of the distribution system considering the protection of vulnerable nodes. First of all, the electrical coupling coefficient of neighboring nodes is put forward according to distribution system topology and equivalent electrical impedance, and the power-dependence relationship between neighboring nodes is calculated based on the direction and level of the power flow between nodes. Then, the bidirectional transmission of the coupling features of neighboring nodes is realized through the modified PageRank algorithm, thus identifying the vulnerable nodes that have a large influence on the stability of distribution system operation. Next, combining the index of node vulnerability, an island partition model is constructed with the restoration of important loads as the primary goal. In addition, the mutually exclusive firefly algorithm (MEFA is also proposed to realize the interaction of learning and competition among fireflies, thus enhancing the globally optimal solution search ability of the algorithm proposed. The proposed island partition method is verified with a Pacific Gas and Electric Company (PG and E 60-node test system. Comparison with other methods demonstrates that the new method is feasible for the distribution system with multiple types of distributed generations and valid to enhance the stability and safety of the grid with a relatively power restoration ratio.

  2. Fast parallel DNA-based algorithms for molecular computation: the set-partition problem.

    Science.gov (United States)

    Chang, Weng-Long

    2007-12-01

    This paper demonstrates that basic biological operations can be used to solve the set-partition problem. In order to achieve this, we propose three DNA-based algorithms, a signed parallel adder, a signed parallel subtractor and a signed parallel comparator, that formally verify our designed molecular solutions for solving the set-partition problem.

  3. New convergence behavior of solutions to Cohen-Grossberg neural networks with delays and time-varying coefficients

    International Nuclear Information System (INIS)

    Liu Bingwen

    2008-01-01

    In this Letter the convergence behavior of Cohen-Grossberg neural networks with delays and time-varying coefficients are considered. Some sufficient conditions are established to ensure that the solutions of the networks converge locally exponentially to zero point, which are new and complement of previously known results

  4. Partitioning of Nanoparticles into Organic Phases and Model Cells

    Energy Technology Data Exchange (ETDEWEB)

    Posner, J.D.; Westerhoff, P.; Hou, W-C.

    2011-08-25

    There is a recognized need to understand and predict the fate, transport and bioavailability of engineered nanoparticles (ENPs) in aquatic and soil ecosystems. Recent research focuses on either collection of empirical data (e.g., removal of a specific NP through water or soil matrices under variable experimental conditions) or precise NP characterization (e.g. size, degree of aggregation, morphology, zeta potential, purity, surface chemistry, and stability). However, it is almost impossible to transition from these precise measurements to models suitable to assess the NP behavior in the environment with complex and heterogeneous matrices. For decades, the USEPA has developed and applies basic partitioning parameters (e.g., octanol-water partition coefficients) and models (e.g., EPI Suite, ECOSAR) to predict the environmental fate, bioavailability, and toxicity of organic pollutants (e.g., pesticides, hydrocarbons, etc.). In this project we have investigated the hypothesis that NP partition coefficients between water and organic phases (octanol or lipid bilayer) is highly dependent on their physiochemical properties, aggregation, and presence of natural constituents in aquatic environments (salts, natural organic matter), which may impact their partitioning into biological matrices (bioaccumulation) and human exposure (bioavailability) as well as the eventual usage in modeling the fate and bioavailability of ENPs. In this report, we use the terminology "partitioning" to operationally define the fraction of ENPs distributed among different phases. The mechanisms leading to this partitioning probably involve both chemical force interactions (hydrophobic association, hydrogen bonding, ligand exchange, etc.) and physical forces that bring the ENPs in close contact with the phase interfaces (diffusion, electrostatic interactions, mixing turbulence, etc.). Our work focuses on partitioning, but also provides insight into the relative behavior of ENPs as either "more like

  5. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts

    International Nuclear Information System (INIS)

    Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de

    2013-01-01

    Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.

  6. Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form

    International Nuclear Information System (INIS)

    Meng Xianghua; Tian Bo; Yao Zhenzhi; Feng Qian; Gao Yitian

    2009-01-01

    In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painleve analysis is performed on it. And then, based on the truncated Painleve expansion, the bilinear form of the (3+1)-dimensional vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. (general)

  7. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  8. Analytical model for macromolecular partitioning during yeast cell division

    International Nuclear Information System (INIS)

    Kinkhabwala, Ali; Khmelinskii, Anton; Knop, Michael

    2014-01-01

    Asymmetric cell division, whereby a parent cell generates two sibling cells with unequal content and thereby distinct fates, is central to cell differentiation, organism development and ageing. Unequal partitioning of the macromolecular content of the parent cell — which includes proteins, DNA, RNA, large proteinaceous assemblies and organelles — can be achieved by both passive (e.g. diffusion, localized retention sites) and active (e.g. motor-driven transport) processes operating in the presence of external polarity cues, internal asymmetries, spontaneous symmetry breaking, or stochastic effects. However, the quantitative contribution of different processes to the partitioning of macromolecular content is difficult to evaluate. Here we developed an analytical model that allows rapid quantitative assessment of partitioning as a function of various parameters in the budding yeast Saccharomyces cerevisiae. This model exposes quantitative degeneracies among the physical parameters that govern macromolecular partitioning, and reveals regions of the solution space where diffusion is sufficient to drive asymmetric partitioning and regions where asymmetric partitioning can only be achieved through additional processes such as motor-driven transport. Application of the model to different macromolecular assemblies suggests that partitioning of protein aggregates and episomes, but not prions, is diffusion-limited in yeast, consistent with previous reports. In contrast to computationally intensive stochastic simulations of particular scenarios, our analytical model provides an efficient and comprehensive overview of partitioning as a function of global and macromolecule-specific parameters. Identification of quantitative degeneracies among these parameters highlights the importance of their careful measurement for a given macromolecular species in order to understand the dominant processes responsible for its observed partitioning

  9. Atmospheric concentration characteristics and gas-particle partitioning of PCBs in a rural area of eastern Germany

    International Nuclear Information System (INIS)

    Mandalakis, Manolis; Stephanou, Euripides G.

    2007-01-01

    Atmospheric concentrations of polychlorinated biphenyls (PCBs) were measured in 14 successive daytime and nighttime air samples collected from Melpitz, a rural site in eastern Germany. The average total concentration of PCBs was 110+/-80pgm -3 and they were predominately present in the gas phase (∼95%). Composition of individual congeners closely resembled those of Clophen A30 and Aroclor 1232. Partial vapor pressures of PCBs were well correlated with temperature and the steep slopes obtained from Clausius-Clapeyron plots (-4500 to -8000) indicated that evaporation from adjacent land surfaces still controls the atmospheric levels of these pollutants. Particle-gas partitioning coefficients (K P ) of PCBs were well correlated with the respective sub-cooled vapor pressures (P L o ), but the slopes obtained from logK P versus logP L o plots (-0.16 to -0.59) deviated significantly from the expected value of -1. Overall, gas-particle partitioning of PCBs was better simulated by Junge-Pankow than octanol/air partition coefficient-based model

  10. Absorption dynamics of organic chemical transport across trout gills as related to octanol-water partition coefficient

    International Nuclear Information System (INIS)

    McKim, J.; Schmieder, P.; Veith, G.

    1985-01-01

    An in vivo fish preparation was used that allowed a direct measure of the transport rates of 14 different organic chemicals across the gills of rainbow trout (Salmo gairdneri). The chemicals, all C14 labeled, were selected from five classes, encompassing a range of octanol-water partition coefficient (log P) values, from 0.23 (ethyl formate) to 7.5 (mirex). The uptake efficiency (extraction efficiency) of each chemical was determined by monitoring the inspired and expired water of trout exposed to each chemical over an exposure period of 1 to 6 hr. The mean gill extraction efficiency for all chemicals tested varied from a low of 7% to a high of 60%, extracted in a single pall of the chemical across the gills. The extraction efficiency of chemicals with log P or 1 or less were low and showed no relationship to log P. These low extraction efficiencies seen at log P of 1 and below with molecular weights below 100 were indicative of aqueous pore transport. The mean extraction efficiency for chemicals with log P values of 1 to 3 seemed to vary directly with log P, to a maximum of slightly greater than 60%, suggesting that uptake was controlled by the lipid membrane. The mean extraction efficiency for chemicals with log P of 3 to 6 was independent of log P and remained at 60%, which suggested that gill uptake was controlled by aqueous diffusion rates rather than gill membrane permeability. The mean extraction efficiency with mirex (log P . 7.5) decreased to 20%

  11. An analytical solution to calculate bulk mole fractions for any number of components in aerosol droplets after considering partitioning to a surface layer

    Directory of Open Access Journals (Sweden)

    D. Topping

    2010-11-01

    Full Text Available Calculating the equilibrium composition of atmospheric aerosol particles, using all variations of Köhler theory, has largely assumed that the total solute concentrations define both the water activity and surface tension. Recently however, bulk to surface phase partitioning has been postulated as a process which significantly alters the predicted point of activation. In this paper, an analytical solution to calculate the removal of material from a bulk to a surface layer in aerosol particles has been derived using a well established and validated surface tension framework. The applicability to an unlimited number of components is possible via reliance on data from each binary system. Whilst assumptions regarding behaviour at the surface layer have been made to facilitate derivation, it is proposed that the framework presented can capture the overall impact of bulk-surface partitioning. Demonstrations of the equations for two and five component mixtures are given while comparisons are made with more detailed frameworks capable at modelling ternary systems at higher levels of complexity. Predictions made by the model across a range of surface active properties should be tested against measurements. Indeed, reccomendations are given for experimental validation and to assess sensitivities to accuracy and required level of complexity within large scale frameworks. Importantly, the computational efficiency of using the solution presented in this paper is roughly a factor of 20 less than a similar iterative approach, a comparison with highly coupled approaches not available beyond a 3 component system.

  12. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.

    Science.gov (United States)

    Fu, Heyun; Wei, Chenhui; Qu, Xiaolei; Li, Hui; Zhu, Dongqiang

    2018-01-01

    Dissolved black carbon (DBC), the soluble fraction of black carbon (BC), is an important constituent of dissolved organic matter pool. However, little is known about the binding interactions between hydrophobic organic contaminants (HOCs) and DBC and their significance in the fate process. This study determined the binding ability of DBC released from rice-derived BC for a series of apolar HOCs, including four polycyclic aromatic hydrocarbons and four chlorinated benzenes, using batch sorption and solubility enhancement techniques. Bulk BC and a dissolved soil humic acid (DSHA) were included as benchmark sorbents. The organic carbon-normalized sorption coefficient of phenanthrene to DBC was slightly lower than bulk BC, but was over ten folds higher than DSHA. Consistently, DBC was more effective than DSHA in enhancing the apparent water solubility of the tested HOCs, and the enhancement positively correlated with solute n-octanol-water partition coefficient, indicating the predominance of hydrophobic partition. The much higher binding ability of DBC relative to DSHA was mainly attributed to its higher tendency to form pseudomicellar structures as supported by the fluorescence quenching and the pH-edge data. Our findings suggest that DBC might play a significant role in the environmental fate and transport of HOCs as both sorbent and carrier. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cylindric partitions, {{\\boldsymbol{ W }}}_{r} characters and the Andrews-Gordon-Bressoud identities

    Science.gov (United States)

    Foda, O.; Welsh, T. A.

    2016-04-01

    We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.

  14. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula.

    Science.gov (United States)

    Nguyen, Minhtri K; Kao, Liyo; Kurtz, Ira

    2009-06-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium(1) 1The term "equilibrium" refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium(2)2 The term "preequilibrium" refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology.

  15. Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: a new predictive formula

    Science.gov (United States)

    Nguyen, Minhtri K.; Kao, Liyo; Kurtz, Ira

    2009-01-01

    Upon the addition of protons to an aqueous solution containing multiple buffers, the final H+ concentration ([H+]) at equilibrium is determined by the partitioning of added H+ among the various buffer components. In the analysis of acid-base chemistry, the Henderson-Hasselbalch equation and the Stewart strong ion formulation can only describe (rather than predict) the equilibrium pH following a proton load since these formulas calculate the equilibrium pH only when the reactant concentrations at equilibrium1 1The term “equilibrium” refers to the steady state proton and reactant concentrations when the buffering of excess protons by the various buffers is complete. are already known. In this regard, it is simpler to directly measure the equilibrium pH rather than measure the equilibrium reactant concentrations to calculate the equilibrium pH. As these formulas cannot predict the final equilibrium [H+] following a proton load to a multiple-buffered aqueous solution, we developed a new quantitative approach for predicting the equilibrium [H+] that is based on the preequilibrium22The term “preequilibrium” refers to the initial proton and reactant concentrations immediately upon addition of protons and before the buffering of excess protons by the various buffers. concentrations of all buffers in an aqueous solution. The mathematical model used to derive our equation is based on proton transfer buffer equilibria without requiring the incorporation of electroneutrality considerations. The model consists of a quartic polynomial equation that is derived based solely on the partitioning of H+ among the various buffer components. We tested the accuracy of the model using aqueous solutions with various buffers and measured the equilibrium pH values following the addition of HCl. Our results confirmed the accuracy of our new equation (r2 = 1; measured pH vs. predicted pH), indicating that it quantitatively accounts for the underlying acid-base phenomenology. PMID

  16. Atmospheric occurrence, transport and gas-particle partitioning of polychlorinated biphenyls over the northwestern Pacific Ocean

    Science.gov (United States)

    Wu, Zilan; Lin, Tian; Li, Zhongxia; Li, Yuanyuan; Guo, Tianfeng; Guo, Zhigang

    2017-10-01

    Ship-board air samples were collected during March to May 2015 from the East China Sea (ECS) to the northwestern Pacific Ocean (NWP) to explore the atmospheric occurrence and gas-particle partitioning of polychlorinated biphenyls (PCBs) when the westerly East Asian Monsoon prevailed. Total PCB concentrations in the atmosphere ranged from 56.8 to 261 pg m-3. Higher PCB levels were observed off the coast and minor temperature-induced changes showed that continuous emissions from East Asia remain as an important source to the regional atmosphere. A significant relationship between Koa (octanol-air partition coefficient) and KP (gas-particle partition coefficient) for PCBs was observed under continental air masses, suggesting that land-derived organic aerosols affected the PCB gas-particle partitioning after long-range transport, while an absence of this correlation was identified in marine air masses. The PCB partitioning cannot be fully explained by the absorptive mechanism as the predicted KP were found to be 2-3 orders of magnitude lower than the measured Kp, while the prediction was closely matched when soot adsorption was considered. The results suggested the importance of soot carbon as a transport medium for PCBs during their long-range transport and considerable impacts of continental outflows on PCBs across the downwind area. The estimated transport mass of particulate PCBs into the ECS and NWP totals 2333 kg during the spring, constituting ca. 17% of annual emission inventories of unintentionally produced PCB in China.

  17. Determination of polydimethylsiloxane–water partition coefficients for ten 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene-related compounds and twelve polychlorinated biphenyls using gas chromatography/mass spectrometry

    Science.gov (United States)

    Eganhouse, Robert P.

    2016-01-01

    Polymer-water partition coefficients (Kpw) of ten DDT-related compounds were determined in pure water at 25 °C using commercial polydimethylsiloxane-coated optical fiber. Analyte concentrations were measured by thermal desorption-gas chromatography/full scan mass spectrometry (TD–GC/MSFS; fibers) and liquid injection-gas chromatography/selected ion monitoring mass spectrometry (LI–GC/MSSIM; water). Equilibrium was approached from two directions (fiber uptake and depletion) as a means of assessing data concordance. Measured compound-specific log Kpw values ranged from 4.8 to 6.1 with an average difference in log Kpw between the two approaches of 0.05 log units (∼12% of Kpw). Comparison of the experimentally-determined log Kpw values with previously published data confirmed the consistency of the results and the reliability of the method. A second experiment was conducted with the same ten DDT-related compounds and twelve selected PCB (polychlorinated biphenyl) congeners under conditions characteristic of a coastal marine field site (viz., seawater, 11 °C) that is currently under investigation for DDT and PCB contamination. Equilibration at lower temperature and higher ionic strength resulted in an increase in log Kpw for the DDT-related compounds of 0.28–0.49 log units (61–101% of Kpw), depending on the analyte. The increase in Kpw would have the effect of reducing by approximately half the calculated freely dissolved pore-water concentrations (Cfree). This demonstrates the importance of determining partition coefficients under conditions as they exist in the field.

  18. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    International Nuclear Information System (INIS)

    You, Zhi-Qiang; Herbert, John M.; Mewes, Jan-Michael; Dreuw, Andreas

    2015-01-01

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents

  19. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    Energy Technology Data Exchange (ETDEWEB)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States); Mewes, Jan-Michael; Dreuw, Andreas [Interdisciplinary Center for Scientific Computing, Ruprechts-Karls University, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations fails to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.

  20. Experimental Study of the Partitioning of Siderophile Elements in a Crystallizing Lunar Magma Ocean

    Science.gov (United States)

    Galenas, M.; Righter, K.; Danielson, L.; Pando, K.; Walker, R. J.

