WorldWideScience

Sample records for soluble starch synthase

  1. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Science.gov (United States)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  2. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  3. In vitro biochemical characterization of all barley endosperm starch synthases

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Nielsen, Morten M.; Ruzanski, Christian

    2016-01-01

    Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS....... Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results...... define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis...

  4. Factors influencing gene silencing of granule-bound starch synthase in potato

    NARCIS (Netherlands)

    Heilersig, H.J.B.

    2005-01-01

    In the past, antisense RNA technology was used to modify the composition of potato tuber starch. Potato starch comprises amylose and amylopectin, polymers of glucose. Amylose production in potato is completely dependent on the presence of granule-bound starch synthase I (GBSSI). Inhibition of GBSSI

  5. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling

    DEFF Research Database (Denmark)

    Zhang, Chuanhui; Jiang, Dong; Liu, Fulai

    2010-01-01

    with the temporally change patterns of starch synthase activities and relative gene expression levels. For instance, activities of soluble and granule-bound starch synthases (designated SSS and GBSS) peaked at 20 and 24 DAF. Genes encoding isoforms of starch synthases expressed at different grain filling periods...

  6. Identification and phylogenetic analysis of a novel starch synthase in maize

    Directory of Open Access Journals (Sweden)

    Hanmei eLiu

    2015-11-01

    Full Text Available Starch is an important reserve of carbon and energy in plants, providing the majority of calories in the human diet and animal feed. Its synthesis is orchestrated by several key enzymes, and the amount and structure of starch, affecting crop yield and quality, are determined mainly by starch synthase (SS activity. To date, five SS isoforms, including SSI-IV and Granule Bound Starch Synthase (GBSS have been identified and their physiological functions have been well characterized. Here, we report the identification of a new SS isoform in maize, designated SSV. By searching sequenced genomes, SSV has been found in all green plants with conserved sequences and gene structures. Our phylogenetic analysis based on 780 base pairs has suggested that SSIV and SSV resulted from a gene duplication event, which may have occurred before the algae formation. An expression profile analysis of SSV in maize has indicated that ZmSSV is mainly transcribed in the kernel and ear leaf during the grain filling stage, which is partly similar to other SS isoforms. Therefore, it is likely that SSV may play an important role in starch biosynthesis. Subsequent analysis of SSV function may facilitate understanding the mechanism of starch granules formation, number and structure.

  7. Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis

    Directory of Open Access Journals (Sweden)

    D'Hulst Christophe

    2008-09-01

    Full Text Available Abstract Background The biochemical mechanisms that determine the molecular architecture of amylopectin are central in plant biology because they allow long-term storage of reduced carbon. Amylopectin structure imparts the ability to form semi-crystalline starch granules, which in turn provides its glucose storage function. The enzymatic steps of amylopectin biosynthesis resemble those of the soluble polymer glycogen, however, the reasons for amylopectin's architectural distinctions are not clearly understood. The multiplicity of starch biosynthetic enzymes conserved in plants likely is involved. For example, amylopectin chain elongation in plants involves five conserved classes of starch synthase (SS, whereas glycogen biosynthesis typically requires only one class of glycogen synthase. Results Null mutations were characterized in AtSS2, which codes for SSII, and mutant lines were compared to lines lacking SSIII and to an Atss2, Atss3 double mutant. Loss of SSII did not affect growth rate or starch quantity, but caused increased amylose/amylopectin ratio, increased total amylose, and deficiency in amylopectin chains with degree of polymerization (DP 12 to DP28. In contrast, loss of both SSII and SSIII caused slower plant growth and dramatically reduced starch content. Extreme deficiency in DP12 to DP28 chains occurred in the double mutant, far more severe than the summed changes in SSII- or SSIII-deficient plants lacking only one of the two enzymes. Conclusion SSII and SSIII have partially redundant functions in determination of amylopectin structure, and these roles cannot be substituted by any other conserved SS, specifically SSI, GBSSI, or SSIV. Even though SSIII is not required for the normal abundance of glucan chains of DP12 to DP18, the enzyme clearly is capable of functioning in production such chains. The role of SSIII in producing these chains cannot be detected simply by analysis of an individual mutation. Competition between

  8. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  9. In Vitro Biochemical Characterization of All Barley Endosperm Starch Synthases

    Directory of Open Access Journals (Sweden)

    Jose Antonio Cuesta-Seijo

    2016-01-01

    Full Text Available Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs. While the overall starch synthase (SS reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.

  10. Contribution of granule bound starch synthase in kernel modification ...

    African Journals Online (AJOL)

    The role of gbssI and gbssII genes, encoding granule bound starch synthase enzyme I and II, respectively, in quality protein maize (QPM) were studied at different days after pollination (DAP). Total RNA was used for first strand cDNA synthesis using the ImpromIISriptTM reverse transcriptase. No detectable levels of gbssI ...

  11. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-03

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  12. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  13. Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1974-01-01

    Because starch of low viscosity is important for industrial purposes this research was carried out to study the possibility of producing this sort of starch by treating rice starch with γ-irradiation. Results indicated than when rice starch was modified by γ-irradiation, the reducing power increased and degradation as well as molecular breakdown occured followed by sharp decrease of its viscosity, specific viscosity and intrisinc viscosity. Results showed that starch became more soluble by treating with γ-irradiation and lost its resistance to water as its swelling capacity decreased. All these changes were proportional to the doses of γ-irradiation. (orig.) [de

  14. Starch accumulation in hulless barley during grain filling.

    Science.gov (United States)

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  15. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  17. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation.

    Science.gov (United States)

    Kadouche, Derifa; Ducatez, Mathieu; Cenci, Ugo; Tirtiaux, Catherine; Suzuki, Eiji; Nakamura, Yasunori; Putaux, Jean-Luc; Terrasson, Amandine Durand; Diaz-Troya, Sandra; Florencio, Francisco Javier; Arias, Maria Cecilia; Striebeck, Alexander; Palcic, Monica; Ball, Steven G; Colleoni, Christophe

    2016-07-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. Characterization of Function of the GlgA2 Glycogen/Starch Synthase in Cyanobacterium sp. Clg1 Highlights Convergent Evolution of Glycogen Metabolism into Starch Granule Aggregation1

    Science.gov (United States)

    Kadouche, Derifa; Arias, Maria Cecilia

    2016-01-01

    At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network. PMID:27208262

  19. Enzymatic hydrolysis of starch in the presence of cereal soluble fibre polysaccharides.

    Science.gov (United States)

    Dhital, Sushil; Dolan, Grace; Stokes, Jason R; Gidley, Michael J

    2014-03-01

    The in vitro amylolysis of both granular and cooked maize starch and the diffusion of glucose in the presence of 1% and 2% cereal soluble fibre polysaccharides (arabinoxylan and mixed linkage beta-glucan) were studied at various levels of shear mixing in order to identify potential molecular mechanisms underlying observed glycemia-reducing effects of soluble fibres in vivo. The presence of soluble fibres increased viscosity by ca. 10× and 100× for 1% and 2% concentrations respectively. Despite this large difference in viscosity, measured digestion and mass transfer coefficients were only reduced by a factor of 1.5 to 2.5 at the same mixing speed. In contrast, introduction of mixing in the digesting and diffusing medium significantly increased the rate of amylolytic starch digestion and mass transfer of glucose. This effect is such that mixing at high speeds negates the hindering effect of the 100× increased viscosity imparted by the presence of 2% soluble fibre; this is essentially captured by the Reynolds number (the ratio of inertial and viscous forces) that defines the flow kinematics. The modest reduction of in vitro starch hydrolysis and glucose diffusion at increased viscosity suggests that the established benefits of soluble fibres on post-prandial glycaemia, in terms of attenuation of the overall rate and extent of dietary starch conversion to blood glucose, are not primarily due to a direct effect of viscosity. Alternative hypotheses are proposed based on gastric emptying, restriction of turbulent flow, and/or stimulation of mucus turnover.

  20. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  1. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch.

    Science.gov (United States)

    Liu, Yuxi; Chen, Yuping; Huang, Xuechen; Wu, Gang

    2017-10-01

    Calcium carbonate has been synthesized by the reaction of Na 2 CO 3 and CaCl 2 in the presence of bovine serum albumin (BSA) and soluble starch. Effects of various bovine serum albumin (BSA) and soluble starch on the polymorph and morphology of CaCO 3 crystals were investigated. Crystallization of vaterite is favored in the presence of BSA and soluble starch, respectively, while calcite is favored in the presence of a mixture of BSA and soluble starch. The morphologies of CaCO 3 particles in the presence of mixture of BSA and soluble starch are mainly rod-like, suggesting that the BSA, soluble and their assemblies play key roles in stabilizing and directing the CaCO 3 crystal growth. Copyright © 2017. Published by Elsevier B.V.

  2. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2011-10-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Both the enzymatic-gravimetric andenzymatic-chemical methods used for the determination of soluble and insoluble non-starch polysaccharides haveundergone a number of modifications and improvements, most occurring over the last 20 years.

  3. Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, Søren Martin; Pedersen, L. T.; Dam-Johansen, Kim

    2010-01-01

    The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes the devel......The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes...... the development of a leached (porous) layer in the wetted, outermost part of the coating. Subsequent water-binder interaction at the pore walls gives rise to polishing, in a manner similar to that of conventional antifouling coatings. Different starch types have been evaluated and classified as potential coating...

  4. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  5. Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison.

    Science.gov (United States)

    Thurnheer, T; Giertsen, E; Gmür, R; Guggenheim, B

    2008-09-01

    Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model. Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64.5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose. The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose. By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.

  6. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  7. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    Science.gov (United States)

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  8. Chemical Methods for the Determination of Soluble and Insoluble Non-Starch Polysaccharides - Review

    OpenAIRE

    Rodica Căpriţă; Adrian Căpriţă

    2011-01-01

    Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides(NSP) are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group ofpolysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fractioninclude cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins,arabinogalactans, arabinoxylans, and β-(1,3)(1,4)-D-g...

  9. Characterization of magnetic soluble starch-functionalized carbon nanotubes and its application for the adsorption of the dyes

    International Nuclear Information System (INIS)

    Chang, Peter R.; Zheng Pengwu; Liu Baoxiang; Anderson, Debbie P.; Yu Jiugao; Ma Xiaofei

    2011-01-01

    Soluble starch-functionalized multiwall carbon nanotube composites (MWCNT-starch) were prepared to improve the hydrophilicity and biocompatibility of MWCNTs. Characterization of the MWCNT-starch by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM) and thermogravimetric analysis (TG), showed that the starch component (about 14.3 wt%) was covalently grafted onto the surface of MWCNT. MWCNT-starch-iron oxide composites, intended for use as adsorbents for the removal of dyes from aqueous solutions, were prepared by synthesizing iron oxide nanoparticles at the surface of MWCNT-starch. Starch acts as a template for growth of iron oxide nanoparticles which are uniformly dispersed on the surface of the MWCNT-starch. MWCNT-starch-iron oxide exhibits superparamagnetic properties with a saturation magnetization (23.15 emu/g) and better adsorption for anionic methyl orange (MO) and cationic methylene blue (MB) dyes than MWCNT-iron oxide.

  10. Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications

    Directory of Open Access Journals (Sweden)

    Broglie Karen E

    2008-09-01

    Full Text Available Abstract Background Starch is of great importance to humans as a food and biomaterial, and the amount and structure of starch made in plants is determined in part by starch synthase (SS activity. Five SS isoforms, SSI, II, III, IV and Granule Bound SSI, have been identified, each with a unique catalytic role in starch synthesis. The basic mode of action of SSs is known; however our knowledge of several aspects of SS enzymology at the structural and mechanistic level is incomplete. To gain a better understanding of the differences in SS sequences that underscore their specificity, the previously uncharacterised SSIVb from wheat was cloned and extensive bioinformatics analyses of this and other SSs sequences were done. Results The wheat SSIV cDNA is most similar to rice SSIVb with which it shows synteny and shares a similar exon-intron arrangement. The wheat SSIVb gene was preferentially expressed in leaf and was not regulated by a circadian clock. Phylogenetic analysis showed that in plants, SSIV is closely related to SSIII, while SSI, SSII and Granule Bound SSI clustered together and distinctions between the two groups can be made at the genetic level and included chromosomal location and intron conservation. Further, identified differences at the amino acid level in their glycosyltransferase domains, predicted secondary structures, global conformations and conserved residues might be indicative of intragroup functional associations. Conclusion Based on bioinformatics analysis of the catalytic region of 36 SSs and 3 glycogen synthases (GSs, it is suggested that the valine residue in the highly conserved K-X-G-G-L motif in SSIII and SSIV may be a determining feature of primer specificity of these SSs as compared to GBSSI, SSI and SSII. In GBSSI, the Ile485 residue may partially explain that enzyme's unique catalytic features. The flexible 380s Loop in the starch catalytic domain may be important in defining the specificity of action for each

  11. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    International Nuclear Information System (INIS)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z.

    2000-01-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  12. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z. [Radiation Processing Technology Division, Malaysian Institute Nuclear Technology Research Malaysia (MINT), Bangi, 43000 Kajang (Malaysia)

    2000-03-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  13. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  14. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  15. Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites

    International Nuclear Information System (INIS)

    Chandramouleeswaran, Subramani; Mhaske, S T; Kathe, A A; Varadarajan, P V; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-01-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis-ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence-revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications

  16. Functional behaviour of polypropylene/ZnO soluble starch nanocomposites

    Science.gov (United States)

    Chandramouleeswaran, Subramani; Mhaske, S. T.; Kathe, A. A.; Varadarajan, P. V.; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-09-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis—ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence—revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications.

  17. Evidence that cellulolysis by an anaerobic ruminal fungus is catabolite regulated by glucose, cellobiose, and soluble starch

    International Nuclear Information System (INIS)

    Morrison, M.; Mackie, R.I.; Kistner, A.

    1990-01-01

    A Piromyces-like ruminal fungus was used to study preferential carbohydrate utilization of [U- 14 C]cellulose, both alone and in combination with several soluble sugars. For cells grown on cellulose alone, cellulolytic activity was immediate and, initially, greater than that observed in the presence of added carbohydrate. Cellulolytic activity remained minimal in cultures containing cellulose plus glucose or cellobiose until the soluble sugar was depleted. Soluble starch also regulated cellulose activity but to a lesser extent. The results presented suggest that some fungal cellulases are susceptible to catabolite regulatory mechanisms

  18. Deficiencies in both starch synthase IIIa and branching enzyme IIb lead to a significant increase in amylose in SSIIa-inactive japonica rice seeds.

    Science.gov (United States)

    Asai, Hiroki; Abe, Natsuko; Matsushima, Ryo; Crofts, Naoko; Oitome, Naoko F; Nakamura, Yasunori; Fujita, Naoko

    2014-10-01

    Starch synthase (SS) IIIa has the second highest activity of the total soluble SS activity in developing rice endosperm. Branching enzyme (BE) IIb is the major BE isozyme, and is strongly expressed in developing rice endosperm. A mutant (ss3a/be2b) was generated from wild-type japonica rice which lacks SSIIa activity. The seed weight of ss3a/be2b was 74-94% of that of the wild type, whereas the be2b seed weight was 59-73% of that of the wild type. There were significantly fewer amylopectin short chains [degree of polymerization (DP) ≤13] in ss3a/be2b compared with the wild type. In contrast, the amount of long chains (DP ≥25) connecting clusters of amylopectin in ss3a/be2b was higher than in the wild type and lower than in be2b. The apparent amylose content of ss3a/be2b was 45%, which was >1.5 times greater than that of either ss3a or be2b. Both SSIIIa and BEIIb deficiencies led to higher activity of ADP-glucose pyrophosphorylase (AGPase) and granule-bound starch synthase I (GBSSI), which partly explains the high amylose content in the ss3a/be2b endosperm. The percentage apparent amylose content of ss3a and ss3a/be2b at 10 days after flowering (DAF) was higher than that of the wild type and be2b. At 20 DAF, amylopectin biosynthesis in be2b and ss3a/be2b was not observed, whereas amylose biosynthesis in these lines was accelerated at 30 DAF. These data suggest that the high amylose content in the ss3a/be2b mutant results from higher amylose biosynthesis at two stages, up to 20 DAF and from 30 DAF to maturity. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch.

    Science.gov (United States)

    Peng, Hui; Zheng, Yunyun; Chen, Maojiao; Wang, Ying; Xiao, Yazhong; Gao, Yi

    2014-04-02

    A novel starch-binding domain (SBD) that represents a new carbohydrate-binding module family (CBM69) was identified in the α-amylase (AmyP) of the recently established alpha-amylase subfamily GH13_37. The SBD and its homologues come mostly from marine bacteria, and phylogenetic analysis indicates that they are closely related to the CBM20 and CBM48 families. The SBD exhibited a binding preference toward raw rice starch, but the truncated mutant (AmyPΔSBD) still retained similar substrate preference. Kinetic analyses revealed that the SBD plays an important role in soluble starch hydrolysis because different catalytic efficiencies have been observed in AmyP and the AmyPΔSBD. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  3. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings.

    Science.gov (United States)

    Rosa, Mariana; Hilal, Mirna; González, Juan A; Prado, Fernando E

    2009-04-01

    The effect of low temperature on growth, sucrose-starch partitioning and related enzymes in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) was studied. The growth of cotyledons and growing axes in seedlings grown at 25/20 degrees C (light/dark) and shifted to 5/5 degrees C was lower than in those only growing at 25/20 degrees C (unstressed). However, there were no significant differences between low-temperature control and salt-treated seedlings. The higher activities of sucrose phosphate synthase (SPS, EC 2.4.1.14) and soluble acid invertase (acid INV, EC 3.2.1.25) were observed in salt-stressed cotyledons; however, the highest acid INV activity was observed in unstressed cotyledons. ADP-glucose pyrophosphorylase (ADP-GPPase, EC 2.7.7.27) was higher in unstressed cotyledons than in stressed ones. However, between 0 and 4days the highest value was observed in salt-stressed cotyledons. The lowest value of ADP-GPPase was observed in salt-acclimated cotyledons. Low temperature also affected sucrose synthase (SuSy, EC 2.4.1.13) activity in salt-treated cotyledons. Sucrose and glucose were higher in salt-stressed cotyledons, but fructose was essentially higher in low-temperature control. Starch was higher in low-temperature control; however, the highest content was observed at 0day in salt-acclimated cotyledons. Results demonstrated that low temperature induces different responses on sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons. Data also suggest that in salt-treated cotyledons source-sink relations (SSR) are changed in order to supply soluble sugars and proline for the osmotic adjustment. Relationships between starch formation and SuSy activity are also discussed.

  5. Irradiation of starches for industrial uses: Chemical and physical effects

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.

    1999-01-01

    Corn and cassava starches have been irradiated with gamma doses from 10 to 180 kGy and pastes have been prepared by boiling the starches in water. The rheological properties of the pastes have been determined showing that the 10 kGy dose reduces sharply the viscosity of the aqueous pastes. The solubility of the irradiated starches has been also studied. The cassava starch irradiated with 180 kGy is soluble in boiling water and remains soluble at room temperature. After some considerations on the chemical effects of the irradiation it is concluded that the irradiation technique is suitable to replace the chemical treatment in many industrial applications of the starch. (author)

  6. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  7. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  8. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Numerical Analysis of the Reaction-diffusion Equation for Soluble Starch and Dextrin as Substrates of Immobilized Amyloglucosidase in a Porous Support by Using Least Square Method

    Directory of Open Access Journals (Sweden)

    Ali Izadi

    2015-10-01

    Full Text Available In this study, substrates concentration profile has been studied in a porous matrix containing immobilized amyloglucosidase for glucose production. This analysis has been performed by using of an analytical method called Least Square Method and results have been compared with numerical solution. Effects of effective diffusivity (, Michael's constant (, maximum reaction rate ( and initial substrate concentration ( are studied on Soluble Starch and Dextrin concentration in the spherical support. Outcomes reveal that Least Square Method has an excellent agreement with numerical solution and in the center of support, substrate concentration is minimum and increasing of effective diffusivity and Michael's constant reduce the Soluble Starch and Dextrin profile gradient.

  10. Enhancement of photoassimilate utilization by manipulation of starch regulatory enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Okita, Thomas W. [Washington State Univ., Pullman, WA (United States)

    2016-05-11

    ADPglucose pyrophosphorylase (AGPase) and the plastidial starch phosphorylase1 (Pho1) are two regulatory enzymes whose catalytic activities are essential for starch granule synthesis. Conversion of the pre-starch granule to the mature form is dependent on AGPase, which produces ADPglucose, the substrate used by starch synthases. The catalytic activity of AGPase is controlled by small effector molecules and a prime goal of this project was to decipher the role of the two subunit types that comprise the heterotetrameric enzyme structure. Extensive genetic and biochemical studies showed that catalysis was contributed mainly by the small subunit although the large subunit was required for maximum activity. Both subunits were needed for allosteric regulatory properties. We had also demonstrated that the AGPase catalyzed reaction limits the amount of starch accumulation in developing rice seeds and that carbon flux into rice seed starch can be increased by expression of a cytoplasmic-localized, up-regulated bacterial AGPase enzyme form. Results of subsequent physiological and metabolite studies showed that the AGPase reaction is no longer limiting in the AGPase transgenic rice lines and that one or more downstream processes prevent further increases in starch biosynthesis. Further studies showed that over-production of ADPglucose dramatically alters the gene program during rice seed development. Although the expression of nearly all of the genes are down-regulated, levels of a starch binding domain containing protein (SBDCP) are elevated. This SBDCP was found to bind to and inhibit the catalytic activity of starch synthase III and, thereby preventing maximum starch synthesis from occurring. Surprisingly, repression of SBDCP elevated expression of starch synthase III resulting in increasing rice grain weight. A second phase of this project examined the structure-function of Pho1, the enzyme required during the initial phase of pre-starch granule formation and its

  11. Prediction of Starch, Soluble Sugars and Amino Acids in Potatoes (Solanum tuberosum L.) Using Hyperspectral Imaging, Dielectric and LF-NMR Methodologies

    DEFF Research Database (Denmark)

    Kjær, Anders; Nielsen, Glenn; Stærke, Søren

    2016-01-01

    Handling and processing of potatoes is performed in increasingly large and more automated facilities, and the industry calls for more automated machinery for quality assessment and sorting by concentration of starch, soluble sugars, protein, amino acids etc. of the potato tubers. The present study...... cultivars were simultaneously sampled for analyses of content and scanned by the five different scanning methods. The resulting multivariate dataset was used to estimate the prediction ability of the individual scanning methods on starch-related parameters, selected simple sugars, selected amino acids......, conductivity of pressed cell sap and cell sizes. Results showed that most types of spectral analyses had relatively high potential for predicting the starch-related parameters and medium potential for predicting the concentration of the reducing sugars fructose and glucose. Most methods showed medium potential...

  12. Compositional profile and variation of Distillers Dried Grains with Solubles from various origins with focus on non-starch polysaccharides

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, S.; Knudsen, Knud Erik Bach

    2014-01-01

    nutrients (e.g. protein, fat, fibre and minerals) after fermentation of starch to ethanol. Corn DDGS differentiated from wheat DDGS by a greater content of fat (P≤0.006), insoluble-NSP (Pcellulose (P=0.032), and arabinose/xylose (P....001). Wheat DDGS differentiated from corn DDGS by a greater content of ash (P=0.001), soluble-NSP (Plignin (P...Corn-, wheat- and mixed cereal Distillers' Dried Grains with Solubles (DDGS) were investigated for compositional variability among DDGS origins, ethanol plants, and the relationship between corn and corresponding DDGS. A total of 138 DDGS samples were analyzed by use of Near Infrared Reflectance...

  13. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    Science.gov (United States)

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  14. In vivo phosphoproteome characterization reveals key starch granule-binding phosphoproteins involved in wheat water-deficit response.

    Science.gov (United States)

    Chen, Guan-Xing; Zhen, Shou-Min; Liu, Yan-Lin; Yan, Xing; Zhang, Ming; Yan, Yue-Ming

    2017-10-23

    Drought stress during grain development causes significant yield loss in cereal production. The phosphorylated modification of starch granule-binding proteins (SGBPs) is an important mechanism regulating wheat starch biosynthesis. In this study, we performed the first proteomics and phosphoproteomics analyses of SGBPs in elite Chinese bread wheat (Triticum aestivum L.) cultivar Jingdong 17 under well-watered and water-stress conditions. Water stress treatment caused significant reductions in spike grain numbers and weight, total starch and amylopectin content, and grain yield. Two-dimensional gel electrophoresis revealed that the quantity of SGBPs was reduced significantly by water-deficit treatment. Phosphoproteome characterization of SGBPs under water-deficit treatment demonstrated a reduced level of phosphorylation of main starch synthesis enzymes, particularly for granule-bound starch synthase (GBSS I), starch synthase II-a (SS II-a), and starch synthase III (SS III). Specifically, the Ser34 site of the GBSSI protein, the Tyr358 site of SS II-a, and the Ser837 site of SS III-a exhibited significant less phosphorylation under water-deficit treatment than well-watered treatment. Furthermore, the expression levels of several key genes related with starch biosynthesis detected by qRT-PCR were decreased significantly at 15 days post-anthesis under water-deficit treatment. Immunolocalization showed a clear movement of GBSS I from the periphery to the interior of starch granules during grain development, under both water-deficit and well-watered conditions. Our results demonstrated that the reduction in gene expression or transcription level, protein expression and phosphorylation levels of starch biosynthesis related enzymes under water-deficit conditions is responsible for the significant decrease in total starch content and grain yield.

  15. Physic-chemical Study of Starch Extracted from Irradiated Corn Flour

    International Nuclear Information System (INIS)

    Pozo Sanchez, R. del; Alvarez Gil, M.

    1986-01-01

    The effects of gamma irradiation on starch extracted from irradiated samples of corn flour were studied in the range 0,6 kGy-1,0 kGy. Amylographic properties, solubility and swelling powder of starch samples were determined immediately after irradiation and at 75 days storage at environment conditions (16 0 C-31 0 C, 55%-97% H.R.). Diffraction patterns of crystalline starch were also obtained by X-rays. Gelatinization temperature, swelling powder and diffraction patterns did not change upon irradiation, but a decrease in viscosity and an increase in starch solubility were observed within the dose-range and storage time studied. (author)

  16. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  17. Potential of sago starch/carrageenan mixture as gelatin alternative for hard capsule material

    Science.gov (United States)

    Poeloengasih, Crescentiana Dewi; Pranoto, Yudi; Anggraheni, Frida Dwi; Marseno, Djagal Wiseso

    2017-03-01

    In order to replace gelatin in capsule shell production, blends of sago starch and carrageenan were developed. Films and capsules were prepared with 10% (w/v) of sago starch, 25% (w/w starch) of glycerol and various carrageenan concentration (1, 2, 3% w/w starch) in two different kappa/iota-carrageenan ratio (1:3 and 3:1). The resulted films and capsules were characterized by mechanical property, water vapor and oxygen permeability. In addition, moisture absorption and solubility of capsule in acid solution were investigated. The results reveal that addition of carrageenan makes the films stronger and less permeable. Higher kappa-carrageenan content improved tensile strength and barrier properties of the films, whereas higher iota-carrageenan content produced films with higher elongation, moisture absorption and capsule solubility in acid solution. Capsule with 2% (w/w starch) of carrageenan at kappa-/iota-ratio 3:1 had the lowest moisture absorption, whereas capsule with 3% (w/w starch) of carrageenan at kappa/iota ratio 1:3 had the highest solubility. It is illustrated that sago starch/carrageenan blends can be used as hard capsule material.

  18. Effect of pH on Physicochemical Properties of Cassava Starch Modification Using Ozone

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.

  19. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  20. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  1. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  2. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  3. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch.

    Science.gov (United States)

    Fouladi, Elham; Mohammadi Nafchi, Abdorreza

    2014-07-01

    In this study, sago starch was hydrolyzed by 0.14M HCl for 6, 12, 18, and 24h, and then modified by propylene oxide at a concentration of 0-30% (v/w). The effects of hydrolysis and etherification on molecular weight distribution, physicochemical, rheological, and thermal properties of dually modified starch were estimated. Acid hydrolysis of starch decreased the molecular weight of starch especially amylopectin, but hydroxypropylation had no effect on the molecular weight distribution. The degree of Molar substitution (DS) of hydroxypropylated starch after acid hydrolysis ranged from 0.007 to 0.15. Dually modified starch with a DS higher than 0.1 was completely soluble in cold water at up to 25% concentration of the starch. This study shows that hydroxypropylation and hydrolysis have synergistic effects unlike individual modifications. Dually modified sago starch can be applied to dip-molding for food and pharmaceutical processing because of its high solubility and low tendency for retrogradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability.

    Science.gov (United States)

    Rompothi, Onjira; Pradipasena, Pasawadee; Tananuwong, Kanitha; Somwangthanaroj, Anongnat; Janjarasskul, Theeranun

    2017-02-10

    This research determined the effects of starch concentration (3.5-5.0%w/w), and plasticizer [glycerol (0-30%w/w) or sorbitol (0-60%w/w)] on properties of mung bean starch (MBS) films. The result showed that increasing plasticizer concentration tended to decrease tensile strength (TS), elastic modulus (EM) and oxygen permeability (OP); but increase elongation (%E), solubility, water vapor permeability (WVP) and seal strength. The extent of those changes also depended on starch concentration. Glycerol provided better plasticizer efficiency than sorbitol. A bimodal melting endotherm of retrograded structure was evident in non-plasticized film. However, only a low temperature endotherm was observed in polyol-plasticized films, indicating a plasticizer-induced structural modification. The developed ductile MBS films, (TS of 7.14±0.95 to 46.30±3.09MPa, %E of 2.46±0.21 to 56.95±4.34% and EM of 16.29±3.40 to 1428.45±148.72MPa) with an OP of 0.2397±0.0365 to 1.1520±0.1782 ccmm/m 2 daykPa and seal strength up to 422.36±7.93N/m, demonstrated in this study indicate the potential for food packaging applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples.

    Science.gov (United States)

    Ferraretto, L F; Taysom, K; Taysom, D M; Shaver, R D; Hoffman, P C

    2014-05-01

    The objectives of the study were (1) to determine relationships between high-moisture corn (HMC) dry matter (DM), ammonia-N [% of crude protein (CP)], and soluble CP concentrations, and pH, with 7-h ruminal in vitro starch digestibility (ivStarchD), and (2) to evaluate the effect of ensiling on pH, ammonia-N, soluble CP, and ivStarchD measurements in HMC. A data set comprising 6,131 HMC samples (55 to 80% DM) obtained from a commercial feed analysis laboratory was used for this study. Month of sample submittal was assumed to be associated with length of the ensiling period. Data for month of sample submittal were analyzed using Proc Mixed in SAS (SAS Institute Inc., Cary, NC) with month as a fixed effect. Regressions to determine linear and quadratic relationships between ivStarchD and ammonia-N, soluble CP, pH, and DM content were performed using Proc Mixed. The ivStarchD increased by 9 percentage units from October to August of the following year. Similar results were observed for ammonia-N and soluble CP with increases from 1.8 to 4.6% of CP and 31.3 to 46.4% of CP, respectively, from October to August of the following year. Ammonia-N was positively related to ivStarchD (R(2)=0.61). The DM content of HMC at silo removal was negatively related (R(2)=0.47) to ivStarchD with a decrease of 1.6 percentage units in ivStarchD per 1-percentage-unit increase in DM content. The pH of HMC was negatively related to ammonia-N (R(2)=0.53), soluble CP (R(2)=0.57), and ivStarchD (R(2)=0.51). Combined, ammonia-N, DM, soluble CP, and pH provided a good prediction of ivStarchD (adjusted R(2)=0.70). Increasing pH, ammonia-N, soluble CP, and ivStarchD values indicate that HMC may need up to 10 mo of ensiling to reach maximum starch digestibility. Ammonia-N, DM content, soluble CP concentration, and pH are good indicators of ruminal in vitro starch digestibility for high-moisture corn. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights

  6. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Directory of Open Access Journals (Sweden)

    David Dauvillée

    2010-12-01

    Full Text Available Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS, the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii.We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species.This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that

  7. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules.

    Science.gov (United States)

    Dauvillée, David; Delhaye, Stéphane; Gruyer, Sébastien; Slomianny, Christian; Moretz, Samuel E; d'Hulst, Christophe; Long, Carole A; Ball, Steven G; Tomavo, Stanislas

    2010-12-15

    Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production

  8. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism.

