WorldWideScience

Sample records for solutal buoyancy driven

  1. Buoyancy-driven chaotic regimes during solute dispersion in pore networks

    International Nuclear Information System (INIS)

    Tsakiroglou, C.D.; Theodoropoulou, M.A.; Karoutsos, V.

    2005-01-01

    In an attempt to investigate gravity effects on solute dispersion at the scale of a pore network, single source-solute transport visualization experiments are performed on glass-etched pore networks of varying morphology and degree of pore-scale heterogeneities. The (lighter) low solute concentration aqueous solution flows steadily through the porous medium and the (heavier) high solute concentration solution is injected at a very low and constant flow rate through an inner port. The transient evolution of the solute concentration distribution over various regions of the pore network is determined at different scales by capturing and video-recording snapshots of the dispersion on PC, measuring automatically the spatial variation of the color intensity of the solution, and transforming the color intensities to solute concentrations. Without the action of gravity, the steady-state dispersion regime changes with Peclet (Pe) number, and the longitudinal and transverse dispersivities are estimated by fitting the experimental datasets to approximate analytic solutions of the advection-dispersion equation. Under the action of gravity, multiple of steady-state solute dispersion regimes is developed at each Pe value, and lobe-shaped instabilities of the solute concentration are observed across the pore network, as the downward flow of the denser (higher solute concentration) fluid is counterbalanced by the upward flow of the less dense (lower solute concentration) fluid. The steady-state dispersion regimes may be periodic, quasi-periodic or chaotic depending on the system parameters. The nature of the transient fluctuations of the average solute concentration is analyzed by identifying the periodicity of the fluctuations, determining the autocorrelation function and the statistical moments of the time series, and inspecting the FFT (fast Fourier transform) power spectra. It is found that the mixing zone tends to be stabilized at higher values of the Peclet (Pe) number

  2. Buoyancy Driven Natural Ventilation through Horizontal Openings

    OpenAIRE

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions...

  3. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... quite well with the Epstein's formula ratio are presented. In some cases the measured airflow rates fit quite well with the Epstein's formula but in other cases the measured data show clear deviations from the Epstein's formula. Thus, revised formulas for natural ventilation are proposed....

  4. Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2009-01-01

    An experimental study of the phenomenon of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. The measurements were made for opening ratios L/D ranging from 0.027 to 4.455, where L and D are the length of the opening...... and the diameter of the opening, respectively. The basic nature of airflow through single-sided openings, including airflow rate, air velocity, temperature difference between the rooms and the dimensions of the horizontal openings, were measured. A bi-directional airflow rate was measured using the constant...... quite well with the Epstein's formula but in other cases the measured data show clear deviations from the Epstein's formula. Thus, revised formulas for natural ventilation are proposed....

  5. Semi-Empirical Models for Buoyancy-Driven Ventilation

    DEFF Research Database (Denmark)

    Terpager Andersen, Karl

    2015-01-01

    A literature study is presented on the theories and models dealing with buoyancy-driven ventilation in rooms. The models are categorised into four types according to how the physical process is conceived: column model, fan model, neutral plane model and pressure model. These models are analysed...... and compared with a reference model. Discrepancies and differences are shown, and the deviations are discussed. It is concluded that a reliable buoyancy model based solely on the fundamental flow equations is desirable....

  6. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek

    2014-08-25

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4/5 are consistent with the Bolgiano-Obukhov scaling. This scaling arises due to the conversion of kinetic energy to the potential energy by buoyancy. For weaker buoyancy, this conversion is weak, hence Eu(k) follows Kolmogorov\\'s spectrum with a constant energy flux. For Rayleigh-Bénard convection, we show that the energy supply rate by buoyancy is positive, which leads to an increasing Πu(k) with k, thus ruling out Bolgiano-Obukhov scaling for the convective turbulence. Our numerical results show that convective turbulence for unit Prandt number exhibits a constant Πu(k) and Eu(k)∼k-5/3 for a narrow band of wave numbers. © 2014 American Physical Society.

  7. Homogeneous purely buoyancy driven turbulent flow

    Science.gov (United States)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  8. Optimal design and control of buoyancy-driven ventilation

    DEFF Research Database (Denmark)

    Terpager Andersen, Karl

    2016-01-01

    Relationships between airflow rates and opening areas of importance for design and control are analysed for buoyancy-driven ventilation in a room with two openings and uniform temperature. The optimal ratio between the inlet and outlet areas is found. The consequences of deviations from the optimum...

  9. Experimental study of buoyancy driven natural ventilation through horizontal openings

    OpenAIRE

    Heiselberg, Per; Li, Zhigang

    2007-01-01

    An experimental study of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. Measurements were made for opening ratios L/D range from 0.027 to 4.455, where L and D are the length and the diameter of the opening, respectively. The bidirectional air flow rate was measured using constant injection tracer gas technique. Smoke visualizations showed that the air flow patterns are highly transient, unstable and complex, and ...

  10. Experimental study of buoyancy driven natural ventilation through horizontal openings

    DEFF Research Database (Denmark)

    Heiselberg, Per; Li, Zhigang

    2007-01-01

    An experimental study of buoyancy driven natural ventilation through single-sided horizontal openings was performed in a full-scale laboratory test rig. Measurements were made for opening ratios L/D range from 0.027 to 4.455, where L and D are the length and the diameter of the opening......, respectively. The bidirectional air flow rate was measured using constant injection tracer gas technique. Smoke visualizations showed that the air flow patterns are highly transient, unstable and complex, and that air flow rates oscillate with time. Correlations between the Froude number Fr and the L/D ratio...

  11. Characteristics of Buoyancy Driven Natural Ventilation through Horizontal Openings

    DEFF Research Database (Denmark)

    Li, Zhigang

    through horizontal openings. Two cases of full-scale measurements of buoyancy driven natural ventilation through horizontal openings are performed: one horizontal opening and one horizontal opening combined with one vertical opening. For the case of one horizontal opening, the measurements are made....... Computational fluid dynamics (CFD) are used to study these two air flow cases. The air flow rate and air flow pattern are predicted and compared with the full-scale measurements. The measurement data are used to compare two CFD models: standard k- ε model and large eddy simulation (LES) model. The cases...... transient, unstable and complex, and the air flow rates oscillate with time. Correlations between the Froude number Fr and the opening ratio L/D are obtained, which is reasonable agreement with Epstein's formula derived from brine-water measurements, but the obtained Fr values show considerable deviations...

  12. Turbulent mixed buoyancy driven flow and heat transfer in lid driven enclosure

    International Nuclear Information System (INIS)

    Mishra, Ajay Kumar; Sharma, Anil Kumar

    2015-01-01

    Turbulent mixed buoyancy driven flow and heat transfer of air in lid driven rectangular enclosure has been investigated for Grashof number in the range of 10 8 to 10 11 and for Richardson number 0.1, 1 and 10. Steady two dimensional Reynolds-Averaged-Navier-Stokes equations and conservation equations of mass and energy, coupled with the Boussinesq approximation, are solved. The spatial derivatives in the equations are discretized using the finite-element method. The SIMPLE algorithm is used to resolve pressure-velocity coupling. Turbulence is modeled with the k-ω closure model with physical boundary conditions along with the Boussinesq approximation, for the flow and heat transfer. The predicted results are validated against benchmark solutions reported in literature. The results include stream lines and temperature fields are presented to understand flow and heat transfer characteristics. There is a marked reduction in mean Nusselt number (about 58%) as the Richardson number increases from 0.1 to 10 for the case of Ra=10 10 signifying the effect of reduction of top lid velocity resulting in reduction of turbulent mixing. (author)

  13. Numerical modeling of buoyancy-driven turbulent flows in enclosures

    International Nuclear Information System (INIS)

    Hsieh, K.J.; Lien, F.S.

    2004-01-01

    Modeling turbulent natural convection in enclosures with differentially heated vertical walls is numerically challenging, in particular, when low-Reynolds-number (low-Re) models are adopted. When the turbulence level in the core region of cavity is low, most low-Re models, particular those showing good performance for bypass transitional flows, tend to relaminarize the flow and, as a consequence, significantly underpredict the near-wall turbulence intensities and boundary-layer thickness. Another challenge associated with low-turbulence buoyancy-driven flows in enclosures is its inherent unsteadiness, which can pose convergence problems when a steady Reynolds-averaged Navier-Stokes (RANS) equation is solved. In the present study, an unsteady RANS approach in conjunction with the low-Re k-ε model of Lien and Leschziner [Int. J. Comput. Fluid Dyn. 12 (1999) 1] is initially adopted and the predicted flow field is found effectively relaminarized. To overcome this difficulty, likely caused by the low-Re functions in the ε-equation, the two-layer approach is attempted, in which ε is prescribed algebraically using the one-equation k-l model of Wolfshtein [Int. J. Heat Mass Transfer 12 (1969) 301]. The two-layer approach combined with a quadratic stress-strain relation gives overall the best performance in terms of mean velocities, temperature and turbulence quantities

  14. Mixing driven by transient buoyancy flows. I. Kinematics

    Science.gov (United States)

    Duval, W. M. B.; Zhong, H.; Batur, C.

    2018-05-01

    Mixing of two miscible liquids juxtaposed inside a cavity initially separated by a divider, whose buoyancy-driven motion is initiated via impulsive perturbation of divider motion that can generate the Richtmyer-Meshkov instability, is investigated experimentally. The measured Lagrangian history of interface motion that contains the continuum mechanics of mixing shows self-similar nearly Gaussian length stretch distribution for a wide range of control parameters encompassing an approximate Hele-Shaw cell to a three-dimensional cavity. Because of the initial configuration of the interface which is parallel to the gravitational field, we show that at critical initial potential energy mixing occurs through the stretching of the interface, which shows frontogenesis, and folding, owing to an overturning motion that results in unstable density stratification and produces an ideal condition for the growth of the single wavelength Rayleigh-Taylor instability. The initial perturbation of the interface and flow field generates the Kelvin-Helmholtz instability and causes kinks at the interface, which grow into deep fingers during overturning motion and unfold into local whorl structures that merge and self-organize into the Rayleigh-Taylor morphology (RTM) structure. For a range of parametric space that yields two-dimensional flows, the unfolding of the instability through a supercritical bifurcation yields an asymmetric pairwise structure exhibiting smooth RTM that transitions to RTM fronts with fractal structures that contain small length scales for increasing Peclet numbers. The late stage of the RTM structure unfolds into an internal breakwave that breaks down through wall and internal collision and sets up the condition for self-induced sloshing that decays exponentially as the two fluids become stably stratified with a diffusive region indicating local molecular diffusion.

  15. Buoyancy-driven mixing of fluids in a confined geometry

    International Nuclear Information System (INIS)

    Hallez, Y.

    2007-12-01

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  16. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-05-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  17. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-01-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  18. Release of radon contaminants from Yucca Mountain: The role of buoyancy driven flow

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Pescatore, C.

    1994-02-01

    The potential for the repository heat source to promote buoyancy driven flow and thereby cause release of radon gas out of Yucca Mountain has been examined through a critical review of the theoretical and experimental studies of this process. The review indicates that steady-state buoyancy enhanced release of natural radon and other contaminant gases should not be a major concern at Yucca Mountain. Barometric pumping and wind pumping are identified as two processes that will have a potentially greater effect on surface releases of gases

  19. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.

    2016-01-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...

  20. SIMULATION OF FREE CURRENT FLOWS IN BUOYANCY-DRIVEN VENTILATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Abramkina

    2017-01-01

    Full Text Available Objectives. The aim of the study is to analyse the effect of the design and methods for heating the ventilation duct of a buoyancy- driven system on the formation of free convective air currents in it.Methods. The study of free convection under the conditions of interior problem was carried out using the CFD software, based on  the finite volume method with unstructured grid. Ansys Fluent software was used as a calculation tool in the study, due to its having a high convergence of numerical solutions offering full-scale  measurements of convective currents.To evaluate the reliability of  the results obtained, a validation procedure was carried out, allowing us to determine how accurately the selected conceptual model describes the investigated flow through a comparison of experimental and numerical data.Results. The results of numerical modelling of free convective currents occurring in the heated channel of the ventilation system of  the top floor of a multi-storey residential building are presented in  the article. In the course of the study, the air velocity at the entrance to the ventilation duct was found to depend on the calculated  temperature difference θ ˚C for various heating methods. A gradual  increase in the discrepancy between the numerical simulation and  experimental results is observed if the calculated temperature  difference > 20 ° C. This phenomenon is due to the fact that with  increased duct temperature, it is quite difficult to achieve even  heating under actual conditions; this is especially noticeable when  considering the variant when the vertical part of the vent duct and the take-off are both heated. The maximum deviation of the  results is 4.4%. The obtained velocity profiles in the calculated  sections indicate the impact of the ventilation take-off on the nature  of the air flow motion.Conclusion. One of the drawbacks of the existing systems of natural ventilation of residential

  1. Experimental Study of Wind-Opposed Buoyancy-Driven Natural Ventilation

    OpenAIRE

    Andersen, A.; Bjerre, M.; Chen, Z. D.; Heiselberg, Per; Li, Y.

    2000-01-01

    Natural ventilation driven by natural forces, i.e. wind and thermal buoyancy, is an environmentally friendly system for buildings and has been increasingly used around the world in recent years to mitigate the impact on the global environment due to the significant energy consumption by heating, ventilation and air-conditioning (HV AC). There is a need for the understanding and development of theories and tools related to the design, operation and control of natural ventilation systems.

  2. Experimental Study of Wind-Opposed Buoyancy-Driven Natural Ventilation

    DEFF Research Database (Denmark)

    Andersen, A.; Bjerre, M.; Chen, Z. D.

    Natural ventilation driven by natural forces, i.e. wind and thermal buoyancy, is an environmentally friendly system for buildings and has been increasingly used around the world in recent years to mitigate the impact on the global environment due to the significant energy consumption by heating......, ventilation and air-conditioning (HV AC). There is a need for the understanding and development of theories and tools related to the design, operation and control of natural ventilation systems....

  3. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent

  4. Numerical Investigation of Heat Transfer with Thermal Radiation in an Enclosure in Case of Buoyancy Driven Flow

    Directory of Open Access Journals (Sweden)

    Christoph Hochenauer

    2014-08-01

    Full Text Available The purpose of this paper is to investigate state of the art approaches and their accuracy to compute heat transfer including radiation inside a closed cavity whereas buoyancy is the only driving force. This research is the first step of an all-embracing study dealing with underhood airflow and thermal management of vehicles. Computational fluid dynamic (CFD simulation results of buoyancy driven flow inside a simplified engine compartment are compared to experimentally gained values. The test rig imitates idle condition without any working fan. Thus, the airflow is only driven by natural convection. A conventional method used for these applications is to compute the convective heat transfer coefficient and air temperature using CFD and calculate the wall temperature separately by performing a thermal analysis. The final solution results from coupling two different software tools. In this paper thermal conditions inside the enclosure are computed by the use of CFD only. The impact of the turbulence model as well as the results of various radiation models are analyzed and compared to the experimental data.

  5. A Review of Some Recent Studies on Buoyancy Driven Flows in an Urban Environment

    OpenAIRE

    Bodhisatta Hajra

    2014-01-01

    This paper reviews some recent studies (after 2000) pertaining to buoyancy driven flows in nature and thier use in reducing air pollution levels in a city (city ventilation). Natural convection flows occur due to the heating and cooling of various urban surfaces (e.g., mountain slopes), leading to upslope and downslope flows. Such flows can have a significant effect on city ventilation which has been the subject of study in the recent times due to increased pollution levels in a city. A major...

  6. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, J. D.; Li, J.; Wang, J. [The Univ., of Manchester, Manchester (United Kingdom)

    2003-07-01

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results.

  7. Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell

    Science.gov (United States)

    Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob

    2009-11-01

    Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.

  8. Level-set simulations of buoyancy-driven motion of single and multiple bubbles

    International Nuclear Information System (INIS)

    Balcázar, Néstor; Lehmkuhl, Oriol; Jofre, Lluís; Oliva, Assensi

    2015-01-01

    Highlights: • A conservative level-set method is validated and verified. • An extensive study of buoyancy-driven motion of single bubbles is performed. • The interactions of two spherical and ellipsoidal bubbles is studied. • The interaction of multiple bubbles is simulated in a vertical channel. - Abstract: This paper presents a numerical study of buoyancy-driven motion of single and multiple bubbles by means of the conservative level-set method. First, an extensive study of the hydrodynamics of single bubbles rising in a quiescent liquid is performed, including its shape, terminal velocity, drag coefficients and wake patterns. These results are validated against experimental and numerical data well established in the scientific literature. Then, a further study on the interaction of two spherical and ellipsoidal bubbles is performed for different orientation angles. Finally, the interaction of multiple bubbles is explored in a periodic vertical channel. The results show that the conservative level-set approach can be used for accurate modelling of bubble dynamics. Moreover, it is demonstrated that the present method is numerically stable for a wide range of Morton and Reynolds numbers.

  9. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  10. Numerical investigation on thermal performance and correlations of double skin facade with buoyancy-driven airflow

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, Alexandra; Zhai, Zhiqiang [Department of Civil, Environmental and Architectural Engineering, University of Colorado, UCB 428, ECOT 441, Boulder, CO 80309-0428 (United States)

    2008-07-01

    This paper briefly reviews the primary parameters for a double skin facade (DSF) design. The research presents an integrated and iterative modeling process for analyzing the thermal performance of DSF cavities with buoyancy-driven airflow by using a building energy simulation program (BESP) along with a computational fluid dynamics (CFD) package. A typical DSF cavity model has been established and simulated. The model and the modeling process have been calibrated and validated against the experimental data. The validated model was used to develop correlations that can be implemented in a BESP, allowing users to take advantage of the accuracy gained from CFD simulations without the required computation time. Correlations were developed for airflow rate through cavity, average and peak cavity air temperature, cavity air pressure, and interior convection coefficient. The correlations are valuable for 'back of the envelope' calculation and for examining accuracy of zonal-model-based energy and airflow simulation programs. (author)

  11. Buoyancy driven flow in a hot water tank due to standby heat loss

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2012-01-01

    Results of experimental and numerical investigations of thermal behavior in a vertical cylindrical hot water tank due to standby heat loss of the tank are presented. The effect of standby heat loss on temperature distribution in the tank is investigated experimentally on a slim 150l tank...... show that the CFD model predicts satisfactorily water temperatures at different levels of the tank during cooling by standby heat loss. It is elucidated how the downward buoyancy driven flow along the tank wall is established by the heat loss from the tank sides and how the natural convection flow...... with a height to diameter ratio of 5. A tank with uniform temperatures and with thermal stratification is studied. A detailed computational fluid dynamics (CFD) model of the tank is developed to calculate the natural convection flow in the tank. The distribution of the heat loss coefficient for the different...

  12. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    Science.gov (United States)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  13. On buoyancy-driven natural ventilation of a room with a heated floor

    Science.gov (United States)

    Gladstone, Charlotte; Woods, Andrew W.

    2001-08-01

    The natural ventilation of a room, both with a heated floor and connected to a cold exterior through two openings, is investigated by combining quantitative models with analogue laboratory experiments. The heated floor generates an areal source of buoyancy while the openings allow displacement ventilation to operate. When combined, these produce a steady state in which the air in the room is well-mixed, and the heat provided by the floor equals the heat lost by displacement. We develop a quantitative model describing this process, in which the advective heat transfer through the openings is balanced with the heat flux supplied at the floor. This model is successfully tested with observations from small-scale analogue laboratory experiments. We compare our results with the steady-state flow associated with a point source of buoyancy: for a given applied heat flux, an areal source produces heated air of lower temperature but a greater volume flux of air circulates through the room. We generalize the model to account for the effects of (i) a cooled roof as well as a heated floor, and (ii) an external wind or temperature gradient. In the former case, the direction of the flow through the openings depends on the temperature of the exterior air relative to an averaged roof and floor temperature. In the latter case, the flow is either buoyancy dominated or wind dominated depending on the strength of the pressure associated with the wind. Furthermore, there is an intermediate multiple-solution regime in which either flow regime may develop.

  14. Radiative effects on turbulent buoyancy-driven air flow in open square cavities

    International Nuclear Information System (INIS)

    Zamora, B.; Kaiser, A.S.

    2016-01-01

    The effects of the radiative effects and the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low- Reynolds k-ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide range of the Rayleigh number varying from 10 3 to 10 16 . The results obtained taking into account the variable thermophysical properties of air are compared to those calculated assuming constant properties and the Boussinesq approximation. In addition, the influence of considering surface radiative effects on the differences reached for the Nusselt number and the mass flow rate obtained with several intensities of heating is studied; specifically, the effects of thermal radiation on the appearance of the burnout phenomenon is analyzed. The changes produced in the flow patterns into the cavity when the radiative heat transfer and the effects of variation of properties are relevant, are also shown. (authors)

  15. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  16. A numerical study on buoyancy-driven flow in an inclined square enclosure heated and cooled on adjacent walls

    International Nuclear Information System (INIS)

    Aydin, O.; Uenal, A.; Ayhan, T.

    1999-01-01

    Buoyancy-driven flows in enclosures play a vital role in many engineering applications such as double glazing, ventilation of rooms, nuclear reactor insulation, solar energy collection, cooling of electronic components, and crystal growth in liquids. Here, numerical study on buoyancy-driven laminar flow in an inclined square enclosure heated from one side and cooled from the adjacent side is conducted using finite difference methods. The effect of inclination angle on fluid flow and heat transfer is investigated by varying the angle of inclination between 0 degree and 360degree, and the results are presented in the form of streamlines and isotherms for different inclination angles and Rayleigh numbers. On the basis of the numerical data, the authors determine the critical values of the inclination angle at which the rate of the transfer within the enclosure is either maximum or minimum

  17. Numerical investigations of buoyancy-driven natural ventilation in a simple three-storey atrium building and thermal comfort evaluation

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2013-01-01

    The numerical investigations of buoyancy-driven natural ventilation and thermal comfort evaluation in a simple three-storey atrium building as a part of the passive ventilation strategy was undertaken using a validated Computational Fluid Dynamic (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modeling approach with the SST-k–ω turbulence model and the discrete transfer radiation model (DTRM) was used for the numerical investigations. The steady-state governing equations were solved using a commercial solver FLUENT©. Various flow situations of the buoyancy-driven natural ventilation in the building during day and night time were examined. The numerical results obtained for the airflow rates, airflow patterns and temperature distributions inside the building are presented in this paper. Using the numerical results, the well-known thermal comfort indices PMV (predicted mean vote) and PPD (predicted percentage of dissatisfied) were calculated for the evaluation of the thermal comfort conditions in the occupied regions of the building. It was noticed that thermal conditions prevailing in the occupied areas of the building as a result of using the buoyancy-driven ventilation were mostly in comfort zone. From the study of the night time ventilation, it was found that hot water (80 °C) circulation (heated by solar collectors during daytime) along the chimney walls during night time and heat sources present in the building can be useful in inducing night ventilation airflows in the building as a part of the passive ventilation strategy. -- Highlights: • A simple three-storey atrium building. • Numerical modeling of buoyancy-driven ventilation flow in the building. • Effect of solar intensity and geographical location on ventilation. • CFD predictions were used to calculate thermal comfort indices. • Evaluation of thermal comfort conditions for the occupants

  18. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H., E-mail: hlh@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huo, R.; Yang, D. [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  19. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.

    Science.gov (United States)

    Hu, L H; Huo, R; Yang, D

    2009-07-15

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons--a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  20. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow

    International Nuclear Information System (INIS)

    Hu, L.H.; Huo, R.; Yang, D.

    2009-01-01

    The dispersion of fire-induced buoyancy driven plume in and above an idealized street canyon of 18 m (width) x 18 m (height) x 40 m (length) with a wind flow perpendicular to its axis was investigated by Fire Dynamics Simulator (FDS), Large Eddy Simulation (LES). Former studies, such as that by Oka [T.R. Oke, Street design and urban canopy layer climate, Energy Build. 11 (1988) 103-113], Gayev and Savory [Y.A. Gayev, E. Savory, Influence of street obstructions on flow processes within street canyons. J. Wind Eng. Ind. Aerodyn. 82 (1999) 89-103], Xie et al. [S. Xie, Y. Zhang, L. Qi, X. Tang, Spatial distribution of traffic-related pollutant concentrations in street canyons. Atmos. Environ. 37 (2003) 3213-3224], Baker et al. [J. Baker, H. L. Walker, X. M. Cai, A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation, Atmos. Environ. 38 (2004) 6883-6892] and Baik et al. [J.-J. Baik, Y.-S. Kang, J.-J. Kim, Modeling reactive pollutant dispersion in an urban street canyon, Atmos. Environ. 41 (2007) 934-949], focus on the flow pattern and pollutant dispersion in the street canyon with no buoyancy effect. Results showed that with the increase of the wind flow velocity, the dispersion pattern of a buoyant plume fell into four regimes. When the wind flow velocity increased up to a certain critical level, the buoyancy driven upward rising plume was re-entrained back into the street canyon. This is a dangerous situation as the harmful fire smoke will accumulate to pollute the environment and thus threaten the safety of the people in the street canyon. This critical re-entrainment wind velocity, as an important parameter to be concerned, was further revealed to increase asymptotically with the heat/buoyancy release rate of the fire.

  1. Buoyancy-driven instability in a vertical cylinder: Binary fluids with Soret effect. I - General theory and stationary stability results

    Science.gov (United States)

    Hardin, G. R.; Sani, R. L.; Henry, D.; Roux, B.

    1990-01-01

    The buoyancy-driven instability of a monocomponent or binary fluid completely contained in a vertical circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The Boussinesq approximation is used, and the resulting linear stability problem is solved using a Galerkin technique. The analysis considers fluid mixtures ranging from gases to liquid metals. The flow structure is found to depend strongly on both the cylinder aspect ratio and the magnitude of the Soret effect. The predicted stability limits are shown to agree closely with experimental observations.

  2. Buoyancy-driven mean flow in a long channel with a hydraulically constrained exit condition

    Science.gov (United States)

    Grimm, Th.; Maxworthy, T.

    1999-11-01

    Convection plays a major role in a variety of natural hydrodynamic systems. Those in which convection drives exchange flows through a lateral contraction and/or over a sill form a special class with typical examples being the Red and Mediterranean Seas, the Persian Gulf, and the fjords that indent many coastlines. The present work focuses on the spatial distribution and scaling of the density difference between the inflowing and outflowing fluid layers. Using a long water-filled channel, fitted with buoyancy sources at its upper surface, experiments were conducted to investigate the influence of the geometry of the strait and the channel as well as the magnitude of the buoyancy flux. Two different scaling laws, one by Phillips (1966), and one by Maxworthy (1994, 1997) were compared with the experimental results. It has been shown that a scaling law for which g[prime prime or minute] = kB02/3x/h4/3 best describes the distribution of the observed density difference along the channel, where B0 is the buoyancy flux, x the distance from the closed end of the channel, h its height at the open end (sill) and k a constant that depends on the details of the channel geometry and flow conditions. This result holds for the experimental results and appears to be valid for a number of natural systems as well.

  3. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    Science.gov (United States)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  4. A weakly nonlinear model with exact coefficients for the fluttering and spiraling motions of buoyancy-driven bodies

    Science.gov (United States)

    Magnaudet, Jacques; Tchoufag, Joel; Fabre, David

    2015-11-01

    Gravity/buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Using a weakly nonlinear expansion of the full set of governing equations, we derive a new generic reduced-order model of this class of phenomena based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (eg. fluttering or spiraling) and characteristics (eg. frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  5. Weakly Nonlinear Model with Exact Coefficients for the Fluttering and Spiraling Motion of Buoyancy-Driven Bodies

    Science.gov (United States)

    Tchoufag, Joël; Fabre, David; Magnaudet, Jacques

    2015-09-01

    Gravity- or buoyancy-driven bodies moving in a slightly viscous fluid frequently follow fluttering or helical paths. Current models of such systems are largely empirical and fail to predict several of the key features of their evolution, especially close to the onset of path instability. Here, using a weakly nonlinear expansion of the full set of governing equations, we present a new generic reduced-order model based on a pair of amplitude equations with exact coefficients that drive the evolution of the first pair of unstable modes. We show that the predictions of this model for the style (e.g., fluttering or spiraling) and characteristics (e.g., frequency and maximum inclination angle) of path oscillations compare well with various recent data for both solid disks and air bubbles.

  6. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    International Nuclear Information System (INIS)

    Puragliesi, R.; Dehbi, A.; Leriche, E.; Soldati, A.; Deville, M.O.

    2011-01-01

    Highlights: → 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. → Description of velocity and temperature first and second moments with changing in the Rayleigh number. → Strong decoupling between the turbulent kinetic energy and the dissipation rate. → Particle recirculation sustained by the vertical hot boundary layer. → Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10 9 , 10 10 ) and three values of the particle diameter (d p = 15, 25, 35 [μm]). We consider the cavity filled with air and particles with the same density of water ρ w = 1000 [kg/m 3 ] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift and thermophoretic

  7. DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland); Dehbi, A., E-mail: abdel.dehbi@psi.ch [Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Leriche, E., E-mail: emmanuel.leriche@univ-st-etienne.fr [Universite de Lyon, F-42023 Saint-Etienne, LMFA-UJM St-Etienne, CNRS UMR 5509 Universite de St-Etienne, 23 rue Docteur Paul Michelon, F-42023 Saint-Etienne (France); Soldati, A., E-mail: soldati@uniud.it [Dipartimento di Energetica e Macchine, Universita di Udine, Via delle Scienze 208, IT-33100 Udine (Italy); Deville, M.O., E-mail: michel.deville@epfl.ch [Laboratoire d' Ingenierie Numerique, Ecole Polytechnique Federale de Lausanne, Station 9, CH-1015 Lausanne (Switzerland)

    2011-10-15

    Highlights: > 2D study of micro-size particle depletion driven by chaotic natural convective flows in square domains. > Description of velocity and temperature first and second moments with changing in the Rayleigh number. > Strong decoupling between the turbulent kinetic energy and the dissipation rate. > Particle recirculation sustained by the vertical hot boundary layer. > Deposition mostly induced by gravity, thermophoretic and lift forces are negligible. - Abstract: In this work we investigate numerically particle deposition in the buoyancy driven flow of the differentially heated cavity (DHC). We consider two values of the Rayleigh number (Ra = 10{sup 9}, 10{sup 10}) and three values of the particle diameter (d{sub p} = 15, 25, 35 [{mu}m]). We consider the cavity filled with air and particles with the same density of water {rho}{sub w} = 1000 [kg/m{sup 3}] (aerosol). We use direct numerical simulations (DNS) for the continuous phase, and we solve transient Navier-Stokes and energy transport equations written in an Eulerian framework, under the Boussinesq approximation, for the viscous incompressible Newtonian fluid with constant Prandtl number (Pr = 0.71). First- and second-order statistics are presented for the continuous phase as well as important quantities like turbulent kinetic energy (TKE) and temperature variance with the associated production and dissipation fields. The TKE production shows different behaviour at the two Rayleigh numbers. The Lagrangian approach has been chosen for the dispersed phase description. The forces taken into account are drag, gravity, buoyancy, lift and thermophoresis. A first incursion in the sedimentation mechanisms is presented. Current results indicate that the largest contribution to particle deposition is caused by gravitational settling, but a strong recirculating zone, which liftoffs and segregates particles, contributes to decrease settling. Deposition takes place mostly at the bottom wall. The influence of lift

  8. Buoyancy and Pressure Driven Flow of Hot Gases in Vertical Shafts with Natural and Forced Ventilation

    Science.gov (United States)

    Tamm, Gunnar; Jaluria, Yogesh

    2003-11-01

    An experimental investigation has been carried out on the buoyancy and pressure induced flow of hot gases in vertical shafts, in order to simulate the propagation of combustion products in elevator shafts due to fire in multilevel buildings. Various geometrical configurations are studied, with regard to natural and forced ventilation imposed at the top or bottom of the vertical shaft. The aspect ratio is taken at a fixed value of 6 and the inflow conditions for the hot gases, at a vent near the bottom, are varied in terms of the Reynolds and Grashof numbers. Temperature measurements within the shaft allow a detailed study of the steady state thermal fields, from which optimal means for smoke alleviation in high-rise building fires may be developed. Flow visualization is also used to study the flow characteristics. The results obtained indicate a wall plume as the primary transport mechanism. Flow recirculation dominates at high Grashof number flows, while increased Reynolds numbers gives rise to greater mixing in the shaft. The development and stability of the flow and its effect on the spread of smoke and hot gases are assessed for the different shaft configurations and inlet conditions. It is found that the fastest smoke removal and lowest shaft temperatures occur for a configuration with natural ventilation at the top and forced ventilation up from the shaft bottom. It is also shown that forced ventilation can be used to arrest smoke spread, as well as to dilute the effects of the fire.

  9. Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules

    Science.gov (United States)

    Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob

    2016-01-01

    Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651

  10. Modeling the buoyancy-driven Black Sea Water outflow into the North Aegean Sea

    Directory of Open Access Journals (Sweden)

    Nikolaos Kokkos

    2016-04-01

    Full Text Available A three-dimensional numerical model was applied to simulate the Black Sea Water (BSW outflux and spreading over the North Aegean Sea, and its impact on circulation and stratification–mixing dynamics. Model results were validated against satellite-derived sea surface temperature and in-situ temperature and salinity profiles. Further, the model results were post-processed in terms of the potential energy anomaly, ϕ, analyzing the factors contributing to its change. It occurs that BSW contributes significantly on the Thracian Sea water column stratification, but its signal reduces in the rest of the North Aegean Sea. The BSW buoyancy flux contributed to the change of ϕ in the Thracian Sea by 1.23 × 10−3 W m−3 in the winter and 7.9 × 10−4 W m−3 in the summer, significantly higher than the corresponding solar heat flux contribution (1.41 × 10−5 W m−3 and 7.4 × 10−5 W m−3, respectively. Quantification of the ϕ-advective term crossing the north-western BSW branch (to the north of Lemnos Island, depicted a strong non-linear relation to the relative vorticity of Samothraki Anticyclone. Similar analysis for the south-western branch illustrated a relationship between the ϕ-advective term sign and the relative vorticity in the Sporades system. The ϕ-mixing term increases its significance under strong winds (>15 m s−1, tending to destroy surface meso-scale eddies.

  11. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    International Nuclear Information System (INIS)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux

  12. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

    Science.gov (United States)

    Zamora, Blas; Kaiser, Antonio S.

    2012-01-01

    The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k - ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

  13. Experimental Study of a natural ventilation strategy in a Full-Scale Enclosure Under Meteorological Conditions: A Buoyancy-Driven Approach

    OpenAIRE

    Austin, Miguel Chen; Bruneau, Denis; Sempey, Alain; Mora, Laurent; Sommier, Alain

    2018-01-01

    The performance of a natural ventilation strategy, in a full-scale enclosure under meteorological conditions is studied through an experimental study, a buoyancy-driven approach, by means of the estimation of the air exchange rate per hour and ventilation power. A theoretical and an empirical model are proposed based on the airflow theory in buildings and blower-door tests. A preliminary validation, by comparing our results with standards in air leakage rate determination, is made. The experi...

  14. Dynamic pore network simulator for modelling buoyancy-driven migration during depressurisation of heavy-oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezeuko, C.C.; McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Bondino, I. [Total E and P UK Ltd., London (United Kingdom); Hamon, G. [Total S.A., Paris (France)

    2008-10-15

    In an attempt to investigate the impact of gravitational forces on gas evolution during solution gas drive, a number of vertically-oriented heavy oil depletion experiments have been conducted. Some of the results of these studies suggest the occurrence of gas migration during these tests. However, a major limitation of these experiments is the difficulty in visualizing the process in reservoir rock samples. Experimental observations using transparent glass models have been useful in this context and provide a sound physical basis for modelling gravitational gas migration in gas-oil systems. This paper presented a new pore network simulator that was capable of modelling the time-dependent migration of growing gas structures. Multiple pore filling events were dynamically modelled with interface tracking allowing the full range of migratory behaviours to be reproduced, including braided migration and discontinuous dispersed flow. Simulation results were compared with experiments and were found to be in excellent agreement. The paper presented the model and discussed the implication of evolution regime on recovery from heavy oil systems undergoing depressurization. The simulation results demonstrated the complex interaction of a number of network and fluid parameters. It was concluded that the concomitant effect on the competition between capillarity and buoyancy produced different gas evolution patterns during pressure depletion. 28 refs., 2 tabs., 19 figs.

  15. Influence of radiation on predictive accuracy in numerical simulations of the thermal environment in industrial buildings with buoyancy-driven natural ventilation

    International Nuclear Information System (INIS)

    Meng, Xiaojing; Wang, Yi; Liu, Tiening; Xing, Xiao; Cao, Yingxue; Zhao, Jiangping

    2016-01-01

    Highlights: • The effects of radiation on predictive accuracy in numerical simulations were studied. • A scaled experimental model with a high-temperature heat source was set up. • Simulation results were discussed considering with and without radiation model. • The buoyancy force and the ventilation rate were investigated. - Abstract: This paper investigates the effects of radiation on predictive accuracy in the numerical simulations of industrial buildings. A scaled experimental model with a high-temperature heat source is set up and the buoyancy-driven natural ventilation performance is presented. Besides predicting ventilation performance in an industrial building, the scaled model in this paper is also used to generate data to validate the numerical simulations. The simulation results show good agreement with the experiment data. The effects of radiation on predictive accuracy in the numerical simulations are studied for both pure convection model and combined convection and radiation model. Detailed results are discussed regarding the temperature and velocity distribution, the buoyancy force and the ventilation rate. The temperature and velocity distributions through the middle plane are presented for the pure convection model and the combined convection and radiation model. It is observed that the overall temperature and velocity magnitude predicted by the simulations for pure convection were significantly greater than those for the combined convection and radiation model. In addition, the Grashof number and the ventilation rate are investigated. The results show that the Grashof number and the ventilation rate are greater for the pure convection model than for the combined convection and radiation model.

  16. Buoyancy-Driven Ventilation Generated by the Double-Skin Façade of a High-Rise Building in Tropical Climate: Case Study Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    Aziiz Akhlish Diinal

    2017-01-01

    Full Text Available High-rise buildings in tropical region is identical to the use of mechanical Air Conditioning in massive scale. Nevertheless, there is an encouragement to high-rise buildings to reduce its energy consumptions, since they consume quite large amount of energy. This challenge can be overcome with various of strategies, one of them, by means of reducing the cooling load of mechanical Air Conditioning in high-rise building. Prospects come from the modern tall building design strategies, for example the use of double-skin façade to give addition of building skin which could provide indoor temperature protection from outside. Double-skin façade system has continued to increase in buildings in a tropical region such as in Indonesia. However, there is another potential of double skin façade, which is the possibility to increase the buoyancy effect in the air gap between the skin and building envelope. The possibility needs to be studied in order to give a proper way in designing double-skin façade of a high-rise building, especially on Bandung-Indonesia tropical climate. This paper explores the potential of double-skin façade in driving the air inside the façade to generate natural ventilation for a high-rise building in Bandung climate condition. Two parameters are used in exploring the buoyancy force, the width of double-skin façade and the temperature of the skin façade. In general, double-skin façade of a high-rise building in tropical climate can generate buoyancy driven ventilation for the building, it relates strongly to the distance between of the double-skin façade and the building envelope.

  17. Three-dimensional computational fluid dynamics analysis of buoyancy-driven natural ventilation and entropy generation in a prismatic greenhouse

    Directory of Open Access Journals (Sweden)

    Aich Walid

    2018-01-01

    Full Text Available A computational analysis of the natural ventilation process and entropy generation in 3-D prismatic greenhouse was performed using CFD. The aim of the study is to investigate how buoyancy forces influence air-flow and temperature patterns inside the greenhouse having lower level opening in its right heated façade and also upper level opening near the roof top in the opposite cooled façade. The bot-tom and all other walls are assumed to be perfect thermal insulators. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is fixed at Pr = 0.71. Results are reported in terms of particles trajectories, iso-surfaces of temperature, mean Nusselt number, and entropy generation. It has been found that the flow structure is sensitive to the value of Rayleigh number and that heat transfer increases with increasing this parameter. Also, it have been noticed that, using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross air-flow (low-level supply and upper-level extraction inside the greenhouse.

  18. Numerical investigations of buoyancy-driven natural ventilation in a simple atrium building and its effect on the thermal comfort conditions

    International Nuclear Information System (INIS)

    Hussain, Shafqat; Oosthuizen, Patrick H.