    2012-01-01

    The distributions of trace elements between the lunar interior and pristine crustal rocks were controlled by the composition of starting materials, lunar core formation, and crystallization of the lunar magma ocean (LMO) [1]. This study focuses on the partitioning of highly siderophile elements (HSE) including Re, Os, Ir, Ru, Pt, Rh, Pd and Au as well as the moderately siderophile elements Mo and W, and the lithophile elements of Hf and Sr. Our experiments also include Ga, which can be slightly siderophile, but is mostly considered to be chalcophile. Partitioning of these elements is not well known at the conditions of a crystallizing LMO. Previous studies of HSE partitioning in silicate systems have yielded highly variable results for differing oxygen fugacity (fO2) and pressure [2-4]. For example, under certain conditions Pt is compatible in clinopy-roxene [2] and Rh and Ru are compatible in olivine [3]. The silicate compositions used for these experiments were nominally basaltic. Ruthenium, Rh, and Pd are incompatible in plagioclase under these conditions[4]. However, this latter study was done at extremely oxidizing conditions and at atmospheric pressure, possibly limiting the applicability for consideration of conditions of a crystallizing LMO. In this study we address the effects of pressure and oxygen fugacity on the crystal/liquid partition coefficients of these trace elements. We are especially interested in the plagioclase/melt partition coefficients so that it may be possible to use reverse modeling to constrain the concentrations of these elements in the lunar mantle through their abundances in pristine crustal rocks.

  1. Confocal Raman Microscopy for in Situ Measurement of Phospholipid-Water Partitioning into Model Phospholipid Bilayers within Individual Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M

    2018-06-05

    The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.

  2. Unique Path Partitions

    DEFF Research Database (Denmark)

    Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.

    2013-01-01

    We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....

  3. Periodic, complexiton solutions and stability for a (2+1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation

    Science.gov (United States)

    Yin, Hui-Min; Tian, Bo; Zhao, Xin-Chao

    2018-06-01

    This paper presents an investigation of a (2 + 1)-dimensional variable-coefficient Gross-Pitaevskii equation in the Bose-Einstein condensation. Periodic and complexiton solutions are obtained. Solitons solutions are also gotten through the periodic solutions. Numerical solutions via the split step method are stable. Effects of the weak and strong modulation instability on the solitons are shown: the weak modulation instability permits an observable soliton, and the strong one overwhelms its development.

  4. Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris

    International Nuclear Information System (INIS)

    O'Connor, Isabel A.; Golsteijn, Laura; Hendriks, A. Jan

    2016-01-01

    Marine plastic debris are found worldwide in oceans and coastal areas. They degrade only slowly and contain chemicals added during manufacture or absorbed from the seawater. Therefore, they can pose a long-lasting contaminant source and potentially transfer chemicals to marine organisms when ingested. In order to assess their risk, the contaminant concentration in the plastics needs to be estimated and differences understood. We collected from literature plastic water partition coefficients of various organic chemicals for seven plastic types: polydimethylsiloxane (PDMS), high-density, low-density and ultra-high molecular weight polyethylene (LDPE, HDPE, UHMWPE), polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC). Most data was available for PDMS (1060) and LDPE (220), but much less for the remaining plastics (73). Where possible, regression models were developed and the partitioning was compared between the different plastic types. The partitioning of chemicals follows the order of LDPE ≈ HDPE ≥ PP > PVC ≈ PS. Data describing the impact of weathering are urgently needed. - Highlights: • Comparison of organic chemicals partitioning into seven plastic types • Linear correlation between plastic-water partition coefficient K pw and K ow • More data is needed for polypropylene, polystyrene and polyvinyl chloride. • In all plastic types, most K pw were similar to/smaller than the corresponding K ow .

  5. Experimental determination of the partitioning coefficient and volatility of important BVOC oxidation products using the Aerosol Collection Module (ACM) coupled to a PTR-ToF-MS

    Science.gov (United States)

    Gkatzelis, G.; Hohaus, T.; Tillmann, R.; Schmitt, S. H.; Yu, Z.; Schlag, P.; Wegener, R.; Kaminski, M.; Kiendler-Scharr, A.

    2015-12-01

    Atmospheric aerosol can alter the Earth's radiative budget and global climate but can also affect human health. A dominant contributor to the submicrometer particulate matter (PM) is organic aerosol (OA). OA can be either directly emitted through e.g. combustion processes (primary OA) or formed through the oxidation of organic gases (secondary organic aerosol, SOA). A detailed understanding of SOA formation is of importance as it constitutes a major contribution to the total OA. The partitioning between the gas and particle phase as well as the volatility of individual components of SOA is yet poorly understood adding uncertainties and thus complicating climate modelling. In this work, a new experimental methodology was used for compound-specific analysis of organic aerosol. The Aerosol Collection Module (ACM) is a newly developed instrument that deploys an aerodynamic lens to separate the gas and particle phase of an aerosol. The particle phase is directed to a cooled sampling surface. After collection particles are thermally desorbed and transferred to a detector for further analysis. In the present work, the ACM was coupled to a Proton Transfer Reaction-Time of Flight-Mass Spectrometer (PTR-ToF-MS) to detect and quantify organic compounds partitioning between the gas and particle phase. This experimental approach was used in a set of experiments at the atmosphere simulation chamber SAPHIR to investigate SOA formation. Ozone oxidation with subsequent photochemical aging of β-pinene, limonene and real plant emissions from Pinus sylvestris (Scots pine) were studied. Simultaneous measurement of the gas and particle phase using the ACM-PTR-ToF-MS allows to report partitioning coefficients of important BVOC oxidation products. Additionally, volatility trends and changes of the SOA with photochemical aging are investigated and compared for all systems studied.

  6. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    Energy Technology Data Exchange (ETDEWEB)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb [ECOMatters Inc., Pinawa (Canada); Sohlenius, Gustav [Geological Survey of Sweden (SGU), Uppsala (Sweden)

    2009-03-15

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  7. Solid/liquid partition coefficients (Kd) for selected soils and sediments at Forsmark and Laxemar-Simpevarp

    International Nuclear Information System (INIS)

    Sheppard, Steve; Long, Jeff; Sanipelli, Barb; Sohlenius, Gustav

    2009-03-01

    Soil and sediment solid/liquid partition coefficients (Kd) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. The Kd data are inherently extremely variable, but also vary systematically with key environmental attributes. For soil Kd, the key variables are pH, clay content and organic carbon content. For sediment Kd, water type (freshwater versus marine) and sediment type (benthic versus suspended) are important. This report summarized Kd data for soils and sediments computed from indigenous stable element concentrations measured at the Forsmark and Laxemar-Simpevarp sites. These were then compared to several literature sources of Kd data for Ce, Cl, Co, Cr, Cs, Fe, Ho, I, La, Mn, Mo, Nb, Nd, Ni, Np, Pa, Pb, Pu, Ra, Sb, Se, Sm, Sn, Sr, Tc, Th, Tm, U and Yb. The Kd data computed from indigenous stable element concentrations may be especially relevant for assessment of long-lived radionuclides from deep disposal of waste, because the long time frame for the potential releases is more consistent with the steady state measured using indigenous stable elements. For almost every one of these elements in soils, a statistically meaningful regression equation was developed to allow estimation of Kd for any soil given a modest amount of information about the soil. Nonetheless, the median residual geometric standard deviation (GSD) was 4.3-fold, implying confidence bounds of about 18-fold above and below the best estimate Kd. For sediment, the values are categorised simply by water type and sediment type. The median GSD for sediment Kd as measured at the Forsmark and Laxemar-Simpevarp sites was 2.5-fold, but the median GSD among literature values was as high as 8.6-fold. Clearly, there remains considerable uncertainty in Kd values, and it is important to account for this in assessment applications

  8. Time Domain Partitioning of Electricity Production Cost Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jones, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hale, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Production cost models are often used for planning by simulating power system operations over long time horizons. The simulation of a day-ahead energy market can take several weeks to compute. Tractability improvements are often made through model simplifications, such as: reductions in transmission modeling detail, relaxation of commitment variable integrality, reductions in cost modeling detail, etc. One common simplification is to partition the simulation horizon so that weekly or monthly horizons can be simulated in parallel. However, horizon partitions are often executed with overlap periods of arbitrary and sometimes zero length. We calculate the time domain persistence of historical unit commitment decisions to inform time domain partitioning of production cost models. The results are implemented using PLEXOS production cost modeling software in an HPC environment to improve the computation time of simulations while maintaining solution integrity.

  9. Trace element partitioning in rock forming minerals of co-genetic, subduction-related alkaline and tholeiitic mafic rocks in the Ural Mountains, Russia

    Science.gov (United States)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2009-04-01

    The partitioning of trace elements between rock forming minerals in igneous rocks is largely controlled by physical and chemical parameters e.g. temperature, pressure and chemical composition of the minerals and the coexisting melt. In the present study partition coefficients for REE between hornblende, orthopyroxene, feldspars, apatite and clinopyroxene in a suite of co-genetic alkaline and tholeiitic mafic rocks from the Ural Mountains (Russia) were calculated. The results give insights to the influence of the chemical composition of the parental melt on the partitioning behaviour of the REE. Nepheline-bearing, alkaline melanogabbros (tilaites) are assumed to represent the most fractionated products of the melt that formed the ultramafic cumulates in zoned mafic-ultramafic complexes in the Ural Mountains. Co-genetic with the latter is a suite of olivine gabbros, gabbronorites and hornblende gabbros formed from a tholeiitic parental melt. Negative anomalies for the HFSE along with low Nb and Ta contents and a positive Sr anomaly indicate a subduction related origin of all parental melts. The nepheline gabbros consist predominantly of coarse-grained clinopyroxene phenocrysts in a matrix of fine grained clinopyroxene, olivine, plagioclase, K-feldspar and nepheline with accessory apatite. The tholeiitic gabbros have equigranular to porphyric textures with phenocrysts of olivine, pyroxene and hornblende in a plagioclase rich matrix with olivine hornblende, pyroxene and accessory apatite. Element concentrations of adjacent matrix grains and rims of phenochrysts were measured with LA-ICPMS. The distribution of REE between hornblende and clinopyroxene in the tholeiitic rocks is similar for most of the elements (DHbl•Cpx(La-Tm) = 2.7-2.8, decreasing to 2.6 and 2.4 for Yb and Lu, respectively). These values are about two times higher than published data (e.g. Ionov et al. 1997). Partition coefficients for orthopyroxene/clinopyroxene systematically decrease from the HREE

  10. Measured and numerically partitioned phytoplankton spectral absorption coefficients in inland waters

    NARCIS (Netherlands)

    Zhang, Y.; Liu, M.; Van Dijk, M.A.; Zhu, G.; Gong, Z.; Li, Y.M.; Qin, B.

    2009-01-01

    Total particulate, tripton and phytoplankton absorption coefficients were measured for eutrophic (Lake Taihu), meso-eutrophic (Lake Tianmuhu) and mesotrophic waters (the Three Gorges Reservoir) in China using the quantitative filter technique. Meanwhile, tripton and phytoplankton absorption

  11. Mercury extraction by the TRUEX process solvent. II. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.; Todd, T.A.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 , from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . Because experiments described here show that mercury can be extracted from SBW and stripped from the solvent, a process has been developed to partition mercury from the actinides in SBW. 10 refs., 3 figs., 10 tabs

  12. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Diffusion coefficients of nickel chloride in aqueous solutions of lactose at T = 298.15 K and T = 310.15 K

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Gomes, Joselaine C.S.; Barros, Marisa C.F.; Lobo, Victor M.M.; Esteso, Miguel A.

    2011-01-01

    Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol · dm -3 , using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager-Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D 11 , D 22 , D 12 , and D 21 ) for aqueous solutions containing NiCl 2 and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl 2 in different media.

  14. Flowchart on Choosing Optimal Method of Observing Transverse Dispersion Coefficient for Solute Transport in Open Channel Flow

    Directory of Open Access Journals (Sweden)

    Kyong Oh Baek

    2018-04-01

    Full Text Available There are a number of methods for observing and estimating the transverse dispersion coefficient in an analysis of the solute transport in open channel flow. It may be difficult to select an optimal method to calculate dispersion coefficients from tracer data among numerous methodologies. A flowchart was proposed in this study to select an appropriate method under the transport situation of either time-variant or steady condition. When making the flowchart, the strengths and limitations of the methods were evaluated based on its derivation procedure which was conducted under specific assumptions. Additionally, application examples of these methods on experimental data were illustrated using previous works. Furthermore, the observed dispersion coefficients in a laboratory channel were validated by using transport numerical modeling, and the simulation results were compared with the experimental results from tracer tests. This flowchart may assist in choosing the better methods for determining the transverse dispersion coefficient in various river mixing situations.

  15. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  16. Sediment pore water distribution coefficients of PCB congeners in enriched black carbon sediment

    International Nuclear Information System (INIS)

    Martinez, Andres; O'Sullivan, Colin; Reible, Danny; Hornbuckle, Keri C.

    2013-01-01

    More than 2300 sediment pore water distribution coefficients (K PCBids ) of 93 polychlorinated biphenyls (PCBs) were measured and modeled from sediments from Indiana Harbor and Ship Canal. K PCBids were calculated from previously reported bulk sediment values and newly analyzed pore water. PCBs in pore waters were measured using SPME PDMS-fiber and ∑PCB ranged from 41 to 1500 ng L −1 . The resulting K PCBids were ∼1 log unit lower in comparison to other reported values. A simple model for the K PCBid consisted of the product of the organic carbon fraction and the octanol–water partition coefficient and provided an excellent prediction for the measured values, with a mean square error of 0.09 ± 0.06. Although black carbon content is very high in these sediments and was expected to play an important role in the distribution of PCBs, no improvement was obtained when a two-carbon model was used. -- Highlights: •PCB sediment-pore water distribution coefficients were measured and modeled. •Distribution coefficients were lower in comparison to other reported values. •Organic carbon fraction times the K OW yielded the best prediction model. •The incorporation of black carbon into a model did not improve the results. -- The organic carbon fraction times the octanol–water partition coefficient yielded the best prediction model for the sediment pore water distribution coefficient of PCBs

  17. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    Science.gov (United States)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Developing Key Parameters for Green Performance of Partition Wall Blocks

    Directory of Open Access Journals (Sweden)

    Goh Cheng Siew

    2016-01-01

    Full Text Available To promote sustainable construction, it is important to consider green performance of construction materials throughout the life cycle. Selecting inappropriate materials could not only affect the functional performance but also preclude the achievement of green building performance as a whole. Green performance of construction materials has therefore been one of the primary considerations of green building assessment systems. Using partition wall blocks as an example, this paper examines green performance of building materials primarily from the cradle to gate boundaries. Nine key parameters are proposed for the green performance of partition wall blocks. Apart from environmental features, technical performance of partition wall blocks is also taken into consideration since it is the determinant of the lifecycle performance. This paper offers a roadmap to decision makers to make environmentally responsible choices for their materials of internal walls and partitions, and hence provides a potential sustainable solution for green buildings.

  19. Development of long-lived radionuclides partitioning technology - Experimental/theoretical study of phase equilibria for multicomponent multiphase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Soo; Lee, Se Il; Sim, Yeon Sik; Park, Sung Bin; Yang, Sung Oh; Park, Ji Yong [Korea University, Seoul (Korea, Republic of)

    1995-08-01

    In various partitioning processes, rare earth elements and actinide elements are separated from other elements in the first stage. They are then separated into rare earth groups and actinde groups. The first stage is accomplished by solvent extraction using DEHPA, by precipitation using oxalic= acid, or by cation exchange. The second stage is carried out by selective back-extraction or by selective elution using DTPA. In these processes the equilibria is governed by the concentrations of nitric acid, of solvents, and of precipitants among others. In this study various distribution coefficients in partitioning processes were experimentally determined. And thermodynamic models were proposed to calculate distribution coefficients with experimentally determined equilibrium constants. 32 refs., 11 tabs., 23 figs. (author)

  20. Multiphasic modeling of charged solute transport across articular cartilage: Application of multi-zone finite-bath model.

    Science.gov (United States)

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-06-14

    Charged and uncharged solutes penetrate through cartilage to maintain the metabolic function of chondrocytes and to possibly restore or further breakdown the cartilage tissue in different stages of osteoarthritis. In this study the transport of charged solutes across the various zones of cartilage was quantified, taken into account the physicochemical interactions between the solute and the cartilage constituents. A multiphasic finite-bath finite element (FE) model was developed to simulate equine cartilage diffusion experiments that used a negatively charged contrast agent (ioxaglate) in combination with serial micro-computed tomography (micro-CT) to measure the diffusion. By comparing the FE model with the experimental data both the diffusion coefficient of ioxaglate and the fixed charge density (FCD) were obtained. In the multiphasic model, cartilage was divided into multiple (three) zones to help understand how diffusion coefficient and FCD vary across cartilage thickness. The direct effects of charged solute-FCD interaction on diffusion were investigated by comparing the diffusion coefficients derived from the multiphasic and biphasic-solute models. We found a relationship between the FCD obtained by the multiphasic model and ioxaglate partitioning obtained from micro-CT experiments. Using our multi-zone multiphasic model, diffusion coefficient of the superficial zone was up to ten-fold higher than that of the middle zone, while the FCD of the middle zone was up to almost two-fold higher than that of the superficial zone. In conclusion, the developed finite-bath multiphasic model provides us with a non-destructive method by which we could obtain both diffusion coefficient and FCD of different cartilage zones. The outcomes of the current work will also help understand how charge of the bath affects the diffusion of a charged molecule and also predict the diffusion behavior of a charged solute across articular cartilage. Copyright © 2016 Elsevier Ltd. All

  1. Prediction of gas/particle partitioning of polybrominated diphenyl ethers (PBDEs) in global air: A theoretical study

    Science.gov (United States)

    Li, Y.-F.; Ma, W.-L.; Yang, M.