    Science.gov (United States)

    Guo, Ling; Ding, Yanqiang; Xu, Yaliang; Li, Zhidan; Jin, Yanling; He, Kaize; Fang, Yang; Zhao, Hai

    2017-09-01

    Landoltia punctata has been considered as a potential bioenergy crop due to its high biomass and starch yields in different cultivations. Cobalt and nickel are known to induce starch accumulation in duckweed. We monitored the growth rate, net photosynthesis rate, total chlorophyll content, Rubisco activity, Co 2+ and Ni 2+ contents, activity of antioxidant enzymes, starch content and activity of related enzymes under various concentrations of cobalt and nickel. The results indicate that Co 2+ and Ni 2+ (≤0.5mgL -1 ) can facilitate growth in the beginning. Although the growth rate, net photosynthesis rate, chlorophyll content and Rubisco activity were significantly inhibited at higher concentrations (5mgL -1 ), the starch content increased sharply up to 53.3% dry weight (DW) in L. punctata. These results were attributed to the increase in adenosine diphosphate-glucose pyrophosphorylase (AGPase) and soluble starch synthase (SSS) activities and the decrease in α-amylase activity upon exposure to excess Co 2+ and Ni 2+ . In addition, a substantial increase in the antioxidant enzyme activities and high flavonoid contents in L. punctata may have largely resulted in the metal tolerance. Furthermore, the high Co 2+ and Ni 2+ contents (2012.9±18.8 and 1997.7±29.2mgkg -1 DW) in the tissue indicate that L. punctata is a hyperaccumulator. Thus, L. punctata can be considered as a potential candidate for the simultaneous bioremediation of Co 2+ - and Ni 2+ -polluted water and high-quality biomass production. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional Characterization of Bean Zaragoza Starch (Phaseolus Lunatus L. and Quantification of the Resistant Starch

    Directory of Open Access Journals (Sweden)

    Piedad M. Montero-Castillo

    2013-06-01

    Full Text Available Legumes are a potential source of starch, representing between 30 and 50% of its dry weight, this is an essential energy source for humans. Currently its use is widespread in the food industry as an additive or raw material in food compounds, due to its nutritional, functional properties as a thickening agent and stabilizer of suspensions and dispersions. We evaluated several functional properties of starch variety zaragoza red bean, was obtained initial gelatinization temperature and final (71°C (81°C respectively, the solubility was 8.3% at 90°C, swelling power was 6.6% at 80°C, and water retention capacity was 4.4% at 80°C. The apparent viscosity was evaluated between 20 and 75 °C giving as results viscosities between 1.096 and 0.98 Cp respectively. The results showed that the tested temperatures significantly affect the solubility, swelling power, water holding capacity and viscosity of the starch. The amylose and amylopectin content was 21.1% and 78.19%. Finally, was obtained 9,24% resistant starch and compared with other conventional non starchy sources in order to acquire new knowledge about this material native to the Colombian Caribbean coast.

  10. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  12. Morphological, mechanical, barrier and properties of films based on acetylated starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Biduski, Bárbara; Evangelho, Jarine Amaral do; Bruni, Graziella Pinheiro; Antunes, Mariana Dias; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    Biodegradable films of native or acetylated starches with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. The tensile strength of the acetylated starch film was lower than those of the native starch film, without fibers. The addition of fibers increased the tensile strength and decreased the elongation and the moisture of native and acetylated starches films. The acetylated starch film showed higher water solubility when compared to native starch film. The addition of cellulose fibers reduced the water solubility of the acetylated starch film. The films reinforced with cellulose fiber exhibited a higher initial decomposition temperature and thermal stability. The mechanical, barrier, solubility, and thermal properties are factors which direct the type of the film application in packaging for food products. The films elaborated with acetylated starches of low degree of substitution were not effective in a reduction of the water vapor permeability. The addition of the cellulose fiber in acetylated and native starches films can contribute to the development of more resistant films to be applied in food systems that need to maintain their integrity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Hydroxypropylation of pigeon pea (cajanus cajan) starch: Preparation, functional characterizations and enzymatic digestibility

    International Nuclear Information System (INIS)

    Lawal, O.S.

    2008-05-01

    Hydroxypropyl starch derivatives were prepared from pigeon pea starch (NPPS) which is an unconventional starch source. Functional parameters and characterization of both native and modified starches were carried out. The starch granules appeared oval or elliptical in shape with sizes ranging from 7 - 40 μm in width and 10 . 30 μm in length. Hydroxypropylation did not alter the shape of the starch granules in a pronounced way. Generally, the x-ray diffractograms of both native and hydroxypropyl derivatives showed the 'C' pattern. However, slight reductions were observed in the intensity of starches after modification. At all temperatures studied (30 - 90 deg. C), swelling and solubility of hydroxypropylated starches were higher than the NPPS. Progressive increases in swelling capacity and solubility were observed as the MS increased among the hydroxypropylated starches. Hydroxypropylation reduced starch paste turbidity on storage. Also, studies showed that syneresis reduced after hydroxypropylation. In addition, syneresis reduced as the MS of the hydroxypropyl starches increased. The results indicate that pasting temperature and peak temperature reduced after modification but peak viscosity increased in hydroxypropylated starch derivatives compared with the native starch. Setback reduced in hydroxypropylated starches compared with the native starch. Enthalpy of gelatinization and percentage retrogradation reduced after hydroxypropylation and progressive reductions were observed as the MS increased among the starch derivatives. Hydroxypropylation increased enzymatic digestibility. (author)

  14. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  15. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  16. Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development

    DEFF Research Database (Denmark)

    Cuesta-Seijo, Jose A.; Ruzanski, Christian; Krucewicz, Katarzyna

    2017-01-01

    The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose......,4-glucans using HvPho1 from G1P as the sole substrate. The structural properties of HvPho1 provide insights into the low affinity of HvPho1 for large polysaccharides like starch or amylopectin. Our results suggest that HvPho1 may play a role during the initiation of starch biosynthesis in barley....... and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-phosphate (G1P), a precursor for ADP-glucose production, to produce α-1,4 glucans. The significance of the Pho1 pathway in starch biosynthesis has remained unclear. To elucidate the importance of barley Pho1...

  17. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L.

    2015-01-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  18. Irradiated gelatin-potato starch blends: evaluation of physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Regis, Wellington; Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Macromolecular polysaccharides of large chains as starch can interlace with gelatin modifying their mechanical resistance. In this work, biodegradable bovine gelatin-potato starch blends films were developed using glycerol as plasticizer. Three formulations of gelatin/starch proportions (w/w) were used (1:0; 3:1; 1:1) and casting was the chosen method. The dried samples were then submitted to ionizing radiation coming from an electron beam (EB) accelerator with doses of 20 and 40 kGy, at room temperature, in the presence of air. Mechanical properties such as puncture strength and elongation at break were measured. Color measurements, water absorption, moisture, and film solubility were assessed. The results showed that starch addition to films based on gelatin as well as irradiation affected physical and structural properties of the films. Although the increase of starch content in the mixture led to decrease of the puncture force even in samples irradiated with the higher dose, there was a decrease of water absorption of films with the increase of the dose, and also by the higher starch content. Samples irradiated at 20 kGy presented higher moisture and film solubility. The methodology developed in this paper can be applied to other composite systems to establish the best protein:starch ratio, and the contribution of the radiation crosslinking in each specific case. (author)

  19. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  20. Antisense RNA mediated inhibition of granule - bound starch synthase gene expression in potato

    NARCIS (Netherlands)

    Kuipers, A.

    1994-01-01

    Potato starch and its derivatives are widely used in several fields of application. The manufacturing of most products requires the modification of native starch with respect to, for example, viscosity and physical stability. In addition to the currently used physical, chemical and

  1. Process optimization of ultrasound-assisted alcoholic-alkaline treatment for granular cold water swelling starches.

    Science.gov (United States)

    Zhu, Bo; Liu, Jianli; Gao, Weidong

    2017-09-01

    This paper reports on the process optimization of ultrasonic assisted alcoholic-alkaline treatment to prepare granular cold water swelling (GCWS) starches. In this work, three statistical approaches such as Plackett-Burman, steepest ascent path analysis and Box-Behnken design were successfully combined to investigate the effects of major treatment process variables including starch concentration, ethanol volume fraction, sodium hydroxide dosage, ultrasonic power and treatment time, and drying operation, that is, vacuum degree and drying time on cold-water solubility. Results revealed that ethanol volume fraction, sodium hydroxide dosage, applied power and ultrasonic treatment time were significant factors that affected the cold-water solubility of GCWS starches. The maximum cold-water solubility was obtained when treated at 400W of applied power for 27.38min. Optimum volume fraction of ethanol and sodium hydroxide dosage were 66.85% and 53.76mL, respectively. The theoretical values (93.87%) and the observed values (93.87%) were in reasonably good agreement and the deviation was less than 1%. Verification and repeated trial results indicated that the ultrasound-assisted alcoholic-alkaline treatment could be successfully used for the preparation of granular cold water swelling starches at room temperatures and had excellent improvement on the cold-water solubility of GCWS starches. Copyright © 2016. Published by Elsevier B.V.

  2. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  3. Starch-degrading enzymes from anaerobic non-clostridial bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Weber, H; Schepers, H J; Troesch, W [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany, F.R.)

    1990-08-01

    A number of meso- and thermophilic anaerobic starch-degrading non-spore-forming bacteria have been isolated. All the isolates belonging to different genera are strictly anaerobic, as indicated by a catalase-negative reaction, and produce soluble starch-degrading enzymes. Compared to enzymes of aerobic bacteria, those of anaerobic origin mainly show low molecular mass of about 25 000 daltons. Some of the enzymes may have useful applications in the starch industry because of their unusual product pattern, yielding maltotetraose as the main hydrolysis product. (orig.).

  4. Xylanase and Protease Increase Solubilization of Non-Starch Polysaccharides and Nutrient Release of Corn- and Wheat Distillers Dried Grains with Solubles

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Dalsgaard, Søren; Arent, Susan

    2015-01-01

    The use of distiller dried grains with solubles (DDGS) as alternative to conventional animal feed for non-ruminants is challenged by the high content of non-starch polysaccharides and varying protein quality. In this study the enzymatic degradation of corn- and wheat DDGS was evaluated, in vitro...... of this xylanase. The current in vitro results indicate a high potential of xylanase in combination with protease to efficiently degrade DDGS and promote nutrient release in diets for non-ruminant animals....

  5. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Structure, function and regulation of the enzymes in the starch biosynthetic pathway.

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Jim

    2013-11-30

    Starch is the major reserve polysaccharide in nature and accounts for the majority of the caloric intact of humans. It is also gaining importance as a renewable and biodegradable industrial material. There is burgeoning interest in increasing the amount and altering the properties of the plant starches by plant genetic modification. A rational approach to this effort will require a detailed, atomic-level understanding of the enzymatic processes that produce the starch granule. The starch granule is a complex particle made up of alternating layers of crystalline and amorphous lamellae. It consists of two types of polymer, amylose, a polymer of relatively long chains of α-1,4-linked glucans that contain virtually no branches, and amylopectin, which is highly branched and contains much shorter chains. This complex structure is synthesized by the coordinate activities of the starch synthases (SS), which elongate the polysaccharide chain by addition of glucose units via α-1,4 linkages using ADP- glucose as a donor, and branching enzymes (BE), which branch the polysaccharide chain by cleavage of α₋1,4 linkages and subsequent re-attachment via α₋1,6 linkages. Several isoforms of both starch synthase (SS) and branching enzyme (BE) are found in plants, including SSI, SSII, SSIII and granule- bound SS (GBSS), and SBEI, SBEIIa and SBEIIb. These isoforms have different activities and substrate and product specificities and play different roles in creating the granule and determining the properties of the resulting starch. The overarching goal of this proposal is to begin to understand the regulation and specificities of these enzymes at the atomic level. High-resolution X-ray structures of these enzymes bound to substrates and products will be determined to visualize the molecular interactions responsible for the properties of the enzymes. Hypotheses regarding these issues will then be tested using mutagenesis and enzyme assays. To date, we have determined the

  7. Maltase-glucoamylase modulates gluconeogenesis and sucrase-isomaltase dominates starch digestion glucogenesis

    Science.gov (United States)

    Six enzyme activities are needed to digest starch to absorbable free glucose; 2 luminal alpha-amylases (AMY) and 4 mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) subunit activities are involved in the digestion. The AMY activities break down starch to soluble oligomeric dextrins; mu...

  8. Synthesis and characterization of rice starch laurate as food-grade emulsifier for canola oil-in-water emulsions.

    Science.gov (United States)

    García-Tejeda, Y V; Leal-Castañeda, E J; Espinosa-Solis, V; Barrera-Figueroa, V

    2018-08-15

    The effect of esterification on hydrolyzed rice starch was analyzed, for this aim rice starch was hydrolyzed and subsequently esterified with lauroyl chloride at three modification levels. Starch derivatives were characterized regarding their degree of substitution (DS), water solubility index, z-potential, gelatinization, and digestibility properties. DS of derivatives of rice starch laurate ranged from 0.042 to 1.86. It was determined that after esterification the water solubility index increased from 3.44 to 53.61%, the z-potential decreased from -3.18 to -11.27, and the content of slowly digestible starch (SDS) decreased from 26.22 to 5.13%. Different emulsions with starch concentrations ranging from 6 to 30 wt% were evaluated. The most stable emulsions were those having 20 and 30 wt% of rice starch laurate. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Biochemical Characterization of the Lactobacillus reuteri Glycoside Hydrolase Family 70 GTFB Type of 4,6-α-Glucanotransferase Enzymes That Synthesize Soluble Dietary Starch Fibers.

    Science.gov (United States)

    Bai, Yuxiang; van der Kaaij, Rachel Maria; Leemhuis, Hans; Pijning, Tjaard; van Leeuwen, Sander Sebastiaan; Jin, Zhengyu; Dijkhuizen, Lubbert

    2015-10-01

    4,6-α-Glucanotransferase (4,6-α-GTase) enzymes, such as GTFB and GTFW of Lactobacillus reuteri strains, constitute a new reaction specificity in glycoside hydrolase family 70 (GH70) and are novel enzymes that convert starch or starch hydrolysates into isomalto/maltopolysaccharides (IMMPs). These IMMPs still have linear chains with some α1→4 linkages but mostly (relatively long) linear chains with α1→6 linkages and are soluble dietary starch fibers. 4,6-α-GTase enzymes and their products have significant potential for industrial applications. Here we report that an N-terminal truncation (amino acids 1 to 733) strongly enhances the soluble expression level of fully active GTFB-ΔN (approximately 75-fold compared to full-length wild type GTFB) in Escherichia coli. In addition, quantitative assays based on amylose V as the substrate are described; these assays allow accurate determination of both hydrolysis (minor) activity (glucose release, reducing power) and total activity (iodine staining) and calculation of the transferase (major) activity of these 4,6-α-GTase enzymes. The data show that GTFB-ΔN is clearly less hydrolytic than GTFW, which is also supported by nuclear magnetic resonance (NMR) analysis of their final products. From these assays, the biochemical properties of GTFB-ΔN were characterized in detail, including determination of kinetic parameters and acceptor substrate specificity. The GTFB enzyme displayed high conversion yields at relatively high substrate concentrations, a promising feature for industrial application. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  11. Effect of low-doses gamma radiation on physico-chemical properties of cereal starches

    International Nuclear Information System (INIS)

    Gambus, H.; Juszczak, L.; Achremowicz, B.

    1995-01-01

    Wheat starch of Emika variety was treated with 3 and 5 kGy doses of gamma radiation, rye starch of Dankowskie Zlote variety and triticale starch of Dagro variety - with 3 kGy doses. Radiation of this starch caused an increase of reduction ability and water solubility at 60 and 80 o C. However with the increased radiation doses a significant decrease of maximum viscosity and of the viscosity of starch pastes being cooled to 50% was observed. Mild radiopolimerization also decreased the degree of retrogradation of wheat and rye starch pastes stored at above 0 o C. (author)

  12. Physiochemical properties and kinetics of glucoamylase produced from deoxy-d-glucose resistant mutant of Aspergillus niger for soluble starch hydrolysis.

    Science.gov (United States)

    Riaz, Muhammad; Rashid, Muhammad Hamid; Sawyer, Lindsay; Akhtar, Saeed; Javed, Muhammad Rizwan; Nadeem, Habibullah; Wear, Martin

    2012-01-01

    Glucoamylases (GAs) from a wild and a deoxy-d-glucose-resistant mutant of a locally isolated Aspergillus niger were purified to apparent homogeneity. The subunit molecular mass estimated by SDS-PAGE was 93 kDa for both strains, while the molecular masses determined by MALDI-TOF for wild and mutant GAs were 72.876 and 72.063 kDa, respectively. The monomeric nature of the enzymes was confirmed through activity staining. Significant improvement was observed in the kinetic properties of the mutant GA relative to the wild type enzyme. Kinetic constants of starch hydrolysis for A. niger parent and mutant GAs calculated on the basis of molecular masses determined through MALDI-TOF were as follows: k cat = 343 and 727 s -1 , K m = 0.25 and 0.16 mg mL -1 , k cat / K m (specificity constant) = 1374 and 4510 mg mL -1 s -1 , respectively. Thermodynamic parameters for soluble starch hydrolysis also suggested that mutant GA was more efficient compared to the parent enzyme.

  13. Utilisation of sago starch for wound dressing

    International Nuclear Information System (INIS)

    Kamaruddin Hashim; Khairul Zaman Mohd Dahlan; Kamarudin Bahari

    2000-01-01

    Sago starch is utilized in Malaysia mainly for the purpose of food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel wound dressing. The sago starch is blending with water-soluble polymer such as polyvinyl pyrrolidone, polyvinyl alcohol and polyethylene oxide and irradiated with electron beam accelerator to form hydrogel. The parameters such gel strength, elasticity, swelling, gel fraction and tackiness have to be consider for this type of application. We also study the effect of adding additive such as carboxymethyl cellulose and polypropylene glycol into the system to enhance the property of sago starch hydrogel. Works on the use of chitosan in the blend have been performed, in order to prevent microbiological growth such as bacteria and fungi on the hydrogel. (author)

  14. Preparation and characterization of starch-based loose-fill packaging foams

    Science.gov (United States)

    Fang, Qi

    Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant

  15. Determination of the starch-phosphorylating enzyme activity in plant extracts

    DEFF Research Database (Denmark)

    Ritte, G.; Steup, M.; Kossmann, J.

    2003-01-01

    For quantification of alpha-glucan, water dikinase(GWD) activity in crude extracts of plant tissues a radio-labeling assay was established that uses soluble starch and P-33-labeled ATP as phosphate acceptor and donor, respectively. A constant rate of starch labeling was observed only if the ATP...... incorporation of phosphate whereas extracts from potato (Solanum tuberosum L.) tuber expressing a GWD antisense construct exhibited less activity than the wild-type control. To our knowledge this is the first time that a quantification of the starch-phosphorylating activity has been achieved in plant crude...

  16. Recreating the synthesis of starch granules in yeast

    Science.gov (United States)

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  17. Effects of single and dual physical modifications on pinhão starch.

    Science.gov (United States)

    Pinto, Vânia Zanella; Vanier, Nathan Levien; Deon, Vinicius Gonçalves; Moomand, Khalid; El Halal, Shanise Lisie Mello; Zavareze, Elessandra da Rosa; Lim, Loong-Tak; Dias, Alvaro Renato Guerra

    2015-11-15

    Pinhão starch was modified by annealing (ANN), heat-moisture (HMT) or sonication (SNT) treatments. The starch was also modified by a combination of these treatments (ANN-HMT, ANN-SNT, HMT-ANN, HMT-SNT, SNT-ANN, SNT-HMT). Whole starch and debranched starch fractions were analyzed by gel-permeation chromatography. Moreover, crystallinity, morphology, swelling power, solubility, pasting and gelatinization characteristics were evaluated. Native and single ANN and SNT-treated starches exhibited a CA-type crystalline structure while other modified starches showed an A-type structure. The relative crystallinity increased in ANN-treated starches and decreased in single HMT- and SNT-treated starches. The ANN, HMT and SNT did not provide visible cracks, notches or grooves to pinhão starch granule. SNT applied as second treatment was able to increase the peak viscosity of single ANN- and HMT-treated starches. HMT used alone or in dual modifications promoted the strongest effect on gelatinization temperatures and enthalpy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Physical and functional properties of arrowroot starch extrudates.

    Science.gov (United States)

    Jyothi, A N; Sheriff, J T; Sajeev, M S

    2009-03-01

    Arrowroot starch, a commercially underexploited tuber starch but having potential digestive and medicinal properties, has been subjected to extrusion cooking using a single screw food extruder. Different levels of feed moisture (12%, 14%, and 16%) and extrusion temperatures (140, 150, 160, 170, 180, and 190 degrees C) were used for extrusion. The physical properties--bulk density, true density, porosity, and expansion ratio; functional properties such as water absorption index, water solubility index, oil absorption index, pasting, rheological, and textural properties; and in vitro enzyme digestibility of the extrudates were determined. The expansion ratio of the extrudates ranged from 3.22 to 6.09. The water absorption index (6.52 to 8.85 g gel/g dry sample), water solubility index (15.92% to 41.31%), and oil absorption index (0.50 to 1.70 g/g) were higher for the extrudates in comparison to native starch (1.81 g gel/g dry sample, 1.16% and 0.60 g/g, respectively). The rheological properties, storage modulus, and loss modulus of the gelatinized powdered extrudates were significantly lower (P extruded at higher feed moisture and lower extrusion temperature, whereas snap force and energy were higher at lower feed moisture and temperature. There was a significant decrease in the percentage digestibility of arrowroot starch (30.07% after 30 min of incubation with the enzyme) after extrusion (25.27% to 30.56%). Extrusion cooking of arrowroot starch resulted in products with very good expansion, color, and lower digestibility, which can be exploited for its potential use as a snack food.

  19. Starch and fibre intake and glucose postprandial response of dogs

    Directory of Open Access Journals (Sweden)

    Mariana Monti

    2016-02-01

    Full Text Available ABSTRACT: Fibre has been studied to reduce the postprandial glucose response of dogs, but the results are inconsistent. Starch intake, however, was not properly considered in the published studies. The effects of starch and fibre intake on the postprandial glucose response were studied in non-obese adult dogs. Cellulose (CEL, carboxymethylcellulose (CMC, pea fibre (PE and sugarcane fibre (SCF were combined to form six diets with starch contents ranging from 33% to 42%: SCF+CEL and PE+CEL diets, both with high insoluble fibre (IF=22% and low soluble fibre (SF=2.5% content; SCF+CMC and PE+CMC diets with high SF (SF=4.5%; IF=19% content; and CMC and CEL diets with low dietary fibre (14% content. The diets were fed in two amounts, providing an intake of 9.5g or 12.5g of starch (kg0.75-1 day-1, totaling 12 treatments. Each diet was fed to six dogs conditioned to consume all of the daily food in 10min. Their plasma glucose levels were measured before and during 480min after food intake. Results of fibre and starch intake and their interactions were compared by repeated measures ANOVA and the Tukey test (P0.05. High-dose starch intake, however, induced a higher glycaemia at 180 and 240min after the meal and a greater maximal glycaemia and greater area under the glucose curve (P<0.05. A range in insoluble and soluble fibre intake does not change postprandial glucose response, and the amount of starch intake is a main factor for the postprandial glucose response of healthy non-obese dogs.

  20. Monitoring of soluble starch hydrolysis induced by α-amylase from Aspergillus oryzae using ultrasonic spectroscopy

    Science.gov (United States)

    Sierra, Carlos; Resa, Pablo; Buckin, Vitaly; Elvira, Luis

    2012-05-01

    The online monitoring of enzymatic starch hydrolysis is an important issue for several industrial sectors, mainly in the alimentary industry. Ultrasonic non-invasive methods based on the detection of wave velocity and amplitude changes can be used to study this enzymatic reaction. These wave propagating changes are result of physicalchemical modifications produced in the media by the starch hydrolysis. In this work the starch hydrolysis induced by the enzyme α-amylase from Aspergillus oryzae is studied. This biochemical reaction has been monitored using a high-resolution ultrasonic spectroscopy (HR-US) which is non-invasive and nondestructive. The measured time profiles o of ultrasonic velocity are explained in terms of the starch hydrolysis and the subsequent production of oligosaccharides as a consequence of the enzymatic action. The obtained results have been compared to a conventional off-line technique used in biochemistry, the iodine-starch reaction, a spectrophotometric method to quantify the amount of starch remaining in the medium. The combination of these two types of measurement provides more complete information about the biochemical processes occurred during hydrolysis.

  1. Preparation and Characterization of Starch Nanoparticles for Controlled Release of Curcumin

    Directory of Open Access Journals (Sweden)

    Suk Fun Chin

    2014-01-01

    Full Text Available Curcumin was loaded onto starch nanoparticles by using in situ nanoprecipitation method and water-in-oil microemulsion system. Curcumin loaded starch nanoparticles exhibited enhanced solubility in aqueous solution as compared to free curcumin. Effects of formulation parameters such as types of reaction medium, types of surfactant, surfactant concentrations, oil/ethanol ratios, loading time, and initial curcumin concentration were found to affect the particle size and loading efficiency (LF of the curcumin loaded starch nanoparticles. Under optimum conditions, curcumin loaded starch nanoparticles with mean particles size of 87 nm and maximum loading efficiency of 78% were achieved. Curcumin was observed to release out from starch nanoparticles in a sustained way under physiological pH over a period of 10 days.

  2. Modification of foxtail millet starch by combining physical, chemical and enzymatic methods.

    Science.gov (United States)

    Dey, Ashim; Sit, Nandan

    2017-02-01

    Modification of foxtail millet starch was carried out by heat moisture treatment (HT), acid hydrolysis (AH), enzymatic treatment (EH), Ultrasound treatment (UT) and their combinations. A total of 15 modified starches were prepared by combining the various methods and properties were compared with native starch. The solubilities of the starches modified by HT were found to decrease whereas for other single modifications it increased. It also increased with number of modifications applied. The swelling power decreased for all the modified starches and a decrease in swelling power was observed with increase in number of modifications. Freeze-thaw stability improved for starches modified by single physical modifications i.e. HT and UT. Decrease in viscosities was observed for the modified starches and was particularly affected by AH. The pasting temperature was found to increase for those modified starches where HT was carried out. The modified starches gave softer gels. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  4. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species.

    Science.gov (United States)

    Zhao, Ming; Zhang, Hongxiang; Yan, Hong; Qiu, Lu; Baskin, Carol C

    2018-01-01

    Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species ( Chloris virgata , Kochia scoparia , Lespedeza hedysaroides , Astragalus adsurgens , Leonurus artemisia , and Dracocephalum moldavica ) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  5. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2018-02-01

    Full Text Available Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed, but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  6. Extrudates of starch-xanthan gum mixtures as affected by chemical agents and irradiation

    International Nuclear Information System (INIS)

    Hanna, M.A.; Chinnaswamy, R.; Gray, D.R.; Miladinov, V.D.

    1997-01-01

    Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and extrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starch-xanthan gum mixtures

  7. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  8. Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch.

    Science.gov (United States)

    Mei, Ji-Qiang; Zhou, Da-Nian; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2015-11-15

    In this study, citric acid was used to react with cassava starch in order to compare the digestibility, structural and physicochemical properties of citrate starch samples. The results indicated that citric acid esterification treatment significantly increased the content of resistant starch (RS) in starch samples. The swelling power and solubility of citrate starch samples were lower than those of native starch. Compared with native starch, a new peak at 1724 cm(-1) was appeared in all citrate starch samples, and crystalline peaks of all starch citrates became much smaller or even disappeared. Differential scanning calorimetry results indicated that the endothermic peak of citrate starches gradually shrank or even disappeared. Moreover, the citrate starch gels exhibited better freeze-thaw stability. These results suggested that citric acid esterification induced structural changes in cassava starch significantly affected its digestibility and it could be a potential method for the preparation of RS with thermal stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sucrose Synthase Is Associated with the Cell Wall of Tobacco Pollen Tubes

    NARCIS (Netherlands)

    Persia, D.; Cai, G.; Casino, C.; Willemse, M.T.M.; Cresti, M.

    2008-01-01

    Sucrose synthase (Sus; EC 2.4.1.13) is a key enzyme of sucrose metabolism in plant cells, providing carbon for respiration and for the synthesis of cell wall polymers and starch. Since Sus is important for plant cell growth, insights into its structure, localization, and features are useful for

  10. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  11. Effects of amino acids on the physiochemical properties of potato starch.

    Science.gov (United States)

    Cui, Min; Fang, Ling; Zhou, Hongxian; Yang, Hong

    2014-05-15

    The objective of this study was to evaluate effects of different amino acid additives (phenylalanine (Phe), methionine (Met), lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the physicochemical properties of potato starch gels. Charge-carrying amino acids (Lys, Arg, Asp and Glu) significantly decreased the swelling power, solubility, light transmittance, L(∗) value and gel strength of potato starch, but increased syneresis during freeze-thaw treatment, while neutral amino acids (Phe and Met) did not cause modifications in starch gels. During heating, potato starch with fortified charge-carrying amino acids showed a lower peak G' (storage modulus), when compared with Phe and Met. Results showed that charge-carrying amino acids could modify physicochemical properties and improve the nutritional values of starch-based products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Combination process method of lactic acid hydrolysis and hydrogen peroxide oxidation for cassava starch modification

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Budiyono, Hartanto, Hansen; Sophiana, Intan Clarissa

    2017-05-01

    Indonesia is one of the world's largest wheat importer, some research are conducted to find other carbohydrate sources which can replace wheat. Cassava is very easy to find and grown in tropical climates especially Indonesia. The research is focused on cassava starch modification as a substitute for wheat flour in order to reduce consumption of wheat flour. The aim of this research is to assess the effect of temperature, pH, and the concentration of H2O2 in modifying cassava starch which. The combination methods are lactic acid hydroxylation and hydrogen peroxide oxidation to improve baking expansion. The carboxyl group, carbonyl group, swelling power, starch solubility, and baking expansion of starch are analized and calculated. Results showed that the modified cassava starch can substitute wheat flour with optimum conditions process at a concentration of H2O2 is 1.5% w/w, oxidation temperature is 50°C, and pH is 3 by the value of swelling power is 6.82%, solubility is 0.02%, and baking expansion is 7.2 cm3/gram.

  14. A Comparative Study of Some Properties of Cassava and Tree Cassava Starch Films

    Science.gov (United States)

    Belibi, P. C.; Daou, T. J.; Ndjaka, J. M. B.; Nsom, B.; Michelin, L.; Durand, B.

    Cassava and tree cassava starch films plasticized with glycerol were produced by casting method. Different glycerol contents (30, 35, 40 and 45 wt. % on starch dry basis) were used and the resulting films were fully characterized. Their water barrier and mechanical properties were compared. While increasing glycerol concentration, moisture content, water solubility, water vapour permeability, tensile strength, percent elongation at break and Young's modulus decreased for both cassava and tree cassava films. Tree cassava films presented better values of water vapour permeability, water solubility and percent elongation at break compared to those of cassava films, regardless of the glycerol content.

  15. UTILIZATION OF CORN STARCH AS SUBSTRATE FOR Я

    African Journals Online (AJOL)

    IITA

    substrate, 10.1 X102 CFU/ml soluble starch and nutrient broth medium ... enzymatic activity with corresponding maltose yield of 46.4mg/ml and 68.0mg/ml .... stand for 15min at room temperature, the ... order to inactivated the beta amylase.

  16. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch.

    Science.gov (United States)

    Madruga, Marta Suely; de Albuquerque, Fabíola Samara Medeiros; Silva, Izis Rafaela Alves; do Amaral, Deborah Silva; Magnani, Marciane; Queiroga Neto, Vicente

    2014-01-15

    Starches used in food industry are extracted from roots, tubers and cereals. Seeds of jackfruit are abundant and contain high amounts of starch. They are discarded during the fruit processing or consumption and can be an alternative source of starch. The starch was extract from the jackfruit seeds and characterised to chemical, morphological and functional properties. Soft and hard jackfruit seeds showed starch content of 92.8% and 94.5%, respectively. Starch granules showed round and bell shape and some irregular cuts on their surface with type-A crystallinity pattern, similar to cereals starches. The swelling power and solubility of jackfruit starch increased with increasing temperature, showing opaque pastes. The soft seeds starch showed initial and final gelatinisation temperature of 36°C and 56°C, respectively; while hard seeds starch presented initial gelatinisation at 40°C and final at 61°C. These results suggest that the Brazilian jackfruit seeds starches could be used in food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.

    Science.gov (United States)

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-11-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. The effect of acid hydrolysis on the technological functional properties of pinhão (Araucaria brasiliensis starch

    Directory of Open Access Journals (Sweden)

    Roberta Cruz Silveira Thys

    2013-02-01

    Full Text Available Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days, paste freezing and thawing stability (after six freezing and thawing cycles, swelling power, and solubility. The results of light transmittance (% of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation than that obtained for corn starches after similar storage period. Native pinhão starch (NPS presented lower syneresis than native corn starch (NCS when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS, this property was significantly higher (p < 0.05 when compared to that of acid-thinned corn starch (ACS. From the results obtained, it can be said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further investigated.

  1. Structure, morphology and functionality of acetylated and oxidised barley starches.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Pinto, Vânia Zanella; Bartz, Josiane; Radunz, Marjana; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-02-01

    Acetylation and oxidation are chemical modifications which alter the properties of starch. The degree of modification of acetylated and oxidized starches is dependent on the catalyst and active chlorine concentrations, respectively. The objective of this study was to evaluate the effect of acetylation and oxidation on the structural, morphological, physical-chemical, thermal and pasting properties of barley starch. Barley starches were acetylated at different catalyst levels (11%, 17%, and 23% of NaOH solution) and oxidized at different sodium hypochlorite concentrations (1.0%, 1.5%, and 2.0% of active chlorine). Fourier-transformed infrared spectroscopy (FTIR), X-ray diffractograms, thermal, morphological, and pasting properties, swelling power and solubility of starches were evaluated. The degree of substitution (DS) of the acetylated starches increased with the rise in catalyst concentration. The percentage of carbonyl (CO) and carboxyl (COOH) groups in oxidized starches also increased with the rise of active chlorine level. The presence of hydrophobic acetyl groups, carbonyl and carboxyl groups caused a partial disorganization and depolymerization of starch granules. The structural, morphological and functional changes in acetylated and oxidized starches varied according to reaction conditions. Acetylation makes barley starch more hydrophobic by the insertion of acetyl groups. Also the oxidation promotes low retrogradation and viscosity. All these characteristics are important for biodegradable film production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.