    2012-01-01

    In the present study use of solar-assisted buoyancy-driven natural ventilation in a simple atrium building is explored numerically with particular emphasis on the thermal comfort conditions in the building. Initially various geometric configurations of the atrium space were considered in order to investigate airflows and temperature distributions in the building using a validated computational fluid dynamics (CFD) model. The Reynolds Averaged Navier–Stokes (RANS) modelling approach with the SST-k–ω turbulence model and the Discrete Transfer Radiation Model (DTRM) was used for the investigations. The steady-state governing equations were solved using a commercial CFD solver FLUENT © . From the numerical results obtained, it was noted that an atrium space integrated with a solar chimney would be a relatively better option to be used in an atrium building. In the geometry selected, the performance of the building in response to various changes in design parameters was investigated. The produced airflows and temperature distributions were then used to evaluate indoor thermal comfort conditions in terms of the thermal comfort indices, i.e. the well-known predicted mean vote (PMV) index, its modifications especially for natural ventilation, predicted percent dissatisfied (PPD) index and Percent dissatisfied (PD) factor due to draft. It was found that the thermal conditions in the occupied areas of the building developed as a result of the use of solar-assisted buoyancy-driven ventilation for the particular values of the design parameters selected are mostly in the comfortable zone. Finally, it is demonstrated that the proposed methodology leads to reliable thermal comfort predictions, while the effect of various design variables on the performance of the building is easily recognized. - Highlights: ► Numerical investigations were carried for the use of buoyancy-driven displacement ventilation in a simple atrium building. ► Effect of various atrium

  19. Buoyancy-driven mixing of fluids in a confined geometry; Melange gravitationnel de fluides en geometrie confinee

    Energy Technology Data Exchange (ETDEWEB)

    Hallez, Y

    2007-12-15

    The present work based on Direct Numerical Simulations is devoted to the study of mixing between two miscible fluids of different densities. The movement of these fluids is induced by buoyancy. Three geometries are considered: a cylindrical tube, a square channel and a plane two-dimensional flow. For cylindrical tubes, the results of numerical simulations fully confirm previous experimental findings by Seon et al., especially regarding the existence of three different flow regimes, depending on the tilt angle. The comparison of the various geometries shows that tridimensional flows in tubes or channels are similar, whereas the two-dimensional model fails to give reliable information about real 3D flows, either from a quantitative point of view or for a phenomenological understanding. A peculiar attention is put on a joint analysis of the concentration and vorticity fields and allows us to explain several subtle aspects of the mixing dynamics. (author)

  20. Some Exact Solutions of Boundary Layer Flows along a Vertical Plate with Buoyancy Forces Combined with Lorentz Forces under Uniform Suction

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2008-01-01

    Full Text Available Exact analytical solutions of boundary layer flows along a vertical porous plate with uniform suction are derived and presented in this paper. The solutions concern the Blasius, Sakiadis, and Blasius-Sakiadis flows with buoyancy forces combined with either MHD Lorentz or EMHD Lorentz forces. In addition, some exact solutions are presented specifically for water in the temperature range of 0∘C≤≤8∘C, where water density is nearly parabolic. Except for their use as benchmarking means for testing the numerical solution of the Navier-Stokes equations, the presented exact solutions with EMHD forces have use in flow separation control in aeronautics and hydronautics, whereas the MHD results have applications in process metallurgy and fusion technology. These analytical solutions are valid for flows with strong suction.

  1. Measurement of buoyancy driven convection and microaccelerations on board International Space Station with the use of convection sensor Dacon-M

    Science.gov (United States)

    Putin, Gennady; Belyaev, Mikhail; Babushkin, Igor; Glukhov, Alexander; Zilberman, Evgeny; Maksimova, Marina; Ivanov, Alexander; Sazonov, Viktor; Nikitin, Sergey; Zavalishin, Denis; Polezhaev, Vadim

    The system for studying buoyancy driven convection and low-frequency microaccelerations aboard spacecraft is described. The system consists of: 1. facility for experimentation on a spaceship - the convection sensor and electronic equipment for apparatus control and for acquisition and processing of relevant information; 2. facility for ground-based laboratory modeling of various fluid motion mechanisms in application to orbital flight environment; 3. the system for computer simulations of convection processes in a fluid cell of a sensor using the data on microaccelerations obtained by accelerometers and another devices aboard the orbital station. The arrangement and functioning of the sensor and control hardware are expounded. The results of terrestrial experiments performed in order to determine the sensitivity of the sensor are described. The results of experiments carried out in 2008 - 2011 with the “DACON-M” apparatus in different modules of the Russian Segment of International Space Station and for various regimes of Station activity are reported. Experimental data recorded by “DACON-M” apparatus have been compared with the calculations of acceleration components based on the telemetry information about the orientation of the Station.

  2. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    Science.gov (United States)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  3. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  4. Tachyon driven solution to Cosmic Coincidence Problrm

    OpenAIRE

    Srivastaca, S. K.

    2004-01-01

    Here, non-minimally coupled tachyon to gravity is considered as a source of "dark energy". It is demonstrated that with expansion of the universe, tachyon dark energy decays to "dark matter" providing a solution to "cosmic coincidence problem".Moreover, it is found that universe undergoes accelerated expansion simultaneously.

  5. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.; Delshad, M.; Wheeler, M. F.

    2012-01-01

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  6. An Integrated Capillary, Buoyancy, and Viscous-Driven Model for Brine/CO2Relative Permeability in a Compositional and Parallel Reservoir Simulator

    KAUST Repository

    Kong, X.

    2012-11-03

    The effectiveness of CO2 storage in the saline aquifers is governed by the interplay of capillary, viscous, and buoyancy forces. Recent experimental study reveals the impact of pressure, temperature, and salinity on interfacial tension (IFT) between CO2 and brine. The dependence of CO2-brine relative permeability and capillary pressure on pressure (IFT) is also clearly evident in published experimental results. Improved understanding of the mechanisms that control the migration and trapping of CO2 in subsurface is crucial to design future storage projects that warrant long-term and safe containment. Simulation studies ignoring the buoyancy and also variation in interfacial tension and the effect on the petrophysical properties such as trapped CO2 saturations, relative permeability, and capillary pressure have a poor chance of making accurate predictions of CO2 injectivity and plume migration. We have developed and implemented a general relative permeability model that combines effects of pressure gradient, buoyancy, and IFT in an equation of state (EOS) compositional and parallel simulator. The significance of IFT variations on CO2 migration and trapping is assessed.

  7. A practice-driven systematic review of dependency analysis solutions

    NARCIS (Netherlands)

    Callo Arias, Trosky B.; Spek, Pieter van der; Avgeriou, Paris

    2011-01-01

    When following architecture-driven strategies to develop large software-intensive systems, the analysis of the dependencies is not an easy task. In this paper, we report a systematic literature review on dependency analysis solutions. Dependency analysis concerns making dependencies due to

  8. Center of buoyancy definition

    International Nuclear Information System (INIS)

    Sandberg, V.

    1988-12-01

    The center of buoyancy of an arbitrary shaped body is defined in analogy to the center of gravity. The definitions of the buoyant force and center of buoyancy in terms of integrals over the area of the body are converted to volume integrals and shown to have simple intuitive interpretations

  9. Study on Product Innovative Design Process Driven by Ideal Solution

    Science.gov (United States)

    Zhang, Fuying; Lu, Ximei; Wang, Ping; Liu, Hui

    Product innovative design in companies today relies heavily on individual members’ experience and creative ideation as well as their skills of integrating creativity and innovation tools with design methods agilely. Creative ideation and inventive ideas generation are two crucial stages in product innovative design process. Ideal solution is the desire final ideas for given problem, and the striving reaching target for product design. In this paper, a product innovative design process driven by ideal solution is proposed. This design process encourages designers to overcome their psychological inertia, to foster creativity in a systematic way for acquiring breakthrough creative and innovative solutions in a reducing sphere of solution-seeking, and results in effective product innovative design rapidly. A case study example is also presented to illustrate the effectiveness of the proposed design process.

  10. Stable solutions of inflation driven by vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  11. Stable solutions of inflation driven by vector fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-01-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  12. Surface Buoyancy Fluxes and the Strength of the Subpolar Gyre

    Science.gov (United States)

    Hogg, A. M.; Gayen, B.

    2017-12-01

    Midlatitude ocean gyres have long been considered to be driven by the mechanical wind stress on the ocean's surface (strictly speaking, the potential vorticity input from wind stress curl). However, surface buoyancy forcing (i.e. heating/cooling or freshening/salinification) also modifies the potential vorticity at the surface. Here, we present a simple argument to demonstrate that ocean gyres may (in principle) be driven by surface buoyancy forcing. This argument is derived in two ways: A Direct Numerical Simulation, driven purely by buoyancy forcing, which generates strong nonlinear gyers in the absence of wind stress; and A series of idealised eddy-resolving numerical ocean model simulations, in which wind stress and buoyancy flux are varied independently and together, are used to understand the relative importance of these two types of forcing. In these simulations, basin-scale gyres and western boundary currents with realistic magnitudes, remain even in the absence of mechanical forcing by surface wind stress. These results support the notion that surface buoyancy forcing can reorganise the potential vorticity in the ocean in such a way as to drive basin-scale gyres. The role of buoyancy is stronger in the subpolar gyre than in the subtropical gyre. We infer that surface buoyancy fluxes are likely to play a contributing role in governing the strength, variability and predictability of the North Atlantic subpolar gyre.

  13. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  14. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  15. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  16. Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream

    Directory of Open Access Journals (Sweden)

    I.L. Animasaun

    2017-12-01

    Full Text Available Geometrically, the upper pointed surface of an aircraft and bonnet of a car are examples of upper horizontal surfaces of a paraboloid of revolution (uhspr. The motion of these objects strongly depends on the boundary layer that is formed within the immediate space on it. However, each of these surfaces is neither a horizontal/vertical nor cone/wedge and neither a cone nor a wedge. This article presents the motion of 2-dimensional Blasius flow of Carreau fluid on the surface of such object. The case in which the reaction between the Carreau fluid and catalyst at the surface produces significant temperature differences which consequently set up buoyancy-driven flows within the boundary layer is investigated. Single first-order Arrhenius kinetics is adopted to model the reaction on the surface of the catalyst situated on uhspr which initiates the free convection. Suitable similarity variables are applied to non-dimensionalized, parameterized and reduce the governing partial differential equations to a coupled ordinary differential equations (BVP. The BVP is solved numerically using the shooting technique. Temperature distribution in the flow of viscoelastic Carreau fluid is greater than that of a Newtonian fluid. Local heat transfer rate decreases faster when the Carreau fluid is characterized as shear-thinning. Maximum concentration is guaranteed at a small value of power-law index n and large value of thickness parameter. Keywords: Viscoelastic-Carreau fluid, Catalitic surface, Paraboloid of revolution, Numerical method, Uhspr, Boundary layer analysis

  17. Operational Characteristics of an Accelerator Driven Fissile Solution System

    International Nuclear Information System (INIS)

    Kimpland, Robert Herbert

    2016-01-01

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the form of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a ''generic'' Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system

  18. Energy spectrum of buoyancy-driven turbulence

    KAUST Repository

    Kumar, Abhishek; Chatterjee, Anando G.; Verma, Mahendra K.

    2014-01-01

    Using high-resolution direct numerical simulation and arguments based on the kinetic energy flux Πu, we demonstrate that, for stably stratified flows, the kinetic energy spectrum Eu(k)∼k-11/5, the potential energy spectrum Eθ(k)∼k-7/5, and Πu(k)∼k-4

  19. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  20. Light-driven solute transport in Halobacterium halobium

    Science.gov (United States)

    Lanyi, J. K.

    1979-01-01

    The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.

  1. Developing Annotation Solutions for Online Data Driven Learning

    Science.gov (United States)

    Perez-Paredes, Pascual; Alcaraz-Calero, Jose M.

    2009-01-01

    Although "annotation" is a widely-researched topic in Corpus Linguistics (CL), its potential role in Data Driven Learning (DDL) has not been addressed in depth by Foreign Language Teaching (FLT) practitioners. Furthermore, most of the research in the use of DDL methods pays little attention to annotation in the design and implementation…

  2. Strategic solutions of business innovation-driven growth mainstreaming

    OpenAIRE

    Smolinska, N. V.

    2013-01-01

    The method of development of the business innovation capacity and corporate culture level evaluation, that allows identification of this level growth or deterioration within the specific period of time, is the key problem of the article. The data received permit to work out the matrix “the level of corporate culture vs. the level of innovation capacity” of the business in order to reveal the business’ position in this matrix and select the innovation-driven growth strategy of this business....

  3. The Competition Between a Localised and Distributed Source of Buoyancy

    Science.gov (United States)

    Partridge, Jamie; Linden, Paul

    2012-11-01

    We propose a new mathematical model to study the competition between localised and distributed sources of buoyancy within a naturally ventilated filling box. The main controlling parameters in this configuration are the buoyancy fluxes of the distributed and local source, specifically their ratio Ψ. The steady state dynamics of the flow are heavily dependent on this parameter. For large Ψ, where the distributed source dominates, we find the space becomes well mixed as expected if driven by an distributed source alone. Conversely, for small Ψ we find the space reaches a stable two layer stratification. This is analogous to the classical case of a purely local source but here the lower layer is buoyant compared to the ambient, due to the constant flux of buoyancy emanating from the distributed source. The ventilation flow rate, buoyancy of the layers and also the location of the interface height, which separates the two layer stratification, are obtainable from the model. To validate the theoretical model, small scale laboratory experiments were carried out. Water was used as the working medium with buoyancy being driven directly by temperature differences. Theoretical results were compared with experimental data and overall good agreement was found. A CASE award project with Arup.

  4. On condensation driven by electrostatic interactions in macroionic solutions

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.

    1989-04-01

    Liquid-vapour phase separation, as it normally follows from attractive interactions, is demonstrated under pure Coulomb interactions for the primitive model of macroionic solutions in the mean spherical approximation and related to observations on dilute solutions of highly charged latex particles. It is stressed that the corresponding effective pair potential between macro-ions is of the DLVO repulsive type. (author). 14 refs, 2 figs

  5. A Model of Secondary Hydrocarbon Migration As a Buoyancy-Driven Separate Phase Flow Un modèle de migration secondaire des hydrocarbures considéré comme un écoulement en phases séparées régi par la poussée d'Archimède

    Directory of Open Access Journals (Sweden)

    Lehner F. K.

    2006-11-01

    Full Text Available A mathematical model of secondary migration is described which permits the prediction of hydrocarbon migration and accumulation patterns in a sedimentary basin, if source rock expulsion rates and geometrical and hydraulic properties of major carrier systems are known through geological time. In this model, secondary migration is treated as buoyancy-driven, segregated flow of hydrocarbons in hydrostatic aquifers. Lateral, updip migration is conceived as a Boussinesq-type, free-surface flow, with source and sink terms representing supply from source rocks and leakage through cap rocks and faults. This permits a two-dimensional, map-view mathematical description of a three-dimensional, time-dependent secondary migration system. A nine-point finite difference approximation has been developed to minimize numerical dispersion, and upstream-weighting is used to obtain stable solutions. Example computations for simple, single carrier bed structures are presented. L'article décrit un modèle mathématique de migration secondaire prédisant la migration des hydrocarbures et leur accumulation dans un bassin sédimentaire, lorsque les taux d'expulsion des roches mères et les propriétés géométriques et hydrauliques des principaux systèmes de drainage sont connus à l'échelle du temps géologique. Dans ce modèle, la migration secondaire est traitée comme un écoulement des hydrocarbures en phase séparée, contrôlé par la poussée d'Archimède, dans des aquifères hydrostatiques. La migration latérale est considérée comme un écoulement de type Boussinesq, à surface libre, avec des termes sources et puits représentant les apports venant des roches mères et les fuites à travers les couvertures et les failles. Ceci permet une description mathématique bidimensionnelle cartographiable d'un système de migration secondaire tridimensionnel et dépendant du temps. On utilise une approximation type différences finies à neuf points pour minimiser

  6. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Day, Christy M.; Determan, John C.

    2015-01-01

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  7. Simulator for an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Day, Christy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    LANL has developed a process to generate a progressive family of system models for a fissile solution system. This family includes a dynamic system simulation comprised of coupled nonlinear differential equations describing the time evolution of the system. Neutron kinetics, radiolytic gas generation and transport, and core thermal hydraulics are included in the DSS. Extensions to explicit operation of cooling loops and radiolytic gas handling are embedded in these systems as is a stability model. The DSS may then be converted to an implementation in Visual Studio to provide a design team the ability to rapidly estimate system performance impacts from a variety of design decisions. This provides a method to assist in optimization of the system design. Once design has been generated in some detail the C++ version of the system model may then be implemented in a LabVIEW user interface to evaluate operator controls and instrumentation and operator recognition and response to off-normal events. Taken as a set of system models the DSS, Visual Studio, and LabVIEW progression provides a comprehensive set of design support tools.

  8. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  9. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    OpenAIRE

    Xiao-Li Ding; Juan J. Nieto

    2018-01-01

    In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochast...

  10. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications

    Directory of Open Access Journals (Sweden)

    Xiao-Li Ding

    2018-01-01

    Full Text Available In this paper, we investigate analytical solutions of multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. We firstly decompose homogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions into independent differential subequations, and give their analytical solutions. Then, we use the variation of constant parameters to obtain the solutions of nonhomogeneous multi-time scale fractional stochastic differential equations driven by fractional Brownian motions. Finally, we give three examples to demonstrate the applicability of our obtained results.

  11. 14 CFR 29.755 - Hull buoyancy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hull buoyancy. 29.755 Section 29.755... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Floats and Hulls § 29.755 Hull buoyancy. Water-based and amphibian rotorcraft. The hull and auxiliary floats, if used, must have enough...

  12. SuperLig Ion Exchange Resin Swelling and Buoyancy Study

    International Nuclear Information System (INIS)

    Hassan, N.M.

    2000-01-01

    The objective of this study was to achieve a fundamental understanding of SuperLig resin swelling and shrinking characteristics, which lead to channeling and early breakthrough during loading cycles. The density of salt solution that causes resin floating was also determined to establish a limit for operation. Specific tests performed include (a) pH dependence, (b) ionic strength dependence and (c) buoyancy effect vs. simulant composition

  13. New Solutions to Line-Driven Winds of Hot Massive Stars

    Science.gov (United States)

    Gormaz-Matamala, Alex C.; Curé, Michel; Cidale, Lydia; Venero, Roberto

    2017-11-01

    In the frame of radiation driven wind theory (Castor et al.1975), we present self-consistent hydrodynamical solutions to the line-force parameters (k, α, δ) under LTE conditions. Hydrodynamic models are provided by HydWind (Curé 2004). We evaluate these results with those ones previously found in literature, focusing in different regions of the optical depth to be used to perform the calculations. The values for mass-loss rate and terminal velocity obtained from our calculations are also presented. We also examine the line-force parameters for the case when large changes in ionization throughout the wind occurs (δ-slow solutions, Curé et al.2011).

  14. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    International Nuclear Information System (INIS)

    Poe, C.H.; Owocki, S.P.; Castor, J.I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable. 34 refs

  15. Flows and Stratification of an Enclosure Containing Both Localised and Vertically Distributed Sources of Buoyancy

    Science.gov (United States)

    Partridge, Jamie; Linden, Paul

    2013-11-01

    We examine the flows and stratification established in a naturally ventilated enclosure containing both a localised and vertically distributed source of buoyancy. The enclosure is ventilated through upper and lower openings which connect the space to an external ambient. Small scale laboratory experiments were carried out with water as the working medium and buoyancy being driven directly by temperature differences. A point source plume gave localised heating while the distributed source was driven by a controllable heater mat located in the side wall of the enclosure. The transient temperatures, as well as steady state temperature profiles, were recorded and are reported here. The temperature profiles inside the enclosure were found to be dependent on the effective opening area A*, a combination of the upper and lower openings, and the ratio of buoyancy fluxes from the distributed and localised source Ψ =Bw/Bp . Industrial CASE award with ARUP.

  16. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    Science.gov (United States)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  17. Moving Towards a Science-Driven Workbench for Earth Science Solutions

    Science.gov (United States)

    Graves, S. J.; Djorgovski, S. G.; Law, E.; Yang, C. P.; Keiser, K.

    2017-12-01

    The NSF-funded EarthCube Integration and Test Environment (ECITE) prototype was proposed as a 2015 Integrated Activities project and resulted in the prototyping of an EarthCube federated cloud environment and the Integration and Testing Framework. The ECITE team has worked with EarthCube science and technology governance committees to define the types of integration, testing and evaluation necessary to achieve and demonstrate interoperability and functionality that benefit and support the objectives of the EarthCube cyber-infrastructure. The scope of ECITE also includes reaching beyond NSF and EarthCube to work with the broader Earth science community, such as the Earth Science Information Partners (ESIP) to incorporate lessons learned from other testbed activities, and ultimately provide broader community benefits. This presentation will discuss evolving ECITE ideas for a science-driven workbench that will start with documented science use cases, map the use cases to solution scenarios that identify the available technology and data resources that match the use case, the generation of solution workflows and test plans, the testing and evaluation of the solutions in a cloud environment, and finally the documentation of identified technology and data gaps that will assist with driving the development of additional EarthCube resources.

  18. Retention behavior of neutral solutes in pressurized flow-driven capillary electrochromatography using an ODS column.

    Science.gov (United States)

    Nakagawa, Hiroyuki; Kitagawa, Shinya; Araki, Shuki; Ohtani, Hajime

    2006-02-01

    Several alkyl benzenes are separated by pressurized flow-driven capillary electrochromatography using a temperature-controlled capillary column packed with octadecyl siloxane-modified silica gel, and the effect of applied voltage on the retention is investigated. The van't Hoff plot shows good linearity at the column temperature between 305 and 330 K under applications from -6 to +6 kV. The applied voltage causes a relatively large variation in the enthalpy and the entropy of transfer of the solute from the mobile phase to the stationary phase (> 20%). However, the direction of variation in the enthalpy is almost opposite to that in the entropy, both of which might compensate each other. Therefore, the retention factor is not significantly varied (< 4%) by the application of voltage.

  19. Feedback mechanisms of shallow convective clouds in a warmer climate as demonstrated by changes in buoyancy

    Science.gov (United States)

    Dagan, G.; Koren, I.; Altaratz, O.; Feingold, G.

    2018-05-01

    Cloud feedbacks could influence significantly the overall response of the climate system to global warming. Here we study the response of warm convective clouds to a uniform temperature change under constant relative humidity (RH) conditions. We show that an increase in temperature drives competing effects at the cloud scale: a reduction in the thermal buoyancy term and an increase in the humidity buoyancy term. Both effects are driven by the increased contrast in the water vapor content between the cloud and its environment, under warming with constant RH. The increase in the moisture content contrast between the cloud and its environment enhances the evaporation at the cloud margins, increases the entrainment, and acts to cool the cloud. Hence, there is a reduction in the thermal buoyancy term, despite the fact that theoretically this term should increase.

  20. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations

  1. Buoyancy-driven flow excursions in fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-09-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating heavy water moderator downward through channels in cylindrical fuel tubes. Powers were limited to safeguard against a flow excursion in one of more of these parallel channels. During-full-power operation, limits safeguarded against a boiling flow excursion. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increased beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of the limiting power for previous long-term reactor operations.

  2. Buoyancy-driven flow excursions in fuel assemblies

    International Nuclear Information System (INIS)

    Laurinat, J.E.; Paul, P.K.; Menna, J.D.

    1995-01-01

    A power limit criterion was developed for a postulated Loss of Pumping Accident (LOPA) in one of the recently shut down heavy water production reactors at the Savannah River Site. These reactors were cooled by recirculating moderator downward through channels in cylindrical fuel tubes. Powers were limited to prevent a flow excursion from occurring in one or more of these parallel channels. During full-power operation, limits prevented a boiling flow excursion from taking place. At low flow rates, during the addition of emergency cooling water, buoyant forces reverse the flow in one of the coolant channels before boiling occurs. As power increases beyond the point of flow reversal, the maximum wall temperature approaches the fluid saturation temperature, and a thermal excursion occurs. The power limit criterion for low flow rates was the onset of flow reversal. To determine conditions for flow reversal, tests were performed in a mock-up of a fuel assembly that contained two electrically heated concentric tubes surrounded by three flow channels. These tests were modeled using a finite difference thermal-hydraulic code. According to code calculations, flow reversed in the outer flow channel before the maximum wall temperature reached the local fluid saturation temperature. Thermal excursions occurred when the maximum wall temperature approximately equaled the saturation temperature. For a postulated LOPA, the flow reversal criterion for emergency cooling water addition was more limiting than the boiling excursion criterion for full power operation. This criterion limited powers to 37% of historical levels

  3. An Analysis of Tax Buoyancy Rates

    Directory of Open Access Journals (Sweden)

    Farooq Rasheed

    2006-10-01

    Full Text Available By using econometric techniques for estimating tax elasticities, this paper findssignificant but low tax buoyancy rates for GDP, M0 and volume of trade. Surprisingly,the theoretically important factor of tax evasion (SFTR was found to be ineffective. Thisindicates that SFTR is not an adequate measure of tax evasion. There is no significantassociation between tax revenue growth and investment, credit, public debt and inflation.This illustrates the weakness of the tax regime in Pakistan.

  4. Data-Driven Hint Generation in Vast Solution Spaces: A Self-Improving Python Programming Tutor

    Science.gov (United States)

    Rivers, Kelly; Koedinger, Kenneth R.

    2017-01-01

    To provide personalized help to students who are working on code-writing problems, we introduce a data-driven tutoring system, ITAP (Intelligent Teaching Assistant for Programming). ITAP uses state abstraction, path construction, and state reification to automatically generate personalized hints for students, even when given states that have not…

  5. Discretization of Stationary Solutions of Stochastic Systems Driven by Fractional Brownian Motion

    International Nuclear Information System (INIS)

    Garrido-Atienza, Maria J.; Kloeden, Peter E.; Neuenkirch, Andreas

    2009-01-01

    In this article we study the behavior of dissipative systems with additive fractional noise of any Hurst parameter. Under a one-sided dissipative Lipschitz condition on the drift the continuous stochastic system is shown to have a unique stationary solution, which pathwise attracts all other solutions. The same holds for the discretized stochastic system, if the drift-implicit Euler method is used for the discretization. Moreover, the unique stationary solution of the drift-implicit Euler scheme converges to the unique stationary solution of the original system as the stepsize of the discretization decreases

  6. Natural ventilation of buildings: opposing wind and buoyancy

    Science.gov (United States)

    Linden, Paul; Hunt, Gary

    1998-11-01

    The use of natural ventilation in buildings is an attractive way to reduce energy usage thereby reducing costs and CO2 emissions. Generally, it is necessary to remove excess heat from a building and the designer can use the buoyancy forces associated with the above ambient temperatures within the building to drive a flow - 'stack' ventilation. The most efficient mode is displacement ventilation where warm air accumulates near the top of the building and flows out through upper level vents and cooler air flows in at lower levels. Ventilation will also be driven between these lower and upper openings by the wind. We report on laboratory modeling and theory which investigates the effects of an opposing wind on stack ventilation driven by a constant source of heat within a space under displacement ventilation. We show that there is a critical wind speed, expressed in dimensionless terms as a critical Froude number, above which displacement ventilation is replaced by (less efficient) mixing ventilation with reversed flow. Below this critical speed, displacement ventilation, in which the interior has a two-layer stratification, is maintained. The criterion for the change in ventilation mode is derived from general considerations of mixing efficiencies in stratified flows. We conclude that even when wind effects might appear to be dominant, the inhibition of mixing by the stable stratification within the space ensures that stack ventilation can operate over a wide range of apparently adverse conditions.

  7. Market-Driven Solutions to Economic, Environmental, and Social Issues Related to Water Management in the Western USA

    Directory of Open Access Journals (Sweden)

    Jordan A. Clayton

    2009-10-01

    Full Text Available Water management issues continue to plague the western United States, including rapid population growth, degraded aquatic ecosystems, unfulfilled claims to American Indian users, the threat of global warming, an economic recession, and many other issues. This essay outlines some advantages of market-driven reforms to the management of water resources in the western USA. Historical and contemporary western water resource issues are examined from economic, environmental, and social viewpoints. In all such contexts, it is argued that regulated water markets provide flexible and just solutions to western water dilemmas, and reallocations may provide much-needed additional water supply.

  8. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  9. Accelerator-driven transmutation: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2000-01-01

    This paper discusses current technical and political issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution and improvements of the design technologies are identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Transmutation of waste has been historically viewed by nuclear engineers as one of those technologies that is too good to be true and probably too expensive to be feasible. The concept discussed in the present paper uses neutrons ( which result from protons accelerated into spallation targets)to transmute the major very long-lived hazardous materials such as the radioactive isotopes of technetium, iodine, neptunium, plutonium, americium, and curium. Although not a new concept, accelerator-driven transmutation technology (ADTT) lead by a team at Los Alamos National Laboratory (LANL) has made some significant advances which are discussed in the present paper. (authors)

  10. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: Analytical and semi-analytical solutions

    Science.gov (United States)

    Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Pinho, F. T.

    2016-09-01

    In this work, we present a series of solutions for combined electro-osmotic and pressure-driven flows of viscoelastic fluids in microchannels. The solutions are semi-analytical, a feature made possible by the use of the Debye-Hückel approximation for the electrokinetic fields, thus restricted to cases with small electric double-layers, in which the distance between the microfluidic device walls is at least one order of magnitude larger than the electric double-layer thickness. To describe the complex fluid rheology, several viscoelastic differential constitutive models were used, namely, the simplified Phan-Thien-Tanner model with linear, quadratic or exponential kernel for the stress coefficient function, the Johnson-Segalman model, and the Giesekus model. The results obtained illustrate the effects of the Weissenberg number, the Johnson-Segalman slip parameter, the Giesekus mobility parameter, and the relative strengths of the electro-osmotic and pressure gradient-driven forcings on the dynamics of these viscoelastic flows.

  11. Behavior of neutral solutes in pressurized flow driven electrochromatography using a mixed stationary phase of ODS and anion-exchange.

    Science.gov (United States)

    Kitagawa, Shinya; Tsuda, Takao

    2003-05-02

    The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.

  12. Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon.

    Science.gov (United States)

    Hu, L H; Xu, Y; Zhu, W; Wu, L; Tang, F; Lu, K H

    2011-09-15

    The dispersion of buoyancy driven smoke soot and carbon monoxide (CO) gas, which was ejected out from side building into an urban street canyon with aspect ratio of 1 was investigated by large eddy simulation (LES) under a perpendicular wind flow. Strong buoyancy effect, which has not been revealed before, on such pollution dispersion in the street canyon was studied. The buoyancy release rate was 5 MW. The wind speed concerned ranged from 1 to 7.5m/s. The characteristics of flow pattern, distribution of smoke soot and temperature, CO concentration were revealed by the LES simulation. Dimensionless Froude number (Fr) was firstly introduced here to characterize the pollutant dispersion with buoyancy effect counteracting the wind. It was found that the flow pattern can be well categorized into three regimes. A regular characteristic large vortex was shown for the CO concentration contour when the wind velocity was higher than the critical re-entrainment value. A new formula was theoretically developed to show quantitatively that the critical re-entrainment wind velocities, u(c), for buoyancy source at different floors, were proportional to -1/3 power of the characteristic height. LES simulation results agreed well with theoretical analysis. The critical Froude number was found to be constant of 0.7. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media

    International Nuclear Information System (INIS)

    Oliveira, F.L. de; Maiorino, J.R.; Santos, R.S.

    2007-01-01

    This paper describes a closed form solution obtained by the expansion method for the general time dependent diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. Thus, first an analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent without precursors was also solved and the results inter compared with results obtained by the previous one group models for a given fast homogeneous media, and different types of source transients. The results are being compared with the obtained by numerical methods. (author)

  14. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Czech Academy of Sciences Publication Activity Database

    Cirrone, G.A.P.; Romano, F.; Scuderi, Valentina; Amato, A.; Candiano, G.; Cuttone, G.; Giove, D.; Korn, Georg; Krása, Josef; Leanza, R.; Manna, R.; Maggiore, M.; Marchese, V.; Margarone, Daniele; Milluzzo, G.; Petringa, G.; Sabini, M.G.; Schillaci, F.; Tramontana, A.; Valastro, L.; Velyhan, Andriy

    2015-01-01

    Roč. 796, Oct (2015), s. 99-103 ISSN 0168-9002 R&D Projects: GA MŠk ED1.1.00/02.0061; GA MŠk EE2.3.20.0279; GA MŠk EE2.3.30.0057 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : laser-driven ion * beam-transport * Faraday cup dosimetry * absolute dosimetry Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.200, year: 2015

  15. Accelerator-driven transmutation technology: a high-tech solution to some nuclear waste problems

    International Nuclear Information System (INIS)

    Hechanova, A.E.

    2001-01-01

    This paper discusses current technical and non-technical issues regarding the innovative concept of using accelerator-driven transmutation processes for nuclear waste management. Two complex and related issues are addressed. First, the evolution of the current U.S. conceptual design is identified to indicate that there has been sufficient technological advancement with regard to a 1991 scientific peer review to warrant the advent of a large-scale national research and development program. Second, the economics and politics of the transmutation system are examined to identify non-technical barriers to the implementation of the program. Although a number of key challenges are identified in this paper, the benefits of the research and development effort and the potential paradigm shift in attitude toward resource stewardship could greatly enhance public confidence in nuclear waste management that will have rapid positive repercussions on nuclear technology research and commercial applications. (author)

  16. Astronaut Training in the Neutral Buoyancy Simulator

    Science.gov (United States)

    1993-01-01

    This photograph shows an STS-61 astronaut training for the Hubble Space Telescope (HST) servicing mission (STS-61) in the Marshall Space Flight Center's (MSFC's) Neutral Buoyancy Simulator (NBS). Two months after its deployment in space, scientists detected a 2-micron spherical aberration in the primary mirror of the HST that affected the telescope's ability to focus faint light sources into a precise point. This imperfection was very slight, one-fiftieth of the width of a human hair. A scheduled Space Service servicing mission (STS-61) in 1993 permitted scientists to correct the problem. The MSFC NBS provided an excellent environment for testing hardware to examine how it would operate in space and for evaluating techniques for space construction and spacecraft servicing.

  17. Computation of the homogeneous and forced solutions of a finite length, line-driven, submerged plate.

    Science.gov (United States)

    DiPerna, Daniel T; Blake, William K; DiPerna, Xingguang Z

    2006-12-01

    A formulation is developed to predict the vibration response of a finite length, submerged plate due to a line drive. The formulation starts by describing the fluid in terms of elliptic cylinder coordinates, which allows the fluid loading term to be expressed in terms of Mathieu functions. By moving the fluid loading term to the right-hand side of the equation, it is considered to be a force. The operator that remains on the left-hand side is the same as that of the in vacuo plate: a fourth-order, constant coefficient, ordinary differential equation. Therefore, the problem appears to be an inhomogeneous ordinary differential equation. The solution that results has the same form as that of the in vacuo plate: the sum of a forced solution, and four homogeneous solutions, each of which is multiplied by an arbitrary constant. These constants are then chosen to satisfy the structural boundary conditions on the two ends of the plate. Results for the finite plate are compared to the infinite plate in both the wave number and spatial domains. The theoretical predictions of the plate velocity response are also compared to results from finite element analysis and show reasonable agreement over a large frequency range.

  18. Temperature and pH driven association in uranyl aqueous solutions

    Directory of Open Access Journals (Sweden)

    M. Druchok

    2012-12-01

    Full Text Available An association behavior of uranyl ions in aqueous solutions is explored. For this purpose a set of all-atom molecular dynamics simulations is performed. During the simulation, the fractions of uranyl ions involved in dimer and trimer formations were monitored. To accompany the fraction statistics one also collected distributions characterizing average times of the dimer and trimer associates. Two factors effecting the uranyl association were considered: temperature and pH. As one can expect, an increase of the temperature decreases an uranyl capability of forming the associates, thus lowering bound fractions/times and vice versa. The effect of pH was modeled by adding H+ or OH- ions to a "neutral" solution. The addition of hydroxide ions OH- favors the formation of the associates, thus increasing bound times and fractions. The extra H+ ions in a solution produce an opposite effect, thus lowering the uranyl association capability. We also made a structural analysis for all the observed associates to reveal the mutual orientation of the uranyl ions.

  19. BUOYANCY INSTABILITIES IN A WEAKLY COLLISIONAL INTRACLUSTER MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, Matthew W.; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, 4 Ivy Lane, Princeton, NJ 08544 (United States); Bogdanovic, Tamara; Reynolds, Christopher S., E-mail: kunz@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: tamarab@astro.umd.edu, E-mail: chris@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-08-01

    The intracluster medium (ICM) of galaxy clusters is a weakly collisional plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign: the magnetothermal instability (MTI) in the outskirts of clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena magnetohydrodynamic code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e., Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few Multiplication-Sign 10 kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during cold filament formation produces accompanying hot filaments, which can be searched for in deep Chandra observations of cool-core clusters. In the case of MTI, anisotropic viscosity leads to a nonlinear state with a folded magnetic field structure in which field-line curvature and field strength are anti-correlated. These results demonstrate that, if the HBI and MTI are relevant for shaping the properties of the ICM, one must self-consistently include anisotropic viscosity in order to obtain even qualitatively correct results.

  20. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  1. Prominence Bubbles and Plumes: Thermo-magnetic Buoyancy in Coronal Cavity Systems

    Science.gov (United States)

    Berger, Thomas; Hurlburt, N.

    2009-05-01

    The Hinode/Solar Optical Telescope continues to produce high spatial and temporal resolution images of solar prominences in both the Ca II 396.8 nm H-line and the H-alpha 656.3 nm line. Time series of these images show that many quiescent prominences produce large scale (50 Mm) dark "bubbles" that "inflate" into, and sometimes burst through, the prominence material. In addition, small-scale (2--5 Mm) dark plumes are seen rising into many quiescent prominences. We show typical examples of both phenomena and argue that they originate from the same mechanism: concentrated and heated magnetic flux that rises due to thermal and magnetic buoyancy to equilibrium heights in the prominence/coronal-cavity system. More generally, these bubbles and upflows offer a source of both magnetic flux and mass to the overlying coronal cavity, supporting B.C. Low's theory of CME initiation via steadily increasing magnetic buoyancy breaking through the overlying helmut streamer tension forces. Quiescent prominences are thus seen as the lowermost parts of the larger coronal cavity system, revealing through thermal effects both the cooled downflowing "drainage" from the cavity and the heated upflowing magnetic "plasmoids" supplying the cavity. We compare SOT movies to new 3D compressible MHD simulations that reproduce the dark turbulent plume dynamics to establish the magnetic and thermal character of these buoyancy-driven flows into the corona.

  2. Droplet breakup driven by shear thinning solutions in a microfluidic T-junction

    Science.gov (United States)

    Chiarello, Enrico; Gupta, Anupam; Mistura, Giampaolo; Sbragaglia, Mauro; Pierno, Matteo

    2017-12-01

    Droplet-based microfluidics turned out to be an efficient and adjustable platform for digital analysis, encapsulation of cells, drug formulation, and polymerase chain reaction. Typically, for most biomedical applications, the handling of complex, non-Newtonian fluids is involved, e.g., synovial and salivary fluids, collagen, and gel scaffolds. In this study, we investigate the problem of droplet formation occurring in a microfluidic T-shaped junction, when the continuous phase is made of shear thinning liquids. At first, we review in detail the breakup process, providing extensive, side-by-side comparisons between Newtonian and non-Newtonian liquids over unexplored ranges of flow conditions and viscous responses. The non-Newtonian liquid carrying the droplets is made of Xanthan solutions, a stiff, rodlike polysaccharide displaying a marked shear thinning rheology. By defining an effective Capillary number, a simple yet effective methodology is used to account for the shear-dependent viscous response occurring at the breakup. The droplet size can be predicted over a wide range of flow conditions simply by knowing the rheology of the bulk continuous phase. Experimental results are complemented with numerical simulations of purely shear thinning fluids using lattice Boltzmann models. The good agreement between the experimental and numerical data confirm the validity of the proposed rescaling with the effective Capillary number.

  3. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions

    Directory of Open Access Journals (Sweden)

    Puja Khare

    2017-05-01

    Full Text Available Biochar prepared from aromatic spent was used as adsorbent for assessing its removal capacity of cadmium, chromium, copper and lead from aqueous acidic solutions. For the optimization of the processes, separate experiments were setup in fixed bed columns of biochar prepared from different biomasses in variable sizes at different temperatures, metal concentrations, flow rate and time. The effect of the above parameters on adsorption of metals was assessed in terms of maximum adsorption capacity, kinetics, theorem and thermodynamics. Results show that maximum removal of each metal was 60 mg/g. The adsorption equilibrium data obeyed the Freundlich model and the kinetic data were well described by the pseudo-second-order model. The adsorption process is believed to proceed by an initial surface adsorption followed by intra-particle diffusion. In this regard to the proposed mechanism, modeling results implied that exchange of the hydrogen occurs during the low loading of metal. Opposite is true for the calcium, magnesium and sodium ions. Thermodynamic studies revealed the feasibility and endothermic nature of the system. Treatment of acidic mine water with biochar suggests that it buffers the acid and is capable of efficient removal of these metals.

  4. Effect of buoyancy on fuel containment in an open-cycle gas-core nuclear rocket engine.

    Science.gov (United States)

    Putre, H. A.