    2015-02-01

    Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring

  2. Bioconcentration factors and plant-water partition coefficients of munitions compounds in barley.

    Science.gov (United States)

    Torralba-Sanchez, Tifany L; Kuo, Dave T F; Allen, Herbert E; Di Toro, Dominic M

    2017-12-01

    Plants growing in the soils at military ranges and surrounding locations are exposed, and potentially able to uptake, munitions compounds (MCs). The extent to which a compound is transferred from the environment into organisms such as plants, referred to as bioconcentration, is conventionally measured through uptake experiments with field/synthetic soils. Multiple components/phases that vary among different soil types and affect the bioavailability of the MC, however, hinder the ability to separate the effects of soil characteristics from the MC chemical properties on the resulting plant bioconcentration. To circumvent the problem, this work presents a protocol to measure steady state bioconcentration factors (BCFs) for MCs in barley (Hordeum vulgare L.) using inert laboratory sand rather than field/synthetic soils. Three MCs: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), and 2,4-dinitroanisole (2,4-DNAN), and two munition-like compounds (MLCs): 4-nitroanisole (4-NAN) and 2-methoxy-5-nitropyridine (2-M-5-NPYNE) were evaluated. Approximately constant plant biomass and exposure concentrations were achieved within a one-month period that produced steady state log BCF values: 0.62 ± 0.02, 0.70 ± 0.03, 1.30 ± 0.06, 0.52 ± 0.03, and 0.40 ± 0.05 L kg plant dwt -1 for TNT, 2,4-DNT, 2,4-DNAN, 4-NAN, and 2-M-5-NPYNE, respectively. Furthermore, results suggest that the upper-bounds of the BCFs can be estimated within an order of magnitude by measuring the partitioning of the compounds between barley biomass and water. This highlights the importance of partition equilibrium as a mechanism for the uptake of MCs and MLCs by barley from interstitial water. The results from this work provide chemically meaningful data for prediction models able to estimate the bioconcentration of these contaminants in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Osmotic and activity coefficients in the binary solutions of 1-butyl-3-methylimidazolium chloride and bromide in methanol or ethanol at T = 298.15 K from isopiestic measurements

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Azamat, Jafar; Atabay, Maryam

    2011-01-01

    Highlights: → The osmotic coefficients of the solutions of 1-butyl-3-methylimidazolium chloride and bromide in ethanol and methanol have been measured. → Measured osmotic coefficients were correlated using NRTL and Pitzer models. → Vapor pressures were evaluated from the correlated osmotic coefficients. → Model parameters have been interpreted in terms of ion-ion and ion-solvent interactions. - Abstract: Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality) 0.5 , with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.

  4. PREDICTING SOIL SORPTION COEFFICIENTS OF ORGANIC CHEMICALS USING A NEURAL NETWORK MODEL

    Science.gov (United States)

    The soil/sediment adsorption partition coefficient normalized to organic carbon (Koc) is extensively used to assess the fate of organic chemicals in hazardous waste sites. Several attempts have been made to estimate the value of Koc from chemical structure ...

  5. Diffusion coefficients of nickel chloride in aqueous solutions of lactose at T = 298.15 K and T = 310.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Ana C.F., E-mail: anacfrib@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Gomes, Joselaine C.S., E-mail: leidygomes18@hotmail.co [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Barros, Marisa C.F., E-mail: marisa.barros@gmail.co [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lobo, Victor M.M., E-mail: vlobo@ci.uc.p [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Esteso, Miguel A., E-mail: miguel.esteso@uah.e [Departamento de Quimica Fisica, Facultad de Farmacia, Universidad de Alcala, 28871, Alcala de Henares (Madrid) (Spain)

    2011-03-15

    Binary mutual diffusion coefficients (interdiffusion coefficients) of nickel chloride in water at T = 298.15 K and T = 310.15 K, and at concentrations between (0.000 and 0.100) mol {center_dot} dm{sup -3}, using a Taylor dispersion method have been measured. These data are discussed on the basis of the Onsager-Fuoss and Pikal models. The equivalent conductance at infinitesimal concentration of the nickel ion in these solutions at T = 310.15 K has been estimated using these results. Through the same technique, ternary mutual diffusion coefficients (D{sub 11}, D{sub 22}, D{sub 12}, and D{sub 21}) for aqueous solutions containing NiCl{sub 2} and lactose, at T = 298.15 K and T = 310.15 K, and at different carrier concentrations were also measured. These data permit us to have a better understanding of the structure of these systems and the thermodynamic behaviour of NiCl{sub 2} in different media.

  6. Partitioning of etofenprox under simulated California rice-growing conditions.

    Science.gov (United States)

    Vasquez, Martice E; Gunasekara, Amrith S; Cahill, Thomas M; Tjeerdema, Ronald S

    2010-01-01

    The pyrethroid insecticide etofenprox is of current interest to rice farmers in the Sacramento Valley owing to its effectiveness against the rice water weevil, Lissorhoptrus oryzophilus Kuschel. This study aimed to describe the partitioning of etofenprox under simulated rice field conditions by determining its Henry's law constant (H) (an estimate of volatilization) and organic carbon-normalized soil-water distribution coefficient (K(oc)) at representative field temperatures. A comparison of etofenprox and lambda-cyhalothrin is presented using a level-1 fugacity model. Experimental determination of H revealed that etofenprox partitioned onto the apparatus walls and did not significantly volatilize; the maximum value of H was estimated to be 6.81 x 10(-1) Pa m(3) mol(-1) at 25 degrees C, based on its air and water method detection limits. Calculated values for H ranged from 5.6 x 10(-3) Pa m(3) mol(-1) at 5 degrees C to 2.9 x 10(-1) Pa m(3) mol(-1) at 40 degrees C, based on estimated solubility and vapor pressure values at various temperatures. Log K(oc) values (at 25 degrees C) were experimentally determined to be 6.0 and 6.4 for Princeton and Richvale rice field soils, respectively, and were very similar to the values for other pyrethroids. Finally, temperature appears to have little influence on etofenprox sorption, as the log K(oc) for the Princeton soil at 35 degrees C was 6.1. High sorption coefficients and relatively insignificant desorption and volatilization of etofenprox suggest that its insolubility drives it to partition from water by sorbing to soils with high affinity. Offsite movement is unlikely unless transported in a bound state on suspended sediments.

  7. Efficient Partitioning of Large Databases without Query Statistics

    Directory of Open Access Journals (Sweden)

    Shahidul Islam KHAN

    2016-11-01

    Full Text Available An efficient way of improving the performance of a database management system is distributed processing. Distribution of data involves fragmentation or partitioning, replication, and allocation process. Previous research works provided partitioning based on empirical data about the type and frequency of the queries. These solutions are not suitable at the initial stage of a distributed database as query statistics are not available then. In this paper, I have presented a fragmentation technique, Matrix based Fragmentation (MMF, which can be applied at the initial stage as well as at later stages of distributed databases. Instead of using empirical data, I have developed a matrix, Modified Create, Read, Update and Delete (MCRUD, to partition a large database properly. Allocation of fragments is done simultaneously in my proposed technique. So using MMF, no additional complexity is added for allocating the fragments to the sites of a distributed database as fragmentation is synchronized with allocation. The performance of a DDBMS can be improved significantly by avoiding frequent remote access and high data transfer among the sites. Results show that proposed technique can solve the initial partitioning problem of large distributed databases.

  8. Transport of organic solutes through amorphous teflon AF films.

    Science.gov (United States)

    Zhao, Hong; Zhang, Jie; Wu, Nianqiang; Zhang, Xu; Crowley, Katie; Weber, Stephen G

    2005-11-02

    Fluorous media have great potential for selective extraction (e.g., as applied to organic synthesis). Fluorous polymer films would have significant advantages in fluorous separations. Stable films of Teflon AF 2400 were cast from solution. Films appear defect-free (SEM; AFM). Rigid aromatic solutes are transported (from chloroform solution to chloroform receiving phase) in a size-dependent manner (log permeability is proportional to -0.0067 times critical volume). Benzene's permeability is about 2 orders of magnitude higher than in comparable gas-phase experiments. The films show selectivity for fluorinated solutes in comparison to the hydrogen-containing control. Transport rates are dependent on the solvent making up the source and receiving phases. The effect of solvent is, interestingly, not due to changes in partition ratio, but rather it is due to changes in the solute diffusion coefficient in the film. Solvents plasticize the films. A less volatile compound, -COOH-terminated poly(hexafluoropropylene oxide) (4), plasticizes the films (T(g) = -40 degrees C). Permeabilities are decreased in comparison to 4-free films apparently because of decreased diffusivity of solutes. The slope of dependence of log permeability on critical volume is not changed, however.

  9. Metal/silicate partitioning of Pt and the origin of the "late veneer"

    Science.gov (United States)

    Ertel, W.; Walter, M. J.; Drake, M. J.; Sylvester, P. J.

    2002-12-01

    the melting point of the 1 atm, AnDi system and the melting point of the Pt capsule material. Over 150 piston cylinder and 12 multi anvil experiments have been performed. Pt solubility is only slightly dependent on temperature, decreasing between 1800 and 1400°C by less than an order of magnitude. In consequence, the partitioning behavior of Pt is mostly determined by its oxygen fugacity dependence, which has only been determined in 1 atm experiments. At 10 kbar, metal/silicate partition coefficients (D's) decrease by about 3 orders of magnitude. The reason for this is not understood, but might be attributed to a first order phase transition as found for, e.g., SiO2 or H2O. Above 10 kbar any increase in pressure does not lead to any further significant decrease in partition coefficients. Solubilities stay roughly constant up to 140 kbar. Abundances of moderately siderophile elements were possibly established by metal/silicate equilibrium in a magma ocean. These results for Pt suggest that the abundances of HSEs were most probably established by the accretion of a chondritic veneer following core formation, as metal/silicate partition coefficients are too high to be consistent with metal/silicate equilibrium in a magma ocean.

  10. A variable-coefficient unstable nonlinear Schroedinger model for the electron beam plasmas and Rayleigh-Taylor instability in nonuniform plasmas: Solutions and observable effects

    International Nuclear Information System (INIS)

    Gao Yitian; Tian Bo

    2003-01-01

    A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing

  11. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  12. An Efficient Technique for Hardware/Software Partitioning Process in Codesign

    Directory of Open Access Journals (Sweden)

    Imene Mhadhbi

    2016-01-01

    Full Text Available Codesign methodology deals with the problem of designing complex embedded systems, where automatic hardware/software partitioning is one key issue. The research efforts in this issue are focused on exploring new automatic partitioning methods which consider only binary or extended partitioning problems. The main contribution of this paper is to propose a hybrid FCMPSO partitioning technique, based on Fuzzy C-Means (FCM and Particle Swarm Optimization (PSO algorithms suitable for mapping embedded applications for both binary and multicores target architecture. Our FCMPSO optimization technique has been compared using different graphical models with a large number of instances. Performance analysis reveals that FCMPSO outperforms PSO algorithm as well as the Genetic Algorithm (GA, Simulated Annealing (SA, Ant Colony Optimization (ACO, and FCM standard metaheuristic based techniques and also hybrid solutions including PSO then GA, GA then SA, GA then ACO, ACO then SA, FCM then GA, FCM then SA, and finally ACO followed by FCM.

  13. Confocal Raman Microscopy for in Situ Measurement of Octanol-Water Partitioning within the Pores of Individual C18-Functionalized Chromatographic Particles.

    Science.gov (United States)

    Kitt, Jay P; Harris, Joel M

    2015-05-19

    Octanol-water partitioning is one of the most widely used predictors of hydrophobicity and lipophilicity. Traditional methods for measuring octanol-water partition coefficients (K(ow)), including shake-flasks and generator columns, require hours for equilibration and milliliter quantities of sample solution. These challenges have led to development of smaller-scale methods for measuring K(ow). Recent advances in microfluidics have produced faster and smaller-volume approaches to measuring K(ow). As flowing volumes are reduced, however, separation of water and octanol prior to measurement and detection in small volumes of octanol phase are especially challenging. In this work, we reduce the receiver volume of octanol-water partitioning measurements from current practice by six-orders-of-magnitude, to the femtoliter scale, by using a single octanol-filled reversed-phase, octadecylsilane-modified (C18-silica) chromatographic particle as a collector. The fluid-handling challenges of working in such small volumes are circumvented by eliminating postequilibration phase separation. Partitioning is measured in situ within the pore-confined octanol phase using confocal Raman microscopy, which is capable of detecting and quantifying a wide variety of molecular structures. Equilibration times are fast (less than a minute) because molecular diffusion is efficient over distance scales of micrometers. The demonstrated amount of analyte needed to carry out a measurement is very small, less than 50 fmol, which would be a useful attribute for drug screening applications or testing of small quantities of environmentally sensitive compounds. The method is tested for measurements of pH-dependent octanol-water partitioning of naphthoic acid, and the results are compared to both traditional shake-flask measurements and sorption onto C18-modified silica without octanol present within the pores.

  14. Metal separations using aqueous biphasic partitioning systems

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-01-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation

  15. Estudo QSPR sobre os coeficientes de partição: descritores mecânico-quânticos e análise multivariada QSPR study on partition coefficients: quantum-mechanical descriptors and multivariate analysis

    Directory of Open Access Journals (Sweden)

    Edilson Grünheidt Borges

    2002-12-01

    Full Text Available Quantum chemistry and multivariate analysis were used to estimate the partition coefficients between n-octanol and water for a serie of 188 compounds, with the values of the q 2 until 0.86 for crossvalidation test. The quantum-mechanical descriptors are obtained with ab initio calculation, using the solvation effects of the Polarizable Continuum Method. Two different Hartree-Fock bases were used, and two different ways for simulating solvent cavity formation. The results for each of the cases were analised, and each methodology proposed is indicated for particular case.

  16. Partitioning of polar and non-polar neutral organic chemicals into human and cow milk.

    Science.gov (United States)

    Geisler, Anett; Endo, Satoshi; Goss, Kai-Uwe

    2011-10-01

    The aim of this work was to develop a predictive model for milk/water partition coefficients of neutral organic compounds. Batch experiments were performed for 119 diverse organic chemicals in human milk and raw and processed cow milk at 37°C. No differences (milk were observed. The polyparameter linear free energy relationship model fit the calibration data well (SD=0.22 log units). An experimental validation data set including hormones and hormone active compounds was predicted satisfactorily by the model. An alternative modelling approach based on log K(ow) revealed a poorer performance. The model presented here provides a significant improvement in predicting enrichment of potentially hazardous chemicals in milk. In combination with physiologically based pharmacokinetic modelling this improvement in the estimation of milk/water partitioning coefficients may allow a better risk assessment for a wide range of neutral organic chemicals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

    KAUST Repository

    Lellmann, Jan

    2012-11-09

    We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.

  18. Determination of n-octanol/water partition coefficient for DDT-related compounds by RP-HPLC with a novel dual-point retention time correction.