    Science.gov (United States)

    Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P

    2007-05-01

    Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.

  3. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry.

    Science.gov (United States)

    Jochym, Kamila Kapusniak; Nebesny, Ewa

    2017-09-15

    The objective of this study was to produce soluble enzyme-resistant dextrins by microwave heating of potato starch acidified with small amounts of hydrochloric and citric acids and to characterize their properties. Twenty five samples were initially made and their solubility was determined. Three samples with the highest water solubility were selected for physico-chemical (dextrose equivalent, molecular weight distribution, pasting characteristics, retrogradation tendency), total dietary fiber (TDF) analysis, and stability tests. TDF content averaged 25%. Enzyme-resistant dextrins practically did not paste, even at 20% samples concentration, and were characterized by low retrogradation tendency. The stability of the samples, expressed as a percentage increase of initial and final reducing sugar content, at low pH and during heating at low pH averaged 10% and 15% of the initial value, respectively. The results indicate that microwave heating could be an effective and efficient method of producing highly-soluble, low-viscous, and enzyme-resistant potato starch dextrins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Preparation and Evaluation of Alcohol-Alkaline-Treated Rice Starch ...

    African Journals Online (AJOL)

    lower in the presence of large particles (3.55 ± 0.56 min); high content of MRS ... Conclusion: MRS exhibits improved water solubility and swelling capacity compared with RS, and is ..... excipient: Modification of the permeability of starch by.

  5. Physico-chemical, morphological and pasting properties of starches extracted from water Chestnuts (Trapa natans from three Lakes of Kashmir, India

    Directory of Open Access Journals (Sweden)

    Adil Gani

    2010-06-01

    Full Text Available Studies on physicochemical, morphology and pasting properties of starches extracted from water chestnuts of three Lakes of Kashmir valley (Wular, Anchar and Dal Lakes were conducted to determine their application in different food products. The water chestnut starch from Dal Lake had more oval shaped granules than water chestnut starches from the Wular and the Anchar Lakes.The unique feature of the water chestnut starches were shape of starch granules which looked like horn(s protruding from the surface which did not appear in other starches already studied. Proximate analysis of water chestnut starches showed that average protein content were 0.4%, amylose 29.5 % and ash 0.007 on dry weight basis. Increase in water binding capacity, swelling power and solubility was found over a temperature range of 50-90ºC. Water chestnut starches showed an increase in syneresis during freeze thaw cycles and decline in paste clarity upon storage. Starch extracted from the water chestnuts of the Dal Lake showed higher water binding capacity, swelling, solubility, past clarity, freeze thaw stability, peak viscosity, final viscosity and lower protein content, amylose content, pasting temperature and gel firmness than starches extracted from water chestnuts of the Wular and the Anchar Lakes.

  6. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery.

    Science.gov (United States)

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spectroscopy. The functional groups of the starch and gelatin blend matrices were determined from the FTIR spectra. Blend microparticles with a nearly spherical shape and internal porous structure were observed from SEM images. The average particle size of the gelatin microparticles depended on the crosslinker ratio but not on the starch/gelatin blend ratio. The in vitro drug release content significantly decreased as the crosslinker ratio increased and the starch blend ratio decreased. The results demonstrated that the starch/gelatin blend microparticles should be a useful controlled release delivery carrier for water-soluble drugs.

  7. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  8. Effect of incorporating finger millet in wheat flour on mixolab behavior, chapatti quality and starch digestibility.

    Science.gov (United States)

    Sharma, Bharati; Gujral, Hardeep Singh; Solah, Vicky

    2017-09-15

    Wheat and finger millet flour (two cultivars) were blended in the ratio (3:1) to form a composite flour and its dough properties were studied on the mixolab. The chapatti making and digestibility behavior of the composite flour was also investigated. The wheat finger millet (WFM) flour blend displayed up to 30.7% higher total phenolic content (TPC), 38.2% higher total flavonoid content (TFC) and 75.4% higher antioxidant activity (AOA) than the wheat flour. Chapattis prepared from the composite blends exhibited lower retrogradation as evident by the mixolab retrogradation index, higher values of soluble starch and soluble amylose in stored chapatti. The slowly digestible starch (SDS) correlated positively (R=0.816, p<0.05) with TPC and water absorption correlated positively (R=0.995, p<0.05) with damage starch content. The chapattis made from the composite flour had higher SDS and resistant starch (RS) values demonstrating potential as a food with functional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Changes in properties of starch isolated from whole rice grains with brown, black, and red pericarp after storage at different temperatures.

    Science.gov (United States)

    Ziegler, Valmor; Ferreira, Cristiano Dietrich; Goebel, Jorge Tiago Schwanz; El Halal, Shanise Lisie Mello; Santetti, Gabriela Soster; Gutkoski, Luiz Carlos; Zavareze, Elessandra da Rosa; Elias, Moacir Cardoso

    2017-02-01

    The aim of this study was to evaluate the physicochemical, morphological, crystallinity, thermal, and pasting properties of starches isolated from rice grains with brown, black, and red pericarp. Starch was isolated from the rice grains at initial storage time, and after 6months of storage at different storage temperatures (16, 24, 32 and 40°C). Starch isolated from the grains stored for 6months at 40°C showed darker coloration, surface deformation of granules, and a significant reduction in the extraction yield, final viscosity, enthalpy, and crystallinity, independent of the grain pericarp coloration. The time and storage temperature not influence the swelling power and solubility of starch isolated from grains with brown pericarp, while for the grains with black and red pericarp there was reduction in swelling power and solubility of starches isolated of grains stored at 40°C. Grains stored at 16°C showed minimum changes in starch properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A structured approach to target starch solubilisation and hydrolysis for the sugarcane industry.

    Science.gov (United States)

    Cole, Marsha R; Rose, Ingrid; Chung, Yoo Jin; Eggleston, Gillian

    2015-01-01

    In sugarcane processing, starch is considered an impurity that negatively affects processing and reduces the quality of the sugar end-product. In the last decade, there has been a general world-wide increase in starch concentrations in sugarcane. Industrial α-amylases have been used for many years to mitigate issues arising from starch in the sugarcane industry. Mixed results have prompted further studies of the behaviour of different physical forms of starch and their interactions with α-amylases during processing. By using corn starch as a reference in model juices and syrups, processing parameters, activities, and hydrolysis of insoluble, swollen, and soluble starch forms were evaluated for two commercial α-amylases with high (HT) and intermediate (IT) temperature stability, respectively. The ability of starch to solubilise across a sugarcane factory is largely limited by increased Brix values. Optimum target locations and conditions for the application of α-amylases in sugarcane processing are discussed in detail. Published by Elsevier Ltd.

  11. Effect of pH on paste properties of irradiated corn starch by gamma-rays

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Kobayashi, Nobuo; Okuaki, Akira.

    1979-01-01

    The degradation of starch by γ-irradiation and the effect of pH on gelatinization of starch after irradiation were investigated. Paste viscosities were markedly affected by pH on gelatinization and a decrease in the viscosity of irradiated starch was stimulated by increasing pH. On the other hand, the solubility of irradiated starch increased significantly at the high pH. The granule structure of irradiated starch easily disintegrated at alkaline pH. Remarkable dissolution from the surface of the irradiated starch granules was observed after heating at high pH only a filamentous network frame remained, but the unirradiated one collapsed and folded. It was seen that alkali treatment after irradiation reduces the required dose to obtain low viscosity starch. The required dose to produce a low viscosity starch, for example Ajinomoto Essan Sizer 600 grade, was ca. 3 Mrad at pH 11.0 and ca. 5 Mrad at pH 7.0, whereas it was ca. 7 Mrad without pH adjustment. (author)

  12. Glycogen synthase from the parabasalian parasite Trichomonas vaginalis: An unusual member of the starch/glycogen synthase family.

    Science.gov (United States)

    Wilson, Wayne A; Pradhan, Prajakta; Madhan, Nayasha; Gist, Galen C; Brittingham, Andrew

    2017-07-01

    Trichomonas vaginalis, a parasitic protist, is the causative agent of the common sexually-transmitted infection trichomoniasis. The organism has long been known to synthesize substantial glycogen as a storage polysaccharide, presumably mobilizing this compound during periods of carbohydrate limitation, such as might be encountered during transmission between hosts. However, little is known regarding the enzymes of glycogen metabolism in T. vaginalis. We had previously described the identification and characterization of two forms of glycogen phosphorylase in the organism. Here, we measure UDP-glucose-dependent glycogen synthase activity in cell-free extracts of T. vaginalis. We then demonstrate that the TVAG_258220 open reading frame encodes a glycosyltransferase that is presumably responsible for this synthetic activity. We show that expression of TVAG_258220 in a yeast strain lacking endogenous glycogen synthase activity is sufficient to restore glycogen accumulation. Furthermore, when TVAG_258220 is expressed in bacteria, the resulting recombinant protein has glycogen synthase activity in vitro, transferring glucose from either UDP-glucose or ADP-glucose to glycogen and using both substrates with similar affinity. This protein is also able to transfer glucose from UDP-glucose or ADP-glucose to maltose and longer oligomers of glucose but not to glucose itself. However, with these substrates, there is no evidence of processivity and sugar transfer is limited to between one and three glucose residues. Taken together with our earlier work on glycogen phosphorylase, we are now well positioned to define both how T. vaginalis synthesizes and utilizes glycogen, and how these processes are regulated. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  13. Starch as a major integrator in the regulation of plant growth

    Science.gov (United States)

    Sulpice, Ronan; Pyl, Eva-Theresa; Ishihara, Hirofumi; Trenkamp, Sandra; Steinfath, Matthias; Witucka-Wall, Hanna; Gibon, Yves; Usadel, Björn; Poree, Fabien; Piques, Maria Conceição; Von Korff, Maria; Steinhauser, Marie Caroline; Keurentjes, Joost J. B.; Guenther, Manuela; Hoehne, Melanie; Selbig, Joachim; Fernie, Alisdair R.; Altmann, Thomas; Stitt, Mark

    2009-01-01

    Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production. PMID:19506259

  14. Comparison of Morphology and Physicochemical Properties of Starch Among 3 Arrowhead Varieties.

    Science.gov (United States)

    Li, Aimin; Zhang, Yunhong; Zhang, Yongji; Yu, Xurun; Xiong, Fei; Zhou, Rumei; Zhang, Yongtai

    2016-05-01

    Arrowhead (Sagittaria trifolia var. sinensis) is a source of starch worldwide, but arrowhead starch has been rarely studied. In this work, starch was separated from arrowhead corm. The morphology and physicochemical properties of starch were then investigated and compared among 3 different arrowhead varieties (Purple-corm, Hongta, and Japanese). Results showed that starches from the 3 varieties similarly featured an oval shape containing a visible polarization cross, a CA -type crystalline structure, and an ordered structure in the external granule region. However, starch content, granule size, crystal characteristics, and pasting properties differed among the 3 varieties. Japanese arrowhead exhibited the highest starch content and degree of ordered structure in the external granule region, as well as onset, peak, and final gelatinization temperature. Purple-corm arrowhead starch demonstrated the highest amylose content and relative degree of crystallinity, smallest granule size, and lowest swelling power and solubility. Purple-corm arrowhead starch also showed the highest gelatinization enthalpy, as well as peak, trough, final, and setback viscosities. This starch further presented the lowest breakdown viscosity and degree of hydrolysis by HCl and porcine pancreatic α-amylase. These findings can provide useful references for arrowhead variety selection in food and nonfood industries. © 2016 Institute of Food Technologists®

  15. Modification of cassava starch using combination process lactic acid hydrolysis and micro wave heating to increase coated peanut expansion quality

    Science.gov (United States)

    Sumardiono, Siswo; Pudjihastuti, Isti; Jos, Bakti; Taufani, Muhammad; Yahya, Faad

    2017-05-01

    Modified cassava starch is very prospective products in the food industry. The main consideration of this study is the increasing volume of imported wheat and the demand for modified cassava starch industry. The purpose of this study is the assessing of lactic acid hydrolysis and microwave heating impact to the physicochemical and rheological properties of modified cassava starch, and test applications of modified cassava starch to coated peanut expansion quality. Experimental variables include the concentration of lactic acid (0.5% w/w, 1% w/w; 2% w/w), a time of hydrolysis (15, 30, 45 minutes), a time of microwave heating (1, 2, 3 hours). The research step is by dissolving lactic acid using aquadest in the stirred tank reactor, then added cassava starch. Hydrolysed cassava starch was then heated by microwave. Physicochemical properties and rheology of the modified cassava starch is determined by the solubility, swelling power, and test congestion. The optimum obtained results indicate that solubility, swelling power, congestion test, respectively for 19.75%; 24.25% and 826.10% in the hydrolysis treatment for 15 minutes, 1% w lactic acid and microwave heating 3 hours. The physicochemical and rheological properties of modified cassava starch have changed significantly when compared to the native cassava starch. Furthermore, these modified cassava starch are expected to be used for the substitution of food products.

  16. Calcium modified edible Canna (Canna edulis L) starch for controlled released matrix

    Science.gov (United States)

    Putri, A. P.; Ridwan, M.; Darmawan, T. A.; Darusman, F.; Gadri, A.

    2017-07-01

    Canna edulis L starch was modified with calcium chloride in order to form controlled released matrix. Present study aim to analyze modified starch characteristic. Four different formulation of ondansetron granules was used to provide dissolution profile of controlled released, two formula consisted of 15% and 30% modified starch, one formula utilized matrix reference standards and the last granules was negative control. Methocel-hydroxypropyl methyl cellulose was used as controlled released matrix reference standards in the third formula. Calcium starch was synthesized in the presence of sodium hydroxide to form gelatinized mass and calcium chloride as the cross linking agent. Physicochemical and dissolution properties of modified starch for controlled released application were investigated. Modified starch has higher swelling index, water solubility and compressibility index. Three of four different formulation of granules provide dissolution profile of controlled released. The profiles indicate granules which employed calcium Canna edulis L starch as matrix are able to resemble controlled drug released profile of matrix reference, however their bigger detain ability lead to lower bioavailability.

  17. Effects of pH and Salts on Physical and Mechanical Properties of Pea Starch Films.

    Science.gov (United States)

    Choi, W S; Patel, D; Han, J H

    2016-07-01

    To identify the significant contribution of intermolecular hydrogen bonds of starch molecules to the film structure formation, pH of film-forming solutions was adjusted and also various salts (NaCl, CaCl2 , CaSO4 , and K2 SO4 ) were mixed into the glycerol-plasticized pea starch film. The film made from pH 7 possessed the highest tensile strength-at-break (2 times) and elastic modulus (4 to 15 times) and the lowest elongation-at-break compared with those of the films made from acid and alkali environments. The pH 7 film also has the highest film density and the lowest total soluble matter. At the level of 0.01 to 0.1 M of CaSO4 and 0.1 M of K2 SO4 in a kilogram of starch, the water solubility of the film increased, while chloride salts slightly lowered the solubility. NaCl and CaSO4 reduced water vapor permeability (WVP), while CaCl2 slightly increased WVP at 0.01 and 0.06 M concentrations, and K2 SO4 significantly increased WVP at 0.03 and 0.15 M. Presence of salts increased tensile strength (5 to 14 times than the control films) and elastic modulus (35 to 180 times) of starch film at 0.01 to 0.03 M of CaSO4 and K2 SO4 . Elongation-at-break increased significantly as salt concentration increases to an optimal level. However, when the concentration exceeded above the optimal level, the E of starch films decreased and showed no significant difference from the control film. Overall, the addition of salts modified physical and mechanical properties of pea starch films more than pH adjustment without any salt addition. © 2016 Institute of Food Technologists®

  18. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  19. Relationships between the physical forms of starch and performance of carbonatation clarification and press filtration at the refinery

    Science.gov (United States)

    Laboratory studies were conducted to underpin if and how the different physical forms of starch (insoluble or soluble) affected carbonatation clarification and press filtration, by using simulated melt liquors. Carbonatated liquors containing =250 ppm/Brix (USDA starch research method) of total sta...

  20. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  1. Effect of Acacia Gum, NaCl, and Sucrose on Physical Properties of Lotus Stem Starch

    Science.gov (United States)

    Gill, Balmeet Singh

    2014-01-01

    Consumer preferences in east Asian part of the world pave the way for consumption of lotus stem starch (LSS) in preparations such as breakfast meals, fast foods, and traditional confectioneries. The present study envisaged the investigation and optimization of additives, that is, acacia gum, sodium chloride (NaCl), and sucrose, on water absorption (WA), water absorption index (WAI), and water solubility index (WSI) of LSS employing response surface methodology (RSM). Acacia gum resulted in increased water uptake and swelling of starch; however, NaCl reduced the swelling power of starch by making water unavailable to starch and also due to starch-ion electrostatic interaction. Sucrose restricted the water absorption by binding free water and decreased amylose leaching by building bridges with starch chains and thus forming rigid structure. PMID:26904639

  2. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  3. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    International Nuclear Information System (INIS)

    Hartwig, S.; Frister, T.; Alemdar, S.; Li, Z.; Scheper, T.; Beutel, S.

    2015-01-01

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L −1 were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni 2+ -IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pI 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg 2+ containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K M  = 1.111 μM (±0.113), v max  = 0.3245 μM min −1 (±0.0035), k cat  = 2.95 min −1 , as well as a catalytic efficiency k cat /K M  = 4.43 × 10 4  M −1 s −1 were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was cloned and expressed. • Fusion to SUMO and cold-shock induction

  4. SUMO-fusion, purification, and characterization of a (+)-zizaene synthase from Chrysopogon zizanioides

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, S.; Frister, T.; Alemdar, S.; Li, Z.; Scheper, T.; Beutel, S., E-mail: beutel@iftc.uni-hannover.de

    2015-03-20

    An uncharacterized plant cDNA coding for a polypeptide presumably having sesquiterpene synthase activity, was expressed in soluble and active form. Two expression strategies were evaluated in Escherichia coli. The enzyme was fused to a highly soluble SUMO domain, in addition to being produced in an unfused form by a cold-shock expression system. Yields up to ∼325 mg/L{sup −1} were achieved in batch cultivations. The 6x-His-tagged enzyme was purified employing an Ni{sup 2+}-IMAC-based procedure. Identity of the protein was established by Western Blot analysis as well as peptide mass fingerprinting. A molecular mass of 64 kDa and an isoelectric point of pI 4.95 were determined by 2D gel electrophoresis. Cleavage of the fusion domain was possible by digestion with specific SUMO protease. The synthase was active in Mg{sup 2+} containing buffer and catalyzed the production of (+)-zizaene (syn. khusimene), a precursor of khusimol, from farnesyl diphosphate. Product identity was confirmed by GC–MS and comparison of retention indices. Enzyme kinetics were determined by measuring initial reaction rates for the product, using varying substrate concentrations. By assuming a Michaelis–Menten model, kinetic parameters of K{sub M} = 1.111 μM (±0.113), v{sub max} = 0.3245 μM min{sup −1} (±0.0035), k{sub cat} = 2.95 min{sup −1}, as well as a catalytic efficiency k{sub cat}/K{sub M} = 4.43 × 10{sup 4} M{sup −1} s{sup −1} were calculated. Fusion to a SUMO moiety can substantially increase soluble expression levels of certain hard to express terpene synthases in E. coli. The kinetic data determined for the recombinant synthase are comparable to other described plant sesquiterpene synthases and in the typical range of enzymes belonging to the secondary metabolism. This leaves potential for optimizing catalytic parameters through methods like directed evolution. - Highlights: • Uncharacterized (+)-zizaene synthase from C. zizanoides was cloned

  5. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.

    Science.gov (United States)

    Huang, Zi-Rui; Zhou, Wen-Bin; Yang, Xue-Ling; Tong, Ai-Jun; Hong, Jia-Li; Guo, Wei-Ling; Li, Tian-Tian; Jia, Rui-Bo; Pan, Yu-Yang; Lin, Jun; Lv, Xu-Cong; Liu, Bin

    2018-04-01

    Monascus spp. have been used for thousands of years as a traditional food additive in China. This mold can produce many different types of commercially valuable secondary metabolites of biological activity. Soluble starch and glycerol are the two principal carbon sources universally utilized by Monascus for the production of beneficial metabolites. In this study, the effects and regulation mechanisms of soluble starch and glycerol for M. purpureus FAFU618 on Monascus azaphilone pigments (MonAzPs) were investigated through ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS), comparative proteomics and quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR). The production of intracellular and extracellular pigments was significantly different between the soluble starch group (SSG) and glycerol group (GCG). Additionally, the components of intracellular pigments revealed by UPLC-QTOF-MS/MS showed that Monascin and Ankaflavin increased significantly in the GCG, while Rubropunctatin and Monascorubrin increased in the SSG. Differentially expressed proteins of mycelia between SSG and GCG were analyzed by two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF MS. We identified 27 proteins with statistically altered expression, of which 18 proteins associated with the EMP (glycolytic pathway), translation, energy generation, proteolysis, etc. were up-regulated, and 9 proteins, including ribosomal proteins, heat shock proteins (HSPs) and others, were down-regulated in GCG. Meanwhile, the expression levels of MonAzP biosynthetic genes were also analyzed by RT-qPCR, and the results showed that mppA, mppC, mppR1 and mppR2 were down-regulated, whereas genes MpPKS5, MpFasA2, MpFasB2, mppB, mppD and mppE were up-regulated. Collectively, these findings illustrate that the regulation of MonAzPs is not only closely related to the expression levels of certain proteins in the polyketide synthesis pathway

  7. Structural and Digestion Properties of Soluble-, Slowly Digestible and Resistant Maltodextrin from Cassava Starch by Enzymatic Modification

    DEFF Research Database (Denmark)

    Sorndech, Waraporn

    The combination of branching enzyme (BE) and amylomaltase (AM) were selected to modify cassava starch. AM were used to elongate the glucan chains in order to enhance BE activity to create branching linkages. Cassava starch were gelatinized and incubated with BE or AMBE or BEAMBE or simultaneous...... AM and BE. The molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility were examined. Only BE catalysis showed 7.8% of branching linkages. The sequential AMBE-treated starch...... showed 9.9%-10.0% branching linkages, while the sequential BEAMBE-treated starch gained 10.9%-13.1% of branching linkages. Moreover, the sequential AMBE and BEAMBE-treated starch retarded the digestion rate of α-amylase and glucoamylase. Overall, sequential BEAMBE catalysis resulted in more...

  8. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  9. Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Hasnain, Abid

    2016-12-01

    The effects of different concentrations of guar and xanthan gums on functional properties of mango kernel starch (MKS) were studied. Both guar and xanthan gum enhanced the water absorption of MKS. The addition of xanthan gum appeared to reduce the SP (swelling power) and solubility at higher temperatures while guar gum significantly enhanced the SP as well as solubility of MKS. The addition of both gums produced a reinforcing effect on peak viscosity of MKS as compared to control. Pasting temperature of MKS was higher than that of starch modified by gums indicating ease of gelatinization. Guar gum played an accelerative effect on setback but xanthan gum delayed the setback phenomenon during the cooling of the starch paste. Both gums were found to be effective in reducing the syneresis while gel firmness was markedly improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    Science.gov (United States)

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. Copyright © 2016. Published by Elsevier B.V.

  11. A physicochemical study of sugar palm (Arenga Pinnata) starch films plasticized by glycerol and sorbitol

    Science.gov (United States)

    Poeloengasih, Crescentiana D.; Pranoto, Yudi; Hayati, Septi Nur; Hernawan, Rosyida, Vita T.; Prasetyo, Dwi J.; Jatmiko, Tri H.; Apriyana, Wuri; Suwanto, Andri

    2016-02-01

    The present work explores the physicochemical characteristics of sugar palm starch film for a potential hard capsule purpose. Sugar palm (Arenga pinnata) starch films were plasticized with glycerol or sorbitol in various concentrations (30% up to 50% w/w starch). Their effects on physicochemical properties of the films were investigated. The results showed that sugar palm starch was successfully developed as the main material of film using casting method. Incorporation of both glycerol or sorbitol affected the properties of films in different ways. It was found that thickness and solubility increased as plasticizer concentration increased, whereas retraction ratio, swelling degree and swelling thickness decreased with the increased plasticizer concentration.

  12. Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment.

    Science.gov (United States)

    Farrag, Yousof; Sabando, Constanza; Rodríguez-Llamazares, Saddys; Bouza, Rebeca; Rojas, Claudio; Barral, Luís

    2018-04-25

    A simple method for producing donut-shaped starch microparticles by adding ethanol to a heated aqueous slurry of corn starch is presented. The obtained microparticles were analysed by SEM, XRD and DSC. The average size of microparticles was 14.1 ± 0.3 μm with holes of an average size of 4.6 ± 0.2 μm. The crystalline arrangement of the microparticles was of a V-type single helix. The change in crystallinity from A-type of the starch granules to a more open structure, where water molecules could penetrate easier within the microparticles, substantially increased their solubility and swelling power. The microparticles exhibited a higher gelatinization temperature and a lower gelatinization enthalpy than did the starch granules. The donut-shaped microparticles were stable for more than 18 months and can be used as a carrier of an active compound or as a filler in bioplastics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Chemical, morphological, rheological and thermal properties of Solanum lycocarpum phosphorylated starches

    Directory of Open Access Journals (Sweden)

    Diego Palmiro Ramirez Ascheri

    2014-08-01

    Full Text Available The increasing need for starches with specific characteristics makes it important to study unconventional starches and their modifications in order to meet consumer demands. The aim of this work was to study physicochemical characteristics of native starch and phosphate starch of S. lycocarpum. Native starch was phosphated with sodium tripolyphosphate (5-11% added with stirring. Chemical composition, morphology, density, binding ability to cold water, swelling power and solubility index, turbidity and syneresis, rheological and calorimetric properties were determined. Phosphorus was not detected in the native sample, but the phosphating process produced modified starches with phosphorus contents of 0.015, 0.092 and 0.397%, with the capacity of absorbing more water, either cold or hot. Rheological data showed the strong influence of phosphorus content on viscosity of phosphate starch, with lower pasting temperature and peak viscosity higher than those of native starch. Enthalpy was negatively correlated with the phosphorus content, requiring 9.7; 8.5; 8.1 and 6.4 kJ g-1 of energy for the transition from the amorphous to the crystalline state for the starch granules with phosphorus contents of 0; 0.015; 0.092 and 0.397%, respectively. Cluster analysis and principal component analysis showed that starches with 0.015 and 0.092% phosphorus have similar characteristics and are different from the others. Our results show that the characteristics of phosphate modified S. lycocarpum starch have optimal conditions to meet the demands of raw materials, which require greater consistency in stickiness, combined with low rates of retrogradation and syneresis.

  14. Using different fibers to replace fat in sponge cakes: In vitro starch digestion and physico-structural studies.

    Science.gov (United States)

    Diez-Sánchez, Elena; Llorca, Empar; Quiles, Amparo; Hernando, Isabel

    2018-01-01

    This study assessed the effect of substituting 30% of fat by soluble, insoluble fiber, or a mix of both fibers in sponge cake quality, structure, acceptability, and starch digestibility. The apparent viscosity of the different formulations was measured and micro-baking was simulated. Texture profile tests were carried out and the crumb structure was examined. In vitro digestion was performed to study the digestibility of starch and a sensory test was carried out to know consumer acceptance. The soluble fiber (maltodextrin) affected the structure and quality of the cakes less than the insoluble fiber (potato fiber) and the use of soluble fiber in the formulation resulted in lower glucose release under in vitro conditions. Moreover, the consumer did not find differences among the control cake and the cakes prepared with soluble fiber. Considering the results as a whole, soluble fiber may be used for partial replacement of fat in sponge cake formulations and may constitute an appropriate strategy for obtaining healthy sponge cakes.

  15. Regulatory effect of amino acids on the pasting behavior of potato starch is attributable to its binding to the starch chain.

    Science.gov (United States)

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Watanabe, Ayako; Sato, Ryoichi; Takahashi, Koji

    2006-12-27

    The binding of an amino acid, glycine (Gly), alanine (Ala), epsilon-aminocaproic acid (-AC), monosodium glutamate (GluNa), or lysine (Lys), to starch was examined by a biomolecular interaction analyzer (IAsys). A starch sample (ATS) hydrolyzed to an extent of 1% hydrolysis rate with 15% sulfuric acid was used as a model starch for the binding examination. The reducing end of ATS was oxidized by the Somogyi reagent, and the conversion of the reducing end to the carboxyl group of ATS was confirmed by a carboxylic acid fluorescence labeling reagent. The oxidized ATS was immobilized to the amino group of a sensor cuvette by using water-soluble carbodiimide and N-hydroxysuccinimide through an amide bond. The IAsys examination showed that Gly, Ala, and epsilon-AC scarcely bound to the immobilized starch chains but that GluNa and Lys favorably bound with their increasing concentrations. The relative binding index (RBI) of each amino acid was defined by the ratio of the slope of the linear regression equation between the binding response and the concentration for each amino acid to that for Gly. Because the relationships between the RBI and the pasting characteristics (pasting temperature, peak viscosity, breakdown, and swelling index) could each be expressed by a linear regression equation with a high correlation coefficient, it is concluded that the regulation of the pasting behavior of starch with an amino acid is caused by binding of the amino acid to the starch chains.

  16. Studies on the Active Site of Deacetoxycephalosporin C Synthase

    NARCIS (Netherlands)

    Lloyd, Matthew D.; Lee, Hwei-Jen; Harlos, Karl; Zhang, Zhi-Hong; Baldwin, Jack E.; Schofield, Christopher J.; Charnock, John M.; Garner, C. David; Hara, Takane; Terwisscha van Scheltinga, Anke C.; Valegård, Karin; Viklund, Jenny A.C.; Hajdu, Janos; Andersson, Inger; Danielsson, Åke; Bhikhabhai, Rama

    1999-01-01

    The Fe(II) and 2-oxoglutarate-dependent dioxygenase deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was expressed at ca 25% of total soluble protein in Escherichia coli and purified by an efficient large-scale procedure. Purified protein catalysed the conversions of

  17. Physicochemical properties of sugar palm starch film: Effect of concentration and plasticizer type

    Science.gov (United States)

    Prasetyo, D. J.; Apriyana, W.; Jatmiko, T. H.; Hernawan; Hayati, S. N.; Rosyida, V. T.; Pranoto, Y.; Poeloengasih, C. D.

    2017-07-01

    In order to find the best formula for capsule shell production, this present work dealt with exploring physicochemical properties of sugar palm (Arenga pinnata) starch film as a function of different kinds and various concentrations of plasticizers. The films were prepared by casting method at different formula: starch 9-11%, glycerol or sorbitol 35-45% and polyethylene-glycol 400 (PEG 400) 5-9%. Appearance, thickness, retraction ratio, moisture content, swelling behavior and solubility of the film in water were analyzed. Both glycerol and sorbitol are compatible with starch matrix. On the contrary, PEG 400 did not form a film with suitable characteristics. The result reveals that glycerol- and sorbitol-plasticized films appeared translucent, homogenous, smooth and slightly brown in all formulas. Different type and concentration of plasticizers altered the physicochemical of film in different ways. The sorbitol-plasticized film had lower moisture content (≤ 10%) than that of glycerol-plasticized film (≥ 18%). In contrast, film plasticized with sorbitol showed higher solubility in water (28-35%) than glycerol-plasticized film (22-28%). As the concentration of both plasticizers increased, there was an increasing tendency on thickness and solubility in water. Conversely, retraction ratio and swelling degree decreased when both plasticizers concentration increased. In conclusion, the sorbitol-plasticized film showed a potency to be developed as hard capsule material.

  18. Influence of nanoparticles on the properties of bionanocomposites from cassava starch

    International Nuclear Information System (INIS)

    Paglicawan, Marissa A.; Emolaga, Carlo S.; Navarro, Ma. Teresa V.; Celorico, Josefina; Basilia, Blessie A.