    1971-01-01

    Analysis aimed at determining the scaling laws for the buoyancy effect on fuel containment in an open-cycle gas-core nuclear rocket engine, so conducted that experimental conditions can be related to engine conditions. The fuel volume fraction in a short coaxial flow cavity is calculated with a programmed numerical solution of the steady Navier-Stokes equations for isothermal, variable density fluid mixing. A dimensionless parameter B, called the Buoyancy number, was found to correlate the fuel volume fraction for large accelerations and various density ratios. This parameter has the value B = 0 for zero acceleration, and B = 350 for typical engine conditions.

  5. Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique.

    Science.gov (United States)

    Ito, Takashi; Uchiyama, Hiroaki; Kozuka, Hiromitsu

    2017-05-30

    We suggest a novel wet coating process for preparing indium tin oxide (ITO) films from simple solutions containing only metal salts and water via evaporation-driven film deposition during low-speed dip coating. Homogeneous ITO precursor films were deposited on silica glass substrates from the aqueous solutions containing In(NO 3 ) 3 ·3H 2 O and SnCl 4 ·5H 2 O by dip coating at substrate withdrawal speeds of 0.20-0.50 cm min -1 and then crystallized by the heat treatment at 500-800 °C for 10-60 min under N 2 gas flow of 0.5 L min -1 . The ITO films heated at 600 °C for 30 min had a high optical transparency in the visible range and a good electrical conductivity. Multiple-coating ITO films obtained with five-times dip coating exhibited the lowest sheet (ρ S ) and volume (ρ V ) resistivities of 188 Ω sq -1 and 4.23 × 10 -3 Ω cm, respectively.

  6. Buoyancy flow in fractures intersecting a nuclear waste repository

    International Nuclear Information System (INIS)

    Wang, J.S.Y.; Tsang, C.F.

    1980-07-01

    The thermally induced buoyancy flow in fractured rocks around a nuclear waste repository is of major concern in the evaluation of the regional, long-term impact of nuclear waste disposal in geological formation. In this study, buoyancy flow and the development of convective cells are calculated in vertical fractures passing through or positioned near a repository. Interaction between buoyancy flow and regional hydraulic gradient is studied as a function of time, and the interference of intersecting fractures with each other is also discussed

  7. Polymer solution phase separation: Microgravity simulation

    Science.gov (United States)

    Cerny, Lawrence C.; Sutter, James K.

    1989-01-01

    In many multicomponent systems, a transition from a single phase of uniform composition to a multiphase state with separated regions of different composition can be induced by changes in temperature and shear. The density difference between the phase and thermal and/or shear gradients within the system results in buoyancy driven convection. These differences affect kinetics of the phase separation if the system has a sufficiently low viscosity. This investigation presents more preliminary developments of a theoretical model in order to describe effects of the buoyancy driven convection in phase separation kinetics. Polymer solutions were employed as model systems because of the ease with which density differences can be systematically varied and because of the importance of phase separation in the processing and properties of polymeric materials. The results indicate that the kinetics of the phase separation can be performed viscometrically using laser light scattering as a principle means of following the process quantitatively. Isopycnic polymer solutions were used to determine the viscosity and density difference limits for polymer phase separation.

  8. Is academic buoyancy anything more than adaptive coping?

    Science.gov (United States)

    Putwain, David W; Connors, Liz; Symes, Wendy; Douglas-Osborn, Erica

    2012-05-01

    Academic buoyancy refers to a positive, constructive, and adaptive response to the types of challenges and setbacks experienced in a typical and everyday academic setting. In this project we examined whether academic buoyancy explained any additional variance in test anxiety over and above that explained by coping. Two hundred and ninety-eight students in their final two years of compulsory schooling completed self-report measures of academic buoyancy, coping, and test anxiety. Results suggested that buoyancy was inversely related to test anxiety and unrelated to coping. With the exception of test-irrelevant thoughts, test anxiety was positively related to avoidance coping and social support. Test-irrelevant thoughts were inversely related to task focus, unrelated to social support, and positively related to avoidance. A hierarchical regression analysis showed that academic buoyancy explained a significant additional proportion of variance in test anxiety when the variance for coping had already been accounted for. These findings suggest that academic buoyancy can be considered as a distinct construct from that of adaptive coping.

  9. Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior

    International Nuclear Information System (INIS)

    Chang, Hung-wen; Hsu, Cheng-che

    2011-01-01

    The effect of frequency on the characteristics of plasmas in saline solution driven by 50-1000 Hz ac power is studied. Two distinct modes, namely bubble and jetting modes, are identified. The bubble mode occurs under low frequencies. In this mode, a millimeter-sized bubble is tightly attached to the electrode tip and oscillates with the applied voltage. With an increase in frequency, it shows the jetting mode, in which bubbles, hundreds of micometers in diameter, are continuously formed and jetted away from the electrode surface. Such a significant change in the bubble behavior influences the power input at a given applied voltage and significantly affects the plasma behavior. In spite of the fact that no significant difference is seen in the optical emission spectra, the broadening of the H β peak shows that the bubble mode has a lower electron density than that of the jetting mode. The temporally resolved optical emission intensities show light emission in the negative half of the power period regardless of the modes. This shows clearly that the driving frequency significantly influences the bubble dynamics, which in turn alters the plasma behavior.

  10. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Science.gov (United States)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  11. Health Care Crossroads: What's the Right Solution? Putting Consumer-Driven Ideas to Work at Louisiana State University

    Science.gov (United States)

    Benedict, Forest; Guinn, Shayla

    2006-01-01

    Idling at the crossroads and faced with ever-increasing health care costs, the Louisiana State University System chose the road less traveled and instituted a consumer-driven benefits plan. In this article, the authors provide an overview of the consumer-driven programs LSU has adopted and how these programs have helped curb costs and improve the…

  12. The Effects of Buoyancy on Characteristics of Turbulent Nonpremixed Jet Flames

    Science.gov (United States)

    Idicheria, Cherian; Boxx, Isaac; Clemens, Noel

    2002-11-01

    This work addresses the influence of buoyant forces on the underlying structure of turbulent nonpremixed jet flames. Buoyancy effects are investigated by studying transitional and turbulent propane and ethylene flames (Re_D=2500-10500) at normal, low and microgravity conditions. The reduced gravity experiments are conducted by dropping a combustion rig in the University of Texas 1.25-second drop tower and the NASA Glenn 2.2-second drop tower. The diagnostic employed is high-speed luminosity imaging using a CCD camera. The images obtained are used to compare flame length, mean, RMS and flame tip oscillation characteristics The results showed that, in contrast to previous studies, the high Reynolds number flames at all gravity levels were essentially identical. Furthermore, the parameter ξL (Becker and Yamazaki, 1978) is sufficient for quantifying the effects of buoyancy on the flame characteristics. The large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided ξL is less than approximately 3.

  13. Buoyancy disorders in pet axolotls Ambystoma mexicanum: three cases.

    Science.gov (United States)

    Takami, Yoshinori; Une, Yumi

    2018-01-31

    As far as we are aware, there are no previous reports on the pathologic conditions of buoyancy disorders in Ambystoma mexicanum. Herein, we describe various clinical test results, clinical outcomes, and the pathological findings of an experimental pneumonectomy procedure in 3 A. mexicanum exhibiting abnormal buoyancy. The 3 pet A. mexicanum were adults, and their respective ages and body weights were 1, 5, and 6 yr and 48, 55, and 56 g. Two of these cases were confirmed via radiographic examination to have free air within the body cavity, and all 3 cases were found via ultrasonography to have an acoustic shadow within the body cavity and were diagnosed with pneumocoelom. Lung perforations were detected macroscopically in 2 of the cases, and all 3 cases had fibrosis in the caudal ends of the lungs. Removal of the lung lesions eliminated the abnormal buoyancy in all 3 cases. We concluded that air had leaked into the body cavity from the lungs, and we propose that lung lesions are an important cause of buoyancy disorders in A. mexicanum.

  14. Use of an Arduino to Study Buoyancy Force

    Science.gov (United States)

    Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B.

    2018-01-01

    The study of buoyancy becomes very interesting when we measure the apparent weight of the body and the liquid vessel weight. In this paper, we propose an experimental apparatus that measures both the forces mentioned before as a function of the depth that a cylinder is sunk into the water. It is done using two load cells connected to an Arduino.…

  15. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    Science.gov (United States)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  16. 46 CFR 160.010-5 - Buoyant apparatus with plastic foam buoyancy.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Buoyant apparatus with plastic foam buoyancy. 160.010-5... Vessels § 160.010-5 Buoyant apparatus with plastic foam buoyancy. (a) Buoyant apparatus with plastic foam buoyancy must have a plastic foam body with an external protective covering. The body may be reinforced as...

  17. Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method

    OpenAIRE

    Syrakos, Alexandros; Georgiou, Georgios C.; Alexandrou, Andreas N.

    2016-01-01

    We investigate the performance of the finite volume method in solving viscoplastic flows. The creeping square lid-driven cavity flow of a Bingham plastic is chosen as the test case and the constitutive equation is regularised as proposed by Papanastasiou [J. Rheol. 31 (1987) 385-404]. It is shown that the convergence rate of the standard SIMPLE pressure-correction algorithm, which is used to solve the algebraic equation system that is produced by the finite volume discretisation, severely det...

  18. Seawater-driven forward osmosis for enriching nitrogen and phosphorous in treated municipal wastewater: effect of membrane properties and feed solution chemistry.

    Science.gov (United States)

    Xue, Wenchao; Tobino, Tomohiro; Nakajima, Fumiyuki; Yamamoto, Kazuo

    2015-02-01

    Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Characteristics of buoyancy force on stagnation point flow with magneto-nanoparticles and zero mass flux condition

    Directory of Open Access Journals (Sweden)

    Iftikhar Uddin

    2018-03-01

    Full Text Available This attempt dedicated to the solution of buoyancy effect over a stretching sheet in existence of MHD stagnation point flow with convective boundary conditions. Thermophoresis and Brownian motion aspects are included. Incompressible fluid is electrically conducted in the presence of varying magnetic field. Boundary layer analysis is used to develop the mathematical formulation. Zero mass flux condition is considered at the boundary. Non-linear ordinary differential system of equations is constructed by means of proper transformations. Interval of convergence via numerical data and plots are developed. Characteristics of involved variables on the velocity, temperature and concentration distributions are sketched and discussed. Features of correlated parameters on Cf and Nu are examined by means of tables. It is found that buoyancy ratio and magnetic parameters increase and reduce the velocity field. Further opposite feature is noticed for higher values of thermophoresis and Brownian motion parameters on concentration distribution. Keywords: Stagnation point, MHD, Nanoparticles, Zero mass flux condition

  20. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  1. Manipulating Microrobots Using Balanced Magnetic and Buoyancy Forces

    Directory of Open Access Journals (Sweden)

    Lin Feng

    2018-01-01

    Full Text Available We present a novel method for the three-dimensional (3D control of microrobots within a microfluidic chip. The microrobot body contains a hollow space, producing buoyancy that allows it to float in a microfluidic environment. The robot moves in the z direction by balancing magnetic and buoyancy forces. In coordination with the motion of stages in the xy plane, we achieved 3D microrobot control. A microgripper designed to grasp micron-scale objects was attached to the front of the robot, allowing it to hold and deliver micro-objects in three dimensions. The microrobot had four degrees of freedom and generated micronewton-order forces. We demonstrate the microrobot’s utility in an experiment in which it grips a 200 μm particle and delivers it in a 3D space.

  2. Simulation of buoyancy-induced turbulent flow from a hot horizontal jet

    KAUST Repository

    El-Amin, Mohamed

    2014-02-01

    Experimental visualizations and numerical simulations of a horizontal hot water jet entering cold water into a rectangular storage tank are described. Three different temperature differences and their corresponding Reynolds numbers are considered. Both experimental visualization and numerical computations are carried out for the same flow and thermal conditions. The realizable k - ε model is used for modeling the turbulent flow while the buoyancy is modeled using the Boussinesq approximation. Polynomial approximations of the water properties are used to compare with the Boussinesq approximation. Numerical solutions are obtained for unsteady flow while pressure, velocity, temperature and turbulence distributions inside the water tank as well as the Froude number are analyzed. The experimental visualizations are performed at intervals of five seconds for all different cases. The simulated results are compared with the visualized results, and both of them show the stratification phenomena and buoyancy force effects due to temperature difference and density variation. After certain times, depending on the case condition, the flow tends to reach a steady state. © 2014 Publishing House for Journal of Hydrodynamics.

  3. Analytical solution of spatial kinetics of the diffusion model for subcritical homogeneous systems driven by external source

    International Nuclear Information System (INIS)

    Oliveira, Fernando Luiz de

    2008-01-01

    This work describes an analytical solution obtained by the expansion method for the spatial kinetics using the diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. An analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent problem without precursors was solved and the numerical results of a finite difference code were compared with the exact results for different transients. (author)

  4. Buoyancy Effects in Turbulent Jet Flames in Crossflow

    Science.gov (United States)

    Boxx, Isaac; Idicheria, Cherian; Clemens, Noel

    2003-11-01

    The aim of this study is to investigate the effects of buoyancy on the structure of turbulent, non-premixed hydrocarbon jet-flames in crossflow (JFICF). This was accomplished using a small jet-in-crossflow facility which can be oriented at a variety of angles with respect to the gravity vector. This facility enables us to alter the relative influence of buoyancy on the JFICF without altering the jet-exit Reynolds number, momentum flux ratio or the geometry of the system. Results are compared to similar, but non-buoyant, JFICF studied in microgravity. Departures of jet-centerline trajectory from the well-known power-law scaling of turbulent JFICF were used to explore the transition from a buoyancy-influenced regime to a momentum dominated one. The primary diagnostic was CCD imaging of soot-luminosity. We present results on ethylene jet flames with jet-exit Reynolds numbers of 1770 to 8000 and momentum flux ratios of 5 to 13.

  5. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  6. Diffusion Driven Combustion Waves in Porous Media

    Science.gov (United States)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  7. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method

    Directory of Open Access Journals (Sweden)

    Yahaya Shagaiya Daniel

    2015-09-01

    Full Text Available This paper investigates the theoretical influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. The model which constituted highly nonlinear governing equations is transformed using similarity solution and then solved using homotopy analysis method (HAM. The analysis is carried out up to the 5th order of approximation and the influences of different physical parameters such as Prandtl number, Grashof number, suction/injection parameter, thermal radiation parameter and heat generation/absorption coefficient and also Hartman number on dimensionless velocity, temperature and the rate of heat transfer are investigated and discussed quantitatively with the aid of graphs. Numerical results obtained are compared with the previous results published in the literature and are found to be in good agreement. It was found that when the buoyancy parameter and the fluid velocity increase, the thermal boundary layer decreases. In case of the thermal radiation, increasing the thermal radiation parameter produces significant increases in the thermal conditions of the fluid temperature which cause more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to increase. The hydrodynamic boundary layer and thermal boundary layer thickness increase as a result of increase in radiation.

  8. THE DOMINANCE OF NEUTRINO-DRIVEN CONVECTION IN CORE-COLLAPSE SUPERNOVAE

    International Nuclear Information System (INIS)

    Murphy, Jeremiah W.; Dolence, Joshua C.; Burrows, Adam

    2013-01-01

    Multi-dimensional instabilities have become an important ingredient in core-collapse supernova (CCSN) theory. Therefore, it is necessary to understand the driving mechanism of the dominant instability. We compare our parameterized three-dimensional CCSN simulations with other buoyancy-driven simulations and propose scaling relations for neutrino-driven convection. Through these comparisons, we infer that buoyancy-driven convection dominates post-shock turbulence in our simulations. In support of this inference, we present four major results. First, the convective fluxes and kinetic energies in the neutrino-heated region are consistent with expectations of buoyancy-driven convection. Second, the convective flux is positive where buoyancy actively drives convection, and the radial and tangential components of the kinetic energy are in rough equipartition (i.e., K r ∼ K θ + K φ ). Both results are natural consequences of buoyancy-driven convection, and are commonly observed in simulations of convection. Third, buoyant driving is balanced by turbulent dissipation. Fourth, the convective luminosity and turbulent dissipation scale with the driving neutrino power. In all, these four results suggest that in neutrino-driven explosions, the multi-dimensional motions are consistent with neutrino-driven convection.

  9. Positive segregation as a function of buoyancy force during steel ingot solidification

    International Nuclear Information System (INIS)

    Radovic, Zarko; Jaukovic, Nada; Lalovic, Milisav; Tadic, Nebojsa

    2008-01-01

    We analyze theoretically and experimentally solute redistribution in the dendritic solidification process and positive segregation during solidification of steel ingots. Positive segregation is mainly caused by liquid flow in the mushy zone. Changes in the liquid steel velocity are caused by the temperature gradient and by the increase in the solid fraction during solidification. The effects of buoyancy and of the change in the solid fraction on segregation intensity are analyzed. The relationships between the density change, liquid fraction and the steel composition are considered. Such elements as W, Ni, Mo and Cr decrease the effect of the density variations, i.e. they show smaller tendency to segregate. Based on the modeling and experimental results, coefficients are provided controlling the effects of chemical composition, secondary dendrite arm spacing and the solid fraction.

  10. Entropy-driven complex formation of malvidin-3- O-glucoside with common polyphenols in ethanol-water binary solutions

    Science.gov (United States)

    Kunsági-Máté, Sándor; Ortmann, Erika; Kollár, László; Nikfardjam, Martin Pour

    2008-09-01

    The complex formation of malvidin-3- O-glucoside with several polyphenols, the so-called "copigmentation" phenomenon, was studied in aqueous solutions. To simulate the copigmentation process during fermentation, the stability of the formed complexes was examined in dependence of the ethanol content of the aqueous solution. Results indicate that stronger and larger complexes are formed, when the ethanol content exceeds a critical margin of 8 vol.% However, the size of complexes of malvidin/procyanidin and malvidin/epicatechin is drastically reduced above this critical concentration. Fluorescence lifetime and solvent relaxation measurements give insight into the particular processes at molecular level and will help us comprehend the first important steps during winemaking in order to recommend an optimized winemaking technology to ensure extraordinary colour stability in red wines.

  11. A continuous and prognostic convection scheme based on buoyancy, PCMT

    Science.gov (United States)

    Guérémy, Jean-François; Piriou, Jean-Marcel

    2016-04-01

    A new and consistent convection scheme (PCMT: Prognostic Condensates Microphysics and Transport), providing a continuous and prognostic treatment of this atmospheric process, is described. The main concept ensuring the consistency of the whole system is the buoyancy, key element of any vertical motion. The buoyancy constitutes the forcing term of the convective vertical velocity, which is then used to define the triggering condition, the mass flux, and the rates of entrainment-detrainment. The buoyancy is also used in its vertically integrated form (CAPE) to determine the closure condition. The continuous treatment of convection, from dry thermals to deep precipitating convection, is achieved with the help of a continuous formulation of the entrainment-detrainment rates (depending on the convective vertical velocity) and of the CAPE relaxation time (depending on the convective over-turning time). The convective tendencies are directly expressed in terms of condensation and transport. Finally, the convective vertical velocity and condensates are fully prognostic, the latter being treated using the same microphysics scheme as for the resolved condensates but considering the convective environment. A Single Column Model (SCM) validation of this scheme is shown, allowing detailed comparisons with observed and explicitly simulated data. Four cases covering the convective spectrum are considered: over ocean, sensitivity to environmental moisture (S. Derbyshire) non precipitating shallow convection to deep precipitating convection, trade wind shallow convection (BOMEX) and strato-cumulus (FIRE), together with an entire continental diurnal cycle of convection (ARM). The emphasis is put on the characteristics of the scheme which enable a continuous treatment of convection. Then, a 3D LAM validation is presented considering an AMMA case with both observations and a CRM simulation using the same initial and lateral conditions as for the parameterized one. Finally, global

  12. Use of an Arduino to study buoyancy force

    Science.gov (United States)

    Espindola, P. R.; Cena, C. R.; Alves, D. C. B.; Bozano, D. F.; Goncalves, A. M. B.

    2018-05-01

    The study of buoyancy becomes very interesting when we measure the apparent weight of the body and the liquid vessel weight. In this paper, we propose an experimental apparatus that measures both the forces mentioned before as a function of the depth that a cylinder is sunk into the water. It is done using two load cells connected to an Arduino. With this experiment, the student can verify Archimedes’ principle, Newton’s third law, and calculate the density of a liquid. This apparatus can be used in fluid physics laboratories as a substitute for very expensive sensor kits or even to improve too simple approaches, usually employed, but still at low cost.

  13. Modeling the Buoyancy System of a Wave Energy Power Plant

    DEFF Research Database (Denmark)

    Pedersen, Tom S.; Nielsen, Kirsten M.

    2009-01-01

    A nonlinear dynamic model of the buoyancy system in a wave energy power plant is presented. The plant ("Wave Dragon") is a floating device using the potential energy in overtopping waves to produce power. A water reservoir is placed on top of the WD, and hydro turbines lead the water to the sea...... producing electrical power. Through air chambers it is possible to control the level of the WD. It is important to control the level in order to maximize the power production in proportion to the wave height, here the amount of overtopping water and the amount of potential energy is conflicting...

  14. Specifications of the International Atomic Energy Agency's international project on safety assessment driven radioactive waste management solutions

    International Nuclear Information System (INIS)

    Ghannadi, M.; Asgharizadeh, F.; Assadi, M. R.

    2008-01-01

    Radioactive waste is produced in the generation of nuclear power and the production and use of radioactive materials in the industry, research, and medicine. The nuclear waste management facilities need to perform a safety assessment in order to ensure the safety of a facility. Nuclear safety assessment is a structured and systematic way of examining a proposed facility, process, operation and activity. In nuclear waste management point of view, safety assessment is a process which is used to evaluate the safety of radioactive waste management and disposal facilities. In this regard the International Atomic Energy Agency is planed to implement an international project with cooperation of some member states. The Safety Assessment Driving Radioactive Waste Management Solutions Project is an international programme of work to examine international approaches to safety assessment in aspects of p redisposal r adioactive waste management, including waste conditioning and storage. This study is described the rationale, common aspects, scope, objectives, work plan and anticipated outcomes of the project with refer to International Atomic Energy Agency's documents, such as International Atomic Energy Agency's Safety Standards, as well as the Safety Assessment Driving Radioactive Waste Management Solutions project reports

  15. Buoyancy of gas-filled bladders at great depth

    Science.gov (United States)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  16. Response of mantle transition zone thickness to plume buoyancy flux

    Science.gov (United States)

    Das Sharma, S.; Ramesh, D. S.; Li, X.; Yuan, X.; Sreenivas, B.; Kind, R.

    2010-01-01

    The debate concerning thermal plumes in the Earth's mantle, their geophysical detection and depth characterization remains contentious. Available geophysical, petrological and geochemical evidence is at variance regarding the very existence of mantle plumes. Utilizing P-to-S converted seismic waves (P receiver functions) from the 410 and 660 km discontinuities, we investigate disposition of these boundaries beneath a number of prominent hotspot regions. The thickness of the mantle transition zone (MTZ), measured as P660s-P410s differential times (tMTZ), is determined. Our analyses suggest that the MTZ thickness beneath some hotspots correlates with the plume strength. The relationship between tMTZ, in response to the thermal perturbation, and the strength of plumes, as buoyancy flux B, follows a power law. This B-tMTZ behavior provides unprecedented insights into the relation of buoyancy flux and excess temperature at 410-660 km depth below hotspots. We find that the strongest hotspots, which are located in the Pacific, are indeed plumes originating at the MTZ or deeper. According to the detected power law, even the strongest plumes may not shrink the transition zone by significantly more than ~40 km (corresponding to a maximum of 300-400° excess temperature).

  17. The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1

    Science.gov (United States)

    Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie; Masquelier, Christian

    2005-03-01

    Lithium-ion batteries have revolutionized the powering of portable electronics. Electrode reactions in these electrochemical systems are based on reversible insertion/deinsertion of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive positive electrode materials will be required, among which LiFePO4 is a leading contender. An intriguing fundamental problem is to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO4 system. In contrast to the well-documented two-phase nature of this system at room temperature, we give the first experimental evidence of a solid solution LixFePO4 (0 <= x <= 1) at 450 °C, and two new metastable phases at room temperature with Li0.75FePO4 and Li0.5FePO4 composition. These experimental findings challenge theorists to improve predictive models commonly used in the field. Our results may also lead to improved performances of these electrodes at elevated temperatures.

  18. Experimental investigation on single-sided transient natural ventilation driven by buoyancy

    Directory of Open Access Journals (Sweden)

    Vadugapalayam Rangasamy Lenin

    2017-01-01

    Full Text Available Energy consumption in building sector plays a major role in hot climate for space cooling. In this view of equipment energy consumption reduction on building space cooling, top vent and window operation-based natural ventilation model is developed in reduced scale. In this study, the performance of rectangular top vent arrangement along with window opening configuration with respect to temperature distribution and air flow pattern is investigated experimentally. The results depicted that the heat generated from the indoor element with vent and window opening configuration showed a greater influence in vertical temperature difference. For both the case of window opened and closed with vent, the time taken to attain the steady-state is shorter for larger vent compared to smaller vent. Increasing the top vent area reduces the indoor air temperature at various levels. When windows in open condition, there is significant reduction in indoor air temperature upto window level for all vent areas. Air flow pattern of the in-door air is validated through smoke visualization test.

  19. Convective instability in a time-dependent buoyancy driven boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.M.H.; Patterson, J.C.; Graham, T.; Schoepf, W. [University of Western Australia, Nedlands (Australia). Centre for Water Research

    2000-01-01

    The stability of the parallel time-dependent boundary layer adjacent to a suddenly heated vertical wall is described. The flow is investigated through experiments in water, through direct numerical simulation and also through linear stability analysis. The full numerical simulation of the flow shows that small perturbations to the wall boundary conditions, that are also present in the experimental study, are responsible for triggering the instability. As a result, oscillatory behaviour in the boundary layer is observed well before the transition to a steady two-dimensional flow begins. The properties of the observed oscillations are compared with those predicted by a linear stability analysis of the unsteady boundary layer using a quasi-stationary assumption and also using non-stationary assumptions by the formulation of parabolized equations (PSE). (Author)

  20. SIMULATION OF TRANSIENT CAVITY FLOWS DRIVEN BY BUOYANCY AND SHEAR. (R824801)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Buoyancy-Driven Instability of Bubbly Layers: Analogy with Thermal Convection

    Czech Academy of Sciences Publication Activity Database

    Růžička, Marek; Thomas, N. H.

    2003-01-01

    Roč. 29, č. 2 (2003), s. 249-270 ISSN 0301-9322 R&D Projects: GA ČR GA104/01/0547 Grant - others:ERB(XE) IC15-CT98-0904 Institutional research plan: CEZ:AV0Z4072921 Keywords : hydrodynamic diffusio * heterogeneous regime * concentration waves Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.289, year: 2003

  2. Multidisciplinary design approach and safety analysis of ADSR cooled by buoyancy driven flows

    NARCIS (Netherlands)

    Ceballos Castillo, C.A.

    2007-01-01

    Transmutation is useful to reduce the storing time and the amount of nuclear waste to be stored in the geological repository. Transmutation can be achieved in all types of reactors: thermal systems, fast systems, critical and subcritical systems. Fast spectrum systems have significant advantages

  3. Developing Buoyancy Driven Flow of a Nanofluid in a Vertical Channel Subject to Heat Flux

    Directory of Open Access Journals (Sweden)

    Nirmal C. Sacheti

    2014-01-01

    Full Text Available The developing natural convective flow of a nanofluid in an infinite vertical channel with impermeable bounding walls has been investigated. It is assumed that the nanofluid is dominated by two specific slip mechanisms and that the channel walls are subject to constant heat flux and isothermal temperature, respectively. The governing nonlinear partial differential equations coupling different transport processes have been solved numerically. The variations of velocity, temperature, and nanoparticles concentration have been discussed in relation to a number of physical parameters. It is seen that the approach to the steady-state profiles of velocity and temperature in the present work is different from the ones reported in a previous study corresponding to isothermal wall conditions.

  4. Buoyancy and thermocapillary driven convection flow of electrically conducting fluid in an enclosure with heat generation

    International Nuclear Information System (INIS)

    Hossain, Md. Anwar; Rees, D.A.S.

    2002-05-01

    The effect of surface tension on unsteady laminar natural convection flow of a viscous incompressible fluid in a rectangle enclosure with internal heat generation and in presence of a uniform transverse magnetic field acting in the direction normal to the gravity has been investigated. The top horizontal surface of the rectangular cavity is assumed to be free and the bottom ones insulated; whereas the left vertical wall is cold and the right one is uniformly hot. The equations are non-dimensionalized and solved numerically by an upwind finite difference method together with a successive over-relaxation (SOR) technique. The effects of heat generation together with the combined effects of the magnetic field and the surface tension are presented graphically in terms of isotherms, streamlines and velocity vector plots. The effects of varying the physical parameters on the rate of heat transfer from the heated surface of the enclosure are also depicted. The fluid here has Prandtl number Pr=0.054 while the value of the Grashof number is 2x10 4 . (author)

  5. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so

  6. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    International Nuclear Information System (INIS)

    Brics, Martins

    2016-01-01

    Intense, ultra-short laser pulses interacting with atoms, molecules, clusters, and solids give rise to many new fascinating phenomena, not at all accessible to quantum mechanics textbook perturbation theory. A full numerical solution of the time-dependent Schr¨odinger equation (TDSE) for such strong-field problems is also impossible for more than two electrons. Hence, powerful time-dependent quantum many-body approaches need to be developed. Unfortunately, efficient methods such as time-dependent density functional theory (TDDFT) fail in reproducing experimental observations, in particular if strong correlations are involved. In TDDFT, the approximation not only lies in the so-called exchange correlation potential but also in the density functionals for the observables of interest. In fact, with just the single-particle density alone it is unclear how to calculate, e.g., multiple-ionization probabilities or photoelectron spectra, or, even worse, correlated photoelectron spectra, as measured in nowadays experiments. In general, the simple structure of the time-dependent many-body Schroedinger equation for a highly-dimensional many-body wavefunction can only be traded for more complicated equations of motion for simpler quantities. In this thesis, a theory is examined that goes one step beyond TDDFT as far as the complexity of the propagated quantity is concerned. In time-dependent renormalized natural orbital theory (TDRNOT), the basic quantities that are propagated in time are the eigenvalues and eigenstates of the one-body reduced density matrix (1-RDM). The eigenstates are called natural orbitals (NOs), the eigenvalues are the corresponding occupation numbers (ONs). Compared to TDDFT, the knowledge of the NOs and the ONs relax the problem of calculating observables in practice because they can be used to construct the 1-RDM and the two-body reduced density matrix (2-RDM). After the derivation of the equations of motion for a combination of NOs and ONs, the so

  7. Buoyancy differences among two deepwater ciscoes from the Great Lakes and their putative ancestor

    Science.gov (United States)

    Krause, A.E.; Eshenroder, R.L.; Begnoche, L.J.

    2002-01-01

    We analyzed buoyancy in two deepwater ciscoes, Coregonus hoyi and C. kiyi, and in C. artedi, their putative ancestor, and also analyzed how variations in fish weight, water content, and lipid content affected buoyancy. Buoyancy was significantly different among the three species (p < 0.0001). Estimates of percent buoyancy (neutral buoyancy = 0.0%) were: kiyi, 3.8%; hoyi, 4.7%; and artedi, 5.7%. Buoyancy did not change with fish weight alone (p = 0.38). Fish weight was negatively related to water content for all three species (p = 0.037). Lipid content was not significantly different between hoyi and kiyi, but artedi had significantly fewer lipids than hoyi and kiyi (p < 0.10). When artedi was removed from the analysis, fish weight and lipids accounted for 48% of the variation in buoyancy (p = 0.003), fatter hoyi were less dense than leaner hoyi, but fatter and leaner kiyi were no different in density. Our findings provide additional evidence that buoyancy regulation was a speciating mechanism in deepwater ciscoes and that kiyi is more specialized than hoyi for diel-vertical migration in deep water.

  8. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    Science.gov (United States)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  9. 40 CFR 1065.690 - Buoyancy correction for PM sample media.

    Science.gov (United States)

    2010-07-01

    ... mass, use a sample media density of 920 kg/m3. (3) For PTFE membrane (film) media with an integral... media. 1065.690 Section 1065.690 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Buoyancy correction for PM sample media. (a) General. Correct PM sample media for their buoyancy in air if...

  10. Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation

    Science.gov (United States)

    Xu, Songsen; Jiao, Chunshuo; Ning, Meng; Dong, Sheng

    2018-04-01

    To reduce the requirement for lifting capacity and decrease the hoist cable force during the descending and laying process of a subsea production system (SPS), a buoyancy module auxiliary installation technology was proposed by loading buoyancy modules on the SPS to reduce the lifting weight. Two models are established, namely, the SPS lowering-down model and the buoyancy module floating-up model. The main study results are the following: 1) When the buoyancy module enters the water under wave condition, the amplitude of tension fluctuation is twice that when SPS enters water; 2) Under current condition, the displacement of SPS becomes three times larger because of the existence of the buoyancy module; 3) After being released, the velocity of the buoyancy module increases to a large speed rapidly and then reaches a balancing speed gradually. The buoyancy module floats up at a balancing speed and rushes out from the water at a pop-up distance; 4) In deep water, the floating-up velocity of the buoyancy module is related to its mass density and shape, and it is not related to water depth; 5) A drag parachute can reduce floating-up velocity and pop-up distance effectively. Good agreement was found between the simulation and experiment results.

  11. Magma buoyancy and volatile ascent driving autocyclic eruptivity at Hekla Volcano (Iceland)

    Science.gov (United States)

    Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Roberts, Matthew J.

    2017-09-01

    Volcanic eruptions are typically accompanied by ground deflation due to the withdrawal of magma from depth and its effusion at the surface. Here, based on continuous high-resolution borehole strain data, we show that ground deformation was absent during the major effusion phases of the 1991 and 2000 eruptions of Hekla Volcano, Iceland. This lack of surface deformation challenges the classic model of magma intrusion/withdrawal as source for volcanic ground uplift/subsidence. We incorporate geodetic and geochemical observables into theoretical models of magma chamber dynamics in order to constrain quantitatively alternative co- and intereruptive physical mechanisms that govern magma propagation and system pressurization. We find the lack of surface deformation during lava effusion to be linked to chamber replenishment from below whilst magma migrates as a buoyancy-driven flow from the magma chamber towards the surface. We further demonstrate that intereruptive pressure build-up is likely to be generated by volatile ascent within the chamber rather than magma injection. Our model explains the persistent periodic eruptivity at Hekla throughout historic times with self-initiating cycles and is conceptually relevant to other volcanic systems.

  12. Marangoni-buoyancy convection in binary fluids under varying noncondensable concentrations

    Science.gov (United States)

    Li, Yaofa; Yoda, Minami

    2014-11-01

    Marangoni-buoyancy convection in binary fluids in the presence of phase change is a complex and poorly understood problem. Nevertheless, this flow is of interest in evaporative cooling because solutocapillary stresses could reduce film dryout. Convection was therefore studied in methanol-water (MeOH-H2O) layers of depth h ~ 1 - 3 mm confined in a sealed rectangular cell driven by horizontal temperature differences of ~6° C applied over ~ 5 cm. Particle-image velocimetry (PIV) was used to study how varying the fraction of noncondensables (i.e., air) ca from ~ 7 mol% to ambient conditions in the vapor space affects soluto- and thermocapillary stresses in this flow. Although solutocapillary stresses can be used to drive the flow towards hot regions, solutocapillarity appears to have the greatest effect on the flow at small ca, because noncondensables suppress phase change and hence the gradient in the liquid-phase composition at the interface. Surprisingly, convection at ca ~ 50 % leads to a very weak flow and significant condensation in the central portion of the layer i.e., away from the heated and cooled walls). Supported by ONR.

  13. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals.

    Science.gov (United States)

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y; Miller, Patrick J O

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.

  14. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  15. Large eddy simulation of a buoyancy-aided flow in a non-uniform channel – Buoyancy effects on large flow structures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); He, S., E-mail: s.he@sheffield.ac.uk [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2017-02-15

    Highlights: • Buoyancy may greatly redistribute the flow in a non-uniform channel. • Flow structures in the narrow gap are greatly changed when buoyancy is strong. • Large flow structures exist in wider gap, which is enhanced when heat is strong. • Buoyancy reduces mixing factor caused by large flow structures in narrow gap. - Abstract: It has been a long time since the ‘abnormal’ turbulent intensity distribution and high inter-sub-channel mixing rates were observed in the vicinity of the narrow gaps formed by the fuel rods in nuclear reactors. The extraordinary flow behaviour was first described as periodic flow structures by Hooper and Rehme (1984). Since then, the existences of large flow structures were demonstrated by many researchers in various non-uniform flow channels. It has been proved by many authors that the Strouhal number of the flow structure in the isothermal flow is dependent on the size of the narrow gap, not the Reynolds number once it is sufficiently large. This paper reports a numerical investigation on the effect of buoyancy on the large flow structures. A buoyancy-aided flow in a tightly-packed rod-bundle-like channel is modelled using large eddy simulation (LES) together with the Boussinesq approximation. The behaviour of the large flow structures in the gaps of the flow passage are studied using instantaneous flow fields, spectrum analysis and correlation analysis. It is found that the non-uniform buoyancy force in the cross section of the flow channel may greatly redistribute the velocity field once the overall buoyancy force is sufficiently strong, and consequently modify the large flow structures. The temporal and axial spatial scales of the large flow structures are influenced by buoyancy in a way similar to that turbulence is influenced. These scales reduce when the flow is laminarised, but start increasing in the turbulence regeneration region. The spanwise scale of the flow structures in the narrow gap remains more or

  16. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  17. Towards an Ontology-driven Framework to Enable Development of Personalized mHealth Solutions for Cancer Survivors' Engagement in Healthy Living.

    Science.gov (United States)

    Myneni, Sahiti; Amith, Muhammad; Geng, Yimin; Tao, Cui

    2015-01-01

    Adolescent and Young Adult (AYA) cancer survivors manage an array of health-related issues. Survivorship Care Plans (SCPs) have the potential to empower these young survivors by providing information regarding treatment summary, late-effects of cancer therapies, healthy lifestyle guidance, coping with work-life-health balance, and follow-up care. However, current mHealth infrastructure used to deliver SCPs has been limited in terms of flexibility, engagement, and reusability. The objective of this study is to develop an ontology-driven survivor engagement framework to facilitate rapid development of mobile apps that are targeted, extensible, and engaging. The major components include ontology models, patient engagement features, and behavioral intervention technologies. We apply the proposed framework to characterize individual building blocks ("survivor digilegos"), which form the basis for mHealth tools that address user needs across the cancer care continuum. Results indicate that the framework (a) allows identification of AYA survivorship components, (b) facilitates infusion of engagement elements, and (c) integrates behavior change constructs into the design architecture of survivorship applications. Implications for design of patient-engaging chronic disease management solutions are discussed.

  18. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    Science.gov (United States)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  19. Inherent work suit buoyancy distribution: effects on lifejacket self-righting performance.

    Science.gov (United States)

    Barwood, Martin J; Long, Geoffrey M; Lunt, Heather; Tipton, Michael J

    2014-09-01

    Accidental immersion in cold water is an occupational risk. Work suits and life jackets (LJ) should work effectively in combination to keep the airway clear of the water (freeboard) and enable self-righting. We hypothesized that inherent buoyancy, in the suit or LJ, would be beneficial for enabling freeboard, but its distribution may influence LJ self-righting. Six participants consented to complete nine immersions. Suits and LJ tested were: flotation suit (FLOAT; 85 N inherent buoyancy); oilskins 1 (OS-1) and 2 (OS-2), both with no inherent buoyancy; LJs (inherent buoyancy/buoyancy after inflation/total buoyancy), LJ-1 50/150/200 N, LJ-2 0/290/290 N, LJ-3 80/190/270 N. Once dressed, the subject entered an immersion pool where uninflated freeboard, self-righting performance, and inflated freeboard were measured. Data were compared using Friedman's test to the 0.05 alpha level. All suits and LJs enabled uninflated and inflated freeboard, but differences were seen between the suits and LJs. Self-righting was achieved on 43 of 54 occasions, irrespective of suit or LJ. On all occasions that self-righting was not achieved, this occurred in an LJ that included inherent buoyancy (11/54 occasions). Of these 11 failures, 8 occurred (73% of occasions) when the FLOAT suit was being worn. LJs that included inherent buoyancy, that are certified as effective on their own, worked less effectively from the perspective of self-righting in combination with a work suit that also included inherent buoyancy. Equipment that is approved for use in the workplace should be tested in combination to ensure adequate performance in an emergency scenario.

