WorldWideScience

Sample records for soluble solids acidity

  1. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  3. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  4. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    Science.gov (United States)

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  6. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  7. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs

    DEFF Research Database (Denmark)

    Potta, Sriharsha Gupta; Minemi, Sriharsha; Nukala, Ravi Kumar

    2010-01-01

    Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted...

  8. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility

    Directory of Open Access Journals (Sweden)

    Ji-Hun An

    2017-12-01

    Full Text Available Febuxostat (FB is a poorly water-soluble drug that belongs to BCS class II. The drug is employed for the treatment of inflammatory disease arthritis urica (gout, and the free base, FB form-A, is most preferred for drug formulation. In order to achieve a goal of improving the water solubility of FB form-A, this study was carried out using the cocrystallization technique called the liquid-assisted grinding method to produce FB cocrystals. Here, five amino acids containing amine (NH, oxygen (O, and hydroxyl (OH functional groups, and possessing difference of pKa less than 3 with FB, were selected as coformers. Then, solvents including methanol, ethanol, isopropyl alcohol, n-hexane, dichloromethane, and acetone were used for the cocrystal screening. As a result, a cocrystal was obtained when acetone and l-pyroglutamic acid (PG of 0.5 eq. were employed as solvent and coformer, respectively. The ratio of 2:1, which is the ratio of FB to PG within FB-PG cocrystal, was predicted by means of solid-state CP/MAS 13C-NMR, solution-state NMR (1H, 13C, and 2D and FT-IR. Moreover, Powder X-ray Diffraction (PXRD, Differential Scanning Calorimetry (DSC, and Thermogravimetric Analysis (TGA were used to investigate the characteristics of FB-PG cocrystal. In addition, comparative solubility tests between FB-PG cocrystal and FB form-A were conducted in deionized water and under simulated gastrointestinal pH (1.2, 4, and 6.8 conditions. The result revealed that FB-PG cocrystal has a solubility of four-fold higher than FB form-A in deionized water and two-fold and five-fold greater than FB form-A at simulated gastrointestinal pH 1.2 and pH 4, respectively. Besides, solubilities of FB-PG cocrystal and FB form-A at pH 6.8 were similar to the results measured in deionized water. Therefore, it is postulated that FB-PG cocrystal has a potential overcoming the limitations related to the low aqueous solubility of FB form-A. Accordingly, FB-PG cocrystal is suggested as an

  9. AW-101 entrained solids - Solubility versus temperature

    International Nuclear Information System (INIS)

    GJ Lumetta; RC Lettau; GF Piepel

    2000-01-01

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan

  10. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    Science.gov (United States)

    Ying, Yibin; Liu, Yande; Tao, Yang

    2005-09-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r) 0.940 for the SSC and a moderate r of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.

  11. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Ying Yibin; Liu Yande; Tao Yang

    2005-01-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r 2 ) 0.940 for the SSC and a moderate r 2 of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples

  12. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Radionuclide solubility control by solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, F.; Klinkenberg, M.; Rozov, K.; Bosbach, D. [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy and Climate Research - Nuclear Waste Management and Reactor Safety (IEK-6); Vinograd, V. [Frankfurt Univ. (Germany). Inst. of Geosciences

    2015-07-01

    The migration of radionuclides in the geosphere is to a large extend controlled by sorption processes onto minerals and colloids. On a molecular level, sorption phenomena involve surface complexation, ion exchange as well as solid solution formation. The formation of solid solutions leads to the structural incorporation of radionuclides in a host structure. Such solid solutions are ubiquitous in natural systems - most minerals in nature are atomistic mixtures of elements rather than pure compounds because their formation leads to a thermodynamically more stable situation compared to the formation of pure compounds. However, due to a lack of reliable data for the expected scenario at close-to equilibrium conditions, solid solution systems have so far not been considered in long-term safety assessments for nuclear waste repositories. In recent years, various solid-solution aqueous solution systems have been studied. Here we present state-of-the art results regarding the formation of (Ra,Ba)SO{sub 4} solid solutions. In some scenarios describing a waste repository system for spent nuclear fuel in crystalline rocks {sup 226}Ra dominates the radiological impact to the environment associated with the potential release of radionuclides from the repository in the future. The solubility of Ra in equilibrium with (Ra,Ba)SO{sub 4} is much lower than the one calculated with RaSO{sub 4} as solubility limiting phase. Especially, the available literature data for the interaction parameter W{sub BaRa}, which describes the non-ideality of the solid solution, vary by about one order of magnitude (Zhu, 2004; Curti et al., 2010). The final {sup 226}Ra concentration in this system is extremely sensitive to the amount of barite, the difference in the solubility products of the end-member phases, and the degree of non-ideality of the solid solution phase. Here, we have enhanced the fundamental understanding regarding (1) the thermodynamics of (Ra,Ba)SO{sub 4} solid solutions and (2) the

  14. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility

    OpenAIRE

    Ji-Hun An; Changjin Lim; Hyung Chul Ryu; Jae Sun Kim; Hyuk Min Kim; Alice Nguvoko Kiyonga; Minho Park; Young-Ger Suh; Gyu Hwan Park; Kiwon Jung

    2017-01-01

    Febuxostat (FB) is a poorly water-soluble drug that belongs to BCS class II. The drug is employed for the treatment of inflammatory disease arthritis urica (gout), and the free base, FB form-A, is most preferred for drug formulation. In order to achieve a goal of improving the water solubility of FB form-A, this study was carried out using the cocrystallization technique called the liquid-assisted grinding method to produce FB cocrystals. Here, five amino acids containing amine (NH), oxygen (...

  15. Terminal solid solubility of hydrogen in titanium

    International Nuclear Information System (INIS)

    Giroldi, J.P.; Vizcaino, Pablo; Banchik, Abraham David

    2003-01-01

    A Research and Development program to build a data base is currently under progress to support the local titanium fabrication. In the present work the temperature of the Terminal Solid Solubility on dissolution (TSSd) and precipitation (TSSp) of titanium hydrides in the Ti α-phase were both measured in the same thermal cycle with a Differential Scanning Calorimeter (DSC). The local titanium producer (FAESA) provided ASTM grade 1 pure Ti bars of about 2,5 cm in diameter. Samples weighting between 50 to 200 mg were cut with a diamond disc and the parallelepiped faces were all carefully ground with SiC papers, then picked in a HNO 3 plus HF aqueous solution and finally dried out with ethanol and hot air. Pairs of (TSSd, TSSp) values for α + δ → α and α → α + δ transformation temperatures in titanium were determined with the same calorimetric procedure already used to calculate the TSS values in zirconium. Data were taken from the same sample during the heating up and cooling down cycle of the second calorimeter run made with the same rate of 20 C degrees / minute. The Cathodic Charging technique was used to charge the samples at different hydrogen concentrations between the 'as fabricated' value and the concentration corresponding to the eutectoid temperature. A mixture of glycerin and phosphoric acid in a 2:1 ratio and a current density of 0,05 to 0,1 Amp/cm 2 were applied to different samples during 24 to 96 hours to get a wide range of hydrogen concentrations. A homogenization heat treatment at 400 C degrees for 45 minutes -made at open air in an electric furnace- was applied to each sample to dissolve the massive hydrides at the sample surfaces and diffuse them into the bulk of the sample. The hydrogen concentration of each sample was measured after the final calorimetric run using the Extraction Method in Liquid State under an inert atmosphere using a Leco RH-404 model Hydrogen Determinator. The experimental data follows a linear relationship -with a

  16. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  17. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  18. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  19. Investigation of samarium solubility in the magnesium based solid solution

    International Nuclear Information System (INIS)

    Rokhlin, L.L.; Padezhnova, E.M.; Guzej, L.S.

    1976-01-01

    Electric resistance measurements and microscopic analysis were used to investigate the solubility of samarium in a magnesium-based solid solution. The constitutional diagram Mg-Sm on the magnesium side is of an eutectic type with the temperature of the eutectic transformation of 542 deg C. Samarium is partly soluble in solid magnesium, the less so, the lower is the temperature. The maximum solubility of samarium in magnesium (at the eutectic transformation point) is 5.8 % by mass (0.99 at. %). At 200 deg C, the solubility of samarium in magnesium is 0.4 % by mass (0.063 at. %)

  20. Method for Predicting Solubilities of Solids in Mixed Solvents

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O'Connell, J. P.

    2009-01-01

    A method is presented for predicting solubilities of solid solutes in mixed solvents, based on excess Henry's law constants. The basis is statistical mechanical fluctuation solution theory for composition derivatives of solute/solvent infinite dilution activity coefficients. Suitable approximatio...

  1. Fundamental aspects of solid dispersion technology for poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Yanbin Huang

    2014-02-01

    Full Text Available The solid dispersion has become an established solubilization technology for poorly water soluble drugs. Since a solid dispersion is basically a drug–polymer two-component system, the drug–polymer interaction is the determining factor in its design and performance. In this review, we summarize our current understanding of solid dispersions both in the solid state and in dissolution, emphasizing the fundamental aspects of this important technology.

  2. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium.

    Science.gov (United States)

    Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2010-01-01

    To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.

  3. Anomalous Solubility Behavior of Several Acidic Drugs

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  4. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid.

    Science.gov (United States)

    Rao, K R S Sambasiva; Nagabhushanam, M V; Chowdary, K P R

    2011-03-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid.

  5. Robust model of fresh jujube soluble solids content with near ...

    African Journals Online (AJOL)

    A robust partial least square (PLS) calibration model with high accuracy and stability was established for the measurement of soluble solids content (SSC) of fresh jujube using near-infrared (NIR) spectroscopy technique. Fresh jujube samples were collected in different areas of Taigu and Taiyuan cities, central China in ...

  6. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  7. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  8. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  9. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  10. Solubility of nickel-cadmium ferrite in acids

    International Nuclear Information System (INIS)

    Vol'ski, V.; Vol'ska, Eh.; Politan'ska, U.

    1977-01-01

    The solubility of a solid solution of nickel-cadmium ferrite containing an excess of ferric oxide, (CdO)sub(0.5), (NiO)sub(0.5) and (Fe 2 O 3 )sub(1.5), in hydrochloric and nitric acids at 20, 40 and 60 deg C, was determined colorimetrically and chelatometrically, as well as by studying the x-ray diffraction patterns of the preparations prior to dissolution and their residues after dissolution. It is shown that cadmium passes into the solution faster than iron and nickel; after 800 hours, the solution contains 40% of iron ions and more than 80% of cadmium ions. The kinetics of ferrite dissolution is studied

  11. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  12. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide.

    Science.gov (United States)

    Barea, Silvana A; Mattos, Cristiane B; Cruz, Ariadne C C; Chaves, Vitor C; Pereira, Rafael N; Simões, Claudia M O; Kratz, Jadel M; Koester, Letícia S

    2017-03-01

    Thalidomide (THD) is a BCS class II drug with renewed and growing therapeutic applicability. Along with the low aqueous solubility, additional poor biopharmaceutical properties of the drug, i.e. chemical instability, high crystallinity, and polymorphism, lead to a slow and variable oral absorption. In this view, we developed solid dispersions (SDs) containing THD dispersed in different self-emulsifying carriers aiming at an enhanced absorption profile for the drug. THD was dispersed in lauroyl macrogol-32 glycerides (Gelucire ® 44/14) and α-tocopherol polyethylene glycol succinate (Kolliphor ® TPGS), in the presence or absence of the precipitation inhibitor polyvinylpyrrolidone K30 (PVP K30), by means of the solvent method. Physicochemical analysis revealed the formation of semicrystalline SDs. X-ray diffraction and infrared spectroscopy analyses suggest that the remaining crystalline fraction of the drug in the SDs did not undergo polymorphic transition. The impact of the solubility-enhancing formulations on the THD biopharmaceutical properties was evaluated by several in vitro techniques. The developed SDs were able to increase the apparent solubility of the drug (up to 2-3x the equilibrium solubility) for a least 4 h. Dissolution experiments (paddle method, 75 rpm) in different pHs showed that around 80% of drug dissolved after 120 min (versus 40% of pure crystalline drug). Additionally, we demonstrated the enhanced solubility obtained via SDs could be translated into increased flux in a parallel artificial membrane permeability assay (PAMPA). In summary, the results demonstrate that SDs could be considered an interesting and unexplored strategy to improve the biopharmaceutical properties of THD, since SDs of this important drug have yet to be reported.

  13. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  14. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  15. Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the solubility of nicotinic acid in six solvents by the gravimetric method. ► We found that, regardless of the solvent, the same monoclinic solid phase was in equilibrium with the solution. ► We determined the activity coefficients of nicotinic acid in the six solvents. ► We found that the solubility trends seem to be determined by the polarity and polarizability of the solvent. - Abstract: The mole fraction equilibrium solubility of nicotinic acid in six solvents (water, ethanol, dimethyl sulfoxide, acetone, acetonitrile and diethyl ether) differing in polarity, polarizability, and hydrogen-bonding ability, was determined over the temperature range (283 to 333) K, using the gravimetric method. The results obtained led to the solubility order dimethyl sulfoxide (DMSO) ≫ ethanol > water > acetone > diethyl ether > acetonitrile. An analysis based on various solvent descriptors, indicated that this trend seems to be mainly determined by the polarity and polarizability of the solvent. The activity coefficients of nicotinic acid in the different solvents, under saturation conditions, were determined as a function of the temperature and it was found that DMSO exhibits enhanced solubility relative to an ideal solution while the opposite is observed for all other solvents. Both the solvent and the fact that nicotinic acid is primarily zwitterionic in aqueous solution and non-zwitterionic in non-aqueous media, did not affect the nature of the solid phases in equilibrium with the different solutions. Indeed, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry analysis indicated that, despite some differences in particle size and morphology, the starting material and the solid products obtained at the end of the solubility studies in the six solvents used in this work were all crystalline and corresponded to the same monoclinic phase.

  16. An odd–even effect on solubility of dicarboxylic acids in organic solvents

    International Nuclear Information System (INIS)

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubilities of the homologous series of C2–C10 dicarboxylic acids were determined in four selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The odd–even effect of solubility was found and explained. • The enthalpy, entropy and the molar Gibbs free energy of solution were predicted. - Abstract: The solubility of the homologous series of dicarboxylic acids, HOOC-(CH 2 ) n−2 -COOH (n = 2 to 10), in ethanol, acetic acid, acetone and ethyl acetate was measured at temperatures ranging from (278.15 to 323.15) K by a static analytic method at atmospheric pressure. Dicarboxylic acids with even number of carbon atoms exhibit lower values of solubility than adjacent homologues with odd carbon numbers. This odd–even effect of solubility is attributed to the twist of molecules and interlayer packing in solid state as explained in our previous work. The alternation varies in different solvents, which is believed to be associated with the properties of solvents. Finally, the dissolution enthalpy, dissolution entropy and the molar Gibbs free energy were calculated using the fitting parameters of the modified Apelblat equation. The molar Gibbs free energy also showed apparent odd–even alternation in keeping with the alternation of solubility

  17. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    Energy Technology Data Exchange (ETDEWEB)

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose of this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.