    2015-01-01

    Plastics are widely used packaging materials for food and non-food products due to their desirable material properties and low cost. However, the merits of plastic products have been overshadowed by its non-degradable nature, thereby leading to waste disposal problems. Because of the environmental problem, many researchers are facing to minimize non-degradable to biodegradable materials. Starch is one of the most promising natural polymers because of its inherent biodegradability, overwhelming abundance and its renewability. One of the abundant starch is cassava. The Manihot exculenta Crantz, is known as camoteng-kahoy or balinghoy in the Philippines. The production of thermoplastic starch (also known as plasticized starch or TPS) basically involves three essential components, namely: starch, plasticizer and thermomechanical energy. However, this material has high water solubility and may lose their mechanical properties in humid conditions. One of the possible ways to overcome this problem is through nanocomposite in which consist of a polymer matrix reinforced with nano-dimensional particles. This research involves the processing of cassava starch into thermoplastic starch for packaging application that can be biodegraded in soil or compostable after its usage. Thermoplastic starchs from cassava starch and different nanomaterials were processed by melt-blending method in a twin-screw extruder. The four nanofillers - nanoclay (NC), halloysite nanotube (HNT), nanozeolite (NZ), and nanocalcium carbonate (NCC) were incorporated into the starch matrix in a 3 phr concentration. The resulting biocomposites were characterized in terms of mechanical properties, morphology, thermal properties, moisture absorption, and crystallinity. The newly developed technology based on cassava starch/nano-scale particles nanocomposites upgrade the hdydrophylic and mechanical properties of starch based films. Homogeneously dispersing nanometer size materials, with high length

  19. ENZYMATIC DETERMINATION OF STARCH IN DOCE DE LEITE USING DIALYSIS

    Directory of Open Access Journals (Sweden)

    DEMIATE Ivo Motim

    2001-01-01

    Full Text Available The importance of starch for the food industry makes it necessary to develop new, fast, economic and accurate methodologies for its quantification. In the present paper starch hydrolysis using commercial enzymes of industrial grade are studied aiming to develop an easy and cheap analysis, available to a greater number of industries and technicians. The proposed method is simple, divided in a first step where soluble sugars are eliminated from the samples by using dialysis, followed by starch hydrolysis of the retained fraction with a thermoresistent bacterial alfa-amylase (Termamyl 120L® and an amyloglucosidase (AMG 300L®. The hydrolysis conditions were those suggested by the enzyme producer. After the hydrolysis step the material was dialysed again for the extraction of glucose that was quantified by the glucose-oxidase colorimetric reactant. The results allowed the construction of calibration equations for starch determination on the analyzed samples. These samples were produced on a laboratory scale and native and acid-modified corn starches were added in known concentrations. By considering the final dilutions employed for glucose determination on the samples, it was possible to confirm that they were identical to that of the glucose-oxidase reactant calibration.

  20. Improved Starch Digestion of Sucrase-deficient Shrews Treated With Oral Glucoamylase Enzyme Supplements.

    Science.gov (United States)

    Nichols, Buford L; Avery, Stephen E; Quezada-Calvillo, Roberto; Kilani, Shadi B; Lin, Amy Hui-Mei; Burrin, Douglas G; Hodges, Benjamin E; Chacko, Shaji K; Opekun, Antone R; Hindawy, Marwa El; Hamaker, Bruce R; Oda, Sen-Ichi

    2017-08-01

    Although named because of its sucrose hydrolytic activity, this mucosal enzyme plays a leading role in starch digestion because of its maltase and glucoamylase activities. Sucrase-deficient mutant shrews, Suncus murinus, were used as a model to investigate starch digestion in patients with congenital sucrase-isomaltase deficiency.Starch digestion is much more complex than sucrose digestion. Six enzyme activities, 2 α-amylases (Amy), and 4 mucosal α-glucosidases (maltases), including maltase-glucoamylase (Mgam) and sucrase-isomaltase (Si) subunit activities, are needed to digest starch to absorbable free glucose. Amy breaks down insoluble starch to soluble dextrins; mucosal Mgam and Si can either directly digest starch to glucose or convert the post-α-amylolytic dextrins to glucose. Starch digestion is reduced because of sucrase deficiency and oral glucoamylase enzyme supplement can correct the starch maldigestion. The aim of the present study was to measure glucogenesis in suc/suc shrews after feeding of starch and improvement of glucogenesis by oral glucoamylase supplements. Sucrase mutant (suc/suc) and heterozygous (+/suc) shrews were fed with C-enriched starch diets. Glucogenesis derived from starch was measured as blood C-glucose enrichment and oral recombinant C-terminal Mgam glucoamylase (M20) was supplemented to improve starch digestion. After feedings, suc/suc and +/suc shrews had different starch digestions as shown by blood glucose enrichment and the suc/suc had lower total glucose concentrations. Oral supplements of glucoamylase increased suc/suc total blood glucose and quantitative starch digestion to glucose. Sucrase deficiency, in this model of congenital sucrase-isomaltase deficiency, reduces blood glucose response to starch feeding. Supplementing the diet with oral recombinant glucoamylase significantly improved starch digestion in the sucrase-deficient shrew.

  1. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay.

    Science.gov (United States)

    Sadegh-Hassani, Fatemeh; Mohammadi Nafchi, Abdorreza

    2014-06-01

    In this research casting method was used to prepare potato starch based bio-nanocomposite films with halloysite nanoclay as the reinforcing materials. The composition included potato starch with 40% (w/w) of a mixture of sorbitol/glycerol (weight ratio of 3 to 1as plasticizer) with nanoclay (0-5% w/w). The films were dried under controlled conditions. Physicochemical properties such as solubility in water, water absorption capacity (WAC), water vapour permeability (WVP), oxygen permeability, and mechanical properties of the films were measured. Results showed that by increasing the concentration of nanoclay, mechanical properties of films were improved. Tensile strength was increased from 7.33 to 9.82MPa, and elongation at break decreased from 68.0 to 44.0%. Solubility in water decreased from 35 to 23%, and heat seal strength increased from 375 to 580N/m. Also incorporation of clay nanoparticles in the structure of biopolymer decreased permeability of the gaseous molecules. In summary, addition of halloysite nanoclay, improve the barrier and mechanical properties of potato starch films and this bionanocomposites have high potential to be used for food packaging purposes. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preliminary Study on the Synthesis of Phosphorylated Mung Bean Starch: The Effect of pH on the Physicochemical and Functional Properties

    Directory of Open Access Journals (Sweden)

    Illona Nathania

    2017-11-01

    Full Text Available Mung bean (Vigna radiate L. is a grain legume widely cultivated in tropical and sub-tropical regions. Mung bean seeds contain a significant amount of carbohydrate (63%-w/w and are easily digested compared to seeds from other legumes. Mung bean starch has the potential to be used as thickener or gelling agents in food industries. Certain functional properties of mung bean starch, however, still need to be improved. In this research, a preliminary study was performed to upgrade mung bean starch properties using phosphorylation reaction. In particular, the effect of starch suspension pH (6–10 on the functional properties of the modified products was investigated. Phosphorylation was carried out at 130 °C, for 2 h using sodium tripolyphosphate (STPP with an intake of 5%-w based on dry starch. The phosphorylated products were subsequently washed with water and dried. The experimental results show that the P-content of the phosphorylated mung bean starch is accessible in the range of 0.04–0.08%. The solubility (6.09–11.37%-w/w and swelling power (9.88–11.17 g/g of the modified starch products have been improved compared to native starch (solubility = 6.06 %-w/w, swelling power = 8.05 g/g. Phosphorylation also proved to increase peak viscosity, paste clarity, and water absorption/oil absorption capacity of the products.

  3. Continuous-flow electro-assisted acid hydrolysis of granular potato starch via inductive methodology.

    Science.gov (United States)

    Li, Dandan; Yang, Na; Jin, Yamei; Guo, Lunan; Zhou, Yuyi; Xie, Zhengjun; Jin, Zhengyu; Xu, Xueming

    2017-08-15

    The induced electric field assisted hydrochloric acid (IEF-HCl) hydrolysis of potato starch was investigated in a fluidic system. The impact of various reaction parameters on the hydrolysis rate, including reactor number (1-4), salt type (KCl, MgCl 2 , FeCl 3 ), salt concentration (3-12%), temperature (40-55°C), and hydrolysis time (0-60h), were comprehensively assessed. Under optimal conditions, the maximum reducing sugar content in the hydrolysates was 10.59g/L. X-ray diffraction suggested that the crystallinity of IEF-HCl-modified starches increased with the intensification of hydrolysis but was lower than that of native starch. Scanning electron microscopy indicated that the surface and interior regions of starch granules were disrupted by the hydrolysis. The solubility of IEF-HCl-modified starches increased compared to native starch while their swelling power decreased, contributing to a decline in paste viscosity. These results suggest that IEF is a notable potential electrotechnology to conventional hydrolysis under mild conditions without any electrode touching the subject. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Additional synthesis of starch from sucrose in leaves of arabidopsis in the light

    International Nuclear Information System (INIS)

    Keerberg, O.; Ivanova, H.; Keerberg, H.; Paernik, T.

    2005-01-01

    Full text: Accumulating during daytime starch is converted in the night into sucrose and consumed in respiratory, biosynthetic and transport processes. However in the light the degradation and conversion of starch are blocked. In pulse chase experiments with wild type plants and starchless mutants pgm or adg1 of arabidopsis an increase of starch radioactivity during chase in nonradioactive medium in the light was detected. These findings suggest that starch was additionally synthesized from labeled cytosolic soluble photosynthates, preferentially from sucrose. Radiogasometric studies of gas exchange have revealed that sucrose is consumed also in photorespiratory decarboxylations. To be involved in photorespiration the products of sucrose degradation must be transported from cytosol into chloroplast. We presume that derived from sucrose hexoses are transported into chloroplast by hexose transporter and phosphorylated there in hexokinase reaction. The phosphorylated hexoses may be consumed either for additional synthesis of starch or incorporated into the reductive pentose phosphate cycle and, via this cycle, into the glycolate cycle. (author)

  5. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  6. Effects of acetic acid and lactic acid on physicochemical characteristics of native and cross-linked wheat starches.

    Science.gov (United States)

    Majzoobi, Mahsa; Beparva, Paniz

    2014-03-15

    The effects of two common organic acids; lactic and acetic acids (150 mg/kg) on physicochemical properties of native and cross-linked wheat starches were investigated prior and after gelatinization. These acids caused formation of some cracks and spots on the granules. The intrinsic viscosity of both starches decreased in the presence of the acids particularly after gelatinization. Water solubility increased while water absorption reduced after addition of the acids. The acids caused reduction in gelatinization temperature and enthalpy of gelatinization of both starches. The starch gels became softer, less cohesive, elastic and gummy when acids were added. These changes may indicate the degradation of the starch molecules by the acids. Cross-linked wheat starch was more resistant to the acids. However, both starches became more susceptible to the acids after gelatinization. The effect of lactic acid on physicochemical properties of both starches before and after gelatinization was greater than acetic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Biochemical and physiological responses of lycoris sprengeri bulblets (amaryllidaceae) to exogenously applied N-(2-Chloro-4-Pyridyl)-N1-Phenylurea (CPPU)

    International Nuclear Information System (INIS)

    Ren, Z.; Xia, Y.; Xiao, Y.; Zhang, D.; Lv, X.

    2017-01-01

    Bulblets of Lycoris sprengeri (Amaryllidaceae) were obtained by cutting. Six concentrations of N-(2-chloro-4-pyridyl)-N1-phenylurea (CPPU) solutions were sprayed on leaves from one-year-old bulblets during their green period. Fresh weight, diameter,carbohydrate content, activity of starch metabolism-related enzymes and levels of endogenous hormones of bulblets were determined. The effects of CPPU treatment on bulblet development and biochemical and physiological indices of L. sprengeri were analyzed using the determined values. The results showed that CPPU treatment at an appropriate concentration promoted the enlargement of L. sprengeri bulblets; the optimal concentration was 7.5 mg L-1. Bulblet growth showed a significant positive correlation with starch content and the activities of soluble starch synthase (SSS) and starch-bound starch synthase (GBSS). Bulblet growth showed anextremely significant positive correlation with the ratio of endogenous gibberellic acid/abscisic acid (GA/ABA). The GA/ABA ratio showed a significant positive correlation with the activities of (a+beta)-amylase and GBSS. The exogenous application of CPPU promoted the synthesis and accumulation of starch in the bulblets of L. sprengeri and the activities of starch metabolism-related enzymes; an increase in the endogenous GA/ABA ratio had a synergistic effect. (author)

  8. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.

    2006-01-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha......-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms...... in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed...

  9. Facile Synthesis of Curcumin-Loaded Starch-Maleate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2014-01-01

    Full Text Available We have demonstrated the loading of curcumin onto starch maleate (SM under mild conditions by mixing dissolved curcumin and SM nanoparticles separately in absolute ethanol and ethanol/aqueous (40 : 60 v/v, respectively. Curcumin-loaded starch-maleate (CurSM nanoparticles were subsequently precipitated from a homogeneous mixture of these solutions in absolute ethanol based on the solvent exchange method. TEM analysis indicated that the diameters of CurSM nanoparticles were ranged between 30 nm and 110 nm with a mean diameter of 50 nm. The curcumin loading capacity of SM as a function of loading duration was investigated using the UV-visible spectrophotometer. The loading of curcumin onto SM increased rapidly initially with loading duration, and the curcumin loading capacity of 15 mg/g was reached within 12 hours. CurSM nanoparticles exhibited substantially higher water solubility of 6.0 × 10−2 mg/mL which is about 300 times higher than that of pure curcumin. With enhanced water solubility and bioaccessibility of curcumin, the potential utility of CurSM nanoparticles in various biomedical applications is therefore envisaged.

  10. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase.

    Science.gov (United States)

    Ernest, Vinita; Shiny, P J; Mukherjee, Amitava; Chandrasekaran, N

    2012-05-01

    Silver nanoparticles (AgNPs) are proven to be an effective catalytic material for various applications due to their excellent optical and electronic properties. In this paper, we describe a novel approach for the degradation of starch using the catalytic behaviour of AgNPs in an enzyme catalysed reaction of starch hydrolysis by α-amylase. AgNPs were synthesized by soluble starch reducing silver nitrate to silver atoms. An increase of 4.7-fold in reducing sugar formation and 1.5 times faster enzyme activity confirmed the catalytic activity of AgNPs as a nanocatalyst. Surprisingly, starch degradation tests revealed that 9.9 mg of starch was hydrolysed within 5 min, which corroborates with the reducing sugar assay. In short, the present study paves way for the faster degradation of starch by immobilizing the enzyme onto the surface of the AgNP, which could be a promising application in the food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas.

    Science.gov (United States)

    Mir, Shabir Ahmad; Bosco, Sowriappan John Don

    2014-08-15

    Starch and flour of seven temperate rice cultivars grown in Himalayan region were evaluated for composition, granule structure, crystallinity, Raman spectrometry, turbidity, swelling power, solubility, pasting properties and textural properties. The rice cultivars showed medium to high amylose content for starch (24.69-32.76%) and flour (17.78-24.86%). SKAU-382 showed the highest amount of amylose (32.76%). Rice starch showed polyhedral granule shapes and differences in their mean granule size (2.3-6.5 μm) were noted among the samples. The starch and flour samples showed type A-pattern with strong reflection at 15, 18, and 23. Pasting profile and textural analysis of rice starch and flour showed that all the cultivars differences, probably due to variation in amylose content. The present study can be used for identifying differences between rice genotypes for starch and flour quality and could provide guidance to possible industries for their end use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of the acetylation process on native starches of yam (Dioscorea spp.

    Directory of Open Access Journals (Sweden)

    Jairo Salcedo Mendoza

    2016-07-01

    Full Text Available In Colombia, it is necessary to produce native and modified starches for the use of amylaceous raw materials of major socioeconomic importance. In this study, the effects of the acetylation process on structural, morphological and functional properties of native starches yam, Dioscorea spp. (D. alata and D. rotundata were evaluated. Chemical modification by esterification with acetic anhydride was performed at different reaction times, and morphological and structural changes were assessed using the following techniques: infrared spectroscopy (FTIR, X-ray diffraction and scanning electron microscopy (SEM. Acetylation produced slight changes in the granule morphology, and a decreased degree of crystallinity (DC associated with a slight increase in the amylose content was observed. The introduction of acetyl groups into the starch structure caused a decrease in the gelatinization temperature and an increased retro gradation tendency. The acetylated starches had low degrees of substitution (DS<0.2, meaning they can be used in the food industry, considering that they showed greater stability, greater water absorption capacity and better solubility than native starches.

  13. Novel polymer blends with thermoplastic starch

    Science.gov (United States)

    Taghizadeh, Ata

    A new class of polymers known as "bioplastics" has emerged and is expanding rapidly. This class consists of polymers that are either bio-based or biodegradable, or both. Among these, polysaccharides, namely starch, are of great interest for several reasons. By gelatinizing starch via plasticizers, it can be processed in the same way as thermoplastic polymers with conventional processing equipment. Hence, these bio-based and biodegradable plastics, with their low source and refinery costs, as well as relatively easy processability, have made them ideal candidates for incorporation into various current plastic products. Four different plasticizers have been chosen here for gelatinization of thermoplastic starch (TPS): glycerol, sorbitol, diglycerol and polyglycerol, with the latter two being used for the first time in such a process. Two methodological categories are used. The first involves a calorimetric method (Differential Scanning Calorimetry) as well as optical microscopy; these are "static" methods where no shear is applied A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The onset and conclusion gelatinization temperatures for sorbitol and glycerol were found to be in the same vicinity, while diglycerol and polyglycerol showed significantly higher transition temperatures. The higher molecular weight and viscosity of polyglycerol allow this transition to occur at an even higher temperature than with diglycerol. This is due to the increase in molecular weight and viscosity of the two new plasticizers, as well as their significant decrease in water solubility. It is demonstrated that the water/plasticizer ratio has a pronounced effect on gelatinization temperatures. When plasticizer content was held constant and water content was increased, it was found that the gelatinization temperature decreased for all the plasticizers. Meanwhile, when the water content was held constant and the

  14. Development of waxy cassava with different Biological and physico-chemical characteristics of starches for industrial applications.

    Science.gov (United States)

    Zhao, Shan-Shan; Dufour, Dominique; Sánchez, Teresa; Ceballos, Hernan; Zhang, Peng

    2011-08-01

    The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (industrial utilization. Copyright © 2011 Wiley Periodicals, Inc.

  15. Comparative Transcriptome Analysis Reveals Critical Function of Sucrose Metabolism Related-Enzymes in Starch Accumulation in the Storage Root of Sweet Potato

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-06-01

    Full Text Available The starch properties of the storage root (SR affect the quality of sweet potato (Ipomoea batatas (L. Lam.. Although numerous studies have analyzed the accumulation and properties of starch in sweet potato SRs, the transcriptomic variation associated with starch properties in SR has not been quantified. In this study, we measured the starch and sugar contents and analyzed the transcriptome profiles of SRs harvested from sweet potatoes with high, medium, and extremely low starch contents, at five developmental stages [65, 80, 95, 110, and 125 days after transplanting (DAP]. We found that differences in both water content and starch accumulation in the dry matter affect the starch content of SRs in different sweet potato genotypes. Based on transcriptome sequencing data, we assembled 112336 unigenes, and identified several differentially expressed genes (DEGs involved in starch and sucrose metabolism, and revealed the transcriptional regulatory network controlling starch and sucrose metabolism in sweet potato SRs. Correlation analysis between expression patterns and starch and sugar contents suggested that the sugar–starch conversion steps catalyzed by sucrose synthase (SuSy and UDP-glucose pyrophosphorylase (UGPase may be essential for starch accumulation in the dry matter of SRs, and IbβFRUCT2, a vacuolar acid invertase, might also be a key regulator of starch content in the SRs. Our results provide valuable resources for future investigations aimed at deciphering the molecular mechanisms determining the starch properties of sweet potato SRs.

  16. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    Science.gov (United States)

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N. © 2012 Blackwell Verlag GmbH.

  17. Utilization of modified starch from avocado (Persea americana Mill.) seed in cream soup production

    Science.gov (United States)

    Cornelia, M.; Christianti, A.

    2018-01-01

    Avocado (Persea americana Mill.) seed was often seen as waste and underutilized resources, especially in the food industry. The aim of this research was to modify the structure of avocado seed starch using the cross-linking method, to improve the viscosity stability in the cream soup. In the preliminary research, starch was isolated from the seed and modified by STPP (sodium tripolyphosphate) with 2%, 4%, and 6% concentration and were reacted for 1, 2, and 3 hours. Starches were analyzed for moisture and ash content, paste clarity, gel strength, swelling power, solubility, yield, and degree of whiteness. Based on the analysis results, the best reaction time and STPP concentration was 6% at 1 hour reaction time. Native starch and the best-modified starch were applied in the cream soup and compared with commercial cream soup. Cream soups were analyzed for viscosity stability using viscometer in 0, 1, 3, and 5 hours after storage in room temperature. The result showed that cream soup using modified starch has better viscosity stability than native starch and commercial cream soup after 5 hours storage, which was 181.7 ± 4.85 cP. Sensory analysis showed that cream soup using modified starch was more acceptable than the others. Avocado seed modified starch has phosphate group that strengthen the starch chain to prevent viscosity breakdown.

  18. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, A.; Shigechi, H.; Abe, M.; Uyama, K. [Dept. of Chemical Science and Engineering, Kobe Univ., Nadaku, Kobe (Japan); Matsumoto, T.; Fukuda, H. [Div. of Molecular Science, Kobe Univ., Nadaku, Kobe (Japan); Takahashi, S.; Ueda, M.; Tanaka, A. [Dept. of Synthetic Chemistry and Biological Chemistry, Kyoto Univ., Sakyoku, Kyoto (Japan); Kishimoto, M. [Dept. of Biotechnology, Osaka Univ., Osaka (Japan)

    2002-07-01

    A Strain of host yeast YF207, which is a tryptophan auxotroph and shows strong flocculation ability, was obtained from Saccharomyces diastaticus ATCC60712 and S. cerevisiae W303-1B by tetrad analysis. The plasmid pGA11, which is a multicopy plasmid for cell-surface expression of the Rhyzopus oryzae glucoamylase/{alpha}-agglutinin fusion protein, was then introduced into this flocculent yeast strain (YF207/pGA11). Yeast YF207/pGA11 grew rapidly under aerobic condition (dissolved oxygen 2.0 ppm), using soluble starch. The harvested cells were used for batch fermentation of soluble starch to ethanol under anaerobic condition and showed high ethanol production rates (0.71 g h{sup -1} I{sup -1}) without a time lag, because glucoamylase was immobilized on the yeast cell surface. During repeated utilization of cells for fermentation, YF207/pGA11 maintained high ethanol production rates over 300 h. Moreover, in fed-batch fermentation with YF207/pGA11 for approximately 120 h, the ethanol concentration reached up to 50 g I{sup -1}. In conclusion, flocculent yeast cells displaying cell-surface glucoamylase are considered to be very effective for the direct fermentation of soluble starch to ethanol. (orig.)

  19. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  20. Characterization of edible films of Swartzia burchelli phosphated starches and development of coatings for post-harvest application to cherry tomatoes

    Directory of Open Access Journals (Sweden)

    Millene Aparecida Gomes

    2016-08-01

    Full Text Available The market demand for corn starch and cassava continues to increase because of their use in edible applications, their biodegradable nature, and other appealing properties. As a result, there is a need to identify alternative starch sources, for example, the seeds of S. burchelli, with the potential to be modified for use in post-harvest applications. Therefore, this study aimed to develop and characterize edible films based on the starch phosphates of the seeds of S. burchelli, with the specific aim to apply these starches to cherry tomatoes for post-harvest conservation. After extraction, the starch was phosphorylated with sodium tripolyphosphate (STP in different concentrations and times according to a 2 x 2 factorial design with additional treatment (native starch. After modification, the starch phosphates were selected for the preparation of edible films using glycerol as a plasticizer, in proportions of 5, 10, 15 and 20% for each selected starch. The films were measured for thickness, permeability to water vapor and solubility in water. According to their permeability values, 4 films were selected for application in the coverage of cherry tomatoes. The conservation of cherry tomatoes with and without coverage was studied over 8 evaluation times (up to 21 days at 10±2 °C and 80±5% relative humidity. The weight loss, soluble solids, titratable acidity, maturation index, and firmness were measured every 3 days during storage. The starch phosphates showed a phosphorus content within that established by standards, such that the resulting films are acceptable for use in food for human consumption. The edible films presented with an acceptable appearance and without the development of cracks. The concentration of glycerol and the type of starch influenced the characteristics of the films, increasing the permeability and reducing the water solubility of the various edible films. The best result obtained regarding the conservation of cherry

  1. Physicochemical and tablet properties of Cyperus alulatus rhizomes starch granules.

    Science.gov (United States)

    Paramakrishnan, N; Jha, S; Kumar, K Jayaram

    2015-05-01

    The starch extracted from rhizomes of Cyperus alulatus (CA) was characterized for its physicochemical, morphological and tableting properties. Rhizomes of CA yield a significant quantity of starch granules (CASG) i.e., 11.93%. CASG was characterized in terms of moisture, ash and amylose contents, solubility and swelling power, paste clarity and water retention capacity. The swelling power was found to be significantly improved with the increase in temperature. Scanning electron micrographs revealed that the granule's surface was smooth, the granules were spherical, mostly round, disc like, and the size range was 6.65-12.13 μm. Finger print region in FTIR spectra confirmed its carbohydrate nature. The evaluated micromeritic properties of extracted granule's bulk density, tapped density, Carr's index, Hausner ratio, true density and porosity render unique practicability of CASG being used as an adjuvant in pharmaceutical solid dosage forms. Tablets prepared by using CASG showed higher mechanical strength and more disintegration time, which depicted the characteristic binding nature of the starch granules. As CASG is imparting better binding properties in less concentration and also it can be used in combination with the established starches to get the synergistic effect; this starch can be used commercially in the tablet preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate1[W][OPEN

    Science.gov (United States)

    Martins, Marina Camara Mattos; Hejazi, Mahdi; Fettke, Joerg; Steup, Martin; Feil, Regina; Krause, Ursula; Arrivault, Stéphanie; Vosloh, Daniel; Figueroa, Carlos María; Ivakov, Alexander; Yadav, Umesh Prasad; Piques, Maria; Metzner, Daniela; Stitt, Mark; Lunn, John Edward

    2013-01-01

    Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night. PMID:24043444

  3. Comparison of Structural and Functional Properties of Starches from the Rhizome and Bulbil of Chinese Yam (Dioscorea opposita Thunb.

    Directory of Open Access Journals (Sweden)

    Biao Zhang

    2018-02-01

    Full Text Available Chinese yam is an important edible starch plant and widely cultivated in China. Its rhizome and bulbil are starch storage tissues below and above ground, respectively. In this paper, starches were isolated from the rhizome and bulbil of Chinese yam, and their structural and functional properties were compared. Both starches had an oval shape with an eccentric hilum and a CA-type crystalline structure. Their short-range ordered structure and lamellar structure had no significant difference. However, the rhizome starch had a significantly bigger granule size and lower amylose content than the bulbil starch. The swelling power and water solubility were significantly lower in the rhizome starch than in the bulbil starch. The onset and peak gelatinization temperatures were significantly higher in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly higher breakdown viscosity and a lower setback viscosity than the bulbil starch. The thermal stability was lower in the rhizome starch than in the bulbil starch. The rhizome starch had a significantly lower resistance to hydrolysis and in vitro digestion than the bulbil starch. The above results provide important information for the utilization of rhizome and bulbil starches of Chinese yam.

  4. Characterization of films made with chayote tuber and potato starches blending with cellulose nanoparticles.

    Science.gov (United States)

    Aila-Suárez, Selene; Palma-Rodríguez, Heidi M; Rodríguez-Hernández, Adriana I; Hernández-Uribe, Juan P; Bello-Pérez, Luis A; Vargas-Torres, Apolonio

    2013-10-15

    The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α=0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  6. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  7. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  8. Selected properties of biodegradable material produced from thermoplastic starch with by-products of food industry addition

    Directory of Open Access Journals (Sweden)

    Zdybel Ewa

    2017-06-01

    Full Text Available In this work extrusion process were used to create thermoplastic starch and to mix obtained starch with linen, quince and apple pomace at the same time. Obtained starch beads were formed in shapes. In experimental material was determined thermal conductivity, water absorption and the solubility in water. It is possible to get the biodegradable material produced from thermoplastic starch with an addition of fruit pomace. Adding pomace and glycerine to the biodegradable material made from starch change of susceptibility on water action. In the case of materials containing pomace, glycerine addition decreases the susceptibility on water action compared to the material manufactured with pomace addition but without glycerine. In the material containing pomace, glycerine addition caused the increase of the thermal insulation time compared to the material with pomace but no glycerine in it.

  9. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    International Nuclear Information System (INIS)

    López, Olivia V.; García, María A.

    2012-01-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: ► Ahipa, cassava and corn starch films were developed by casting method. ► Glycerol effect on film mechanical behavior was major for tuberous starch films. ► Ahipa starch films resulted to be more transparent with lower UV absorption capacity. ► Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. ► Glycerol exerted a major plasticizing effect on ahipa starch films.

  10. Effect of DHA supplementation on digestible starch utilization by rainbow trout.

    Science.gov (United States)

    Tapia-Salazar, M; Bureau, W; Panserat, S; Corraze, G; Bureau, D P

    2006-01-01

    Rainbow trout has a limited ability to utilize digestible carbohydrates efficiently. Trout feeds generally contain high levels of DHA, a fatty acid known to inhibit a number of glycolytic and lipogenic enzymes in animals. A study was conducted to determine whether carbohydrate utilization by rainbow trout might be affected by dietary DHA level. Two low-carbohydrate (digestible carbohydrate) basal diets were formulated to contain 1 (adequate) or 4 (excess) g/100 g DHA diet respectively. The two basal diets were diluted with increasing levels of digestible starch (0 %, 10 %, 20 % and 30 %, respectively) to produce eight diets. These diets were fed to fish for 12 weeks at 15 degrees C according to a pair-fed protocol that consisted of feeding the same amount of basal diet but different amounts of starch. Live weight, N and lipid gains, hepatic glycogen and plasma glucose values significantly increased, whereas feed efficiency (gain:feed) significantly decreased, with increasing starch intake (Pdigestible N intake) improved with starch supplementation but was not affected by DHA level (P>0.05). Starch increased the activity of glucokinase, pyruvate kinase, glucose 6-phosphate dehydrogenase and fatty acid synthase (P<0.05) but did not affect hexokinase and malic enzyme activity. DHA had no effect on growth but increased plasma glucose and reduced carcass lipid and liver glycogen contents (P<0.05). Glycolytic and lipogenic enzymes were not affected by DHA level, except for pyruvate kinase, which was reduced by increasing DHA level. These results suggest only a marginal effect of dietary DHA on the ability of fish to utilize carbohydrate.

  11. Effect of gamma radiation on physico-chemical characteristics of red gram (Cajanus cajan) starch

    International Nuclear Information System (INIS)

    Nene, S.P.; Vakil, U.K.; Sreenivasan, A.

    1975-01-01

    Total reducing and nonreducing sugars in red gram (Cajanus cajan) are not affected by radiation treatment (1 Mrad). Oligosaccharides, reported as flatulence factors in legumes, namely stachyose and raffinose, are slightly decreased on cooking the irradiated samples. Irradiated and cooked red gram starch is more susceptible to alpha-amylase action than the unirradiated sample. Rheological properties of red gram starch, such as gelatinization viscosity, swelling power and solubility improve on irradiation resulting in a final cooked product with better textural properties. (U.S.)

  12. Sugar uptake and starch biosynthesis by slices of developing maize endosperm

    International Nuclear Information System (INIS)

    Felker, F.C.; Liu, Kangchien; Shannon, J.C.

    1990-01-01

    14 C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and D- and L-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and D-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14 C among the soluble sugars extracted from endosperm slices incubated in 14 C-sugars. Competing hexoses reduced the incorporation of 14 C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue

  13. Effect of Hydroxypropylation on Functional Properties of Different Cultivars of Sweet Potato Starch in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Suraji Senanayake

    2014-01-01

    Full Text Available Starches obtained from different cultivars of sweet potatoes commonly consumed in Sri Lanka, were chemically modified with hydroxypropyl substitution, to analyze the changes in the physicochemical properties. Significant changes (P<0.05 in the crude digestibility level, thermal properties, and the water separation (syneresis of starch gels (7.0% db during cold and frozen storage were observed due to the modification. Hydroxypropylation increased the gel stability, water solubility, digestibility, and storage stability of the native starches in the cold storage to a significant level. Lowered gelatinization and retrogradation enthalpies as well as gelatinization temperature were observed for derivatized starches compared to the native starch. Low levels of pasting stability with increased levels of breakdown and reduced cold paste viscosity were observed in the hydroxypropylated starch samples except for the Malaysian cultivar (S5. Chemically modified starch gels stored under cold storage did not show a syneresis for two weeks in the cycle and the frozen storage showed much improved stability in the starch gels within the four-week cycle. Chemical modification of sweet potato starch with hydroxyl propyl substitution can enhance the functional characteristics of the native starch which will improve its potential application in the food industry.

  14. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    Directory of Open Access Journals (Sweden)

    Huiming Zhou

    2010-08-01

    Full Text Available Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP and the water solubility index (WSI of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU than raw sorghum starch (454 BU/RVU. For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′ and loss modulus (G″ of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods.

  15. The adsorption of α-amylase on barley proteins affects the in vitro digestion of starch in barley flour.

    Science.gov (United States)

    Yu, Wenwen; Zou, Wei; Dhital, Sushil; Wu, Peng; Gidley, Michael J; Fox, Glen P; Gilbert, Robert G

    2018-02-15

    The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    Science.gov (United States)

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  17. Modified Starch-Chitosan Edible Films: Physicochemical and Mechanical Characterization

    Directory of Open Access Journals (Sweden)

    Monserrat Escamilla-García

    2017-12-01

    Full Text Available Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT, waxy (WS, oxidized (OS and acetylated (AS corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm, water content (11.53% ± 0.85%, w/w, solubility (26.77% ± 1.40%, w/v and water vapor permeability ((1.18 ± 0.48 × 10−9 g·s−1·m−1·Pa−1. This film showed low hardness (2.30 ± 0.19 MPa, low surface roughness (Rq = 3.20 ± 0.41 nm and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa. In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.