  20. Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls

    Directory of Open Access Journals (Sweden)

    Rasoul Nikbakhti

    2016-03-01

    Full Text Available This paper deals with a numerical investigation of double-diffusive natural convective heat and mass transfer in a cavity filled with Newtonian fluid. The active parts of two vertical walls of the cavity are maintained at fixed but different temperatures and concentrations, while the other two walls, as well as inactive areas of the sidewalls, are considered to be adiabatic and impermeable to mass transfer. The length of the thermally active part equals half of the height. The non-dimensional forms of governing transport equations that describe double-diffusive natural convection for two-dimensional incompressible flow are functions of temperature or energy, concentration, vorticity, and stream-function. The coupled differential equations are discretized via FDM (Finite Difference Method. The Successive-Over-Relaxation (SOR method is used in the solution of the stream function equation. The analysis has been done for an enclosure with different aspect ratios ranging from 0.5 to 11 for three different combinations of partially active sections. The results are presented graphically in terms of streamlines, isotherms and isoconcentrations. In addition, the heat and mass transfer rate in the cavity is measured in terms of the average Nusselt and Sherwood numbers for various parameters including thermal Grashof number, Lewis number, buoyancy ratio and aspect ratio. It is revealed that the placement order of partially thermally active walls and the buoyancy ratio influence significantly the flow pattern and the corresponding heat and mass transfer performance in the cavity.

  1. TAO/TRITON, RAMA, and PIRATA Buoys, Quarterly, 2000-present, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has quarterly Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  2. Buoyancy package for self-contained acoustic doppler current profiler mooring

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Krishnakumar, V.

    A buoyancy package for self-contained Acoustic Doppler Current Profiler(SC-ADCP 1200 RD instruments USA) was designed and fabricated indigenously, for subsurface mooring in coastal waters. The system design is discussed. The design to keep SC...

  3. TAO/TRITON, RAMA, and PIRATA Buoys, Monthly, 2000-present, Buoyancy Flux

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has monthly Buoyancy Flux data from the TAO/TRITON (Pacific Ocean, https://www.pmel.noaa.gov/gtmba/ ), RAMA (Indian Ocean,...

  4. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2015-01-01

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed

  5. Buoyancy Regulation and the Energetics of Diving in Dolphins Seals, Sea Lions and Sea Otters

    National Research Council Canada - National Science Library

    Costa, Daniel

    1998-01-01

    We examined swim speed and ascent descent rates in sea lions and elephant seals in order to make comparisons in their diving strategies and how these may be effected by different strategies of buoyancy regulation...

  6. Buoyancy increase and drag-reduction through a simple superhydrophobic coating

    OpenAIRE

    Hwang, G. B.; Patir, A.; Page, K.; Lu, Y.; Allan, E.; Parkin, I. P.

    2017-01-01

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown...

  7. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  8. Influence of Buoyancy Control Performance on Power Production by the Wave Dragon Nissum Bredning Prototype

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Tedd, James; Friis-Madsen, E.

    2007-01-01

    This paper reports on the real sea performance of the buoyancy control system of Wave Dragon, a floating wave energy converter using the overtopping principle. The device operates with the full independent control system which has been tested during three years of operation. The impact of the buo...... of the buoyancy control system performance on the power production is noted. This provides motivation and a target for improved control algorithms....

  9. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    Science.gov (United States)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  10. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    Science.gov (United States)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture

  11. Academic Buoyancy and Academic Outcomes: Towards a Further Understanding of Students with Attention-Deficit/Hyperactivity Disorder (ADHD), Students without ADHD, and Academic Buoyancy Itself

    Science.gov (United States)

    Martin, Andrew J.

    2014-01-01

    Background: Academic buoyancy is students' capacity to successfully overcome setback and challenge that is typical of the ordinary course of everyday academic life. It may represent an important factor on the psycho-educational landscape assisting students who experience difficulties in school and schoolwork. Aims: This study investigated the…

  12. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Cell analysis often requires the isolation of certain cell types. Various isolation methods have been applied to cell sorting, including fluorescence-activated cell sorting and magnetic-activated cell sorting. However, these conventional approaches involve exerting mechanical forces on the cells, thus risking cell damage. In this study we applied a novel isolation method called buoyancy-activated cell sorting, which involves using biotinylated albumin microbubbles (biotin-MBs conjugated with antibodies (i.e., targeted biotin-MBs. Albumin MBs are widely used as contrast agents in ultrasound imaging due to their good biocompatibility and stability. For conjugating antibodies, biotin is conjugated onto the albumin MB shell via covalent bonds and the biotinylated antibodies are conjugated using an avidin-biotin system. The albumin microbubbles had a mean diameter of 2 μm with a polydispersity index of 0.16. For cell separation, the MDA-MB-231 cells are incubated with the targeted biotin-MBs conjugated with anti-CD44 for 10 min, centrifuged at 10 g for 1 min, and then allowed 1 hour at 4 °C for separation. The results indicate that targeted biotin-MBs conjugated with anti-CD44 antibodies can be used to separate MDA-MB-231 breast cancer cells; more than 90% of the cells were collected in the MB layer when the ratio of the MBs to cells was higher than 70:1. Furthermore, we found that the separating efficiency was higher for targeted biotin-MBs than for targeted avidin-incorporated albumin MBs (avidin-MBs, which is the most common way to make targeted albumin MBs. We also demonstrated that the recovery rate of targeted biotin-MBs was up to 88% and the sorting purity was higher than 84% for a a heterogenous cell population containing MDA-MB-231 cells (CD44(+ and MDA-MB-453 cells (CD44-, which are classified as basal-like breast cancer cells and luminal breast cancer cells, respectively. Knowing that the CD44(+ is a commonly used cancer

  13. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    Turbulent combustion occurs naturally in almost all combustion systems and involves complex dynamic coupling of chemical and fluid mechanical processes. It is considered as one of the most challenging combustion research problems today. Though buoyancy has little effect on power generating systems operating under high pressures (e.g., IC engines and turbines), flames in atmospheric burners and the operation of small to medium furnaces and boilers are profoundly affected by buoyancy. Changes in burner orientation impacts on their blow-off, flash-back and extinction limits, and their range of operation, burning rate, heat transfer, and emissions. Theoretically, buoyancy is often neglected in turbulent combustion models. Yet the modeling results are routinely compared with experiments of open laboratory flames that are obviously affected by buoyancy. This inconsistency is an obstacle to reconciling experiments and theories. Consequently, a fundamental understanding of the coupling between turbulent flames and buoyancy is significant to both turbulent combustion science and applications. The overall effect of buoyancy relates to the dynamic interaction between the flame and its surrounding, i.e., the so-called elliptical problem. The overall flame shape, its flowfield, stability, and mean and local burning rates are dictated by both upstream and downstream boundary conditions. In steady propagating premixed flames, buoyancy affects the products region downstream of the flame zone. These effects are manifested upstream through the mean and fluctuating pressure fields to influence flame stretch and flame wrinkling. Intuitively, the effects buoyancy should diminish with increasing flow momentum. This is the justification for excluding buoyancy in turbulent combustion models that treats high Reynolds number flows. The objectives of our experimental research program is to elucidate flame-buoyancy coupling processes in laminar and turbulent premixed flames, and to

  14. Buoyancy induced convective flow in porous media with heat source

    International Nuclear Information System (INIS)

    Hwang, I.T.

    1978-01-01

    An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order

  15. Buoyancy increase and drag-reduction through a simple superhydrophobic coating.

    Science.gov (United States)

    Hwang, Gi Byoung; Patir, Adnan; Page, Kristopher; Lu, Yao; Allan, Elaine; Parkin, Ivan P

    2017-06-08

    A superhydrophobic paint was fabricated using 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES), TiO 2 nanoparticles and ethanol. The paint has potential for aquatic application of a superhydrophobic coating as it induces increased buoyancy and drag reduction. Buoyance testing showed that the reduction of surface energy by superhydrophobic coating made it feasible that glass, a high density material, was supported by the surface tension of water. In a miniature boat sailing test, it was shown that the low energy surface treatment decreased the adhesion of water molecules to the surface of the boat resulting in a reduction of the drag force. Additionally, a robust superhydrophobic surface was fabricated through layer-by-layer coating using adhesive double side tape and the paint, and after a 100 cm abrasion test with sand paper, the surface still retained its water repellency, enhanced buoyancy and drag reduction.

  16. Solution for laminar natural convection flows in a square cavity with temperature dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.G. [Parsons Brinckerhoff, New York, NY (United States)

    1995-12-31

    This paper presents an examination of numerical results for the buoyancy-driven convection heat transfer problem, in a two-dimensional enclosure under steady-state, laminar, incompressible, and temperature dependent viscosity fluid flow conditions. The vertical walls are exposed to different temperatures and the top and bottom are insulated. Rayleigh numbers of 10{sup 4}, 10{sup 5}, and 10{sup 6} are considered. Specific heat, thermal conductivity, and the thermal expansion coefficient are assumed constant. Density variation is included using the Oberbeck-Boussinesq approximation. The results are obtained using the SIMPLEC solution technique based on a power-law, finite-volume discretization scheme. The hydrodynamic and thermal fields are presented at various locations in the enclosures.

  17. Anisotropy and buoyancy in nuclear turbulent heat transfer - critical assessment and needs for modelling

    International Nuclear Information System (INIS)

    Groetzbach, G.

    2007-12-01

    Computational Fluid Dynamics (CFD) programs have a wide application field in reactor technique, like to diverse flow types which have to be considered in Accelerator Driven nuclear reactor Systems (ADS). This requires turbulence models for the momentum and heat transfer with very different capabilities. The physical demands on the models are elaborated for selected transport mechanisms, the status quo of the modelling is discussed, and it is investigated which capabilities are offered by the market dominating commercial CFD codes. One topic of the discussion is on the already earlier achieved knowledge on the distinct anisotropy of the turbulent momentum and heat transport near walls. It is shown that this is relevant in channel flows with inhomogeneous wall conditions. The related consequences for the turbulence modelling are discussed. The second topic is the turbulent heat transport in buoyancy influenced flows. The only turbulence model for heat transfer which is available in the large commercial CFD-codes is based on the Reynolds analogy. This means, it is required to prescribe suitable turbulent Prandtl number distributions. There exist many correlations for channel flows, but they are seldom used in practical applications. Here, a correlation is deduced for the local turbulent Prandtl number which accounts for many parameters, like wall distance, molecular Prandtl number of the fluid, wall roughness and local shear stress, thermal wall condition, etc. so that it can be applied to most ADS typical heat transporting channel flows. The spatial dependence is discussed. It is shown that it is essential for reliable temperature calculations to get accurate turbulent Prandtl numbers especially near walls. If thermal wall functions are applied, then the correlation for the turbulent Prandtl number has to be consistent with the wall functions to avoid unphysical discretisation dependences. In using Direct Numerical Simulation (DNS) data for horizontal fluid layers it

  18. Pancreatin-EDTA treatment affects buoyancy of cells in Cohn fraction V protein density gradients without residual effect on cell size.

    Science.gov (United States)

    Sheridan, J W; Simmons, R J

    1983-12-01

    The buoyancy of suspension-grown Mastocytoma P815 X-2 cells in albumin-rich Cohn fraction V protein (CFVP) density gradients was found to be affected by prior incubation of the cells in pancreatin-EDTA salt solution. Whereas in pH 5.2 CFVP, pancreatin-EDTA treated cells behaved as if of reduced density when compared with the control 'undigested' group, in pH 7.3 CFVP they behaved as if of increased density. By contrast, pancreatin-EDTA treatment had no effect on the buoyancy of mastocytoma cells in polyvinylpyrrolidone-coated colloidal silica (PVP-CS, Percoll T.M.) density gradients of either pH 5.2 or pH 7.3. As cell size determinations failed to reveal alterations in cell size either as a direct result of pancreatin-EDTA treatment or as a combined consequence of such treatment and exposure to CFVP either with or without centrifugation, a mechanism involving a change in cell density other than during the centrifugation process itself seems unlikely. Binding studies employing 125I-CFVP, although indicating that CFVP bound to cells at 4 degrees, failed to reveal a pancreatin-EDTA treatment-related difference in the avidity of this binding. Although the mechanism of the pancreatin-EDTA-induced buoyancy shift in CFVP remains obscure, the absence of such an effect in PVP-CS suggests that the latter cell separation solution may more accurately be used to determine cell density.

  19. Validity of thermally-driven small-scale ventilated filling box models

    Science.gov (United States)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  20. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  1. Core-annular flow through a horizontal pipe : Hydrodynamic counterbalancing of buoyancy force on core

    NARCIS (Netherlands)

    Ooms, G.; Vuik, C.; Poesio, P.

    2007-01-01

    A theoretical investigation has been made of core-annular flow: the flow of a high-viscosity liquid core surrounded by a low-viscosity liquid annular layer through a horizontal pipe. Special attention is paid to the question of how the buoyancy force on the core, caused by a density difference

  2. Processes governing transient responses of the deep ocean buoyancy budget to a doubling of CO2

    Science.gov (United States)

    Palter, J. B.; Griffies, S. M.; Hunter Samuels, B. L.; Galbraith, E. D.; Gnanadesikan, A.

    2012-12-01

    Recent observational analyses suggest there is a temporal trend and high-frequency variability in deep ocean buoyancy in the last twenty years, a phenomenon reproduced even in low-mixing models. Here we use an earth system model (GFDL's ESM2M) to evaluate physical processes that influence buoyancy (and thus steric sea level) budget of the deep ocean in quasi-steady state and under a doubling of CO2. A new suite of model diagnostics allows us to quantitatively assess every process that influences the buoyancy budget and its temporal evolution, revealing surprising dynamics governing both the equilibrium budget and its transient response to climate change. The results suggest that the temporal evolution of the deep ocean contribution to sea level rise is due to a diversity of processes at high latitudes, whose net effect is then advected in the Eulerian mean flow to mid and low latitudes. In the Southern Ocean, a slowdown in convection and spin up of the residual mean advection are approximately equal players in the deep steric sea level rise. In the North Atlantic, the region of greatest deep steric sea level variability in our simulations, a decrease in mixing of cold, dense waters from the marginal seas and a reduction in open ocean convection causes an accumulation of buoyancy in the deep subpolar gyre, which is then advected equatorward.

  3. On the influence of buoyancy and suction/injection In Heat and Mass ...

    African Journals Online (AJOL)

    In this paper, we examined the influence of buoyancy and suction/injection in the problem of unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture in an optically thin environment is presented. The dimensionless governing equations for this ...

  4. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    NARCIS (Netherlands)

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we

  5. "'Sink or Swim': Buoyancy and Coping in the Cognitive Test Anxiety--Academic Performance Relationship"

    Science.gov (United States)

    Putwain, David W.; Daly, Anthony L.; Chamberlain, Suzanne; Sadreddini, Shireen

    2016-01-01

    This study explores the relationship between students' self-report levels of cognitive test anxiety (worry), academic buoyancy (withstanding and successfully responding to routine school challenges and setbacks), coping processes and their achieved grades in high-stakes national examinations at the end of compulsory schooling. The sample comprised…

  6. Experimental aspects of buoyancy correction in measuring reliable highpressure excess adsorption isotherms using the gravimetric method.

    Science.gov (United States)

    Nguyen, Huong Giang T; Horn, Jarod C; Thommes, Matthias; van Zee, Roger D; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO 2 and supercritical N 2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  7. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  8. Investigating Students' Ideas About Buoyancy and the Influence of Haptic Feedback

    Science.gov (United States)

    Minogue, James; Borland, David

    2016-04-01

    While haptics (simulated touch) represents a potential breakthrough technology for science teaching and learning, there is relatively little research into its differential impact in the context of teaching and learning. This paper describes the testing of a haptically enhanced simulation (HES) for learning about buoyancy. Despite a lifetime of everyday experiences, a scientifically sound explanation of buoyancy remains difficult to construct for many. It requires the integration of domain-specific knowledge regarding density, fluid, force, gravity, mass, weight, and buoyancy. Prior studies suggest that novices often focus on only one dimension of the sinking and floating phenomenon. Our HES was designed to promote the integration of the subconcepts of density and buoyant forces and stresses the relationship between the object itself and the surrounding fluid. The study employed a randomized pretest-posttest control group research design and a suite of measures including an open-ended prompt and objective content questions to provide insights into the influence of haptic feedback on undergraduate students' thinking about buoyancy. A convenience sample (n = 40) was drawn from a university's population of undergraduate elementary education majors. Two groups were formed from haptic feedback (n = 22) and no haptic feedback (n = 18). Through content analysis, discernible differences were seen in the posttest explanations sinking and floating across treatment groups. Learners that experienced the haptic feedback made more frequent use of "haptically grounded" terms (e.g., mass, gravity, buoyant force, pushing), leading us to begin to build a local theory of language-mediated haptic cognition.

  9. Annual and seasonal mean buoyancy fluxes for the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.

    . The fluxes of heat and freshwater across the air-sea interface, and hence the surface buoyancy flux, show strong spatial and temporal variability. The Bay of Bengal and eastern equatorial Indian Ocean are characterized by a net freshwater gain due to heavy...

  10. Non-Uniqueness of the Point of Application of the Buoyancy Force

    Science.gov (United States)

    Kliava, Janis; Megel, Jacques

    2010-01-01

    Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the…

  11. Non-uniqueness of the point of application of the buoyancy force

    International Nuclear Information System (INIS)

    Kliava, Janis; Megel, Jacques

    2010-01-01

    Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.

  12. Internally driven inertial waves in geodynamo simulations

    Science.gov (United States)

    Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.

    2018-05-01

    Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.

  13. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  14. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  15. Tail thrust of bluefish Pomatomus saltatrix at different buoyancies, speeds, and swimming angles.

    Science.gov (United States)

    Ogilvy, C S; DuBois, A B

    1982-06-01

    1. The tail thrust of bluefish Pomatomus saltatrix was measured using a body accelerometer at different water speeds, buoyancies, and angles of water flow to determine the contribution of tail thrust in overcoming parasitic drag, induced drag, and weight directed along the track. The lengths and weights of the fish averaged 0.52 m and 1.50 kg respectively. 2. The tail thrust overcoming parasitic drag in Newtons, as measured during neutral buoyancy, was: 0.51 x speed + 0.15, with a standard error of estimate of 0.09 N. 3. When buoyancy was altered by the introduction or removal of air from a balloon implanted in the swim bladder, the tail thrust was altered by an amount of the same order as the value calculated for the induced drag of the pectoral fins. 4. The component of weight directed backward along the track was the weight in water multiplied by the sine of the angle of the swimming tunnel relative to horizontal. When this force was added to the calculated induced drag and tail thrust measured at neutral buoyancy, the rearward force equal to the tail thrust, at 45 ml negative buoyancy, 0.5 m s-1, and 15 degrees head up, was 0.12 N due to weight + 0.05 N due to induced drag + 0.40 N due to parasitic drag = 0.57 N total rearward force. 5. The conditions required for gliding were not achieved in our bluefish because the drag exceeded the component of the weight in water directed forward along the track at speeds above the stalling speed of the pectoral fins.

  16. Solutal convection induced by dissolution. Influence on erosion dynamics and interface shaping.

    Science.gov (United States)

    Berhanu, Michael; Philippi, Julien; Cohen, Caroline; Derr, Julien; Courrech du Pont, Sylvain

    2017-04-01

    dissolution patterns can be related to the characteristic of the convective flow. C. Oltéan, F. Golfier and M.A. Buès, Numerical and experimental investigation of buoyancy-driven dissolution in vertical fracture, J. Geophys. Res. Solid Earth, 118(5), 2038-2048 (2013) C. Cohen, M. Berhanu, J. Derr and S. Courrech du Pont, Erosion patterns on dissolving and melting bodies (2015 Gallery of Fluid motion), Phys. Rev. Fluids, 1, 050508 (2016) T. S. Sullivan, Y. Liu, and R. E. Ecke, Turbulent solutal convection and surface patterning in solid dissolution, Phys. Rev. E 54, 486 (1996)

  17. [Cleansing effect of two micromotor-driven endodontic handpieces.II. Effect of various rinsing solutions on the cleansing effect of the handpieces].

    Science.gov (United States)

    Bartha, K; Rocca, J P

    1993-12-01

    The cleansing effectivity of citric acid solution was significantly better than that of Neomagnol both with respect to the removal of the Smear Layer (SL) and to the number of visible dentinal tubular orifices, however a complete elimination of the SL could not be obtained. Neomagnol seemed to be more effective in the removal of superficial debris and tissue-remnants.

  18. Stability analysis of hybrid-driven underwater glider

    Science.gov (United States)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  19. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  20. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions

    Directory of Open Access Journals (Sweden)

    Lars H. Wegner

    2017-03-01

    Full Text Available Current concepts of plant membrane transport are based on the assumption that water and solutes move across membranes via separate pathways. According to this view, coupling between the fluxes is more or less exclusively constituted via the osmotic force that solutes exert on water transport. This view is questioned here, and experimental evidence for a cotransport of water and solutes is reviewed. The overview starts with ion channels that provide pathways for both ion and water transport, as exemplified for maxi K+ channels from cytoplasmic droplets of Chara corallina. Aquaporins are usually considered to be selective for water (just allowing for slippage of some other small, neutral molecules. Recently, however, a “dual function” aquaporin has been characterized from Arabidopsis thaliana (AtPIP2.1 that translocates water and at the same time conducts cations, preferentially Na+. By analogy with mammalian physiology, other candidates for solute-water flux coupling are cation-chloride cotransporters of the CCC type, and transporters of sugars and amino acids. The last part is dedicated to possible physiological functions that could rely on solute-water cotransport. Among these are the generation of root pressure, refilling of embolized xylem vessels, fast turgor-driven movements of leaves, cell elongation (growth, osmoregulation and adjustment of buoyancy in marine algae. This review will hopefully initiate further research in the field.

  1. The Principles of Buoyancy in Marine Fish Eggs and Their Vertical Distributions across the World Oceans.

    Science.gov (United States)

    Sundby, Svein; Kristiansen, Trond

    2015-01-01

    Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds' oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost for

  2. The Principles of Buoyancy in Marine Fish Eggs and Their Vertical Distributions across the World Oceans

    Science.gov (United States)

    Sundby, Svein; Kristiansen, Trond

    2015-01-01

    Buoyancy acting on plankton, i.e. the difference in specific gravity between plankton and the ambient water, is a function of salinity and temperature. From specific gravity measurements of marine fish eggs salinity appears to be the only determinant of the buoyancy indicating that the thermal expansions of the fish egg and the ambient seawater are equal. We analyze the mechanisms behind thermal expansion in fish eggs in order to determine to what extent it can be justified to neglect the effects of temperature on buoyancy. Our results confirm the earlier assumptions that salinity is the basic determinant on buoyancy in marine fish eggs that, in turn, influence the vertical distributions and, consequently, the dispersal of fish eggs from the spawning areas. Fish populations have adapted accordingly by producing egg specific gravities that tune the egg buoyancy to create specific vertical distributions for each local population. A wide variety of buoyancy adaptations are found among fish populations. The ambient physical conditions at the spawning sites form a basic constraint for adaptation. In coastal regions where salinity increases with depth, and where the major fraction of the fish stocks spawns, pelagic and mesopelagic egg distributions dominate. However, in the larger part of worlds’ oceans salinity decreases with depth resulting in different egg distributions. Here, the principles of vertical distributions of fish eggs in the world oceans are presented in an overarching framework presenting the basic differences between regions, mainly coastal, where salinity increases with depth and the major part of the world oceans where salinity decreases with depth. We show that under these latter conditions, steady-state vertical distribution of mesopelagic fish eggs cannot exist as it does in most coastal regions. In fact, a critical spawning depth must exist where spawning below this depth threshold results in eggs sinking out of the water column and become lost

  3. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    Science.gov (United States)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  4. Practicing for space underwater: inventing neutral buoyancy training, 1963-1968.

    Science.gov (United States)

    Neufeld, Michael J; Charles, John B

    2015-01-01

    Neutral buoyancy's value was far from obvious when human spaceflight began in 1961. Starting in 1964, Environmental Research Associates, a tiny company in the suburbs of Baltimore, developed the key innovations in an obscure research project funded by NASA's Langley Research Center. The new Houston center dismissed it until a mid-1966 EVA crisis, after which it rapidly took over. In parallel, NASA Marshall Space Flight Center developed many of the same techniques, as did many large aerospace corporations, yet the long-run technological impact of corporate activity was near zero. Because ERA and Marshall's pioneering activities led to the two long-running NASA training centers at Houston and Huntsville, those two organizations deserve primary credit for the construction of the neutral buoyancy technological system. Published by Elsevier Ltd.

  5. Buoyancy Limitation of Filamentous Cyanobacteria under Prolonged Pressure due to the Gas Vesicles Collapse.

    Science.gov (United States)

    Abeynayaka, Helayaye Damitha Lakmali; Asaeda, Takashi; Kaneko, Yasuko

    2017-08-01

    Freshwater cyanobacterium Pseudanabaena galeata were cultured in chambers under artificially generated pressures, which correspond to the hydrostatic pressures at deep water. Variations occurred in gas vesicles volume, and buoyancy state of cells under those conditions were analyzed at different time intervals (5 min, 1 day, and 5 days). Variations in gas vesicles morphology of cells were observed by transmission electron microscopy images. Settling velocity (Vs) of cells which governs the buoyancy was observed with the aid of a modified optical microscope. Moreover, effects of the prolonged pressure on cell ballast composition (protein and polysaccharides) were examined. Elevated pressure conditions reduced the cell ballast and caused a complete disappearance of gas vesicles in Pseudanabaena galeata cells. Hence cyanobacteria cells were not able to float within the study period. Observations and findings of the study indicate the potential application of hydrostatic pressure, which naturally occurred in hypolimnion of lakes, to inhibit the re-suspension of cyanobacteria cells.

  6. The effects of buoyancy on turbulent nonpremixed jet flames in crossflow

    Science.gov (United States)

    Boxx, Isaac G.

    An experimental research study was conducted to investigate what effect buoyancy had on the mean and instantaneous flow-field characteristics of turbulent jet-flames in crossflow (JFICF). The study used an experimental technique wherein a series of normal-gravity, hydrogen-diluted propane JFICF were compared with otherwise identical ones in low-gravity. Experiments were conducted at the University of Texas Drop Tower Facility, a new microgravity science laboratory built for this study at the University of Texas at Austin. Two different diagnostic techniques were employed, high frame-rate digital cinematographic imaging and planar laser Mie scattering (PLMS). The flame-luminosity imaging revealed significant elongation and distortion of the large-scale luminous structure of the JFICF. This was seen to affect the flametip oscillation and burnout characteristics. Mean and root-mean-square (RMS) images of flame-luminosity were computed from the flame-luminosity image sequences. These were used to compare visible flame-shapes, flame chord-lengths and jet centerline-trajectories of the normal- and low-gravity flames. In all cases the jet-centerline penetration and mean luminous flame-width were seen to increase with decreasing buoyancy. The jet-centerline trajectories for the normal-gravity flames were seen to behave differently to those of the low-gravity flames. This difference led to the conclusion that the jet transitions from a momentum-dominated forced convection limit to a buoyancy-influenced regime when it reaches xiC ≈ 3, where xiC is the Becker and Yamazaki (1978) buoyancy parameter based on local flame chord-length. The mean luminous flame-lengths showed little sensitivity to buoyancy or momentum flux ratio. Consistent with the flame-luminosity imaging experiments, comparison of the instantaneous PLMS flow-visualization images revealed substantial buoyancy-induced elongation and distortion of the large-scale shear-layer vortices in the flow. This effect

  7. Tropical cloud buoyancy is the same in a world with or without ice

    Science.gov (United States)

    Seeley, Jacob T.; Romps, David M.

    2016-04-01

    When convective clouds grow above the melting line, where temperatures fall below 0°C, condensed water begins to freeze and water vapor is deposited. These processes release the latent heat of fusion, which warms cloud air, and many previous studies have suggested that this heating from fusion increases cloud buoyancy in the upper troposphere. Here we use numerical simulations of radiative-convective equilibrium with and without ice processes to argue that tropical cloud buoyancy is not systematically higher in a world with fusion than in a world without it. This insensitivity results from the fact that the environmental temperature profile encountered by developing tropical clouds is itself determined by convection. We also offer a simple explanation for the large reservoir of convective available potential energy in the tropical upper troposphere that does not invoke ice.

  8. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  9. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    Science.gov (United States)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  10. Neutral buoyancy testing of architectural and environmental concepts of space vehicle design

    Science.gov (United States)

    Lenda, J. A.; Rosener, A. A.; Stephenson, M. L.

    1972-01-01

    Design guidelines are presented that are applicable to providing habitability areas and furniture elements for extended periods in a zero gravity environment. This was accomplished by: (1) analyzing the existing habitability crew area requirements, mobility and restraint aids, cross-cultural design, and establishing a man model for zero gravity; (2) designing specific furniture elements, chair and table, and volumes for a stateroom, office, bathroom, galley, and wardroom; and (3) neutral buoyancy testing and evaluation of these areas.

  11. Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans

    OpenAIRE

    King, B.; Stone, M.; Zhang, H.P.; Gerkema, T.; Marder, M.; Scott, R.B.; Swinney, H.L.

    2012-01-01

    We examine the possible existence of internal gravity wave "turning depths," depths below which the local buoyancy frequency N(z) becomes smaller than the wave frequency. At a turning depth, incident gravity waves reflect rather than reaching the ocean bottom as is generally assumed. Here we consider internal gravity waves at the lunar semidiurnal (M-2) tidal frequency, omega(M2). Profiles of N-2(z) (the quantity in the equations of motion) are computed using conductivity, temperature, and de...

  12. Statistical Change Detection for Diagnosis of Buoyancy Element Defects on Moored Floating Vessels

    DEFF Research Database (Denmark)

    Blanke, Mogens; Fang, Shaoji; Galeazzi, Roberto

    2012-01-01

    . After residual generation, statistical change detection scheme is derived from mathematical models supported by experimental data. To experimentally verify loss of an underwater buoyancy element, an underwater line breaker is designed to create realistic replication of abrupt faults. The paper analyses...... the properties of residuals and suggests a dedicated GLRT change detector based on a vector residual. Special attention is paid to threshold selection for non ideal (non-IID) test statistics....

  13. The effect of buoyancy on flow and heat transfer in curved pipes

    OpenAIRE

    Mochizuki, Munekazu; Ishigaki, Hiroshi; 望月 宗和; 石垣 博

    1994-01-01

    Fully developed laminar flow in a heated horizontal curved pipe is studied numerically. The thermal boundary conditions at the wall are uniform wall heat flux axially and uniform wall temperature peripherally. Flow and heat transfer are governed by Dean number, Prandtl number and buoyancy number. Detailed prediction of the friction factor, average heat transfer rate, velocity profile, temperature profile and secondary-flow streamlines are given.

  14. Influences of buoyancy and thermal boundary conditions on heat transfer with naturally-induced flow

    International Nuclear Information System (INIS)

    Jackson, J.D.; Li, J.

    2002-01-01

    A fundamental study is reported of heat transfer from a vertical heated tube to air which is induced naturally upwards through it by the action of buoyancy. Measurements of local heat transfer coefficient were made using a specially designed computer-controlled power supply and measurement system for conditions of uniform wall temperature and uniform wall heat flux. The effectiveness of heat transfer proved to be much lower than for conditions of forced convection. It was found that the results could be correlated satisfactorily when presented in terms of dimensionless parameters similar to those used for free convection heat transfer from vertical surfaces provided that the heat transfer coefficients were evaluated using local fluid bulk temperature calculated utilising the measured values of flow rate induced through the system. Additional experiments were performed' with pumped flow. These covered the entire mixed convection region. It was found that the data for naturally-induced flow mapped onto the pumped flow data when presented in terms of Nusselt number ratio (mixed to forced) and buoyancy parameter. Computational simulations of the experiments were performed using an advanced computer code which incorporated a buoyancy-influenced, variable property, developing wall shear flow formulation and a low Reynolds number k-ε turbulence model. These reproduced observed behaviour quite well. (author)

  15. Two-phase turbulent mixing and buoyancy drift in rod bundles

    International Nuclear Information System (INIS)

    Carlucci, L.N.; Hammouda, N.; Rowe, D.S.

    2004-01-01

    This paper describes the development of generalized relationships for single- and two-phase inter subchannel turbulent mixing in vertical and horizontal flows, and lateral buoyancy drift in horizontal flows. The relationships for turbulent mixing, together with a recommended one for void drift, have been implemented in a subchannel thermal hydraulics code, and assessed using a range of data on enthalpy migration in vertical steam-water lows under BWR and PWR diabatic conditions. The intent of this assessment as to optimize these relationships to give the best agreement with the enthalpy migration data for vertical flows. The optimized turbulent mixing relationships were then used as a basis to benchmark a proposed buoyancy rift model to give the best predictions of void and enthalpy migration data n horizontal flows typical of PHWR CANDU reactor operation under normal and off-normal conditions. Overall, the optimized turbulent mixing and buoyancy drift relationships have been found to predict the available data quite well, nd generally better and more consistently than currently used models. This is expected to result in more accurate calculations of subchannel distributions of phasic flows, and hence, in improved predictions of critical heat flux (CHF)

  16. Analysis of Understanding the Concept of Buoyancy in the Context of its Transfer from Pre-school Teachers to Children

    Directory of Open Access Journals (Sweden)

    Petra Furlan

    2014-03-01

    Full Text Available Kindergarten curricula (Bahovec et al. 1999, 37 cover different areas of education that are sensibly interconnected and integrated. Science is one of the areas that represent child’s first learning about the surrounding world and the first introduction to nature. Science education is a very suitable approach of introducing children into basic research work, since in nature objects and phenomena are more concrete, and hence the children are instinctively attracted. Therefore, science education could act as a starting point for all other areas of education. Teaching science comprises several difficulties, which are mainly connected with the way how contents are introduced to children. This is often a great challenge and great responsibility for pre-school teachers, because the scientific content needs to be explained in an appropriate way taking into consideration the child's age, the use of correct terminology, and at the same time avoiding inadequate generalization and over-simplification. Buoyancy is a natural phenomenon that is experienced by every child, but which, on the other hand, is quite difficult to explain. With the present study we wished to assess the knowledge considering buoyancy of the part-time students within the Pre-school Teaching educational programme at the Faculty of Education of the University of Primorska, which is performed on different locations throughout Slovenia. These students already teach in the kindergartens and should be well acquainted with buoyancy from previously passed physics courses at the Faculty of Education. We examined how they explained the buoyancy to children in kindergartens, and whether the knowledge about buoyancy is affected by their working experience or the location of their study. The results show that the students’ knowledge about buoyancy is insufficient and incomplete. In addition, many misconceptions about buoyancy are transmitted to the children in the process of teaching

  17. Buoyancy under control: underwater locomotor performance in a deep diving seabird suggests respiratory strategies for reducing foraging effort.

    Directory of Open Access Journals (Sweden)

    Timothée R Cook

    Full Text Available BACKGROUND: Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag and report locomotor adjustments to the change of buoyancy with depth. METHODOLOGY/PRINCIPAL FINDINGS: Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. CONCLUSIONS/SIGNIFICANCE: Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants--as in other families of diving seabirds--of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control.

  18. Experimental and CFD evidence of multiple solutions in a naturally ventilated building.

    Science.gov (United States)

    Heiselberg, P; Li, Y; Andersen, A; Bjerre, M; Chen, Z

    2004-02-01

    This paper considers the existence of multiple solutions to natural ventilation of a simple one-zone building, driven by combined thermal and opposing wind forces. The present analysis is an extension of an earlier analytical study of natural ventilation in a fully mixed building, and includes the effect of thermal stratification. Both computational and experimental investigations were carried out in parallel with an analytical investigation. When flow is dominated by thermal buoyancy, it was found experimentally that there is thermal stratification. When the flow is wind-dominated, the room is fully mixed. Results from all three methods have shown that the hysteresis phenomena exist. Under certain conditions, two different stable steady-state solutions are found to exist by all three methods for the same set of parameters. As shown by both the computational fluid dynamics (CFD) and experimental results, one of the solutions can shift to another when there is a sufficient perturbation. These results have probably provided the strongest evidence so far for the conclusion that multiple states exist in natural ventilation of simple buildings. Different initial conditions in the CFD simulations led to different solutions, suggesting that caution must be taken when adopting the commonly used 'zero initialization'.

  19. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  20. A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy

    Science.gov (United States)

    Garg, Hemanshul; Soti, Atul K.; Bhardwaj, Rajneesh

    2018-02-01

    We report the development of an in-house fluid-structure interaction solver and its application to vortex-induced vibration (VIV) of an elastically mounted cylinder in the presence of thermal buoyancy. The flow solver utilizes a sharp interface immersed boundary method, and in the present work, we extend it to account for the thermal buoyancy using Boussinesq approximation and couple it with a spring-mass system of the VIV. The one-way coupling utilizes an explicit time integration scheme and is computationally efficient. We present benchmark code verifications of the solver for natural convection, mixed convection, and VIV. In addition, we verify a coupled VIV-thermal buoyancy problem at a Reynolds number, Re = 150. We numerically demonstrate the onset of the VIV in the presence of the thermal buoyancy for an insulated cylinder at low Re. The buoyancy is induced by two parallel plates, kept in the direction of flow and symmetrically placed around the cylinder. The plates are maintained at the hot and cold temperature to the same degree relative to the ambient. In the absence of the thermal buoyancy (i.e., the plates are at ambient temperature), the VIV does not occur for Re ≤ 20 due to stable shear layers. By contrast, the thermal buoyancy induces flow instability and the vortex shedding helps us to achieve the VIV at Re ≤ 20, lower than the critical value of Re (≈21.7), reported in the literature, for a self-sustained VIV in the absence of the thermal buoyancy. The present simulations show that the lowest Re to achieve VIV in the presence of the thermal buoyancy is around Re ≈ 3, at Richardson number, Ri = 1. We examine the effect of the reduced velocity (UR), mass ratio (m), Prandtl number (Pr), Richardson number (Ri) on the displacement of the cylinder, lift coefficient, oscillation frequency, the phase difference between displacement and lift force, and wake structures. We obtain a significantly larger vibration amplitude of the cylinder over a wide

  1. Numerical simulations of a mixed momentum-driven and buoyancy-driven jet in a large enclosure for nuclear reactor severe accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carasik, Lane B., E-mail: lcarasik@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States); Sebilleau, Frédéric, E-mail: Frederic.sebilleau11@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Walker, Simon P., E-mail: s.p.walker@imperial.ac.uk [Imperial College London, Mechanical Engineering Department, London SW7 SBX (United Kingdom); Hassan, Yassin A., E-mail: y-hassan@tamu.edu [Texas A& M University, Department of Nuclear Engineering, 3133 TAMU, College Station, TX 77843-3133 (United States)

    2017-02-15

    Highlights: • Simulations of thermal stratification in large enclosures using different turbulence models. • The recent elliptic blending k–ε was implemented in this work. • Direct comparisons of experimental temperature measurements to CFD predictions. • Spurious prediction of jet stabilisation and diffuse stratification by both low-Re k–ε and SST k–ω. - Abstract: An ability to predict the behavior of buoyant jets entering a large body of relatively stationary fluid is important in analysis of a wide variety of nuclear accidents, including for example the use of large tanks of water as heat sinks, or the release of hot gases into the secondary containment. In particular, the degree to which temperature stratification occurs is important, as it can affect markedly the effectiveness of the body of fluid as a heat sink. In this paper, we report the results of measurements on an experimental facility designed to exhibit such behavior, and the results of attempts to predict this experiment using CFD. In particular, we here investigate the effectiveness of three alternative turbulence models for this analysis; low-Re k–e, elliptic-blended k–e and Shear Stress Transport k–ω models. Both the degree of thermal stratification and the stability of the jet that were predicted differed markedly between the three models. Two of the models, the low-Re k–e and the Shear Stress Transport k–ω, tend to predict, wrongly, significant turbulent intensity in regions where fluid velocities are essentially zero. This spurious high turbulent intensity in turn causes (i) a high turbulent viscosity to be applied, wrongly stabilizing the jet, and (ii) increased turbulent diffusion of heat, causing too deep and diffuse a stratification to be predicted.

  2. Spanwise homogeneous buoyancy-drag model for Rayleigh-Taylor mixing and experimental evaluation

    International Nuclear Information System (INIS)

    Dimonte, Guy

    2000-01-01

    A buoyancy-drag model for Rayleigh-Taylor (RT) mixing is developed on the premise that the bubble and spike regions behave as distinct and spanwise homogeneous fluids. Then, mass conservation is applied accross the mixing zone to obtain their average mixture densities dynamically. These are used to explicitly calculate the inertia and buoyancy terms in the evolutionary equation. The only unknown parameter in the model is the Newtonian drag constant C∼2.5±0.6, which is determined from turbulent RT experiments over various Atwood numbers A and acceleration histories g(t). The bubble (i=2) and spike (i=1) amplitudes are found to obey the familiar h i =α i Agt 2 for a constant g and h i ∼t θ i for an impulsive g. For bubbles, both α 2 and θ 2 are insensitive to A. For the spikes, both α 1 and θ 1 increase as a power law with the density ratio. However, θ 1 is not universal because it depends on the initial value of h 1 /h 2 . (c) 2000 American Institute of Physics

  3. Noninvasive embryo assessment technique based on buoyancy and its association with embryo survival after cryopreservation.