    Science.gov (United States)

    Han, Shu-ying; Qiao, Jun-qin; Zhang, Yun-yang; Yang, Li-li; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2011-03-01

    n-Octanol/water partition coefficients (P) for DDTs and dicofol were determined by reversed-phase high performance liquid chromatography (RP-HPLC) on a C(18) column using methanol-water mixture as mobile phase. A dual-point retention time correction (DP-RTC) was proposed to rectify chromatographic retention time (t(R)) shift resulted from stationary phase aging. Based on this correction, the relationship between logP and logk(w), the logarithm of the retention factor extrapolated to pure water, was investigated for a set of 12 benzene homologues and DDT-related compounds with reliable experimental P as model compounds. A linear regression logP=(1.10±0.04) logk(w) - (0.60±0.17) was established with correlation coefficient R(2) of 0.988, cross-validated correlation coefficient R(cv)(2) of 0.983 and standard deviation (SD) of 0.156. This model was further validated using four verification compounds, naphthalene, biphenyl, 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (p,p'-DDD) and 2,2-bis(4-chlorophenyl)-1,1-dichloroethene (p,p'-DDE) with similar structure to DDT. The RP-HPLC-determined P values showed good consistency with shake-flask (SFM) or slow-stirring (SSM) results, especially for highly hydrophobic compounds with logP in the range of 4-7. Then, the P values for five DDT-related compounds, 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1,1-trichloroethane (o,p'-DDT), 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethane (o,p'-DDD), 2-(2-chlorophenyl)-2-(4-chlorophenyl)-1,1-dichloroethene (o,p'-DDE), and 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol) and its main degradation product 4,4'-dichlorobenzophenone (p,p'-DBP) were evaluated by the improved RP-HPLC method for the first time. The excellent precision with SD less than 0.03 proved that the novel DP-RTC protocol can significantly increases the determination accuracy and reliability of P by RP-HPLC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Computational estimation of logarithm of octanol/air partition coefficients and subcooled vapour pressures for each of 75 chloronaphtalene congeners

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, T.; Falandysz, J.; Rostkowski, P.; Piliszek, S.; Wilczyniska, A. [Univ. of Gdansk (Poland)

    2004-09-15

    Polychlorinated naphthalenes (PCNs, CNs) are known persistent organic pollutants, contaminating natural ecosystems in effect of technical human activity. Toxic effects induced by individual congers of PCNs are reported elsewhere. Great risk of these chemical compounds is additionally connected with theirs excellent ability to be transported via atmosphere from a source to the remote regions on the Glob. Chloronaphthalene congeners had been found in Arctic regions at significant level in spite of the fact, that they had never been synthesized there, and also thermal processes like municipal waste incineration or domestic heating (other possible sources of PCNs in the environment) were not so intensive there. In 1996 F. Wania and D. Mackay have formulated some empirical rules, which have been very useful in estimation and modeling of environmental transport processes of persistent organic pollutants like PCNs. Two very important physico-chemical parameters in the theory of global distillation and cold condensation are: logarithm of n-octanol/air partition coefficient (log K{sub OA}) and logarithm of subcooled vapour pressure (log P{sub L}). Values of log K{sub OA} and log P{sub L} in standard procedures are determined by means of chromatographic methods. In order to reduce costs and number of experiments, we have proposed simple computational method of estimation log K{sub OA} and log P{sub L}.

  20. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    Science.gov (United States)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  1. Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation

    International Nuclear Information System (INIS)

    Órfão, Eliana Fernandes; Dohnal, Vladimír; Blahut, Aleš

    2013-01-01

    Highlights: • Limiting activity coefficients and gas–liquid partition coefficients for 30 VOCs were determined by GLC. • Solution thermodynamic quantities were derived and analyzed. • [MO-EMPYR][FAP] and [HO-EMIM][FAP] were identified as ILs of very low and very high cohesivity, respectively. • [HO-EMIM][FAP] is an IL of extreme H-bond acidity exhibiting superior performance for petrochemical separations. • Both studied [FAP] ILs were indicated to separate some azeotropic mixtures of alcohols with aprotic oxygenates. -- Abstract: Interactions of volatile organic compounds with two ionic liquids (ILs) containing tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation, 1-(2-hydroxyethyl)-3-methylimidazolium ([HO-EMIM]) and 1-(2-methoxyethyl)-1-methylpyrrolidinium ([MO-EMPYR]), were explored through systematic GLC retention measurements. Infinite dilution activity coefficients γ 1 ∞ and gas–liquid partition coefficients K L of 30 selected solutes in [HO-EMIM][FAP] and [MO-EMPYR][FAP] were determined at five temperatures in the range from (318.15 to 353.15) K. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the γ 1 ∞ values. The Linear Free Energy Relationship (LFER) solvation model was used to correlate the K L values. The LFER correlation parameters and excess thermodynamic functions were analyzed to identify molecular interactions operating between the ILs and the individual solutes. By comparing the behaviors of the studied ILs and of their closely similar unfunctionalized analogs, net effects imparted by cation functionalization were also disclosed. The cohesivity of the two ILs was shown to differ dramatically: while [MO-EMPYR][FAP] ranks among ILs to the least cohesive, [HO-EMIM][FAP] belongs to the most cohesive ones. Both [HO-EMIM][FAP] and [MO-EMPYR][FAP] are capable of interacting with solutes specifically through dipolarity/polarizibility and

  2. Apparent molar volumes, isobaric expansion coefficients, and isentropic compressibilities, and their H/D isotope effects for some aqueous carbohydrate solutions

    International Nuclear Information System (INIS)

    Bernal, P.J.; Van Hook, W.A.

    1986-01-01

    The molar volumes, isobaric expansion coefficients, and isentropic compressibilities of solutions of a number of carbohydrates and their deuterated isomers were determined in H 2 O and D 2 O between 288.15 and 328.15 K and over a wide range of solute-to-solvent mole ratios. The results are discussed in terms of the specific hydration model. (author)

  3. Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution

    Science.gov (United States)

    Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia

    2015-12-01

    This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.

  4. Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Outrata, Jiří; Haslinger, Jaroslav; Pathó, R.

    2014-01-01

    Roč. 52, č. 5 (2014), s. 3371-3400 ISSN 0363-0129 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:GA MŠK(CZ) CZ.1.05/1.1.00/02.0070; GA MŠK(CZ) CZ.1.07/2.3.00/20.0070 Institutional support: RVO:67985556 ; RVO:68145535 Keywords : shape optimization * contact problems * Coulomb friction * solution-dependent coefficient of friction * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.463, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf

  5. Assessing the combined influence of TOC and black carbon in soil–air partitioning of PBDEs and DPs from the Indus River Basin, Pakistan

    International Nuclear Information System (INIS)

    Ali, Usman; Mahmood, Adeel; Syed, Jabir Hussain; Li, Jun; Zhang, Gan; Katsoyiannis, Athanasios; Jones, Kevin C.; Malik, Riffat Naseem

    2015-01-01

    Levels of polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DPs) were investigated in the Indus River Basin from Pakistan. Concentrations of ∑PBDEs and ∑DPs were ranged between 0.05 and 2.38 and 0.002–0.53 ng g −1 in the surface soils while 1.43–22.1 and 0.19–7.59 pg m −3 in the passive air samples, respectively. Black carbon (f BC ) and total organic carbon (f TOC ) fractions were also measured and ranged between 0.73 and 1.75 and 0.04–0.2%, respectively. The statistical analysis revealed strong influence of f BC than f TOC on the distribution of PBDEs and DPs in the Indus River Basin soils. BDE's congener profile suggested the input of penta–bromodiphenylether (DE-71) commercial formulation in the study area. Soil–air partitioning of PBDEs were investigated by employing octanol-air partition coefficients (K OA ) and black carbon-air partition coefficients (K BC−A ). The results of both models suggested the combined influence of total organic carbon (absorption) and black carbon (adsorption) in the studied area. - Highlights: • Model based calculations of black carbon-air partition coefficients for PBDEs. • Soil and air levels of PBDEs and DPs reported first time for ecologically important sites of the Indus River Basin, Pakistan. • Both, f BC and f TOC showed combined influence on soil–air partitioning of PBDEs in the Indus River Basin, Pakistan. - BC and TOC showed combined influence on soil–air partitioning of POPs i-e., PBDEs in the Indus River Basin, Pakistan

  6. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions

    NARCIS (Netherlands)

    Snijder, Erwin D.; Riele, Marcel J.M. te; Versteeg, Geert F.; Swaaij, W.P.M. van

    1993-01-01

    The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine

  7. Influence of biochar on isoproturon partitioning and bioaccessibility in soil

    International Nuclear Information System (INIS)

    Reid, B.J.; Pickering, F.L.; Freddo, A.; Whelan, M.J.; Coulon, F.

    2013-01-01

    The influence of biochar (5%) on the loss, partitioning and bioaccessibility of 14 C-isoproturon ( 14 C-IPU) was evaluated. Results indicated that biochar had a dramatic effect upon 14 C-IPU partitioning: 14 C-IPU extractability (0.01 M CaCl 2 ) in biochar-amended treatments was reduced to 14 C-IPU extractability in biochar free treatments decreased with ageing from 90% to 40%. A partitioning model was constructed to derive an effective partition coefficient for biochar:water (K BW of 7.82 × 10 4 L kg −1 ). This was two orders of magnitude greater than the apparent K foc value of the soil organic carbon:water (631 L kg −1 ). 14 C-radiorespirometry assays indicated high competence of microorganisms to mineralise 14 C-IPU in the absence of biochar (40.3 ± 0.9%). Where biochar was present 14 C-IPU mineralisation never exceeded 2%. These results indicate reduced herbicide bioaccessibility. Increasing IPU application to ×10 its recommended dose was ineffective at redressing IPU sequestration and its low bioaccessibility. Highlights: •Biochar had a dramatic effect on IPU partitioning. •IPU extractability was reduced to BW ) was 7.82 × 10 4 L kg −1 . •K BW was 124 times greater than the apparent K foc value of the control. •Biochar precluded microbial bioaccessibility – no catabolic response was observed. -- Biochar dramatically reduced 14 C-IPU extractability ( BW being ×123 greater than the apparent K foc . Correspondingly, microbial bioaccessibility of IPU was negligible

  8. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, M. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@phelma.grenoble-inp.fr; Molina-Concha, M.B. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France); El-Kissi, N. [Laboratoire de Rheologie, UMR 5520 CNRS/Grenoble-INP/UJF, 1301 rue de la piscine, 38041 Grenoble Cedex 9 (France); Parrour, G.; Diard, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS/Grenoble-INP/UJF, 1130 rue de la piscine, BP75, 38402 Saint Martin d' Heres Cedex (France)

    2009-07-15

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH{sub 4} electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.01 M NaBH{sub 4} at 25 deg. C in the present study vs. ca. 1.6 x 10{sup -5} cm{sup 2} s{sup -1} in 1 M NaOH + 0.02 M NaBH{sub 4} at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H{sub 2} bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H{sub 2} bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the

  9. Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions

    International Nuclear Information System (INIS)

    Chatenet, M.; Molina-Concha, M.B.; El-Kissi, N.; Parrour, G.; Diard, J.-P.

    2009-01-01

    This paper presents the experimental determination of the diffusion coefficient of borohydride anion and solution kinematic viscosity for a large panel of NaOH + NaBH 4 electrolytic solutions relevant for use as anolyte in Direct Borohydride Fuel Cells (DBFC). The diffusion coefficients have been measured by the transit-time technique on gold rotating ring-disk electrodes, and verified using other classical techniques reported in the literature, namely the Levich method and Electrochemical Impedance Spectroscopy on a gold RDE, or chronoamperometry at a gold microdisk. The agreement between these methods is generally good. The diffusion coefficients measured from the RRDE technique are however ca. twice larger than those previously reported in the literature (e.g. ca. 3 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.01 M NaBH 4 at 25 deg. C in the present study vs. ca. 1.6 x 10 -5 cm 2 s -1 in 1 M NaOH + 0.02 M NaBH 4 at 30 deg. C in the literature, as measured by chronoamperometry at a gold microsphere), which is thoroughly discussed. Our measurements using chronoamperometry at a gold microdisk showed that such technique can yield diffusion coefficient values below what expected. The origin of such finding is explained in the frame of the formation of both a film of boron-oxide(s) at the surface of the (static) gold microdisk and the generation of H 2 bubbles at the electrode surface (as a result of the heterogeneous hydrolysis at Au), which alter the access to the electrode surface and thus prevents efficient measurements. Such film formation and H 2 bubbles generation is not so much of an issue for rotating electrodes thanks to the convection of electrolyte which sweeps the electrode surface. In addition, should such film be present, the transit-time determination technique on a RRDE displays the advantage of not being very sensible to its presence: the parameter measured is the time taken by a perturbation generated the disk to reach the ring trough a distance several orders

  10. New solitary solutions and non-elastic interactions of the (2 + 1)-dimensional variable-coefficient Broer-Kaup system with symbolic computation

    International Nuclear Information System (INIS)

    Geng Tao; Shan Wenrui; Lue Xing; Cai Kejie; Zhang Cheng; Tian Bo

    2009-01-01

    Fusion and fission phenomena for solitary waves have been discovered theoretically and experimentally. In this paper, the (2 + 1)-dimensional variable-coefficient Broer-Kaup system is symbolically investigated. By employing the bilinear method, new solitary solutions with arbitrary functions are obtained. At the same time, the non-elastic interactions of solitary solutions are graphically studied. Furthermore, soliton fusion and fission phenomena are revealed by choosing appropriate functions.

  11. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    Science.gov (United States)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  12. New polymers for low-gravity purification of cells by phase partitioning

    Science.gov (United States)

    Harris, J. M.

    1983-01-01

    A potentially powerful technique for separating different biological cell types is based on the partitioning of these cells between the immiscible aqueous phases formed by solution of certain polymers in water. This process is gravity-limited because cells sediment rather than associate with the phase most favored on the basis of cell-phase interactions. In the present contract we have been involved in the synthesis of new polymers both to aid in understanding the partitioning process and to improve the quality of separations. The prime driving force behind the design of these polymers is to produce materials which will aid in space experiments to separate important cell types and to study the partitioning process in the absence of gravity (i.e., in an equilibrium state).

  13. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments

    International Nuclear Information System (INIS)

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-01-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71–6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31–5.24 and 4.52–5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable

  14. Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-methylimidazolium trifluoroacetate and influence of interfacial adsorption using gas–liquid chromatography

    International Nuclear Information System (INIS)

    Jiang, Lin-Kun; Wang, Li-Sheng; Du, Chao-Jun; Wang, Xue-Yuan

    2014-01-01

    Highlights: • Activity coefficients at infinite dilution of organic solutes in [HMIM][TFA] were determined. • The contribution of interfacial adsorption to the retention mechanism was estimated. • The partial molar excess enthalpies and the solubility parameters of [HMIM][TFA] were calculated. -- Abstract: Activity coefficients at infinite dilution for a series of organic solutes in the ionic liquid 1-hexyl-3-methylimidazolium trifluoroacetate ([HMIM][TFA]) have been determined by gas–liquid chromatography at the temperature range from (303.15 to 363.15) K. The contribution of interfacial adsorption to the retention mechanism was estimated by changing the loading of ionic liquid in stationary phase. The partial molar excess enthalpies at infinite dilution and the solubility parameters of ionic liquid were also calculated from the experimental values of activity coefficients at infinite dilution

  15. Minimum nonuniform graph partitioning with unrelated weights

    Science.gov (United States)

    Makarychev, K. S.; Makarychev, Yu S.

    2017-12-01

    We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.

  16. Global existence of periodic solutions of BAM neural networks with variable coefficients

    International Nuclear Information System (INIS)

    Guo Shangjiang; Huang Lihong; Dai Binxiang; Zhang Zhongzhi

    2003-01-01

    In this Letter, we study BAM (bidirectional associative memory) networks with variable coefficients. By some spectral theorems and a continuation theorem based on coincidence degree, we not only obtain some new sufficient conditions ensuring the existence, uniqueness, and global exponential stability of the periodic solution but also estimate the exponentially convergent rate. Our results are less restrictive than previously known criteria and can be applied to neural networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity. Moreover, these conclusions are presented in terms of system parameters and can be easily verified for the globally Lipschitz and the spectral radius being less than 1. Therefore, our results should be useful in the design and applications of periodic oscillatory neural circuits for neural networks with delays

  17. Experimental determination of growth rate effect on U 6+ and Mg 2+ partitioning between aragonite and fluid at elevated U 6+ concentration

    Science.gov (United States)

    Gabitov, R. I.; Gaetani, G. A.; Watson, E. B.; Cohen, A. L.; Ehrlich, H. L.

    2008-08-01

    Results are reported from an experimental study in which the partitioning of U and Mg between aragonite and an aqueous solution were determined as a function of crystal growth rate. Crystals, identified as aragonite by X-ray diffractometry and micro-Raman spectroscopy, were grown by diffusion of CO 2 from an ammonium carbonate source into a calcium-bearing solution at temperatures of 22 and 53 °C. Hemispherical bundles (spherulites) of aragonite crystals were produced, the growth rates of which decreased monotonically from the spherulite interiors to the edges and thus provide the opportunity to examine the influence of growth rate on crystal composition. Element concentration ratios were measured using electron microprobe (EMP) and fluid composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption (AA). Growth rates were determined directly by addition of a Dy spike to the fluid during the experiment that was subsequently located in an experimentally precipitated spherulite using secondary ion mass spectrometry (SIMS). At 22 °C both U/Ca and Mg/Ca partition coefficients exhibited a strong growth rate dependence when crystal growth rates were low, and became independent of growth rate when crystal growth rates were high. The U/Ca ratios in aragonite increase between 22 and 53 °C; in contrast Mg/Ca ratios show inverse dependence on temperature.

  18. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  19. Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene

    Directory of Open Access Journals (Sweden)

    R. M. Healy

    2008-06-01

    Full Text Available A new denuder-filter sampling technique has been used to investigate the gas/particle partitioning behaviour of the carbonyl products from the photooxidation of isoprene and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmospheric simulation chambers at atmospheric pressure and ambient temperature in the presence of NOx and at a relative humidity of approximately 50%. The denuder and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl-hydroxylamine (PFBHA to enable the efficient collection of gas- and particle-phase carbonyls respectively. The tubes and filters were extracted and carbonyls identified as their oxime derivatives by GC-MS. The carbonyl products identified in the experiments accounted for around 5% and 10% of the mass of secondary organic aerosol formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

    Experimental gas/particle partitioning coefficients were determined for a wide range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-trimethylbenzene and compared with the theoretical values based on standard absorptive partitioning theory. Photooxidation products with a single carbonyl moiety were not observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher than expected theoretically. These findings support the importance of heterogeneous and particle-phase chemical reactions for SOA formation and growth during the atmospheric degradation of anthropogenic and biogenic hydrocarbons.