  18. Heat capacity and solid solubility of iron in scandium

    International Nuclear Information System (INIS)

    Tsang, T.-W.E.

    1981-01-01

    The maximum solid solubility of iron in scandium was determined to be between 50 and 85 at.ppm in the as-cast condition. As the concentration of iron increases, it segregates along the grain boundary, as is evident from optical metallography and electron microprobe examinations. Annealing also causes the iron dissolved in scandium to separate out and cluster along the grain boundary. Heat capacity measurements show an anomaly in the C/T versus T 2 plots for iron concentrations of 19 at.ppm or greater. For iron dissolved in solid scandium the excess entropy due to the iron impurity is in agreement with the theoretical prediction of ck ln(2S + 1) for an impurity-conduction electron (Kondo) interaction, but is 4 - 8 times larger than the theoretical prediction when iron segregates along the grain boundary. Furthermore, our results suggest that most of the previously reported low temperature physical properties of scandium are probably in error because of either iron impurity-conduction electron interactions or Fe-Fe interactions in the precipitated second-phase Sc-Fe compound. (Auth.)

  19. The acid solubility test of clay mineral under microwave

    International Nuclear Information System (INIS)

    Zheng Ying; Niu Yuqing; Wu Peisheng; Niu Xuejun

    2001-01-01

    The acid solubility test of Al 3+ in clay from some uranium ores under microwave is introduced. The result shows that the concentration of Al 3+ in solution and the acid consumption increase rapidly under microwave comparing with normal leaching condition. It is infeasible to adopt microwave slacking method for intensively leaching uranium from uranium ore containing more clay

  20. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs.

    Science.gov (United States)

    David, S E; Timmins, P; Conway, B R

    2012-01-01

    Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol and tris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility.

  1. On solubility of perchloric (periodic) acid and α-cyanacetanmide in aqueous solutions at 25 deg C

    International Nuclear Information System (INIS)

    Omarova, R.A.; Balysbekov, S.M.; Erkasov, R.Sh.; Nikolenko, O.N.

    1996-01-01

    Acid-base interaction within perchloric (periodic) acid-α-cyanacetamide-water systems in studied by method of solubility under isothermal conditions at 25 deg C. Solubility regularities of crystalline α-cyanacetamide in perchloric and periodic acid solutions are determined, the concentration limits of formation of a new solid phase-tris(α-cyanacetamide) perchlorate within perchloric acid-α-cyanacetamide-water system are determined. The compound is identified by means of chemical and X-ray phase analyses, its density and melting temperature are determined. Iodic acid and α-cyanacetamide water solution base system is shown to belong to a simple eutonic type. 2 refs., 3 figs., 2 tabs

  2. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  3. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique.

    Science.gov (United States)

    Patel, S M; Patel, R P; Prajapati, B G

    2012-03-01

    The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4). Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  4. Solubility enhancement of benfotiamine, a lipid derivative of thiamine by solid dispersion technique

    Directory of Open Access Journals (Sweden)

    S M Patel

    2012-01-01

    Full Text Available The present study was aimed to increase the solubility of the poorly water soluble drug benfotiamine using hydrophilic polymers (PVP K-30 and HPMC E4. Solid dispersions were prepared by kneading method. Phase solubility study, in-vitro dissolution of pure drug, physical mixtures and solid dispersions were carried out. PVP and HPMC were found to be effective in increasing the dissolution of Benfotiamine in solid dispersions when compared to pure drug. FT-IR, differential scanning calorimetry and X-ray diffractometry studies were carried out in order to characterize the drug and solid dispersion. To conclude that, the prepared solid dispersion of PVP-30 may to effectively used for the enhancement of solubility of poorly water soluble drugs such as benfotiamine.

  5. Boric acid solubility in the presence of alkali metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Tsekhanskij, R S; Molodkin, A K; Sadetdinov, Sh V [Chuvashskij Gosudarstvennyj Univ., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-01-01

    Methods of solubility and refractometry at 25 deg C have been applied to state that systems boric acid-lithium (sodium, potassium) nitrite-water are simple eutonic type systems. Nitrites salt in the acid and their lyotropic effect increases from lithium salt to potassium salt. The disclosed succession in change of the effect is determined by the character of cation hydration in the medium the acidic reaction of which is conditioned by boric acid polymerization and partial oxidation of nitrite ion into nitrate ion. Boric acid is salted out from solutions containing lithium and sodium cations with increase of nitrate ion.

  6. Boric acid solubility in the presence of alkali metal nitrides

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Tsekhanskij, R.S.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1983-01-01

    Methods of solubility and refractometry at 25 deg C have been applied to state that systems boric acid-lithium (sodiUm, potassium) nitrite-water are simple eutonic type systems. Nitrites salt in the acid and their lyotropic effect increases from lithium salt to potassium salt. The disclosed succession in change of the effect is determined by the character of cation hydration in the medium the acidic reaction of which is conditioned by boric acid polymerization and partial oxidation of nitrite ion into nitrate ion Boric acid is salted out form solutions containing lithium and sodium cations with increase of nitrate ion

  7. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find...

  8. JUICE EXTRACTION FOR TOTAL SOLUBLE SOLIDS CONTENT DETERMINATION IN MELON

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2006-01-01

    Full Text Available The total soluble solids content (TSSC shows high positive correlation with sugars content, and therefore is generally accepted as an important quality trait of fruits. In melon, this evaluation is usually done by grinding a slice of the fruit's pulp in a household food processor, straining the ground material and then proceeding the TSSC determination in the resulting juice. This evaluation is labor-intensive and takes a long time to complete. An alternative process was delineated for obtaining the juice: the pulp of the fruit slice would be transversally cut one or more times, and longitudinally pressed by hand to obtain the juice. The objective of this work was to compare processes for obtaining juice to evaluate TSSC in melons. Fifty, 15, and 15 fruits of the Galia, Yellow, and Cantaloupe type melons were evaluated, respectively. Each fruit was considered as a block, and was longitudinally split into six fractions with similar sizes, which corresponded to the plots. The following treatments were evaluated: fraction without cuts, fractions with one, three, five, or seven transversal cuts, and the fraction treated by the conventional process. It was concluded that the procedure by which the melon slices of Galia, Yellow and Cantaloupe types are pressed for obtaining the juice to evaluate TSSC can overestimate this content. This would probably be due to the fact that the most internal section of the mesocarp presents greater TSSC than the portions closer to the epicarp.

  9. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  10. Solid Phospholipid Dispersions for Oral Delivery of Poorly Soluble Drugs

    DEFF Research Database (Denmark)

    Fong, Sophia Yui Kau; Martins, Susana A. M.; Brandl, Martin

    2016-01-01

    Celecoxib (CXB) is a Biopharmaceutical Classification System class II drug in which its oral bioavailability is limited by poor aqueous solubility. Although a range of formulations aiming to increase the solubility of CXB have been developed, it is not completely understood, whether (1) an increase...... the importance of evaluating both, solubility and permeability, and the use of biorelevant medium for testing the candidate-enabling performance of liposomal formulations. Mechanisms at molecular level that may explain the effect of PL formulations on the permeability of CXB are also discussed....

  11. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find......Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably...

  12. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-01-01

    Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.

  13. Hemicellulose hydrolysis catalysed by solid acids

    NARCIS (Netherlands)

    Carà, P.D.; Pagliaro, M.; Elmekawy, A.; Brown, D.R.; Verschuren, P.; Shiju, N.R.; Rothenberg, G.

    2013-01-01

    Depolymerising hemicellulose into platform sugar molecules is a key step in developing the concept of an integrated biorefinery. This reaction is traditionally catalysed by either enzymes or homogeneous mineral acids. We compared various solid catalysts for hemicellulose hydrolysis, running

  14. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    Science.gov (United States)

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics.

  15. Dehydration of alcohols using solid acid catalysts

    OpenAIRE

    Cholerton, Mary

    2014-01-01

    Solid acid catalysts were prepared through silicon substitution into aluminophosphate frameworks. Silicon incorporation was confirmed using solid state nuclear magnetic resonance spectroscopy. The nature of the acid sites generated was determined using Fourier Transform infrared spectroscopy. These materials were tested as catalysts for the dehydration of ethanol to ethylene at low operating temperatures. The materials were active for dehydration of ethanol to ethylene with significant differ...

  16. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  17. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  18. A physiological and genetic approach to the improvement of tomato (Lycopersicon esculentum Mill.) fruit soluble solids

    International Nuclear Information System (INIS)

    Damon, S.E.

    1989-01-01

    Physiological processes and the genetic basis determining soluble solids content (SSC) of processing tomato fruit were addressed. Analysis of [ 3 H]-(fructosyl)-sucrose translocation in tomato indicates that phloem unloading in the fruit occurs, at least in part, to the apoplast. Apoplastic sucrose, glucose and fructose concentrations were estimated as 1 to 7, 12 to 49 and 8 to 63 millimolar, respectively in tomato fruit pericarp. Short-term uptake of [ 14 C]sucrose, -glucose and -fructose in tomato pericarp discs showes first order kinetics over the physiologically relevant concentration range. The uptake of [ 14 C]-(glycosyl)-1'fluorosucrose was identical to the rate of [ 14 C] sucrose uptake suggesting sucrose may be taken up directly without prior extracellular hydrolysis. Short-term uptake of all three sugars was insensitive to 10 micromolar carbonyl cyanide m-chlorophenylhydrazone and to 10 micromolar p-chloromercuribenzene sulfonic acid. However, long-term accumulation of glucose was sensitive to carbonyl cyanide m-chlorophenylhydrazone. Sugar uptake across the plasmamembrane does not appear to be energy dependent, suggesting that sugar accumulation in the tomato is driven by subsequent intracellular metabolism and/or active uptake at the tonoplast. Fourteen genomic DNA probes and ten restriction endonucleases were used to identify restriction fragment length polymorphisms (RFLPs) useful in the linkage analysis of quantitative trait loci controlling the expression of SSC in a segregating F 2 population from a cross between L. esculentum (UC204B) and L. cheesmanii f. minor, a wild species with high fruit soluble solids. RFLPs were detected between the DNAs of the two tomato species with all 14 probes

  19. How cocrystals of weakly basic drugs and acidic coformers might modulate solubility and stability.

    Science.gov (United States)

    Kuminek, G; Rodríguez-Hornedo, N; Siedler, S; Rocha, H V A; Cuffini, S L; Cardoso, S G

    2016-04-30

    Cocrystals of a weakly basic drug (nevirapine) with acidic coformers are shown to alter the solubility dependence on pH, and to exhibit a pHmax above which a less soluble cocrystal becomes more soluble than the drug. The cocrystal solubility advantage can be dialed up or down by solution pH.

  20. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    OpenAIRE

    Leventhal, J M; Chambliss, G H

    1982-01-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phos...

  1. Crosslinked hydrogels?a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    OpenAIRE

    Sun, Dajun D.; Lee, Ping I.

    2014-01-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a ...

  2. Heat and mass transfer involving droplets containing soluble solids

    International Nuclear Information System (INIS)

    Oscarson, J.L.; Briggs, D.E.

    1977-01-01

    The mass loss and temperature history of aqueous drops containing dissolved solids were measured under varying conditions of air velocity and temperature. The data taken from these drops were compared with the computer solution to a diffusional model. Very good agreement was obtained

  3. Extended solid solubility of a Co–Cr system by mechanical alloying

    International Nuclear Information System (INIS)

    Betancourt-Cantera, J.A.; Sánchez-De Jesús, F.; Torres-Villaseñor, G.; Bolarín-Miró, A.M.; Cortés-Escobedo, C.A.

    2012-01-01

    Highlights: ► Solubility of the Co–Cr system is modified by means of Mechanical Alloying (MA). ► MA induces the formation of new solid solutions of Co–Cr system in non-equilibrium. ► MA promote the formation of metastable Co–Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co–Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co 100−x Cr x (0 ≤ x ≤ 100, Δx = 10) to study the effect of mechanical processing in the solubility of the Co–Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  4. Extended solid solubility of a Co-Cr system by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Betancourt-Cantera, J.A. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Sanchez-De Jesus, F., E-mail: fsanchez@uaeh.edu.mx [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Torres-Villasenor, G. [Instituto de Investigaciones en Materiales-UNAM, Apdo. Postal 70-360, 04510 Mexico, DF (Mexico); Bolarin-Miro, A.M. [Area Academica de Ciencias de la Tierra y Materiales, UAEH Carr. Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo 42184 (Mexico); Cortes-Escobedo, C.A. [Centro de Investigacion e Innovacion Tecnologica del IPN Cda. CECATI S/N, Col. Sta. Catarina, Azcapotzalco, 02250 Mexico, DF (Mexico)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Solubility of the Co-Cr system is modified by means of Mechanical Alloying (MA). Black-Right-Pointing-Pointer MA induces the formation of new solid solutions of Co-Cr system in non-equilibrium. Black-Right-Pointing-Pointer MA promote the formation of metastable Co-Cr phases with greater solubility. - Abstract: Mechanical alloying, MA, has been successfully used to extend the limits of solid solubility in many commercially important metallic systems. The aim of this work is to demonstrate that MA modifies the solid solubility of the Co-Cr system. Co and Cr elemental powders were used as precursors and mixed in an adequate weight ratio to obtain Co{sub 100-x}Cr{sub x} (0 {<=} x {<=} 100, {Delta}x = 10) to study the effect of mechanical processing in the solubility of the Co-Cr system. Processing was carried out at room temperature in a shaker mixer mill using vials and balls of hardened steel as milling media with a ball:powder weight ratio of 10:1. Crystalline structure characterization of the milled powders was conducted using X-ray diffraction, and phase transformations as a function of composition were analyzed. Thermal analysis confirmed structural changes occurred in the mechanically alloyed powders. The evolution of the phase transformations with composition is reported for each composition. The results showed that after high energy ball milling for 7 h, the solid solubility between Co and Cr could be evidently extended, despite the low solid solubility at the equilibrium conditions of this system. Additionally, the micrographs of the milled powders showed that increasing composition of chromium changes the shape and size of the particles while simultaneously reducing their agglomeration; this effect is possibly attributed to the brittleness of elemental chrome.