    Science.gov (United States)

    Wessels, Cara; Penrose, Lindsay; Ahmad, Khaliq; Prien, Samuel

    2017-11-01

    Embryo cryopreservation offers many benefits by allowing genetic preservation, genetic screening, cost reduction, global embryo transport and single embryo transfer. However, freezing of embryos decreases embryo viability, as intracellular ice crystal formation often damages embryos. Success rates of frozen embryo transfer are expected to be 15-20% less than fresh embryo transfer. We have developed a noninvasive embryo assessment technique (NEAT) which enables us to predict embryo viability based on buoyancy. The purpose of this research was twofold. First was to determine if a NEAT, through a specific gravity device can detect embryo survival of cryopreservation. Second, it was to relate embryo buoyancy to embryo viability for establishing pregnancies in sheep. Blastocysts descent times were measured on one-hundred sixty-nine mice blastocysts before cryopreservation, according to standard protocol and post-thawing blastocysts descent times were measured again. There was a significant difference in blastocyst post-thaw descent times with NEAT in those blastocysts which demonstrated viability from those that did not (P embryos. Further studies on a larger scale commercial setting will evaluate the efficacy of NEAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    Science.gov (United States)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  5. Buoyancy limits on magnetic viscosity stress-law scalings in quasi stellar object accretion disk models

    International Nuclear Information System (INIS)

    Sakimoto, P.J.

    1985-01-01

    Quasi-Stellar Objects (QSOs) are apparently the excessively bright nuclei of distant galaxies. They are thought to be powered by accretion disks surrounding supermassive black holes: however, proof of this presumption is hampered by major uncertainties in the viscous stress necessary for accretion to occur. Models generally assume an and hoc stress law which scales the stress with the total pressure. Near the black hole, radiation pressure dominates gas pressure; scaling the stress with the radiation pressure results in disk models that are thermally unstable and optically thin. This dissertation shows that a radiation pressure scaling for the stress is not possible if the viscosity is due to turbulent magnetic Maxwell stresses. The argument is one of internal self-consistency. First, four model accretion disks that bound the reasonably expected ranges of viscous stress scalings and vertical structures are constructed. Magnetic flux tubes of various initial field strengths are then placed within these models, nd their buoyancy is modeled numerically. In disks using the radiation pressure stress law scaling, low opacities allow rapid heat flow into the flux tubes: the tubes are extremely buoyant, and magnetic fields strong enough to provide the required stress cannot be retained. If an alternative gas pressure scaling for the stress is assumed, then the disks are optically thick; flux tubes have corresponding lower buoyancy, and magnetic fields strong enough to provide the stress can be retained for dynamically significant time periods

  6. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target.

    Science.gov (United States)

    Dubey, P K; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  7. A Six-DOF Buoyancy Tank Microgravity Test Bed with Active Drag Compensation

    Science.gov (United States)

    Sun, Chong; Chen, Shiyu; Yuan, Jianping; Zhu, Zhanxia

    2017-10-01

    Ground experiment under microgravity is very essential because it can verify the space enabling technologies before applied in space missions. In this paper, a novel ground experiment system that can provide long duration, large scale and high microgravity level for the six degree of freedom (DOF) spacecraft trajectory tracking is presented. In which, the most gravity of the test body is balanced by the buoyancy, and the small residual gravity is offset by the electromagnetic force. Because the electromagnetic force on the test body can be adjusted in the electromagnetic system, it can significantly simplify the balancing process using the proposed microgravity test bed compared to the neutral buoyance system. Besides, a novel compensation control system based on the active disturbance rejection control (ADRC) method is developed to estimate and compensate the water resistance online, in order to improve the fidelity of the ground experiment. A six-DOF trajectory tracking in the microgravity system is applied to testify the efficiency of the proposed compensation controller, and the experimental simulation results are compared to that obtained using the classic proportional-integral-derivative (PID) method. The simulation results demonstrated that, for the six-DOF motion ground experiment, the microgravity level can reach to 5 × 10-4 g. And, because the water resistance has been estimated and compensated, the performance of the presented controller is much better than the PID controller. The presented ground microgravity system can be applied in on-orbit service and other related technologies in future.

  8. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    Science.gov (United States)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-05-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  9. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    International Nuclear Information System (INIS)

    Dubey, P. K.; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar

    2014-01-01

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique

  10. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    Energy Technology Data Exchange (ETDEWEB)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    2012-03-01

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrally buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.

  11. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla

    DEFF Research Database (Denmark)

    Sørensen, Sune Riis; Butts, Ian; Munk, Peter

    2016-01-01

    sizes, while the remaining four salt types resulted in smaller eggs. All salt types except NaCl treatments led to high fertilization rates and had no effect on fertilization success as well as egg neutral buoyancies at 7 h post-fertilization. The study points to the importance of considering ionic...... and egg buoyancy. Egg diameter after activation, using natural seawater adjusted to different salinities, varied among female eels, but no consistent pattern emerged. Activation salinities between 30–40 practical salinity unit (psu) produced higher quality eggs and generally larger egg diameters. Chorion...

  12. Buoyancy effects on thermal behavior of a flat-plate solar collector

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon

    2008-01-01

    Theoretical and experimental investigations of the flow and temperature distribution in a 12.53 m(2) solar collector panel with an absorber consisting of two vertical manifolds interconnected by 16 parallel horizontal fins have been carried out. The investigations are focused on overheating...... and the influence of the buoyancy effects are considered in the investigations. Further experimental investigations of the solar collector panel are carried out. The flow distribution through the absorber is evaluated by means of temperature measurements on the back of the absorber tubes. The measured temperatures....... The CFD calculations elucidate the flow and temperature distribution in the collector panels of different designs. Based on the investigations, recommendations are given in order to avoid overheating or boiling problems in the solar collector panel....

  13. The buoyancy convection during directional solidification of AlZn eutectic

    International Nuclear Information System (INIS)

    Prazak, M.; Procio, M.; Holecek, S.

    1993-01-01

    A study has been made of the effect of buoyancy convection during the directional solidification of AlZn eutectic alloy. Experiments have been conducted using a Bridgman-Stockbarger arrangement with the furnace moving along the specimen. The apparatus rotated around the horizontal axis, which made it possible to carry out measurements at different angles β contained by the gravity and temperature gradient vectors in the specimen. The anisotropy of both the linear thermal expansion coefficient a and the hardness HK measured by the Knoop method has been studied. The dilatation measurements confirmed the expected anisotropy of the linear thermal expansion of directionally solidified specimens. The values of HK correspond with the lamellar spacing measured in the metallographic study. (orig.)

  14. Education of Gifted Students with Virtual Physics Laboratory: Buoyancy Force Topic

    Directory of Open Access Journals (Sweden)

    Necati HIRCA

    2013-06-01

    Full Text Available Project-based learning approach is recommended for science education of gifted students for their independent learning will and they can intensify their attention on any issue for along time. In this study, the steps of the experiment buoyancy of liquids has been explained with the help of Algodoo Programme a learning environment in which gifted students test their hypotheses and can learn the concepts of physics with their own experiences. This study is tought to be used as a guidance material in the education of gifted students in Science and Art Centers in Turkey. Teachers in Science and Art Center (or who educate gifted students are generally inexperienced in the education of gifted students. Another problem of these teachers is the lack of adequate materials that the teachers use in the education of gifted students.

  15. Analysis of the strength of sea gas pipelines of positive buoyancy conditioned by glaciation

    Science.gov (United States)

    Malkov, Venyamin; Kurbatova, Galina; Ermolaeva, Nadezhda; Malkova, Yulia; Petrukhin, Ruslan

    2018-05-01

    A technique for estimating the stress state of a gas pipeline laid along the seabed in northern latitudes in the presence of glaciation is proposed. It is assumed that the pipeline lies on the bottom of the seabed, but under certain conditions on the some part of the pipeline a glaciation is formed and the gas pipeline section in the place of glaciation can come off the ground due to the positive buoyancy of the ice. Calculation of additional stresses caused by bending of the pipeline is of practical interest for strength evaluation. The gas pipeline is a two-layer cylindrical shell of circular cross section. The inner layer is made of high-strength steel, the outer layer is made of reinforced ferroconcrete. The proposed methodology for calculating the gas pipeline for strength is based on the equations of the theory of shells. The procedure takes into account the effect of internal gas pressure, external pressure of sea water, the weight of two-layer gas pipeline and the weight of the ice layer. The lifting force created by the displaced fluid and the positive buoyancy of the ice is also taken into account. It is significant that the listed loads cause only two types of deformation of the gas pipeline: axisymmetric and antisymmetric. The interaction of the pipeline with the ground as an elastic foundation is not considered. The main objective of the research is to establish the fact of separation of part of the pipeline from the ground. The method of calculations of stresses and deformations occurring in a model sea gas pipeline is presented.

  16. Numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities

    International Nuclear Information System (INIS)

    Milioli, F.E.

    1985-01-01

    In this research work a numerical model for the solution of two-dimensional natural convection problems in arbitrary cavities of a Boussinesq fluid is presented. The conservation equations are written in a general curvilinear coordinate system which matches the irregular boundaries of the domain. The nonorthogonal system is generated by a suitable system of elliptic equations. The momentum and continuity equations are transformed from the Cartesian system to the general curvilinear system keeping the Cartesian velocity components as the dependent variables in the transformed domain. Finite difference equations are obtained for the contravariant velocity components in the transformed domain. The numerical calculations are performed in a fixed rectangular domain and both the Cartesian and the contravariant velocity components take part in the solutiomn procedure. The dependent variables are arranged on the grid in a staggered manner. The numerical model is tested by solving the driven flow in a square cavity with a moving side using a nonorthogoanl grid. The natural convenction in a square cavity, using an orthogonal and a nonorthogonal grid, is also solved for the model test. Also, the solution for the buoyancy flow between a square cylinder placed inside a circular cylinder is presented. The results of the test problems are compared with those available in the specialized literature. Finally, in order to show the generality of the model, the natural convection problem inside a very irregular cavity is presented. (Author) [pt

  17. How Informative are the Vertical Buoyancy and the Prone Gliding Tests to Assess Young Swimmers’ Hydrostatic and Hydrodynamic Profiles?

    Science.gov (United States)

    Barbosa, Tiago M.; Costa, Mário J.; Morais, Jorge E; Moreira, Marc; Silva, António J.; Marinho, Daniel A.

    2012-01-01

    The aim of this research was to develop a path-flow analysis model to highlight the relationships between buoyancy and prone gliding tests and some selected anthropometrical and biomechanical variables. Thirty-eight young male swimmers (12.97 ± 1.05 years old) with several competitive levels were evaluated. It were assessed the body mass, height, fat mass, body surface area, vertical buoyancy, prone gliding after wall push-off, stroke length, stroke frequency and velocity after a maximal 25 [m] swim. The confirmatory model included the body mass, height, fat mass, prone gliding test, stroke length, stroke frequency and velocity. All theoretical paths were verified except for the vertical buoyancy test that did not present any relationship with anthropometrical and biomechanical variables nor with the prone gliding test. The good-of-fit from the confirmatory path-flow model, assessed with the standardized root mean square residuals (SRMR), is considered as being close to the cut-off value, but even so not suitable of the theory (SRMR = 0.11). As a conclusion, vertical buoyancy and prone gliding tests are not the best techniques to assess the swimmer’s hydrostatic and hydrodynamic profile, respectively. PMID:23486528

  18. Academic Buoyancy Mediates Academic Anxiety's Effects on Learning Strategies: An Investigation of English- and Chinese-Speaking Australian Students

    Science.gov (United States)

    Collie, Rebecca J.; Ginns, Paul; Martin, Andrew J.; Papworth, Brad

    2017-01-01

    A primary goal our study was to explore whether relations between academic anxiety and students' use of a range of learning strategies (memorisation, elaboration, personal best [PB] goals and cooperation) were mediated by academic buoyancy. We were also interested in extending knowledge of anxiety and its role in students' learning strategy use.…

  19. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method

    Science.gov (United States)

    Nguyen, Huong Giang T.; Horn, Jarod C.; Thommes, Matthias; van Zee, Roger D.; Espinal, Laura

    2017-12-01

    Addressing reproducibility issues in adsorption measurements is critical to accelerating the path to discovery of new industrial adsorbents and to understanding adsorption processes. A National Institute of Standards and Technology Reference Material, RM 8852 (ammonium ZSM-5 zeolite), and two gravimetric instruments with asymmetric two-beam balances were used to measure high-pressure adsorption isotherms. This work demonstrates how common approaches to buoyancy correction, a key factor in obtaining the mass change due to surface excess gas uptake from the apparent mass change, can impact the adsorption isotherm data. Three different approaches to buoyancy correction were investigated and applied to the subcritical CO2 and supercritical N2 adsorption isotherms at 293 K. It was observed that measuring a collective volume for all balance components for the buoyancy correction (helium method) introduces an inherent bias in temperature partition when there is a temperature gradient (i.e. analysis temperature is not equal to instrument air bath temperature). We demonstrate that a blank subtraction is effective in mitigating the biases associated with temperature partitioning, instrument calibration, and the determined volumes of the balance components. In general, the manual and subtraction methods allow for better treatment of the temperature gradient during buoyancy correction. From the study, best practices specific to asymmetric two-beam balances and more general recommendations for measuring isotherms far from critical temperatures using gravimetric instruments are offered.

  20. Data-driven batch schuduling

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John [Los Alamos National Laboratory; Denehy, Tim [GOOGLE; Arpaci - Dusseau, Remzi [UNIV OF WISCONSIN; Livny, Miron [UNIV OF WISCONSIN; Arpaci - Dusseau, Andrea C [NON LANL

    2009-01-01

    In this paper, we develop data-driven strategies for batch computing schedulers. Current CPU-centric batch schedulers ignore the data needs within workloads and execute them by linking them transparently and directly to their needed data. When scheduled on remote computational resources, this elegant solution of direct data access can incur an order of magnitude performance penalty for data-intensive workloads. Adding data-awareness to batch schedulers allows a careful coordination of data and CPU allocation thereby reducing the cost of remote execution. We offer here new techniques by which batch schedulers can become data-driven. Such systems can use our analytical predictive models to select one of the four data-driven scheduling policies that we have created. Through simulation, we demonstrate the accuracy of our predictive models and show how they can reduce time to completion for some workloads by as much as 80%.

  1. Penguin lungs and air sacs: implications for baroprotection, oxygen stores and buoyancy.

    Science.gov (United States)

    Ponganis, P J; St Leger, J; Scadeng, M

    2015-03-01

    The anatomy and volume of the penguin respiratory system contribute significantly to pulmonary baroprotection, the body O2 store, buoyancy and hence the overall diving physiology of penguins. Therefore, three-dimensional reconstructions from computerized tomographic (CT) scans of live penguins were utilized to measure lung volumes, air sac volumes, tracheobronchial volumes and total body volumes at different inflation pressures in three species with different dive capacities [Adélie (Pygoscelis adeliae), king (Aptenodytes patagonicus) and emperor (A. forsteri) penguins]. Lung volumes scaled to body mass according to published avian allometrics. Air sac volumes at 30 cm H2O (2.94 kPa) inflation pressure, the assumed maximum volume possible prior to deep dives, were two to three times allometric air sac predictions and also two to three times previously determined end-of-dive total air volumes. Although it is unknown whether penguins inhale to such high volumes prior to dives, these values were supported by (a) body density/buoyancy calculations, (b) prior air volume measurements in free-diving ducks and (c) previous suggestions that penguins may exhale air prior to the final portions of deep dives. Based upon air capillary volumes, parabronchial volumes and tracheobronchial volumes estimated from the measured lung/airway volumes and the only available morphometry study of a penguin lung, the presumed maximum air sac volumes resulted in air sac volume to air capillary/parabronchial/tracheobronchial volume ratios that were not large enough to prevent barotrauma to the non-collapsing, rigid air capillaries during the deepest dives of all three species, and during many routine dives of king and emperor penguins. We conclude that volume reduction of airways and lung air spaces, via compression, constriction or blood engorgement, must occur to provide pulmonary baroprotection at depth. It is also possible that relative air capillary and parabronchial volumes are

  2. Buoyed by geophysics : geophysics, just-in-time procurement help save millions on Ekwan pipeline buoyancy control

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2005-09-01

    Large-diameter natural gas pipelines buried in wet muskeg have the potential to rise to the surface due to buoyancy. Until recently, the most reliable method to prevent this was to attach specially manufactured bolt-on concrete weights at closely spaced intervals. However, these weights significantly increase capital budgets by millions of dollars because each weight weighs 2,540 kg and costs $1,000. A less costly alternative for buoyancy control in shallow muskeg is for the contractor to simply dig a deeper ditch. Another option is to hold down the pipeline by polyester straps attached to screw anchors. The challenge of applying these less costly options is that heavy equipment cannot be brought to the site to determine ground conditions until after all procurement, assessment and design is completed. Engineers must therefore select a buoyancy control measure based only on air photos and possibly a few drill holes. However, air photos do not indicate the depth of muskeg. Although some muskeg areas may turn out to be thick enough to avoid buoyancy control altogether, once construction is underway, it is too late to opt for cheaper alternatives. EnCana Corporation's 24-inch Ekwan pipeline was recently constructed through a remote area of British Columbia to connect the Greater Sierra natural gas discovery to a tie-in point on Nova Gas Transmission's northwest mainline. Air photos indicated that half of the route was through muskeg. AMEC E and C Services Inc. was responsible for the engineering and management of the project. The company used a combination of geophysical techniques to learn about the ground conditions. Toboggan mounted portable equipment was hauled by snowmobiles along trails made earlier by the survey crews. Ground penetrating radar assessed the muskeg thickness. Fixed frequency electromagnetic surveys also enhanced the results of the ground penetrating radar. The number of bolt-on weights was reduced from 9,000 to 3,700, a savings of $3

  3. Influence of thermal buoyancy on vertical tube bundle thermal density head predictions under transient conditions

    International Nuclear Information System (INIS)

    Lin, H.C.; Kasza, K.E.

    1984-01-01

    The thermal-hydraulic behavior of an LMFBR system under various types of plant transients is usually studied using one-dimensional (1-D) flow and energy transport models of the system components. Many of the transient events involve the change from a high to a low flow with an accompanying change in temperature of the fluid passing through the components which can be conductive to significant thermal bouyancy forces. Thermal bouyancy can exert its influence on system dynamic energy transport predictions through alterations of flow and thermal distributions which in turn can influence decay heat removal, system-response time constants, heat transport between primary and secondary systems, and thermal energy rejection at the reactor heat sink, i.e., the steam generator. In this paper the results from a comparison of a 1-D model prediction and experimental data for vertical tube bundle overall thermal density head and outlet temperature under transient conditions causing varying degrees of thermal bouyancy are presented. These comparisons are being used to generate insight into how, when, and to what degree thermal buoyancy can cause departures from 1-D model predictions

  4. Suppression of atmospheric recycling of planets embedded in a protoplanetary disc by buoyancy barrier

    Science.gov (United States)

    Kurokawa, Hiroyuki; Tanigawa, Takayuki

    2018-06-01

    The ubiquity of super-Earths poses a problem for planet formation theory to explain how they avoided becoming gas giants. Rapid recycling of the envelope gas of planets embedded in a protoplanetary disc has been proposed to delay the cooling and following accretion of disc gas. We compare isothermal and non-isothermal 3D hydrodynamical simulations of the gas flow past a planet to investigate the influence on the feasibility of the recycling mechanism. Radiative cooling is implemented by using the β cooling model. We find that, in either case, gas enters the Bondi sphere at high latitudes and leaves through the midplane regions, or vice versa when disc gas rotates sub-Keplerian. However, in contrast to the isothermal case where the recycling flow reaches the deeper part of the envelope, the inflow is inhibited from reaching the deep envelope in the non-isothermal case. Once the atmosphere starts cooling, buoyant force prevents the high-entropy disc gas from intruding the low-entropy atmosphere. We suggest that the buoyancy barrier isolates the lower envelope from the recycling and allows further cooling, which may lead runaway gas accretion onto the core.

  5. Buoyancy Induced Heat Transfer and Fluid Flow Inside a Prismatic Cavity

    International Nuclear Information System (INIS)

    Aich, Walid; Omri, Ahmed; Ben Nasrallah, Sassi

    2009-01-01

    This paper deals with a numerical simulation of natural convection flows in a prismatic cavity. This configuration represents solar energy collectors, conventional attic spaces of greenhouses and buildings with pitched roofs. The third dimension of the cavity is considered long enough for the flow to be considered 2D. The base is submitted to a uniform heat flux, the two top inclined walls are symmetrically cooled and the two vertical walls are assumed to be perfect thermal insulators. The aim of the study is to examine the thermal exchange by natural convection and effects of buoyancy forces on flow structure. The study provides useful information on the flow structure sensitivity to the governing parameters, the Rayleigh number (Ra) and the aspect ratio of the cavity. The hydrodynamic and thermal fields, the local Nusselt number, the temperature profile at the bottom and at the center of the cavity are investigated for a large range of Ra. The effect of the aspect ratio is examined for different values of Ra. Based on the authors knowledge, no previous results on natural convection in this geometry exist

  6. Direct numerical simulation of vacillation in convection induced by centrifugal buoyancy

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John W.

    2017-11-01

    Flows induced by centrifugal buoyancy occur in industrial systems, such as in the compressor cavities of gas turbines, as well as in flows of geophysical interest. In this numerical study we use direct numerical simulation (DNS) to investigate the transition between the steady waves regime, which is characterized by great regularity, to the vacillation regime, which is critical to understand transition to the fully turbulent regime. From previous work it is known that the onset of convection occurs in the form of pairs of nearly-circular rolls which span the entire axial length of the cavity, with small deviations near the parallel, no-slip end walls. When non-linearity sets in triadic interactions occur and, depending on the value of the centrifugal Rayleigh number, the flow is dominated by either a single mode and its harmonics or by broadband effects if turbulence develops. In this study we increase the centrifugal Rayleigh number progressively and investigate mode interactions during the vacillation regime which eventually lead to chaotic motion. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  7. Probing student reasoning approaches through the lens of dual-process theories: A case study in buoyancy

    Science.gov (United States)

    Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2018-06-01

    A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the "five-block problem," which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing) and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.

  8. Probing student reasoning approaches through the lens of dual-process theories: A case study in buoyancy

    Directory of Open Access Journals (Sweden)

    Cody R. Gette

    2018-03-01

    Full Text Available A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students’ written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the “five-block problem,” which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.

  9. Data-Driven Problems in Elasticity

    Science.gov (United States)

    Conti, S.; Müller, S.; Ortiz, M.

    2018-01-01

    We consider a new class of problems in elasticity, referred to as Data-Driven problems, defined on the space of strain-stress field pairs, or phase space. The problem consists of minimizing the distance between a given material data set and the subspace of compatible strain fields and stress fields in equilibrium. We find that the classical solutions are recovered in the case of linear elasticity. We identify conditions for convergence of Data-Driven solutions corresponding to sequences of approximating material data sets. Specialization to constant material data set sequences in turn establishes an appropriate notion of relaxation. We find that relaxation within this Data-Driven framework is fundamentally different from the classical relaxation of energy functions. For instance, we show that in the Data-Driven framework the relaxation of a bistable material leads to material data sets that are not graphs.

  10. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen-Ru; Zhang, Zhen [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Jiang, Pei-Xue, E-mail: jiangpx@tsinghua.edu.cn [Beijing Key Laboratory of CO_2 Utilization and Reduction Technology/Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Bo, Han-Liang [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Centre, Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China)

    2017-03-15

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  11. Influence of various aspects of low Reynolds number k-ε turbulence models on predicting in-tube buoyancy affected heat transfer to supercritical pressure fluids

    International Nuclear Information System (INIS)

    Zhao, Chen-Ru; Zhang, Zhen; Jiang, Pei-Xue; Bo, Han-Liang

    2017-01-01

    Highlights: • Understanding of the mechanism of buoyancy effect on supercritical heat transfer. • Turbulence related parameters in upward and downward flows were compared. • Turbulent Prandtl number affected the prediction insignificantly. • Buoyancy production was insignificant compared with shear production. • Damping function had the greatest effect and is a priority for further modification. - Abstract: Heat transfer to supercritical pressure fluids was modeled for normal and buoyancy affected conditions using several low Reynolds number k-ε models, including the Launder and Sharma, Myong and Kasagi, and Abe, Kondoh and Nagano, with the predictions compared with experimental data. All three turbulence models accurately predicted the cases without heat transfer deterioration, but failed to accurately predict the cases with heat transfer deterioration although the general trends were captured, indicating that further improvements and modifications are needed for the low Reynolds number k-ε turbulence models to better predict buoyancy deteriorated heat transfer. Further investigations studied the influence of various aspects of the low Reynolds number k-ε turbulence models, including the turbulent Prandtl number, the buoyancy production of turbulent kinetic energy, and the damping function to provide guidelines for model development to more precisely predict buoyancy affected heat transfer. The results show that the turbulent Prandtl number and the buoyancy production of turbulent kinetic energy have little influence on the predictions for cases in this study, while new damping functions with carefully selected control parameters are needed in the low Reynolds number k-ε turbulence models to correctly predict the buoyancy effect for heat transfer simulations in various applications such as supercritical pressure steam generators (SPSGs) in the high temperature gas cooled reactor (HTR) and the supercritical pressure water reactor (SCWR).

  12. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  13. Preliminary experimentally-validated forced and mixed convection computational simulations of the Rotatable Buoyancy Tunnel

    International Nuclear Information System (INIS)

    Clifford, Corey E.; Kimber, Mark L.

    2015-01-01

    Although computational fluid dynamics (CFD) has not been directly utilized to perform safety analyses of nuclear reactors in the United States, several vendors are considering adopting commercial numerical packages for current and future projects. To ensure the accuracy of these computational models, it is imperative to validate the assumptions and approximations built into commercial CFD codes against physical data from flows analogous to those in modern nuclear reactors. To this end, researchers at Utah State University (USU) have constructed the Rotatable Buoyancy Tunnel (RoBuT) test facility, which is designed to provide flow and thermal validation data for CFD simulations of forced and mixed convection scenarios. In order to evaluate the ability of current CFD codes to capture the complex physics associated with these types of flows, a computational model of the RoBuT test facility is created using the ANSYS Fluent commercial CFD code. The numerical RoBuT model is analyzed at identical conditions to several experimental trials undertaken at USU. Each experiment is reconstructed numerically and evaluated with the second-order Reynolds stress model (RSM). Two different thermal boundary conditions at the heated surface of the RoBuT test section are investigated: constant temperature (isothermal) and constant surface heat flux (isoflux). Additionally, the fluid velocity at the inlet of the test section is varied in an effort to modify the relative importance of natural convection heat transfer from the heated wall of the RoBuT. Mean velocity, both in the streamwise and transverse directions, as well as components of the Reynolds stress tensor at three points downstream of the RoBuT test section inlet are compared to results obtained from experimental trials. Early computational results obtained from this research initiative are in good agreement with experimental data obtained from the RoBuT facility and both the experimental data and numerical method can be used

  14. An analysis of the effect of buoyancy on phase distribution phenomena

    International Nuclear Information System (INIS)

    Maneesh Singhal; Richard T Lahey Jr

    2005-01-01

    Full text of publication follows: It is well known that pronounced lateral phase distributions may occur in two-phase conduit flows. Moreover, the lateral phase distribution appears to strongly influenced by the buoyancy of the dispersed phase. This study used a state-of-the-art two-fluid model, having no arbitrary coefficients, to predict steady, fully developed phase distribution in pipe flows. In particular, bubbly up-flows and down-flows in pipes, and slurry up-flows in pipes, having positive, negative and neutral buoyant particles, were analyzed and compared against appropriate terrestrial (1 g) data. In addition, microgravity bubbly flow data were also analyzed using the same two-fluid model. It was found that this two-fluid model was able to predict these data sets, including detailed predictions of the measured phasic velocity, dispersed phase volume fraction and turbulence (i.e., turbulent kinetic energy and Reynolds stress) fields. It was also found that the numerical algorithm, which was developed and used to evaluate the two-fluid model, was extremely efficient and could be easily run on a small PC. These results clearly demonstrate that a properly formulated two-fluid model, using mechanistically-based closure laws, can predict a wide range of multidimensional multiphase flow data without the need for 'tuners' and empirical correlations. Moreover, it appears that this approach can be used to develop and/or assess other flow-regime-specific closure laws for use in computational multiphase fluid dynamic (CMFD) solvers of transient two-fluid models, which, in turn, can be used for the design and analysis of various industrially important multiphase systems and processes. (authors)

  15. Buoyancy effects in overcooling transients calculated for the NRC pressurized thermal shock study

    International Nuclear Information System (INIS)

    Theofanous, T.G.; Iyer, K.; Nourbakhsh, H.P.; Gherson, P.

    1986-05-01

    The thermal-hydraulic responses of three PWRs (Oconee, Calvert Cliffs, and H.B. Robinson), to postulated Pressurized Thermal Shock (PTS) scenarios, which were originally determined by RELAP5 and TRAC calculations, are being further developed here with regard to buoyancy/stratification effects. These three PWRs were the subject of the NRC PTS study, and the present results helped define the thermal-hydraulic conditions utilized in the fracture mechanics calculations carried out at ORNL. The computer program REMIX, which is based on the Regional Mixing Model (RMM), was the analytical tool employed, while Purdue's 1/2-Scale HPI Thermal Mixing facility provided the basis for experimental support. Important mixing and wall heat transfer regimes are delineated on the basis of these results. We conclude that stratification is important only in cases of complete loop stagnation and that mixed-convection effects are important for downcomer flow velocities below approx.0.25 m/s. The stratification is small in magnitude, however it is important in creating a recirculating flow pattern which activates the lower plenum, pump and loop seal volumes, to participate in the mixing process. This mixing process together with the heat input from the wall metal significantly impact the cooldown rates. Heat transfer in the plume region is dominated by forced convection. On the other hand, the presence of the Reactor Pressure Vessel (RPV) wall cladding and wall conduction significantly dampen the free convection effects in the low velocity, mixed-convection, regime. For the stagnant loop cases, all locations outside the plume region are included in this regime. In the presence of natural loop circulation and a uniformly distributed downcomer flow, the mixed convection regime is also expected, however, the forced convection regime can also be observed in highly asymmetric flow behavior

  16. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    Science.gov (United States)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  17. Silicate melts density, buoyancy relations and the dynamics of magmatic processes in the upper mantle

    Science.gov (United States)

    Sanchez-Valle, Carmen; Malfait, Wim J.

    2016-04-01

    with results from ab initio calculations. The density model has been applied to examine the mineral-melt buoyancy relations at depth and the implications of these results for the dynamics of magma chambers, crystal settling and the stability and mobility of magmas in the upper mantle will be discussed.

  18. Influence of the weighing bar size to determine optimal time of biodiesel-glycerol separation by using the buoyancy weighing-bar method

    Science.gov (United States)

    Tambun, R.; Sibagariang, Y.; Manurung, J.

    2018-02-01

    The buoyancy weighing-bar method is a novel method in the particle size distribution measurement. This method can measure particle size distributions of the settling particles and floating particles. In this study, the buoyancy weighing-bar method is applied to determine optimal time of biodiesel-glycerol separation. The buoyancy weighing-bar method can be applied to determine the separation time because biodiesel and glycerol have the different densities. The influences of diameter of weighing-bar by using the buoyancy weighing-bar method would be experimentally investigated. The diameters of weighing-bar in this experiment are 8 mm, 10 mm, 15 mm and 20 mm, while the graduated cylinder (diameter : 65 mm) is used as vessel. The samples used in this experiment are the mixture of 95 % of biodiesel and 5 % of glycerol. The data obtained by the buoyancy weighing-bar method are analized by using the gas chromatography to determine the purity of biodiesel. Based on the data obtained, the buoyancy weighing-bar method can be used to detect the separation time of biodiesel-glycerol by using the weighing-bar diameter of 8 mm, 10 mm, 15 mm and 20 mm, but the most accuracy in determination the biodiesel-glycerol separation time is obtained by using the weighing-bar diameter of 20 mm. The biodiesel purity of 97.97 % could be detected at 64 minutes by using the buoyancy weighing-bar method when the weighing-bar diameter of 20 mm is used.

  19. Coupled thermo-capillary and buoyancy convection in a liquid layer locally heated on its free surface

    International Nuclear Information System (INIS)

    Favre, E.

    1997-01-01

    Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 10 5 ). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 10 3 , calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author) [fr

  20. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Z.; Chin, Y.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  1. Simulation of buoyancy induced gas mixing tests performed in a large scale containment facility using GOTHIC code

    International Nuclear Information System (INIS)

    Liang, Z.; Chin, Y.S.

    2014-01-01

    This paper compares containment thermal-hydraulics simulations performed using GOTHIC against a past test set of large scale buoyancy induced helium-air-steam mixing experiments that had been performed at the AECL's Chalk River Laboratories. A number of typical post-accident containment phenomena, including thermal/gas stratification, natural convection, cool air entrainment, steam condensation on concrete walls and active local air cooler, were covered. The results provide useful insights into hydrogen gas mixing behaviour following a loss-of-coolant accident and demonstrate GOTHIC's capability in simulating these phenomena. (author)

  2. Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics

    DEFF Research Database (Denmark)

    Hinrichsen, H-H.; Hüssy, K.; Huwer, B.

    2012-01-01

    Spatio-temporal variability in western Baltic cod early life stage survival mediated by egg buoyancy, hydrography and hydrodynamics. – ICES Journal of Marine Science, 69: 1744–1752.To disentangle the effects of different drivers on recruitment variability of marine fish, a spatially and temporally...... explicit understanding of both the spawning stock size and the early life stage dynamics is required. The objectives of this study are to assess the transport of western Baltic cod early life stages as well as the variability in environmentally-mediated survival along drift routes in relation to both...

  3. Baculite 3D Modeling: a New Method for Computing Buoyancy, Stability, and Orientation with Implications for Ectocochleate Cephalopod Hydrostatics

    Science.gov (United States)

    Peterman, D. J.; Barton, C. C.

    2017-12-01

    Ectocochleate (external) cephalopod shells are comprised of a body chamber which houses the organism's soft parts and the phragmocone which consists of a series of progressively larger chambers (camerae) divided by septa. The phragmocone is used as a passive gas float for buoyancy regulation. The soft body and the mineralized shell are denser than water and are negatively buoyant while the phragmocone is positively buoyant due to some fraction of gas in its chambers. This provides a neutrally buoyant condition when the total mass of the organism is equal to the mass of the displaced water. The static orientation of the organism occurs when the centers of buoyancy and mass are vertically aligned and stability is determined by their degree of separation. Three-dimensional modeling of a specimen of Baculites compressus (which has a straight conical shell) was performed using Autodesk Meshmixer, Netfabb ®, Blender 2.78, and MeshLab. The initial 3D mesh shapefile was created by Autodesk ReCap 360™ photogrammetry software. The specimen requirements for the models include: an external shell (ideally complete, otherwise approximated), a septum showing lower order frilling, and a suture pattern to reconstruct the higher order septal frilling (for complex septa). Volumes and centers of mass/buoyancy were calculated with MeshLab in order to determine neutrality, stability, and orientation. Our method can be used to investigate the influence of morphological features on these hydrostatic properties of ectocochleate cephalopods and also the paleoecological implications of different morphotypes. Baculites compressus, is found to assume relatively stable vertical orientations when the shell is positively or neutrally buoyant. By arbitrarily flooding all chambers, the ammonite becomes negatively buoyant, and the centers of buoyancy and mass virtually coincide. This reduces stability but allows the living ammonite to assume a larger range of orientations, including horizontal

  4. Effects of Buoyancy Forces on Immiscible Water/Oil Displacements in a Vertically Oriented Porous Medium Effets des facteurs de flottabilité sur les déplacements non-miscibles eau/huile dans un milieu poreux vertical

    Directory of Open Access Journals (Sweden)

    Thirunavu S. R.

    2006-11-01

    Full Text Available The effects of buoyancy forces on liquid-liquid displacement processes occurring in porous media are important in a variety of practical situations, in particular during the displacement of oil from partially-depleted underground reservoirs by means of aqueous solutions. Most previous studies involving the visualization of water/oil displacements in porous media have been undertaken in horizontal two-dimensional porous medium cells. The objective of the present work was to determine the effects of buoyancy forces; on the fingering pattern and oil recovery by conducting immiscible displacement experiments in two-dimensional consolidated porous medium cells aligned in the vertical plane. In order to obtain a clear understanding of the favourable and unfavourable effects of buoyancy forces, experiments were carried out in three different flow modes, namely horizontal, vertical upward, and vertical downward. As the effects of buoyancy forces are negligible for two-dimensional porous media in the horizontal flow mode, the recoveries obtained in this mode were used as a reference for comparison with those obtained in the two vertical modes. Displacements using five different density ratios were studied. The breakthrough time and percentage oil recovery were measured in each case. The effects of buoyancy forces, viscous forces, and capillary forces, as well as the injection flow rate, were also recorded. The results obtained indicate that the effects of buoyancy forces are very pronounced at low flow rates and low oil/water density ratios, and that even a slight increase in the flow rate causes the buoyancy forces to rapidly become less significant. Les facteurs de flottabilité exercent un effet important sur les déplacements liquide/liquide en milieu poreux dans toute une gamme de situations pratiques, en particulier lorsqu'on veut déplacer l'huile de roches réservoirs partiellement épuisées à l'aide de solutions aqueuses. La plupart des

  5. Numerical modeling of solute transport in a sand tank physical model under varying hydraulic gradient and hydrological stresses

    Science.gov (United States)

    Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang

    2018-03-01

    This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.

  6. Equilibrium of current driven rotating liquid metal

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Ivanov, A.A.; Zakharov, S.V.; Zakharov, V.S.; Livadny, A.O.; Serebrennikov, K.S.

    2006-01-01

    In view of great importance of magneto-rotational instability (MRI) as a fundamental mechanism for angular momentum transfer in magnetized stellar accretion disks, several research centers are involved in experimental study of MRI under laboratory conditions. The idea of the experiment is to investigate the rotation dynamics of well conducting liquid (liquid metal) between two cylinders in axial magnetic field. In this Letter, an experimental scheme with immovable cylinders and fluid rotation driven by radial current is considered. The analytical solution of a stationary flow was found taking into account the external current. Results of axially symmetric numerical simulations of current driven fluid dynamics in experimental setup geometry are presented. The analytical solution and numerical simulations show that the current driven fluid rotation in axial magnetic field provides the axially homogeneous velocity profile suitable for MRI study in classical statement

  7. Heart Rate Responses to Unaided Orion Side Hatch Egress in the Neutral Buoyancy Laboratory

    Science.gov (United States)

    English, Kirk L.; Hwang Emma Y.; Ryder, Jeffrey W.; Kelly, Cody; Walker, Thomas; Ploutz-Snyder, Lori L.

    2016-01-01

    NASA is developing the Orion capsule as a vehicle for transporting crewmembers to and from the International Space Station (ISS) and for future human space exploration missions. Orion and other commercial vehicles are designed to splash down in the ocean where nominally support personnel will assist crewmembers in egressing the vehicle. However, off-nominal scenarios will require crewmembers to egress the vehicle unaided, deploy survival equipment, and ingress a life raft. PURPOSE: To determine the heart rate (HR) responses to unaided Orion side hatch egress and raft ingress as a part of the NASA Crew Survival Engineering Team's evaluation of the PORT Orion mockup in the Neutral Buoyancy Laboratory (NBL). METHODS: Nineteen test subjects, including four astronauts (N=19, 14 males/5 females, 38.6+/-8.4 y, 174.4+/-9.6 cm, 75.7+/-13.1 kg), completed a graded maximal test on a cycle ergometer to determine VO2peak and HRpeak and were divided into five crews of four members each; one subject served on two crews. Each crew was required to deploy a life raft, egress the Orion vehicle from the side hatch, and ingress the life raft with two 8 kg emergency packs per crew. Each crew performed this activity one to three times; a total of ten full egresses were completed. Subjects wore a suit that was similar in form, mass, and function to the Modified Advanced Crew Escape Suit (MACES) including helmet, gloves, boots, supplemental O2 bottles, and a CO2-inflated life preserver (approx.18 kg); subjects began each trial seated supine in the PORT Orion mockup with seat belts and mockup O2 and communication connections and ended each trial with all four crewmembers inside the life raft. RESULTS: VO2peak was 40.8+/-6.8 mL/kg/min (3.1+/-0.7 L/min); HRpeak was 181+/-10 bpm. Total egress time across trials was 5.0+/-1.6 min (range: 2.8-8.0 min); all subjects were able to successfully complete all trials. Average maximum HR at activity start, at the hatch opening, in the water, and in the

  8. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  9. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  10. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is positioned vertically. The ground-based experiments are sufficient preliminary tests of theory and should be of significant interest regarding vapor deposited films in microgravity.