  18. Effects of tempering (annealing), acid hydrolysis, low-citric acid substitution on chemical and physicochemical properties of starches of four yam (Dioscorea spp.) cultivars.

    Science.gov (United States)

    Falade, Kolawole O; Ayetigbo, Oluwatoyin E

    2017-05-01

    The effects of tempering (annealing), acid hydrolysis and low-citric acid substitution on chemical and physicochemical properties of starches of four Nigerian yam cultivars were investigated. Crude fat and protein contents of the native starches decreased significantly after the modifications, while nitrogen-free extract increased significantly with acid hydrolysis and citric acid substitution. Acid hydrolysis and low-citric acid substitution reduced the least concentration for gel formation of the starches from 4 to 2% w/v, but tempering had no effect. Swelling power of the starches reduced significantly, and water solubility increased significantly at 75 and 85 °C, especially with acid hydrolysis and low-citric acid substitution. However, tempering significantly reduced starch solubility in the four cultivars. Paste clarity of starches of white (29.17%), water (18.90%), yellow (30.90%) and bitter (10.57%) yams reduced significantly with tempering to 14.43, 11.83, 16.93 and 7.27%, but increased significantly with acid hydrolysis to 41.40, 35.37, 28.77 and 32.33%, and low-citric acid substitution to 36.60, 44.17, 50.67 and 14.33%, respectively. Pasting properties such as peak, trough, breakdown, final, and setback viscosities and peak time of native starches reduced significantly with acid hydrolysis and low-citric acid substitution, however, tempering significantly increased their pasting temperature, peak time, setback and final viscosities.

  19. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    Science.gov (United States)

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (spp. and C. butyricum degraded and utilized granules of amylomaize starch.

  20. Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties.

    Science.gov (United States)

    Trung, Phan Thanh Bao; Ngoc, Luu Bui Bao; Hoa, Phan Ngoc; Tien, Nguyen Ngoc Thanh; Hung, Pham Van

    2017-12-01

    The objective of this study is to investigate the change in physicochemical properties and digestibility of starches isolated from colored sweet potato varieties under heat-moisture treatment (HMT) or annealing treatment (ANN). The results showed that morphology and X-ray diffraction patterns of the sweet potato starches remained unchanged after the HMT or ANN. The HMT significantly reduced peak viscosity, breakdown and setback and significantly increased pasting temperature, trough and final viscosities of the sweet potato starches. The swelling powers and solubility of the heat-moisture treated starches were significantly lower than those of the native or annealed starches. The decreased rapid digestible starch and the increased slowly digestible and resistant starch contents of the sweet potato starches after HMT or ANN as compared to those of the native starches were observed. The resistant starch (RS) contents of the heat-moisture treated sweet potato starches were in a range of 30.6-39.3%, significantly higher than those of the annealed starches (28.8-32.0%). The strong impact of the HMT on physicochemical properties and RS formation of the sweet potato starches compared to the ANN might be due to the high stability of the occurred interactions between starch molecules and amylopectin chains during treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. On the use of differential solubility in aqueous ethanol solutions to narrow the DP range of food-grade starch hydrolysis products.

    Science.gov (United States)

    Balto, Amy S; Lapis, Trina J; Silver, Rachel K; Ferreira, Andrew J; Beaudry, Christopher M; Lim, Juyun; Penner, Michael H

    2016-04-15

    Considerable research is focused on understanding the functionality of starch hydrolysis products (SHP) consisting of glucose, maltose, maltooligosaccharides (MOS), and maltopolysaccharides (MPS). A confounding factor in this research is the high molecular dispersity of commercially available SHP. The study presented herein characterizes a flexible fractionation approach for lowering the dispersity of such products. This was accomplished by fractionating a corn syrup solids (CSS) preparation based on the differential solubility of its component saccharides in aqueous-ethanol solutions. Products obtained from selected fractionations were characterized with respect to degree of polymerization (DP; liquid chromatography), dextrose equivalency (reducing sugar assays), and prevalence of branching (NMR). Glucose and maltose were preferentially removed from CSS using high (⩾90%) ethanol extractants. Preparations with relatively narrow ranges of MOS, lower DP MPS, and higher DP MPS were obtained through repetitive 70%-ethanol extractions. Linear, as opposed to branched, MOS and MPS were preferentially extracted under all conditions tested. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  3. Physicochemical, structural and thermal properties of oxidized, acetylated and dual-modified common bean (Phaseolus vulgaris L. starch

    Directory of Open Access Journals (Sweden)

    José Pedro WOJEICCHOWSKI

    2018-03-01

    Full Text Available Abstract Common beans are rich in protein and complex carbohydrates that are valuable for the human diet. Starch is the most abundant individual component; however, in its native form it has limited applications and modifications are necessary to overcome technological restrictions. The aim of this study was to evaluate the influence of oxidation, acetylation and dual-modification (oxidation-acetylation on the physicochemical, structural and thermal properties of common bean starch. The degree of substitution of the acetylated starches was compatible with food use. Fourier transform infrared spectra confirmed the acetylation of the bean starch, with a peak at 1,735cm-1. The granules of the bean starch were oval to spherical in shape, with no differences between the native and modified samples. Typical C-type diffraction of legume starches was found. The modified samples showed a reduced relative crystallinity and lower enthalpy change of gelatinization. The oxidized starch showed the highest peak viscosity, hardness, and gel adhesiveness due to the presence of functional groups. An increase in solubility and swelling power was observed, and the oxidized-acetylated starch presented the highest values. The properties of the modified bean starches made them suitable for application in breaded/battered foods, mainly due to improved textural attributes.

  4. Effect of Gamma Irradiation on the Physicochemical and Functional Properties of Cassava Starch

    International Nuclear Information System (INIS)

    Asare, I.K.

    2011-10-01

    Cassava (Manihot esculanta Crantz) is popularly consumed as a staple food crop in many tropical countries in Africa, South America and Asia. In Africa the crop has been recognized as more than a subsistence crop. The crop is very important and commercially serves as a raw material for industries with significant effect on the economy of a country. Cassava roots contain high starch content and approximately half of the total roots produced is used for the production of starch for industrial purposes. Limitation to utilization of cassava roots by processors is due to its high perishability and bulkness, while native starches are structurally too weak and funtionally restricted for a wide variety of industrial applications. The objective of the project was to determine the effect of gamma irradiation as a modifying agent on native starch from three cassava varieties namely Ankra, Bosome nsia and TME419. Gamma radiation doses applied ranged between 0 - 20kGy and changes in physicochemical, functional and pasting indices of the starch were measured. Physicochemical indices measured were moisture content, amylose content, carbohydrate content, pH, ash content, fat content, protein content and L*a*b* values. Functional indices mesured were water absorption capacity, solubility index, bulk density, swelling power, fat absorption capacity, emulsion capacity, emulsion stability and least gelation concentration. Pasting indices measured were gelatinzation temperature, peak viscosity, viscosity at 92 degrees C and 50 degrees C, breakdown viscosity and setback viscosity. The pH, amylose content, carbohydrate content and ash content of native starch from Ankra, Bosome nsia and TME 419 were respectively 8.06, 7.80 and 7.18, 17.62%, 19.46% and 23.54%, 56.11%, 52.43% and 35.70%, 0.11%, 0.19% and 0.12%. The water absortion capacity and least gelation concentration of native starch from Ankra, Bosome nsia and TME 419 were 12.3%, 13.0% and 10.0%, respectively, least gelation

  5. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  6. UASB Treatment of Methanolic Pulp Wastewater with Addition of Waste Starch and Incinerated Ash

    Science.gov (United States)

    Takahashi, Shintaro; Kobaysashi, Takuro; Li, Yu-You; Harada, Hideki

    The pulp wastewater consists mainly of methanol. It is expected to treat using upflow anaerobic sludge blanket (UASB) process. Paper manufactories also produce waste starch and incinerated ash. The integrated treating for these wastes is desirable. In this study, two UASB reactors were operated to treat pulp wastewater with addition of waste starch and with addition of incinerated ash, receptively. Continuous operations of a UASB reactor treating pulp wastewater with addition of waste starch (PS reactor) and a UASB reactor treating pulp wastewater with addition of incinerated ash (PA reactor) , were investigated at mesophilic conditions. The PS reactor performed well with an average 93.7% total CODCr and 97.3% soluble CODCr removal efficiency in average at a maximum volumetric loading rate (VLR) of 16.0 kgCOD/m3/d. The PA reactor was also successfully operated with an average 95.3% total CODCr and 97.5% soluble CODCr removal efficiency in average at a maximum VLR of 14.6 kgCOD/m3/d. Successfully developed granules were obtained after over 140 days of operation in both reactors, and the granules were 1 to 2 mm in mean diameter. Microbial analysis revealed the genus Methanomethylovorans was predominant in the granules of both reactors.

  7. Nutritive value of wet distillers' solubles for pigs

    Directory of Open Access Journals (Sweden)

    Jarmo Valaja

    1995-01-01

    Full Text Available Digestibility and nitrogen (N metabolism were studied to evaluate the nutritive value of wet barley distillers’ solubles (DSB from an integrated starch-ethanol process for pigs. Eight castrated male pigs (live weight 72-103 kg were used in a 8 x 3 cyclic change-over design, where the diets were arranged factorially 2x2. The corresponding factors were the protein source (DSB or soya bean meal (SBM and the protein level (131 or 162 g crude protein (CP/kg dry matter (DM. Faeces and urine were collected in total. The four diets comprised barley, barley starch, minerals and vitamins with either DSB or SBM as the main source of protein. The digestibility of CP(p

  8. Syneresis and chemical characteristics of fermented rice extract with probiotic bacteria and waxy maize starch

    Directory of Open Access Journals (Sweden)

    Kassia Kiss Firmino Dourado COSTA

    2017-09-01

    Full Text Available Abstract The objective of this work was to elaborate fermented extracts using rice bran and broken rice grains (proportion 8:92 with probiotic bacteria and different concentrations of waxy maize starch (WMS in order to obtain products with low level of syneresis and desirable physical-chemical characteristics, and to evaluate the content of phenolic compounds, antioxidant capacity and chemical composition of the extract selected and flavored with strawberry aroma and strawberry syrup. A randomized design was used with five treatments (0, 4, 8, 12 and 16 g 100 g–1 of WMS and four replications. The fermented rice extract had increased soluble solids (from 12.97 to 14.23 °Brix and total acidity (from 0.29 to 0.30 g 100 g–1, whereas total soluble sugars (from 9.24 to 8.73 g 100 g–1 and syneresis (from 10.16 to 0.99 g 100 g–1 decreased with gradual increments of waxy maize starch. The fermented rice extract containing 12 g 100 g–1 WMS reduced the syneresis by 89% compared to the control without waxy maize starch. The fermented rice extract with 12 g 100 g-1 of waxy maize starch flavored with strawberry aroma and strawberry syrup shows high nutritional value, antioxidant capacity, content of total phenolic compounds, and marketing potential, particularly for consumers with special needs, such as those allergic to lactose or soybean proteins, as an alternative food ready for consumption.

  9. Physical and structural characterisation of starch/polyester blends with tartaric acid

    International Nuclear Information System (INIS)

    Olivato, J.B.; Müller, C.M.O.; Carvalho, G.M.; Yamashita, F.; Grossmann, M.V.E.

    2014-01-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ( 13 C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and 13 C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties

  10. Physical and structural characterisation of starch/polyester blends with tartaric acid

    Energy Technology Data Exchange (ETDEWEB)

    Olivato, J.B., E-mail: jubonametti@uel.br [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Müller, C.M.O. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Carvalho, G.M. [Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil); Yamashita, F.; Grossmann, M.V.E. [Departamento de Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, PO Box 6001, 86051-980 Londrina, PR (Brazil)

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch + PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ({sup 13}C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. - Highlights: • Tartaric acid (TA) was efficient as compatibiliser of starch/PBAT blends. • Film properties were analysed based on the modelling of the mixture design. • Greater proportions of TA resulted in more opaque and less soluble materials. • Esterification reactions promoted by TA were characterised by FT-IR and {sup 13}C CPMAS NMR. • Compatibilised blends with TA showed better morphological and mechanical properties.

  11. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    Science.gov (United States)

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  12. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2017-07-01

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Improved method for measurement of dietary fiber as non-starch polysaccharides in plant foods.

    Science.gov (United States)

    Englyst, H N; Cummings, J H

    1988-01-01

    A method is described that allows rapid estimation of total, soluble, and insoluble dietary fiber as the non-starch polysaccharides (NSP) in plant foods. It is a modification of an earlier, more complex procedure. Starch is completely removed enzymatically, and NSP is measured as the sum of its constituent sugars released by acid hydrolysis. The sugars may, in turn, be measured by gas chromatography (GC), giving values for individual monosaccharides, or more rapidly by colorimetry. Both GC and colorimetry are suitable for routine measurement of total, soluble, and insoluble dietary fiber in cereals, fruits, and vegetables. Values obtained are not affected by food processing so the dietary fiber content of various processed foods and mixed diets can be calculated simply from knowing the amount in the raw materials. The additional information obtained by GC analysis is valuable in the interpretation of physiological studies and in epidemiology where disease is related to type and amount of dietary fiber.

  14. Changes in protein and starch digestibility in sorghum flour during heat-moisture treatments.

    Science.gov (United States)

    Vu, Thanh-Hien; Bean, Scott; Hsieh, Chao-Feng; Shi, Yong-Cheng

    2017-11-01

    Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg -1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg -1 moisture and 100 °C for 4 h had a high RS content (221 g kg -1 vs. 56 g kg -1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg -1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  16. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  18. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  19. Production of a protein-rich extruded snack base using tapioca starch, sorghum flour and casein.

    Science.gov (United States)

    Patel, Jiral R; Patel, Ashok A; Singh, Ashish K

    2016-01-01

    A protein-rich puffed snack was produced using a twin screw extruder and the effects of varying levels of tapioca starch (11 to 40 parts), rennet casein (6 to 20 parts) and sorghum flour (25 to 75 parts) on physico-chemical properties and sensory attributes of the product studied. An increasing level of sorghum flour resulted in a decreasing whiteness (Hunter L* value) of the snack. Although the starch also generally tended to make the product increasingly darker, both starch and casein showed redness parameter (a* value) was not significantly influenced by the ingredients levels, the yellow hue (b* value) generally declined with the increasing sorghum level. Tapioca starch significantly increased the expansion ratio and decreased the bulk density and hardness value of the snack, whereas the opposite effects seen in case of sorghum flour. While the water solubility index was enhanced by starch, water absorption index was appreciably improved by sorghum. Incorporation of casein (up to 25 %) improved the sensory color and texture scores, and so also the overall acceptability rating of the product. Sorghum flour had an adverse impact on all the sensory attributes whereas starch only on the color score. The casein or starch level had no perceivable effect on the product's flavor score. The response surface data enabled optimization of the snack-base formulation for the desired protein level or desired sensory characteristics.

  20. Hydrocolloids Decrease the Digestibility of Corn Starch, Soy Protein, and Skim Milk and the Antioxidant Capacity of Grape Juice.

    Science.gov (United States)

    Yi, Yue; Jeon, Hyeong-Ju; Yoon, Sun; Lee, Seung-Min

    2015-12-01

    Hydrocolloids have many applications in foods including their use in dysphagia diets. We aimed to evaluate whether hydrocolloids in foods affect the digestibility of starch and protein, and their effects on antioxidant capacity. The thickening hydrocolloids: locust bean gum and carboxymethyl cellulose, and the gel-forming agents: agar agar, konjac-glucomannan, and Hot & Soft Plus were blended with corn starch and soy protein, skim milk, or grape juice and were examined for their in vitro-digestability by comparing the reducing sugar and trichloroacetic acid (TCA)-soluble peptide, for antioxidant capacity by total polyphenol contents and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The hydrocolloids resulted in a decrease in starch digestibility with the gel-forming agents. Hydrocolloids diminished TCA-soluble peptides in skim milk compared to soy protein with the exception of locust bean gum and decreased free radical scavenging capacities and total phenolic contents in grape juice. Our findings may provide evidence for the use of hydro-colloids for people at risk of nutritional deficiencies such as dysphagia patients.

  1. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  2. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  4. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  5. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  7. Problems, control, and opportunity of starch in the large scale processing of sugarcane and sweet sorghum

    Science.gov (United States)

    Both sugarcane (Saccharum officinarum) and sweet sorghum (Sorghum bicolor) crops are members of the grass (Poaceae) family, and consist of stalks rich in soluble sugars. The extracted juice from both of these crops contains insoluble starch, with much greater quantities occurring in sweet sorghum. ...

  8. Effect of annealing and heat moisture conditioning on the physicochemical characteristics of bambarra groundnut (Voandzeia subterranea) starch

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Lawal, O.S.

    2002-05-01

    Isolated starch of bambarra groundnut (Voandzeia subterranea) was subjected to hydrothermal modifications through annealing and heat moisture conditioning. Both annealing and heat moisture conditioning reduced the swelling power and solubility of the starch. Water binding capacity reduced after annealing, heat moisture conditioning at 18% moisture level (HMB 18 ) and heat moisture conditioning at 21% moisture level (HMB 21 ). Both heat moisture conditioning at 24% moisture level (HMB 24 ) and heat moisture conditioning at 27% moisture level (HMB 27 ) increased the water binding capacity. Hydrothermal modifications reduced the oil absorption capacity of the raw starch. Annealing and heat moisture conditioning reduced the peak viscosity, (Pv) viscosity at 95 deg C (Hv) and viscosity at 95 deg. C after 30 minutes holding (Hv 30 ). However, viscosity increased on cooling down to 50 deg. C after annealing. Annealing and heat moisture treatments as revealed by scanning electron micrograph and light micrograph did not alter the shape and size of the raw starch. The results indicate a rearrangement within the starch granule following hydrothermal treatments. (author)

  9. Quinoa Starch Characteristics and Their Correlations with the Texture Profile Analysis (TPA) of Cooked Quinoa.

    Science.gov (United States)

    Wu, Geyang; Morris, Craig F; Murphy, Kevin M

    2017-10-01

    Starch characteristics significantly influence the functionality and end-use quality of cereals and pseudo-cereals. This study examined the composition and properties of starch from 11 pure varieties and 2 commercial samples of quinoa in relationship to the texture of cooked quinoa. Nearly all starch properties and characteristics differed among these samples. Results showed that total starch content of seeds ranged from 53.2 to 75.1 g/100 g apparent amylose content ranged from 2.7% to 16.9%; total amylose ranged from 4.7% to 17.3%; and the degree of amylose-lipid complex ranged from 3.4% to 43.3%. Amylose leaching ranged from 31 mg/100 g starch in "Japanese Strain" to 862 mg/100 g starch in "49ALC." "Japanese Strain" starch also exhibited the highest water solubility (4.5%) and the lowest swelling power (17). α-Amylase activity in "1ESP," "Col.#6197," "Japanese Strain," "QQ63," "Yellow Commercial," and "Red Commercial" (0.03 to 0.09 CU) were significantly lower than the levels of the other quinoa samples (0.20 to 1.16 CU). Additionally, gel texture, thermal properties, and pasting properties of quinoa starches were investigated. Lastly, correlation analysis showed that the quinoa samples with higher amylose content tended to yield harder, stickier, more cohesive, more gummy, and more chewy texture after cooking. A higher degree of amylose-lipid complex and amylose leaching were associated with softer and less chewy cooked quinoa TPA texture. Higher starch enthalpy correlated with firmer, more adhesive, more cohesive, and chewier texture. In sum, starch plays a significant role in the texture of cooked quinoa. The research determined starch characteristics among a diverse set of pure quinoa varieties and commercial samples, and identified the relationships between starch properties and cooked quinoa texture. The results can help breeders and food manufacturers to understand better the relationships among quinoa starch characteristics, cooked quinoa texture, and

  10. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance.

    Science.gov (United States)

    Lin, Derong; Zhou, Wei; Zhao, Jingjing; Lan, Weijie; Chen, Rongming; Li, Yutong; Xing, Baoshan; Li, Zhuohao; Xiao, Mengshi; Wu, Zhijun; Li, Xindan; Chen, Rongna; Zhang, Xingwen; Chen, Hong; Zhang, Qing; Qin, Wen; Li, Suqing

    2017-10-01

    In this study, synthesis and physicochemical properties of starch acetate with low substitution under microwave were studied. A three-level-three-factorial Central Composite Design using Response Surface Methodology (RSM) was employed to optimize the reaction conditions. The optimal parameters are as follows: amount of acetic anhydride of 12%, radiation time of 11min, and microwave power of 100W. These optimal conditions predicted by RSM were confirmed that the degree of substitution (DS) of acetate starch is 0.0691mg/g and the physical and chemical properties of natural corn starch (NCS) and corn starch acetate (ACS) were further studied.The transparency, water separation, water absorption, expansion force, and solubility of ACS low substitution are better than NCS, while the NCS's hydrolysis percentage is higher than ACS, which indicate that the modified corn starch has better performance than native corn starch. The surface morphology of the corn starch acetate was examined by scanning electron microscope (SEM), which showed that it had a smooth surface and a spherical and polygonal shape. However, samples' shape is irregular. Crystal structure was observed by X-ray diffraction, and the ACS can determine the level of microwave technology that can destroy the extent of the crystal and amorphous regions. Fourier transform infrared (FTIR) spectroscopy shows that around 1750cm -1 carbonyl signal determines acetylation bonding successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modification of Cassava Starch Using Lactic Acid Hydrolysis in The Rotary-UV Dryer to Improve Physichocemical Properties

    Directory of Open Access Journals (Sweden)

    Sumardiono Siswo

    2018-01-01

    Full Text Available Food security should be supported in an effort to utilize local products into import substitution products. Cassava starch has the potential to be developed into semi-finished products in the form of flour or starch which does not contain gluten but can inflate large baking process, potentially as a substitute for wheat flour-the main ingredient for making bread. The characteristic of the starch is influenced by the type of starch composition and structure. Natural starch has physicochemical properties i.e. a long time cooking and pasta formed hard. These constraints allow us to modify cassava starch by a combination of lactic acid hydrolysis and drying with rotary UV system. Modified cassava starch is expected to be used as a substitute for wheat flour. The aim of the research which is a combination of lactic acid hydrolysis and drying using a rotary UV system is to examine the optimum operating conditions in the drying process of starch hydrolysis with parameter the physicochemical and rheological properties of modified cassava starch. The initial process study is to hydrolyze cassava starch using lactic acid. Furthermore, hydrolyzed cassava starch is then dried using UV light in the rotary dryers system. There are a variety of changing variables, i.e. time of irradiation cassava starch-lactic acid hydrolysis products in the rotary UV light and air drying temperature. The research results show that modified starch has a better characteristic than the natural starch. From the analysis, the best point of swelling power, solubility and baking expansion is consequently 15.62 g/g; 24.19 %; 2.21 ml/gr. The FTIR result shows that there is no significant difference of the chemical structure because the starch modification only change the physical characteristics. From the SEM analysis, we can know that the size of the starch’s granule changes between the natural starch and the modified starch..

  12. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  13. The Effects of ZnOnanorodson the Characteristics of Sago Starch Biodegradable Films

    Directory of Open Access Journals (Sweden)

    R. Alebooyeh

    2013-01-01

    Full Text Available : Nowadays tend to use biodegradable packaging; including edible coatings and films for free from synthetic chemicals and do not cause environmental pollution, the industry is growing day by day. The aim of this research was to preparation and characterization of biodegradable films supported with ZnOnanorods. In this study, sago starch based films were prepared and   plasticized with sorbitol/ glycerol by casting method. ZnOnanorod with 0, 1, 3and 5%(w/wwas added to the films before casting the films. Films were dried at controlled conditions. Physicochemical properties such as water absorption capacity (WAC, permeability to water vapor (WVP and water solubility of the films were measured.  Also, the effects of addition of nano particles were measured on the antimicrobial properties of the films by agar diffusion method. Results showed that by increasing concentration of ZnOnanorod, solubility in water, WAC, and WVP of the films significantly (p <0.05 decreased. Furthermore, the addition of zinc oxide nanorods showed antimicrobial properties against E. Coli. In summary sago starch films supported with ZnOnanorodscan were used as active packaging for agricultural products as well as food industry. 

  14. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films.

    Science.gov (United States)

    Ren, Lili; Yan, Xiaoxia; Zhou, Jiang; Tong, Jin; Su, Xingguang

    2017-12-01

    The active packaging films based on corn starch and chitosan were prepared through mixing the starch solution and the chitosan solution (1:1) by casting. The aim of this work was to characterize and analyze the effects of the chitosan concentrations (0, 21, 41, 61 and 81wt% of starch) on physicochemical, mechanical and water vapor barrier properties as well as morphological characteristics of the corn starch/chitosan (CS/CH) films. Starch molecules and chitosan could interact through hydrogen bonding as confirmed from the shift of the main peaks to higher wavenumbers in FTIR and the reduction of crystallinity in XRD. Results showed that the incorporation of chitosan resulted in an increase in film solubility, total color differences, tensile strength and elongation at break and a decrease in Young's modulus and water vapor permeability (WVP). Elongation at break of the CS/CH films increased with increasing of chitosan concentration, and reached a maximum at 41 wt%, then declined at higher chitosan concentration. The WVP of CS/CH films increased with an increase of chitosan concentration and the same tendency observed for the moisture content. The results suggest that this biodegradable CS/CH films could potentially be used as active packaging films for food and pharmaceutical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effects of β-Glucans and resistant starch on fermentation of recalcitrant fibers in growing pigs

    NARCIS (Netherlands)

    Vries, de S.; Gerrits, W.J.J.; Kabel, M.A.; Zijlstra, Ruurd; Vasanthan, Thava

    2017-01-01

    Effects of the presence of β-glucans and resistant starch in diets on nutrient and fiber degradability of rapeseed meal [RSM] (Brassica napus) and Distillers Dried Grain with Solubles (DDGS) were tested in a 2 × 3 factorial arrangement. Two basal diets, containing either 500 g/kg RSM or DDGS and

  17. The effect of gamma irradiation on the functional properties of various starches: A comparative study

    International Nuclear Information System (INIS)

    Benbettaieb, Nasreddine

    2010-01-01

    Irradiation is one of the most effective methods able to change starch structure and its functional properties. Effects of irradiation are largely related to particular structure and molecular organisation of starch from various botanical sources. In this research, the effect of gamma irradiation (3, 5, 10, 20, 35 and 50kGy) on the rheological, structural, and morphological properties of three starch varieties (potato, tapioca and wheat) was studied. Rheological analyses show that all the starches develop different behaviours during gelatinization. Potato starch yielded the high swelling power (SP) and exhibited a maximum value of consistency during pasting, followed by that of tapioca one. The lower values of SP and maximum consistency were observed in the case of wheat starch. For all starch varieties, the pic consistency during pasting decrease with increasing irradiation dose. An increase in the SP was observed for all the studied starches irradiated with lower dose (until 20kGy). This parameter decreases at higher doses. On the other hand, irradiation improves the water solubility index (WSI) of all the studied starch. In addition, spectra of Fourier transformed infrared spectroscopy (FTIR) showed that the irradiated starch displayed a significant decrease in the intensity of the OH stretch (3000; 3600 cm -1 ), C H stretch (between 2800 and 3000 cm -1 ), bending mode of water (between 1600 and 1800 cm -1 ) and in the bending mode of glycosidic linkage (between 900 and 950cm -1 ). Structural analysis using electron spins resonance (ESR) illustrates the presence of three signals in 3490, 3500 and 3510 G, respectively. These signals confirm the presence of free radicals in the tapioca and wheat starches through radiation treatment. The X-ray diffraction (XRD) spectra showed that potato starch has B type morphology while tapioca and wheat starches have a crystalline A type morphology. In the same analysis, it was shown that irradiation treatment has no major

  18. EFFECT OF TEMPERATURE AND pH OF MODIFICATION PROCESS ON THE PHYSICAL-MECHANICAL PROPERTIES OF MODIFIED CASSAVA STARCH

    Directory of Open Access Journals (Sweden)

    Yudi Wicaksono

    2016-11-01

    Full Text Available The use of cassava starch for excipient in the manufacturing of the tablet has some problems, especially on physical-mechanical properties. The purpose of this study was to determine the effect of the differentness of temperature and pH in the process of modification on the physical-mechanical properties of modified cassava starch. Modifications were performed by suspending cassava starch into a solution of 3 % (w/v PVP K30. The effect of the difference of temperature was observed at temperatures of 25; 45 and 65 0C, while the effect of the difference of pH was observed at pH of 4.0; 7.0 and 12.0. The results showed that the temperature and pH did not affect the physical-mechanical properties of the modified cassava starch. Modification of cassava starch at pH and temperature of 7.0 and 45 0C was produced modified cassava starch with the most excellent solubility, while the best swelling power were formed by the modification process at pH and temperature of 7.0 and 25 0C. Overall, the most excellent compression properties of modified cassava starch resulted from the modification process at pH 12.

  19. Effect of physico-chemical starch properties on bread quality and ageing (model study)

    International Nuclear Information System (INIS)

    Gambus, H.

    1997-01-01

    Wheat, rye and triticale starches, both native and those subjected to: segregation according to small granules (type B) and the large ones (type A), defatting with n-propanol and NaOH solution and irradiation by gamma rays at doses 3 and 5 kGy, as well as oat starch were analysed to determine their basic physico-chemical properties. Then all these starches were used in test with baking model pup loaves (40 g) from artificially composed flour, according to starch-gluten system based on recipe (for 4 pup loaves): 80 g starch d.m., 20 g dry vital gluten d.m., 8 g sugar, 3 g salt, 1 g yeast and 70 cm 3 water at 30 o C. Starch was the only alternative component in baking recipes. Additionally, wheat breads of 250 g were baked, in which part of flour was replaced by wheat and triticale starch fraction of large granules, irradiated rye and wheat starches, as well as by oat starch. Pup loaves and 250 g-loaves were evaluated on the day baking and during 3-day storage. Following parameters were determined: volume, penetration and crumb moisture and content of dry matter in crust. Also, sensory scores were performed. In addition, every day water extract from the pup loaves crumbs was prepared and in it dry matter and blue value as an indicator of soluble amylose were determined as well as carbohydrate substances were identified according to molecular mass using gel chromatography. Based on the results obtained negative effects of small starch granules and of a supplement of oat starch on bread quality were found, in spite of a beneficial effect of fatty substances contained in it, on retardation of the crumb hardening process. Also, a positive share of starch phospholipids was ascertained, not only in the retardation of amylose retrogradation but also in stabilization of crumb pores. It was observed that intensity of amylose retrogradation in crumb is determined by both the content of fatty substances in starch granules and the ratio of bound water by starch and protein

  20. Performance properties and antibacterial activity of crosslinked films of quaternary ammonium modified starch and poly(vinyl alcohol).

    Science.gov (United States)

    Sekhavat Pour, Zahra; Makvandi, Pooyan; Ghaemy, Mousa

    2015-09-01

    There has been a growing interest in developing antibacterial polymeric materials. In the present work, novel antibacterial cross-linked blend films were prepared based on polyvinyl alcohol (PVA) and quaternary ammonium starch (ST-GTMAC) using citric acid (CA) as plasticizer and glutaraldehyde (GA) as cross-linker. The ST-GTMAC was successfully synthesized from reaction between water-soluble oxidized starch and glycidyltrimethylammonium chloride (GTMAC). The effect of ST-GTMAC, CA and GA contents on the swelling, solubility, mechanical and thermal properties of the films was investigated. It was found that incorporation of ST-GTMAC reduced UV-transmittance and provided antibacterial properties, increasing GA content increased tensile strength and decreased solubility and swelling degree of the films, while CA acted as plasticizer when its concentration was above 10 wt%. The results showed that ST-GTMAC/PVA/CA/GA film has fair antibacterial activity against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria. These results suggest that the prepared film might be used as potential antibacterial material in medical and packaging applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The effects of chilling stress after anthesis on the physicochemical properties of rice (Oryza sativa L) starch.

    Science.gov (United States)

    Zhu, Dawei; Wei, Haiyan; Guo, Baowei; Dai, Qigen; Wei, Cunxu; Gao, Hui; Hu, Yajie; Cui, Peiyuan; Li, Min; Huo, Zhongyang; Xu, Ke; Zhang, Hongcheng

    2017-12-15

    This study investigates the effect of chilling stress, over a period of three days after anthesis, on the physicochemical properties of starches derived from six rice cultivars. Chilling stress significantly affected the grain characteristics and physicochemical properties of rice starches, except for those of two varieties, NJ 9108 and ZD 18. In the other four rice cultivars subjected to chilling stress, the content of medium, and large sized granules showed a decrease, and an increase, respectively. Amylose content increased as a result of chilling stress, thereby resulting in starch with a lower swelling power, water solubility, and higher retrogradation enthalpy and gelatinization temperature. Chilling stress led to deterioration of cooked rice quality as determined by the pasting properties of starch. This study indicated that among the cultivars studied, the two rice varieties most resistant to chilling stress after rice anthesis were NJ 9108 and ZD 18. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  3. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  4. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Utilization of α-amylase enzyme from Bacillus stearothermophilus RSAII1B for maltodextrin production from sago starch

    Science.gov (United States)

    Arfah, R. A.; Ahmad, A.; Dali, S.; Djide, M. N.; Mahdalia; Arif, A. R.