  5. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  6. Supercritical Carbon Dioxide-Soluble Ligands for Extracting Actinide Metal Ions from Porous Solids

    International Nuclear Information System (INIS)

    Dietz, Mark L.

    2001-01-01

    Numerous types of actinide-bearing waste materials are found throughout the DOE complex. Most of these wastes consist of large volumes of non-hazardous materials contaminated with relatively small quantities of actinide elements. Separation of these wastes into their inert and radioactive components would dramatically reduce the costs of stabilization and disposal. For example, the DOE is responsible for decontaminating concrete within 7000 surplus contaminated buildings. The best technology now available for removing surface contamination from concrete involves removing the surface layer by grit blasting, which produces a large volume of blasting residue containing a small amount of radioactive material. Disposal of this residue is expensive because of its large volume and fine particulate nature. Considerable cost savings would result from separation of the radioactive constituents and stabilization of the concrete dust. Similarly, gas diffusion plants for uranium enrichment contain valuable high-purity nickel in the form of diffusion barriers. Decontamination is complicated by the extremely fine pores in these barriers, which are not readily accessible by most cleaning techniques. A cost-effective method for the removal of radioactive contaminants would release this valuable material for salvage. The objective of this project is to develop novel, substituted diphosphonic acid ligands that can be used for supercritical carbon dioxide extraction of actinide ions from solid wastes. Specifically, selected diphosphonic acids, which are known to form extremely stable complexes with actinides in aqueous and organic solution, are to be rendered carbon dioxide-soluble by the introduction of appropriate alkyl- or silicon-containing substituents. The metal complexation chemistry of these new ligands in SC-CO2 will then be investigated and techniques for their use in actinide extraction from porous solids developed

  7. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  8. Development of solid dispersion systems of dapivirine to enhance its solubility.

    Science.gov (United States)

    Gorajana, Adinarayana; Ying, Chan Chiew; Shuang, Yeen; Fong, Pooi; Tan, Zhi; Gupta, Jyoti; Talekar, Meghna; Sharma, Manisha; Garg, Sanjay

    2013-06-01

    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.

  9. Le Chatelier's Principle: The Effect of Temperature on the Solubility of Solids in Liquids.

    Science.gov (United States)

    Brice, L. K.

    1983-01-01

    Provides a rigorous but straightforward thermodynamic treatment of the temperature dependence of the solubility of solids in liquids that is suitable for presentation to undergraduates, suggesting how to approach the qualitative aspects of the subject for freshmen. Considers unsolvated/solvated solutes and Le Chatelier's principle. (JN)

  10. Crystal-Structure Contribution to the Solid Solubility in Transition Metal Alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1998-01-01

    The solution energies of 4d metals in other 4d metals as well as the bcc-hcp structural energy differences in random 4d alloys are calculated by density functional theory. It is shown that the crystal structure of the host plays a crucial role in the solid solubility. A local virtual bond...

  11. Solid dispersions in oncology: a solution to solubility-limited oral drug absorption

    NARCIS (Netherlands)

    Sawicki, Emilia

    2017-01-01

    This thesis discusses the formulation method solid dispersion and how it works to resolve solubility-limited absorption of orally dosed anticancer drugs. Dissolution in water is essential for drug absorption because only dissolved drug molecules are absorbed. The problem is that half of the arsenal

  12. Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid.

    Science.gov (United States)

    Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D

    1996-10-01

    The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.

  13. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  14. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  15. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  16. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  17. Simple multipurpose apparatus for solubility measurement of solid solutes in liquids

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Christensen, Lars Porskjær

    2016-01-01

    students of chemical engineering program at University of Southern Denmark. The exercises included solubility measurement and cooling crystallization of salicylic acid from five different organic solvents and extraction of artemisinin from the leaves of the plant Artemisia annua by using different solvents...

  18. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    Science.gov (United States)

    Leventhal, J M; Chambliss, G H

    1982-12-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.

  19. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  20. Fast Measurement of Soluble Solid Content in Mango Based on Visible and Infrared Spectroscopy Technique

    Science.gov (United States)

    Yu, Jiajia; He, Yong

    Mango is a kind of popular tropical fruit, and the soluble solid content is an important in this study visible and short-wave near-infrared spectroscopy (VIS/SWNIR) technique was applied. For sake of investigating the feasibility of using VIS/SWNIR spectroscopy to measure the soluble solid content in mango, and validating the performance of selected sensitive bands, for the calibration set was formed by 135 mango samples, while the remaining 45 mango samples for the prediction set. The combination of partial least squares and backpropagation artificial neural networks (PLS-BP) was used to calculate the prediction model based on raw spectrum data. Based on PLS-BP, the determination coefficient for prediction (Rp) was 0.757 and root mean square and the process is simple and easy to operate. Compared with the Partial least squares (PLS) result, the performance of PLS-BP is better.

  1. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.

    Science.gov (United States)

    Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B

    2017-12-01

    This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  2. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus.

    Science.gov (United States)

    Lavra, Zênia Maria Maciel; Pereira de Santana, Davi; Ré, Maria Inês

    2017-01-01

    Efavirenz (EFV), a first-line anti-HIV drug largely used as part of antiretroviral therapies, is practically insoluble in water and belongs to BCS class II (low solubility/high permeability). The aim of this study was to improve the solubility and dissolution performances of EFV by formulating an amorphous solid dispersion of the drug in polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus ® ) using spray-drying technique. To this purpose, spray-dried dispersions of EFV in Soluplus ® at different mass ratios (1:1.25, 1:7, 1:10) were prepared and characterized using particle size measurements, SEM, XRD, DSC, FTIR and Raman microscopy mapping. Solubility and dissolution were determined in different media. Stability was studied at accelerated conditions (40 °C/75% RH) and ambient conditions for 12 months. DSC and XRD analyses confirmed the EFV amorphous state. FTIR spectroscopy analyses revealed possible drug-polymer molecular interaction. Solubility and dissolution rate of EFV was enhanced remarkably in the developed spray-dried solid dispersions, as a function of the polymer concentration. Spray-drying was concluded to be a proper technique to formulate a physically stable dispersion of amorphous EFV in Soluplus ® , when protected from moisture.

  3. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique*

    OpenAIRE

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-01-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyz...

  4. The effect of treating plum tree with Rovral (iprodion and Euparen (dichlofluanid on the content of soluble solids in fruit

    Directory of Open Access Journals (Sweden)

    Halina Borecka

    2013-12-01

    Full Text Available The concentration of soluble solids in plum fruit varied and depended on the cultivar, year, and fungicide treatment. Plums from trees treated with Rovral (iprodion contained in some case the lowest level of soluble solids, higher or equal levels were found in those sprayed with Euparen (dichlofluanid, and the highest concentration of soluble solids was in fruits from untreated trees. Explanation of this phenomenon is possible by looking for changes in photosynthesis of treated and untreated leaves. Fungicide treatment of some plum cultivars, particularly with Rovral, decreased the photosynthesis of the leaves.

  5. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug.

    Science.gov (United States)

    Tran, Khanh Thi My; Vo, Toi Van; Tran, Phuong Ha-Lien; Lee, Beom-Jin; Duan, Wei; Tran, Thao Truong-Dinh

    2017-06-05

    The aim of this research was to engineer solid dispersion lipid particles (SD-SLs) in which a solid dispersion (SD) was encapsulated to form the core of solid lipid particles (SLs), thereby achieving an efficient enhancement in the dissolution of a poorly water-soluble drug. Ultrasonication was introduced into the process to obtain micro/nanoscale SLs. The mechanism of dissolution enhancement was investigated by analysing the crystalline structure, molecular interactions, and particle size of the formulations. The drug release from the SD-SLs was significantly greater than that from the SD or SLs alone. This enhancement in drug release was dependent on the preparation method and the drug-to-polymer ratio of the SD. With an appropriate amount of polymer in the SD, the solidification method had the potential to alter the drug crystallinity to an amorphous state, resulting in particle uniformity and molecular interactions in the SD-SLs. The proposed system provides a new strategy for enhancing the dissolution rate of poorly water-soluble drugs and further improving their bioavailability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  7. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  8. Solubility and dissolution enhancement of flurbiprofen by solid dispersion using hydrophilic carriers

    Directory of Open Access Journals (Sweden)

    Bhaskar Daravath

    2018-05-01

    Full Text Available ABSTRACT The intent of the current work is to study the effect of polyethylene glycol 8000 and polyethylene glycol 10000 as hydrophilic carriers on dissolution behaviour of flurbiprofen. In the present study, solvent evaporation method was used to prepare flurbiprofen solid dispersions and evaluated for physico-chemical properties, drug-carrier compatibility studies and dissolution behaviour of drug. Solubility studies showed more solubility in higher pH values and formulations SD4 and SD8 were selected to prepare the fast dissolving tablets. FTIR and DSC study showed no interaction and drug was dispersed molecularly in hydrophilic carrier. XRD studies revealed that there was change in the crystallinity of the drug. The results of In vitro studies showed SD8 formulation confer significant improvement (p<0.05 in drug release, Q20 was 99.08±1.35% compared to conventional and marketed tablets (47.31±0.74% and 56.86±1.91%. The mean dissolution time (MDT was reduced to 8.79 min compared to conventional and marketed tablets (25.76 and 22.22 min. indicating faster drug release. The DE (% dissolution efficiency was increased by 2.5 folds (61.63% compared to conventional tablets (23.71%. From the results, it is evident that polyethylene glycol solid dispersions in less carrier ratio may enhance the solubility and there by improve the dissolution rate of flurbiprofen.

  9. Revealing facts behind spray dried solid dispersion technology used for solubility enhancement

    Science.gov (United States)

    Patel, Bhavesh B.; Patel, Jayvadan K.; Chakraborty, Subhashis; Shukla, Dali

    2013-01-01

    Poor solubility and bioavailability of an existing or newly synthesized drug always pose challenge in the development of efficient pharmaceutical formulation. Numerous technologies can be used to improve the solubility and among them amorphous solid dispersion based spray drying technology can be successfully useful for development of product from lab scale to commercial scale with a wide range of powder characteristics. Current review deals with the importance of spray drying technology in drug delivery, basically for solubility and bioavailability enhancement. Role of additives, selection of polymer, effect of process and formulation parameters, scale up optimization, and IVIVC have been covered to gain the interest of readers about the technology. Design of experiment (DoE) to optimize the spray drying process has been covered in the review. A lot more research work is required to evaluate spray drying as a technology for screening the right polymer for solid dispersion, especially to overcome the issue related to drug re-crystallization and to achieve a stable product both in vitro and in vivo. Based on the recent FDA recommendation, the need of the hour is also to adopt Quality by Design approach in the manufacturing process to carefully optimize the spray drying technology for its smooth transfer from lab scale to commercial scale. PMID:27134535

  10. Preparation and investigation of mefenamic acid - polyethylene glycol - sucrose ester solid dispersions.

    Science.gov (United States)

    Fülöp, Ibolya; Gyéresi, Árpád; Kiss, Lóránd; Deli, Mária A; Croitoru, Mircea Dumitru; Szabó-Révész, Piroska; Aigner, Zoltán

    2015-12-01

    Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  11. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  12. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    International Nuclear Information System (INIS)

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate at concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO 3 and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO 3 be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears to be the largest portion

  13. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  14. Kinetics of the isothermal decomposition of zirconium hydride: terminal solid solubility for precipitation and dissolution

    Science.gov (United States)

    Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.

    2018-05-01

    The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.

  15. Near Infrared Spectral Linearisation in Quantifying Soluble Solids Content of Intact Carambola

    Directory of Open Access Journals (Sweden)

    Mohd Zubir MatJafri

    2013-04-01

    Full Text Available This study presents a novel application of near infrared (NIR spectral linearisation for measuring the soluble solids content (SSC of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2 = 0.724 and a root mean square error of prediction for (RMSEP = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.

  16. Near infrared spectral linearisation in quantifying soluble solids content of intact carambola.

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2013-04-12

    This study presents a novel application of near infrared (NIR) spectral linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2) = 0.724 and a root mean square error of prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.

  17. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Investigations on uranyl nitrate solubility in nitric acid in different concentrations at temperatures of 50C

    International Nuclear Information System (INIS)

    Deigele, E.

    1983-01-01

    The solubility of uranyl nitrate was studied in nitric acid solutions of different concentrations at a temperature of 5 0 C. This temperature was chosen with a view to using water as coolant and to facilitate the handling of the strong acid solutions. Accurate curves were established by a multitude of accurate measurements in the high concentration range. Further solubility curves can be derived from this basic curve. Some of the precipitates in the interesting regions of the solubility curve were analyzed. (orig./EF) [de

  20. Solubility Enhancement and Formulation of Mouth Dissolving Tablet of Clonazepam with Solid Dispersion Technology

    Directory of Open Access Journals (Sweden)

    Swati C. Jagdale

    2012-01-01

    Full Text Available Clonazepam (CLZ is an anticonvulsant benzodiazepine widely used in the treatment of epilepsy. CLZ is a BCS Class II drug and its bioavailability is thus dissolution limited. The objective of the present study was to prepare solid dispersions (SDs of CLZ by various techniques, using the amphiphilic carrier Gelucire 50/13 in various proportions, to increase its water solubility. Drug-polymer interactions were investigated by Fourier-transform infrared (FTIR and UltraViolet (UV spectroscopy. The SDs were characterized physically by differential scanning calorimetry (DSC and X-ray diffraction (XRD. A phase solubility study was performed and the stability constant (Ks was found to be 275.27, while the negative Gibbs free energy (ΔGo tr indicated spontaneous solubilization of the drug. The dissolution study showed that the SDs considerably enhanced the dissolution rate of the drug. The FTIR and UV spectra revealed no chemical incompatibility between the drug and Gelucire 50/13. XRD patterns and the DSC profiles indicated the CLZ was in the amorphous form, which explains the improved dissolution rate of the drug from its SDs. Finally, mouth dissolving tablets (MDTs were prepared from the optimized batches (kneading method of solid dispersion, using crospovidone and Doshion P544 resin as superdisintegrants. The tablets were characterized by in-vitro disintegration and dissolution tests. The study of the MDTs showed disintegration times in the range 32.0±0.85 to 20.0±1.30 sec and dissolution was faster than for the commercial preparation. In conclusion, this investigation demonstrated the potential of solid dispersions of a drug with Gelucire 50/13 for promoting the dissolution of the drug and contributed to the understanding of the effect of a superdisintegrant on mouth dissolving tablets containing a solid dispersion of a hydrophobic drug.

  1. Influence of solid state fermentation by Trichoderma spp. on solubility, phenolic content, antioxidant, and antimicrobial activities of commercial turmeric.