  20. Gait Partitioning Methods: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Juri Taborri

    2016-01-01

    Full Text Available In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments.

  1. Gait Partitioning Methods: A Systematic Review

    Science.gov (United States)

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  2. Probing liquation cracking and solidification through modeling of momentum, heat, and solute transport during welding of aluminum alloys

    International Nuclear Information System (INIS)

    Mishra, S.; Chakraborty, S.; DebRoy, T.

    2005-01-01

    A transport phenomena-based mathematical model is developed to understand liquation cracking in weldments during fusion welding. Equations of conservation of mass, momentum, heat, and solute transport are numerically solved considering nonequilibrium solidification and filler metal addition to determine the solid and liquid phase fractions in the solidifying region and the solute distribution in the weld pool. An effective partition coefficient that considers the local interface velocity and the undercooling is used to simulate solidification during welding. The calculations show that convection plays a dominant role in the solute transport inside the weld pool. The predicted weld-metal solute content agreed well with the independent experimental observations. The liquation cracking susceptibility in Al-Cu alloy weldments could be reliably predicted by the model based on the computed solidifying weld-metal composition and solid fraction considering nonequilibrium solidification

  3. Distributions of 14 elements on 60 selected absorbers from two simulant solutions (acid-dissolved sludge and alkaline supernate) for Hanford HLW Tank 102-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1993-10-01

    Sixty commercially available or experimental absorber materials were evaluated for partitioning high-level radioactive waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. The distributions of 14 elements onto each absorber were measured from simulated solutions that represent acid-dissolved sludge and alkaline supernate solutions from Hanford high-level waste (HLW) Tank 102-SY. The selected elements, which represent fission products (Ce, Cs, Sr, Tc, and Y); actinides (U, Pu, and Am); and matrix elements (Cr, Co, Fe, Mn, Zn, and Zr), were traced by radionuclides and assayed by gamma spectrometry. Distribution coefficients for each of the 1680 element/absorber/solution combinations were measured for dynamic contact periods of 30 min, 2 h, and 6 h to provide sorption kinetics information for the specified elements from these complex media. More than 5000 measured distribution coefficients are tabulated

  4. Ab Initio Predictions of K, He and Ar Partitioning Between Silicate Melt and Liquid Iron Under High Pressure

    Science.gov (United States)

    Xiong, Z.; Tsuchiya, T.

    2017-12-01

    Element partitioning is an important property in recording geochemical processes during the core-mantle differentiation. However, experimental measurements of element partitioning coefficients under extreme temperature and pressure condition are still challenging. Theoretical modeling is also not easy, because it requires estimation of high temperature Gibbs free energy, which is not directly accessible by the standard molecular dynamics method. We recently developed an original technique to simulate Gibbs free energy based on the thermodynamics integration method[1]. We apply it to element partitioning of geochemical intriguing trace elements between molten silicate and liquid iron such as potassium, helium and argon as starting examples. Radiogenic potassium in the core can provide energy for Earth's magnetic field, convection in the mantle and outer core[2]. However, its partitioning behavior between silicate and iron remains unclear under high pressure[3,4]. Our calculations suggest that a clear positive temperature dependence of the partitioning coefficient but an insignificant pressure effect. Unlike sulfur and silicon, oxygen dissolved in the metals considerably enhances potassium solubility. Calculated electronic structures reveal alkali-metallic feature of potassium in liquid iron, favoring oxygen with strong electron affinity. Our results suggest that 40K could serve as a potential radiogenic heat source in the outer core if oxygen is the major light element therein.­­ We now further extend our technique to partitioning behaviors of other elements, helium and argon, to get insides into the `helium paradox' and `missing argon' problems. References [1] T. Taniuchi, and T. Tsuchiya, Phys.Rev.B. In press [2] B.A. Buffett, H.E. Huppert, J.R. Lister, and A.W. Woods, Geophys.Res.Lett. 29 (1996) 7989-8006. [3] V.R. Murthy, W. Westrenen, and Y. Fei, Nature. 426 (2003) 163-165. [4] A. Corgne, S.Keshav, Y. Fei, and W.F. McDonough, Earth.Planet.Sci.Lett. 256 (2007

  5. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  6. Brominated flame retardants in the urban atmosphere of Northeast China: Concentrations, temperature dependence and gas-particle partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li, E-mail: mawanli002@163.com; Li, Yi-Fan, E-mail: ijrc_pts_paper@yahoo.com

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m{sup 3} and 180 pg/m{sup 3}, respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas–particle partitioning coefficients (logK{sub p}) for most low molecular weight BFRs were highly temperature dependent as well. Gas–particle partitioning coefficients (logK{sub p}) also correlated with the sub-cooled liquid vapor pressure (logP{sub L}{sup o}). Our results indicated that absorption into organic matter is the main control mechanism for the gas–particle partitioning of atmospheric PBDEs. - Highlights: • Both PBDEs and alternative BFRs were analyzed in the atmosphere of Northeast China. • Partial pressure of BFRs was significantly correlated with the ambient temperature. • A strong temperature dependence of gas-particle partitioning was found. • Absorption into organic matter was the control mechanism for G-P partitioning.

  7. Improved calculation of the third virial coefficient of a free anyon gas

    International Nuclear Information System (INIS)

    Law, J.; Khare, A.; Bhaduri, R.K.; Suzuki, A.

    1994-01-01

    For three anyons confined in a harmonic oscillator, only the class of states that interpolates nonlinearly with the statistical parameter contributes to the third virial coefficient of a free anyon gas. Rather than evaluating the full three-body partition function as was done in an earlier publication [J. Law, A. Suzuki, and R. Bhaduri, Phys. Rev. A 46, 4693 (1992)], here only the nonlinear contribution is calculated, thus avoiding delicate cancellations between the irrelevant linear part and the two-body partition function. Our numerical results are consistent with the simple analytical form suggested recently by Myrheim and Olaussen [Phys. Lett. B 299, 267 (1993)

  8. Bioligand-mediated partitioning of radionuclides to the aqueous phase

    International Nuclear Information System (INIS)

    Johnsson, A.; Pedersen, K.; Oedegaard-Jensen, A.; Jakobsson, A.M.; Ekberg, C.

    2008-01-01

    The aqueous-phase partitioning of 59 Fe, 147 Pm, 234 Th and 241 Am by complexing compounds from subsurface bacteria has previously been studied in the presence of quartz sand. In this study the aqueous-phase partitioning of pico- to submicromolar amounts of 59 Fe, 147 Pm, 234 Th and 241 Am was analyzed in the presence of TiO 2 and exudates from three species of subsurface bacteria: Pseudomonas fluorescens, Pseudomonas stutzeri, and Shewanella putrefaciens. All were grown under aerobic conditions and P. stutzeri and S. putrefaciens were grown under anaerobic conditions as well. The supernatants of the aerobic and anaerobic cultures were collected and radionuclide was added. TiO 2 , with BET surface area of 49.9 m 2 x g -1 , was added to the supernatant radionuclide mix, and the pH was adjusted to approximately 8. After incubation, the amount of radionuclide in the liquid phase of the samples and controls was analyzed using scintillation method. Two types of values were calculated: solution% = the activity maintained in solution relative to the total activity, and Q-values = the quotient between the activity in samples and the activity in controls. Aerobic supernatants had solution% values between 89% and 100% for 59 Fe and between 18 and 43% for 234 Th. The solution% values for 241 Am and 147 Pm were less than 2% overall, but the Q-values were between 34 and 115 times more 241 Am in bacterial supernatants than in controls. The corresponding values for 147 Pm ranged from 6 to 20 times more than in the control. The solution% values for all elements in the presence of anaerobic supernatants were below 2%, but the Q-values clustered around 7 for 59 Fe and ranging from 2 to 29 for 234 Th, indicated that anaerobic supernatants partitioned these elements to the aqueous phase. Both aerobic and anaerobic supernatants tested positive for complexing compounds when analyzed, using the Chrome Azurol S assay. Complexation with excreted organic ligands is most likely the reason

  9. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  10. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C

    Science.gov (United States)

    Ayers, John C.; Peters, Timothy J.

    2018-02-01

    Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e

  11. Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion—advection equation with variable coefficients

    International Nuclear Information System (INIS)

    Kumar, Vikas; Gupta, R. K.; Jiwari, Ram

    2014-01-01

    In this paper, the variable-coefficient diffusion—advection (DA) equation, which arises in modeling various physical phenomena, is studied by the Lie symmetry approach. The similarity reductions are derived by determining the complete sets of point symmetries of this equation, and then exact and numerical solutions are reported for the reduced second-order nonlinear ordinary differential equations. Further, an extended (G'/G)-expansion method is applied to the DA equation to construct some new non-traveling wave solutions

  12. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    Science.gov (United States)

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  13. A linear solvation energy relationship model of organic chemical partitioning to dissolved organic carbon.

    Science.gov (United States)

    Kipka, Undine; Di Toro, Dominic M

    2011-09-01

    Predicting the association of contaminants with both particulate and dissolved organic matter is critical in determining the fate and bioavailability of chemicals in environmental risk assessment. To date, the association of a contaminant to particulate organic matter is considered in many multimedia transport models, but the effect of dissolved organic matter is typically ignored due to a lack of either reliable models or experimental data. The partition coefficient to dissolved organic carbon (K(DOC)) may be used to estimate the fraction of a contaminant that is associated with dissolved organic matter. Models relating K(DOC) to the octanol-water partition coefficient (K(OW)) have not been successful for many types of dissolved organic carbon in the environment. Instead, linear solvation energy relationships are proposed to model the association of chemicals with dissolved organic matter. However, more chemically diverse K(DOC) data are needed to produce a more robust model. For humic acid dissolved organic carbon, the linear solvation energy relationship predicts log K(DOC) with a root mean square error of 0.43. Copyright © 2011 SETAC.

  14. A flow-through aqueous standard generation system for thin film microextraction investigations of UV filters and biocides partitioning to different environmental compartments.

    Science.gov (United States)

    Ahmadi, Fardin; Sparham, Chris; Pawliszyn, Janusz

    2017-11-01

    In this paper problems associated with preparation of aqueous standard of highly hydrophobic compounds such as partial precipitation, being lost on the surfaces, low solubility in water and limited sample volume for accurate determination of their distribution coefficients are addressed. The following work presents two approaches that utilize blade thin film microextraction (TFME) to investigate partitioning of UV filters and biocides to humic acid (dissolved organic carbon) and sediment. A steady-state concentration of target analytes in water was generated using a flow-through aqueous standard generation (ASG) system. Dialysis membranes, a polytetrafluoroethylene permeation tube, and a frit porous (0.5 μm) coated by epoxy glue were basic elements used for preparation of the ASG system. In the currently presented study, negligible depletion TFME using hydrophilic-lipophilic balance (HLB) and octadecyl silica-based (C18) sorbents was employed towards the attainment of free concentration values of target analytes in the studied matrices. Thin film geometry provided a large volume of extraction phase, which improved the sensitivity of the method towards highly matrix-bound analytes. Extractions were performed in the equilibrium regime so as to prevent matrix effects and with aims to reach maximum method sensitivity for all analytes under study. Partitioning of analytes on dissolved organic carbon (DOC) was investigated in ASG to facilitate large sample volume conditions. Binding percentages and DOC distribution coefficients (Log K DOC ) ranged from 20 to 98% and 3.71-6.72, respectively. Furthermore, sediment-water partition coefficients (K d ), organic-carbon normalized partition coefficients (Log K OC ), and DOC distribution coefficients (Log K DOC ) were investigated in slurry sediment, and ranged from 33 to 2860, 3.31-5.24 and 4.52-5.75 Lkg -1 , respectively. The obtained results demonstrated that investigations utilizing ASG and TFME can yield reliable binding

  15. Salt Effect on Osmotic Pressure of Polyelectrolyte Solutions: Simulation Study

    Directory of Open Access Journals (Sweden)

    Jan-Michael Y. Carrillo

    2014-07-01

    Full Text Available Abstract: We present results of the hybrid Monte Carlo/molecular dynamics simulations of the osmotic pressure of salt solutions of polyelectrolytes. In our simulations, we used a coarse-grained representation of polyelectrolyte chains, counterions and salt ions. During simulation runs, we alternate Monte Carlo and molecular dynamics simulation steps. Monte Carlo steps were used to perform small ion exchange between simulation box containing salt ions (salt reservoir and simulation box with polyelectrolyte chains, counterions and salt ions (polyelectrolyte solution. This allowed us to model Donnan equilibrium and partitioning of salt and counterions across membrane impermeable to polyelectrolyte chains. Our simulations have shown that the main contribution to the system osmotic pressure is due to salt ions and osmotically active counterions. The fraction of the condensed (osmotically inactive counterions first increases with decreases in the solution ionic strength then it saturates. The reduced value of the system osmotic coefficient is a universal function of the ratio of the concentration of osmotically active counterions and salt concentration in salt reservoir. Simulation results are in a very good agreement with osmotic pressure measurements in sodium polystyrene sulfonate, DNA, polyacrylic acid, sodium polyanetholesulfonic acid, polyvinylbenzoic acid, and polydiallyldimethylammonium chloride solutions.

  16. Removal of dissolved organic carbon by aquifer material: Correlations between column parameters, sorption isotherms and octanol-water partition coefficient.

    Science.gov (United States)

    Pradhan, Snigdhendubala; Boernick, Hilmar; Kumar, Pradeep; Mehrotra, Indu

    2016-07-15

    The correlation between octanol-water partition coefficient (KOW) and the transport of aqueous samples containing single organic compound is well documented. The concept of the KOW of river water containing the mixture of organics was evolved by Pradhan et al. (2015). The present study aims at determining the KOW and sorption parameters of synthetic aqueous samples and river water to finding out the correlation, if any. The laboratory scale columns packed with aquifer materials were fed with synthetic and river water samples. Under the operating conditions, the compounds in the samples did not separate, and all the samples that contain more than one organic compound yielded a single breakthrough curve. Breakthrough curves simulated from sorption isotherms were compared with those from the column runs. The sorption parameters such as retardation factor (Rf), height of mass transfer zone (HMTZ), rate of mass transfer zone (RMTZ), breakpoint column capacity (qb) and maximum column capacity (qx) estimated from column runs, sorption isotherms and models developed by Yoon-Nelson, Bohart-Adam and Thomas were in agreement. The empirical correlations were found between the KOW and sorption parameters. The transport of the organics measured as dissolved organic carbon (DOC) through the aquifer can be predicted from the KOW of the river water and other water samples. The novelty of the study is to measure KOW and to envisage the fate of the DOC of the river water, particularly during riverbank filtration. Statistical analysis of the results revealed a fair agreement between the observed and computed values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    Science.gov (United States)

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    Science.gov (United States)

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    Science.gov (United States)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  20. A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems.

    Science.gov (United States)

    Bras, Eduardo J S; Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Arévalo-Rodríguez, Miguel; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel

    2017-09-15

    Antibodies and other protein products such as interferons and cytokines are biopharmaceuticals of critical importance which, in order to be safely administered, have to be thoroughly purified in a cost effective and efficient manner. The use of aqueous two-phase extraction (ATPE) is a viable option for this purification, but these systems are difficult to model and optimization procedures require lengthy and expensive screening processes. Here, a methodology for the rapid screening of antibody extraction conditions using a microfluidic channel-based toolbox is presented. A first microfluidic structure allows a simple negative-pressure driven rapid screening of up to 8 extraction conditions simultaneously, using less than 20μL of each phase-forming solution per experiment, while a second microfluidic structure allows the integration of multi-step extraction protocols based on the results obtained with the first device. In this paper, this microfluidic toolbox was used to demonstrate the potential of LYTAG fusion proteins used as affinity tags to optimize the partitioning of antibodies in ATPE processes, where a maximum partition coefficient (K) of 9.2 in a PEG 3350/phosphate system was obtained for the antibody extraction in the presence of the LYTAG-Z dual ligand. This represents an increase of approx. 3.7 fold when compared with the same conditions without the affinity molecule (K=2.5). Overall, this miniaturized and versatile approach allowed the rapid optimization of molecule partition followed by a proof-of-concept demonstration of an integrated back extraction procedure, both of which are critical procedures towards obtaining high purity biopharmaceuticals using ATPE. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. VARIATIONS IN THE SPECTRAL PROPERTIES OF FRESHWATER AND ESTUARINE CDOM CAUSED BY PARTITIONING ONTO RIVER AND ESTUARINE SEDIMENTS

    Science.gov (United States)

    The optical properties and geochemical cycling of chromophoric dissolved organic matter (CDOM) are altered by its sorption to freshwater and estuarine sediments. Measured partition coefficients (Kp) of Satilla River (Georgia) and Cape Fear River estuary (North Carolina) CDOM ran...

  2. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.