    2018-03-01

    The dried sago flour derived from Palopo contains 28.80% amylose and 91.23% total carbohydrate. Based on the data, sago starch has the potential to become an alternative raw material for themaltodextrin production. Maltodextrin is one of the starch derivative products produced by hydrolysis process using the α-amylase enzyme with amaximum DE (dextrose equivalent) value of 20. The use of maltodextrin for food and pharmaceutical industries is increasing because of maltodextrin is widely used as thickener filler, surfactant and sugar substitute in milk powder. The aims of this study are to optimize the addition of enzyme concentration and hydrolysis time of α -amylase enzyme to obtain high quality ofmaltodextrin This study also aimed to characterization the obtained maltodextrin. The first step was isolation and purification α-amylase from the isolate of Bacillus stearothermophilus RSAII1B, followed by determination of the α-amylase concentration (0.05%, 0.07% and 0.09%) in 2.0% starch substrate, and the hydrolysis time ofα-amilase (60, 90, 120, 240 minutes). Maltodextrin characters observed were dextrose equivalent (DE), reducing sugar, moisture content, pH changes, color, solubility, viscosity, and total plate count (TPC). The results showed that the value of DE was 12.31, reducing sugar was 11.4%; water content was 10.92%; pH was 4.85; The color of maltodextrin powder was white bone color; solubility was 153.2 g/L; Viscositywas 210-240 cps, TPCwas 380 cfu/g. Maltodextrins produced from sago starch using the α-amylase enzyme from B.stearothermophillus RSAIIm met the quality requirements of SNI 7599: 2010.

  6. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  7. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla

    2015-01-01

    degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley alpha-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser...

  8. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  9. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  11. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.

    Science.gov (United States)

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  12. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  14. Selected Rheological Properties of RS3/4 Type Resistant Starch

    Directory of Open Access Journals (Sweden)

    Kapelko-Żeberska Małgorzata

    2017-12-01

    Full Text Available This study was aimed at determining the effect of acetylation degree and crosslinking of retrograded starch with adipic acid on selected rheological properties of prepared pastes and gels. The esterification of retrograded starch allowed obtaining preparations with various degrees of substitution with residues of acetic (0.7–11.2 g/100 g and adipic acids (0.1–0.3 g/100 g. Acetylation and crosslinking caused a decrease in amylose content of the preparations (3–21 g/100 g. Solubility of the preparations in water, in a wide range of variability, was increasing along with an increasing degree of acetylation and with a decreasing degree of crosslinking (19–100 g/100 g. Values of most of the rheological coefficients determined based on the flow curves of the prepared pastes and mechanical spectra of gels (3.5starch. Changes in the rheological properties upon the effect of double modification were not the sum of changes proceeding as a result of single modifications. Instead, interaction of both factors was observed. The conducted modifications enable modelling the properties of produced preparations.

  15. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch.

    Science.gov (United States)

    Myat, Lin; Ryu, Gi-Hyung

    2014-01-30

    In industry, a jet cooker is used to gelatinize starch by mixing the starch slurry with steam under pressure at 100-175 °C. A higher degree of starch hydrolysis in an extruder is possible with glucoamylase. Unfortunately, it is difficult to carry out liquefaction and saccharification in parallel, because the temperature of gelatinization will be too high and will inactivate glucoamylase. Since the temperature for liquefaction and saccharification is different, it is hard to change the temperature from high (required for liquefaction) to low (required for saccharification). The industrial gelatinization process is usually carried out with 30-35% (w/w) dry solids starch slurry. Conventional jet cookers cannot be used any more at high substrate concentrations owing to higher viscosity. In this study, therefore, corn starch was extruded at different melt temperatures to overcome these limitations and to produce the highest enzyme-accessible starch extrudates. Significant effects on physical properties (water solubility index, water absorption index and color) and chemical properties (reducing sugar and % increase in reducing sugar after saccharification) were achieved by addition of thermostable α-amylase at melt temperatures of 115 and 135 °C. However, there was no significant effect on % increase in reducing sugar of extruded corn starch at 95 °C. The results show the great potential of extrusion with thermostable α-amylase injection at 115 and 135 °C as an effective pretreatment for breaking down starch granules, because of the significant increase (P < 0.05) in % reducing sugar and enzyme-accessible extrudates for saccharification yield. © 2013 Society of Chemical Industry.

  17. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  18. Characterization of tropical starches modified with potassium permanganate and lactic acid

    Directory of Open Access Journals (Sweden)

    Fabiano Franco Takizawa

    2004-11-01

    Full Text Available In the present work some tropical starches were modified by an oxidative chemical treatment with potassium permanganate and lactic acid. The native and modified samples were evaluated by mid-infrared spectroscopy, differential dyeing, pH, expansion power, solubility and swelling power, clarity of the pastes, susceptibility to syneresis, carboxyl content and reducing power. All modified samples presented dark blue color, higher expansion power (except corn starch, carboxyl content and reducing power. The solubility of the modified starch granules was very high at 90ºC. At this temperature, it was not possible to measure their swelling power. The viscographic analysis showed decrease in peak viscosity and higher degree of cooking instability. The principal component analysis of the mid-infrared spectra allowed separation between native and modified samples due to the presence of carboxyl groups. The expansion was inversely related with amylose content of the starches.No presente trabalho alguns amidos tropicais foram modificados por tratamento oxidativo com permanganato de potássio e ácido lático. Amidos nativos e modificados foram avaliadas por espectroscopia na região do infravermelho médio, coloração diferencial, pH, propriedade de expansão, poder de inchamento e solubilidade, claridade das pastas, susceptibilidade a sinérese, teor carboxilas e poder redutor. Todas as amostras modificadas adquiriram intensa coloração azul quando suspensas em azul de metileno, maiores valores de expansão (exceto o amido de milho, teor de carboxilas e poder redutor. A solubilidade dos grânulos dos amidos modificados foi muito alta a temperatura de 90°C, não tendo sido possível medir o poder de inchamento. A análise viscográfica mostrou um decréscimo no pico de viscosidade e alta instabilidade ao cozimento. A análise dos componentes principais dos espectros de infravermelho médio permitiu a separação entre as amostras nativas e modificadas

  19. Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey

    Directory of Open Access Journals (Sweden)

    Paola Catalina IMBACHÍ-NARVÁEZ

    2018-03-01

    Full Text Available Abstract The effect of sweet whey and octenyl succinic anhydride (OSA-modified cassava starch on the quality and rheological properties of fermented dairy beverages was evaluated. Sweet whey (45-65% and OSA-modified cassava starch (0.8-1.2% were added to determine an optimal fermented dairy beverage with the highest viscosity and the lowest syneresis possible. The optimal fermented dairy beverage corresponded to the addition of 40.9% sweet whey and 1.13% OSA-modified cassava starch with respect to the milk and sweet whey mixture. Moreover, the rheological and quality properties of the optimal fermented dairy beverage were compared to a commercial beverage (control during 22 days of storage. No significant differences were found in soluble solids, acidity, pH and consistency index during the time evaluated, while the syneresis of both products showed an increase during storage. OSA-modified cassava starch can be used as a stabiliser in sweet whey fermented dairy beverages because it helps improve its quality properties.

  20. MICROENCAPSULATION OF TURMERIC OLEORESIN IN BINARY AND TERNARY BLENDS OF GUM ARABIC, MALTODEXTRIN AND MODIFIED STARCH

    Directory of Open Access Journals (Sweden)

    Diana Maria Cano-Higuita

    2015-04-01

    Full Text Available Spray-drying is a suitable method to obtain microencapsulated active substances in the powdered form, resulting in powders with improved protection against environmental factors as well as with higher solubility in water, as in the case of turmeric oleoresin. The present study investigated the spray-drying process of turmeric oleoresin microencapsulated with binary and ternary mixtures of different wall materials: gum Arabic, maltodextrin, and modified corn starch. A statistical simplex centroid experimental design was used considering the encapsulation efficiency, curcumin retention, process yield, water content, solubility, and particle morphology as the analyzed responses. Wall matrices containing higher proportions of modified starch and gum Arabic resulted in higher encapsulation efficiency and curcumin retention, whereas the process yield and water content increased with higher proportions of maltodextrin and gum Arabic, respectively. Regression models of the responses were obtained using a surface response method (ANOVA way, showing statistical values of R2 > 0.790. Also, mean analysis was carried out by Tukey's test, permitting to observe some statistical differences between the blends

  1. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  2. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  3. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  4. Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature.

    Science.gov (United States)

    Fettke, Joerg; Leifels, Lydia; Brust, Henrike; Herbst, Karoline; Steup, Martin

    2012-05-01

    Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹⁴C]glucose 1-phosphate, [U-¹⁴C]sucrose, [U-¹⁴C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹⁴C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹⁴-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹⁴C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹⁴C]glucose 1-phosphate or adenosine-[U-¹⁴C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹⁴C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional

  5. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  6. Microwave synthesis and adsorption performance of a novel crosslinked starch microsphere

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qintie, E-mail: qintlin@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Pan, Jianxin [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Lin, Qinlu [National Engineering Laboratory for Rice and By-Product Deep Processing, Center South University of Forestry and Technology, Changsha 41004 (China); Liu, Qianjun [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2013-12-15

    Highlights: • CSM was synthesized in a microwave-assisted inversed emulsion system. • The adsorption of methyl violet on CSM was exothermic and spontaneous. • The adsorption process followed the pseudo-second-order kinetics. • The isothermal data obeyed the Langmuir model. • pH variations did not significantly affect the adsorption of methyl violet onto CSM. -- Abstract: A new crosslinked starch microsphere (CSM) was synthesized in a microwave-assisted inversed emulsion system with soluble starch (ST) as a raw material, MBAA as a crosslinker, and K{sub 2}S{sub 2}O{sub 8}–NaHSO{sub 3} as an initiator. The synthesized starch microsphere was characterized and examined by scanning electron microscope (SEM), FTIR spectroscopy and adsorption isotherms of N{sub 2} at 77 K. Adsorption performance was investigated in methyl violet solution. The results showed that the maximum adsorption capacity for MV was 99.3 mg/g at 298 K, and the adsorption fitted pseudo-second-order kinetic model well with correlation coefficients greater than 0.99. The isothermal data obeyed the Langmuir model better compared to Freundlich model and Tempkin model, and the adsorption was exothermic and spontaneous. pH variations (2.0–10.0) did not significantly affect the adsorption of MV onto CSM.

  7. Starch and sucrose synthesis in Phaseolus vulgaris as affected by light, CO2, and abscisic acid

    International Nuclear Information System (INIS)

    Sharkey, T.D.; Berry, J.A.; Raschke, K.

    1985-01-01

    Phaseolus vulgaris L. leaves were subjected to various light, CO 2 , and O 2 levels and abscisic acid, then given a 10 minute pulse of 14 CO 2 followed by a 5 minute chase with unlabeled CO 2 . After the chase period, very little label remained in the ionic fractions except at low CO 2 partial pressure. Most label was found in the neutral, alcohol soluble fraction or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate. Starch formation increased linearly with assimilation rate, but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO 2 in combination with low O 2 caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO 2 assimilation, with sucrose the preferred product at very low assimilation rates

  8. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  9. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  10. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  11. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. IMPACT INJURY DIAGNOSIS IN MANGO THROUGH STARCH DEGRADATION INDEX

    Directory of Open Access Journals (Sweden)

    FRANCISCO DE ASSIS DE SOUSA

    2017-01-01

    Full Text Available This study aimed to evaluate the use of starch degradation index (SDI in the diagnosis of areas of impact injuries in 'Tommy Atkins' mango, in different maturation stages. The experiment layout was a fully randomized factorial design (5 x 2, represented by five maturation stages and two handlings, with and without impact, with four replicates. SDI was determined through a subjective scale of scores indicating mango pulp darkened areas by reaction with iodine-potassium iodide solution. Subsequently, these scores were correlated with physicochemical quality variables. The results showed no influence of impact on fruit quality, in any of the studied maturation stages. Moreover, soluble solid contents increased throughout maturation stages, regardless of whether the fruits suffered impact or not. As a result, SDI is unsuitable to indicate fruit impact injury. However, there is a good correlation between SDI and pulp color, vitamin C, pH, titratable acidity, soluble solids, SS/ TA ratio and non-reducing sugars.

  14. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  15. THE POLYMORPHISM OF THE SUS4 SUCROSE SYNTHASE DOMAIN SEQUENCES IN RUSSIAN, BELORUSSIAN AND KAZAKH POTATO CULTIVARS

    Directory of Open Access Journals (Sweden)

    M. A. Slugina

    2016-01-01

    Full Text Available The potato is one of the main strategic crops in the Russian Federation, Belarus and Kazakhstan. Currently, we have achieved significant advances in the understanding of metabolic mechanism of carbohydrate and interconversion «sucrose – starch» in potato tubers. Sucrose synthase (Sus is a key enzyme in the breakdown of sucrose. Sucrose synthase (Sus is catalyzing a reversible reaction of conversion sucrose and UDP into fructose and UDP-glucose. The identification and subsequent characterization of the genes encoding plant sucrose synthase is the first step towards understanding their physiological roles and metabolic mechanism involved in carbohydrate accumulation in potato tubers. In the present work the nucleotide and amino acid polymorphism of the Sus4 gene fragments containing sequences of the sucrose synthase domain were analyzed. Sus4 gene fragments (intron III – exon VI in 9 potato cultivars of Russian, Kazakh and Belarusian breeding were analyzed. The polymorphism of the Sus4 sucrose synthase domain sequences was first examined. The length of analyzed fragment varied from 977 b.p. (cultivars Favorit, Karasaiskii, Miras to 1013 b.p. (cultivars Zorochka, Manifest, Elisaveta, Bashkirskii. It was demonstrated that the examined sequences contained point mutations, as well as insertions and deletions. The common polymorphism level was 5.82%. It was shown that the examined sequences contained 58 SNPs and 4 indels. The most variable were introns IV (12.4% and V (9.18%. The most variable was exon IV. 7 allelic variants were detected. 6 different amino acid sequences specific to different varieties were also identified.

  16. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  18. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  19. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  20. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  1. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  2. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  3. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  4. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  5. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  6. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  7. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  8. Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy

    DEFF Research Database (Denmark)

    Travers, Sylvia; Bertelsen, Marianne; Petersen, Karen

    2014-01-01

    Regression models for predicting preharvest dry matter (DM) and soluble solids content (SSC), based on two spectral ranges (680-1000 nm and 1100-2350 nm), were compared. Models based on longer NIR spectra were more successful for both parameters (DM/SSC: R2 = 0.78-0.84; RMECV = 0.78/0.44; LVs = 6....../7). SSC prediction was better than expected considering the presence of starch in fruit. Generally poor SSC prediction in the presence of starch could be related to the inability of models to distinguish between forms of carbohydrate. Variable selection and regression coefficients highlighted...... fruit. Further research is needed to qualify and build on the results presented here....

  9. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  10. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  11. Encapsulating fatty acid esters of bioactive compounds in starch

    Science.gov (United States)

    Lay Ma, Ursula Vanesa

    . However, only retinyl palmitate formed a complex with amylopectin. In general, ascorbyl palmitate resulted in the highest complexation, followed by retinyl palmitate and phytosterol ester. The presence of native lipids in Hylon VII starch did not inhibit complex formation. On the contrary, native lipids appear to increase the complexation yield and thermal stability of the starch-fatty acid ester inclusion complexes, possibly due to the formation of ternary complexes. From the three fatty acid esters studied, only ascorbyl palmitate was entrapped in starch spherulites. Various structures including round spherulites, various sizes of torus-shape spherulites, non-spherulitic birefringent and non-birefringent particles, "balloon" morphologies, and gel-like material were formed depending on processing conditions. However, only the torus-shape spherulites, and some non-spherulitic birefringent and non-birefringent particles showed ascorbyl palmitate entrapment. The % yield of the precipitate increased with higher % of added Hylon VII, and decreased with higher heating temperature and faster cooling rates. The amount of entrapped ascorbyl palmitate in the starch precipitate seems to be governed by the amount of this compound added during processing. This study showed that starch can form inclusion complexes with fatty acid esters which may be used for the delivery of certain bioactive molecules. In addition, encapsulation of fatty acid esters in starch spherulites may be a good potential delivery system for water soluble bioactive molecules. However, further research is necessary to gain a better understanding of the type of molecules that can be entrapped in starch spherulites, and the factors affecting spherulitic crystallization and bioactive compound entrapment.

  12. The Dynamics of Starch and Total Sugars during Fruit Development for Ionathan, Starkrimson and Golden Delicious Apple Varieties

    Directory of Open Access Journals (Sweden)

    Elena Andruţa Mureşan

    2015-05-01

    Full Text Available Apples represent one of the most important elements in the human diet. The research carried out involved three apple varieties (Starkimson, Ionathan and Golden Delicious harvested during development, which were analyzed in terms of physico-chemical profile. During fruit development, diameter and mass increased continuously for all the three apple varieties studied, acidity decreased and total soluble solids content increased significantly. The pH values of the apple pulp also increased confirming the results obtained for the acidity. The starch concentration was reduced in the early stages of fruit development in all three varieties of apple studied. Starch concentration significantly increased (p <0.05 starting 35 days after full bloom, similar for all three varieties studied. The peak of starch concentration for all three varieties under study was reached at 65 days after full bloom. Starch concentration gradually decreased starting 107 days after full bloom until technological maturity. The results provide important information on how to make the best use of the apple cultivars investigated, and not only, for both technological research and processing practice. Also, they determine the best time to use the apples from physiological falls in different foods and pharmaceuticals.

  13. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  14. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  15. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  16. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  17. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  18. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  19. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  20. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  1. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  3. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  4. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  5. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  6. Impact of local hydrothermal treatment during bread baking on soluble amylose, firmness, amylopectin retrogradation and water mobility during bread staling.

    Science.gov (United States)

    Besbes, Emna; Le Bail, Alain; Seetharaman, Koushik

    2016-01-01

    The impact of hydrothermal processing undergone by bread dough during baking on the degree of starch granule disruption, on leaching of soluble amylose, on water mobility, on firmness and on amylopectin retrogradation during staling has been investigated. Two heating rates during baking have been considered (4.67 and 6.31 °C/min) corresponding respectively to baking temperature of 220 and 240 °C. An increase in firmness and in the amount of retrogradated amylopectin accompanied by a decrease in freezable water has been observed during staling. Although a lower heating rate yielded in larger amount of retrogradated amylopectin retrogradation, it resulted in a lower firmness. Additionally, the amount of soluble amylose and the relaxation times of water measured by Nuclear Magnetic Resonance NMR (T20, T21 and T22) decreased during staling. It was demonstrated that the amount of soluble amylose was higher for bread crumb baked at lower heating rate, indicating that an increasing amount of amylose is leached outside the starch granules. This was corresponding to a greater amount of retrograded amylopectin during staling. Moreover, it was found that the degree of gelatinization differs locally in a same bread slice between the top, the centre and the bottom locations in the crumb. This was attributed to the differences in kinetics of heating, the availability of water during baking and the degree of starch granule disruption during baking. Based on first order kinetic model, it was found that staling kinetics were faster for samples baked at higher heating rate.

  7. Carbon isotope composition of intermediates of the starch-malate sequence and level of the crassulacean acid metabolism in leaves of Kalanchoe blossfeldiana Tom Thumb.

    Science.gov (United States)

    Deleens, E; Garnier-Dardart, J; Queiroz, O

    1979-09-01

    Isotype analyses were performed on biochemical fractions isolated from leaves of Kalanchoe blossfeldiana Tom Thumb. during aging under long days or short days. Irrespective of the age or photoperiodic conditions, the intermediates of the starch-malate sequence (starch, phosphorylated compounds and organic acids) have a level of (13)C higher than that of soluble sugars, cellulose and hemicellulose. In short days, the activity of the crassulacean acid metabolism pathway is predominant as compared to that of C3 pathway: leaves accumulate organic acids, rich in (13)C. In long days, the activity of the crassulacean acid metabolism pathway increases as the leaves age, remaining, however, relatively low as compared to that of C3 pathway: leaves accumulate soluble sugars, poor in (13)C. After photoperiodic change (long days→short days), isotopic modifications of starch and organic acids suggest evidence for a lag phase in the establishment of the crassulacean acid metabolism pathway specific to short days. The relative proportions of carbon from a C3-origin (RuBPC acitivity as strong discriminating step, isotope discrimination in vivo=20‰) or C4-origin (PEPC activity as weak discriminating step, isotope discrimination in vivo=4‰) present in the biochemical fractions were calculated from their δ(13)C values. Under long days, 30 to 70% versus 80 to 100% under short days, of the carbon of the intermediates linked to the starch-malate sequence, or CAM pathway (starch, phosphorylated compounds and organic acids), have a C4-origin. Products connected to the C3 pathway (free sugars, cellulose, hemicellulose) have 0 to 50% of their carbon, arising from reuptake of the C4 from malate, under long days versus 30 to 70% under short days.

  8. Influence of crop load on the expression patterns of starch metabolism genes in alternate-bearing citrus trees.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Lluch, Yolanda; Baroja-Fernández, Edurne; Pozueta-Romero, Javier; Molina, Rosa-Victoria

    2014-07-01

    The fruit is the main sink organ in Citrus and captures almost all available photoassimilates during its development. Consequently, carbohydrate partitioning and starch content depend on the crop load of Citrus trees. Nevertheless, little is known about the mechanisms controlling the starch metabolism at the tree level in relation to presence of fruit. The aim of this study was to find the relation between the seasonal variation of expression and activity of the genes involved in carbon metabolism and the partition and allocation of carbohydrates in 'Salustiana' sweet orange trees with different crop loads. Metabolisable carbohydrates, and the expression and activity of the enzymes involved in sucrose and starch metabolism, including sucrose transport, were determined during the year in the roots and leaves of 40-year-old trees bearing heavy crop loads ('on' trees) and trees with almost no fruits ('off' trees). Fruit altered photoassimilate partitioning in trees. Sucrose content tended to be constant in roots and leaves, and surplus fixed carbon is channeled to starch production. Differences between 'on' and 'off' trees in starch content can be explained by differences in ADP-glucose pyrophosphorylase (AGPP) expression/activity and α-amylase activity which varies depending on crop load. The observed relation of AGPP and UGPP (UDP-glucose pyrophosphorylase) is noteworthy and indicates a direct link between sucrose and starch synthesis. Furthermore, different roles for sucrose transporter SUT1 and SUT2 have been proposed. Variation in soluble sugars content cannot explain the differences in gene expression between the 'on' and 'off' trees. A still unknown signal from fruit should be responsible for this control. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  10. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  11. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial.

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-03-17

    Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed 'functional' bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods : Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values ( p = 0.028), and by ~0.6% vs. the control group ( p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes.

  12. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial

    Science.gov (United States)

    Tessari, Paolo; Lante, Anna

    2017-01-01

    Design: Functional foods may be useful for people with diabetes. The soluble fibers beta glucans can modify starch digestion and improve postprandial glucose response. We analyzed the metabolic effects of a specifically designed ‘functional’ bread, low in starch, rich in fibers (7 g/100 g), with a beta glucan/starch ratio of (7.6:100, g/g), in people with type 2 diabetes mellitus. Methods: Clinical and metabolic data from two groups of age-, sex- and glycated hemoglobin-matched diabetic subjects, taking either the functional bread or regular white bread, over a roughly six-month observation period, were retrieved. Results: Bread intake did not change during the trial. The functional bread reduced glycated hemoglobin by ~0.5% (absolute units) vs. pre-treatment values (p = 0.028), and by ~0.6% vs. the control group (p = 0.027). Post-prandial and mean plasma glucose was decreased in the treatment group too. Body weight, blood pressure and plasma lipids did not change. The acceptance of the functional bread was good in the majority of subjects, except for taste. Conclusions: A starch-restricted, fiber-rich functional bread, with an increased beta glucan/starch ratio, improved long term metabolic control, and may be indicated in the dietary treatment of type 2 diabetes. PMID:28304350

  13. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  14. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  15. Propriedades de barreira e solubilidade de filmes de amido de ervilha associado com goma xantana e glicerol Barrier properties of films of pea starch associated with xanthan gum and glycerol

    Directory of Open Access Journals (Sweden)

    Manoel D. da Matta Jr

    2011-01-01

    Full Text Available O objetivo do trabalho foi avaliar as propriedades de barreira e a solubilidade de biofilmes obtidos a partir de amido de ervilha de alto teor de amilose em associação à goma xantana e glicerol. Soluções filmogênicas (SF com diferentes teores de amido de ervilha (3, 4 e 5%, goma xantana (0, 0,05 e 0,1% e glicerol (proporção glicerol-amido de 1:5 P/P foram estudadas. As SF foram obtidas por ebulição (5 minutos, seguida de autoclavagem por 1 hora a 120 ºC e os filmes foram preparados por casting. O aumento da concentração de amido e de glicerol na composição causou aumento da espessura e da solubilidade dos filmes em água. O plastificante gerou ainda elevação dos coeficientes de permeabilidade ao vapor d'água e ao oxigênio. O aumento da concentração da goma xantana não interferiu nas propriedades estudadas. Os biofilmes obtidos a partir de amido de ervilha verde, associado ou não à goma xantana e glicerol, se comparados com filmes de amido de ervilha amarelas e outras fontes de amido, apresentaram boa barreira ao oxigênio e ao vapor d'água e baixa solubilidade em água.The aim of this work was to evaluate the barrier properties and solubility of biofilms made from wrinkled pea starch with high amylose content in association with xanthan gum and glycerol. Filmogenic solution (FS with different levels of pea starch (3, 4 and 5%, xanthan gum (0, 0.05 and 0.1% and glycerol (glycerol-starch 1:5 W/W were tested. FS was obtained by boiling (5 minutes, autoclaving for 1 hour at 120 ºC and the films were prepared by casting. The increased concentration of starch and glycerol in the composition caused increases in thickness of the films and in their solubility in water. The plasticizer also generated higher coefficients of water vapor and oxygen permeabilities to water vapor and to oxygen. The increasing concentration of xanthan gum did not interfere in the properties studied. Biofilms produced with wrinkled pea starch, with or

  16. Effects of processing moisture on the physical properties and in vitro digestibility of starch and protein in extruded brown rice and pinto bean composite flours.

    Science.gov (United States)

    Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J

    2016-11-15

    The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  18. Molecular cloning of a seed specific multifunctional RFO synthase/ galactosylhydrolase in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Roman eGangl

    2015-09-01

    Full Text Available Stachyose is among the raffinose family oligosaccharides one of the major water-soluble carbohydrates next to sucrose in seeds of a number of plant species. Especially in leguminous seeds, e.g. chickpea, stachyose is reported as the major component. In contrast to their ambiguous potential as essential source of carbon for germination, raffinose family oligosaccharides are indigestible for humans and can contribute to diverse abdominal disorders.In the genome of Arabidopsis thaliana, six putative raffinose synthase genes are reported, whereas little is known about these putative raffinose synthases and their biochemical characteristics or their contribution to the raffinose family oligosaccharide physiology in A. thaliana.In this paper, we report on the molecular cloning, functional expression in Escherichia coli and purification of recombinant AtRS4 from A. thaliana and the biochemical characterisation of the putative stachyose synthase (AtSTS, At4g01970 as a raffinose and high affinity stachyose synthase (Km for raffinose 259.2 ± 21.15 µM as well as stachyose and galactinol specific galactosylhydrolase. A T-DNA insertional mutant in the AtRS4 gene was isolated. Only sqPCR from WT siliques showed a specific transcriptional AtRS4 PCR product. Metabolite measurements in seeds of ΔAtRS4 mutant plants revealed a total loss of stachyose in ΔAtRS4 mutant seeds. We conclude that AtRS4 is the only stachyose synthase in the genome of A. thaliana that AtRS4 represents a key regulation mechanism in the raffinose family oligosaccharide physiology of A. thaliana due to its multifunctional enzyme activity and that AtRS4 is possibly the second seed specific raffinose synthase beside AtRS5, which is responsible for Raf-accumulation under abiotic stress.

  19. Synthesis, Surface Modification and Optical Properties of Thioglycolic Acid-Capped ZnS Quantum Dots for Starch Recognition at Ultralow Concentration

    Science.gov (United States)

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Ahmadieh, Mahnaz; Mogharei, Azadeh; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-11-01

    In this research, water-soluble thioglycolic acid-capped ZnS quantum dots (QDs) are synthesized by the chemical precipitation method. The prepared QDs are characterized using x-ray diffraction and transmission electron microscopy. Results revealed that ZnS QDs have a 2.73 nm crystallite size, cubic zinc blende structure, and spherical morphology with a diameter less than 10 nm. Photoluminescence (PL) spectroscopy is performed to determine the presence of low concentrations of starch. Four emission peaks are observed at 348 nm, 387 nm, 422 nm, and 486 nm and their intensities are quenched by increasing concentration of starch. PL intensity variations in the studied concentrations range (0-100 ppm) are best described by a Michaelis-Menten model. The Michaelis constant ( K m) for immobilized α-amylase in this system is about 101.07 ppm. This implies a great tendency for the enzyme to hydrolyze the starch as substrate. Finally, the limit of detection is found to be about 6.64 ppm.

  20. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    Science.gov (United States)

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  3. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  4. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  6. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  7. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  8. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  9. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  10. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  11. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  12. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  13. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  14. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  15. Starch and chitosan oligosaccharides as interpenetrating phases in poly(N-isopropylacrylamide) injectable gels

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jacquelin N.; Posada, James J. [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Rezende, Rodrigo A. [Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil); Sabino, Marcos A., E-mail: msabino@usb.ve [Chemistry Department, B" 5IDA Research Group, Universidad Simón Bolívar, Caracas (Venezuela, Bolivarian Republic of); Divisão de Tecnologias Tridimensionais–Centro de Tecnologia da Informação Renato Archer, Campinas, SP (Brazil)

    2014-04-01

    Thermosensitive interpenetrating gels were prepared by physically blending poly(N-isopropylacrylamide) (PNIPA) as the matrix and the following polysaccharides as interpenetrating phases: chitosan oligosaccharides (identified as QNAD and QNED) and soluble starch (STARCH). The molecular weight of the dispersed phase, the free water/bound water ratio and the thermosensitivity (transition temperature: LCST) of the gels were determined. It was found that these gels are pseudoplastic and that their viscosity depends on the molecular weight of the dispersed phase. LCST transition occurred around 35–37 °C. The morphology of the porosity of the freeze-dried samples was studied by Scanning Electron Microscopy (SEM). An in vitro test of cell hemolysis on blood agar showed that these gels are noncytotoxic. According to the results obtained, these interpenetrating gels show characteristics of an injectable material, and have a transition LCST at body temperature, which reinforces their potential to be used in the surgical field and as scaffolds for tissue engineering. - Highlights: • Physical blends were prepared to obtain thermosensitive gels PNIPA/polysaccharides. • Rheological test allowed verifying the injectability of the gels. • Gels showed a LCST ∼ 37 °C, which makes them interesting for biomedical applications. • Porosity is a function of hydrophobicity/hydrophilicity/molecular weight of phases. • The PNIPA/starch gel showed better morphology as scaffold for tissue engineering.

  16. EVALUACIÓN DE LAS PROPIEDADES QUÍMICAS Y FUNCIONALES DEL ALMIDÓN NATIVO DE ÑAME CONGO ( Dioscorea bulbifera L. PARA PREDECIR SUS POSIBLES USOS TECNOLÓGICOS I EVALUATION OF CHEMICAL AND FUNCTIONAL PROPERTIES OF NATIVE STARCH OF CONGO YAM ( Dioscorea bulbifera L. TO PREDICT ITS POSSIBLE TECHNOLOGICAL USES

    Directory of Open Access Journals (Sweden)

    Ninoska Meaño Correa

    2018-04-01

    Full Text Available In Venezuela, the starches are mostly obtained from corn, potato, yuca and rice. Nonetheless, there are other sources for starch production and local consumption whose potential could be exploited, seeking alternatives to increase the added value to local agricultural products. Question arose about to evaluate chemical and functional properties of native starch from congo yam in order to predict its possible uses. With this purpose, bulbs of congo yam were collected in the town of Santa Ana of Anzoategui state, Venezuela, and starch was extracted from them for evaluating the yield, purity, chemical composition, amylose content, gel clarity, swelling power and solubility. The starch yield was 7.44%, and its purity was 99.29%. The chemical composition (on dry basis was of 11.29% moisture, 0.29% protein, 0.21% fat, 0.21% ash and 0.0047% phosphorus. The average content of amylose and amylopectin was 30.63 and 69.37%, respectively. As to the functional properties of starchits swelling power had a maximum of 49.05 g gel/g of starch at 95°C, clear gel formation with a transmittance rate of 91 % and a solubility that increases as the temperature rises. These results indicate that the yam congo is a source of starch with advantageous properties, a high amylose content, a clear gel with high swelling power

  17. Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery

    OpenAIRE

    Phromsopha, Theeraphol; Baimark, Yodthong

    2014-01-01

    Information on the preparation and properties of starch/gelatin blend microparticles with and without crosslinking for drug delivery is presented. The blend microparticles were prepared by the water-in-oil emulsion solvent diffusion method. Glutaraldehyde and methylene blue were used as the crosslinker and the water-soluble drug model, respectively. The blend microparticles were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis spe...