    Science.gov (United States)

    Mohamed, Saleh A; Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M

    2016-05-01

    The influence of solid state fermentation (SSF) by Trichoderma spp. on the solubility, total phenolic content, antioxidant, and antibacterial activities of turmeric was determined and compared with unfermented turmeric. The solubility of turmeric was monitored by increase in its phenolic content. The total phenolic content of turmeric extracted by 80% methanol and water after SSF by six species of Trichoderma spp. increased significantly from 2.5 to 11.3-23.3 and from 0.5 to 13.5-20.4 GAE/g DW, respectively. The antioxidant activities of fermented turmeric were enhanced using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS), and ferric ion-reducing antioxidant power (FRAP) assays. The antibacterial activity of fermented turmeric against human-pathogenic bacteria Escherichia coli, Streptococcus agalactiae, Staphylococcus aureus, Entreococcus faecalis, Methicillin-Resistant S. aureus, Klebsiella pneumonia, and Pseudomonas aeruginosae showed a broad spectrum inhibitory effect. In conclusion, the results indicated the potentials of using fermented turmeric as natural antioxidant and antimicrobial material for food applications.

  2. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver.

    Science.gov (United States)

    Faiz, Merisa B; Amal, Rose; Marquis, Christopher P; Harry, Elizabeth J; Sotiriou, Georgios A; Rice, Scott A; Gunawan, Cindy

    2018-04-01

    Nanosilver (Ag NPs) is currently one of the most commercialized antimicrobial nanoparticles with as yet, still unresolved cytotoxicity origins. To date, research efforts have mostly described the antimicrobial contribution from the leaching of soluble silver, while the undissolved solid Ag particulates are often considered as being microbiologically inert, serving only as source of the cytotoxic Ag ions. Here, we show the rapid stimulation of lethal cellular oxidative stress in bacteria by the presence of the undissolved Ag particulates. The cytotoxicity characteristics are distinct from those arising from the leached soluble Ag, the latter being locked in organic complexes. The work also highlights the unique oxidative stress-independent bacterial toxicity of silver salt. Taken together, the findings advocate that future enquiries on the antimicrobial potency and also importantly, the environmental and clinical impact of Ag NPs use, should pay attention to the potential bacterial toxicological responses to the undissolved Ag particulates, rather than just to the leaching of soluble silver. The findings also put into question the common use of silver salt as model material for evaluating bacterial toxicity of Ag NPs.

  3. Solid dispersions: a strategy for poorly aqueous soluble drugs and technology updates.

    Science.gov (United States)

    Alam, Mohd Aftab; Ali, Raisuddin; Al-Jenoobi, Fahad Ibrahim; Al-Mohizea, Abdullah M

    2012-11-01

    Present article reviews solid dispersion (SD) technologies and other patented inventions in the area of pharmaceutical SDs, which provide stable amorphous SDs. The review briefly compiles different techniques for preparing SDs, their applications, characterization of SDs, types of SDs and also elaborates the carriers used to prepare SDs. The advantages of recently introduced SD technologies such as RightSize(™), closed-cycle spray drying (CSD), Lidose® are summarized. Stability-related issues like phase separation, re-crystallization and methods to curb these problems are also discussed. A patented carrier-screening tool for predicting physical stability of SDs on the basis of drug-carrier interaction is explained. Applications of SD technique in controlled drug delivery systems and cosmetics are explored. Review also summarizes the carriers such as Soluplus®, Neusilin®, Solumer(TM) used to prepare stable amorphous SD. Binary and ternary SDs are found to be more stable and provide better enhancement of solubility or dissolution of poorly water-soluble drugs. The use of surfactants in the carrier system of SD is a recent trend. Surfactants and polymers provide stability against re-crystallization of SDs, surfactants also improve solubility and dissolution of drug.

  4. Method for measurement of radon diffusion and solubility in solid materials

    Science.gov (United States)

    Maier, Andreas; Weber, Uli; Dickmann, Jannis; Breckow, Joachim; van Beek, Patrick; Schardt, Dieter; Kraft, Gerhard; Fournier, Claudia

    2018-02-01

    In order to study the permeation i.e. the diffusion and solubility of radon gas in biological material, a new setup was constructed and a novel analysis was applied to obtain diffusion and solubility coefficients. Thin slabs of solid materials were installed between detector housing and the surrounding radon exposure chamber of 50 Ls volume. In this setup radon can diffuse through thin test samples into a cylindrical volume of 5 mm height and 20 mm diameter and reach an α-particle detector. There the 5.49 MeV α-decay of the penetrating radon atoms is measured by a silicon surface barrier detector. The time dependent activities inside the small detector volume are recorded after injection of a known radon activity concentration into the outer chamber. Analyzing the time behavior of the integral α-activity from radon in the small vessel, both, the diffusion coefficient and solubility of the test material can be determined, based on a new mathematical model of the diffusion process concerning the special boundary conditions given by the experimental setup. These first measurements were intended as proof of concept for the detection system and the data analysis. Thin polyethylene foils (LDPE) were selected as material for the diffusion measurements and the results were in agreement with data from literature. In further measurements, we will concentrate on biological material like bone, fat and other tissues.

  5. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  7. The mechanisms of drug release from solid dispersions in water-soluble polymers.

    Science.gov (United States)

    Craig, Duncan Q M

    2002-01-14

    Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.

  8. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  9. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  10. Solid-state actinide acid phosphites from phosphorous acid melts

    International Nuclear Information System (INIS)

    Oh, George N.; Burns, Peter C.

    2014-01-01

    The reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )]. This compound crystallizes in space group P2 1 /n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O)·2(H 2 O). α- and β-An(HPO 2 OH) 4 crystallize in space groups C2/c and P2 1 /n, respectively, and comprise a three-dimensional network of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) crystallizes in a layered structure in space group Pbca that is composed of An 4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO 3 and H 3 PO 3 at 100 °C and subsequent reaction with DMF produces crystals of (NH 2 (CH 3 ) 2 )[UO 2 (HPO 2 OH)(HPO 3 )] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO 2 OH) 4 (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite–phosphite U(HPO 3 )(HPO 2 OH) 2 (H 2 O) 2 ·(H 2 O) with a layered structure. - Highlights: • U(VI), U(IV) and Th(IV) phosphites were synthesized by solution

  11. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  12. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  13. Carbon-based strong solid acid for cornstarch hydrolysis

    International Nuclear Information System (INIS)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-01-01

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO 3 H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO 3 H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use

  14. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  15. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  16. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  17. Solubility of fumaric acid and its monosodium salt

    NARCIS (Netherlands)

    Roa Engel, C.A.; Horst, J.H. ter; Pieterse, M.; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    Fumaric acid is a dicarboxylic acid applied in food industry and in some polymers. Currently, its fermentative production from renewable resources is receiving much attention, and crystallization is used to recover it. To determine the window of operation for crystallization from multicomponent

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  19. CO2 Solubilities in Amide-based Brφnsted Acidic Ionic Liquids

    International Nuclear Information System (INIS)

    Palgunadi, Jelliarko; Im, Jin Kyu; Kang, Je Eun; Kim, Hoon Sik; Cheong, Min Serk

    2010-01-01

    A distinguished class of hydrophobic ionic liquids bearing a Brφnsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and ε-caprolactam with trifluoroacetic acid and physical absorptions of CO 2 in these ionic liquids were demonstrated and evaluated. CO 2 solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that CO 2 solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility

  20. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  1. Eutectic, monotectic and immiscibility systems of nimesulide with water-soluble carriers: phase equilibria, solid-state characterisation and in-vivo/pharmacodynamic evaluation.

    Science.gov (United States)

    Abdelkader, Hamdy; Abdallah, Ossama Y; Salem, Hesham; Alani, Adam W G; Alany, Raid G

    2014-10-01

    The solid-state interactions of fused mixtures nimesulide (ND) with polyethylene glycol (PEG) 4000, urea or mannitol were studied through constructing thaw-melt phase equilibrium diagrams. The solid-state characteristics were investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Various types of interactions were identified such as the formation of a eutectic system of ND-PEG 4000, monotectic system of ND-urea and complete solid immiscibility of ND with mannitol. The effects of carrier concentrations on the equilibrium solubility and in-vitro dissolution characteristics were studied. Linear increases (R(2)  > 0.99) in the aqueous solubility of ND in various concentrations of PEG 4000 and urea were obtained, whereas mannitol did not exhibit any effect on the solubility of ND. Similar trends were obtained with the dissolution efficiency of the fused mixtures of ND with PEG 4000 and urea compared with the corresponding physical mixtures and untreated drug. The analgesic effects of untreated ND and the selected formulations were investigated by evaluating the drug's ability to inhibit the acetic acid-induced writhing response. The analgesic effect of ND in a eutectic mixture with PEG 4000 and a monotectic mixture with urea was potentiated by 3.2 and 2.7-fold respectively compared with the untreated drug. © 2014 Royal Pharmaceutical Society.

  2. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  3. Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K

    Science.gov (United States)

    Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.

    2017-12-01

    Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.

  4. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  5. Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy

    DEFF Research Database (Denmark)

    Travers, Sylvia; Bertelsen, Marianne; Petersen, Karen

    2014-01-01

    Regression models for predicting preharvest dry matter (DM) and soluble solids content (SSC), based on two spectral ranges (680-1000 nm and 1100-2350 nm), were compared. Models based on longer NIR spectra were more successful for both parameters (DM/SSC: R2 = 0.78-0.84; RMECV = 0.78/0.44; LVs = 6....../7). SSC prediction was better than expected considering the presence of starch in fruit. Generally poor SSC prediction in the presence of starch could be related to the inability of models to distinguish between forms of carbohydrate. Variable selection and regression coefficients highlighted...... fruit. Further research is needed to qualify and build on the results presented here....

  6. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo, E-mail: jxliuyd@163.com [School of Mechatronics Engineering, East China Jiaotong University, Changbei Open and Developing District, Nanchang, 330013 (China)

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62{sup 0}Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  7. Potable NIR spectroscopy predicting soluble solids content of pears based on LEDs

    International Nuclear Information System (INIS)

    Liu Yande; Liu Wei; Sun Xudong; Gao Rongjie; Pan Yuanyuan; Ouyang Aiguo

    2011-01-01

    A portable near-infrared (NIR) instrument was developed for predicting soluble solids content (SSC) of pears equipped with light emitting diodes (LEDs). NIR spectra were collected on the calibration and prediction sets (145:45). Relationships between spectra and SSC were developed by multivariate linear regression (MLR), partial least squares (PLS) and artificial neural networks (ANNs) in the calibration set. The 45 unknown pears were applied to evaluate the performance of them in terms of root mean square errors of prediction (RMSEP) and correlation coefficients (r). The best result was obtained by PLS with RMSEP of 0.62 0 Brix and r of 0.82. The results showed that the SSC of pears could be predicted by the portable NIR instrument.

  8. Evaluation of soluble solids content and pH of ice cream treated with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, V.D.; Nunes, T.C.F.; Fabbri, A.D.T.; Sagretti, J.M.; Sabato, S.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The ice cream is considered an aerated suspension of fat and ice crystals in a concentrated sugar solution containing hydrocolloids, proteins and casein micelles. Only in Brazil, in the year 2010, it was produced 1120 million liter of ice cream and due to high demand by the consumers, this is considered the most important product of the dairy industry. The objective of this work is to evaluate the soluble solids content (SSC) and the hydrogenionic potential (pH) of vanilla ice cream conditioned in isothermal boxes irradiated with 3.0 and 5.0 kGy in the Multipurpose Irradiator of {sup 60}Co located at IPEN - CNEN/SP. It can be concluded that the treatment of ice cream with gamma radiation did not cause changes in the analyzed parameters. . (author)

  9. Peculiarities of hydrogen permeation through Zr–1%Nb alloy and evaluation of terminal solid solubility

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, E.A.; Kompaniets, M.V.; Kompaniets, T.N., E-mail: tkompaniets@spbu.ru; Bobkova, I.S.

    2016-04-15

    Hydrogen permeation through Zr–1%Nb alloy was studied at the temperature below the temperature of α-β transition. Analysis of the transient permeation curves from a closed volume in a surface limited regime allowed to determine total and mobile hydrogen concentrations. At the mobile hydrogen concentration of 4.3 at% a part of the absorbed hydrogen is cut out of permeation process. Increase of the mobile hydrogen concentration in α-phase of Zr–1%Nb alloy is ceasing at the concentration of (5.5 ± 0.3) at%, which is the maximum possible concentration of the mobile hydrogen in α-phase of the studied alloy. From this moment on all absorbed hydrogen is spent on hydride formation. The obtained results are compared with those obtained by means of traditional techniques for terminal solid solubility determination.

  10. Evaluation of soluble solids content and pH of ice cream treated with gamma radiation

    International Nuclear Information System (INIS)

    Rogovschi, V.D.; Nunes, T.C.F.; Fabbri, A.D.T.; Sagretti, J.M.; Sabato, S.F.

    2011-01-01

    The ice cream is considered an aerated suspension of fat and ice crystals in a concentrated sugar solution containing hydrocolloids, proteins and casein micelles. Only in Brazil, in the year 2010, it was produced 1120 million liter of ice cream and due to high demand by the consumers, this is considered the most important product of the dairy industry. The objective of this work is to evaluate the soluble solids content (SSC) and the hydrogenionic potential (pH) of vanilla ice cream conditioned in isothermal boxes irradiated with 3.0 and 5.0 kGy in the Multipurpose Irradiator of 60 Co located at IPEN - CNEN/SP. It can be concluded that the treatment of ice cream with gamma radiation did not cause changes in the analyzed parameters. . (author)

  11. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  12. Soluble CD30 serum level--an adequate marker for allograft rejection of solid organs?

    Science.gov (United States)

    Schlaf, G; Altermann, W W; Rothhoff, A; Seliger, B

    2007-11-01

    The CD30 molecule, a 120 kDa cell surface glycoprotein, is a member of the tumor necrosis factor receptor (TNF-R) superfamily and was originally identified on the surface of Reed-Sternberg cells and anaplastic large cell lymphomas in Hodgkin's disease patients. In addition to lymphoproliferative disorders the expression of CD30 was found in both activated CD8+ and CD4+ Th2 cells which lead to the activation of B-cells and consequently to the inhibition of the Th1-type cellular immunity. The membrane-bound CD30 molecule can be proteolytically cleaved, thereby generating a soluble form (sCD30) of about 85 kDa. Low serum levels of soluble CD30 were found in healthy humans, whereas increased sCD30 serum concentrations were detected under pathophysiological situations such as systemic lupus erythematosus, rheumatoid arthritis, certain viral infections and adult T cell leukaemia/lymphoma. In addition, it has recently been suggested that pre- or post-transplant levels of sCD30 represent a biomarker for graft rejection associated with an impaired outcome for transplanted patients. We here review (i) the current knowledge of the clinical significance of sCD30 serum levels for solid organ transplantations and (ii) our own novel data regarding inter- and intra-individual variations as well as time-dependent alterations of sCD30 levels in patients. (iii) Based on this information the implementation of sCD30 as predictive pre-transplant or post-transplant parameter for solid organ transplantation is critically discussed.