    Science.gov (United States)

    Altinok, Ilhan; Capkin, Erol; Boran, Halis

    2011-06-01

    Effects of water volume and water column height on toxicity of cypermethrin, carbaryl, dichlorvos, tetradifon, maneb, captan, carbosulfan endosulfan and HgCl₂ to juvenile rainbow trout (Oncorhynchus mykiss, 3.2 ± 0.7 g) were evaluated in different glass aquaria under static conditions. When fish were exposed to the chemical compounds in 23 cm water column height (25 L), their mortality ranged between 0% and 58%. At the same water volume, but lower water column height (9 cm), mortality of fish increased significantly and was in a range from 60% to 95%. At the same water column height, toxic effects of chemicals were significantly higher in 25 L water volume than that of 8.5 L, water except maneb which has lowest (-0.45) octanol-water partition coefficient value. Mortality rates ratio of 9 and 23 cm water column height ranged between 1.12 and 90 while mortality rates ratio of 9 and 25 L water volume ranged between 1.20 and 4.0. Because actual exposure concentrations were not affected by either water volume or water column height, we propose that increased pesticides' toxicity was related to an increase in bioassay volume, since more pesticide molecules were able to interact with or accumulate the fish. However, there seem to be no relationship between the effects of water volume, water column height and Kow value of chemicals with regard to toxicity in juvenile rainbow trout.

  3. Uranium-thorium disequilibria and partitioning on melting of garnet peridotite

    International Nuclear Information System (INIS)

    Beattie, P.

    1993-01-01

    The abundances of isotopes in the 238 U decay series can be used as both tracers and chronometers of magmatic processes. In the subsolidus asthenosphere, the activity of each daughter isotope (defined as the product of its concentration and decay constant, and denoted by parentheses) is assumed to be equal to that of its parent. By contrast, ( 230 Th/ 238 U) is greater than unity in most recent mid-ocean-ridge and ocean-island basalts, implying that thorium is more incompatible (that is, it is partitioned into the melt phase more strongly) than uranium. Melting of spinel peridotite cannot produce the ( 230 Th) excesses, because measured partition coefficients for pyroxenes and olivine demonstrate that uranium is more incompatible than thorium for this rock. Here I report garnet-melt partitioning data which show that for this mineral-melt pair thorium does behave more incompatibility than uranium, thus supporting the suggestion that mid-ocean-ridge basalts (MORB) are produced by melting initiated at depths where garnet is stable. Using these data, I show that the observed ( 230 Th/ 238 U) ratios of MORB and most ocean-island basalts can be explained by slow, near-fractional melting initiated in the garnet stability field. (author)

  4. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Cheema, Mohammad Arif; Siddiq, Mohammad; Taboada, Pablo; Mosquera, Victor

    2009-01-01

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl - substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V φ , and isentropic apparent molar compressibilities, K φ(S) , for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, ΔG 0 , phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles

  5. Analytical Solution of Heat Conduction for Hollow Cylinders with Time-Dependent Boundary Condition and Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Te-Wen Tu

    2015-01-01

    Full Text Available An analytical solution for the heat transfer in hollow cylinders with time-dependent boundary condition and time-dependent heat transfer coefficient at different surfaces is developed for the first time. The methodology is an extension of the shifting function method. By dividing the Biot function into a constant plus a function and introducing two specially chosen shifting functions, the system is transformed into a partial differential equation with homogenous boundary conditions only. The transformed system is thus solved by series expansion theorem. Limiting cases of the solution are studied and numerical results are compared with those in the literature. The convergence rate of the present solution is fast and the analytical solution is simple and accurate. Also, the influence of physical parameters on the temperature distribution of a hollow cylinder along the radial direction is investigated.

  6. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  7. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    2008-01-01

    (s)) or the octanol/air partition coefficient (K-OA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration (C-particle/C-Dust) was calculated, The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite...

  8. Evaluation of distribution coefficients for the prediction of strontium and cesium migration in a uniform sand

    International Nuclear Information System (INIS)

    Reynolds, W.D.; Gillham, R.W.; Cherry, J.A.

    1982-01-01

    The validity of using a distribution coefficient (Ksub(d)) in the mathematical prediction of strontium and cesium transport through uniform saturated sand was investigated by comparing measured breakthrough curves with curves of simulations using the advection-dispersion and the advection equations. Values for Ksub(d) were determined by batch equilibration tests and, indirectly, by fitting the mathematical model to breakthrough data from column experiments. Although the advection-dispersion equation accurately represented the breakthrough curves for two nonreactive solutes (chloride and tritium), neither it nor the advection equation provided close representations of the strontium and cesium curves. The simulated breakthrough curves for strontium and cesium were nearly symmetrical, whereas the data curves were very asymmetrical, with long tails. Column experiments with different pore-water velocities indicated that the shape of the normalized breakthrough curves was not sensitive to velocity. This suggests that the asymmetry of the measured curves was the result of nonlinear partitioning of the cations between the solid and liquid phases, rather than nonequilibrium effects. The results indicate that the distribution coefficient, when used in advection-dispersion models for prediction of the migration of strontium and cesium in field situations, can result in significant error

  9. Polyacrylate–water partitioning of biocidal compounds: Enhancing the understanding of biocide partitioning between render and water

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Ou, Yi; Mayer, Philipp

    2014-01-01

    -N-octylisothiazolinone). The correlation of the polyacrylate-water partition constants with the octanol-water partition constants is significant, but the polyacrylate-water partition constants were predominantly below octanol-water partition constants (Kow). The comparison with render-water distribution constants showed that estimating...

  10. Effect of sugars on liquid-vapour partition of volatile compounds in ready-to-drink coffee beverages.

    Science.gov (United States)

    Piccone, P; Lonzarich, V; Navarini, L; Fusella, G; Pittia, P

    2012-09-01

    The effect of sugars (sucrose, lactose, glucose, fructose, 10%w/v) on the liquid-vapour partition of selected volatile compounds of coffee beverages has been investigated in espresso coffee and ready-to-drink (RTD) canned coffee prepared and obtained by using the same Arabica roasted coffee beans blend. Aroma composition of coffee beverages has been preliminary investigated by headspace-gas chromatography (HS-GC) and solid phase microextraction-HS-GC-mass spectrometry to characterize the volatile pattern of the systems and to evaluate the effects of sugars on the aroma release/retention. Then, the liquid-vapour partition coefficient (k) of 4 selected key aroma compounds (diacetyl, 2,3-pentanedione, ethylpyrazine, hexanal) was determined in water, sugars solutions as well as RTD coffee brews added with the same sugars (10%w/v). Sugars added in coffee beverages affected the release of the volatiles and thus its aroma profile with differences due to the type of added sugar and coffee brew type. The k values of the selected volatile compounds resulted different depending on the model system composition (water, coffee brew) and sugar type added. In particular, melanoidins as well as other non-volatile components (lipids, acids, carbohydrates) in the RTD coffee brews could be implied in the change of k of the volatile compounds in respect to that observed in water. The effects of the sugar type on the release/retention of the four key coffee aroma compounds were partly explained in terms of 'salting out' especially for the more polar volatile compounds and in the sucrose-added model systems. The change of chemical and physico-chemical properties of the water and brews induced by the sugars as well as the occurrence of interactions between volatile compounds and non-volatile components may be implied in the reduction of the vapour partition of the aroma compounds. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake.

    Science.gov (United States)

    Riccardi, Keith; Li, Zhenhong; Brown, Janice A; Gorgoglione, Matthew F; Niosi, Mark; Gosset, James; Huard, Kim; Erion, Derek M; Di, Li

    2016-10-01

    Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. 1-loop partition function in AdS{sub 3}/CFT{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2015-12-16

    The 1-loop partition function of the handlebody solutions in the AdS{sub 3} gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O(c{sup 0}) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  13. Partitioning of the pesticide trifluralin between dissolved organic matter and water using automated SPME-GC/MS

    KAUST Repository

    Caupos, Emilie

    2014-10-04

    Solid-phase microextraction (SPME) was used to determine the equilibrium association constant for a pesticide, trifluralin (TFR), with dissolved organic matter (DOM). After optimization of the SPME method for the analysis of TFR, partition coefficients (K DOM) with three different sources of DOM were determined in buffered solutions at pH 7. Commercial humic acids and DOM fractions isolated from two surface waters were used. The values of log K DOMvaried from 4.3 to 5.8, depending on the nature of the organic material. A good correlation was established between log K DOMand DOM properties (as measured with the H/O atomic ratio and UV absorbance), in agreement with literature data. This is consistent with the effect of polarity and aromaticity for governing DOM-pollutant associations, regardless of the origin of DOM. This association phenomenon is relevant to better understand the behavior of pesticides in the environment since it controls part of pesticide leaching and fate in aquatic systems.

  14. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  15. The adsorption coefficient (KOC) of chlorpyrifos in clay soil

    International Nuclear Information System (INIS)

    Halimah Muhamad; Nashriyah Mat; Tan Yew Ai; Ismail Sahid

    2005-01-01

    The purpose of this study was to determine the adsorption coefficient (KOC) of chlorpyrifos in clay soil by measuring the Freundlich adsorption coefficient (Kads(f)) and desorption coefficient (1/n value) of chlorpyrifos. It was found that the Freundlich adsorption coefficient (Kads(f)) and the linear regression (r2) of the Freundlich adsorption isotherm for chlorpyrifos in the clay soil were 52.6 L/kg and 0.5244, respectively. Adsorption equilibrium time was achieved within 24 hours for clay soil. This adsorption equilibrium time was used to determine the effect of concentration on adsorption. The adsorption coefficient (KOC) of clay soil was found to be 2783 L/kg with an initial concentration solution of 1 μg/g, soil-solution ratio (1:5) at 300 C when the equilibrium between the soil matrix and solution was 24 hours. The Kdes decreased over four repetitions of the desorption process. The chlorpyrifos residues may be strongly adsorbed onto the surface of clay. (Author)

  16. Apparent molar volumes and viscosity B-coefficients of caffeine in aqueous thorium nitrate solutions at T = (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Sinha, Biswajit; Roy, Pran Kumar; Sarkar, Bipul Kumar; Brahman, Dhiraj; Roy, Mahendra Nath

    2010-01-01

    Apparent molar volumes φ V and viscosity B-coefficients for caffeine in (0.00, 0.03, 0.05, and 0.07) mol . dm -3 aqueous thorium nitrate, Th(NO 3 ) 4 , solutions were determined from solution density and viscosity measurements over the temperature range (298.15 to 318.15) K as function of concentration of caffeine and the relation: φ V 0 =a 0 +a 1 T+a 2 T 2 , have been used to describe the temperature dependence of the standard partial molar volumes φ V 0 . These results have been used to deduce the standard volumes of transfer Δφ V 0 and viscosity B-coefficients of transfer ΔB for caffeine from water to aqueous Th(NO 3 ) 4 solutions for rationalizing various interactions in the ternary solutions. The structure-making or breaking ability of caffeine has been discussed in terms of the sign of (δ 2 φ V 0 /δT 2 ) P . The Friedman-Krishnan co-sphere model was used to explain the transfer volume of caffeine with increasing Th(NO 3 ) 4 molarity. The activation parameters of viscous flow for the ternary solutions were also discussed in terms of transition state theory.

  17. Determination of distribution coefficients of some natural radionuclides (U, Ra, Pb, Po) between different types of Syrian soils and their solutions

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Al-Hamwi, A.; Amin, Y.; Al-Akel, B.

    2009-11-01

    In this study, distribution coefficients of some natural radionuclides ( 226 Ra, U, 210 Pb and 210 Po) between different types of soils in Syria and their solutions were determined. The distribution coefficients values ranged from (164-1933, 280-1722, 350-4749 and 101-117) l kg - 1 for 226 Ra, U, 210 Pb and 210 Po, respectively at pH = 4.0. While, the distribution coefficients values ranged from (207-6706, 673-2397, 149-2147 and 103- 292) l kg - 1 for 226 Ra, U, 210 Pb and 210 Po, respectively at pH = 5.5. In addition, the distribution coefficients values ranged from (167-1707, 126- 1239, 44-1122 and 125-1475) l kg - 1 for 226 Ra, U, 210 Pb and 210 Po, respectively at pH = 7.0. Moreover, the results showed that 210 Po distribution coefficients had the maximum values at pH 7. While 210 Pb distribution coefficients had the minimum values at same pH. In addition to, U distribution coefficients had the maximum values at pH 5.5. On the other hand, the effect of soil mineral content, CEC, ECE, pH and soluble ions on the distribution coefficients were investigated. In general, the results showed that there are logarithmic relationships between studied radionuclide activity in the soil and their distribution coefficients in all soil types (R 2 ranged from 0.59 to 1.00 at pH 4.0). On the other hand, there were no relationships between the distribution coefficients and soil pH. (authors)

  18. Laboratory actinide partitioning: Whitlockite/liquid and influence of actinide concentration levels

    International Nuclear Information System (INIS)

    Benjamin, T.M.; Jones, J.H.; Heuser, W.R.; Burnett, D.S.

    1983-01-01

    Fission and alpha track radiography techniques have been used to measure partition coefficients (D) at trace (ppm) concentration levels for the actinide elements Th, U, and Pu between synthetic whitlockite and coexisting 'haplobasaltic' silicate liquid at 1 bar pressure and 1250 deg C at oxygen fugacities from 10 sup(-8.5) and 10sup(-0.7) bars. Pu is much more readily incorporated into crystalline phases than is U or Th under reducing conditions, because Pu is primarily trivalent, whereas U and Th are tetravalent. Definitive valence state assignments cannot be made, but our best estimates of corrected partition coefficients for Pu +3 , Pu +4 , Th +4 , U +4 , and U +6 are given for whitlockites. The effect of changing pressure and liquidus temperature is relatively small, which probably reflects a weak temperature dependence for D (whitlockite) but possibly could be due to cancellation of opposing temperature and pressure effects. Comparison of experiments at trace U levels with those containing percent concentrations of UO 2 indicate that Si is involved in the substitution of U in whitlockite with U + 2Si Ca + 2P being the most likely mechanism. Dsub(U) is lower, 0.3 vs 0.5, at percent levels compared to 20 ppm. This is best explained by the effect of U on melt structure or by a decrease in the fraction of tetravalent U at high concentrations. (author)

  19. The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study

    Science.gov (United States)

    Pontolillo, James; Eganhouse, R.P.

    2001-01-01

    The accurate determination of an organic contaminant?s physico-chemical properties is essential for predicting its environmental impact and fate. Approximately 700 publications (1944?2001) were reviewed and all known aqueous solubilities (Sw) and octanol-water partition coefficients (Kow) for the organochlorine pesticide, DDT, and its persistent metabolite, DDE were compiled and examined. Two problems are evident with the available database: 1) egregious errors in reporting data and references, and 2) poor data quality and/or inadequate documentation of procedures. The published literature (particularly the collative literature such as compilation articles and handbooks) is characterized by a preponderance of unnecessary data duplication. Numerous data and citation errors are also present in the literature. The percentage of original Sw and Kow data in compilations has decreased with time, and in the most recent publications (1994?97) it composes only 6?26 percent of the reported data. The variability of original DDT/DDE Sw and Kow data spans 2?4 orders of magnitude, and there is little indication that the uncertainty in these properties has declined over the last 5 decades. A criteria-based evaluation of DDT/DDE Sw and Kow data sources shows that 95?100 percent of the database literature is of poor or unevaluatable quality. The accuracy and reliability of the vast majority of the data are unknown due to inadequate documentation of the methods of determination used by the authors. [For example, estimates of precision have been reported for only 20 percent of experimental Sw data and 10 percent of experimental Kow data.] Computational methods for estimating these parameters have been increasingly substituted for direct or indirect experimental determination despite the fact that the data used for model development and validation may be of unknown reliability. Because of the prevalence of errors, the lack of methodological documentation, and unsatisfactory data

  20. Solid/liquid partition coefficients (Kd) and plant/soil concentration ratios (CR) for selected soils, tills and sediments at Forsmark

    International Nuclear Information System (INIS)

    Sheppard, Steve; Sohlenius, Gustav; Omberg, Lars-Gunnar; Borgiel, Mikael; Grolander, Sara; Norden, Sara

    2011-11-01

    Solid/liquid partition coefficients (K d ) are used to indicate the relative mobility of radionuclides and elements of concern from nuclear fuel waste, as well as from other sources. To indicate the uptake of radionuclides in biota concentration ratios (CR) between soil and biota are used. This report summarized K d data for regolith and marine sediments based on concentrations of 69 indigenous stable elements measured from samples collected at the Forsmark site and CR data concerning cereals growing on these soils. The samples included 50 regolith samples from agricultural land and wetlands, 8 samples of till collected at different depths, and two marine sediment samples. In addition, cereal grains, stems and roots were collected from 4 sites for calculation of CRs. The regolith samples represented the major 5 deposits, which can be used as arable land, at the site (clayey till, glacial clay, clay gyttja and peat (cultivated and undisturbed)). K d values were generally lower for peat compared to clay soils. There were also clear differences in K d resulting from differences in soil chemistry within each regolith type. Soil pH was the most important factor, and K d values for many elements were lower in acidic clay soils compared to basic clay soils. Although there were only a few samples of sandy till and marine sediment, the K d values were generally consistent with the corresponding regolith K d values. Of the different cereal parts the grain always had the lowest CR. In most cases, the root CR was significantly higher than the grain CR, whereas only for a few elements were the grain and stem CR values different

  1. Sediment-porewater partition of polycyclic aromatic hydrocarbons (PAHs) from Lanzhou Reach of Yellow River, China

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yong [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Xu Jian, E-mail: xujian@nankai.edu.cn [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Wang Ping; Sun Hongwen; Dai Shugui [Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)

    2009-06-15

    Pollution of polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment has drawn much attention around the world. The occurrence of 16 priority PAHs in the sediments and corresponding porewaters in Lanzhou Reach of Yellow River, China, and their partitioning behavior between the two phases were investigated. The results demonstrated that the total PAH levels in the sediments were positively correlated with the sediment clay contents (R{sup 2} = 0.756). Concentrations of total PAHs in porewaters ranged from 48.2 to 206 {mu}g/L, and indeno[1,2,3-cd]pyrene (InP) was the most abundant compound measured in the porewater samples with a mean value of 42.9 {mu}g/L. The compositions of PAHs in porewaters were dominated by their compositions in the sediment samples. The in situ organic carbon normalized partition coefficients (logK{sub oc}{sup '}) of the PAHs between sediments and porewaters were significantly correlated with their octanol-water partition coefficients (log K{sub ow}) when log K{sub ow} values were less than 5.5 (naphthalene (Nap) excluded). logK{sub oc}{sup '} values of 14 PAHs were lower than those predicted by the Karickhoff relationship. This discrepancy was largest for InP, dibenzo[a,h]anthracene (DBA), and benzo[ghi]perylene (BgP). The results in present study showed the tendency of PAHs release from sediment to porewater, indicating that PAHs sequestered in the sediments may be a pollution source to aquatic ecosystem.