  11. Investigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection

    Directory of Open Access Journals (Sweden)

    H. Khorasanizadeh

    2014-01-01

    Full Text Available In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanoparticles from 0 to 0.04 on heat transfer characteristics have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra=103, for which conduction heat transfer is dominant, the average Nusselt number increases as volume fraction of nanoparticles increases, but for higher Ra numbers in contradiction with the constant properties cases it decreases. This reduction, which is associated with increased viscosity, is more severe at Ra of 104 compared to higher Ra numbers such that the least deterioration in heat transfer occurs for Ra=107. This is due to the fact that as Ra increases, the Brownian motion enhances; thus conductivity improves and becomes more important than viscosity increase. An scale analysis, performed to clarify the contradictory reports in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, showed that different kinds of evaluating the base fluid Rayleigh number has led to such a difference.

  12. Light-Driven Alignment

    CERN Document Server

    Antonyuk, Boris P

    2009-01-01

    This book deals with influencing the properties of solids by light-driven electron transport. The theoretical basis of these effects, light-driven ordering and self-organisation, as well as optical motors are presented. With light as a tool, new ways to produce materials are opened.

  13. Data-Driven Model Order Reduction for Bayesian Inverse Problems

    KAUST Repository

    Cui, Tiangang; Youssef, Marzouk; Willcox, Karen

    2014-01-01

    One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce

  14. Vlasov dynamics of periodically driven systems

    Science.gov (United States)

    Banerjee, Soumyadip; Shah, Kushal

    2018-04-01

    Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.

  15. Computational investigation of 99Mo, 89Sr, and 131I production rates in a subcritical UO2(NO32 aqueous solution reactor driven by a 30-MeV proton accelerator

    Directory of Open Access Journals (Sweden)

    Z. Gholamzadeh

    2015-12-01

    Full Text Available The use of subcritical aqueous homogenous reactors driven by accelerators presents an attractive alternative for producing 99Mo. In this method, the medical isotope production system itself is used to extract 99Mo or other radioisotopes so that there is no need to irradiate common targets. In addition, it can operate at much lower power compared to a traditional reactor to produce the same amount of 99Mo by irradiating targets. In this study, the neutronic performance and 99Mo, 89Sr, and 131I production capacity of a subcritical aqueous homogenous reactor fueled with low-enriched uranyl nitrate was evaluated using the MCNPX code. A proton accelerator with a maximum 30-MeV accelerating power was used to run the subcritical core. The computational results indicate a good potential for the modeled system to produce the radioisotopes under completely safe conditions because of the high negative reactivity coefficients of the modeled core. The results show that application of an optimized beam window material can increase the fission power of the aqueous nitrate fuel up to 80%. This accelerator-based procedure using low enriched uranium nitrate fuel to produce radioisotopes presents a potentially competitive alternative in comparison with the reactor-based or other accelerator-based methods. This system produces ∼1,500 Ci/wk (∼325 6-day Ci of 99Mo at the end of a cycle.

  16. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  17. Discovery Driven Growth

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj

    2009-01-01

    Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august......Anmeldelse af Discovery Driven Growh : A breakthrough process to reduce risk and seize opportunity, af Rita G. McGrath & Ian C. MacMillan, Boston: Harvard Business Press. Udgivelsesdato: 14 august...

  18. The influence of different salinity conditions on egg buoyancy and development and yolk sac larval survival and morphometric traits of Baltic Sea sprat (Sprattus sprattus balticus Schneider

    Directory of Open Access Journals (Sweden)

    Christoph Petereit

    2009-10-01

    Full Text Available The small pelagic sprat (Sprattus sprattus is a key ecologic player in the Baltic Sea. However, there is long-term variability in recruitment which is thought to be influenced by fluctuations in abiotic and biotic conditions experienced during the early life stages. This study concentrates on the influence of different ambient salinities on sprat egg development, egg buoyancy and survival as well as early yolk sac larval morphometric traits. Egg buoyancy significantly decreased with increasing salinity experienced during fertilization and/or incubation experiments. Field egg buoyancy measurements in 2007 and 2008 exhibited annual and seasonal differences in specific gravity, potentially associated with changes in adult sprat vertical distribution. Neither egg development time nor the duration of the yolk sac phase differed among salinity treatments. At eye pigmentation, larval standard length exhibited high variance among individuals but did not differ among treatments. The largest ecological impact of salinity experienced during spawning was the modification the buoyancy of eggs and yolk sac larvae, which determines their vertical habitat in the Baltic Sea. There are strong thermo- and oxyclines in the Baltic Sea, and thus salinity can indirectly impact the survival of these early life stages by modifying the ambient temperatures and oxygen conditions experienced.

  19. Buoyancy Effect of Ionic Vacancy on the Change of the Partial Molar Volume in Ferricyanide-Ferrocyanide Redox Reaction under a Vertical Gravity Field

    Directory of Open Access Journals (Sweden)

    Yoshinobu Oshikiri

    2013-01-01

    Full Text Available With a gravity electrode (GE in a vertical gravity field, the buoyancy effect of ionic vacancy on the change of the partial molar volume in the redox reaction between ferricyanide (FERRI and ferrocyanide (FERRO ions was examined. The buoyancy force of ionic vacancy takes a positive or negative value, depending on whether the rate-determining step is the production or extinction of the vacancy. Though the upward convection over an upward electrode in the FERRO ion oxidation suggests the contribution of the positive buoyancy force arising from the vacancy production, the partial molar volume of the vacancy was not measured. On the other hand, for the downward convection under a downward electrode in the FERRI ion reduction, it was not completely but partly measured by the contribution of the negative buoyancy force from the vacancy extinction. Since the lifetime of the vacancy is decreased by the collision between ionic vacancies during the convection, the former result was ascribed to the shortened lifetime due to the increasing collision efficiency in the enhanced upward convection over an upward electrode, whereas the latter was thought to arise from the elongated lifetime due to the decreasing collision efficiency by the stagnation under the downward electrode.

  20. Influence of the weighing bar position in vessel on measurement of cement’s particle size distribution by using the buoyancy weighing-bar method

    Science.gov (United States)

    Tambun, R.; Sihombing, R. O.; Simanjuntak, A.; Hanum, F.

    2018-02-01

    The buoyancy weighing-bar method is a new simple and cost-effective method to determine the particle size distribution both settling and floating particle. In this method, the density change in a suspension due to particle migration is measured by weighing buoyancy against a weighing-bar hung in the suspension, and then the particle size distribution is calculated using the length of the bar and the time-course change in the mass of the bar. The apparatus of this method consists of a weighing-bar and an analytical balance with a hook for under-floor weighing. The weighing bar is used to detect the density change in suspension. In this study we investigate the influences of position of weighing bar in vessel on settling particle size distribution measurements of cement by using the buoyancy weighing-bar method. The vessel used in this experiment is graduated cylinder with the diameter of 65 mm and the position of weighing bar is in center and off center of vessel. The diameter of weighing bar in this experiment is 10 mm, and the kerosene is used as a dispersion liquids. The results obtained show that the positions of weighing bar in vessel have no significant effect on determination the cement’s particle size distribution by using buoyancy weighing-bar method, and the results obtained are comparable to those measured by using settling balance method.

  1. The effect of buoyancy on flow and heat transfer for a gas passing down a vertical pipe at low turbulent reynolds numbers

    International Nuclear Information System (INIS)

    Easby, J.P.

    1978-01-01

    For the analysis of low-flow situations in the core of the High-Temperature Gas-Cooled reactor it is necessary to have a knowledge of the variation of pressure drop and heat transfer with flow and buoyancy influence. Nitrogen at 4 bar has been used to simulate the high pressure helium in the reactor and an experiment performed for downward flow in a heated vertical pipe. The measurements show that for the range of flow and buoyancy influence parameters investigated, (2000 6 ), friction factors are reduced by up to 20% compared with a correlation for isothermal flows and heat transfer is increased by up to 40% compared with a correlation for constant fluid properties. Agreement with the limit amount of previous data is quite satisfactory. The changes in heat transfer and friction factor with buoyancy influence can be attributed to distortion of the normally linear, radial shear stress profile. Simple equations have been determined to correlate the present results but extrapolation to conditions of high flow and buoyancy influence, where the interaction of forced and free convection may be different, is not advised. (author)

  2. Mixing of two solutions combined by gravity drainage.

    Science.gov (United States)

    Leuptow, R M; Smith, K; Mockros, L F

    1995-01-01

    A variety of medical therapies require the mixing of solutions from two separate bags before use. One scenario for the mixing is to drain the solution from one bag into the other by gravity through a short connecting tube. The degree of mixing in the lower bag depends on the relative densities of the two solutions, the geometry of the two bags and the connecting tube, and the placement of the connecting tube. Solutions with densities differing by as much as 12% were mixed by draining the solution from an upper bag into a lower bag for a particular geometric configuration. The two solutions had different electrical conductivities, and the conductivity of the combined solution as it exited from the lower bag was used as a measure of the effectiveness of mixing. When the more dense solution was drained from the upper bag into the less dense solution in a lower bag, mixing was very effective. The incoming jet of high density solution entrained the low density solution. Flow visualization indicated that the incoming jet penetrated to the bottom of the lower bag, and resulting large vortical structures enhanced mixing. When the less dense solution was drained from the upper bag into the more dense solution in the lower bag mixing was less effective. The buoyancy force reduced the momentum of the incoming jet such that it did not penetrate to the bottom of the lower bag, resulting in stratification of the solutions.

  3. Taylor dispersion in wind-driven current

    Science.gov (United States)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  4. Data-driven storytelling

    CERN Document Server

    Hurter, Christophe; Diakopoulos, Nicholas ed.; Carpendale, Sheelagh

    2018-01-01

    This book is an accessible introduction to data-driven storytelling, resulting from discussions between data visualization researchers and data journalists. This book will be the first to define the topic, present compelling examples and existing resources, as well as identify challenges and new opportunities for research.

  5. Pressure Driven Poiseuille Flow

    DEFF Research Database (Denmark)

    Stotz, Ingo Leonardo; Iaffaldano, Giampiero; Davies, D. Rhodri

    2018-01-01

    The Pacific plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians–Japan, Marianas–Izu–Bonin and Tonga–Kermadec trenches. This implies that viscous flow within the sub–Pacific asthenosphere is mainly generated by overlying plate motion (i.e. Couette flow...

  6. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  7. Gas mixing under the influence of thermal-dynamic parameters such as buoyancy, jet momentum and fan-induced convection

    International Nuclear Information System (INIS)

    Chan, C.K.; Jones, S.C.A.

    1994-01-01

    Various scaling parameters for simulating mixing under the influence of buoyancy, jet momentum, and fan-induced convection were examined. Their significance was assessed by comparing the mixing of helium (a simulant for hydrogen) with air in a large-scale enclosure (1.8 m x 1.8 m x 1.8 m) to the mixing of salt-water with fresh-water in a small-scale enclosure (1/6 the size). The advantage of using the salt-water/freshwater technique is that it allows the characteristic flow regime (either turbulent or laminar flow) in the full-scale containment to be maintained in the reduced scale containment. A smoke technique for flow visualization was used to examine the mixing of the helium with air. For the small-scale salt-water/fresh-water experiment, fluorescent dye was used to provide a means to visualize the mixing process. The mixing behaviour in both sets of experiments were analyzed based on video records and concentration measurements in ten locations. Measurements showed that depending on the recirculation and jet flow rates, the injected salt-water (in small-scale experiments) and helium (in large-scale experiments) can disperse sufficiently quickly to produce an essentially 'well mixed' condition rendering the concentration measurements insensitive to the variation in the Froude or the Grashof Numbers. (author)

  8. Coexisting contraction-extension consistent with buoyancy of the crust and upper mantle in North-Central Italy

    CERN Document Server

    Aoudia, A; Ismail-Zadeh, A T; Panza, G F; Pontevivo, A

    2002-01-01

    The juxtaposed contraction and extension observed in the crust of the Italian Apennines and elsewhere has, for a long time, attracted the attention of geoscientists and is a long-standing enigmatic feature. Several models, invoking mainly external forces, have been put forward to explain the close association of these two end-member deformation mechanisms clearly observed by geophysical and geological investigations. These models appeal to interactions along plate margins or at the base of the lithosphere such as back-arc extension or shear tractions from mantle flow or to subduction processes such as slab roll back, retreat or pull and detachment. We present here a revisited crust and upper mantle model that supports delamination processes beneath North-Central Italy and provides a new background for the genesis and age of the recent magmatism in Tuscany. Although external forces must have been important in the building up of the Apennines, we show that internal buoyancy forces solely can explain the coexist...

  9. The impact of pressure-dependent interfacial tension and buoyancy forces upon pressure depletion in virgin hydrocarbon reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, S.R.; Mackay, E.J. [Heriot-Watt University, Edinburgh (United Kingdom). Dept. of Petroleum Engineering

    1998-07-01

    This paper describes a combined experimental and theoretical study of the microscopic pore-scale physics characterizing gas and liquid production from hydrocarbon reservoirs during pressure depletion. The primary focus of the study was to examine the complex interactions between interfacial tension and buoyancy forces during gas evolution within a porous medium containing oil, water and gas. A specialized 2-dimensional glass micromodel, capable of operating at pressure in excess of 35 MPa was used to visualize the physical mechanisms governing such microscopic processes. In addition, a 3-dimensional, 3-phase numerical pore-scale simulator was developed that can be used to examine gas evolution over a range of different lengthscales and for a wide range of fluid and rock properties. The model incorporates all of the important physics observed in associated laboratory micromodel experiments, including: embryonic nucleation, supersaturation effects, multiphase diffusion, bubble growth-migration-fragmentation, and three-phase spreading coefficients. The precise pore-scale mechanisms governing gas evolution were found to be far more subtle than earlier models would suggest because of the large variation of gas/oil interfacial tension with pressure. This has a profound effect upon the migration of gas structures during depletion and, in models pertaining to reservoir rock, the process of gas migration is consequently much slower than previously thought. This is the first time that such a phenomena has been modelled at the pore-scale and the implications for production forecasting are thought to be significant. (author)

  10. Solar-driven refrigeration technologies; Koeltechnologieen op zonne-energie

    Energy Technology Data Exchange (ETDEWEB)

    De Cillis, S.; Infante Ferreira, C.A. [Technische Universiteit Delft, Delft (Netherlands); Krieg, J. [Unilever Foods and Health Research Institute, Vlaardingen (Netherlands)

    2005-12-01

    A review is presented of solar driven refrigeration technologies. A subdivision is made between electric driven and thermal driven systems. Their potential and stage of development are discussed. The electric driven systems include Stirling, thermo-acoustic, thermoelectric, electrochemical and membrane assisted absorption systems. The thermal driven systems include absorption and adsorption systems. A model is used to compare the performance of the different solutions. [Dutch] Dit artikel geeft een overzicht van zon-aangedreven koeltechnologieen. Er wordt onderscheid gemaakt tussen elektrisch en thermisch aangedreven systemen. Hun potentieel en niveau van ontwikkeling worden besproken. De elektrisch aangedreven systemen omvatten Stirling, thermo-akoestisch, thermo-elektrisch, elektrochemisch en membraanondersteund absorptiesystemen.De warmte-aangedreven systemen omvatten absorptie en adsorptie. Er wordt gebruik gemaakt van een model om de prestaties van de verschillende alternatieven onderling te vergelijken.

  11. Laser-driven polarized sources of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.S.

    1988-01-01

    A novel laser-driven polarized source of hydrogen and deuterium which operates on the principle of spin exchange optical pumping is described. The advantages of this method over conventional polarized sources for internal target experiments are presented. Technological difficulties which prevent ideal source operation are outlined along with proposed solutions. At present, the laser-driven polarized hydrogen source delivers 8 /times/ 10 16 atoms/s with a polarization (P/sub z/) of 24%. 9 refs., 2 figs

  12. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  13. Privacy driven internet ecosystem

    OpenAIRE

    Trinh, Tuan Anh; Gyarmati, Laszlo

    2012-01-01

    The dominant business model of today's Internet is built upon advertisements; users can access Internet services while the providers show ads to them. Although significant efforts have been made to model and analyze the economic aspects of this ecosystem, the heart of the current status quo, namely privacy, has not received the attention of the research community yet. Accordingly, we propose an economic model of the privacy driven Internet ecosystem where privacy is handled as an asset that c...

  14. Water-driven micromotors.

    Science.gov (United States)

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  15. Community Driven Universal Access Solutions in Cambodia : Pilots ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Two e-community pilot projects will be tested in the Kep fishing community ... Ministry of Commerce ... Eleven world-class research teams set to improve livestock vaccine development and production to benefit farmers across the Global South.

  16. Community Driven Universal Access Solutions in Cambodia : Pilots ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI lance un nouveau projet dans la région de l'ANASE. L'honorable Chrystia Freeland, ministre du Commerce international, a annoncé le lancement d'un nouveau projet financé par le Centre de recherches pour le développement international (CRDI). Voir davantageLe CRDI lance un nouveau projet dans la région ...

  17. Spectrum of resistivity gradient driven turbulence

    International Nuclear Information System (INIS)

    Terry, P.W.; Diamond, P.H.; Shaing, K.C.; Garcia, L.; Carreras, B.A.

    1986-01-01

    The resistivity fluctuation correlation function and electrostatic potential spectrum of resistivity gradient driven turbulence are calculated analytically and compared to the results of three dimensional numerical calculations. Resistivity gradient driven turbulence is characterized by effective Reynolds' numbers of order unity. Steady-state solution of the renormalized spectrum equations yields an electrostatic potential spectrum (circumflex phi 2 )/sub ktheta/ approx. k/sub theta//sup -3.25/. Agreement of the analytically calculated potential spectrum and mean-square radial velocity with the results of multiple helicity numerical calculations is excellent. This comparison constitutes a quantitative test of the analytical turbulence theory used. The spectrum of magnetic fluctuations is also calculated, and agrees well with that obtained from the numerical computations. 13 refs., 8 figs

  18. Functional Domain Driven Design

    OpenAIRE

    Herrera Guzmán, Sergio

    2016-01-01

    Las tecnologías están en constante expansión y evolución, diseñando nuevas técnicas para cumplir con su fin. En el desarrollo de software, las herramientas y pautas para la elaboración de productos software constituyen una pieza en constante evolución, necesarias para la toma de decisiones sobre los proyectos a realizar. Uno de los arquetipos para el desarrollo de software es el denominado Domain Driven Design, donde es importante conocer ampliamente el negocio que se desea modelar en form...

  19. Constellations-driven innovation

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2011-01-01

    The paper presents a science and technology studies and actor-network-theory inspired approach to understanding the development and ongoing re-didactication and re-design of a Danish developed presentation tool called the Theme Board (Tematavlen.dk). It is argued that this approach provides a par...... a particularly useful point of departure for engaging in researching innovation and didactic design of digital teaching and learning instruments such as the Theme Board that are programmed and serviced 'in the sky'. I call this approach: constellation-driven innovations....

  20. Information-Driven Inspections

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Lockwood, Dunbar

    2010-01-01

    New uranium enrichment capacity is being built worldwide in response to perceived shortfalls in future supply. To meet increasing safeguards responsibilities with limited resources, the nonproliferation community is exploring next-generation concepts to increase the effectiveness and efficiency of safeguards, such as advanced technologies to enable unattended monitoring of nuclear material. These include attribute measurement technologies, data authentication tools, and transmission and security methods. However, there are several conceptual issues with how such data would be used to improve the ability of a safeguards inspectorate such as the International Atomic Energy Agency (IAEA) to reach better safeguards conclusions regarding the activities of a State. The IAEA is pursuing the implementation of information-driven safeguards, whereby all available sources of information are used to make the application of safeguards more effective and efficient. Data from continuous, unattended monitoring systems can be used to optimize on-site inspection scheduling and activities at declared facilities, resulting in fewer, better inspections. Such information-driven inspections are the logical evolution of inspection planning - making use of all available information to enhance scheduled and randomized inspections. Data collection and analysis approaches for unattended monitoring systems can be designed to protect sensitive information while enabling information-driven inspections. A number of such inspections within a predetermined range could reduce inspection frequency while providing an equal or greater level of deterrence against illicit activity, all while meeting operator and technology holder requirements and reducing inspector and operator burden. Three options for using unattended monitoring data to determine an information-driven inspection schedule are to (1) send all unattended monitoring data off-site, which will require advances in data analysis techniques to

  1. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  2. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  3. Plasma-driven liners

    International Nuclear Information System (INIS)

    Kilic, H.; Linhart, J.G.; Bortolotti, A.; Nardi, V.

    1992-01-01

    The deposition of thermal energy by laser or ion beams in an ablator is capable of producing a very large acceleration of the adjacent pusher - for power densities of 100 Terrawatts/cm 2 , ablator pressure in the range of 10 Mbar is attainable. In the case of a plasma drive such driving pressures and accelerations are not directly possible. When a snowplough (SP) is used to accelerate a thin liner, the driving pressure is that of the magnetic piston pushing the SP, i.e. at most 0.1 Mbar. However, the initial radius r 0 of the liner can be a few centimeters, instead of 1 (mm) as in the case in direct pellet implosions. In order to compete with the performance of the beam-driven liners, the plasma drive must demonstrate that a) thin liner retains a high density during the implosion (lasting a fraction of a μsec); b) radial compression ratio r 0 /r min of the order of 100 can be attained. It is also attractive to consider the staging of two or more liners in order to get sharpening and amplifications of the pressure and/or radiation pulse. If a) and b) are verified then the final pressures produced will be comparable with those of the beam-driven implosions. (author) 5 refs., 3 figs

  4. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  5. Exercise Equipment: Neutral Buoyancy

    Data.gov (United States)

    National Aeronautics and Space Administration — Axial skeletal loads coupled with muscle forces maintain bone in the spine and lower extremities during International Space Station (ISS) missions. Current exercise...

  6. Buoyancy Can-Can

    Science.gov (United States)

    Nelson, Jim; Nelson, Jane Bray

    2015-01-01

    In this paper, a discrepant event is used to initiate a learning cycle lesson to help students develop an understanding of the concept and equation for buoyant force. The data are gathered using readily available equipment and then graphically analyzed using a four-step analysis consistent with the modeling instructional approach. This laboratory…

  7. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  8. Employee-driven innovation

    DEFF Research Database (Denmark)

    Kesting, Peter; Ulhøi, John Parm

    2015-01-01

    Purpose – The purpose of this paper is to outline the “grand structure” of the phenomenon in order to identify both the underlying processes and core drivers of employee-driven innovation (EDI). Design/methodology/approach – This is a conceptual paper. It particularly applies the insights...... of contemporary research on routine and organizational decision making to the specific case of EDI. Findings – The main result of the paper is that, from a theoretical point of view, it makes perfect sense to involve ordinary employees in innovation decisions. However, it is also outlined that naıve or ungoverned...... participation is counterproductive, and that it is quite difficult to realize the hidden potential in a supportive way. Research limitations/implications – The main implication is that basic mechanisms for employee participation also apply to innovation decisions, although often in a different way. However...

  9. Temperature-Driven Convection

    Science.gov (United States)

    Bohan, Richard J.; Vandegrift, Guy

    2003-02-01

    Warm air aloft is stable. This explains the lack of strong winds in a warm front and how nighttime radiative cooling can lead to motionless air that can trap smog. The stability of stratospheric air can be attributed to the fact that it is heated from above as ultraviolet radiation strikes the ozone layer. On the other hand, fluid heated from below is unstable and can lead to Bernard convection cells. This explains the generally turbulent nature of the troposphere, which receives a significant fraction of its heat directly from the Earth's warmer surface. The instability of cold fluid aloft explains the violent nature of a cold front, as well as the motion of Earth's magma, which is driven by radioactive heating deep within the Earth's mantle. This paper describes how both effects can be demonstrated using four standard beakers, ice, and a bit of food coloring.

  10. Motion of a plate driven by an explosive

    International Nuclear Information System (INIS)

    Fickett, W.

    1987-01-01

    In many applications it is useful to have an estimate of the velocity of a metal plate driven by an explosive as a function of time. With reasonable approximations, this problem has been solved exactly, but the result takes the form of a parametric solution, not the most convenient for everyday use. We give a simpler explicit solution and graphs plotted in variables suitable for accurate reading

  11. Emotion-driven level generation

    OpenAIRE

    Togelius, Julian; Yannakakis, Georgios N.

    2016-01-01

    This chapter examines the relationship between emotions and level generation. Grounded in the experience-driven procedural content generation framework we focus on levels and introduce a taxonomy of approaches for emotion-driven level generation. We then review four characteristic level generators of our earlier work that exemplify each one of the approaches introduced. We conclude the chapter with our vision on the future of emotion-driven level generation.

  12. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2010-01-01

    We present effects-driven IT development as an instrument for pursuing and reinforcing Participatory Design (PD) when it is applied in commercial information technology (IT) projects. Effects-driven IT development supports the management of a sustained PD process throughout design and organizatio......We present effects-driven IT development as an instrument for pursuing and reinforcing Participatory Design (PD) when it is applied in commercial information technology (IT) projects. Effects-driven IT development supports the management of a sustained PD process throughout design...

  13. Product quality driven design of bakery operations using dynamic optimization

    NARCIS (Netherlands)

    Hadiyanto, M.; Esveld, D.C.; Boom, R.M.; Straten, van G.; Boxtel, van A.J.B.

    2008-01-01

    Abstract Quality driven design uses specified product qualities as a starting point for process design. By backward reasoning the required process conditions and processing system were found. In this work dynamic optimization was used as a tool to generate processing solutions for baking processes

  14. Direct Numerical Simulations of turbulent flow in a driven cavity

    NARCIS (Netherlands)

    Verstappen, R.; Wissink, J.G.; Cazemier, W.; Veldman, A.E.P.

    Direct numerical simulations (DNS) of 2 and 3D turbulent flows in a lid-driven cavity have been performed. DNS are numerical solutions of the unsteady (here: incompressible) Navier-Stokes equations that compute the evolution of all dynamically significant scales of motion. In view of the large

  15. Data-Driven Model Order Reduction for Bayesian Inverse Problems

    KAUST Repository

    Cui, Tiangang

    2014-01-06

    One of the major challenges in using MCMC for the solution of inverse problems is the repeated evaluation of computationally expensive numerical models. We develop a data-driven projection- based model order reduction technique to reduce the computational cost of numerical PDE evaluations in this context.

  16. Model-Driven Policy Framework for Data Centers

    DEFF Research Database (Denmark)

    Caba, Cosmin Marius; Kentis, Angelos Mimidis; Soler, José

    2016-01-01

    . Moreover, the lack of simple solutions for managing the configuration and behavior of the DC components makes the DC hard to configure and slow in adapting to changes in business needs. In this paper, we propose a model-driven framework for policy-based management for DCs, to simplify not only the service...

  17. Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Zemlyanaya, E.V.; Baer, M.

    2000-01-01

    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths stable nonpropagating and moving solitons co-exist while strongly forced solitons can only be stable when moving sufficiently fast

  18. Curvature driven instabilities in toroidal plasmas

    International Nuclear Information System (INIS)

    Andersson, P.

    1986-11-01

    The electromagnetic ballooning mode, the curvature driven trapped electron mode and the toroidally induced ion temperature gradient mode have been studies. Eigenvalue equations have been derived and solved both numerically and analytically. For electromagnetic ballooning modes the effects of convective damping, finite Larmor radius, higher order curvature terms, and temperature gradients have been investigated. A fully toroidal fluid ion model has been developed. It is shown that a necessary and sufficient condition for an instability below the MHD limit is the presence of an ion temperature gradient. Analytical dispersion relations giving results in good agreement with numerical solutions are also presented. The curvature driven trapped electron modes are found to be unstable for virtually all parameters with growth rates of the order of the diamagnetic drift frequency. Studies have been made, using both a gyrokinetic ion description and the fully toroidal ion model. Both analytical and numerical results are presented and are found to be in good agreement. The toroidally induced ion temperature gradients modes are found to have a behavior similar to that of the curvature driven trapped electron modes and can in the electrostatic limit be described by a simple quadratic dispersion equation. (author)

  19. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd

  20. Current driven wiggler

    Science.gov (United States)

    Tournes, C.; Aucouturier, J.; Arnaud, B.; Brasile, J. P.; Convert, G.; Simon, M.

    1992-07-01

    A current-driven wiggler is the cornerstone of an innovative, compact, high-efficiency, transportable tunable free-electron laser (FEL), the feasibility of which is currently being evaluated by Thomson-CSF. The salient advantages are: compactness of the FEL, along with the possibility to accelerate the beam through several successive passes through the accelerating section (the number of passes being defined by the final wavelength of the radiation; i.e. visible, MWIR, LWIR); the wiggler can be turned off and be transparent to the beam until the last pass. Wiggler periodicities as small as 5 mm can be achieved, hence contributing to FEL compactness. To achieve overall efficiencies in the range of 10% at visible wavelengths, not only the wiggler periodicity must be variable, but the strength of the magnetic field of each period can be adjusted separately and fine-tuned versus time during the macropulse, so as to take into account the growing contribution of the wave energy in the cavity to the total ponderomotive force. The salient theoretical point of this design is the optimization of the parameters defining each period of the wiggler for each micropacket of the macropulse. The salient technology point is the mechanical and thermal design of the wiggler which allows the required high currents to achieve magnetic fields up to 2T.

  1. Customer-driven competition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R. [Ontario Hydro, Toronto, ON (Canada)

    1996-12-31

    Ontario Hydro`s customer-driven strategy, recently approved by Hydro`s Executive Board, was described. The strategy is founded on the following components: (1) the dissolution of the Ontario power pool, i.e., the loss of Hydro`s franchise monopoly on generation, leaving only power transmission in the hands of the Corporation, (2) divestment of Ontario Hydro`s system operations and market operations functions to a new, independent Crown corporation called the Central Market Operator, (3) functional and organizational unbundling of Ontario Hydro into three signature businesses, Genco, Transco, and Retailco, and in the latter two, the functional unbundling of wires from sales and services, (4) a fully commercial Ontario Hydro with normal corporate powers, and (5) a corporate strategy for Ontario Hydro to grow in businesses in an open, symmetrical North American energy market. According to Ontario Hydro management this will allow competition and choice to all customers, have a disciplining effect on prices, and give rise to a retail market of new products and services, while at the same time preserve and enhance the value of public investment in the Corporation.

  2. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2014-07-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisation focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means.In this context, this sixth Footprint issue examines the influence of digital means as pragmatic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  3. Digitally-Driven Architecture

    Directory of Open Access Journals (Sweden)

    Henriette Bier

    2010-06-01

    Full Text Available The shift from mechanical to digital forces architects to reposition themselves: Architects generate digital information, which can be used not only in designing and fabricating building components but also in embedding behaviours into buildings. This implies that, similar to the way that industrial design and fabrication with its concepts of standardisation and serial production influenced modernist architecture, digital design and fabrication influences contemporary architecture. While standardisa­tion focused on processes of rationalisation of form, mass-customisation as a new paradigm that replaces mass-production, addresses non-standard, complex, and flexible designs. Furthermore, knowledge about the designed object can be encoded in digital data pertaining not just to the geometry of a design but also to its physical or other behaviours within an environment. Digitally-driven architecture implies, therefore, not only digitally-designed and fabricated architecture, it also implies architecture – built form – that can be controlled, actuated, and animated by digital means. In this context, this sixth Footprint issue examines the influence of digital means as prag­matic and conceptual instruments for actuating architecture. The focus is not so much on computer-based systems for the development of architectural designs, but on architecture incorporating digital control, sens­ing, actuating, or other mechanisms that enable buildings to inter­act with their users and surroundings in real time in the real world through physical or sensory change and variation.

  4. Customer-driven competition

    International Nuclear Information System (INIS)

    Taylor, R.

    1996-01-01

    Ontario Hydro's customer-driven strategy, recently approved by Hydro's Executive Board, was described. The strategy is founded on the following components: (1) the dissolution of the Ontario power pool, i.e., the loss of Hydro's franchise monopoly on generation, leaving only power transmission in the hands of the Corporation, (2) divestment of Ontario Hydro's system operations and market operations functions to a new, independent Crown corporation called the Central Market Operator, (3) functional and organizational unbundling of Ontario Hydro into three signature businesses, Genco, Transco, and Retailco, and in the latter two, the functional unbundling of wires from sales and services, (4) a fully commercial Ontario Hydro with normal corporate powers, and (5) a corporate strategy for Ontario Hydro to grow in businesses in an open, symmetrical North American energy market. According to Ontario Hydro management this will allow competition and choice to all customers, have a disciplining effect on prices, and give rise to a retail market of new products and services, while at the same time preserve and enhance the value of public investment in the Corporation

  5. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  6. Seeding Solutions

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Crucible Group operates on the basis of good faith –– producing best effort non-consensus texts. ..... science and technology-based solutions to agricultural production constraints, it is ...... In 1997 researchers at Case Western Reserve Medical School in Ohio (US) ...... Is there a need to update the system-wide IP audit?

  7. Circular Solutions

    NARCIS (Netherlands)

    Annevelink, E.; Bos, H.L.; Meesters, K.P.H.; Oever, van den M.J.A.; Haas, de W.; Kuikman, P.J.; Rietra, R.P.J.J.; Sikirica, N.

    2016-01-01

    The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.

  8. Podcast solutions

    CERN Document Server

    Geoghegan, Michael W

    2005-01-01

    Podcasting is the art of recording radio show style audio tracks, then distributing them to listeners on the Web via podcasting software such as iPodder. From downloading podcasts to producing a track for fun or profit, ""Podcast Solutions"" covers the entire world of podcasting with insight, humor, and the unmatched wisdom of experience.

  9. Self-sorting of dynamic metallosupramolecular libraries (DMLs) via metal-driven selection.

    Science.gov (United States)

    Kocsis, Istvan; Dumitrescu, Dan; Legrand, Yves-Marie; van der Lee, Arie; Grosu, Ion; Barboiu, Mihail

    2014-03-11

    "Metal-driven" selection between finite mononuclear and polymeric metallosupramolecular species can be quantitatively achieved in solution and in a crystalline state via coupled coordination/stacking interactional algorithms within dynamic metallosupramolecular libraries - DMLs.

  10. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels

    NARCIS (Netherlands)

    Qian, S.Z.; Duval, J.F.L.

    2006-01-01

    A quantitative theory is proposed for the analysis of steady electroosmotically driven flows within conducting cylindrical microchannels. Beyond a threshold value of the electric field applied in the electrolyte Solution and parallel to the conducting surface, electrochemical oxidation and reduction

  11. Short-term stream flow forecasting at Australian river sites using data-driven regression techniques

    CSIR Research Space (South Africa)

    Steyn, Melise

    2017-09-01

    Full Text Available This study proposes a computationally efficient solution to stream flow forecasting for river basins where historical time series data are available. Two data-driven modeling techniques are investigated, namely support vector regression...

  12. Body armour and lateral-plate reduction in freshwater three-spined stickleback Gasterosteus aculeatus: adaptations to a different buoyancy regime?

    Science.gov (United States)

    Myhre, F; Klepaker, T

    2009-11-01

    Several factors related to buoyancy were compared between one marine and two freshwater populations of three-spined stickleback Gasterosteus aculeatus. Fish from all three populations had buoyancy near to neutral to the ambient water. This showed that neither marine nor freshwater G. aculeatus used swimming and hydrodynamic lift to prevent sinking. Comparing the swimbladder volumes showed that freshwater completely plated G. aculeatus had a significantly larger swimbladder volume than both completely plated marine and low-plated freshwater G. aculeatus. Furthermore, body tissue density was lower in low-plated G. aculeatus than in the completely plated marine and freshwater fish. The results show that G. aculeatus either reduce tissue density or increase swimbladder volume to adapt to lower water density. Mass measurements of lateral plates and pelvis showed that loss of body armour in low-plated G. aculeatus could explain the tissue density difference between low-plated and completely plated G. aculeatus. This suggests that the common occurrence of plate and armour reduction in freshwater G. aculeatus populations can be an adaptation to a lower water density.

  13. Study on the improvement of the convective differencing scheme for the high-accuracy and stable resolution of the numerical solution

    International Nuclear Information System (INIS)

    Shin, J. K.; Choi, Y. D.

    1992-01-01

    QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes (QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Catity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results. (Author)

  14. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  15. A Quality-Driven Methodology for Information Systems Integration

    Directory of Open Access Journals (Sweden)

    Iyad Zikra

    2017-10-01

    Full Text Available Information systems integration is an essential instrument for organizations to attain advantage in today’s growing and fast changing business and technology landscapes. Integration solutions generate added value by combining the functionality and services of heterogeneous and diverse systems. Existing integration environments tend to rely heavily on technical, platform-dependent skills. Consequently, the solutions that they enable are not optimally aligned with the envisioned business goals of the organization. Furthermore, the gap between the goals and the solutions complicates the task of evaluating the quality of integration solutions. To address these challenges, we propose a quality-driven, model-driven methodology for designing and developing integration solutions. The methodology spans organizational and systems design details, providing a holistic view of the integration solution and its underlying business goals. A multi-view meta-model provides the basis for the integration design. Quality factors that affect various aspects of the integration solution guide and inform the progress of the methodology. An example business case is presented to demonstrate the application of the methodology.

  16. Gravity modulation effect on the onset of thermal buoyancy convection in a horizontal layer of the Oldroyd fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimova, Tatyana; Kovalevskaya, Kseniya, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    The effect of gravity modulation on the onset of convection in a horizontal layer of viscoelastic Oldroyd fluid heated from below is considered. The analytical solution of the problem has been obtained for the case of stress-free boundaries and rectangular modulation. It has been shown that depending on the parameter values, the modulation can produce either stabilizing or destabilizing effects. The deformation retardation always exerts a stabilizing effect, which is most pronounced in the shortwave range. The numerical results obtained by the solution of full nonlinear problems agree well with the results of linear stability analysis. (paper)

  17. The response of skin friction, wall heat transfer and pressure drop to wall waviness in the presence of buoyancy

    Directory of Open Access Journals (Sweden)

    C. N. B. Rao

    1982-01-01

    Full Text Available Laminar natural convection flow and heat transfer of a viscous incompressible fluid confined between two long vertical wavy walls has been analysed taking the fluid properties constant and variable. In particular, attention is restricted to estimate the effects of viscous dissipation and wall waviness on the flow and heat transfer characteristics. Use has been made of a linearization technique to simplify the governing equations and of Galerkin's method in the solution. The solutions obtained for the velocity and the temperature-fields hold good for all values of the Grashof number and wave number of the wavy walls.

  18. Patterns, principles, and practices of domain-driven design

    CERN Document Server

    Millett, Scott

    2015-01-01

    Methods for managing complex software construction following the practices, principles and patterns of Domain-Driven Design with code examples in C# This book presents the philosophy of Domain-Driven Design (DDD) in a down-to-earth and practical manner for experienced developers building applications for complex domains. A focus is placed on the principles and practices of decomposing a complex problem space as well as the implementation patterns and best practices for shaping a maintainable solution space. You will learn how to build effective domain models through the use of tactical pat

  19. Similarity solutions for phase-change problems

    Science.gov (United States)

    Canright, D.; Davis, S. H.

    1989-01-01

    A modification of Ivantsov's (1947) similarity solutions is proposed which can describe phase-change processes which are limited by diffusion. The method has application to systems that have n-components and possess cross-diffusion and Soret and Dufour effects, along with convection driven by density discontinuities at the two-phase interface. Local thermal equilibrium is assumed at the interface. It is shown that analytic solutions are possible when the material properties are constant.

  20. Economics-driven software architecture

    CERN Document Server

    Mistrik, Ivan; Kazman, Rick; Zhang, Yuanyuan

    2014-01-01

    Economics-driven Software Architecture presents a guide for engineers and architects who need to understand the economic impact of architecture design decisions: the long term and strategic viability, cost-effectiveness, and sustainability of applications and systems. Economics-driven software development can increase quality, productivity, and profitability, but comprehensive knowledge is needed to understand the architectural challenges involved in dealing with the development of large, architecturally challenging systems in an economic way. This book covers how to apply economic consider

  1. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  2. A frictionally and hydraulically constrained model of the convectively driven mean flow in partially enclosed seas

    Science.gov (United States)

    Maxworthy, T.

    1997-08-01

    A simple three-layer model of the dynamics of partially enclosed seas, driven by a surface buoyancy flux, is presented. It contains two major elements, a hydraulic constraint at the exit contraction and friction in the interior of the main body of the sea; both together determine the vertical structure and magnitudes of the interior flow variables, i.e. velocity and density. Application of the model to the large-scale dynamics of the Red Sea gives results that are not in disagreement with observation once the model is applied, also, to predict the dense outflow from the Gulf of Suez. The latter appears to be the agent responsible for the formation of dense bottom water in this system. Also, the model is reasonably successful in predicting the density of the outflow from the Persian Gulf, and can be applied to any number of other examples of convectively driven flow in long, narrow channels, with or without sills and constrictions at their exits.