  13. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery

    International Nuclear Information System (INIS)

    Zhang, C.P.; Sharkh, S.M.; Li, X.; Walsh, F.C.; Zhang, C.N.; Jiang, J.C.

    2011-01-01

    Highlights: → We compared the electrochemical characteristics of two types of the batteries. → SLAFB shows as good performance as SLAB under the same current density. → The cycle life of two batteries is strongly influenced by the depth of discharge. → The cycle life of SLAFB can be extended by treatment with hydrogen peroxide. - Abstract: The electrochemistry of static lead-acid and soluble lead-acid flow batteries is summarised and the differences between the two batteries are highlighted. A general comparison of the performance of an unoptimised soluble lead-acid flow laboratory cell and a commercial lead-acid battery during charge and discharge is reported. The influence of the depth of discharge on cycle life for both batteries is also considered. The flow battery was found to have a better charge efficiency than the static one, but the cells were found to have comparable energy efficiencies. The self-discharge characteristics of the soluble lead-acid battery were also measured and compared to reported values for a commercial static battery. Some self-discharge of the soluble lead-acid flow battery is observed during prolonged periods on open-circuit but the battery could recover its normal performance after a single charge-discharge cycle.

  14. Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein

    International Nuclear Information System (INIS)

    Hackett, R.H.; Setlow, P.

    1988-01-01

    Bacillus subtilis strains containing a deletion in the gene coding for the major small, acid-soluble, spore protein (SASP-gamma) grew and sporulated, and their spores initiated germination normally, but outgrowth of SASP-gamma- spores was significantly slower than that of wild-type spores. The absence of SASP-gamma had no effect on spore protoplast density or spore resistance to heat or radiation. Consequently, SASP-gamma has a different function in spores than do the other major small, acid-soluble proteins

  15. Estimation of solubility of organo-phosphorus extractants by P determination using molybdovanadophosphoric acid method

    International Nuclear Information System (INIS)

    Gill, J.S.; Kotekar, M.K.; Singh, H.

    2005-01-01

    Solvent extraction processes have been found to be suitable for uranium recovery from phosphoric acid. Various extractants like di-2-ethyl hexylphosphoric acid (D2EHPA), di-nonylphenyl phosphoric acid (DNPPA) and synergistic agents like tri-butyl phosphate (TBP), tri-octyl phosphine oxide (TOPO) have been used in liquid-liquid extraction of uranium from phosphoric acid. Contents of these organo-phosphorus compounds in aqueous raffinates need estimation for process requirements. Solubility of Tri-butyl phosphate (TBP) and Di-2-ethylhexyl phosphoric acid (D2EHPA) extractants have been determined in different media of water, oxalic acid (0.6M) and sulphuric acid (3.75M) solutions. These compounds were estimated by determining their phosphorus (P) contents employing molybdovanadophosphoric acid method, after digesting and solubalizing them in nitric and perchloric acid. (author)

  16. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  17. Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach.

    Science.gov (United States)

    Haneef, Jamshed; Chadha, Renu

    2017-08-01

    The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.

  18. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    Science.gov (United States)

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  19. Solubility enhancement of BCS Class II drug by solid phospholipid dispersions: Spray drying versus freeze-drying.

    Science.gov (United States)

    Fong, Sophia Yui Kau; Ibisogly, Asiye; Bauer-Brandl, Annette

    2015-12-30

    The poor aqueous solubility of BCS Class II drugs represents a major challenge for oral dosage form development. Using celecoxib (CXB) as model drug, the current study adopted a novel solid phospholipid nanoparticle (SPLN) approach and compared the effect of two commonly used industrial manufacturing methods, spray- and freeze-drying, on the solubility and dissolution enhancement of CXB. CXB was formulated with Phospholipoid E80 (PL) and trehalose at different CXB:PL:trehalose ratios, of which 1:10:16 was the optimal formulation. Spherical amorphous SPLNs with average diameters <1μm were produced by spray-drying; while amorphous 'matrix'-like structures of solid PL dispersion with larger particle sizes were prepared by freeze-drying. Formulations from both methods significantly enhanced the dissolution rates, apparent solubility, and molecularly dissolved concentration of CXB in phosphate buffer (PBS, pH 6.5) and in biorelevant fasted state simulated intestinal fluid (FaSSIF, pH 6.5) (p<0.05). While similar dissolution rates were found, the spray-dried SPLNs had a larger enhancement in apparent solubility (29- to 132-fold) as well as molecular solubility (18-fold) of CXB at equilibrium (p<0.05). The strong capability of the spray-dried SPLNs to attain 'true' supersaturation state makes them a promising approach for bioavailability enhancement of poorly soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Measurement and modelling of urea solubility in aqueous propane-1,2,3-triol and prop-2-enoic acid solutions

    International Nuclear Information System (INIS)

    Santos, Jéssica dos J; Rocha, João A.A.B.; Costa, Glória M.N.; Cabral-Albuquerque, Elaine C.M.; Alves, Tito L.M.; Pinto, José C.; Fialho, Rosana L.

    2016-01-01

    Highlights: • Solubilities were shown to increase with temperature and to decrease with the increasing organic solvent content. • The UNIFAC method provided good fitting of the available data, after the estimation of a single model parameter. • The empirical method showed to be more efficient to describe several solution concentrations however, it is not predictive. - Abstract: The aim of the present study is to measure the solubility of urea in aqueous solutions of prop-2-enoic acid and propane-1,2,3-triol, as these compounds are used as co-monomers to produce urea base co-polymers. Experimental values have been obtained at several concentrations and temperatures. Solubility results were modelled with the help of an exponential empirical correlation, ideal solid-liquid equilibrium correlation and the Universal Functional Activity Coefficient (UNIFAC) method, used to describe the activity coefficient in the liquid phase. The empirical correlation requires two empirical parameters for each solvent and leads to the best fit for the available data. The UNIFAC method correlation also has a good numerical performance and is completely predictive, and it does not require the estimation of additional parameters.

  1. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...

  2. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gubina, M.Yu.

    1988-01-01

    Stability concetration constants K and solubility of neptunium and plutonium complexes with di- and monobuthylphosphoric acids (APC) and with orthophosphoric and di-2-ethylhexyl-phosphoric acids in 30% TBP solution-n-dodecane system are determined by spectrophotometric titration and radiometry methods. Posibility of forecasting radiation-chemical behaviour of actinids according to data on K and APC radiation-chemical yield values is demonstrated

  3. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gibina, M.Yu.

    1989-01-01

    The concentration stability constants (K s ) and solubility of neptunium and plutonium complexes with di- and monobutylphosphoric acids (APA), as well as with orthophosphoric acid in the system composed of 30% TBP + n-dodecane, have been determined by spectrophotometric titration and radiometry. The feasibility of predicting the radiative chemical behavior of actinides based on their K s values and the radiative chemical yield of APA has been demonstrated

  4. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  5. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  6. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  7. PON-Sol: prediction of effects of amino acid substitutions on protein solubility.

    Science.gov (United States)

    Yang, Yang; Niroula, Abhishek; Shen, Bairong; Vihinen, Mauno

    2016-07-01

    Solubility is one of the fundamental protein properties. It is of great interest because of its relevance to protein expression. Reduced solubility and protein aggregation are also associated with many diseases. We collected from literature the largest experimentally verified solubility affecting amino acid substitution (AAS) dataset and used it to train a predictor called PON-Sol. The predictor can distinguish both solubility decreasing and increasing variants from those not affecting solubility. PON-Sol has normalized correct prediction ratio of 0.491 on cross-validation and 0.432 for independent test set. The performance of the method was compared both to solubility and aggregation predictors and found to be superior. PON-Sol can be used for the prediction of effects of disease-related substitutions, effects on heterologous recombinant protein expression and enhanced crystallizability. One application is to investigate effects of all possible AASs in a protein to aid protein engineering. PON-Sol is freely available at http://structure.bmc.lu.se/PON-Sol The training and test data are available at http://structure.bmc.lu.se/VariBench/ponsol.php mauno.vihinen@med.lu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    Science.gov (United States)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  9. Prediction of soluble solids content and ph in red wine by visible and near infrared spectroscopy

    Science.gov (United States)

    Wang, Li; He, Yong; Wang, Yanyan

    2008-02-01

    Soluble solids content (SSC) and pH are two major characteristic used for assessing quality of red wine, and they are also two important quality indexes in the manufacture of red wine. For rapid detection of SSC and pH in red wine, visible and near infrared (Vis/NIR) transmittance spectroscopy technique combined with partial least squares (PLS) and least squares support vector machines (LS-SVM) were used in this study. First, the near infrared transmittance spectra of 175 red wine samples were obtained using Vis/NIR spectroradiometer, then, PLS was applied for reducing the dimensionality of the original spectra, latent variables (LVs) selected by PLS could be used to replace the complex spectral data. All samples were randomly separated into calibration set and validation set. The LVs (selected by PLS) of each sample in calibration set was used as the inputs to train the LS-SVM model, then the optimal model was used to predict the SSC and pH values of samples in validation set based on their LVs. Standard error prediction (SEP) and determination coefficient (r2) were used as the evaluation standards, and the results indicated that the SEP and r2 for the prediction of SSC were 0.2313 and 0.9348; while 0.0071 and 0.9986 for pH. This prediction model was more accurate compared with the related research.

  10. The terminal solid solubility of hydrogen and deuterium in Zr-2.5Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, I G; Pan, Z L; Puls, M P [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1997-02-01

    The presence of hydrides in zirconium based alloys is an important factor in assessing the potential for delayed hydride cracking in pressure tubes and the embrittlement of other in-core components fabricated from these alloys. Consequently, the terminal solid solubility (TSS) of hydrogen in the zirconium alloys used in the Nuclear Industry is an important parameter. However, at the low hydrogen concentrations found in practice, the TSS is difficult to measure accurately and even the measurements of hydrogen concentrations by standard techniques are notoriously difficult to make reproducibly at the nominal levels found in pressure tube materials. The presence of hydrides, their dissolution and nucleation gives rise to a number of internal friction phenomena and changes in Young`s modulus that can be useful from the practical point of view. These phenomena can be used to establish expressions for the TSS as a function of temperature, the hysteresis between dissolution and nucleation and hydrogen supercharging from the gas phase. In particular, such studies show that the hysteresis between the TSS measured during heating and cooling is particularly sensitive to the thermal history of the sample. This paper reviews the phenomena involved and presents some recent results on Zr-2.5Nb pressure tube material. (author). 28 refs, 17 figs, 6 tabs.

  11. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    Science.gov (United States)

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  12. Poly(aspartic acid) with adjustable pH-dependent solubility.

    Science.gov (United States)

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract

  13. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  14. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  15. Ionic liquid-assisted solublization for improved enzymatic esterification of phenolic acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    2012-01-01

    in a binary system, which is composed of ionic liquid tOMA•TFA (trioctylmethylammonium Trifluoroacetate) and octanol. Ionic liquid tOMA•TFA has great solubility towards most of phenolic acid. The strategy of increasing the solubility of phenolic in ionic liquid tOMA•TFA was proved to be an efficient way...... for increasing conversion of phenolic acids. The mixture ratio between tOMA•TFA and octanol was varied from 1:4 to 1:16 (v/v), it was found that the highest conversion of dihydrocaffeic acid (DHCA) was achieved when tOMA•TFA and octanol was mixed as 1:12 (v/v). It was also found that conversion of DHCA at 70 o...

  16. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  17. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  18. Effect of the structure, solid state and lipophilicity on the solubility of novel bicyclic derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.

    2014-01-01

    Highlights: • The solubility in buffer pH 7.4 of novel bicyclo-derivatives of amine were measured. • The influence of melting parameters and lipophilicity on the solubility was studied. • The thermodynamic parameters of the solubility process were calculated. - Abstract: Novel bicyclic derivatives have been synthesized. The solubility of drug-like substances in phosphate buffer rH 7.4 has been measured within the range of (9.02 · 10 −5 to 1.05 · 10 −4 ) mol/l. The relationship between the chemical nature and the structure of the aryl substituents and the solubility parameter was investigated. The fusion temperatures, enthalpies and entropies have been determined experimentally. The influence of thermophysical characteristics and lipophilicity on the solubility was studied using regression analysis. The calculations by the solubility/lipophilicity equation showed an overall improvement of the predictions equal to 0.5 log units. It was concluded that the solvation has a considerable influence on the solubility of the compounds under consideration. It was also determined that the alkyl- and halogen-derivatives solubility values correlate with HYBOT descriptors characterizing the (donor + acceptor) properties of the substances. The thermodynamic parameters of the solubility process were calculated using the temperature dependences. The study also revealed that the solubility of the bicyclic compounds is characterized by high endothermicity of the processes and negative entropies

  19. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  20. Fatty acids polymorphism and solid-state miscibility

    Energy Technology Data Exchange (ETDEWEB)

    Gbabode, Gabin [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France)], E-mail: ggbabode@ulb.ac.be; Negrier, Philippe; Mondieig, Denise [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 33405 Talence (France); Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Angel [Departament de Cristallografia, Mineralogia i Diposits Minerals, Universitat de Barcelona, 08028 Barcelona (Spain)

    2009-02-05

    The pentadecanoic acid-hexadecanoic acid (C{sub 15}H{sub 29}OOH-C{sub 16}H{sub 31}OOH) binary system is dealt with in this article. The polymorphism of 20 mixed materials has been investigated combining calorimetric measurements, isothermal and versus temperature X-ray powder diffraction and also FTIR spectroscopy. In particular, the cell parameters of the stable forms, temperatures and heats of phase changes for the two constituents and a proposal of phase diagram are given in this article. Three solid forms are created by mixing in addition with the four solid forms of the pure components. All these solid forms are stabilized on narrow domains of composition, implying a reduced solid-state miscibility of the pentadecanoic and hexadecanoic acids.

  1. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  2. Production of Citric Acid from Solid State Fermentation of Sugarcane ...

    African Journals Online (AJOL)

    Aspergillus niger is the leading microorganism of choice for citric acid production. Sugarcane waste was used as substrate under solid state fermentation to comparatively evaluate the citric acid production capacity of Aspergillus niger isolates and the indigenous microflora in the sugarcane waste. Known optimal cultural ...