  2. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Rodrigo, M.M.; Barros, Marisa C.F.; Verissimo, Luis M.P.; Romero, Carmen; Valente, Artur J.M.; Esteso, Miguel A.

    2014-01-01

    Highlights: • Interdiffusion coefficients of L-glutamic acid and sodium L-glutamate were measured. • The L-glutamic acid behaves as a monoprotic weak acid. • The sodium L-glutamate shows a symmetrical 1:1 non-associated behaviour. • Limiting diffusion coefficients and ionic conductivities were estimated. • Diffusion coefficients were discussed on the basis of the Onsager–Fuoss equations. - Abstract: Mutual diffusion coefficient values for binary aqueous solutions of both L-glutamic acid (H 2 Glu) and sodium L-glutamate (NaHGlu) were measured with the Taylor dispersion technique, at T = 298.15 K, and concentrations ranging from (0.001 to 0.100) mol · dm −3 . The results were discussed on the basis of the Onsager–Fuoss and the Nernst theoretical equations, by considering the H 2 Glu as a weak acid (monoprotic acid, with K 2 = 5.62 · 10 −5 ). The smaller values found for the acid with respect to those of the salt, confirm this association hypothesis. From the diffusion coefficient values at infinitesimal concentration, limiting ionic conductivities as well as the hydrodynamic radius of the hydrogen glutamate ion (HGlu − ) were derived and analyzed in terms of the chain methylene groups. The effect of different phenomena, such as association or complexation, were also taken into consideration and discussed. Values for the dissociation degree for H 2 Glu were also estimated

  3. DOE mixed waste metals partition in a rotary kiln wet off-gas system

    International Nuclear Information System (INIS)

    Burns, D.B.; Looper, M.G.

    1994-01-01

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. Test burns were conducted using surrogate CIF wastes spiked with hazardous metals and organics. The partition of metals between the kiln bottom ash, scrubber blowdown solution, and stack gas was measured as a function of kiln temperature, waste chloride content, and waste form (liquid or solid). Three waste simulants were used in these tests, a high and low chloride solid waste mix (paper, plastic, latex, PVC), and a liquid waste mix (benzene and chlorobenzene). An aqueous solution containing: antimony, arsenic, barium, cadmium, chromium, lead, mercury, nickel, silver, and thallium was added to the waste to determine metals fate under various combustion conditions. Test results were used to divide the metals into three general groups, volatile, semi-volatile, and nonvolatile metals. Mercury was the only volatile metal. No mercury remained in the kiln bottom ash under any incineration condition. Lead, cadmium, thallium, and silver exhibited semi-volatile behavior. The partition between the kiln ash, blowdown, and stack gas depended on incineration conditions. Chromium, nickel, barium, antimony, and arsenic exhibited nonvolatile behavior, with greater than 90 wt % of the metal remaining in the kiln bottom ash. Incineration temperature had a significant effect on the partition of volatile and semi-volatile metals, and no effect on nonvolatile metal partition. As incineration temperatures were increased, the fraction of metal leaving the kiln increased. Three metals, lead, cadmium, and mercury showed a relationship between chloride concentration in the waste and metals partition. Increasing the concentration of chlorides in the waste or burning liquid waste versus solid waste resulted in a larger fraction of metal exiting the kiln

  4. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  5. System study on partitioning and transmutation of long-lived isotopes

    International Nuclear Information System (INIS)

    Szieberth, M.

    2001-01-01

    The management of long-lived isotopes - transuranium elements and fission products - produced in nuclear reactors is a problem that substantially affects the public acceptance of nuclear energy, and may influence the long-term hazard caused by energy production. Partitioning and transmutation of spent fuel materials offer a suitable solution to this problem. After the nuclear community had realised this fact, the number of publications on this topic significantly increased but there is still a lack of studies that include the analysis of not only one instrument but also the whole nuclear energy system. However, from the viewpoint of Partitioning and transmutation's implementation a substantial question is the cooperation of plants optimised for energy generation and others for partitioning or transmutation. In order to analyse this problem, the schemes of different systems are framed and their mathematical models are worked out. The systems are evaluated through the long-term risks caused by the waste deposited in final disposal, and the risks are described by a newly defined quantity, the residual hazard index. (author)

  6. Alternative measures of lipophilicity: from octanol-water partitioning to IAM retention.

    Science.gov (United States)

    Giaginis, Costas; Tsantili-Kakoulidou, Anna

    2008-08-01

    This review describes lipophilicity parameters currently used in drug design and QSAR studies. After a short historical overview, the complex nature of lipophilicity as the outcome of polar/nonpolar inter- and intramolecular interactions is analysed and considered as the background for the discussion of the different lipophilicity descriptors. The first part focuses on octanol-water partitioning of neutral and ionisable compounds, evaluates the efficiency of predictions and provides a short description of the experimental methods for the determination of distribution coefficients. A next part is dedicated to reversed-phase chromatographic techniques, HPLC and TLC in lipophilicity assessment. The two methods are evaluated for their efficiency to simulate octanol-water and the progress achieved in the refinement of suitable chromatographic conditions, in particular in the field of HPLC, is outlined. Liposomes as direct models of biological membranes are examined and phospolipophilicity is compared to the traditional lipophilicity concept. Difficulties associated with liposome-water partitioning are discussed. The last part focuses on Immobilised Artificial Membrane (IAM) chromatography as an alternative which combines membrane simulation with rapid measurements. IAM chromatographic retention is compared to octanol-water and liposome-water partitioning as well as to reversed-phase retention and its potential to predict biopartitioning and biological activities is discussed.

  7. Problems with Discontinuous Diffusion/Dispersion Coefficients

    Directory of Open Access Journals (Sweden)

    Stefano Ferraris

    2012-01-01

    accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.

  8. Reactor kinetics revisited: a coefficient based model (CBM)

    International Nuclear Information System (INIS)

    Ratemi, W.M.

    2011-01-01

    In this paper, a nuclear reactor kinetics model based on Guelph expansion coefficients calculation ( Coefficients Based Model, CBM), for n groups of delayed neutrons is developed. The accompanying characteristic equation is a polynomial form of the Inhour equation with the same coefficients of the CBM- kinetics model. Those coefficients depend on Universal abc- values which are dependent on the type of the fuel fueling a nuclear reactor. Furthermore, such coefficients are linearly dependent on the inserted reactivity. In this paper, the Universal abc- values have been presented symbolically, for the first time, as well as with their numerical values for U-235 fueled reactors for one, two, three, and six groups of delayed neutrons. Simulation studies for constant and variable reactivity insertions are made for the CBM kinetics model, and a comparison of results, with numerical solutions of classical kinetics models for one, two, three, and six groups of delayed neutrons are presented. The results show good agreements, especially for single step insertion of reactivity, with the advantage of the CBM- solution of not encountering the stiffness problem accompanying the numerical solutions of the classical kinetics model. (author)

  9. Selective partitioning of mercury from co-extracted actinides in a simulated acidic ICPP waste stream

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    The TRUEX process is being evaluated at the Idaho Chemical Processing Plant (ICPP) as a means to partition the actinides from acidic sodium-bearing waste (SBW). The mercury content of this waste averages 1 g/l. Because the chemistry of mercury has not been extensively evaluated in the TRUEX process, mercury was singled out as an element of interest. Radioactive mercury, 203 Hg, was spiked into a simulated solution of SBW containing 1 g/l mercury. Successive extraction batch contacts with the mercury spiked waste simulant and successive scrubbing and stripping batch contacts of the mercury loaded TRUEX solvent (0.2 M CMPO-1.4 M TBP in dodecane) show that mercury will extract into and strip from the solvent. The extraction distribution coefficient for mercury, as HgCl 2 from SBW having a nitric acid concentration of 1.4 M and a chloride concentration of 0.035 M was found to be 3. The stripping distribution coefficient was found to be 0.5 with 5 M HNO 3 and 0.077 with 0.25 M Na 2 CO 3 . An experimental flowsheet was designed from the batch contact tests and tested counter-currently using 5.5 cm centrifugal contactors. Results from the counter-current test show that mercury can be removed from the acidic mixed SBW simulant and recovered separately from the actinides

  10. Distribution of trace elements between clays and zeolites and aqueous solutions similar to sea water

    International Nuclear Information System (INIS)

    Berger, G.

    1992-01-01

    The mechanisms of solid-solution partitioning during mineral crystallization in sea water have been investigated for Rb, Cs, Co, Sr, U, Th and lanthanides as trace elements, and Fe, Mg-chlorite/smectites and Na-zeolites as solid phases. These minerals have been synthesized by alteration at 40 o C in saline solutions of silicate glasses of appropriate compositions. The variation of the distribution coefficients (D) with the concentration of the elements as well as competition mechanisms between elements of analogous crystallochemical properties have been studied. The ''trapping'' of trace elements is shown to be governed by two mechanisms, according to D values or to water-rock ratios. At low values of D the incorporation of elements is controlled only by D, whereas at high values it is controlled by the number of available crystallochemical sites. (Author)

  11. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  12. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    Science.gov (United States)

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  13. Meyer-Overton reforged: The origins of alcohol and anesthetic potency in membranes as determined by a new NMR partitioning probe, benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Janes, N.; Ma, L.; Hsu, J.W.; Rubin, E.; Taraschi, T.F. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1992-01-01

    The Meyer-Overton hypothesis--that anesthesia arises from the nonspecific action of solutes on membrane lipids--is reformulated using colligative thermodynamics. Configurational entropy, the randomness imparted by the solute through the partitioning process, is implicated as the energetic driving force that pertubs cooperative membrane equilibria. A proton NMR partitioning approach based on the anesthetic benzyl alcohol is developed to assess the reformulation. Ring resonances from the partitioned drug are shielded by 0.2 ppm and resolved from the free, aqueous drug. Free alcohol is quantitated in dilute lipid dispersions using an acetate internal standard. Cooperative equilibria in model dipalmitoyl lecithin membranes are examined with changes in temperature and alcohol concentration. The L[sub [beta][prime

  14. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Ant Colony Optimization ACO For The Traveling Salesman Problem TSP Using Partitioning

    Directory of Open Access Journals (Sweden)

    Alok Bajpai

    2015-08-01

    Full Text Available Abstract An ant colony optimization is a technique which was introduced in 1990s and which can be applied to a variety of discrete combinatorial optimization problem and to continuous optimization. The ACO algorithm is simulated with the foraging behavior of the real ants to find the incremental solution constructions and to realize a pheromone laying-and-following mechanism. This pheromone is the indirect communication among the ants. In this paper we introduces the partitioning technique based on the divide and conquer strategy for the traveling salesman problem which is one of the most important combinatorial problem in which the original problem is partitioned into the group of sub problems. And then we apply the ant colony algorithm using candidate list strategy for each smaller sub problems. After that by applying the local optimization and combining the sub problems to find the good solution for the original problem by improving the exploration efficiency of the ants. At the end of this paper we have also be presented the comparison of result with the normal ant colony system for finding the optimal solution to the traveling salesman problem.

  16. Study of the properties of dialkyl thiophosphoric acids. Application to the extraction of U, in phosphoric and nitric solutions

    International Nuclear Information System (INIS)

    Benjelloun, N.

    1983-09-01

    A study is made of complex formation and liquid-liquid extraction of uranium (VI) by dialkyl-thiophosphoric acids of formula (RO) 2 POSH and by the synergic mixtures: dialkylthiophosphoric acids-phosphine oxides. The aqueous phases studied consist of concentrated phosphoric acid solutions and nitric acid solutions. Several methods, including distribution coefficient measurements, U.V., visible and infrared absorption spectrophotometries and magnetic resonance, were used to study the extraction mechanisms and the structures of species formed in the organic phase. The influence of different parameters (partition of extraction agent, dimerisation, acid ligand-phosphine oxide association, extraction of inorganic acids...) on the uranium (VI) distribution coefficients enabled the constants of complex formation in the aqueous phase and extraction in the organic phase to be determined. These various properties were compared with those of dialkyl phosphoric and dithiophosphoric acids. The mechanisms established prove that sulfur donors ligands form stable complexes with UO 2 2+ ions although U(VI) is considered as a ''hard class a'' acceptor according to Ahrland's classification [fr

  17. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: Source apportionment and soil-air partitioning.

    Science.gov (United States)

    Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan

    2018-02-01

    While various investigations have been driven on polybrominated diphenyl ethers (PBDEs) and other flame retardants (FRs) in different framework around the world, information about contamination and fate of PBDEs and other FRs in developing countries especially in the Indian subcontinent is uncommon. Nepal being located in the Indian subcontinent, very little is known about contamination level of semi-volatile organic pollutants discharged into the environment. This motivated us to investigate the environmental fate of halogenated flame retardant (HFRs) in Nepalese condition. In this study, we investigated the concentration, fate, and sources of 9 PBDEs, 2 dechlorane plus isomers (DPs), and 6 novel brominated flame retardants (NBFRs). Moreover, air-soil exchange and soil-air partitioning were also evaluated to characterize the pattern of air-soil exchange and environmental fate. In general, the concentrations of NBFRs in soil were more prevalent than PBDEs and DPs, and accounted 95% of ∑HFRs. By and large, the concentrations of NBFRs and DPs were measured high in Kathmandu, while PBDEs level exceeded in Pokhara. Principal component analysis (PCA) study suggested contributions from commercial penta-, octa-, and deca-BDEs products and de-bromination of highly brominated PBDEs as the significant source of PBDEs. Likewise, low f anti ratio suggested DPs in soil might have originated from long-range atmospheric transport from remote areas, while high levels of decabromodiphenyl ethane (DBDPE) in soil were linked with the use of wide varieties of consumer products. The estimated fugacity fraction (ff) for individual HFR was quite lower (soil is overwhelming. Soil-air partitioning study revealed neither octanol-air partition coefficient (K OA ) nor black carbon partition coefficient (K BC-A ) is an appropriate surrogate for soil organic matter (SOM), subsequently, absorption by SOM has no or little role in the partitioning of HFRs. Copyright © 2017 Elsevier Ltd. All

  18. A Family of Trigonometrically-fitted Partitioned Runge-Kutta Symplectic Methods

    International Nuclear Information System (INIS)

    Monovasilis, Th.; Kalogiratou, Z.; Simos, T. E.

    2007-01-01

    We are presenting a family of trigonometrically fitted partitioned Runge-Kutta symplectic methods of fourth order with six stages. The solution of the one dimensional time independent Schroedinger equation is considered by trigonometrically fitted symplectic integrators. The Schroedinger equation is first transformed into a Hamiltonian canonical equation. Numerical results are obtained for the one-dimensional harmonic oscillator and the exponential potential

  19. Integrable aspects and rogue wave solution of Sasa-Satsuma equation with variable coefficients in the inhomogeneous fiber

    Science.gov (United States)

    Zhang, Yu-Ping; Yu, Lan; Wei, Guang-Mei

    2018-02-01

    Under investigation with symbolic computation in this paper, is a variable-coefficient Sasa-Satsuma equation (SSE) which can describe the ultra short pulses in optical fiber communications and propagation of deep ocean waves. By virtue of the extended Ablowitz-Kaup-Newell-Segur system, Lax pair for the model is directly constructed. Based on the obtained Lax pair, an auto-Bäcklund transformation is provided, then the explicit one-soliton solution is obtained. Meanwhile, an infinite number of conservation laws in explicit recursion forms are derived to indicate its integrability in the Liouville sense. Furthermore, exact explicit rogue wave (RW) solution is presented by use of a Darboux transformation. In addition to the double-peak structure and an analog of the Peregrine soliton, the RW can exhibit graphically an intriguing twisted rogue-wave (TRW) pair that involve four well-defined zero-amplitude points.