  18. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  19. Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility.

    Science.gov (United States)

    Cozannet, Pierre; Kidd, Michael T; Montanhini Neto, Roberto; Geraert, Pierre-André

    2017-08-01

    This study was carried out to evaluate the effect of a multi-carbohydrase complex (MCC) rich in xylanase (Xyl) and arabinofuranosidase (Abf) on overall broiler feed digestibility in broilers. Energy utilization and digestibility of dry matter (DM), organic matter (OM), protein, starch, fat, and insoluble and soluble fibers were measured using the mass-balance method. The experiment was carried out on 120 broilers (3-week-old chickens). Broilers were distributed over 8 treatments to evaluate the effect of the dietary arabinoxylan content and nutrient density with and without MCC (Rovabio® Advance). The graded content of arabinoxylan (AX) was obtained using different raw materials (wheat, rye, barley, and dried distillers' wheat). Diet-energy density was modified with added fat. Measurements indicated that nutrient density and AX content had a significant effect on most digestibility parameters. Apparent metabolizable energy (AME) was significantly increased (265 kcal kg-1) by MCC. The addition of MCC also resulted in significant improvement in the digestibility of all evaluated nutrients, with average improvements of 3.0, 3.3, 3.2, 3.0, 6.2, 2.9, 5.8, and 3.8% units for DM, OM, protein, starch, fat, insoluble and soluble fibers, and energy utilization, respectively. The interaction between MCC and diet composition was significant for the digestibility of OM, fat, protein, and energy. Nutrient digestibility and diet AME were negatively correlated with AX content (P digestible nutrient (i.e., starch, protein, fat, insoluble and soluble fibers) content with and without MCC (R2 = 0.87; RSD = 78 kcal kg-1). This study confirms that the presence of AX in wheat-based diets and wheat-based diets with other cereals and cereal by-products reduces nutrient digestibility in broiler chickens. Furthermore, the dietary addition of MCC, which is rich in Xyn and Abf, reduced deleterious effect of fiber and improved overall nutrient digestibility in broiler diets. © 2017 Poultry

  20. Characterization of Corn Starch Films Reinforced with CaCO3 Nanoparticles

    Science.gov (United States)

    Sun, Qingjie; Xi, Tingting; Li, Ying; Xiong, Liu

    2014-01-01

    The characterization of corn starch (CS) films impregnated with CaCO3 nanoparticles was investigated. Criteria such as morphology, crystallinity, water vapor permeability (WVP), opacity, and mechanical properties were the focus of the investigation. It was found that the CaCO3 contents had significant effects on the tensile properties of the nanocomposite films. The addition of CaCO3 nanoparticles to the CS films significantly increased tensile strength from 1.40 to 2.24 MPa, elongation from 79.21 to 118.98%, and Young’s modulus from 1.82 to 2.41 MPa. The incorporation of CaCO3 nanoparticles increased the opacity of films, lowered the degree of WVP and film solubility value compared to those of the CS films. The results of scanning electron microscopy (SEM) showed that with the increase of CaCO3 nanoparticles content in starch films, the roughness of the films increased, and pores or cavities were found on the surface of the films, while small cracks were observed in the structures of the fractured surfaces. X-ray diffraction showed that the addition of nanoparticles increased the peaks in the intensity of films. PMID:25188503

  1. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  2. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  3. The Research on Thermal Properties and Hydrophobility of the Native Starch/hydrolysis Starch Blends with Treated CaCO3 Powder

    Science.gov (United States)

    Liu, Chia-I.; Huang, Chi-Yuan

    2008-08-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60° to 95° when 15wt% treated CaCO3 was added. Treated CaCO3 was confirmed to improve the hydrophobility of starch blends effectively.

  4. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO3 POWDER

    International Nuclear Information System (INIS)

    Liu, C.-I; Huang, C.-Y.

    2008-01-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO 3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO 3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95 deg. when 15wt% treated CaCO 3 was added. Treated CaCO 3 was confirmed to improve the hydrophobility of starch blends effectively

  5. Behavior of some micro-organisms cultivated in the presence of extracts of irradiated maize starch

    International Nuclear Information System (INIS)

    Mucchielli, Alain; Fretton, Robert; Saint-Lebe, Louis

    1977-01-01

    The bactericidal effect of water soluble radiolysis products of Maize starch on Escherichia coli cultures declines when the initial population grows. This toxicity varies with the culture environment and the bacterial species: Bacillus subtilis, Lactobacillus plantarum, Streptococcus faecalis, Enterobacter sp. Moreover, for the eucaryote cell Saccharomyces cerevisiae, wild strain or muting 'small colonies', only the generating time is altered by the active parts of radiolysis products. The results are analysed with regard to the hypothesis that the hydrogen peroxide is responsible for this toxicity [fr

  6. The impact of germination on the characteristics of brown rice flour and starch.

    Science.gov (United States)

    Xu, Jie; Zhang, Hui; Guo, Xiaona; Qian, Haifeng

    2012-01-30

    In recent years, germinated brown rice as a functional food has received great attention with its improved sensory and nutritional properties. Particularly of interest are the high levels of γ-amino butyric acid (GABA) which can be obtained during germination. However, more studies are needed to fully understand the effect of germination on the physicochemical properties of brown rice. Germination altered the chemical composition of brown rice, resulting in an increase in reducing sugar and ash content, and a reduction in amylose. Solubility, paste viscosity, transition temperatures (T(o) , T(p) and T(c) ) and percentage of retrogradation (%Retrogradation) were decreased, while swelling power and turbidity were significantly increased. Scanning electron micrographs indicated that starch granules from germinated brown rice became smaller and less homogeneous. Moreover, germination shortened the chain length of amylopectin and amylose molecules. This investigation provides information on changes in the characteristics of rice flour and rice starch during germination, leading to a better understanding on the chemistry of brown rice germination. Copyright © 2011 Society of Chemical Industry.

  7. Nutrient Intake and Digestibility of Cynomolgus Monkey (Macaca fascicularis Fed with High Soluble Carbohydrate Diet: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    DEWI APRI ASTUTI

    2009-12-01

    Full Text Available High carbohydrate as obese diet is not yet available commercially for monkeys. Therefore, this preliminary study was to carry out nutrient intake and digestibility of cynomolgus monkeys (Macaca fascicularis fed with high soluble carbohydrate diet compared to monkey chow. Five adult female macaques (average body weight 2.67 kg were made to consume freshly diet. Commercial monkey chows (contains 3500 cal/g energy and 35% starch were fed to three adult females (average body weight 3.62 kg. Nutrient intakes and digestibility parameters were measured using modified metabolic cages. Result showed that average of protein, fat, starch, and energy intakes in treatment diet were higher than control diet (T-test. Fat intake in the treatment diet was three times higher, while starch and energy intakes were almost two times higher than monkey chow. Digestibility percentage of all nutrients were the same in both diets except for the protein. The study concludes that the freshly prepared high sugar diet was palatable and digestible for the cynomolgus monkeys. Further studies are in progress to develop obese diet high in energy content based on fat and source of starch treatments.

  8. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  9. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  10. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  11. Application of edible coating with starch and carvacrol in minimally processed pumpkin.

    Science.gov (United States)

    Santos, Adriele R; da Silva, Alex F; Amaral, Viviane C S; Ribeiro, Alessandra B; de Abreu Filho, Benicio A; Mikcha, Jane M G

    2016-04-01

    The present study evaluated the effect of an edible coating of cassava starch and carvacrol in minimally processed pumpkin (MPP). The minimal inhibitory concentration (MIC) of carvacrol against Escherichia coli, Salmonella enterica serotype Typhimurium, Aeromonas hydrophila, and Staphylococcus aureus was determined. The edible coating that contained carvacrol at the MIC and 2 × MIC was applied to MPP, and effects were evaluated with regard to the survival of experimentally inoculated bacteria and autochthonous microflora in MPP. Total titratable acidity, pH, weight loss, and soluble solids over 7 days of storage under refrigeration was also analyzed. MIC of carvacrol was 312 μg/ml. Carvacrol at the MIC reduced the counts of E. coli and S. Typhimurium by approximately 5 log CFU/g. A. hydrophila was reduced by approximately 8 log CFU/g, and S. aureus was reduced by approximately 2 log CFU/g on the seventh day of storage. Carvacrol at the 2 × MIC completely inhibited all isolates on the first day of Storage. coliforms at 35 °C and 45 °C were not detected (< 3 MPN/g) with either treatment on all days of shelf life. The treatment groups exhibited a reduction of approximately 2 log CFU/g in psychrotrophic counts compared with controls on the last day of storage. Yeast and mold were not detected with either treatment over the same period. The addition of carvacrol did not affect total titratable acidity, pH, or soluble solids and improved weight loss. The edible coating of cassava starch with carvacrol may be an interesting approach to improve the safety and microbiological quality of MPP.

  12. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  13. Comparison of Tensile, Permeability and Color Properties of Starch-based Bionanocomposites Containing Two Types of Fillers: Sodium Montmorilonite and Cellulose Nanocrystal

    Directory of Open Access Journals (Sweden)

    Nooshin Noushirvani

    2013-01-01

    Full Text Available The objective of this research was to compare the tensile, permeability, solubility and color properties of plasticized starch-polyvinyl alcohol-Montmo-rillonite (PS-PVA-MMT and plasticized starch-polyvinyl alcohol-cellulose nanocrystal (PS-PVA-NCC bionanocomposite flms. The results showed that adding MMT (7%, increased the ultimate tensile strenght from 4.2 MPa to 4.61 MPa, however, NCC (7% did not show signifcant (p < 0.5 effect on the ultimate tensile strength. Addition of MMT decreased while NCC  increased  the  strain-to-break of  the flms. The solubility in water decreased from 23.56% to 18.77% and 11.75% for the flms containing NCC and MMT, respectively. Similarly, water vapor permeability value of 7.41 ×10-7 g/m.h.Pa was dropped to 7.05×10-7 g/m.h.Pa and 6.19×10-7 g/m.h.Pa in flms containing NCC and MMT, respectively. The results showed that the effects of MMT on tensile and permeability were higher than NCC, which can be attributed to differences in the structure and hydrophilicity of two nanoparticles.

  14. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  15. Soluble Sugars as the Carbohydrate Reserve for CAM in Pineapple Leaves 1

    Science.gov (United States)

    Carnal, Nancy Wieland; Black, Clanton C.

    1989-01-01

    Neutral ethanol-soluble sugar pools serve as carbohydrate reserves for Crassulacean acid metabolism (CAM) in pineapple (Ananas comosus (L.) Merr.) leaves. Levels of neutral soluble sugars and glucans fluctuated reciprocally with concentrations of malic acid. Hexose loss from neutral soluble-sugar pools was sufficient to account for malic acid accumulation with about 95% of the required hexose accounted for by turnover of fructose and glucose pools. Hexose loss from starch or starch plus lower molecular weight glucan pools was insufficient to account for nocturnal accumulation of malic acid. The apparent maximum catalytic capacity of pyrophosphate:6-phosphofructokinase (PPi-PFK) at 15°C was about 16 times higher than the mean maximum rate of glycolysis that occurred to support malic acid accumulation in pineapple leaves at night and 12 times higher than the mean maximum rate of hexose turnover from all carbohydrate pools. The apparent maximum catalytic capacity of ATP-PFK at 15°C was about 70% of the activity required to account for the mean maximal rate of hexose turnover from all carbohydrate pools if turnover were completely via glycolysis, and marginally sufficient to account for mean maximal rates of acidification. Therefore, at low night temperatures conducive to CAM and under subsaturating substrate concentrations, PPi-PFK activity, but not ATP-PFK activity, would be sufficient to support the rate of glycolytic carbohydrate processing required for acid accumulation. These data for pineapple establish that there are at least two types of CAM plants with respect to the nature of the carbohydrate reserve utilized to support nighttime CO2 accumulation. The data further indicate that the glycolytic carbohydrate processing that supports acidification proceeds in different subcellular compartments in plants utilizing different carbohydrate reserves. PMID:16666775

  16. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  18. Physicochemical Changes and Resistant-Starch Content of Extruded Cornstarch with and without Storage at Refrigerator Temperatures

    Directory of Open Access Journals (Sweden)

    David Neder-Suárez

    2016-08-01

    Full Text Available Effects of extrusion cooking and low-temperature storage on the physicochemical changes and resistant starch (RS content in cornstarch were evaluated. The cornstarch was conditioned at 20%–40% moisture contents and extruded in the range 90–130 °C and at screw speeds in the range 200–360 rpm. The extrudates were stored at 4 °C for 120 h and then at room temperature. The water absorption, solubility index, RS content, viscoelastic, thermal, and microstructural properties of the extrudates were evaluated before and after storage. The extrusion temperature and moisture content significantly affected the physicochemical properties of the extrudates before and after storage. The RS content increased with increasing moisture content and extrusion temperature, and the viscoelastic and thermal properties showed related behaviors. Microscopic analysis showed that extrusion cooking damaged the native starch structure, producing gelatinization and retrogradation and forming RS. The starch containing 35% moisture and extruded at 120 °C and 320 rpm produced the most RS (1.13 g/100 g after to storage at low temperature. Although the RS formation was low, the results suggest that extrusion cooking could be advantageous for RS production and application in the food industry since it is a pollution less, continuous process requiring only a short residence time.

  19. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  20. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  1. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  3. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  4. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  5. Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67

    Directory of Open Access Journals (Sweden)

    T. R. Shamala

    2012-09-01

    Full Text Available Polyhydroxyalkanoates (PHA and α-amylase (α-1,4 glucan-4-glucanohydrolase, E.C. 3.2.1.1 were co-produced by Bacillus sp. CFR-67 using unhydrolysed corn starch as a substrate. Bacterial growth and polymer production were enhanced with the supplementation of hydrolysates of wheat bran (WBH or rice bran (RBH individually or in combination (5-20 g L-1, based on weight of soluble substrates-SS. In batch cultivation, a mixture of WBH and RBH (1:1, 10 g L-1 of SS along with ammonium acetate (1.75 g L-1 and corn starch (30 g L-1 produced maximum quantity of biomass (10 g L-1 and PHA (5.9 g L-1. The polymer thus produced was a copolymer of polyhydroxybutyrate-co-hydroxyvalerate of 95:5 to 90:10 mol%. Presence of WBH and corn starch (10-50 g L-1 in the medium enhanced fermentative yield of α-amylase (2-40 U mL-1 min-1. The enzyme was active in a wide range of pH (4-9 and temperature (40-60ºC. This is the first report on simultaneous production of copolymer of bacterial PHA and α-amylase from unhydrolysed corn starch and agro-industrial residues as substrates.

  6. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  7. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Barley fibre and wet distillers' solubles in the diet of growing cattle

    Directory of Open Access Journals (Sweden)

    T. ROOT

    2008-12-01

    Full Text Available Twenty-eight bulls were used in a 3 × 2 factorial design to study the effects of two by-products from the integrated starch-ethanol process, barley fibre and distillers' solubles, as supplements for grass silage. The animals were divided into five blocks and slaughtered when the average live weight (LW of each block reached 500 kg. The three energy supplements were barley (B, a mixture (1:1 on a dry matter (DM basis of barley and barley fibre (BF, and barley fibre (F, fed without (DS- or with (DS+ wet distillers' solubles (200 g kg-1 concentrate on DM basis. Concentrates were given at the rate of 95 g DM kg-1 LW0.6. Including barley fibre in the diet did not affect feed intake, but distillers' solubles tended to increase both silage and total DM intakes as well as amino acids absorbed in the intestine and energy intake. The protein balance in the rumen increased with the inclusion of barley fibre (P

  9. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  10. Effect of extrusion cooking on the functional properties and starch components of lentil/banana blends: Response surface analysis

    OpenAIRE

    Hernández-Nava, R.G.; Bello-Pérez, L.A.; San Martín-Martínez, E.; Hernández-Sánchez, H.; Mora-Escobedo, R.

    2011-01-01

    Banana and lentil flour blends were processed in a sing le screw extruder modifying the flour properties of the blend (20.5-79.5%), at selected range of die temperature (145-175 ºC) and the feeding moisture content (20-24%). Functional characteristics evaluated in the extrudates were water absorption index (WAI), water solubility index (WSI), bulk density (BD), paste viscosity properties, microstructure and resistant starch content. The concentration of lentil/banana blends and temperature we...

  11. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  12. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  13. Plastid-to-Nucleus Retrograde Signals Are Essential for the Expression of Nuclear Starch Biosynthesis Genes during Amyloplast Differentiation in Tobacco BY-2 Cultured Cells1[W][OA

    Science.gov (United States)

    Enami, Kazuhiko; Ozawa, Tomoki; Motohashi, Noriko; Nakamura, Masayuki; Tanaka, Kan; Hanaoka, Mitsumasa

    2011-01-01

    Amyloplasts, a subtype of plastid, are found in nonphotosynthetic tissues responsible for starch synthesis and storage. When tobacco (Nicotiana tabacum) Bright Yellow-2 cells are cultured in the presence of cytokinin instead of auxin, their plastids differentiate from proplastids to amyloplasts. In this program, it is well known that the expression of nucleus-encoded starch biosynthesis genes, such as ADP-Glucose Pyrophosphorylase (AgpS) and Granule-Bound Starch Synthase (GBSS), is specifically induced. In this study, we investigated the roles of plastid gene expression in amyloplast differentiation. Microarray analysis of plastid genes revealed that no specific transcripts were induced in amyloplasts. Nevertheless, amyloplast development accompanied with starch biosynthesis was drastically inhibited in the presence of plastid transcription/translation inhibitors. Surprisingly, the expression of nuclear AgpS and GBSS was significantly repressed by the addition of these inhibitors, suggesting that a plastid-derived signal(s) that reflects normal plastid gene expression was essential for nuclear gene expression. A series of experiments was performed to examine the effects of intermediates and inhibitors of tetrapyrrole biosynthesis, since some of the intermediates have been characterized as candidates for plastid-to-nucleus retrograde signals. Addition of levulinic acid, an inhibitor of tetrapyrrole biosynthesis, resulted in the up-regulation of nuclear AgpS and GBSS gene expression as well as starch accumulation, while the addition of heme showed opposite effects. Thus, these results indicate that plastid transcription and/or translation are required for normal amyloplast differentiation, regulating the expression of specific nuclear genes by unknown signaling mechanisms that can be partly mediated by tetrapyrrole intermediates. PMID:21771917

  14. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean.

    Science.gov (United States)

    Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T

    2012-01-15

    The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.

  15. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  16. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  17. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  19. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Buleon, A

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... in temperate cereals....

  20. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9

    Science.gov (United States)

    Praseptiangga, D.; Utami, R.; Khasanah, L. U.; Evirananda, I. P.; Kawiji

    2017-02-01

    Edible films and coatings have emerged as an alternative packaging in food applications and have received much attention due to their advantages. The incorporation of essential oils in film matrices to give antimicrobial properties had been observed recently, and could be used as promising preservation technology. In this study, cassava starch-based edible coating incorporated with lemongrass essential oil (1%) was applied by spraying and dipping methods to preserve papaya MJ9 during storage at room temperature. The quality of papaya MJ9 was analyzed based on its physicochemical and microbiological properties. The addition of lemongrass essential oil (1%) significantly inhibited the microbial growth on papaya MJ9 by reducing the value of total yeast and mold as compared to the control. This study also showed that for parameters of weight loss, total soluble solid, vitamin C, and total titratable acid, papaya MJ9 with cassava starch-based edible coating incorporated with lemongrass essential oil (1%) had the lower values than control, however, they had the higher value than control on firmness parameter. These results indicate that cassava starch-based edible coating incorporated with lemongrass essential oil (1%) can be used as an alternative preservation for papaya MJ9.

  1. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  2. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  3. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  4. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  5. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    Science.gov (United States)

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  7. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  8. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  9. β-Glucans and Resistant Starch Alter the Fermentation of Recalcitrant Fibers in Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Sonja de Vries

    Full Text Available Interactions among dietary ingredients are often assumed non-existent when evaluating the nutritive value and health effects of dietary fiber. Specific fibers can distinctly affect digestive processes; therefore, digestibility and fermentability of the complete diet may depend on fiber types present. This study aimed to evaluate the effects of readily fermentable fibers (β-glucans and resistant starch on the degradation of feed ingredients containing more persistent, recalcitrant, fibers. Six semi-synthetic diets with recalcitrant fibers from rapeseed meal (pectic polysaccharides, xyloglucans, and cellulose or corn distillers dried grain with solubles (DDGS; (glucuronoarabinoxylans and cellulose with or without inclusion of β-glucans (6% or retrograded tapioca (40% substituted for corn starch were formulated. Six ileal-cannulated pigs (BW 28±1.4 kg were assigned to the diets according to a 6×6 Latin square. β-glucan-extract increased apparent total tract digestibility (ATTD of non-glucosyl polysaccharides (accounting for ~40% of the fiber-fraction from rapeseed meal (6%-units, P10%-units, P<0.001, indicating that the large amount of resistant starch entering the hindgut was preferentially degraded over recalcitrant fibers from rapeseed meal and DDGS, possibly related to reduced hindgut-retention time following the increased intestinal bulk. Fermentation of fiber sources was not only dependent on fiber characteristics, but also on the presence of other fibers in the diet. Hence, interactions in the gastrointestinal tract among fibrous feed ingredients should be considered when evaluating their nutritive value.

  10. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  11. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  12. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  13. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  14. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  15. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  16. The Antioxidant and Starch Hydrolase Inhibitory Activity of Ten Spices in an In Vitro Model of Digestion: Bioaccessibility of Anthocyanins and Carotenoids

    Directory of Open Access Journals (Sweden)

    Nilakshi Jayawardena

    2015-01-01

    Full Text Available The antioxidant and starch hydrolase inhibitory activities of cardamom, cloves, coriander, cumin seeds, curry leaves, fenugreek, mustard seeds, nutmeg, sweet cumin, and star anise extracts were investigated in an in vitro model of digestion mimicking the gastric and duodenal conditions. The total phenolic contents in all spice extracts had statistically significantly (P<0.05 increased following both gastric and duodenal digestion. This was also in correlation with the antioxidant assays quantifying the water-soluble antioxidant capacity of the extracts. The lipophilic Oxygen Radical Absorbance Capacity assay did not indicate a statistically significant change in the values during any of the digestion phases. Statistically significant (P<0.05 reductions in the anthocyanin contents were observed during the digestion phases in contrast to the carotenoid contents. With the exception of the cumin seed extract, none of the spice extracts showed statistically significant changes in the initial starch hydrolase enzyme inhibitory values prior to gastric and duodenal digestion. In conclusion, this study was able to prove that the 10 spices were a significant source of total phenolics, antioxidant, and starch hydrolase inhibitory activities.

  17. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  18. Development of highly-transparent protein/starch-based bioplastics.

    Science.gov (United States)

    Gonzalez-Gutierrez, J; Partal, P; Garcia-Morales, M; Gallegos, C

    2010-03-01

    Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Changes in Enzyme Activities Involved in Starch Synthesis and Hormone Concentrations in Superior and Inferior Spikelets and Their Association with Grain Filling of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2013-03-01

    Full Text Available The changes in activities of key enzymes involved in sucrose-to-starch conversion and concentrations of hormones in superior and inferior spikelets of super rice were investigated and their association with grain filling was analyzed. Four super rice cultivars, Liangyoupeijiu, IIyou 084, Huaidao 9 and Wujing 15, and two high-yielding and elite check cultivars, Shanyou 63 and Yangfujing 8, were used. The activities of sucrose synthase (SuSase, adenosine diphosphoglucose pyrophosphorylase (AGPase, starch synthase (StSase and starch branching enzyme (SBE, and the concentrations of zeatin + zeatin riboside (Z + ZR, indole-3-acetic acid (IAA and abscisic acid (ABA in superior and inferior spikelets were determined during the grain filling period and their relationships with grain filling rate were analyzed. Maximum grain filling rate, the time reaching the maximum grain-filling rate, mean grain filling rate and brown rice weight for superior spikelets showed a slight difference between the super and check rice cultivars, but were significantly lower in the super rice than in the check rice for inferior spikelets. Changes of enzyme activities and hormone concentrations in grains exhibited single peak curves during the grain filling period. The peak values and the mean activities of SuSase, AGPase, StSase and SBE were lower in inferior spikelets than in superior ones, as well as the peak values and the mean concentrations of Z + ZR and IAA. However, the peak value and the mean concentration of ABA were significantly higher in inferior spikelets than in superior ones and greater in the super rice than in the check rice. The grain filling rate was positively and significantly correlated with the activities of SuSase, AGPase and StSase and the concentrations of Z + ZR and IAA. The results suggested that the low activities of SuSase, AGPase and StSase and the low concentrations of Z + ZR and IAA might be important physiological reasons for the slow grain

  20. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  1. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  2. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  3. Kinetic study of enzymatic hydrolysis of potato starch

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Castellanos Domínguez

    2004-01-01

    Full Text Available This article describes the kinetic study of potato starch enzymatic hydrolysis using soluble enzymes (Novo Nordisk. Different assays divided into four groups were used: reaction time (with which it was possible to reduce the 48-72 hour duration reported in the literature to 16 hours with comparable productivity levels; selecting the set of enzymes to be used (different types were evaluated - BAN and Termamyl as alfa-amylases during dextrinisation stage, and AMG, Promozyme and Fungamyl for sacarification reaction- identifying those presenting the best performance during hydrolysis.Reaction conditions were optimised for the process's two stages (destrinisation and sacarification. Enzyme dose, calcium cofactor concentration, pH, temperature and agitation speed were studied for the first stage. Enzyme ratio, pH and agitation speed were studied for sacarification; the latter parameter reported values having no antecedents in the literature (60 rpm and 30 rpm for first and second reactions, respectively. Michaelis Menten kinetics were calculated once conditions had been optimised, varying substrate from 10-50% P/V, obtaining km and Vmax kinetic parameters for each reaction. A kinetic model was found according to local working conditions which was able to explain potato starch conversion to glucose syrup, achieving 96 dextrose equivalents by the end of the reaction, being well within the maximum range reported in the literature (94-98.Laboratory equipment was constructed prior to carrying out assays which was able to reproduce and improve the conditions reported in the literature, making it a useful, reliable tool for use in assays returning good results.

  4. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  5. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  6. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. EFFECT OF STARCH ADDITION ON THE PERFORMANCE AND SLUDGE CHARACTERIZATION OF UASB PROCESS TREATING METHANOLIC WASTEWATER

    Science.gov (United States)

    Yan, Feng; Kobayashi, Takuro; Takahashi, Shintaro; Li, Yu-You; Omura, Tatsuo

    A mesophilic(35℃) UASB reactor treating synthetic wastewater containing methanol with addition of starch was continuously operated for over 430 days by changing the organic loading rate from 2.5 to 120kg-COD/m3.d. The microbial community structure of the granules was analyzed with the molecular tools and its metabolic characteristics were evaluated using specific methanogenic activity tests. The process was successfully operated with over 98% soluble COD removal efficiency at VLR 30kg-COD/m3.d for approximately 300 days, and granulation satisfactory proceeded. The results of cloning and fluorescence in situ hybridization analysis suggest that groups related the genus Methanomethylovorans and the genus Methanosaeta were predominant in the reactor although only the genus Methanomethylovorans was predominant in the reactor treating methanolic wastewater in the previous study. Abundance of the granules over 0.5 mm in diameter in the reactor treating methanolic wastewater with addition of starch was 3 times larger than that in the reactor treating methanolic wastewater. Specific methanogenic activity tests in this study indicate that the methanol-methane pathway and the methanol-H2/CO2-methane pathway were predominant, and however, there was a certain level of activity for acetate-methane pathway unlike the reactor treating methanolic wastewater. These results suggest addition of starch might be responsible for diversifying the microbial community and encouraging the granulation.

  8. Modeling cereal starch hydrolysis during simultaneous saccharification and lactic acid fermentation; case of a sorghum-based fermented beverage, gowé.

    Science.gov (United States)

    Mestres, Christian; Bettencourt, Munanga de J C; Loiseau, Gérard; Matignon, Brigitte; Grabulos, Joël; Achir, Nawel

    2017-10-01

    Gowé is an acidic beverage obtained after simultaneous saccharification and fermentation (SSF) of sorghum. A previous paper focused on modeling the growth of lactic acid bacteria during gowé processing. This paper focuses on modeling starch amylolysis to build an aggregated SSF model. The activity of α-amylase was modeled as a function of temperature and pH, and the hydrolysis rates of both native and soluble starch were modeled via a Michaelis-Menten equation taking into account the maltose and glucose inhibition constants. The robustness of the parameter estimators was ensured by step by step identification in sets of experiments conducted with different proportions of native and gelatinized starch by modifying the pre-cooking temperature. The aggregated model was validated on experimental data and showed that both the pre-cooking and fermentation parameters, particularly temperature, are significant levers for controlling not only acid and sugar contents but also the expected viscosity of the final product. This generic approach could be used as a tool to optimize the sanitary and sensory quality of fermentation of other starchy products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  10. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  11. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  12. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  13. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  14. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors......, tannins, and lectins) in legumes has been associated with the slow starch digestion. However, it is still debated in literature to which extent the legume starch digestibility is affected by anti-nutritional factors. The in vitro starch digestion (hydrolytic index, HI) of pea (Pisum sativum) and mixtures...

  16. Influence of different hydrocolloids on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free steamed bread based on potato flour.

    Science.gov (United States)

    Liu, Xingli; Mu, Taihua; Sun, Hongnan; Zhang, Miao; Chen, Jingwang; Fauconnier, Marie Laure

    2018-01-15

    The effects of hydrocolloids (hydroxypropylmethylcellulose (HPMC), Carboxymethylcellulose (CMC), xanthan gum (XG), and apple pectin (AP)) at different concentrations on dough thermo-mechanical properties and in vitro starch digestibility of gluten-free potato steamed bread were investigated. Results showed that hydrocolloids addition significantly increased the gelatinization temperature (from 52.0 to 64.2°C) and water absorption (from 56.22 to 66.50%) of potato dough. Moreover, hydrocolloids may be interacted with protein and starch, the density of potato protein bands was decreased by hydrocolloids addition, the reason might be that higher molecular weight complexes might be formed between proteins-hydrocolloids or proteins-proteins, thus change the protein solubility. Furthermore, steamed breads with hydrocolloids presented higher specific volume and lower hardness, and the rapidly digestible starch and estimated glycemic index were significantly decreased from 45.51 to 20.64, from 69.54 to 55.17, respectively. In conclusion, HPMC and XG could be used as improvers in the gluten-free potato steamed bread. Copyright © 2017. Published by Elsevier Ltd.

  17. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  18. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  19. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  20. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  1. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  2. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  3. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  4. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  5. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  6. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  7. Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test.

    Science.gov (United States)

    Sales, Amanda J; Hiroaki-Sato, Vinícius A; Joca, Sâmia R L

    2017-02-01

    Systemic or hippocampal administration of nitric oxide (NO) synthase inhibitors induces antidepressant-like effects in animals, implicating increased hippocampal levels of NO in the neurobiology of depression. However, the role played by different NO synthase in this process has not been clearly defined. As stress is able to induce neuroinflammatory mechanisms and trigger the expression of inducible nitric oxide synthase (iNOS) in the brain, as well as upregulate neuronal nitric oxide synthase (nNOS) activity, the aim of the present study was to investigate the possible differential contribution of hippocampal iNOS and nNOS in the modulation of the consequences of stress elicited by the forced swimming test. Male Wistar rats received intrahippocampal injections, immediately after the pretest or 1 h before the forced swimming test, of selective inhibitors of nNOS (N-propyl-L-arginine), iNOS (1400W), or sGC (ODQ), the main pharmacological target for NO. Stress exposure increased nNOS and phospho-nNOS levels at all time points, whereas iNOS expression was increased only 24 h after the pretest. All drugs induced an antidepressant-like effect. However, whereas the nNOS inhibitor was equally effective when injected at different times, the iNOS inhibitor was more effective 24 h after the pretest. These results suggest that hippocampal nNOS and iNOS contribute to increase in NO levels in response to stress, although with a differential time course after stress exposure.