  3. Design, optimization and evaluation of glipizide solid self-nanoemulsifying drug delivery for enhanced solubility and dissolution.

    Science.gov (United States)

    Dash, Rajendra Narayan; Mohammed, Habibuddin; Humaira, Touseef; Ramesh, Devi

    2015-10-01

    A solid self-nanoemulsifying drug-delivery system (solid SNEDDS) has been explored to improve the solubility and dissolution profile of glipizide. SNEDDS preconcentrate was systematically optimized using a circumscribed central composite design by varying Captex 355 (Oil), Solutol HS15 (Surfactant) and Imwitor 988 (Co-surfactant). The optimized SNEDDS preconcentrate consisted of Captex 355 (30% w/w), Solutol HS15 (45% w/w) and Imwitor 988 (25% w/w). The saturation solubility (SS) of glipizide in optimized SNEDDS preconcentrate was found to be 45.12 ± 1.36 mg/ml, indicating an improvement (1367 times) of glipizide solubility as compared to its aqueous solubility (0.033 ± 0.0021 mg/ml). At 90% SS, glipizide was loaded to the optimized SNEDDS. In-vitro dilution of liquid SNEDDS resulted in a nanoemulsion with a mean droplet size of 29.4 nm. TEM studies of diluted liquid SNEDDS confirmed the uniform shape and size of the globules. The liquid SNEDDS was adsorbed onto calcium carbonate and talc to form solid SNEDDS. PXRD, DSC, and SEM results indicated that, the presence of glipizide as an amorphous and as a molecular dispersion state within solid SNEDDS. Glipizide dissolution improved significantly (p < 0.001) from the solid SNEDDS (∼100% in 15 min) as compared to the pure drug (18.37%) and commercial product (65.82) respectively.

  4. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  5. Effects of roasting temperatures and gamma irradiation on the content of chlorogenic acid, caffeic acid and soluble carbohydrates of coffee

    International Nuclear Information System (INIS)

    Deshpande, S.N.; Aguilar, A.A.

    1975-01-01

    Two varieties of Puerto Rican coffee, Coffea canephora L. var. Robusta, and Coffea arabica L. var. Borbon, were subjected to four different doses of radiation and roasted at two different temperatures. Aqueous extracts of the ground coffee beans were analyzed for chlorogenic acid and caffeic acid at 324 nm and 360 nm wavelength settings, respectively. Samples subjected to the roasting treatments in conjuction with irradiation treatments were treated with basic lead acetate prior to the colorimetric analyses in order to eliminate interfering substances. The total carbohydrate content was also determined by colorimetric techniques with anthrone reagent. The total nitrogen content of the pulverized samples were determined by the micro-Kjeldahl method. While roasting treatments caused a reduction in the concentrations of the chlorogenic acid, caffeic acid, and the carbohydrates, the radiation treatments increased the concentrations of soluble carbohydrates without affecting the concentrations of chlorogenic acid or caffeic acid. It therefore appears that radiation treatments seem to cause degradation of the acid-polysaccharide complexes liberating soluble sugars. There were no noticable changes in the total content of nitrogen caused by roasting or the radiation treatments as indicated by the statistical analysis employing the split plot design. (author)

  6. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  7. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  8. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  9. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.

    Science.gov (United States)

    Schver, Giovanna C R M; Lee, Ping I

    2018-05-07

    Under nonsink dissolution conditions, the kinetic-solubility profiles of amorphous solid dispersions (ASDs) based on soluble carriers typically exhibit so-called "spring-and-parachute" concentration-time behaviors. However, the kinetic-solubility profiles of ASDs based on insoluble carriers (including hydrogels) are known to show sustained supersaturation during nonsink dissolution through a matrix-regulated diffusion mechanism by which the supersaturation of the drug is built up gradually and sustained over an extended period without any dissolved polymers acting as crystallization inhibitors. Despite previous findings demonstrating the interplay between supersaturation rates and total doses on the kinetic-solubility profiles of soluble amorphous systems (including ASDs based on dissolution-regulated releases from soluble polymer carriers), the combined effects of supersaturation rates and doses on the kinetic-solubility profiles of ASDs based on diffusion-regulated releases from water-insoluble carriers have not been investigated previously. Thus, the objective of this study is to examine the impacts of total doses and supersaturation-generation rates on the resulting kinetic-solubility profiles of ASDs based on insoluble hydrogel carriers. We employed a previously established ASD-carrier system based on water-insoluble-cross-linked-poly(2-hydroxyethyl methacrylate) (PHEMA)-hydrogel beads and two poorly water soluble model drugs: the weakly acidic indomethacin (IND) and the weakly basic posaconazole (PCZ). Our results show clearly for the first time that by using the smallest-particle-size fraction and a high dose (i.e., above the critical dose), it is indeed possible to significantly shorten the duration of sustained supersaturation in the kinetic-solubility profile of an ASD based on a water-insoluble hydrogel carrier, such that it resembles the spring-and-parachute dissolution profiles normally associated with ASDs based on soluble carriers. This generates

  10. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  11. Measurement of soluble solids content in watermelon by Vis/NIR diffuse transmittance technique.

    Science.gov (United States)

    Tian, Hai-qing; Ying, Yi-bin; Lu, Hui-shan; Fu, Xia-ping; Yu, Hai-yan

    2007-02-01

    Watermelon is a popular fruit in the world with soluble solids content (SSC) being one of the major characteristics used for assessing its quality. This study was aimed at obtaining a method for nondestructive SSC detection of watermelons by means of visible/near infrared (Vis/NIR) diffuse transmittance technique. Vis/NIR transmittance spectra of intact watermelons were acquired using a low-cost commercially available spectrometer operating over the range 350~1000 nm. Spectra data were analyzed by two multivariate calibration techniques: partial least squares (PLS) and principal component regression (PCR) methods. Two experiments were designed for two varieties of watermelons [Qilin (QL), Zaochunhongyu (ZC)], which have different skin thickness range and shape dimensions. The influences of different data preprocessing and spectra treatments were also investigated. Performance of different models was assessed in terms of root mean square errors of calibration (RMSEC), root mean square errors of prediction (RMSEP) and correlation coefficient (r) between the predicted and measured parameter values. Results showed that spectra data preprocessing influenced the performance of the calibration models. The first derivative spectra showed the best results with high correlation coefficient of determination [r=0.918 (QL); r=0.954 (ZC)], low RMSEP [0.65 degrees Brix (QL); 0.58 degrees Brix (ZC)], low RMSEC [0.48 degrees Brix (QL); 0.34 degrees Brix (ZC)] and small difference between the RMSEP and the RMSEC by PLS method. The nondestructive Vis/NIR measurements provided good estimates of SSC index of watermelon, and the predicted values were highly correlated with destructively measured values for SSC. The models based on smoothing spectra (Savitzky-Golay filter smoothing method) did not enhance the performance of calibration models obviously. The results indicated the feasibility of Vis/NIR diffuse transmittance spectral analysis for predicting watermelon SSC in a

  12. Thermal diffusion of hydrogen in zircaloy-2 containing hydrogen beyond terminal solid solubility

    International Nuclear Information System (INIS)

    Maki, Hideo; Sato, Masao.

    1975-01-01

    The thermal diffusion of hydrogen is one of causes of uneven hydride precipitation in zircaloy fuel cladding tubes that are used in water reactors. In the diffusion model of hydrogen in zircaloy, the effects of the hydride on the diffusibility of hydrogen has been regarded as negligibly small in comparison with that of hydrogen dissolved in the matrix. Contrary to the indications given by this model, phenomena are often encountered that cannot be explained unless hydride platelets have considerable ostensible diffusibility in zircaloy. In order to determine quantitatively the diffusion characteristics of hydrogen in zircaloy, a thermal diffusion experiment was performed with zircaloy-2 fuel cladding tubes containing hydrogen beyond the terminal solid solubility. In this experiment, a temperature difference of 20 0 --30 0 C was applied between the inside and outside surfaces of the specimen in a thermal simulator. To explain the experimental results, a modified diffusion model is presented, in which the effects of stress are introduced into Markowitz's model with the diffusion of hydrogen in the hydride taken into account. The diffusion equation derived from this model can be written in a form that ostensibly represents direct diffusion of hydride in zircaloy. The apparent diffusion characteristics of the hydride at around 300 0 C are Dsub(p)=2.3x10 5 exp(-32,000/RT), (where R:gas constant, T:temperature) and the apparent heat of transport Qsub(p) =-60,000 cal/mol. The modified diffusion model well explains the experimental results in such respects as reaches a steady state after several hours. (auth.)

  13. Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?

    Science.gov (United States)

    Abramov, Yuriy A

    2015-06-01

    The main purpose of this study is to define the major limiting factor in the accuracy of the quantitative structure-property relationship (QSPR) models of the thermodynamic intrinsic aqueous solubility of the drug-like compounds. For doing this, the thermodynamic intrinsic aqueous solubility property was suggested to be indirectly "measured" from the contributions of solid state, ΔGfus, and nonsolid state, ΔGmix, properties, which are estimated by the corresponding QSPR models. The QSPR models of ΔGfus and ΔGmix properties were built based on a set of drug-like compounds with available accurate measurements of fusion and thermodynamic solubility properties. For consistency ΔGfus and ΔGmix models were developed using similar algorithms and descriptor sets, and validated against the similar test compounds. Analysis of the relative performances of these two QSPR models clearly demonstrates that it is the solid state contribution which is the limiting factor in the accuracy and predictive power of the QSPR models of the thermodynamic intrinsic solubility. The performed analysis outlines a necessity of development of new descriptor sets for an accurate description of the long-range order (periodicity) phenomenon in the crystalline state. The proposed approach to the analysis of limitations and suggestions for improvement of QSPR-type models may be generalized to other applications in the pharmaceutical industry.

  14. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    Science.gov (United States)

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs

  15. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  16. Preparation and investigation of mefenamic acid – polyethylene glycol – sucrose ester solid dispersions

    Directory of Open Access Journals (Sweden)

    Fülöp Ibolya

    2015-12-01

    Full Text Available Mefenamic acid (MA is a widely used non-steroidal antiinflammatory (NSAID drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670 and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

  17. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  18. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study.

    Science.gov (United States)

    Deshmane, Subhash; Deshmane, Snehal; Shelke, Santosh; Biyani, Kailash

    2018-06-01

    Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD 50 ). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.

  19. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic.

    Science.gov (United States)

    Jian, Wenjie; Sun, Yuanming; Wu, Jian-Yong

    2017-07-01

    Monascus pigments (Mps) are natural food colorants and their stability in acidic solutions is important for application in the food industry. This study aimed to evaluate the use of gum arabic (GA) as a stabilizer for maintaining the solubility of Mps in an acidic aqueous solution exposed to a high temperature, and to analyze the molecular interactions between GA and Mps. Mps dispersed (0.2 g kg -1 ) in deionized water at pH 3.0-4.0 without GA formed precipitates but remained in a stable solution in the presence of GA (1 g kg -1 ). The significant improvement of Mps water solubility under acidic conditions was attributed to the formation of Mps-GA complexes, as indicated by a sharp increase in the fluorescence intensity. The results on particle size, zeta potential, and transmission electron microscopy further suggested that molecular binding of Mps to GA, electrostatic repulsion, and steric hindrance of GA were contributing factors to preventing the aggregation of Mps in acidic solutions. A mechanistic model was presented for GA-Mps interactions and complex structures. GA was proven to be an effective stabilizer of natural food colorants in acidic solutions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  1. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    Science.gov (United States)

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Influence of the microwave technology on solid dispersions of mefenamic acid and flufenamic acid.

    Directory of Open Access Journals (Sweden)

    Sultan Alshehri

    Full Text Available The present studies were undertaken to develop solvent-free solid dispersions (SDs for poorly soluble anti-inflammatory drugs mefenamic acid (MA and flufenamic acid (FFA in order to enhance their in vitro dissolution rate and in vivo anti-inflammatory effects. The SDs of MA and FFA were prepared using microwaves irradiation (MW technique. Different carriers such as Pluronic F127® (PL, Eudragit EPO® (EPO, polyethylene glycol 4000 (PEG 4000 and Gelucire 50/13 (GLU were used for the preparation of SDs. Prepared MW irradiated SDs were characterized physicochemically using differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier transform infra-red (FT-IR spectroscopy, powder X-ray diffraction (PXRD and scanning electron microscopy (SEM. The physicochemical characteristics and drug release profile of SDs were compared with pure drugs. The results of DSC, TGA, FT-IR, PXRD and SEM showed that SDs were successfully prepared. In vitro dissolution rate of MA and FFA was remarkably enhanced by SDs in comparison with pure MA and FFA. The SDs of MA and FFA prepared using PEG 400 showed higher drug release profile in comparison with those prepared using PL, EPO or GLU. The dissolution efficiency for MA-PEG SD and FFA-PEG SD was obtained as 61.40 and 59.18%, respectively. Optimized SDs were also evaluated for in vivo anti-inflammatory effects in male Wistar rats. The results showed significant % inhibition by MA-PEG (87.74% after 4 h and FFA-PEG SDs (81.76% after 4 h in comparison with pure MA (68.09% after 4 h and pure FFA (55.27% after 4 h (P<0.05. These results suggested that MW irradiated SDs of MA and FFA could be successfully used for the enhancement of in vitro dissolution rate and in vivo therapeutic efficacy of both drugs.

  3. Determination of the solubility limiting solid of the selenium in the presence of iron under anoxic conditions

    International Nuclear Information System (INIS)

    Iida, Y.; Yamaguchi, T.; Tanaka, T.; Kitamura, A.; Nakayama, S.

    2009-01-01

    Dissolution experiments of selenium were performed from both under saturation and over saturation directions to determine the solubility limiting solid of selenium under the conditions which thermodynamically prefer the formation of ferroselite (FeSe 2 ). X-ray diffractometry (XRD) showed that FeSe 2 was formed in the over-saturation experiments. However, the ion activity products for the reaction of 0.5 FeSe 2 + H + + e - 0.5 Fe 2+ + HSe - , aFe 2+0.5 aHSe - a H+ -1 a e- -1 , obtained from both under saturation and over saturation directions were 3 to 4 orders of magnitude higher than the equilibrium constants calculated from existing thermodynamic data. The dependencies of the selenium concentration on pH, Eh and the iron concentration were better interpreted as a dissolution reaction of selenium solid (Se(s)) than the iron-selenium compounds. The equilibrium constant of: Se(s) + H + + 2e - = HSe - was determined to be logK 0 -7.46±0.11. This value agrees with the value of logK 0 = -7.62±0.06 calculated from existing thermodynamic data of crystalline selenium within errors. Because crystalline selenium was not identified in the solid phases by XRD, the solubility limiting solid would be amorphous or minor amount of crystalline selenium, even if the iron-selenium compound was formed. (authors)

  4. Solid dispersions of Myricetin with enhanced solubility: Formulation, characterization and crystal structure of stability-impeding Myricetin monohydrate crystals

    Science.gov (United States)

    Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.