  20. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  1. Cold and semi-hot tests of 4-group partitioning process at NUCEF

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Mizoguchi, Kenichi [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Kubota, Masumitsu [Research Organization for Information Science and Technology, Tokai, Ibaraki (Japan)

    2000-06-01

    The 4-Group Partitioning Process was tested in the Partitioning Test Facility installed in a hot cell at NUCEF (Nuclear Fuel Cycle Safety Engineering Research Facility) using simulated high-level liquid waste (HLLW) or the simulated HLLW added with a small amount of real HLLW and Tc. Behavior of each element was examined in a series of the following separation steps: pretreatment for HLLW to prepare the feed solution to extraction step, extraction with diisodecylphosphoric acid for the separation of transuranium elements, precipitation by denitration and adsorption step with active carbon for the separation of Tc and platinum group metals, and adsorption with inorganic ion exchangers for the separation of Sr and Cs. It was confined that each element behaved as expected. More than 99.99% of Am were extracted with DIDPA and 99.92% of Am were back-extracted with 4 M nitric acid. In the precipitation step by denitration, ratio of Tc precipitated was 96.2%. The present tests confined the expected performance of each equipment in the Partitioning Test Facility for the separation of elements and gave useful data for the comparison of element behavior with a result of a partitioning test using real HLLW. (author)

  2. The prediction of blood-tissue partitions, water-skin partitions and skin permeation for agrochemicals.

    Science.gov (United States)

    Abraham, Michael H; Gola, Joelle M R; Ibrahim, Adam; Acree, William E; Liu, Xiangli

    2014-07-01

    There is considerable interest in the blood-tissue distribution of agrochemicals, and a number of researchers have developed experimental methods for in vitro distribution. These methods involve the determination of saline-blood and saline-tissue partitions; not only are they indirect, but they do not yield the required in vivo distribution. The authors set out equations for gas-tissue and blood-tissue distribution, for partition from water into skin and for permeation from water through human skin. Together with Abraham descriptors for the agrochemicals, these equations can be used to predict values for all of these processes. The present predictions compare favourably with experimental in vivo blood-tissue distribution where available. The predictions require no more than simple arithmetic. The present method represents a much easier and much more economic way of estimating blood-tissue partitions than the method that uses saline-blood and saline-tissue partitions. It has the added advantages of yielding the required in vivo partitions and being easily extended to the prediction of partition of agrochemicals from water into skin and permeation from water through skin. © 2013 Society of Chemical Industry.

  3. Partitioning and transmutation of actinides and fission products

    International Nuclear Information System (INIS)

    Baetsle, L.H.

    1993-01-01

    The world's nuclear power plants have a total installed capacity of approximately 340 GWe. They give rise to an annual volume of approximately 9000 t of radioactive waste, which is reprocessed, separated from its plutonium content, contained, and stored in repositories to close the nuclear fuel cycle. Direct disposal is being discussed as an alternative to this procedure. As repositories in suitable types of host rock are not operational, the only viable solution is long-term interim storage above ground. If the volumes of radioactive waste are to be reduced, the longlived actinides and fission products must be partitioned. Isotope partitioning in accelerators, though still sounding like science fiction, may soon be indispensable as the third way of treating radioactive waste. The use of mixed oxide fuel in light water reactors and fast breeder reactors both help to limit waste arisings and protect the long-term continuity of raw materials supply. However, both require public acceptance if they are to succeed. (orig.) [de

  4. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of partitioning method: confirmation of behavior of technetium in 4-Group Partitioning Process by a small scale experiment

    International Nuclear Information System (INIS)

    Morita, Yasuji; Yamaguchi, Isoo; Fujiwara, Takeshi; Kubota, Masumitsu; Mizoguchi, Kenichi

    1998-08-01

    The separation behavior of Tc in the whole of 4-Group Partitioning Process was examined by a flask-scale experiment using simulated high-level liquid waste containing a macro amount of Tc, in order to confirm the reproducibility of the results obtained in previous studies on the Tc behavior at each step of the process. The 4-Group Partitioning Process consists of pre-treatment step, extraction step with diisodecylphosphoric acid (DIDPA), adsorption step with active carbon or precipitation step by denitration for the separation of Tc and platinum group metals (PGM), and adsorption step with inorganic ion exchangers. The present study deals with the behavior of Tc and other elements at all the above steps and additional step for Tc dissolution from the precipitate formed by the denitration. At the pre-treatment step, the ratio of Tc precipitated was very low (about 0.2%) at both operations of heating-denitration and colloid removal. Tc was not extracted with DIDPA and was contained quantitatively in the raffinate from the extraction step. Batch adsorption with active carbon directly from the raffinate showed that distribution coefficient of Tc was more than 100ml/g, which is high enough for the separation. It also revealed much effect of coexisting Mo on the Tc adsorption. At the precipitation step by denitration, 98.2% of Tc were precipitated. At the Tc dissolution from the precipitate with H 2 O 2 , 84.2% of Tc were selectively dissolved in a single operation. Tc was not adsorbed with inorganic ion exchangers. From these results, composition of Tc product from the partitioning process was estimated. The weight ratio of Tc in the Tc product can be increased to about 50% at least. Main contaminating elements are Cr, Ni, Sr, Ba, Mo and Pd. Process optimization to decrease their contamination should be performed in a next study. (J.P.N.)

  6. Generalized finite polynomial approximation (WINIMAX) to the reduced partition function of isotopic molecules

    International Nuclear Information System (INIS)

    Lee, M.W.; Bigeleisen, J.

    1978-01-01

    The MINIMAX finite polynomial approximation to an arbitrary function has been generalized to include a weighting function (WINIMAX). It is suggested that an exponential is a reasonable weighting function for the logarithm of the reduced partition function of a harmonic oscillator. Comparison of the error function for finite orthogonal polynomial (FOP), MINIMAX, and WINIMAX expansions of the logarithm of the reduced vibrational partition function show WINIMAX to be the best of the three approximations. A condensed table of WINIMAX coefficients is presented. The FOP, MINIMAX, and WINIMAX approximations are compared with exact calculations of the logarithm of the reduced partition function ratios for isotopic substitution in H 2 O, CH 4 , CH 2 O, C 2 H 4 , and C 2 H 6 at 300 0 K. Both deuterium and heavy atom isotope substitution are studied. Except for a third order expansion involving deuterium substitution, the WINIMAX method is superior to FOP and MINIMAX. At the level of a second order expansion WINIMAX approximations to ln(s/s')f are good to 2.5% and 6.5% for deuterium and heavy atom substitution, respectively

  7. Energetic aspects of diclofenac acid in crystal modifications and in solutions--mechanism of solvation, partitioning and distribution.

    Science.gov (United States)

    Perlovich, German L; Surov, Artem O; Hansen, Lars Kr; Bauer-Brandl, Annette

    2007-05-01

    Temperature dependency of saturated vapor pressure and heat capacity for the diclofenac acid (Form II) were measured and thermodynamic functions of sublimation calculated (DeltaG(sub)(298) = 49.3 kJ x mol(-1); DeltaH(sub)(298) = 115.6 +/- 1.3 kJ x mol(-1); DeltaS(sub)(298) = 222 +/- 4 J x mol(-1) x K(-1)). Crystal polymorphic Forms I (P2(1)/c) and II (C2/c) of diclofenac acid have been prepared and characterized by X-ray diffraction experiments. The difference between crystal lattice energies of the two forms were obtained by solution calorimetry: DeltaDeltaH(sol)(I --> II) = 1.6 +/- 0.4 kJ x mol(-1). Temperature dependencies of the solubility in buffers with pH 2.0 and 7.4, n-octanol and n-hexane were measured. The thermodynamic functions of solubility, solvation, and transfer processes were deduced. Specific and non-specific solvation terms were distinguished using the transfer from the "inert" n-hexane to the other solvents. The transfer of diclofenac acid molecules from the buffers to n-octanol (partitioning and distribution) is an entropy driven process. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  8. Nitrogen partitioning during Earth's accretion and core-mantle differentiation

    Science.gov (United States)

    Speelmanns, I. M.; Schmidt, M. W.; Liebske, C.

    2017-12-01

    On present day Earth, N is one of the key constituents of our atmosphere and forms the basis of life. However, the deep Earth geochemistry of N, i.e. its distribution and isotopic fractionation between Earth's deep reservoirs is not well constrained. This study investigates nitrogen partitioning between metal and silicate melts as relevant for core segregation during the accretion of planetesimals into the Earth. We have determined N-partitioning coefficients over a wide range of temperatures (1250-2000 °C), pressures (15-35 kbar) and oxygen fugacity's, the latter in the relevant range of core segregation (IW-5 to IW). Centrifuging piston cylinders were used to equilibrate and then gravitationally separate metal-silicate melt pairs. Separation of the two melts is necessary to avoid micro nugget contamination in the silicate melt at reducing conditions double capsule technique in all experiments, using an outer metallic (Pt) and inner non-metallic capsule (graphite or Al2O3), minimizes N-loss over the course of the experiments compared to single non-metallic capsules. The two quenched melts were cut apart mechanically, cleaned at the outside, their N concentrations were then analysed on bulk samples by an elemental analyser, the low abslute masses requiring careful development of analytical routines. Despite these difficulties, we were able to determine a DNmetal/silicate of 13±0.3 at IW-1 decreasing to 2.0±0.2 at IW-5.5, at 1250°C and 15 kbar, N partitioning into the core forming metal. Increasing temperature dramatically lowers the DNmetal/silicate to e.g. 0.5±0.15 at IW-4, during early core formation N was hence mildly incompatible in the metal. The results suggest that under magma ocean conditions (> 2000 oC and fO2 IW-2.5), N-partition coefficents were within a factor of 2 of unity. Hence, N did not partition into the core, which should contain negliligible quantities of N. The few available literature data [1],[2],[3] support N changing compatibility with

  9. Partitioning in P-T concept

    International Nuclear Information System (INIS)

    Zhang Peilu; Qi Zhanshun; Zhu Zhixuan

    2000-01-01

    Comparison of dry- and water-method for partitioning fission products and minor actinides from the spent fuels, and description of advance of dry-method were done. Partitioning process, some typical concept and some results of dry-method were described. The problems fond in dry-method up to now were pointed out. The partitioning study program was suggested

  10. Aerosol Particle Interfacial Thermodynamics and Phase Partitioning Measurements Using Biphasic Microfluidics

    Science.gov (United States)

    Dutcher, Cari; Metcalf, Andrew

    2015-03-01

    Secondary organic aerosol particles are nearly ubiquitous in the atmosphere and yet there remain large uncertainties in their formation processes and ambient properties. These particles are complex microenvironments, which can contain multiple interfaces due to internal aqueous-organic phase partitioning and to the external liquid-vapor surface. Interfacial properties affect the ambient aerosol morphology, or internal structure of the particle, which in turn can affect the way a particle interacts with an environment of condensable clusters and organic vapors. To improve our ability to accurately predict ambient aerosol morphology, we must improve our knowledge of aerosol interfaces and their interactions with the ambient environment. Unfortunately, many techniques employed to measure interfacial properties do so in bulk solutions or in the presence of a ternary (e.g. solid) phase. In this talk, a novel method using biphasic microscale flows will be introduced for generating, trapping, and perturbing complex interfaces at atmospherically relevant conditions. These microfluidic experiments utilize high-speed imaging to monitor interfacial phenomena at the microscale and are performed with phase contrast and fluorescence microscopy on a temperature-controlled inverted microscope stage. From these experiments, interfacial thermodynamic properties such as surface or interfacial tension, rheological properties such as interfacial moduli, and kinetic properties such as mass transfer coefficients can be measured or inferred.

  11. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  12. Solution of the atmospheric diffusion equation with a realistic diffusion coefficient and time dependent mixing height

    International Nuclear Information System (INIS)

    Mayhoub, A.B.; Etman, S.M.

    1997-01-01

    One dimensional model for the dispersion of a passive atmospheric contaminant (neglecting chemical reactions) in the atmospheric boundary layer is introduced. The differential equation representing the dispersion of pollutants is solved on the basis of gradient-transfer theory (K- theory). The present approach deals with a more appropriate and realistic profile for the diffusion coefficient K, which is expressed in terms of the friction velocity U, the vertical coordinate z and the depth of the mixing layer h, which is taken time dependent. After some mathematical simplification, the equation analytic obtained solution can be easily applied to case study concerning atmospheric dispersion of pollutants

  13. Unified solution of the Boltzmann equation for electron and ion velocity distribution functions and transport coefficients in weakly ionized plasmas

    Science.gov (United States)

    Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.

    2017-10-01

    The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  14. Substituted benzotriazoles as inhibitors of copper corrosion in borate buffer solutions

    Science.gov (United States)

    Agafonkina, M. O.; Andreeva, N. P.; Kuznetsov, Yu. I.; Timashev, S. F.

    2017-08-01

    The adsorption of substituted 1,2,3-benzotriazoles (R-BTAs) onto copper is measured via ellipsometry in a pure borate buffer (pH 7.4) and satisfactorily described by Temkin's isotherm. The adsorption free energy (-Δ G a 0 ) values of these azoles are determined. The (-Δ G a 0 ) values are found to rise as their hydrophobicity, characterized by the logarithm of the partition coefficient of a substituted BTA in a model octanol-water system (log P), grows. The minimum concentration sufficient for the spontaneous passivation of copper ( C min) and a shift in the potential of local copper depassivation with chlorides ( E pt) after an azole is added to the solution (i.e., Δ E = E pt in - E pt backgr characterizing the ability of its adsorption to stabilize passivation) are determined in the same solution containing a corrosion additive (0.01M NaCl) for each azole under study. Both criteria of the passivating properties of azoles (log C min and Δ E) are shown to correlate linearly with log P, testifying to the role played by surface activity of this family of organic inhibitors in protecting copper in an aqueous solution.

  15. Study into the equilibrium mechanism between water and poly(dimethylsiloxane) for very apolar solutes : adsorption or sorption?

    NARCIS (Netherlands)

    Baltussen, H.A.; Sandra, P.J.F.; David, F.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1999-01-01

    Recently several publications appeared correlating octanol-water partitioning coefficients (KO/W) with solid-phase microextraction (SPME) extraction coefficients on poly(dimethylsiloxane) (PDMS) fibers. This correlation seems very good for medium-polar to polar compounds but cannot explain the

  16. Finding reproducible cluster partitions for the k-means algorithm.

    Science.gov (United States)

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.

  17. A generalized fractional sub-equation method for fractional differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong

    2012-01-01

    In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space–time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics. -- Highlights: ► Study of fractional differential equations with variable coefficients plays a role in applied physical sciences. ► It is shown that the proposed algorithm is effective for solving fractional differential equations with variable coefficients. ► The obtained solutions may give insight into many considerable physical processes.

  18. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    International Nuclear Information System (INIS)

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools

  19. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  20. Na, Rb and Cs partitioning between metal, silicate and sulfide: Implications for volatile depletion in terrestrial planets

    Science.gov (United States)

    Boujibar, A.; Fei, Y.; Du, Z.; Righter, K.; Bullock, E. S.

    2017-12-01

    Inner Solar System materials are known for their depletion in volatile elements, including the moderately volatile alkalis: Na, K, Rb, and Cs. The origin of this depletion is still uncertain, as several processes could have been involved, during the nebular condensation or planetary accretion. Volatile depletion is commonly estimated through comparison of alkali concentrations relatively to those of chondrites, assuming they remain in planetary mantles during core segregation. However, experimental studies show that substantial K can partition into metals that are enriched in sulfur and oxygen. Several models have also suggested that sulfides may have played an important role during episodes of sulfide segregation from a crystallizing magma ocean (sulfide matte) or accretion of S-rich planetary embryos. For Mercury, a sulfide layer could be present between core and mantle, due to immiscibility between Si-rich and S-rich metals. Therefore, here we investigate whether alkali elements (Na, Cs and Rb) could be partly sequestered in planetary cores during their differentiation. We conducted experiments at high pressure and temperature (1 to 5 GPa and up to 1900 °C) to determine partition coefficients of Na, Rb and Cs between metal and silicate. Our results show that pressure, temperature, sulfur and oxygen in metals enhance the partitioning of Na, Rb and Cs into metals, as previously found for K. For all three investigated alkalis (Na, Rb and Cs), we found a maximum partition coefficient of 1 between sulfides containing 13 wt% O and silicate melt. Therefore, S-rich cores or sulfide layers formed due to immiscibility in Fe-S-O systems could have acted as important geochemical reservoirs for alkali elements. Using our experimental data and different assumptions on initial bulk abundances, we evaluate volatile depletion in terrestrial planets, by comparing resulting mantle alkali concentrations after core segregation, with actual concentrations in the Earth's mantle.