  8. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  9. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  10. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  13. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  14. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  15. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  16. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  17. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  18. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  19. Carbohydrate composition, viscosity, solubility, and sensory acceptance of sweetpotato- and maize-based complementary foods

    Science.gov (United States)

    Amagloh, Francis Kweku; Mutukumira, Anthony N.; Brough, Louise; Weber, Janet L.; Hardacre, Allan; Coad, Jane

    2013-01-01

    Background Cereal-based complementary foods from non-malted ingredients form a relatively high viscous porridge. Therefore, excessive dilution, usually with water, is required to reduce the viscosity to be appropriate for infant feeding. The dilution invariably leads to energy and nutrient thinning, that is, the reduction of energy and nutrient densities. Carbohydrate is the major constituent of food that significantly influences viscosity when heated in water. Objectives To compare the sweetpotato-based complementary foods (extrusion-cooked ComFa, roller-dried ComFa, and oven-toasted ComFa) and enriched Weanimix (maize-based formulation) regarding their 1) carbohydrate composition, 2) viscosity and water solubility index (WSI), and 3) sensory acceptance evaluated by sub-Sahara African women as model caregivers. Methods The level of simple sugars/carbohydrates was analysed by spectrophotometry, total dietary fibre by enzymatic-gravimetric method, and total carbohydrate and starch levels estimated by calculation. A Rapid Visco™ Analyser was used to measure viscosity. WSI was determined gravimetrically. A consumer sensory evaluation was used to evaluate the product acceptance of the roller-dried ComFa, oven-toasted ComFa, and enriched Weanimix. Results The sweetpotato-based complementary foods were, on average, significantly higher in maltose, sucrose, free glucose and fructose, and total dietary fibre, but they were markedly lower in starch content compared with the levels in the enriched Weanimix. Consequently, the sweetpotato-based complementary foods had relatively low apparent viscosity, and high WSI, than that of enriched Weanimix. The scores of sensory liking given by the caregivers were highest for the roller-dried ComFa, followed by the oven-toasted ComFa, and, finally, the enriched Weanimix. Conclusion The sweetpotato-based formulations have significant advantages as complementary food due to the high level of endogenous sugars and low starch content that

  20. Supply of avocado starch (Persea americana mill) as bioplastic material

    Science.gov (United States)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  1. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  2. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  3. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  4. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  5. Starch digestibility and predicted glycemic index of fried sweet potato cultivars

    Directory of Open Access Journals (Sweden)

    Amaka Odenigbo

    2012-07-01

    Full Text Available Background: Sweet potato (Ipomoea batatas L. is a very rich source of starch. There is increased interest in starch digestibility and the prevention and management of metabolic diseases.Objective: The aim of this study was to evaluate the levels of starch fractions and predicted glycemic index of different cultivars of sweet potato. Material and Method: French fries produced from five cultivars of sweet potato (‘Ginseng Red’, ‘Beauregard’, ‘White Travis’, ‘Georgia Jet clone #2010’ and ‘Georgia Jet’ were used. The level of total starch (TS, resistant starch (RS, digestible starch (DS, and starch digestion index starch digestion index in the samples were evaluated. In vitro starch hydrolysis at 30, 90, and 120 min were determined enzymatically for calculation of rapidly digestible starch (RDS, predicted glycemic index (pGI and slowly digestible starch (SDS respectively. Results: The RS content in all samples had an inversely significant correlation with pGI (-0.52; P<0.05 while RDS had positive and significant influence on both pGI (r=0.55; P<0.05 and SDI (r= 0.94; P<0.01. ‘White Travis’ and ‘Ginseng Red’ had higher levels of beneficial starch fractions (RS and SDS with low pGI and starch digestion Index (SDI, despite their higher TS content. Generally, all the cultivars had products with low to moderate GI values. Conclusion: The glycemic index of these food products highlights the health promoting characteristics of sweet potato cultivars.

  6. Characterization of Lentinus edodes β-glucan influencing the in vitro starch digestibility of wheat starch gel.

    Science.gov (United States)

    Zhuang, Haining; Chen, Zhongqiu; Feng, Tao; Yang, Yan; Zhang, Jingsong; Liu, Guodong; Li, Zhaofeng; Ye, Ran

    2017-06-01

    Lentinus edodes β-glucan (abbreviated LEBG) was prepared from fruiting bodies of Lentinus edodes. The average molecular weight (Mw) and polydispersity index (Mw/Mn) of LEBG were measured to be 1.868×10 6 g/mol and 1.007, respectively. In addition, the monosaccharide composition of LEBG was composed of arabinose, galactose, glucose, xylose, mannose with a molar ratio of 5:11:18:644:16. After adding LEBG, both G' and G″ of starch gel increased. This is mainly because the connecting points between the molecular chains of LEBG and starch formed so that gel network structures were enhanced. The peak temperature in the heat flow diagram shifted to a higher temperature and the peak area of the endothermic enthalpy increased. Furthermore, LEBG can significantly inhibit starch hydrolysis. The predicted glycemic index (pGI) values were reduced when starch was replaced with LEBG at 20% (w/w). It might indicate that LEBG was suitable to develop low GI noodle or bread. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants

    NARCIS (Netherlands)

    Ji, Q.; Oomen, R.J.F.J.; Vincken, J.P.; Bolam, D.N.; Gilbert, H.J.; Suurs, L.C.J.M.; Visser, R.G.F.

    2004-01-01

    Granule size is an important parameter when using starch in industrial applications. An artificial tandem repeat of a family 20 starch-binding domain (SBD2) was engineered by two copies of the SBD derived from Bacillus circulans cyclodextrin glycosyltransferase via the Pro-Thr-rich linker peptice

  8. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  9. Radiolysis of starch

    International Nuclear Information System (INIS)

    Raffi, J.; Saint-Lebe, L.; Berger, G.

    1978-01-01

    In the first part of the paper the results of work on the identification and determination of the gamma ( 60 Co) radiolysis products of maize starch are brought together and, wherever possible, a balance drawn up by chemical class. The second part of the paper deals with the main parameters governing radiolysis: dose, irradiation temperature and atmosphere, water content and the conditions under which the irradiated starch is stored. The third part, devoted to the mechanisms believed to be involved, contains the following conclusions: (a) the formation of radiation-induced products with a carbon skeleton probably results from a breaking of the -C-O-C- chains with rearrangement of the radicals and/or a reaction involving the water and the oxygen - the oxygen has an activating effect which does not fundamentally modify the mechanism, whereas the effect of the water is more complex and varies according to the product; (b) the formation of hydrogen peroxide probably implies the addition of atmospheric oxygen to the radiation-induced hydrogen atoms in the water or to the organic radicals obtained by abstraction of a hydrogen from the starch. Lastly, the different methods envisaged for confirming or improving the mechanistic hypotheses are discussed. (author)

  10. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles.

    Science.gov (United States)

    Oleyaei, Seyed Amir; Zahedi, Younes; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-08-01

    In this research, potato starch and TiO2 nanoparticles (0.5, 1 and 2wt%) films were developed. Influences of different concentrations of TiO2 on the functional properties of nanocomposite films (water-related properties, mechanical characteristics, and UV transmittance) were investigated. XRD, FTIR, and DSC analyses were used to characterize the morphology and thermal properties of the films. The results revealed that TiO2 nanoparticles dramatically decreased the values of water-related properties (water vapor permeability: 11-34%; water solubility: 1.88-9.26%; moisture uptake: 2.15-11.18%). Incorporation of TiO2 led to a slight increment of contact angle and tensile strength, and a decrease in elongation at break of the films. TiO2 successfully blocked more than 90% of UV light, while opacity and white index of the films were enhanced. Glass transition temperature and melting point of the films were positively affected by the addition of TiO2 nanoparticles. The result of XRD study exhibited that due to a limited agglomeration of TiO2 nanoparticles, the mean crystal size of TiO2 increased. Formation of new hydrogen bonds between the hydroxyl groups of starch and nanoparticles was confirmed by FTIR spectroscopy. In conclusion, TiO2 nanoparticles improved the functional properties of potato starch film and extended the potential for food packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The oxidation of the aldehyde groups in dialdehyde starch

    NARCIS (Netherlands)

    Haaksman, I.K.; Besemer, A.C.; Jetten, J.M.; Timmermans, J.W.; Slaghek, T.M.

    2006-01-01

    This paper describes the difference in relative reactivity of the aldehyde groups present in dialdehyde starch towards different oxidising agents. The oxidation of dialdehyde starch with peracetic acid and sodium bromide leads to only partial oxidation to give mono-aldehyde-carboxy starch, while

  12. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  13. Production of modified starches by gamma irradiation

    International Nuclear Information System (INIS)

    Kang, Il-Jun; Byun, Myung-Woo; Yook, Hong-Sun; Bae, Chun-Ho; Lee, Hyun-Soo; Kwon, Joong-Ho; Chung, Cha-Kwon

    1999-01-01

    As a new processing method for the production of modified starch, gamma irradiation and four kinds of inorganic peroxides were applied to commercial corn starch. The addition of inorganic peroxides without gamma irradiation or gamma irradiation without the addition of inorganic peroxides effectively decreased initial viscosity, but did not sufficiently keep viscosity stable. The combination of adding ammonium persulfate (APS) and gamma irradiation showed the lowest initial viscosity and the best stability out of the tested four kinds of inorganic peroxides. Among the tested mixing methods of APS, soaking was found to be more effective than dry blending or spraying. Therefore, the production of modified starch with low viscosity as well as with sufficient viscosity stability became feasible by the control of gamma irradiation dose levels and the amount of added APS to starch

  14. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis.

    Science.gov (United States)

    Guilherme, Ederson Paulo Xavier; de Oliveira, Jocilane Pereira; de Carvalho, Lorendane Millena; Brandi, Igor Viana; Santos, Sérgio Henrique Sousa; de Carvalho, Gleidson Giordano Pinto; Cota, Junio; Mara Aparecida de Carvalho, Bruna

    2017-11-01

    A bioreactor was built by means of immobilizing alpha-amylase from Aspergillus oryzae by encapsulation, through cryopolymerization of acrylamide monomers for the continuous starch hydrolysis. The starch hydrolysis was evaluated regarding pH, the concentration of immobilized amylase on cryogel, the concentration of starch solution and temperature. The maximum value for starch hydrolysis was achieved at pH 5.0, concentration of immobilized enzyme 111.44 mg amylase /g cryogel , concentration of starch solution 45 g/L and temperature of 35°C. The immobilized enzyme showed a conversion ratio ranging from 68.2 to 97.37%, depending on the pH and temperature employed. Thus, our results suggest that the alpha-amylase from A. oryzae immobilized on cryogel monoliths represents a potential process for industrial production of maltose from starch hydrolysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Kinetics of starch digestion and performance of broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.

    2002-01-01

    Keywords: starch, digestion rate, broiler chickens, peas, tapioca

    Starch is stored in amyloplasts of various plants like cereals and legumes and seeds of these plants are used as feedstuffs for farm animals. Starch is the major energy

  16. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    Science.gov (United States)

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc.

  17. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

    Directory of Open Access Journals (Sweden)

    Tingting Ning

    2017-02-01

    Full Text Available Objective This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR silage. Methods The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR or Leymus chinensis hay (LTMR, corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens, B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion The microbial amylase contributes to starch hydrolysis during the

  18. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  20. Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes

    Directory of Open Access Journals (Sweden)

    Swati Changdeo Jagdale

    2012-03-01

    Full Text Available The main objective of the study was to enhance the dissolution of nifedipine, a poorly water soluble drug by betacyclodextrin complexation and to study the effect of the preparation method on the in vitro dissolution profile. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of nifedipine with β-cyclodextrin was 1:1. Binary complex was prepared by different methods and was further characterized using XRD, DSC and FT-IR. A saturation solubility study was carried out to evaluate the increase in solubility of nifedipine. The optimized complex was formulated into fast-dissolving tablets by using the superdisintegrants Doshion P544, pregelatinized starch, crospovidone, sodium starch glycolate and croscarmellose sodium by direct compression. Tablets were evaluated for friability, hardness, weight variation, disintegration and in vitro dissolution. Tablets showed an enhanced dissolution rate compared to pure nifedipine.Este estudo teve por objetivo principal incrementar a dissolução do nifedipino, fármaco pouco solúvel em água, por meio de sua complexação com β-ciclodextrina e estudar o efeito do método de preparação sobre o perfil de dissolução in vitro. A razão estequiométrica, determinada por ensaio de solubilidade de fase, para a complexação de nifedipino por inclusão em β-ciclodextrina foi 1:1. O complexo binário foi preparado por diferentes métodos, sendo caracterizado utilizando-se difratometria de raios X (XRD, calorimetria diferencial de varredura (DSC e espectroscopia no infravermelho com transformada de Fourier (FT-IR. Realizou-se estudo de solubilidade de saturação para avaliar o incremento da solubilidade do nifedipino. O complexo otimizado foi formulado em comprimidos de dissolução rápida preparados por compressão direta, nos quais se utilizaram os superdesintegrantes Doshion P544, amido pré-gelatinizado, crospovidona, amidoglicolato de sódio e croscarmelose s

  1. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.

    Science.gov (United States)

    Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal

    2015-08-10

    Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.

  2. Physical and mechanical properties of LDPE incorporated with different starch sources

    Science.gov (United States)

    Kormin, Shaharuddin; Kormin, Faridah; Dalour Hossen Beg, Mohammad; Bijarimi Mat Piah, Mohd

    2017-08-01

    In this study it was investigated the incorporation of different starches, such as sago starch, corn starch, potato starch, tapioca starch and wheat starch, in low-density polyethylene matrix (LDPE) to enhanced mechanical properties and to obtain partially biodegradable product with the aim to reduce the plastics wastes in the environment. For comparison, virgin LDPE, LDPE with different sources of starch blends were prepared and characterized under the same conditions. The starches were mixed to the LDPE using a twin screw extruder to guarantee the homogeneity of the formulations. The compound were shaping processed by injection moulding. The characterization of those compounds was done by physical (density, MFI), mechanical (Universal tensile machine). The addition of starch to LDPE reduced the MFI values, the tensile strength, elongation at break and impact strength, whereas the elastic modulus, flexural modulus and flexural strength increased. LDPE/SS show the good mechanical behavior compared to other formulation. The physical and mechanical properties were evident when 5 and 30 wt% were added. Water uptake increased with increased starch content and immersion time. The time taken for the composites to equilibrate was about one month even when they were immersed completely in water.

  3. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  4. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

    Directory of Open Access Journals (Sweden)

    Guobin Luo

    2017-05-01

    Full Text Available Objective This trial was performed to examine the effects of ruminally degradable starch (RDS levels in total mixed ration (TMR with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29 were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS or 72.1% ruminally degradable starch (% of total starch, high RDS. Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  5. Effects of Sorghum [Sorghum bicolor (L. Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS Contents of Porridges

    Directory of Open Access Journals (Sweden)

    Dilek Lemlioglu-Austin

    2012-09-01

    Full Text Available Bran extracts (70% aqueous acetone of specialty sorghum varieties (tannin, black, and black with tannin were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA. The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  6. Digestion site of starch from cereals and legumes in lactating dairy cows

    DEFF Research Database (Denmark)

    Larsen, M; Lund, P; Weisbjerg, M R

    2009-01-01

    The effect of grinding and rolling (i.e. processing) of cereals and legumes (i.e. source) on site of starch digestion in lactating dairy cows was tested according to a 2×2 factorial design using a dataset derived from an overall dataset compiled from four experiments conducted at our laboratory...... digestibility of starch was decreased by rolling for legumes, whereas the three other source by processing combinations did not differ. The duodenal flow of microbial starch was estimated to 276 g/d as the intercept in the regression analysis. Apparent ruminal digestibilities of starch seemed to underestimate...... true ruminal digestibility in rations with low starch intake due to a relatively higher contribution of microbial starch to total duodenal starch flow compared to rumen escape feed starch. The small intestinal and total tract digestibility of legume starch was lower compared with starch from cereals...

  7. First principles insight into the α-glucan structures of starch

    DEFF Research Database (Denmark)

    Damager, Iben; Engelsen, Søren Balling; Blennow, Andreas

    2010-01-01

    A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated...... that the extent of crystallinity, aggregation and hydration was of fundamental importance for starch and its human analogue glycogen. Starch was deposited in the plant as a stable form in highly organized and semicrystalline granules having specific crystalline polymorphs as determined by powder X......-ray crystallography. The investigations mainly focused on the bottom-up approach of synthesis, conformation, and hydration of starch. Starch and glycogen were found to be polymers that were built up from a single monomer, D-glucopyranose, or for short D-glucose....

  8. Physicochemical characterization of starches from seven improved ...

    African Journals Online (AJOL)

    SARAH

    2014-01-31

    Jan 31, 2014 ... Key words: Cassava, starch, functional properties, industrial utilization. ... in demand for starch (Davis et al., 2002). Potato, maize, wheat and cassava are the major ... ambient temperature and stored at 4 °C for 4 weeks.

  9. Synthesis and properties of silane-fluoroacrylate grafted starch.

    Science.gov (United States)

    Qu, Jia; He, Ling

    2013-10-15

    The latex of silane-fluoroacrylate grafted starch for coating materials, VTMS-starch/P(MMA/BA/3FMA), is obtained by two step grafting reactions. Vinyltrimethoxysilane (VTMS) is primarily grafted onto starch by condensation between Si-OH and C-OH at 120 °C, and then the copolymer of methyl methacrylate (MMA), butyl acrylate (BA) and 2,2,2-trifluoroethyl methacrylate (3FMA) is grafted onto the VTMS-starch by emulsion polymerization. Fourier transform infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to confirm the chemically grafting reactions in every step. The conversion percent, grafting percent and grafting efficiency for VTMS-starch/p(MMA/BA/3FMA) latex indicate that the optimum conditions should be controlled at 75 °C for 1h as VTMS-starch/P(MMA/BA/3FMA) in 1/3 weight ratio. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis have revealed that the latexes exhibit the uniform spherical particles of 40-60 nm in a narrow size distribution. The latex films perform the obvious hydrophobic (107°) property, lower surface free energy (25-35 mN/m) and the higher thermostability (330-440 °C) than starch (51°, 51.32 mN/m, 100-330 °C). Dynamic thermomechanical analysis (DMA) shows that the latex film could gain considerable toughness and strength with an elongation at break of 39.45% and a tensile strength of 11.97 MPa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Physicochemical, morphological, and rheological characterization of Xanthosoma robustum Lego-like starch.

    Science.gov (United States)

    Londoño-Restrepo, Sandra M; Rincón-Londoño, Natalia; Contreras-Padilla, Margarita; Acosta-Osorio, Andrés A; Bello-Pérez, Luis A; Lucas-Aguirre, Juan C; Quintero, Víctor D; Pineda-Gómez, Posidia; del Real-López, Alicia; Rodríguez-García, Mario E

    2014-04-01

    This work presents the physicochemical and pasting characterization of isolated mafafa starch and mafafa flour (Xanthosoma robustum). According to SEM images of mafafa starches in the tuber, these starches form Lego-like shaped structures with diameters between 8 and 35 μm conformed by several starch granules of wedge shape that range from 2 to 7 μm. The isolated mafafa starch is characterized by its low contents of protein, fat, and ash. The starch content in isolated starch was found to be 88.58% while the amylose content obtained was 35.43%. X-ray diffraction studies confirm that isolated starch is composed mainly by amylopectin. These results were confirmed by differential scanning calorimetry and thermo gravimetric analysis. This is the first report of the molecular parameters for mafafa starch: molar mass that ranged between 2×10(8) and 4×10(8) g/mol, size (Rg) value between 279 and 295 nm, and molecular density value between 9.2 and 9.7 g/(mol nm(3)). This study indicates that mafafa starch shows long chains of amylopectin this fact contributes to higher viscosity development and higher gel stability. The obtained gel phase is transparent in the UV-vis region. The viscosity, gel stability and optical properties suggest that there is potential for mafafa starch applications in the food industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Determination of the thermo-mechanical properties in starch and starch/gluten systems at low moisture content - a comparison of DSC and TMA.

    Science.gov (United States)

    Homer, Stephen; Kelly, Michael; Day, Li

    2014-08-08

    The impact of heating rate on the glass transition (Tg) and melting transitions observed by differential scanning calorimetry (DSC) on starch and a starch/gluten blend (80:20 ratio) at low moisture content was examined. The results were compared to those determined by thermo-mechanical analysis (TMA). Comparison with dynamic mechanical thermal analysis (DMTA) and phase transition analysis (PTA) is also discussed. Higher heating rates increased the determined Tg as well as the melting peak temperatures in both starch and the starch/gluten blend. A heating rate of 5°C/min gave the most precise value of Tg while still being clearly observed above the baseline. Tg values determined from the first and second DSC scans were found to differ significantly and retrogradation of starch biopolymers may be responsible. Tg values of starch determined by TMA showed good agreement with DSC results where the Tg was below 80°C. However, moisture loss led to inaccurate Tg determination for TMA analyses at temperatures above 80°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  13. Pilot plant production of glucose from starch with soluble. cap alpha. -amylase and immobilized glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D D; Reilly, P J; Collins, Jr, E V

    1975-01-01

    Pilot plant studies were conducted on cooking and thinning of corn starch with free ..cap alpha..-amylase and the conversion of the resulting dextrin with immobilized glucoamylase adsorbed on porous SiO/sub 2/. Feeds of intermediate DE values gave maximum yields unless the flow rate of low DE feeds was decreased. Final DE values and glucose concentrations after dextrin treated with Thermamyl 60 ..cap alpha..-amylase had been further hydrolyzed in an immobilized glucoamylase column, were slightly lower than they were when free glucoamylase was used. Similar results were obtained when dextrin, thinned with HT-1000 ..cap alpha..-amylase, was hydrolyzed at 38/sup 0/ and pH 4.4 in the immobilized glucoamylase column. Free glucoamylase yielded values of DE and glucose almost identical with dextrin thinned with Thermamyl 60 ..cap alpha..-amylase. Yields with the free glucoamylase were also slightly higher than they were with SiO/sub 2/-bound enzyme.

  14. Phosphate fertilization changes the characteristics of 'Maçã' banana starch.

    Science.gov (United States)

    Mesquita, Camila de Barros; Garcia, Émerson Loli; Bolfarini, Ana Carolina Batista; Leonel, Sarita; Franco, Célia Maria L; Leonel, Magali

    2018-06-01

    The unripe banana has been studied as a potential source of starch for use in various applications. Considering the importance of phosphorus in the biosynthesis of the starch and also the interference of this mineral in starch properties, in this study it was evaluated the effect of rates of phosphate fertilizer applied in the cultivation of 'Maçã' banana on the characteristics of the starch. Starches extracted from fruits from different treatments were analyzed for morphological characteristics, X-ray diffraction pattern, relative crystallinity, granule size, amylose, resistant starch and phosphorus levels, as well as, for pasting and thermal properties. Results showed that the phosphate fertilization has interference on the characteristics of the banana starch led to increase of phosphorus content and size of the granules, reduction of crystallinity and resistant starch content, decrease of viscosity peak, breakdown, final viscosity, setback, transitions temperatures and enthalpy. These changes caused by phosphate fertilizer conditions can be increase the applications of the 'Maçã' banana starch. Copyright © 2018. Published by Elsevier B.V.

  15. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  17. Cereal bioengineering: Amylopectin-free and hyper-phosphorylated barley starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Barley lines producing grains with either amylopectin-free or hyper-phosphorylated starches were made by transgenic methods. Cereals producing these kind of starches have not been reported before. Amylopectin-free barley was generated by simultaneously silencing the three genes encoding the starch...... and T1) of transgenic grains was tenfold higher than from vector control and wild type grains. Amylose content was not affected in hyper-phosphorylated grains. Hyper-phosphorylated starch granules had several pores on the surfaces, similar to pores seen on enzymatically semi-degraded granules...

  18. Is hydroxyethyl starch 130/0.4 safe?

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2012-01-01

    ABSTRACT: It is heavily debated whether or not treatment with hydroxyethyl starch 130/0.4 contributes to the development of acute kidney failure in patients with severe sepsis. In the previous issue of Critical Care, Muller and colleagues report no association between initial resuscitation...... with hydroxyethyl starch 130/0.4 and renal impairment in a cohort of septic patients. Can we then consider hydroxyethyl starch 130/0.4 a safe intervention? The answer is no - observational data should be interpreted with caution and should mainly be used to identify risks, while safety must be assessed...

  19. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  20. Improvement of feed pellet characteristics by dietary pre-gelatinized starch and their subsequent effects on growth and physiology in tilapia.

    Science.gov (United States)

    Kanmani, Naga; Romano, Nicholas; Ebrahimi, Mahdi; Nurul Amin, S M; Kamarudin, Mohd Salleh; Karami, Ali; Kumar, Vikas

    2018-01-15

    A 9-week study was conducted to compare dietary corn starch (CS) or tapioca starch (TS), with or without being pre-gelatinized (PG), on the growth, feeding efficiencies, plasma and muscle biochemistry, intestinal short chain fatty acids (SCFA), and liver glycogen of triplicate groups of 20 red hybrid tilapia (Orecohromis sp.). Various pellet characteristics were evaluated, along with their surface and cross sectional microstructure. The PG diets had significantly higher water stability, bulk density, and protein solubility, along with a smoother surface. Tilapia fed the TS diet had lower growth than had all other tilapia, but were significantly improved when diet was pre-gelatinized. In the PG treatments, intestinal SCFA significantly decreased while plasma glucose, cholesterol and triglycerides, as well as liver glycogen, significantly increased. Fish fed the CS diet had significantly more long chain polyunsaturated fatty acid than had those fed by other treatments. Pre-gelatinization may improve fish productivity and offer greater flexibility during aquafeed production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  2. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Studies on gamma-irradiation of high amylose corn starch, 1

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Ayano, Yuko; Obara, Tetsujiro.

    1976-01-01

    Amylomaize 7, amylomaize 5, normal corn, waxy corn and potato starches were irradiated with 60 Co-gamma rays at the dose levels from 2x10 4 to 100x10 4 rad to determine the changes in physicochemical properties by irradiation. Irradiated starches were characterized by determination of amylography, specific viscosity, blue value, pH, acidity, carbonyl content, reducing value and limit of β-amylolysis. Irradiated starches showed a decrease in viscosity and blue value, and an increase in reducing value with increasing dose levels. These results were seemed to indicate the degradation of starch molecule. A slight oxidation of starch was suggested by a decrease in pH and an increase in acidity and carbonyl content. Amylomaize 7 and amylomaize 5 starches were less sensitive than the other starches in terms of irradiation effects. The rheological properties determined by amylography and Ostwald viscometer changed at the lowest dose (5x10 4 rad) and the other properties changed above 20x10 4 rad. The limits of β-amylase hydrolysis of normal corn, waxy corn and potato starches increased slightly by irradiation (100x10 4 rad). On the other hand, β-amylolysis limits of amylomaize 7 and amylomaize 5 starches were lower about 5.5% and 2.5% respectively than that of nonirradiated samples. The decrease of β-amylolysis limit enlarged with increasing amylose content. (auth.)

  4. Reactive compatibilization of ethylene-co-vinyl acetate/starch blends

    NARCIS (Netherlands)

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    The dispersion of starch as a filler in hydrophobic ethylene-co-vinyl acetate (EVA) rubber is an issue. To obtain a fine dispersion of starch in EVA rubber, EVA/starch blends were prepared by reactive extrusion in the pres- ence of maleic anhydride (MA), benzoyl peroxide (BPO), and glycerol. MA,

  5. Properties of foam and composite materials made o starch and cellulose fiber

    Science.gov (United States)

    Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...

  6. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Liu Zhi

    2014-01-01

    Full Text Available Bubble electrospinning exhibits profound prospect of industrialization of macro/ nano materials. Starch is the most abundant and inexpensive biopolymer. With the drawbacks of poor strength, water resistibility, thermal stability and processability of pure starch, some biodegradable synthetic polymers such as poly (lactic acid, polyvinyl alcohol were composited to electrospinning. To the best of our knowledge, composite nanofibers of polyvinyl alcohol/starch from bubble electrospinning have never been investigated. In the present study, nanofibers of polyvinyl alcohol/starch were prepared from bubble electrospinning. The processability and the morphology were affected by the weight ratio of polyvinyl alcohol and starchy. The rheological studies were in agreement with the spinnability of the electrospinning solutions.

  7. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  8. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  9. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  10. Effect of magnetic starch on the clarification of hematite tailings wastewater

    Science.gov (United States)

    Yue, Tao; Wu, Xiqing

    2018-02-01

    The magnetic starch solution, synthesized by mixing the caustic starch, the Fe2+ solution (in some cases containing the Zn2+, Cu2+, Mn2+ or Mg2+ ions) and H2O2 solution, was used as the flocculant to investigate its clarification effect on hematite tailings wastewater. Based on the clarification tests and adsorption analysis it was demonstrated that the magnetic starch produced better clarification effect than the caustic starch, and the adsorption of magnetic starch onto hematite tailings particles was also stronger than the caustic starch. AFM found that the magnetic interaction between magnetic seeds and hematite is characteristic of long range force and greatly strengthens the adsorption of magnetic seeds onto fine hematite for agglomeration. FTIR indicates the starch adsorbed onto the surfaces of hematite and magnetic seeds, thus acting as the bridging between hematite particles and magnetic seeds, resulting in an intensified coverage of the starch onto hematite and positive action in the clarification.

  11. Comparison of various types of starch when used in meat sausages.

    Science.gov (United States)

    Skrede, G

    1989-01-01

    Technological and sensory properties of meat sausages formulated with 4·0% of either potato flour, modified (acetylated distarch phosphate) potato starch, wheat, corn or tapioca starch were compared. Sausages were analyzed after cooking at temperatures between 65 and 85°C followed by storage at 5°C and -25°C. Characteristics evaluated were weight loss during cooking and storage, instrumentally and sensory assessed firmness, taste and smell of sausages. The results revealed differences in the suitability of starches for use in meat sausages. Part of the differences could be ascribed to differences in gelatination properties of the starches. With the criteria used for evaluating quality, potato flour was rated as the best suited starch followed by wheat starch while tapioca was rated as the least suited. Corn starch required cooking temperatures above 75°C and showed relatively low freeze/thaw stability. The modified potato starch stored well both above and below the freezing point. Copyright © 1989. Published by Elsevier Ltd.

  12. Effect of acid hydrolysis on starch structure and functionality: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2015-01-01

    Acid hydrolysis is an important chemical modification that can significantly change the structural and functional properties of starch without disrupting its granular morphology. A deep understanding of the effect of acid hydrolysis on starch structure and functionality is of great importance for starch scientific research and its industrial applications. During acid hydrolysis, amorphous regions are hydrolyzed preferentially, which enhances the crystallinity and double helical content of acid hydrolyzed starch. This review discusses current understanding of the effect of acid hydrolysis on starch structure and functionality. The effects of acid hydrolysis on amylose content, chain length distribution of amylopectin molecules, molecular and crystalline organization (including lamellar structure) and granular morphology are considered. Functional properties discussed include swelling power, gelatinization, retrogradation, pasting, gel texture, and in vitro enzyme digestibility. The paper also highlights some promising applications of acid hydrolyzed starch (starch nanocrystals) in the preparation of biodegradable nanocomposites, bio-hydrogen, and slowly digestible starch-based healthy foods.

  13. Diurnal fluctuations in cotton leaf carbon export, carbohydrate content, and sucrose synthesizing enzymes.

    Science.gov (United States)

    Hendrix, D L; Huber, S C

    1986-06-01

    In fully expanded leaves of greenhouse-grown cotton (Gossypium hirsutum L., cv Coker 100) plants, carbon export, starch accumulation rate, and carbon exchange rate exhibited different behavior during the light period. Starch accumulation rates were relatively constant during the light period, whereas carbon export rate was greater in the afternoon than in the morning even though the carbon exchange rate peaked about noon. Sucrose levels increased throughout the light period and dropped sharply with the onset of darkness; hexose levels were relatively constant except for a slight peak in the early morning. Sucrose synthase, usually thought to be a degradative enzyme, was found in unusually high activities in cotton leaf. Both sucrose synthase and sucrose phosphate synthetase activities were found to fluctuate diurnally in cotton leaves but with different rhythms. Diurnal fluctuations in the rate of sucrose export were generally aligned with sucrose phosphate synthase activity during the light period but not with sucrose synthase activity; neither enzyme activity correlated with carbon export during the dark. Cotton leaf sucrose phosphate synthase activity was sufficient to account for the observed carbon export rates; there is no need to invoke sucrose synthase as a synthetic enzyme in mature cotton leaves. During the dark a significant correlation was found between starch degradation rate and leaf carbon export. These results indicate that carbon partitioning in cotton leaf is somewhat independent of the carbon exchange rate and that leaf carbon export rate may be linked to sucrose formation and content during the light period and to starch breakdown in the dark.

  14. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites.

    Science.gov (United States)

    González, Kizkitza; Retegi, Aloña; González, Alba; Eceiza, Arantxa; Gabilondo, Nagore

    2015-03-06

    In the present work, thermoplastic maize starch based bionanocomposites were prepared as transparent films, plasticized with 35% of glycerol and reinforced with both waxy starch (WSNC) and cellulose nanocrystals (CNC), previously extracted by acidic hydrolysis. The influence of the nanofiller content was evaluated at 1 wt.%, 2.5 wt.% and 5 wt.% of WSNC. The effect of adding the two different nanoparticles at 1 wt.% was also investigated. As determined by tensile measurements, mechanical properties were improved at any composition of WSNC. Water vapour permeance values maintained constant, whereas barrier properties to oxygen reduced in a 70%, indicating the effectiveness of hydrogen bonding at the interphase. The use of CNC or CNC and WSNC upgraded mechanical results, but no significant differences in barrier properties were obtained. A homogeneous distribution of the nanofillers was demonstrated by atomic force microscopy, and a shift of the two relaxation peaks to higher temperatures was detected by dynamic mechanical analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    Science.gov (United States)

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Change in digestibility of gamma-irradiated starch by low temperature cooking

    International Nuclear Information System (INIS)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-01-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by γ-irradiation and the required cooking temperature was decreased from 75-80 0 C to 65 0 C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion. (orig.) [de

  17. Change in digestibility of gamma-irradiated starch by low temperature cooking

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-04-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by ..gamma..-irradiation and the required cooking temperature was decreased from 75-80/sup 0/C to 65/sup 0/C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion.

  18. Effect of dietary starch source and concentration on equine fecal microbiota

    Science.gov (United States)

    Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assig...

  19. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.