    2017-08-01

    Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.

  5. Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions

    International Nuclear Information System (INIS)

    Li, Xinbao; Wang, Mingju; Du, Cunbin; Cong, Yang; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubilities of 3-nitro-o-toluic acid in nine organic solvents were determined. • The solubilities were correlated by using four thermodynamic models. • The mixing properties of solution were computed based on Wilson model. - Abstract: Separation of 3-nitro-o-toluic acid from its isomeric mixtures has essential significance in industry. In this work, by using isothermal saturation method, the solid-liquid equilibrium for 3-nitro-o-toluic acid in nine organic solvents (acetonitrile, methanol, ethanol, n-propanol, isopropanol, ethyl acetate, acetone, 1,4-dioxane and 2-butanone) were obtained experimentally within a temperature range from (283.15 to 318.15) K under atmosphere pressure of 101.2 kPa, and the solubility values of 3-nitro-o-toluic acid in these solvents were determined by a high-performance liquid chromatography. Within the studied temperature range, the mole fraction solubility of 3-nitro-o-toluic acid in selected organic solvents increased with increasing temperature. Except for ethyl acetate, the descending order of the mole fraction solubility values were as follow: 1,4-dioxane > acetone > 2-butanone > methanol > ethanol > isopropanol > n-propanol > acetonitrile. The solubility values determined for 3-nitro-o-toluic acid in the selected solvents were correlated and back calculated with the modified Apelblat equation, λh equation, Wilson model and NRTL model. The largest values of RAD and RMSD obtained with the four models were 0.67% and 4.02 × 10 −4 , respectively. In general, the four thermodynamic models were all acceptable for describing the solubility behaviour of 3-nitro-o-toluic acid in these solvents. In addition, the apparent mixing Gibbs energy, mixing enthalpy, mixing entropy, activity coefficient at infinitesimal concentration and reduced excess enthalpy were calculated. The acquired solubility data and thermodynamic studies would be very important in optimizing the separation process of 3-nitro-o-toluic acid from

  6. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  7. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  8. Crystalline Ethylene Oxide and Propylene Oxide Triblock Copolymer Solid Dispersion Enhance Solubility, Stability and Promoting Time- Controllable Release of Curcumin.

    Science.gov (United States)

    Alves, Thais F R; das Neves Lopes, Franciely C C; Rebelo, Marcia A; Souza, Juliana F; da Silva Pontes, Katiusca; Santos, Carolina; Severino, Patricia; Junior, Jose M O; Komatsu, Daniel; Chaud, Marco V

    2018-01-01

    The design and development of an effective medicine are, however, often faced with a number of challenges. One of them is the close relationship of drug's bioavailability with solubility, dissolution rate and permeability. The use of curcumin's (CUR) therapeutic potential is limited by its poor water solubility and low chemical stability. The purpose was to evaluate the effect of polymer and solid dispersion (SD) preparation techniques to enhance the aqueous solubility, dissolution rate and stability of the CUR. The recent patents on curcumin SD were reported as (i) curcumin with polyvinylpyrrolidone (CN20071 32500 20071214, WO2006022012 and CN20151414227 20150715), (ii) curcumin-zinc/polyvinylpyrrolidone (CN20151414227 20150715), (iii) curcumin-poloxamer 188 (CN2008171177 20080605), (iv) curcumin SD prepared by melting method (CN20161626746-20160801). SD obtained by co-preciptation or microwave fusion and the physical mixture of CUR with Poloxamer-407 (P-407), Hydroxypropylmetylcellulose-K4M (HPMC K4M) and Polyvinylpyrrolidone-K30 (PVP-K30) were prepared at the ratios of 1:2; 1:1 and 2:1. The samples were evaluated by solubility, stability, dissolution rate and characterized by SEM, PXRD, DSC and FTIR. The solubility, stability (pH 7.0) and dissolution rate were significantly greater for SD (CUR:P-407 1:2). The PXRD,SEM and DSC indicated a change in the crystalline state of CUR. The enhancement of solubility was dependent on a combination of factors including the weight ratio, preparation techniques and carrier properties. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. Thus, these SDs, specifically CUR:P-407 1:2 w/w, can overcome the barriers of poor bioavailability to reap many beneficial properties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies.

    Science.gov (United States)

    Drozd, Ksenia V; Manin, Alex N; Churakov, Andrei V; Perlovich, German L

    2017-03-01

    Experimental multistage cocrystal screening of the antituberculous drug 4-aminosalicylic acid (PASA) has been conducted with a number of coformers (pyrazinamide (PYR), nicotinamide (NAM), isonicotinamide (iNAM), isoniazid (INH), caffeine (CAF) and theophylline (TPH)). The crystal structures of 4-aminosalicylic acid cocrystals with isonicotinamide ([PASA+iNAM] (2:1)) and methanol solvate with caffeine ([PASA+CAF+MeOH] (1:1:1)) have been determined by single X-ray diffraction experiments. For the first time for PASA cocrystals it has been found that the structural unit of the [PASA+iNAM] cocrystal (2:1) is formed by 2 types of heterosynthons: acid-pyridine and acid-amide. The desolvation study of the [PASA+CAF+MeOH] cocrystal solvate (1:1:1) has been conducted. The correlation models linking the melting points of the cocrystals with the melting points of the coformers used in this paper have been developed. The thermochemical and solubility properties for all the obtained cocrystals have been studied. Cocrystallization has been shown to lead not only to PASA solubility improving but also to its higher stability against the chemical decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  11. Solid dispersions, part II: new strategies in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-12-01

    The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.

  12. Threshold value of enamel mineral solubility and dental erosion after consuming acidic soft drinks

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2011-09-01

    Full Text Available Background: Dental erosion is irreversible and can caused by acidic soft drink consumption. Dental erosion prevention had already been done, but it still has not been satisfying since the consumption of acidic soft drink is still high. There is still no explanation about the threshold value of enamel mineral solubility and the occurance of dental erosion after consuming acidic soft drink. Purpose: This research is aimed to find the threshold value of enamel mineral solubility and dental erosion before and after consuming acidic soft drinks. Methods: Subjects of the research are saliva and enamel of 12 rabbits, which have some criteria such as age > 70 days, body weight > 600 grams, and teeth considered to be healthy. The sample devided equally into 4 groups. Each of those marmooths was given a drink as much as 2.5 cc/consumption (there are 1, 2 and 3× per day by using syringe without injection needle. Salivary minerals then were examined by using atomic absorption spectrophotometric (ASS, while dental erosion was examined using scanning electron microscop (SEM. The data were analyzed by using Paired t-test. Results: It is known that the threshold value of enamel mineral solubility (K, Na, Fe, Mg, Cl, P, Ca, F, C has significant difference (p < 0.05 after being exposed to folic acid. Meanwhile, Fe did not have significant difference (p = 0.090 after being exposed to citric acid. Similarly, C did not have significant difference (p = 0.063 after being exposed to bicarbonate acid. Furthermore, it is also known that the threshold time value of dental erosion are on the 105th day for folic acid, on the 111th day for citric acid, and on the 117th day for bicarbonate acid. Conclusion: Threshold value of enamel mineral solubility before and after consuming soft drinks containing acid is different. Based on the threshold value of dental erosion, it is known that folic acid is the most erosive acid.Latar belakang: Erosi gigi bersifat irreversible

  13. Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation ...

    African Journals Online (AJOL)

    As the current global environmental concerns have prompted regulations to reduce the level of aromatic compounds, particularly benzene and its derivatives in gasoline, ydroisomerisation of n-alkanes is becoming a major alternative for enhancing octane number. Series of solid acid catalysts comprising of Freidel crafts, ...

  14. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  15. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  16. Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4-dioxane and ethanol solutions

    International Nuclear Information System (INIS)

    Taha, Mohamed; Lee, Ming-Jer

    2011-01-01

    Highlights: → Solubilities of MOPS and MOPSO buffers in aqueous 1,4-dioxane and ethanol solutions. → We found that MOPS-induced phase separation of aqueous solution of 1,4-dioxane. → The phase diagram of (MOPS + water + 1,4-dioxane) system at 298.15 K is documented. → The tie-lines within the two-liquid phase region were also determined at 298.15 K. → The effective excluded volume theory was applied to correlate the binodal LLE data. - Abstract: The buffers 4-morpholinepropanesulfonic acid (MOPS) and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) are useful biological zwitterionic buffers within the pH range of 6.5 to 7.9 and 6.2 to 7.6, respectively. The solubilities of these buffers were determined in binary mixtures (1,4-dioxane + water) and (ethanol + water) at T = 298.15 K by using the results of density measurements. It has been observed that MOPS induced liquid-liquid phase splitting for the mixtures of 40% to 90% (w/w) 1,4-dioxane in water. The two-liquid phase formation was visualized with disperse orange 25. The phase equilibrium boundaries, including the regions of one liquid, two liquids, (one liquid + one solid) and (two liquids + one solid), for the (MOPS + water + 1,4-dioxane) system have been determined experimentally at T = 298.15 K. The tie lines of the (liquid + liquid) equilibrium were also measured. The Othmer-Tobias and Bancroft equation were used to evaluate the reliability of the tie-line data. The binodal curve was fitted to an empirical equation and the effective excluded volume (EEV) model. The apparent free energies of transfer (ΔG tr ' ) of MOPS and MOPSO from water to 1,4-dioxane and ethanol solutions have been calculated from the solubility data. These ΔG tr ' values were compared with those of some related biological buffers (TRIS, TAPS, TAPSO, and TABS). Furthermore, we also calculated the contribution of transfer free energies (Δg tr ' ) of -OH group from water to 1,4-dioxane and ethanol solutions.

  17. Bulk diffusion and solubility of silver and nickel in lead, lead-silver and lead-nickel solid solutions

    International Nuclear Information System (INIS)

    Amenzou-Badrour, H.; Moya, G.; Bernardini, J.

    1988-01-01

    The results of a study of solubility and bulk diffusion of /sup 110/Ag and /sup 63/Ni in lead, lead-silver and lead-nickel solid solutions in the temperature range 220 to 88 0 C are reported. Owing to the low solubility of silver and nickel in lead, Fick's solution corresponding to the boundary condition of a constant concentration of solute at the surface has been used. Depth profile concentration analysis suggests a fundamental difference between the diffusion mechanisms of silver and nickel. Since silver penetration profiles in pure lead give diffusion coefficients independent of the penetration depth and silver concentration, it is suggested that slight decreases of silver diffusivity in lead-silver solid solutions have no significance. This implies that the interstitial silver atoms do not associate significantly with each other to form Ag-Ag dimers. In contrast, different behaviors of /sup 63/Ni depth profile concentration in pure lead and saturated PbNi solid solutions agree with a Ni-Ni interaction leading to the formation of less mobile dimers near the surface in pure lead

  18. Separation of oils from solids

    International Nuclear Information System (INIS)

    Van Slyke, D.C.

    1992-01-01

    This patent describes a method for cleaning oil-contaminated particulate solids. It comprises: contacting contaminated solids with a non-aqueous liquid composition comprising a carboxylic acid; then contacting the solids with an aqueous wash containing a reagent for converting the carboxylic acid to a water-soluble carboxylate salt; and removing an aqueous phase containing carboxylate salt and entrained oil

  19. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR

    Czech Academy of Sciences Publication Activity Database

    Policianová, Olivia; Brus, Jiří; Hrubý, Martin; Urbanová, Martina; Zhigunov, Alexander; Kredatusová, Jana; Kobera, Libor

    2014-01-01

    Roč. 11, č. 2 (2014), s. 516-530 ISSN 1543-8384 R&D Projects: GA ČR GPP106/11/P426 Institutional support: RVO:61389013 Keywords : solid dispersions * acetylsalicylic acid * polymers Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.384, year: 2014

  20. Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas.

    Science.gov (United States)

    Torchio, Fabrizio; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2010-02-15

    Phenolic compounds, extractable from grape skins and seeds, have a notable influence on the quality of red wines. Many studies have clearly demonstrated the relationship between the phenolic composition of the grape at harvest time and its influence on the phenolic composition of the red wine produced. In many previous works the evolution of phenolic composition and relative extractability was normally studied on grapes sampled at different times during ripening, but at the same date the physiological characteristics of grape berries in a vineyard are often very heterogeneous. Therefore, the main goal of the study is to investigate the differences among mechanical properties, phenolic composition and relative extractability of Vitis vinifera L. cv Barbera grape berries, harvested at the same date from several vineyards, and calibrated according to their density at three levels of soluble solids (A=235+/-8, B=252+/-8 and C=269+/-8 g L(-1) sugar) with the aim of studying the influence of ripeness stages and growing locations on these parameters. Results on mechanical properties showed that the thickness of the berry skin (Sp(sk)) was the parameter most affected by the different level of sugars in the pulp, while different skin hardnesses, evaluated by the break skin force (F(sk)), were related to the cultivation sites. The latter were also observed to influence the mechanical characteristics of seeds. Generally, the anthocyanin content increased with the level of soluble solids, while the increase in the tannin content of the berry skin and seeds was less marked. However, significant changes in flavanols reactive to vanillin in the seeds were found. The cellular maturity index (EA%) was little influenced by the soluble solids content of grapes. Copyright 2009 Elsevier B.V. All rights reserved.

  1. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  2. Pharmaceutical cocrystals:formation mechanisms, solubility behaviour and solid-state properties

    OpenAIRE

    Alhalaweh, Amjad

    2012-01-01

    The primary aim of pharmaceutical materials engineering is the successful formulation and process development of pharmaceutical products. The diversity of solid forms available offers attractive opportunities for tailoring material properties. In this context, pharmaceutical cocrystals, multicomponent crystalline materials with definite stoichiometries often stabilised by hydrogen bonding, have recently emerged as interesting alternative solid forms with potential for improving the physical a...

  3. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    Science.gov (United States)

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  5. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    International Nuclear Information System (INIS)

    Makarska-Bialokoz, Magdalena; Borowski, Piotr

    2015-01-01

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H 2 TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10 5 mol −1 . The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H 2 TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated

  6. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  7. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats.