  3. The analysis of repository-heat-driven hydrothermal flow at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact the waste package (WP), accelerate its failure rate, and eventually transport radionuclides to the water table. In a concept called the ''extended-dry repository,'' decay heat arising from radioactive waste extends the time before liquid water can contact a WP. Recent modeling and theoretical advances in nonisothermal, multiphase fracture-matrix flow have demonstrated (1) the critical importance of capillary pressure disequilibrium between fracture and matrix flow, and (2) that radioactive decay heat plays a dominant role in the ability of the engineered and natural barriers to contain and isolate radionuclides. Our analyses indicate that the thermo-hydrological performance of both the unsaturated zone (UZ) and saturated zone (SZ) will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. For thermal loads resulting in extended-dry repository conditions, UZ performance is primarily sensitive to the thermal properties and thermal loading conditions and much less sensitive to the highly spatially and temporally variable ambient hydrologic properties and conditions. The magnitude of repository-heat-driven buoyancy flow in the SZ is far more dependent on the total mass of emplaced spent nuclear fuel (SNF) than on the details of SNF emplacement, such as the Areal Power Density [(APD) expressed in kill/acre] or SNF age

  4. FPGA Congestion-Driven Placement Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Vicente de, J.

    2005-07-01

    The routing congestion usually limits the complete proficiency of the FPGA logic resources. A key question can be formulated regarding the benefits of estimating the congestion at placement stage. In the last years, it is gaining acceptance the idea of a detailed placement taking into account congestion. In this paper, we resort to the Thermodynamic Simulated Annealing (TSA) algorithm to perform a congestion-driven placement refinement on the top of the common Bounding-Box pre optimized solution. The adaptive properties of TSA allow the search to preserve the solution quality of the pre optimized solution while improving other fine-grain objectives. Regarding the cost function two approaches have been considered. In the first one Expected Occupation (EO), a detailed probabilistic model to account for channel congestion is evaluated. We show that in spite of the minute detail of EO, the inherent uncertainty of this probabilistic model impedes to relieve congestion beyond the sole application of the Bounding-Box cost function. In the second approach we resort to the fast Rectilinear Steiner Regions algorithm to perform not an estimation but a measurement of the global routing congestion. This second strategy allows us to successfully reduce the requested channel width for a set of benchmark circuits with respect to the widespread Versatile Place and Route (VPR) tool. (Author) 31 refs.

  5. Origins and Early History of Underwater Neutral Buoyancy Simulation of Weightlessness for EVA Procedures Development and Training. Part 2; Winnowing and Regrowth

    Science.gov (United States)

    Charles, John B.

    2013-01-01

    The technique of neutral buoyancy during water immersion was applied to a variety of questions pertaining to human performance factors in the early years of the space age. It was independently initiated by numerous aerospace contractors at nearly the same time, but specific applications depended on the problems that the developers were trying to solve. Those problems dealt primarily with human restraint and maneuverability and were often generic across extravehicular activity (EVA) and intravehicular activity (IVA) worksites. The same groups often also considered fractional gravity as well as weightless settings and experimented with ballasting to achieve lunar and Mars-equivalent loads as part of their on-going research and development. Dr. John Charles reviewed the association of those tasks with contemporary perceptions of the direction of NASA's future space exploration activities and with Air Force assessments of the military value of man in space.

  6. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  7. Performance-Driven Interface Contract Enforcement for Scientific Components

    Energy Technology Data Exchange (ETDEWEB)

    Dahlgren, Tamara Lynn [Univ. of California, Davis, CA (United States)

    2008-01-01

    Performance-driven interface contract enforcement research aims to improve the quality of programs built from plug-and-play scientific components. Interface contracts make the obligations on the caller and all implementations of the specified methods explicit. Runtime contract enforcement is a well-known technique for enhancing testing and debugging. However, checking all of the associated constraints during deployment is generally considered too costly from a performance stand point. Previous solutions enforced subsets of constraints without explicit consideration of their performance implications. Hence, this research measures the impacts of different interface contract sampling strategies and compares results with new techniques driven by execution time estimates. Results from three studies indicate automatically adjusting the level of checking based on performance constraints improves the likelihood of detecting contract violations under certain circumstances. Specifically, performance-driven enforcement is better suited to programs exercising constraints whose costs are at most moderately expensive relative to normal program execution.

  8. Behavior-Driven Development in Malware Analysis

    Directory of Open Access Journals (Sweden)

    Thomas Barabosch

    2016-03-01

    Full Text Available A daily task of malware analysts is the extraction of behaviors from malicious binaries. Such behaviors include domain generation algorithms, cryptographic algorithms or deinstallation routines. Ideally, this tedious task should be automated. So far scientific solutions have not gotten beyond proof-of-concepts. Malware analysts continue to reimplement behaviors of interest manually. However, often times they merely translate the malicious binary assembler code to a higher-level language. This yields to poorly readable and undocumented code whose correctness is not ensured. Furthermore, the current process that malware analysts are following leads to a suboptimal focusing since they deal with too much binary code at once. In this paper, we aim at overcoming these shortcomings by improving the malware analysis process regarding the reimplementation of malicious behaviors. We achieve this by integrating Behavior-Driven Development in the malware analysis process. We explain in detail how the integration of Behavior-Driven Development into the malware analysis process can be done. In a case study on the highly obfuscated malware Nymaim, we show the feasibility of our approach.

  9. Lagrangian descriptors of driven chemical reaction manifolds.

    Science.gov (United States)

    Craven, Galen T; Junginger, Andrej; Hernandez, Rigoberto

    2017-08-01

    The persistence of a transition state structure in systems driven by time-dependent environments allows the application of modern reaction rate theories to solution-phase and nonequilibrium chemical reactions. However, identifying this structure is problematic in driven systems and has been limited by theories built on series expansion about a saddle point. Recently, it has been shown that to obtain formally exact rates for reactions in thermal environments, a transition state trajectory must be constructed. Here, using optimized Lagrangian descriptors [G. T. Craven and R. Hernandez, Phys. Rev. Lett. 115, 148301 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.148301], we obtain this so-called distinguished trajectory and the associated moving reaction manifolds on model energy surfaces subject to various driving and dissipative conditions. In particular, we demonstrate that this is exact for harmonic barriers in one dimension and this verification gives impetus to the application of Lagrangian descriptor-based methods in diverse classes of chemical reactions. The development of these objects is paramount in the theory of reaction dynamics as the transition state structure and its underlying network of manifolds directly dictate reactivity and selectivity.

  10. Mechanically driven interface propagation in biological tissues

    International Nuclear Information System (INIS)

    Ranft, Jonas; Joanny, Jean-François; Aliee, Maryam; Jülicher, Frank; Prost, Jacques

    2014-01-01

    Many biological tissues consist of more than one cell type. We study the dynamics of an interface between two different cell populations as it occurs during the growth of a tumor in a healthy host tissue. Recent work suggests that the rates of cell division and cell death are under mechanical control, characterized by a homeostatic pressure. The difference in the homeostatic pressures of two cell types drives the propagation of the interface, corresponding to the invasion of one cell type into the other. We derive a front propagation equation that takes into account the coupling between cell number balance and tissue mechanics. We show that in addition to pulled fronts, pushed-front solutions occur as a result of convection driven by mechanics. (paper)

  11. From current-driven to neoclassically driven tearing modes.

    Science.gov (United States)

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  12. Statistical Data Processing with R – Metadata Driven Approach

    Directory of Open Access Journals (Sweden)

    Rudi SELJAK

    2016-06-01

    Full Text Available In recent years the Statistical Office of the Republic of Slovenia has put a lot of effort into re-designing its statistical process. We replaced the classical stove-pipe oriented production system with general software solutions, based on the metadata driven approach. This means that one general program code, which is parametrized with process metadata, is used for data processing for a particular survey. Currently, the general program code is entirely based on SAS macros, but in the future we would like to explore how successfully statistical software R can be used for this approach. Paper describes the metadata driven principle for data validation, generic software solution and main issues connected with the use of statistical software R for this approach.

  13. Quantum work distribution for a driven diatomic molecule

    International Nuclear Information System (INIS)

    Leonard, Alison; Deffner, Sebastian

    2015-01-01

    Highlights: • A method for calculating the time-dependent solution for a driven system is proposed. • These solutions are used to compute the quantum work distribution. • This distribution is calculated for the Morse potential mimicking a diatomic molecule. • Due to bound and scattering states distribution exhibits continuous and discrete part. • Result is compared with that of a harmonic approximation. - Abstract: We compute the quantum work distribution for a driven Morse oscillator. To this end, we solve the time-dependent dynamics for a scale-invariant process, from which the exact expressions for the transition probabilities are found. Special emphasis is put on the contributions to the work distribution from discrete (bound) and continuous (scattering) parts of the spectrum. The analysis is concluded by comparing the work distribution for the exact Morse potential and the one resulting from a harmonic approximation

  14. Pressure-Driven Poiseuille Flow: A Major Component of the Torque-Balance Governing Pacific Plate Motion

    Science.gov (United States)

    Stotz, I. L.; Iaffaldano, G.; Davies, D. R.

    2018-01-01

    The Pacific Plate is thought to be driven mainly by slab pull, associated with subduction along the Aleutians-Japan, Marianas-Izu-Bonin, and Tonga-Kermadec trenches. This implies that viscous flow within the sub-Pacific asthenosphere is mainly generated by overlying plate motion (i.e., Couette flow) and that the associated shear stresses at the lithosphere's base are resisting such motion. Recent studies on glacial isostatic adjustment and lithosphere dynamics provide tighter constraints on the viscosity and thickness of Earth's asthenosphere and, therefore, on the amount of shear stress that asthenosphere and lithosphere mutually exchange, by virtue of Newton's third law of motion. In light of these constraints, the notion that subduction is the main driver of present-day Pacific Plate motion becomes somewhat unviable, as the pulling force that would be required by slabs exceeds the maximum available from their negative buoyancy. Here we use coupled global models of mantle and lithosphere dynamics to show that the sub-Pacific asthenosphere features a significant component of pressure-driven (i.e., Poiseuille) flow and that this has driven at least 50% of the Pacific Plate motion since, at least, 15 Ma. A corollary of our models is that a sublithospheric pressure difference as high as ±50 MPa is required across the Pacific domain.

  15. Current and noise in driven heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Franz

    2009-02-18

    In this thesis we consider the electron transport in nanoscale systems driven by an external energy source. We introduce a tight-binding Hamiltonian containing an interaction term that describes a very strong Coulomb repulsion between electrons in the system. Since we deal with time-dependent situations, we employ a Floquet theory to take into account the time periodicity induced by different external oscillating fields. For the two-level system, we even provide an analytical solution for the eigenenergies with arbitrary phase shift between the levels for a cosine-shaped driving. To describe time-dependent driven transport, we derive a master equation by tracing out the influence of the surrounding leads in order to obtain the reduced density operator of the system. We generalise the common master equation for the reduced density operator to perform an analysis of the noise characteristics. The concept of Full Counting Statistics in electron transport gained much attention in recent years proven its value as a powerful theoretical technique. Combining its advantages with the master equation approach, we find a hierarchy in the moments of the electron number in one lead that allows us to calculate the first two cumulants. The first cumulant can be identified as the current passing through the system, while the noise of this transmission process is reflected by the second cumulant. Moreover, in combination with our Floquet approach, the formalism is not limited to static situations, which we prove by calculating the current and noise characteristics for the non-adiabatic electron pump. We study the influence of a static energy disorder on the maximal possible current for different realisations. Further, we explore the possibility of non-adiabatically pumping electrons in an initially symmetric system if random fluctuations break this symmetry. Motivated by recent and upcoming experiments, we use our extended Floquet model to properly describe systems driven by

  16. Knowledge-Driven Versus Data-Driven Logics

    Czech Academy of Sciences Publication Activity Database

    Dubois, D.; Hájek, Petr; Prade, H.

    2000-01-01

    Roč. 9, č. 1 (2000), s. 65-89 ISSN 0925-8531 R&D Projects: GA AV ČR IAA1030601 Grant - others:CNRS(FR) 4008 Institutional research plan: AV0Z1030915 Keywords : epistemic logic * possibility theory * data-driven reasoning * deontic logic Subject RIV: BA - General Mathematics

  17. Test Driven Development: Performing Art

    Science.gov (United States)

    Bache, Emily

    The art of Test Driven Development (TDD) is a skill that needs to be learnt, and which needs time and practice to master. In this workshop a select number of conference participants with considerable skill and experience are invited to perform code katas [1]. The aim is for them to demonstrate excellence and the use of Test Driven Development, and result in some high quality code. This would be for the benefit of the many programmers attending the conference, who could come along and witness high quality code being written using TDD, and get a chance to ask questions and provide feedback.

  18. Deterministic and Advanced Statistical Modeling of Wind-Driven Sea

    Science.gov (United States)

    2015-07-06

    It gives a ground for use an asymptotic approach for wind-driven seas in a spirit of our previous works [R16,R17]. Then we use simple...b𔃼)-—{b’’— b2 ) 1 - --r 2 b-k{\\b’\\2)--{b’k{\\b\\2)) ox *-(6’ 2) -. dx dx dx This equation has localized breather-type solution b{x,t) = B{x

  19. Nonlinear dynamics of a driven mode near marginal stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Breizman, B.N.; Pekker, M.

    1995-09-01

    The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigated to determine scaling of the saturated fields near the instability threshold. To leading order, this problem reduces to solving an integral equation with a temporally nonlocal cubic term. This equation can exhibit a self-similar solution that blows up in a finite time. When the blow-up occurs, higher nonlinearities become important and the mode saturates due to plateau formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a regular solution that leads to a different saturation scaling reflecting the closeness to the instability threshold

  20. Exact soliton-like solutions of perturbed phi4-equation

    International Nuclear Information System (INIS)

    Gonzalez, J.A.

    1986-05-01

    Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)

  1. Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di; Zhao, Fu-Yun; Tang, Guang-Fa [College of Civil Engineering, Hunan University, Changsha (China)

    2008-01-15

    Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element. (author)

  2. Thermosolutal convection in saturated porous enclosure with concentrated energy and solute sources

    Energy Technology Data Exchange (ETDEWEB)

    Liu Di [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: liudi66@163.com; Zhao Fuyun [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: zfycfdnet@163.com; Tang Guangfa [College of Civil Engineering, Hunan University, Changsha (China)], E-mail: gftangcfd@163.com

    2008-01-15

    Double diffusive natural convection within a vertical porous enclosure with localized heating and salting from one side is numerically studied by the finite element based finite volume method. In the formulation of the problem, use is made of the Darcy model, which allows the slip boundary condition on a solid wall to be satisfied. Comparisons with benchmark solutions for natural convection in fluid saturated porous enclosures are first presented to validate the code. Following that, an extensive series of numerical simulations is conducted in the range of -55 {<=} N {<=} + 55 and 0.125 {<=} L {<=} 0.875, where N and L are the buoyancy ratio and the element location, respectively. Streamlines, heatlines, masslines, isotherms and iso-concentrations in the system are produced to illustrate the flow structure transition from solutal dominated opposing to thermal dominated and solutal dominated aiding flows, respectively. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting element.

  3. Entropy-driven phase transitions

    NARCIS (Netherlands)

    Frenkel, D.

    1999-01-01

    Increase in visible order can be associated with an increase in microscopic disorder. This phenomenon leads to many counter-intuitive phenomena such as entropy driven crystallization and phase separation. I devote special attention to the entropic depletion interaction as a means to tune the range

  4. Model-driven software engineering

    NARCIS (Netherlands)

    Amstel, van M.F.; Brand, van den M.G.J.; Protic, Z.; Verhoeff, T.; Hamberg, R.; Verriet, J.

    2014-01-01

    Software plays an important role in designing and operating warehouses. However, traditional software engineering methods for designing warehouse software are not able to cope with the complexity, size, and increase of automation in modern warehouses. This chapter describes Model-Driven Software

  5. Typology of customer driven manufacturing

    NARCIS (Netherlands)

    Wortmann, J.C.; Wortmann, J.C.; Muntslag, D.R.; Timmermans, P.J.M.

    1997-01-01

    The aim of this chapter has been to introduce a variety of customer driven manufacturing situations. This variety has been placed in a two-dimensional grid, which constitutes a typology. For some of these types, production management issues were discussed in section 6.3. It was concluded that an

  6. Work(er)-Driven Innovation

    Science.gov (United States)

    Smith, Raymond

    2017-01-01

    Purpose: The focus on innovation as a foundational element of enhanced organisational performance has led to the promoting and valuing of greater levels of employee participation in innovation processes. An emergent concept of employee-driven innovation could be argued to have hindered understandings of the creative and transformative nature of…

  7. Synchrotron-driven spallation sources

    CERN Document Server

    Bryant, P J

    1996-01-01

    The use of synchrotrons for pulsed neutron spallation sources is an example of scientific and technological spin-off from the accelerator development for particle physics. Accelerator-driven sources provide an alternative to the continuous-flux, nuclear reactors that currently furnish the majority of neutrons for research and development. Although the present demand for neutrons can be adequately met by the existing reactors, this situation is unlikely to continue due to the increasing severity of safety regulations and the declared policies of many countries to close down their reactors within the next decade or so. Since the demand for neutrons as a research tool is, in any case,expected to grow, there has been a corresponding interest in sources that are synchrotron-driven or linac-driven with a pulse compression ring and currently several design studies are being made. These accelerator-driven sources also have the advantage of a time structure with a high peak neutron flux. The basic requirement is for a...

  8. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  9. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    Energy Technology Data Exchange (ETDEWEB)

    Balanov, A.G.; Janson, N.B. E-mail: n.janson@lancaster.ac.uk; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string.

  10. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    International Nuclear Information System (INIS)

    Balanov, A.G.; Janson, N.B.; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T.

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string

  11. Degradation of chlorocarbons driven by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.L.; Ondruschka, B.; Braeutigam, P. [Institut fuer Technische Chemie und Umweltchemie, Friedrich-Schiller-Universitaet Jena, Jena (Germany)

    2007-05-15

    To provide an efficient lab-scale device for the investigation of the degradation of organic pollutants driven by hydrodynamic cavitation, the degradation kinetics of chloroform and carbon tetrachloride and the increase of conductivity in aqueous solutions were measured. These are values which were not previously available. Under hydrodynamic cavitation conditions, the degradation kinetics for chlorocarbons was found to be pseudo first-order. Meanwhile, C-H and C-Cl bonds are broken, and Cl{sub 2}, Cl{sup .}, Cl{sup -} and other ions released can increase the conductivity and enhance the oxidation of KI in aqueous solutions. The upstream pressures of the orifice plate, the cavitation number, and the solution temperature have substantial effects on the degradation kinetics. A decreased cavitation number can result in more cavitation events and enhances the degradation of chlorocarbons and/or the oxidation of KI. A decrease in temperature is generally favorable to the cavitation chemistry. Organic products from the degradation of carbon tetrachloride and chloroform have demonstrated the formation and recombination of free radicals, e.g., CCl{sub 4}, C{sub 2}Cl{sub 4}, and C{sub 2}Cl{sub 6} are produced from the degradation of CHCl{sub 3}. CHCl{sub 3} and C{sub 2}Cl{sub 6} are produced from the degradation of CCl{sub 4}. Both the chemical mechanism and the reaction kinetics of the degradation of chlorocarbons induced by hydrodynamic cavitation are consistent with those obtained from the acoustic cavitation. Therefore, the technology of hydrodynamic cavitation should be a good candidate for the removal of organic pollutants from water. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. LHC-GCS a model-driven approach for automatic PLC and SCADA code generation

    CERN Document Server

    Thomas, Geraldine; Barillère, Renaud; Cabaret, Sebastien; Kulman, Nikolay; Pons, Xavier; Rochez, Jacques

    2005-01-01

    The LHC experiments’ Gas Control System (LHC GCS) project [1] aims to provide the four LHC experiments (ALICE, ATLAS, CMS and LHCb) with control for their 23 gas systems. To ease the production and maintenance of 23 control systems, a model-driven approach has been adopted to generate automatically the code for the Programmable Logic Controllers (PLCs) and for the Supervision Control And Data Acquisition (SCADA) systems. The first milestones of the project have been achieved. The LHC GCS framework [4] and the generation tools have been produced. A first control application has actually been generated and is in production, and a second is in preparation. This paper describes the principle and the architecture of the model-driven solution. It will in particular detail how the model-driven solution fits with the LHC GCS framework and with the UNICOS [5] data-driven tools.

  13. Development of an electrically driven molecular motor.

    Science.gov (United States)

    Murphy, Colin J; Sykes, E Charles H

    2014-10-01

    For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Kaehler-driven tribrid inflation

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2012-01-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kaehler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in 'pseudosmooth' tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kaehler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and p seudosmooth ) regimes

  15. Investigation of Current Driven Loudspeakers

    DEFF Research Database (Denmark)

    Schneider, Henrik; Agerkvist, Finn T.; Knott, Arnold

    2015-01-01

    Current driven loudspeakers have previously been investigated but the literature is limited and the advantages and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to analyse loudspeakers with distinct non-linear characteristics under voltage an......” woofer where a copper ring in the pole piece has not been implemented to compensate for eddy currents. However the drive method seems to be irrelevant for a 5” woofer where the compliance, force factor as well as the voice coil inductance has been optimized for linearity.......Current driven loudspeakers have previously been investigated but the literature is limited and the advantages and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to analyse loudspeakers with distinct non-linear characteristics under voltage...

  16. Effects-Driven IT Development

    DEFF Research Database (Denmark)

    Hertzum, Morten; Simonsen, Jesper

    2011-01-01

    For customers information technology (IT) is a means to an end. This tight association between IT systems and their use is, however, often absent during their development and implementation, resulting in systems that may fail to produce desired ends. Effects-driven IT development aims to avoid...... change that realize the specified effects, and (c) measuring the absence or presence of the specified effects during pilot use of the system while also remaining alert to the emergence of beneficial but hitherto unspecified effects. In this paper we explore effects-driven IT development and discuss...... the possibilities and challenges involved in making it an instrument for managing IT projects. Two main challenges are that effects must be measured while development is still ongoing, making pilot implementations a central activity, and that vendor and customer must extend their collaboration, particularly...

  17. Security and policy driven computing

    CERN Document Server

    Liu, Lei

    2010-01-01

    Security and Policy Driven Computing covers recent advances in security, storage, parallelization, and computing as well as applications. The author incorporates a wealth of analysis, including studies on intrusion detection and key management, computer storage policy, and transactional management.The book first describes multiple variables and index structure derivation for high dimensional data distribution and applies numeric methods to proposed search methods. It also focuses on discovering relations, logic, and knowledge for policy management. To manage performance, the text discusses con

  18. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    Science.gov (United States)

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  19. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    Directory of Open Access Journals (Sweden)

    Evert Haasdijk

    Full Text Available Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability, and secondly they must competently perform user-specified tasks (usefulness. The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  20. Ultrasonic Concentration in a Line-Driven Cylindrical Tube

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, Gregory Russ [Portland State Univ., Portland, OR (United States)

    2004-01-01

    The fractionation of particles from their suspending fluid or noninvasive micromanipulation of particles in suspension has many applications ranging from the recovery of valuable reagents from process flows to the fabrication of microelectromechanical devices. Techniques based on size, density, solubility, or electromagnetic properties exist for fulfilling these needs, but many particles have traits that preclude their use such as small size, neutral buoyancy, or uniform electromagnetic characteristics. While separation by those techniques may not be possible, often compressibility differences exist between the particle and fluid that would allow fractionation by acoustic forces. The potential of acoustic separation is known, but due to inherent difficulties in achieving and maintaining accurate alignment of the transduction system, it is rarely utilized. The objective of this project is to investigate the use of structural excitation as a potentially efficient concentration/fractionation method for particles in suspension. It is demonstrated that structural excitation of a cylindrically symmetric cavity, such as a tube, allows non-invasive, fast, and low power concentration of particles suspended in a fluid. The inherent symmetry of the system eliminates the need for careful alignment inherent in current acoustic concentration devices. Structural excitation distributes the acoustic field throughout the volume of the cavity, which also significantly reduces temperature gradients and acoustic streaming in the fluid; cavitation is no longer an issue. The lowest-order coupled modes of a long cylindrical glass tube and fluid-filled cavity, driven by a line contact, are tuned, via material properties and aspect ratio, to achieve a coupled dipolar vibration of the system, shown to generate efficient concentration of particles to the central axis of the tube. A two dimensional elastodynamic model of the system was developed and subsequently utilized to optimize particle

  1. Mixed convection in inclined lid driven cavity by Lattice Boltzmann Method and heat flux boundary condition

    International Nuclear Information System (INIS)

    D'Orazio, A; Karimipour, A; Nezhad, A H; Shirani, E

    2014-01-01

    Laminar mixed convective heat transfer in two-dimensional rectangular inclined driven cavity is studied numerically by means of a double population thermal Lattice Boltzmann method. Through the top moving lid the heat flux enters the cavity whereas it leaves the system through the bottom wall; side walls are adiabatic. The counter-slip internal energy density boundary condition, able to simulate an imposed non zero heat flux at the wall, is applied, in order to demonstrate that it can be effectively used to simulate heat transfer phenomena also in case of moving walls. Results are analyzed over a range of the Richardson numbers and tilting angles of the enclosure, encompassing the dominating forced convection, mixed convection, and dominating natural convection flow regimes. As expected, heat transfer rate increases as increases the inclination angle, but this effect is significant for higher Richardson numbers, when buoyancy forces dominate the problem; for horizontal cavity, average Nusselt number decreases with the increase of Richardson number because of the stratified field configuration

  2. Non-gray gas radiation effect on mixed convection in lid driven square cavity

    Energy Technology Data Exchange (ETDEWEB)

    Cherifi, Mohammed, E-mail: production1998@yahoo.fr; Benbrik, Abderrahmane, E-mail: abenbrik@umbb.dz; Laouar-Meftah, Siham, E-mail: laouarmeftah@gmail.com [M’Hamed Bougara University, Faculty of Hydrocarbons and Chemistry, 35000 Boumerdes (Algeria); Lemonnier, Denis, E-mail: denis.lemonnier@ensma.fr [Institut Pprime, CNRS, ENSMA, University of Poitiers, Poitiers Futuroscope (France)

    2016-06-02

    A numerical study is performed to investigate the effect of non-gray radiation on mixed convection in a vertical two sided lid driven square cavity filled with air-H{sub 2}O-CO{sub 2} gas mixture. The vertical moving walls of the enclosure are maintained at two different but uniform temperatures. The horizontal walls are thermally insulated and considered as adiabatic walls. The governing differential equations are solved by a finite-volume method and the SIMPLE algorithm was adopted to solve the pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Simulations are performed in configurations where thermal and shear forces induce cooperating buoyancy forces. Streamlines, isotherms, and Nusselt number are analyzed for three different values of Richardson’s number (from 0.1 to 10) and by considering three different medium (transparent medium, gray medium using the Planck mean absorption coefficient, and non-gray medium assumption).

  3. Modeling and simulations of radiative blast wave driven Rayleigh-Taylor instability experiments

    Science.gov (United States)

    Shimony, Assaf; Huntington, Channing M.; Trantham, Matthew; Malamud, Guy; Elbaz, Yonatan; Kuranz, Carolyn C.; Drake, R. Paul; Shvarts, Dov

    2017-10-01

    Recent experiments at the National Ignition Facility measured the growth of Rayleigh-Taylor RT instabilities driven by radiative blast waves, relevant to astrophysics and other HEDP systems. We constructed a new Buoyancy-Drag (BD) model, which accounts for the ablation effect on both bubble and spike. This ablation effect is accounted for by using the potential flow model ]Oron et al PoP 1998], adding another term to the classical BD formalism: βDuA / u , where β the Takabe constant, D the drag term, uA the ablation velocity and uthe instability growth velocity. The model results are compared with the results of experiments and 2D simulations using the CRASH code, with nominal radiation or reduced foam opacity (by a factor of 1000). The ablation constant of the model, βb / s, for the bubble and for the spike fronts, are calibrated using the results of the radiative shock experiments. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207, and was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  4. Measurement and analysis of self-noise in hybrid-driven underwater gliders

    Directory of Open Access Journals (Sweden)

    LIU Lu

    2017-08-01

    Full Text Available The Hybrid-driven Underwater Glider (HUG is a new type of submersible vehicle which combines the functions of traditional Autonomous Underwater Vehicles(AUVand Autonomous Underwater Gliders(AUG. In order to study its noise source distribution and basic self-noise characteristics, a self-noise acquisition system based on the HUG was designed and developed, and a noise analysis test carried out in a free-field pool. In August 2016, the sea trial of the Petrel II glider was conducted in the South China Sea, with observation data at a depth range of 1 000 m as the research object. The self-noise data of the glider platform under different working conditions was obtained through the step-by-step operation method. The experimental analysis and results show that the self-noise acquisition system is stable. The contribution of mechanical noise to self-noise is greatest when the glider works in the gliding mode, while the self-noise band above 500 Hz is closely related to the work of the buoyancy adjustment unit, and peaks at 1 kHz. According to the analysis of the basic characteristics of self-noise, this provides some guidance for the implementation of vibration and noise reduction.

  5. Convection-driven melting in an n-octane pool fire bounded by an ice wall

    Science.gov (United States)

    Farmahini Farahani, Hamed; Alva, Ulises; Rangwala, Ali; Jomaas, Grunde

    2017-11-01

    Burning of the liquid fuels adjacent to ice bodies creates a lateral cavity due to melting of the ice. The formation of lateral cavities are noticed recently and only a few experimental studies have addressed them. One study has shown lateral cavity formation with length of 12 cm for 5 minutes burning of oil. Based on the hypothesis that melting is facilitated by the convection in the liquid fuel, a series of PIV tests were conducted on burning of n-octane in a square glass tray with a 3 cm thick ice wall placed on one side of the tray. Marangoni generates a flow below the surface of the fuel and near the ice from hot to cold regions. The flow measurements by a 2D PIV system indicated the existence of different flow regimes. Before ignition, combined surface tension and buoyancy effects led to a one roll structure. After ignition the flow field began transitioning toward an unstable regime with an increase in velocity magnitude. Unfortunately, the PIV quality declined in the unstable regime, but indications of a multi-roll structure separating from a primary horizontal flow on the top driven by Marangoni convection were observed. The knowledge gained from these experiments will help determine the influential parameters in ice melting during burning of oil in ice-infested waters.

  6. Data-Driven Controller Design The H2 Approach

    CERN Document Server

    Sanfelice Bazanella, Alexandre; Eckhard, Diego

    2012-01-01

    Data-driven methodologies have recently emerged as an important paradigm alternative to model-based controller design and several such methodologies are formulated as an H2 performance optimization. This book presents a comprehensive theoretical treatment of the H2 approach to data-driven control design. The fundamental properties implied by the H2 problem formulation are analyzed in detail, so that common features to all solutions are identified. Direct methods (VRFT) and iterative methods (IFT, DFT, CbT) are put under a common theoretical framework. The choice of the reference model, the experimental conditions, the optimization method to be used, and several other designer’s choices are crucial to the quality of the final outcome, and firm guidelines for all these choices are derived from the theoretical analysis presented. The practical application of the concepts in the book is illustrated with a large number of practical designs performed for different classes of processes: thermal, fluid processing a...

  7. High-explosive-driven delay line pulse generator

    International Nuclear Information System (INIS)

    Shearer, J.W.

    1982-01-01

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies

  8. A Dual Egalitarian Solution

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.; Tijs, S.H.

    2000-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989).We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its

  9. Formulation of natural convection around repository for dual reciprocity boundary element solution

    International Nuclear Information System (INIS)

    Vrankar, L.; Sarler, B.

    1998-01-01

    The disposal of high-level radioactive wastes in deep geological formations is of pronounced technological importance for nuclear safety. The understanding of related fluid flow, heat and mass transport in geological systems is of great interest. This article prepares necessary physical, mathematical and numerical fundamentals for computational modeling of related phenomena. The porous media is described by the simple Darcy law and momentum-energy coupling is due to Boussinesq approximation. The Dual Reciprocity of Boundary Element Method (DRBEM) is used for solving coupled mass, momentum and energy equations in two-dimensions for the steady buoyancy induced convection problem in an semi-infinite porous media. It is structured by weighting with the fundamental solution of the Laplace equation. The inverse multi quadrics are used in the DRBEM transformation. The solution is obtained in an iterative way.(author)

  10. Segmentation-DrivenTomographic Reconstruction

    DEFF Research Database (Denmark)

    Kongskov, Rasmus Dalgas

    such that the segmentation subsequently can be carried out by use of a simple segmentation method, for instance just a thresholding method. We tested the advantages of going from a two-stage reconstruction method to a one stage segmentation-driven reconstruction method for the phase contrast tomography reconstruction......The tomographic reconstruction problem is concerned with creating a model of the interior of an object from some measured data, typically projections of the object. After reconstructing an object it is often desired to segment it, either automatically or manually. For computed tomography (CT...

  11. Data driven marketing for dummies

    CERN Document Server

    Semmelroth, David

    2013-01-01

    Embrace data and use it to sell and market your products Data is everywhere and it keeps growing and accumulating. Companies need to embrace big data and make it work harder to help them sell and market their products. Successful data analysis can help marketing professionals spot sales trends, develop smarter marketing campaigns, and accurately predict customer loyalty. Data Driven Marketing For Dummies helps companies use all the data at their disposal to make current customers more satisfied, reach new customers, and sell to their most important customer segments more efficiently. Identifyi

  12. Implementing Genome-Driven Oncology

    Science.gov (United States)

    Hyman, David M.; Taylor, Barry S.; Baselga, José

    2017-01-01

    Early successes in identifying and targeting individual oncogenic drivers, together with the increasing feasibility of sequencing tumor genomes, have brought forth the promise of genome-driven oncology care. As we expand the breadth and depth of genomic analyses, the biological and clinical complexity of its implementation will be unparalleled. Challenges include target credentialing and validation, implementing drug combinations, clinical trial designs, targeting tumor heterogeneity, and deploying technologies beyond DNA sequencing, among others. We review how contemporary approaches are tackling these challenges and will ultimately serve as an engine for biological discovery and increase our insight into cancer and its treatment. PMID:28187282

  13. Mixed convection of nanofluids in a lid-driven rough cavity

    Science.gov (United States)

    Guo, Zhimeng; Wang, Jinyu; Mozumder, Aloke K.; Das, Prodip K.

    2017-06-01

    Mixed convection heat transfer and fluid flow of air, water or oil in enclosures have been studied extensively using experimental and numerical means for many years due to their ever-increasing applications in many engineering fields. In comparison, little effort has been given to the problem of mixed convection of nanofluids in spite of several applications in solar collectors, electronic cooling, lubrication technologies, food processing, and nuclear reactors. Mixed convection of nanofluids is a challenging problem due to the complex interactions among inertia, viscous, and buoyancy forces. In this study, mixed convection of nanofluids in a lid-driven square cavity with sinusoidal roughness elements at the bottom is studied numerically using the Navier-Stokes equations with the Boussinesq approximation. The numerical model is developed using commercial finite volume software ANSYS-FLUENT for Al2O3-water and CuO-water nanofluids inside a square cavity with various roughness elements. The effects of number and amplitude of roughness elements on the heat transfer and fluid flow are analysed for various volume concentrations of Al2O3 and CuO nanoparticles. The flow fields, temperature fields, and heat transfer rates are examined for different values of Rayleigh and Reynolds numbers. The outcome of this study provides some important insight into the heat transfer behaviour of Al2O3-water and CuO-water nanofluids inside a lid-driven rough cavity. This knowledge can be further used in developing novel geometries with enhanced and controlled heat transfer for solar collectors, electronic cooling, and food processing industries.

  14. Physics-Driven Innovation In the Oil and Gas Industry

    Science.gov (United States)

    Poitzsch, Martin

    2014-03-01

    In terms of sheer scale and financial investment and geographical footprint, nothing is bigger than the oil and gas industry. This ``mature industry'' employs a bewildering mix of technologies dating from the 19th century to the 21th. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, advanced 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To succeed at introducing new technology requires understanding which problems most need to be solved. The most esoteric technology can take off in this industry if it honestly offers the best solution to a key problem that is costing millions of dollars in risk or inefficiency. When the right breakthrough solution emerges, the resources to implement it can be almost limitless. However, the prevailing culture is conservative and brutally cost-driven: any cheaper or simpler solution that performs as well will prevail, no matter how inelegant!

  15. A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability.

    Directory of Open Access Journals (Sweden)

    Tânia Reis

    2010-11-01

    Full Text Available Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet.

  16. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  17. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  18. Role of accelerator-driven systems in waste incineration scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Salvatores, M.; Slessarev, I.; Tchistiakov, A. [CEA Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Direction des Reacteurs Nucleaires; Spiro, M.; Terrien, Y.; Mouney, H.; Vergnes, J.

    1997-12-31

    At CEA accelerator-driven systems (ADS) are studied in the frame of the R and D required to answer the request of a law voted in 1991 by the French Parliament, `to search for solutions allowing to partition and transmute long lived radioactive wastes, in order to reduce their volume and toxicity`. These systems (called `INCAs`) are still at a conceptual level. However, the role of ADS has been clarified as a first step, and this will be the subject of the present paper. (author)

  19. Multifactor-Driven Hierarchical Routing on Enterprise Service Bus

    Science.gov (United States)

    Mi, Xueqiang; Tang, Xinhuai; Yuan, Xiaozhou; Chen, Delai; Luo, Xiangfeng

    Message Routing is the foremost functionality on Enterprise Service Bus (ESB), but current ESB products don't provide an expected solution for it, especially in the aspects of runtime route change mechanism and service orchestration model. In order to solve the above drawbacks, this paper proposes a multifactor-driven hierarchical routing (MDHR) model. MDHR defines three layers for message routing on ESB. Message layer gives the original support for message delivery. Application layer can integration or encapsulate some legacy applications or un-standard services. Business layer introduces business model to supplies developers with a business rule configuration, which supports enterprise integration patterns and simplifies the service orchestration on ESB.

  20. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    process is a repeated deformation and welding or folding of particles or layers that allows for strain levels in excess of 100 as shown in Fig.1. The...complete transformation yielded a duplex product of metastable BCC and FCC solid solutions. Another form of mechanochemical transduction is

  1. Wonder-driven Entrepreneurship Teaching

    DEFF Research Database (Denmark)

    Hansen, Finn Thorbjørn; Herholdt-Lomholdt, Sine Maria

    Contemporary research on creativity, innovation and entrepreneurship have now for a decade or more been focusing on social constructive, pragmatic, socio-cultural and socio-material dimensions of creative and innovative processes and entrepreneurship (Bager et al. 2010, Brinkmann & Tangaard 2010......- and entrepreneurship processes. In this paper we want to continue in line with this new framework of meaning- and wonder-driven innovation by focusing on the possible educational consequences of such an approach. Our empirical departure is our three-year phenomenological action research project called ‘Wonder......-based Entrepreneurship Teaching in Professional bachelor Education’. Ten senior lecturers in nursing and pedagogy participated. The purpose was to investigate whether and how Socratic and philosophical dialogues and different forms of phenomenological and existential reflections upon one´s own professional assumptions...

  2. Customer-driven Product Development

    DEFF Research Database (Denmark)

    Sommer, Anita Friis

    2011-01-01

    look for new ways to gain competitive advantage. In competitive markets there is a tendency of shorter product life cycles, and thus a competitive factor is to keep at pace with the market or even driving the market by developing new products. This research study seeks to investigate Customer......Demand chain management is a research area of increasing attention. It is the undertaking of reacting to customer requirements through a responsive chain going from customers through a focal company towards raw material distributors. With faster growing markets and increasing competition, companies......-driven Product Development (CDPD) from a demand chain management perspective. CDPD is the counterpart to typical research and development processes, which has no direct customer involvement. The proposition is that letting customers initiate and participate in the product development process...

  3. Laser driven fusion fission hybrids

    International Nuclear Information System (INIS)

    Hansen, L.F.; Maniscalco, J.A.

    1977-11-01

    The role of the fusion-fission hybrid reactor (FFHR) as a fissile fuel and/or power producer is discussed. As long range options to supply the world energy needs, hybrid-fueled thermal-burner reactors are compared to liquid metal fast breeder reactors (LMFBR). A discussion of different fuel cycles (thorium, depleted uranium, and spent fuel) is presented in order to compare the energy multiplication, the production of fissile fuel, the laser efficiency and pellet gain requirements of the hybrid reactor. Lawrence Livermore Laboratory (LLL) has collaborated with Bechtel Corporation and with Westinghouse in two engineering design studies of laser fusion driven hybrid power plants. The hybrid designs which have resulted from these two studies are briefly described and analyzed by considering operational parameters, such as energy multiplication, power density, burn-up and plutonium production as a function time

  4. Multifunctionalities driven by ferroic domains

    Science.gov (United States)

    Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.

    2014-08-01

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  5. Heat-driven spin torques in antiferromagnets

    Science.gov (United States)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  6. Kerr generalized solution

    International Nuclear Information System (INIS)

    Papoyan, V.V.

    1989-01-01

    A Kerr generalized solution for a stationary axially-symmetric gravitational field of rotating self-gravitational objects is given. For solving the problem Einstein equations and their combinations are used. The particular cases: internal and external Schwarzschild solutions are considered. The external solution of the stationary problem is a Kerr solution generalization. 3 refs

  7. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    Science.gov (United States)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  8. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M

    2010-01-01

    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  9. Radiochromic liquid solution

    International Nuclear Information System (INIS)

    Noakes, J.E.; Culp, R.A.

    1983-01-01

    A radiochromic solution which is sensitive to small dosages of ionizing and ultraviolet radiation is described. It consists of a solution of a leucocyanide dye in a clear polar solvent with enough organic acid added to make the solution at least slightly acidic and responds to radiation by permanently changing color. Up to one half of the solution by weight can be replaced by a second solution of an aromatic solvent and an organic fluor. Another modification of the invention is a solution of a leucocyanide dye in a clear polar solvent having an aromatic group, an organic fluor, and enough organic acid to make the solution at least slightly acidic. (author)

  10. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  11. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  12. 252Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; King, W.T.; Blakeman, E.D.

    1985-01-01

    The 252 Cf-source-driven neutron noise analysis method has been tested in a a wide variety of experiments that have indicated the broad range of applicability of the method. The neutron multiplication factor, k/sub eff/ has been satisfactorily determined for a variety of materials including uranium metal, light water reactor fuel pins, fissile solutions, fuel plates in water, and interacting cylinders. For a uranyl nitrate solution tank which is typical of a fuel processing or reprocessing plant, the k/sub eff/ values were satisfactorily determined for values between 0.92 and 0.5 using a simple point kinetics interpretation of the experimental data. The short measurement times, in several cases as low as 1 min, have shown that the development of this method can lead to a practical subcriticality monitor for many in-plant applications. The further development of the method will require experiments and the development of theoretical methods to predict the experimental observables

  13. Digital Mental Health - Innovations in Consumer Driven Care.

    Science.gov (United States)

    Ackerman, Mary Lou; Virani, Tazim; Billings, Barry

    2017-01-01

    Barriers such as stigma and access issues prevent 60% of Canadians with mental health issues from seeking help. Saint Elizabeth Health Care's IntelligentCare™ Platform supports a range of digital health solutions for holistic health including three specific innovations: a secure social networking tool, an artificial intelligence-driven assistant that uses conversational cognitive behaviour therapy techniques, and a mobile mindfulness meditation application that generates personalized meditation suggestions. People use these self-help tools to cope with their mental health challenges. Healthcare providers are encouraged to explore the benefits and drawbacks of digital solutions for mental health, and consider the new skills, ethical implications and research opportunities that are needed when supporting patients who use these digital tools. © 2017 Longwoods Publishing.

  14. Conceptual design of a commercial accelerator driven thorium reactor

    International Nuclear Information System (INIS)

    Fuller, C. G.; Ashworth, R. W.

    2010-01-01

    This paper describes the substantial work done in underpinning and developing the concept design for a commercial 600 MWe, accelerator driven, thorium fuelled, lead cooled, power producing, fast reactor. The Accelerator Driven Thorium Reactor (ADTR TM) has been derived from original work by Carlo Rubbia. Over the period 2007 to 2009 Aker Solutions commissioned this concept design work and, in close collaboration with Rubbia, developed the physics, engineering and business model. Much has been published about the Energy Amplifier concept and accelerator driven systems. This paper concentrates on the unique physics developed during the concept study of the ADTR TM power station and the progress made in engineering and design of the system. Particular attention is paid to where the concept design has moved significantly beyond published material. Description of challenges presented for the engineering and safety of a commercial system and how they will be addressed is included. This covers the defining system parameters, accelerator sizing, core and fuel design issues and, perhaps most importantly, reactivity control. The paper concludes that the work undertaken supports the technical viability of the ADTR TM power station. Several unique features of the reactor mean that it can be deployed in countries with aspirations to gain benefit from nuclear power and, at 600 MWe, it fits a size gap for less mature grid systems. It can provide a useful complement to Generation III, III+ and IV systems through its ability to consume actinides whilst at the same time providing useful power. (authors)

  15. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    Science.gov (United States)

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  16. Pressure-driven peristaltic flow

    International Nuclear Information System (INIS)

    Mingalev, S V; Lyubimov, D V; Lyubimova, T P

    2013-01-01

    The peristaltic motion of an incompressible fluid in two-dimensional channel is investigated. Instead of fixing the law of wall's coordinate variation, the law of pressure variation on the wall is fixed and the border's coordinate changes to provide the law of pressure variation on the wall. In case of small amplitude of pressure-variation on the wall A, expansion wave propagates along the length of channel and the wave results in the peristaltic transport of fluid. In the case of large A, the channel divides into two parts. The small pulsating part in the end of the tube creates the flow as a human heart, while the other big part loses this function. The solution of problem for the first peristaltic mode is stable, while the solution for the second 'heart' mode is unstable and depends heavily on boundary conditions.

  17. Magnetically driven jets and winds

    Science.gov (United States)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  18. Algorithms for optimization of branching gravity-driven water networks

    Science.gov (United States)

    Dardani, Ian; Jones, Gerard F.

    2018-05-01

    The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.

  19. Algorithms for optimization of branching gravity-driven water networks

    Directory of Open Access Journals (Sweden)

    I. Dardani

    2018-05-01

    Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel

  20. Data-driven architectural production and operation

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2014-01-01

    Data-driven architectural production and operation as explored within Hyperbody rely heavily on system thinking implying that all parts of a system are to be understood in relation to each other. These relations are increasingly established bi-directionally so that data-driven architecture is not

  1. Resonances in a periodically driven bosonic system

    NARCIS (Netherlands)

    Quelle, Anton; de Morais Smith, Cristiane

    2017-01-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better

  2. On the use of the stabilised Q1P0 element for geodynamical simulations and why this is a bad choice for buyoancy-driven flows.

    Science.gov (United States)

    Thieulot, Cedric

    2016-04-01

    Many Finite Element geodynamical codes (Fullsack,1995; Zhong et al., 2000; Thieulot, 2011) are based on bi/tri­-linear velocity constant pressure element (commonly called Q1P0), because of its ease of programming and rather low memory footprint, despite the presence of (pressure) checker­board modes. However, it is long known that the Q1P0 is not inf­-sup stable and does not lend itself to the use of iterative solvers, which makes it a less­ than­ ideal candidate for high resolution 3D models. Other attempts were made more recently (Burstedde et al., 2013; Le Pourhiet et al., 2012) with the use of the stabilised Q1Q1 element (bi/tri­-linear velocity and pressure). This element, while also attractive from an implementation and memory standpoint, suffers a major drawback due to the artificial compressibility introduced by the polynomial projection stabilization. These observations have shifted part of the community towards the Finite Difference Method while the remaining part is now embracing inf­sup stable second­ order elements [May et al., 2015; Kronbichler,2012). Rather surprinsingly, a third option exists when it comes to first ­order elements in the form of the stabilised Q1P0 element, but virtually no literature exists concerning its use for geodynamical applications. I will then recall the specificity of the stabilisation and will carry out a series of benchmark experiments and geodynamical tests to assess its performance. While being shown to work as expected in benchmark experiments, the stabilised Q1P0 element turns out to introduce first-order numerical artefacts in the velocity and pressure solutions in the case of buoyancy-driven flows. Burstedde, C., Stadler, G., Alisic, L., Wilcox, L. C., Tan, E., Gurnis, M., & Ghattas, O. (2013). Large­scale adaptive mantle convection simulation. Geophysical Journal International, 192(3), 889­906. Fullsack, P. (1995). An arbitrary Lagrangian­Eulerian formulation for creeping flows and its application in

  3. Dynamically adaptive data-driven simulation of extreme hydrological flows

    Science.gov (United States)

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2018-02-01

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  4. Ion temperature gradient mode driven solitons and shocks

    Science.gov (United States)

    Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.

    2016-04-01

    Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.

  5. Dynamically adaptive data-driven simulation of extreme hydrological flows

    KAUST Repository

    Kumar Jain, Pushkar

    2017-12-27

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  6. On The Travelling Wave Solution For An SEIR Epidemic Disease ...

    African Journals Online (AJOL)

    We present the travelling wave solution for a Susceptible, Exposed, Infective and Removed (SEIR) epidemic disease model. For this SEIR model, the disease is driven by both the latent and infective class (the diffusion term is included in both classes). The population is closed. Keywords: Epidemic model, spatial spread, ...

  7. Investigating The Travelling Wave Solution For an SIR Endemic ...

    African Journals Online (AJOL)

    This paper presents the travelling wave solution for an SIR endemic disease model with no disease related death when the spatial spread of the susceptible is not negligible. In this case the disease is driven by both the susceptible and the infective classes. The population is open since the disease is habitually prevalent in ...

  8. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  9. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  10. Data Driven Economic Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Masoud Kheradmandi

    2018-04-01

    Full Text Available This manuscript addresses the problem of data driven model based economic model predictive control (MPC design. To this end, first, a data-driven Lyapunov-based MPC is designed, and shown to be capable of stabilizing a system at an unstable equilibrium point. The data driven Lyapunov-based MPC utilizes a linear time invariant (LTI model cognizant of the fact that the training data, owing to the unstable nature of the equilibrium point, has to be obtained from closed-loop operation or experiments. Simulation results are first presented demonstrating closed-loop stability under the proposed data-driven Lyapunov-based MPC. The underlying data-driven model is then utilized as the basis to design an economic MPC. The economic improvements yielded by the proposed method are illustrated through simulations on a nonlinear chemical process system example.

  11. Driven Phases of Quantum Matter

    Science.gov (United States)

    Khemani, Vedika; von Keyserlingk, Curt; Lazarides, Achilleas; Moessner, Roderich; Sondhi, Shivaji

    Clean and interacting periodically driven quantum systems are believed to exhibit a single, trivial ``infinite-temperature'' Floquet-ergodic phase. By contrast, I will show that their disordered Floquet many-body localized counterparts can exhibit distinct ordered phases with spontaneously broken symmetries delineated by sharp transitions. Some of these are analogs of equilibrium states, while others are genuinely new to the Floquet setting. I will show that a subset of these novel phases are absolutely stableto all weak local deformations of the underlying Floquet drives, and spontaneously break Hamiltonian dependent emergent symmetries. Strikingly, they simultaneously also break the underlying time-translation symmetry of the Floquet drive and the order parameter exhibits oscillations at multiples of the fundamental period. This ``time-crystallinity'' goes hand in hand with spatial symmetry breaking and, altogether, these phases exhibit a novel form of simultaneous long-range order in space and time. I will describe how this spatiotemporal order can be detected in experiments involving quenches from a broad class of initial states.

  12. Transmutation and accelerator driven systems

    International Nuclear Information System (INIS)

    Shapira, J.P.

    2001-01-01

    Full text: Today, countries who are presently involved in nuclear energy are facing many challenges to maintain this option open for the next few decades. Among them, management of nuclear wastes produced in nuclear reactors and in fuel cycle operations has become a very strong environmental issue among the public. In most countries with sizeable commercial nuclear programs, deep geological disposal of ultimate highly active and long-lived nuclear wastes is considered as the reference long-term management scheme. But, many questions arise on the possibility to demonstrate that such wastes can be dealt in such a way as to protect the future generations and the environment. The characteristics of nuclear wastes, the various back end policies concerning spent fuels and the nuclear wastes long-term management options will be first described. Then recent proposals, based on transmutation, especially those using accelerator driven systems (ADS) and/or thorium will be presented. Finally, the possibility for the nuclear physics community to play a part in alleviating the nuclear wastes burden will be pointed out. (author)

  13. Evaluation of respondent-driven sampling.

    Science.gov (United States)

    McCreesh, Nicky; Frost, Simon D W; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda N; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total population data. Total population data on age, tribe, religion, socioeconomic status, sexual activity, and HIV status were available on a population of 2402 male household heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, using current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). We recruited 927 household heads. Full and small RDS samples were largely representative of the total population, but both samples underrepresented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven sampling statistical inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven sampling bootstrap 95% confidence intervals included the population proportion. Respondent-driven sampling produced a generally representative sample of this well-connected nonhidden population. However, current respondent-driven sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience sampling method, and caution is required

  14. Evaluation of Respondent-Driven Sampling

    Science.gov (United States)

    McCreesh, Nicky; Frost, Simon; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda Ndagire; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Background Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex-workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total-population data. Methods Total-population data on age, tribe, religion, socioeconomic status, sexual activity and HIV status were available on a population of 2402 male household-heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, employing current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). Results We recruited 927 household-heads. Full and small RDS samples were largely representative of the total population, but both samples under-represented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven-sampling statistical-inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven-sampling bootstrap 95% confidence intervals included the population proportion. Conclusions Respondent-driven sampling produced a generally representative sample of this well-connected non-hidden population. However, current respondent-driven-sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience

  15. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  16. PFP solution stabilization

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1996-01-01

    This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  17. Classical solutions in supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.

    1977-06-01

    Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed

  18. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  19. Differentiated heated lid driven cavity interacting with tube: A lattice Boltzmann study

    Directory of Open Access Journals (Sweden)

    Bennacer Rachid

    2017-01-01

    Full Text Available The multiple-relaxation-time (MRT lattice-Boltzmann method is implemented to investigate combined natural and forced convection occurring in a two-dimensional square cavity. The top wall slides to the right at constant speed, while the other three remain stationary. The solution is performed for a left vertical wall at a constant temperature, which is higher than of the right wall. This yields a “cooperating” case, in which dynamic and buoyancy forces are added together. The enclosure is filled with air and contains a heat conducting circular cylinder, which is placed at various positions. The double distribution model used in lattice Boltzmann methods has been adopted to simulate the hydrodynamic and thermal fields, with the D2Q9 and D2Q5 lattices selected to perform the corresponding computations. Simulations have been conducted over a wide range of Rayleigh (Ra and Reynolds (Re numbers, and the features of dynamic and thermal fields are presented for the spectra of this mixed convection phenomenon. The flow and heat transfer characteristics of the cylinder position are described and analyzed in terms of the average Nusselt number (Nu. The computed results show the influence of the cylinder on the corresponding heat transfer in the enclosure. It has been found that the power (i.e. shear stress needed to lid the upper surface will depend on the governing parameters.

  20. Non-inductively driven currents in JET

    International Nuclear Information System (INIS)

    Challis, C.D.; Cordey, J.G.; Hamnen, H.; Stubberfield, P.M.; Christiansen, J.P.; Lazzaro, E.; Muir, D.G.; Stork, D.; Thompson, E.

    1989-01-01

    Neutral beam heating data from JET have been analysed in detail to determine what proportion of the current is driven non-inductively. It is found that in low density limiter discharges, currents of the order of 0.5 MA are driven, while in H-mode plasmas currents of the order of 0.7 MA are measured. These measured currents are found to be in reasonable agreement with theoretical predictions based on neoclassical models. In low density plasmas the beam driven current is large while the neoclassical bootstrap current dominates H-mode plasmas. (author). 19 refs, 11 figs

  1. Disentangling Competition Among Platform Driven Strategic Groups

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric

    2015-01-01

    In platform-driven markets, competitive advantage is derived from superior platform design and configurations. For this reason, platform owners strive to create unique and inimitable platform configurals to maintain and extend their competitiveness within network economies. To disentangle firm...... competition within platform-driven markets, we opted for the UK mobile payment market as our empirical setting. By embracing the theoretical lens of strategic groups and digital platforms, this study supplements prior research by deriving a taxonomy of platform-driven strategic groups that is grounded...

  2. On fusion driven systems (FDS) for transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Aagren, O (Uppsala Univ., Aangstroem laboratory, div. of electricity, Uppsala (Sweden)); Moiseenko, V.E. (Inst. of Plasma Physics, National Science Center, Kharkov Inst. of Physics and Technology, Kharkov (Ukraine)); Noack, K. (Forschungszentrum Dresden-Rossendorf (Germany))

    2008-10-15

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  3. On fusion driven systems (FDS) for transmutation

    International Nuclear Information System (INIS)

    Aagren, O; Moiseenko, V.E.; Noack, K.

    2008-10-01

    This report gives a brief description of ongoing activities on fusion driven systems (FDS) for transmutation of the long-lived radioactive isotopes in the spent nuclear waste from fission reactors. Driven subcritical systems appears to be the only option for efficient minor actinide burning. Driven systems offer a possibility to increase reactor safety margins. A comparatively simple fusion device could be sufficient for a fusion-fission machine, and transmutation may become the first industrial application of fusion. Some alternative schemes to create strong fusion neutron fluxes are presented

  4. Shock propagation in locally driven granular systems

    Science.gov (United States)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  5. Effect of Cattaneo-Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts

    Science.gov (United States)

    Dogonchi, A. S.; Ganji, D. D.

    2018-06-01

    In this study, buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, are studied. Cattaneo-Christov heat flux model instead of conventional Fourier's law of heat conduction is applied to investigate the heat transfer characteristics. A similarity transformation is used to transmute the governing momentum and energy equations into non-linear ordinary differential equations with the appropriate boundary conditions. The obtained non-linear ordinary differential equations are solved numerically. The impacts of diverse active parameters such as the magnetic parameter, the radiation parameter, the buoyancy parameter, the heat source parameter, the volume fraction of nanofluid and the thermal relaxation parameter are examined on the velocity and temperature profiles. In addition, the value of the Nusselt number is calculated and presented through figures. The results demonstrate that the temperature profile is lower in the case of Cattaneo-Christov heat flux model as compared to Fourier's law. Moreover, the Nusselt number raises with the raising volume fraction of nanofluid and it abates with the ascending the radiation parameter.

  6. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  7. Research on Longitudinal Vibration Characteristic of the Six-Cable-Driven Parallel Manipulator in FAST

    Directory of Open Access Journals (Sweden)

    Zhihua Liu

    2013-01-01

    Full Text Available The first adjustable feed support system in FAST is a six-cable-driven parallel manipulator. Due to flexibility of the cables, the cable-driven parallel manipulator bears a concern of possible vibration caused by wind disturbance or internal force from the fine drive system. The purpose of this paper is to analyze vibration characteristic of the six-cable-driven parallel manipulator in FAST. The tension equilibrium equation of the six-cable-driven parallel manipulator is set up regarding the cables as catenaries. Then, vibration equation is established considering the longitudinal vibration of the cables. On this basis, the natural frequencies are depicted in figures since both analytical and numerical solutions are ineffective. Influence of the sags of the cables on the natural frequencies is discussed. It is shown that the sags of the cables will decrease the natural frequencies of the six-cable-driven parallel manipulator. Simplification to acquire the natural frequencies is proposed in this paper. The results justify effectiveness of the simplification to calculate the first-order natural frequencies. Distribution of the first-order natural frequencies in the required workspace is provided based on the simplification method. Finally, parameters optimization is implemented in terms of natural frequencies for building the six-cable-driven parallel manipulator in FAST.

  8. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  9. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  10. Perceived Effectiveness of Community-driven Development ...

    African Journals Online (AJOL)

    Perceived Effectiveness of Community-driven Development Approach of Community and Social ... African Journal of Sustainable Development ... that CSDP in Oyo state be scaled up and the CDD approach be adopted for rural development.

  11. Examples of Entropy-driven Ordering

    Indian Academy of Sciences (India)

    driven Ordering. Orientational ordering of long objects. Entropy of sliding increases. Freezing in hard-sphere systems. Vibrational entropy increases. Phase separation in hard-sphere binary mixtures with disparate sizes. More room for smaller ...

  12. Test-driven development with Django

    CERN Document Server

    Harvey, Kevin

    2015-01-01

    This book is for Django developers with little or no knowledge of test-driven development or testing in general. Familiarity with the command line, setting up a Python virtual environment, and starting a Django project are assumed.

  13. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  14. Automated Testing of Event-Driven Applications

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning

    may be tested by selecting an interesting input (i.e. a sequence of events), and deciding if a failure occurs when the selected input is applied to the event-driven application under test. Automated testing promises to reduce the workload for developers by automatically selecting interesting inputs...... and detect failures. However, it is non-trivial to conduct automated testing of event-driven applications because of, for example, infinite input spaces and the absence of specifications of correct application behavior. In this PhD dissertation, we identify a number of specific challenges when conducting...... automated testing of event-driven applications, and we present novel techniques for solving these challenges. First, we present an algorithm for stateless model-checking of event-driven applications with partial-order reduction, and we show how this algorithm may be used to systematically test web...

  15. Applications of laser-driven particle acceleration

    CERN Document Server

    Parodi, Katia; Schreiber, Jorg

    2018-01-01

    The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia ...

  16. Current-driven turbulence in plasmas

    International Nuclear Information System (INIS)

    Kluiver, H. de.

    1977-10-01

    Research on plasma heating in linear and toroidal systems using current-driven turbulence is reviewed. The motivation for this research is presented. Relations between parameters describing the turbulent plasma state and macroscopic observables are given. Several linear and toroidal devices used in current-driven turbulence studies are described, followed by a discussion of special diagnostic methods used. Experimental results on the measurement of electron and ion heating, anomalous plasma conductivity and associated turbulent fluctuation spectra are reviewed. Theories on current-driven turbulence are discussed and compared with experiments. It is demonstrated from the experimental results that current-driven turbulence occurs not only for extreme values of the electric field but also for an experimentally much more accessible and wide range of parameters. This forms a basis for a discussion on possible future applications in fusion-oriented plasma research

  17. Leidenfrost Driven Waste-Water Separator

    Data.gov (United States)

    National Aeronautics and Space Administration — A Leidenfrost Driven Waste-Water Separator (LDS) is proposed in response to TA 6.1: Environmental Control and Life Support Systems and Habitation Systems. The LDS...

  18. Solution mining process

    International Nuclear Information System (INIS)

    Showalter, W.E.

    1984-01-01

    A solution mining process which may be used for uranium, thorium, vanadium, copper, nickel, molybdenum, rhenium, and selenium is claimed. During a first injection-and-production phase of between 6 months and 5 years, a leaching solution is injected through at least one well into the formation to solubilize the mineral values and form a pregnant liquor. This liquor is recovered through another well. The leaching solution contains sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, an alkali metal carbonate, an alkali metal bicarbonate, ammonium carbonate or ammonium bicarbonate. Subsequently during a first production-only phase of between about 2 weeks and one year, injection of the leaching solution is suspended but pregnant liquor is still recovered. This stage is followed by a second injection-and-production phase of between 6 months and 5 years and a second production-only phase. The mineral values are separated from the pregnant liquor to form a barren liquor. The leaching agent is introduced into this liquor, and the solution is recycled. In a second claim for the solution mining of uranium, dilute carbonic acid is used as the leaching solution. The solution has a pH less than 7 and a bicarbonate ion concentration between about 380 ppm and 1000 ppm. The injection-and-production phase lasts between one and two years and the production only phase takes between one and four months. Carbon dioxide is introduced into the barren liquor to form a dilute carbonic acid solution and the solution is recycled

  19. Consistent data-driven computational mechanics

    Science.gov (United States)

    González, D.; Chinesta, F.; Cueto, E.

    2018-05-01

    We present a novel method, within the realm of data-driven computational mechanics, to obtain reliable and thermodynamically sound simulation from experimental data. We thus avoid the need to fit any phenomenological model in the construction of the simulation model. This kind of techniques opens unprecedented possibilities in the framework of data-driven application systems and, particularly, in the paradigm of industry 4.0.

  20. Comments to accelerator-driven system

    International Nuclear Information System (INIS)

    Taka aki, Matsumoto

    2003-01-01

    Accelerator-driven system (ADS) that was a subcritical nuclear reactor driven by a high power proton accelerator was recently studied by several large organisations over the world. This paper described two comments for ADS: philosophical and technological ones. The latter was made from a view point of micro ball lightning (BL) that was newly discovered by the author. Negative and positive aspects of micro BL for ADS were discussed. (author)

  1. Radiosity methods driven by human perception

    International Nuclear Information System (INIS)

    Prikryl, J.

    2001-05-01

    Despite its popularity among researchers the radiosity method still suffers some disadvantage over other global illumination methods. Usual implementations of the radiosity method use criteria based on radiometric values to drive the computation and to decide about sufficient mesh quality or to estimate the error of the simulation process and to decide when the simulation can be safely terminated. This is absolutely correct for the case of radiometric simulation, when the user is interested in actual values of radiometric quantities. On the other hand, the radiosity method is very often used just to generate pictures for the human observer and those pictures are not required to be the results of correct physical simulations, they just have to look the same. The results of research on human visual performance and visual signal processing can be built into the image synthesis algorithm itself under some circumstances and guarantee that no effort will be spent on computing changes that are only marginally important for the human observer. In the area of image processing, perceptual error metrics are used for image comparison and image coding that enable to better predict the differences between two images as opposed to the perceptually inappropriate and widely used mean-squared error metrics. Tone reproduction operators known from image synthesis make it possible to map a bright scale of image luminance onto a narrow scale of CRT luminance in such a way that the perceived CRT image produces the same mental image as the original image. Perceptually-driven radiosity algorithms exist, which use various methods to control the optimum density of the finite-element mesh defining the scene that is being rendered, to include only visible discontinuity lines into this mesh, and to predict the convergence of the method. We will describe an hierarchical extension to the Monte Carlo radiosity that keeps the accuracy of the solution high only in the area immediately visible from

  2. Black-hole driven winds

    International Nuclear Information System (INIS)

    Punsly, B.M.

    1988-01-01

    This dissertation is a study of the physical mechanism that allows a large scale magnetic field to torque a rapidly rotating, supermassive black hole. This is an interesting problem as it has been conjectured that rapidly rotating black holes are the central engines that power the observed extragalactic double radio sources. Axisymmetric solutions of the curved space-time version of Maxwell's equations in the vacuum do not torque black holes. Plasma must be introduced for the hole to mechanically couple to the field. The dynamical aspect of rotating black holes that couples the magnetic field to the hole is the following. A rotating black hole forces the external geometry of space-time to rotate (the dragging of inertial frames). Inside of the stationary limit surface, the ergosphere, all physical particle trajectories must appear to rotate in the same direction as the black hole as viewed by the stationary observers at asymptotic infinity. In the text, it is demonstrated how plasma that is created on field lines that thread both the ergosphere and the equatorial plane will be pulled by gravity toward the equator. By the aforementioned properties of the ergosphere, the disk must rotate. Consequently, the disk acts like a unipolar generator. It drives a global current system that supports the toroidal magnetic field in an outgoing, magnetically dominated wind. This wind carries energy (mainly in the form of Poynting flux) and angular momentum towards infinity. The spin down of the black hole is the ultimate source of this energy and angular momentum flux

  3. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  4. PERVASIVE BUSINESS INTELLIGENCE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Rocsana Tonis (Bucea-Manea

    2011-03-01

    Full Text Available The utility of BI solutions is accepted all over the world in the modern organizations. However, the BI solutions do not offer a constant feedback in line with the organizational activities. In this context, there have been developed pervasive BI solutions which are present at different levels of the organization, so that employees can observe only what is most relevant to their day-to-day tasks. They are organized in vertical silos, with clearly identified performance and expectations. The paper emphasizes the role of pervasive BI solutions in reaching the key performance indicators of the modern organizations, more important in the context of crisis.

  5. Direct measurements of the enthalpy of solution of solid solute in supercritical fluids: study on the CO2-naphthalene system.

    Science.gov (United States)

    Zhang, X; Han, B; Zhang, J; Li, H; He, J; Yan, H

    2001-10-01

    A setup for a calorimeter for simultaneously measuring the solubility and the solution enthalpy of solid solutes in supercritical fluids (SCFs) has been established. The enthalpy of solution of naphthalene in supercritical CO2 was measured at 308.15 K in the pressure range from 8.0-11.0 MPa. It was found that the enthalpy of solution (deltaH) was negative in the pressure range from 8.0 to 9.5 MPa, and the absolute value decreased with increasing pressure. In this pressure range, the dissolution of the solute was enthalpy driven. However, the deltaH became positive at pressures higher than 9.5 MPa, and the dissolution was entropy driven. Monte Carlo simulation was performed to analyze the local structural environment of the solvated naphthalene molecules in supercritical CO2 under the experimental conditions for the calorimetric measurements. By combining the enthalpy data and the simulation results, it can be deduced that the energy level of CO2 in the high compressible region is higher than that at higher pressures, which results in the large negative enthalpy of solution and the larger degree of solvent-solute clustering in the high compressible region.

  6. Software Solutions for Agile Business

    Directory of Open Access Journals (Sweden)

    Viorel LUPU

    2006-01-01

    Full Text Available Businesses, like people, are continuously evolving and as such face rapid and continual change. As markets and customer needs evolve, enterprises must respond with new ways to attract and retain customers and partners, increase operational efficiency, and achieve greater visibility into their business processes. IT staff see business processes through the lens of the low-level parts of the flow, rather than at the business level. As a result, they aren't capable of implementing the processes so that they will meet continuously changing business requirements, thus impeding business agility. Business users are increasingly demanding that they have control over their own business processes - and so, are requiring systems that put control of the flow and logic into their hands, not those of IT. An Enterprise Service Bus based on a Service Oriented Architecture could be a solution and tie together the notions of service oriented process, service oriented integration and event-driven, message based interaction into a single environment that enables users to combine their assets and information from multiple points of view.

  7. Active tectonics and drainage evolution in the Tunisian Atlas driven by interaction between crustal shortening and slab pull

    Science.gov (United States)

    Camafort, Miquel; Booth-Rea, Guillermo; Pérez-Peña, Jose Vicente; Melki, Fetheddine; Gracia, Eulalia; Azañón, Jose Miguel; Ranero, César R.

    2017-04-01

    Active tectonics in North Africa is fundamentally driven by NW-SE directed slow convergence between the Nubia and Eurasia plates, leading to a region of thrust and strike-slip faulting. In this paper we analyze the morphometric characteristics of the little-studied northern Tunisia sector. The study aimed at identifying previously unknown active tectonic structures, and to further understand the mechanisms that drive the drainage evolution in this region of slow convergence. The interpretation of morphometric data was supported with a field campaign of a selection of structures. The analysis indicates that recent fluvial captures have been the main factor rejuvenating drainage catchments. The Medjerda River, which is the main catchment in northern Tunisia, has increased its drainage area during the Quaternary by capturing adjacent axial valleys to the north and south of its drainage divide. These captures are probably driven by gradual uplift of adjacent axial valleys by reverse/oblique faults or associated folds like El Alia-Teboursouk and Dkhila faults. Our fieldwork found that these faults cut Holocene colluvial fans containing seismites like clastic dikes and sand volcanoes, indicating recent seismogenic faulting. The growth and stabilization of the axial Medjerda River against the natural tendency of transverse drainages might be caused by a combination of dynamic topography and transpressive tectonics. The orientation of the large axial Medjerda drainage that runs from eastern Algeria towards northeastern Tunisia into the Gulf of Tunis, might be the associated to negative buoyancy caused by the underlying Nubia slab at its mouth, together with uplift of the Medjerda headwaters along the South Atlassic dextral transfer zone.

  8. Liquid metal actuator driven by electrochemical manipulation of surface tension

    Science.gov (United States)

    Russell, Loren; Wissman, James; Majidi, Carmel

    2017-12-01

    We examine the electrocapillary properties of a fluidic actuator composed of a liquid metal droplet that is submerged in electrolytic solution and attached to an elastic beam. The beam deflection is controlled by electrochemically driven changes in the surface energy of the droplet. The metal is a eutectic gallium-indium alloy that is liquid at room temperature and forms an nm-thin Ga2O3 skin when oxidized. The effective surface tension of the droplet changes dramatically with oxidation and reduction, which are reversibly controlled by applying low voltage to the electrolytic bath. Wetting the droplet to two copper pads allows for a controllable tensile force to be developed between the opposing surfaces. We demonstrate the ability to reliably control force by changing the applied oxidizing voltage. Actuator forces and droplet geometries are also examined by performing a computational fluid mechanics simulation using Surface Evolver. The theoretical predictions are in qualitative agreement with the experimental measurements and provide additional confirmation that actuation is driven by surface tension.

  9. Gate-Driven Pure Spin Current in Graphene

    Science.gov (United States)

    Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng

    2017-09-01

    The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.

  10. Model Driven Integrated Decision-Making in Manufacturing Enterprises

    Directory of Open Access Journals (Sweden)

    Richard H. Weston

    2012-01-01

    Full Text Available Decision making requirements and solutions are observed in four world class Manufacturing Enterprises (MEs. Observations made focus on deployed methods of complexity handling that facilitate multi-purpose, distributed decision making. Also observed are examples of partially deficient “integrated decision making” which stem from lack of understanding about how ME structural relations enable and/or constrain reachable ME behaviours. To begin to address this deficiency the paper outlines the use of a “reference model of ME decision making” which can inform the structural design of decision making systems in MEs. Also outlined is a “systematic model driven approach to modelling ME systems” which can particularise the reference model in specific case enterprises and thereby can “underpin integrated ME decision making”. Coherent decomposition and representational mechanisms have been incorporated into the model driven approach to systemise complexity handling. The paper also describes in outline an application of the modelling method in a case study ME and explains how its use has improved the integration of previously distinct planning functions. The modelling approach is particularly innovative in respect to the way it structures the coherent creation and experimental re-use of “fit for purpose” discrete event (predictive simulation models at the multiple levels of abstraction.

  11. Work behaviors of artificial muscle based on cation driven polypyrrole.

    Science.gov (United States)

    Fujisue, Hisashi; Sendai, Tomokazu; Yamato, Kentaro; Takashima, Wataru; Kaneto, Keiichi

    2007-06-01

    A soft actuator mimicking natural muscles (artificial muscle) has been developed using a flexible conducting polymer of polypyrrole films, which were driven by electrical stimulus in a saline solution. The work characteristics were studied under various load stresses and found to behave like natural muscles. The artificial muscles shrunk and stiffened by the positive electrical stimulus by 2-3% at the maximum force of 5 MPa, and relaxed by application of negative voltages. At larger load stresses, the artificial muscle shrunk slowly as natural muscles do. The driving current also lasted longer at larger loads, indicating that the muscle sensed the magnitude of the load stress. During contraction of the muscle, the conversion efficiency from the electrical input and mechanical output energies was estimated to be around 0.06%. The maximum volumetric work was approximately estimated to be 100 kJ m(-3). These figures are unexpectedly small compared with those of natural muscles.

  12. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.

    Science.gov (United States)

    Yang, Chao; Wang, Wei; Yao, Chen; Xie, Rui; Ju, Xiao-Jie; Liu, Zhuang; Chu, Liang-Yin

    2015-08-28

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two "legs" for walking. The hydrogel walkers can reversibly bend and stretch via repeated "on/off" electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers can move their two "legs" to achieve one-directional walking motion on a rough surface via repeated "on/off" electro-triggering cycles. Moreover, the hydrogel walkers loaded with very heavy cargo also exhibit excellent walking motion for cargo transport. Such hydrogel systems create new opportunities for developing electro-controlled soft systems with simple design/fabrication strategies in the soft robotic field for remote manipulation and transportation.

  13. Control and Virtual Reality Simulation of Tendon Driven Mechanisms

    International Nuclear Information System (INIS)

    Londi, Fabio; Pennestri, Ettore; Valentini, Pier Paolo; Vita, Leonardo

    2004-01-01

    In this paper the authors present a control strategy for tendon driven mechanisms. The aim of the control system is to find the correct torques which the motors have to exert to make the end effector describe a specific trajectory. In robotic assemblies this problem is often solved with closed loop algorithm, but here a simpler method, based on a open loop strategy, is developed. The difficulties in the actuation are in keeping the belt tight during all working conditions. So an innovative solution of this problem is presented here. This methodology can be easily applied in real time monitoring or very fast operations. For this reason several virtual reality simulations, developed using codes written in Virtual Reality Markup Language, are also presented. This approach is very efficient because it requires a very low cpu computation time, small size files, and the manipulator can be easily put into different simulated scenarios

  14. SMART CITY SERVICES DRIVEN BY IOT: A SYSTEMATIC REVIEW

    Directory of Open Access Journals (Sweden)

    Marko Mijac

    2017-09-01

    Full Text Available The central role in development of information society is taken by smart cities and their novel services through the use of modern technology and smart solutions. The key enabler and driver of smart cities is Internet of Things (IoT. In this paper, we have conducted a systematic literature review in order to investigate proposed smart city services driven by IoT. We have formulated the review protocol to define the research question/s, search strategy, selection criteria, study quality assessment, and data extraction strategy. We have defined the following main research question: What are the reported applications of Internet of Things in the development of smart city services? The papers were categorized by the smart city services they proposed or described. We have recognized the following categories: traffic and transport; environment monitoring; accessibility & healthcare; waste management; public lighting; energy management; city infrastructure; and other.

  15. A Model-driven Framework for Educational Game Design

    Directory of Open Access Journals (Sweden)

    Bill Roungas

    2016-09-01

    Full Text Available Educational games are a class of serious games whose main purpose is to teach some subject to their players. Despite the many existing design frameworks, these games are too often created in an ad-hoc manner, and typically without the use of a game design document (GDD. We argue that a reason for this phenomenon is that current ways to structure, create and update GDDs do not increase the value of the artifact in the design and development process. As a solution, we propose a model-driven, web-based knowledge management environment that supports game designers in the creation of a GDD that accounts for and relates educational and entertainment game elements. The foundation of our approach is our devised conceptual model for educational games, which also defines the structure of the design environment. We present promising results from an evaluation of our environment with eight experts in serious games.

  16. Aspect-Oriented Model-Driven Software Product Line Engineering

    Science.gov (United States)

    Groher, Iris; Voelter, Markus

    Software product line engineering aims to reduce development time, effort, cost, and complexity by taking advantage of the commonality within a portfolio of similar products. The effectiveness of a software product line approach directly depends on how well feature variability within the portfolio is implemented and managed throughout the development lifecycle, from early analysis through maintenance and evolution. This article presents an approach that facilitates variability implementation, management, and tracing by integrating model-driven and aspect-oriented software development. Features are separated in models and composed of aspect-oriented composition techniques on model level. Model transformations support the transition from problem to solution space models. Aspect-oriented techniques enable the explicit expression and modularization of variability on model, template, and code level. The presented concepts are illustrated with a case study of a home automation system.

  17. Direct-current nanogenerator driven by ultrasonic waves.

    Science.gov (United States)

    Wang, Xudong; Song, Jinhui; Liu, Jin; Wang, Zhong Lin

    2007-04-06

    We have developed a nanowire nanogenerator that is driven by an ultrasonic wave to produce continuous direct-current output. The nanogenerator was fabricated with vertically aligned zinc oxide nanowire arrays that were placed beneath a zigzag metal electrode with a small gap. The wave drives the electrode up and down to bend and/or vibrate the nanowires. A piezoelectric-semiconducting coupling process converts mechanical energy into electricity. The zigzag electrode acts as an array of parallel integrated metal tips that simultaneously and continuously create, collect, and output electricity from all of the nanowires. The approach presents an adaptable, mobile, and cost-effective technology for harvesting energy from the environment, and it offers a potential solution for powering nanodevices and nanosystems.

  18. A solvable two-species catalysis-driven aggregation model

    CERN Document Server

    Ke Jian Hong

    2003-01-01

    We study the kinetics of a two-species catalysis-driven aggregation system, in which an irreversible aggregation between any two clusters of one species occurs only with the catalytic action of another species. By means of a generalized mean-field rate equation, we obtain the asymptotic solutions of the cluster mass distributions in a simple process with a constant rate kernel. For the case without any consumption of the catalyst, the cluster mass distribution of either species always approaches a conventional scaling law. However, the evolution behaviour of the system in the case with catalyst consumption is complicated and depends crucially on the relative data of the initial concentrations of the two species.

  19. Collective states of externally driven, damped nonlinear Schroedinger solitons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Smirnov, Yu.S.

    1997-01-01

    We study bifurcations of localized stationary solitons of the externally driven, damped nonlinear Schroedinger equation iΨ t + Ψ xx + 2|Ψ| 2 Ψ=-iγΨ-h e iΩt , in the region of large γ (γ>1/2). For each pair of h and γ, there are two coexisting solitons, Ψ + and Ψ - . As the driver's strength h increases for the fixed γ, the Ψ + soliton merges with the flat background while the Ψ - forms a stationary collective state with two 'psi-pluses': Ψ - → Ψ (+ - +) . We obtain other stationary solutions and identify them as multisoliton complexes Ψ (++) , Ψ (--) , Ψ (-+) , Ψ (---) , Ψ (-+- ) etc. The corresponding intersoliton separations are compared to predictions of a variational approximation

  20. Data-Driven Innovation through Open Government Data

    DEFF Research Database (Denmark)

    Jetzek, Thorhildur; Avital, Michel; Bjørn-Andersen, Niels

    2014-01-01

    The exponentially growing production of data and the social trend towards openness and sharing are power-ful forces that are changing the global economy and society. Governments around the world have become active participants in this evolution, opening up their data for access and reuse by public...... and private agents alike. The phenomenon of Open Government Data has spread around the world in the last four years, driven by the widely held belief that use of Open Government Data has the ability to generate both economic and social value. However, a cursory review of the popular press, as well...... as an investigation of academic research and empirical data, reveals the need to further understand the relationship between Open Government Data and value. In this paper, we focus on how use of Open Government Data can bring about new innovative solutions that can generate social and economic value. We apply...