    Science.gov (United States)

    Shibata, Katsumi; Takahashi, Chisato; Fukuwatari, Tsutomu; Sasaki, Ryuzo

    2005-12-01

    To acquire the data concerning the tolerable upper intake level which prevents health problems from an excessive intake of pantothenic acid, an animal experiment was done. Rats of the Wistar strain (male, 3 wk old) were fed on a diet which contains 0%, 0.0016% (control group), 1%, or 3% calcium pantothenate for 29 d. The amount of weight increase, the food intake, and the organ weights were measured, as well as the pantothenic acid contents in urine, the liver and blood. Moreover, to learn the influence of excessive pantothenic acid on other water-soluble vitamin metabolism, thiamin, riboflavin, a vitamin B6 catabolite, the niacin catabolites, and ascorbic acid in urine were measured. As for the 3% addition group, enlargement of the testis, diarrhea, and hair damage were observed, and the amount of weight increase and the food intake were less than those of the control group. However, abnormality was not seen in the 1% addition group. The amount of pantothenic acid in urine, the liver, and blood showed a high correlation with intake level of pantothenic acid. It was only for 4-pyridoxic acid, a vitamin B6 catabolite, in urine that a remarkable difference was observed against the control group. Moreover, the (2-Py+4-Py)/MNA excretion ratio for these metabolites of the nicotinamide also indicated a low value in the 3% pantothenic acid group. As for the calcium pantothenate, it was found that the 3% level in the diet was the lowest-observed-adverse-effect-level (LOAEL) and the 1% level was the no-observed-adverse-effect-level (NOAEL).

  8. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Phindile; Antunes, Edith [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa); Chen, Ji-Yao [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2013-02-15

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by {sup 1}H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: Black-Right-Pointing-Pointer A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. Black-Right-Pointing-Pointer The conjugate is water soluble even though the phthalocyanine alone is not. Black-Right-Pointing-Pointer The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. Black-Right-Pointing-Pointer Triplet quantum yields decreased for the conjugate.

  9. Solubility-pH profiles of some acidic, basic and amphoteric drugs.

    Science.gov (United States)

    Shoghi, Elham; Fuguet, Elisabet; Bosch, Elisabeth; Ràfols, Clara

    2013-01-23

    The solubility vs. pH profiles of five ionizable drugs of different nature (a monoprotic acid, a monoprotic base, a diprotic base and two amphoteric compounds showing a zwitterionic species each one) have been determined through two different methodologies: the classical shake-flask (S-F) and the potentiometric Cheqsol methods using in both instances the appropriate Henderson-Hasselbalch (H-H) or derived relationships. The results obtained independently from both approaches are consistent. A critical revision about the influence of the electrolyte used as buffering agent in the S-F method on the obtained solubility values is also performed. Thus, some deviations of the experimental points with respect the H-H profiles can be attributed to specific interactions between the buffering electrolyte and the drug due to the hydrotrophic character of citric and lactic acids. In other cases, the observed deviations are independent of the buffers used since they are caused by the formation of new species such as drug aggregates (cefadroxil) or the precipitation of a salt from a cationic species of the analyzed compound (quetiapine). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity.

    Science.gov (United States)

    Conde, José Miñones; Escobar, María del Mar Yust; Pedroche Jiménez, Justo J; Rodríguez, Francisco Millán; Rodríguez Patino, Juan M

    2005-10-05

    Industrial proteins from agriculture of either animal or vegetable origin, including their peptide derivatives, are of great importance, from the qualitative and quantitative point of view, in food formulations (emulsions and foams). A fundamental understanding of the physical, chemical, and functional properties of these proteins is essential if the performance of proteins in foods is to be improved and if underutilized proteins, such as plant proteins (and their hydrolysates and peptides derivatives), are to be increasingly used in traditional and new processed food products (safe, high-quality, health foods with good nutritional value). In this contribution we have determined the main physicochemical characteristics (solubility, composition, and analysis of amino acids) of a sunflower protein isolate (SPI) and its hydrolysates with low (5.62%), medium (23.5%), and high (46.3%) degrees of hydrolysis. The hydrolysates were obtained by enzymatic treatment with Alcalase 2.4 L for DH 5.62 and 23.5% and with Alcalase 2.4 L and Flavorzyme 1000 MG sequentially for DH 46.3%. The protein concentration dependence on surface pressure (surface pressure isotherm), a measure of the surface activity of the products (SPI and its hydrolysates), was obtained by tensiometry. We have observed that the degree of hydrolysis has an effect on solubility, composition, and content of the amino acids of the SPI and its hydrolysates. The superficial activity and the adsorption efficiency were also affected by the degree of hydrolysis.

  11. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    International Nuclear Information System (INIS)

    Khoza, Phindile; Antunes, Edith; Chen, Ji-Yao; Nyokong, Tebello

    2013-01-01

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by 1 H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: ► A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. ► The conjugate is water soluble even though the phthalocyanine alone is not. ► The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. ► Triplet quantum yields decreased for the conjugate

  12. pH-metric solubility. 2: correlation between the acid-base titration and the saturation shake-flask solubility-pH methods.

    Science.gov (United States)

    Avdeef, A; Berger, C M; Brownell, C

    2000-01-01

    The objective of this study was to compare the results of a normal saturation shake-flask method to a new potentiometric acid-base titration method for determining the intrinsic solubility and the solubility-pH profiles of ionizable molecules, and to report the solubility constants determined by the latter technique. The solubility-pH profiles of twelve generic drugs (atenolol, diclofenac.Na, famotidine, flurbiprofen, furosemide, hydrochlorothiazide, ibuprofen, ketoprofen, labetolol.HCl, naproxen, phenytoin, and propranolol.HCl), with solubilities spanning over six orders of magnitude, were determined both by the new pH-metric method and by a traditional approach (24 hr shaking of saturated solutions, followed by filtration, then HPLC assaying with UV detection). The 212 separate saturation shake-flask solubility measurements and those derived from 65 potentiometric titrations agreed well. The analysis produced the correlation equation: log(1/S)titration = -0.063(+/- 0.032) + 1.025(+/- 0.011) log(1/S)shake-flask, s = 0.20, r2 = 0.978. The potentiometrically-derived intrinsic solubilities of the drugs were: atenolol 13.5 mg/mL, diclofenac.Na 0.82 microg/mL, famotidine 1.1 mg/ mL, flurbiprofen 10.6 microg/mL, furosemide 5.9 microg/mL, hydrochlorothiazide 0.70 mg/mL, ibuprofen 49 microg/mL, ketoprofen 118 microg/mL, labetolol.HCl 128 microg/mL, naproxen 14 microg/mL, phenytoin 19 microg/mL, and propranolol.HCl 70 microg/mL. The new potentiometric method was shown to be reliable for determining the solubility-pH profiles of uncharged ionizable drug substances. Its speed compared to conventional equilibrium measurements, its sound theoretical basis, its ability to generate the full solubility-pH profile from a single titration, and its dynamic range (currently estimated to be seven orders of magnitude) make the new pH-metric method an attractive addition to traditional approaches used by preformulation and development scientists. It may be useful even to discovery

  13. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared...... the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly...

  14. Method to separate lignin-rich solid phase from acidic biomass suspension at an acidic pH

    Science.gov (United States)

    Yasarla, Kumar Lakshmi Rakesh; Ramarao, Bandaru V; Amidon, Thomas

    2017-09-05

    A method of separating a lignin-rich solid phase from a solution suspension, by pretreating a lignocellulosic biomass with a pretreatment fluid having remove soluble components, colloidal material and primarily lignin containing particles; separating the pretreated lignocellulosic biomass from the pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles; flocculating the separated pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles using polyethylene oxide (i.e., PEO) or cationic Poly acrylamide (i.e., CPAM) as a flocculating agent; and filtering the flocculated separated pretreatment fluid with soluble components, colloidal material and primarily lignin containing particles to remove agglomerates.

  15. [Application of characteristic NIR variables selection in portable detection of soluble solids content of apple by near infrared spectroscopy].

    Science.gov (United States)

    Fan, Shu-Xiang; Huang, Wen-Qian; Li, Jiang-Bo; Guo, Zhi-Ming; Zhaq, Chun-Jiang

    2014-10-01

    In order to detect the soluble solids content(SSC)of apple conveniently and rapidly, a ring fiber probe and a portable spectrometer were applied to obtain the spectroscopy of apple. Different wavelength variable selection methods, including unin- formative variable elimination (UVE), competitive adaptive reweighted sampling (CARS) and genetic algorithm (GA) were pro- posed to select effective wavelength variables of the NIR spectroscopy of the SSC in apple based on PLS. The back interval LS- SVM (BiLS-SVM) and GA were used to select effective wavelength variables based on LS-SVM. Selected wavelength variables and full wavelength range were set as input variables of PLS model and LS-SVM model, respectively. The results indicated that PLS model built using GA-CARS on 50 characteristic variables selected from full-spectrum which had 1512 wavelengths achieved the optimal performance. The correlation coefficient (Rp) and root mean square error of prediction (RMSEP) for prediction sets were 0.962, 0.403°Brix respectively for SSC. The proposed method of GA-CARS could effectively simplify the portable detection model of SSC in apple based on near infrared spectroscopy and enhance the predictive precision. The study can provide a reference for the development of portable apple soluble solids content spectrometer.

  16. Continuous synthesis of Oleyl Oleate in supercritical carbon oxide using solid p-Toluenesulfonic Acid as catalyst

    International Nuclear Information System (INIS)

    Ghaziaskar, H.; Ikushima, Y.

    2000-01-01

    Supercritical carbon dioxide (Sc-CO 2 ) was used as solvent to synthesize oleyl oleate as an analog of Jojoba oil from oleic acid and oleyl alcohol with high conversion (100%) of the acid into ester in a short time of 100 min. Utilizing a low cost solid catalyst, p-toluenesulfonic acid monohydrate , the esterification reaction was performed, without any prior preparation step, in a flow mode, at a pressure of 147 bar and a temperature of 60 d eg C. This method seems industrially suitable for the production of oleyl oleate. The solubility of a mixture of oleyl alcohol and oleic acid in Sc-CO 2 were also measured to calculate the alcohol to acid ratio and the esterification yield

  17. Solid-state NMR studies of nucleic acid components

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310 ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acid s * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  18. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  19. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  20. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  1. Preparation and evaluation of azithromycin binary solid dispersions using various polyethylene glycols for the improvement of the drug solubility and dissolution rate

    Directory of Open Access Journals (Sweden)

    Ehsan Adeli

    Full Text Available ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin, various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG. Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC, Powder X-Ray Diffraction (PXRD and Scanning Election Microscopy (SEM. In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.

  2. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Science.gov (United States)

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate

  3. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  4. Structural diversity of solid dispersions of acetylsalicylic acid as seen by solid-state NMR.

    Science.gov (United States)

    Policianova, Olivia; Brus, Jiri; Hruby, Martin; Urbanova, Martina; Zhigunov, Alexander; Kredatusova, Jana; Kobera, Libor

    2014-02-03

    Solid dispersions of active pharmaceutical ingredients are of increasing interest due to their versatile use. In the present study polyvinylpyrrolidone (PVP), poly[N-(2-hydroxypropyl)-metacrylamide] (pHPMA), poly(2-ethyl-2-oxazoline) (PEOx), and polyethylene glycol (PEG), each in three Mw, were used to demonstrate structural diversity of solid dispersions. Acetylsalicylic acid (ASA) was used as a model drug. Four distinct types of the solid dispersions of ASA were created using a freeze-drying method: (i) crystalline solid dispersions containing nanocrystalline ASA in a crystalline PEG matrix; (ii) amorphous glass suspensions with large ASA crystallites embedded in amorphous pHPMA; (iii) solid solutions with molecularly dispersed ASA in rigid amorphous PVP; and (iv) nanoheterogeneous solid solutions/suspensions containing nanosized ASA clusters dispersed in a semiflexible matrix of PEOx. The obtained structural data confirmed that the type of solid dispersion can be primarily controlled by the chemical constitutions of the applied polymers, while the molecular weight of the polymers had no detectable impact. The molecular structure of the prepared dispersions was characterized using solid-state NMR, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). By applying various (1)H-(13)C and (1)H-(1)H correlation experiments combined with T1((1)H) and T1ρ((1)H) relaxation data, the extent of the molecular mixing was determined over a wide range of distances, from intimate intermolecular contacts (0.1-0.5 nm) up to the phase-separated nanodomains reaching ca. 500 nm. Hydrogen-bond interactions between ASA and polymers were probed by the analysis of (13)C and (15)N CP/MAS NMR spectra combined with the measurements of (1)H-(15)N dipolar profiles. Overall potentialities and limitations of individual experimental techniques were thoroughly evaluated.

  5. Study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20 deg C

    International Nuclear Information System (INIS)

    Lokshin, Eh.P.; Tareeva, O.A.; Kashulina, T.G.

    2007-01-01

    The solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium ions and the composition of solid phases were studied at 20 deg C in relation to the concentration of acids in sulfuric acid, phosphoric acid, and sulfuric-phosphoric acid solutions containing up to 36 wt % H 2 SO 4 and 33.12 g 1 -1 H 3 PO 4 . The formation of double sulfates of praseodymium and neodymium with sodium and potassium ions, as well as of gadolinium sulfate with sodium ions of the composition 1 : 1 was revealed. In water at 20 deg C, the solubility products of PrNa(SO 4 ) 2 ·H 2 O, NdNa(SO 4 ) 2 ·H 2 O, GdNa(SO 4 ) 2 ·H 2 O, PrK(SO 4 ) 2 ·H 2 O, and NdK(SO 4 ) 2 ·H 2 O are found to be 7.28x10 -8 , 7.84x10 -8 , 3.09x10 -6 , 3.02x10 -6 , and 1.70x10 -6 , respectively [ru

  6. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. INVESTIGATION OF THE PHARMACO-TECHNOLOGICAL PROPERTIES OF SOLID DISPERSIONS OF THIOCTIC ACID, OBTAINED BY MICRONIZATION

    Directory of Open Access Journals (Sweden)

    Kovalevska, I. V.

    2018-04-01

    Full Text Available Introduction. Thioctic acid is used in the treatment of diseases that are characterized by lack of mitochondrial activity, which is responsible for the formation of free radicals. Widespread use of thioctic acid is due to the chemical structure. The thioctic acid exhibits biological activity in both hydrophilic and hydrophobic environments. Thioctic acid is an enzyme cofactor and a powerful antioxidant, it regulates the transcription of numerous genes, participates in regulation of glucose and lipid metabolism, increases insulin sensitivity, and forms complexes with heavy metals. Thioctic acid has a high pharmacological potential, which is confirmed by the evidence base of clinical trials. An analysis of the literature on the oral use of thioctic acid indicates that solid dosage forms can be used for long-term therapy. This route of administration is limited by factors such as reduced solubility in acidic environments and enzymatic degradation. For this reason, the search for various compositions of auxiliary substances and methods of obtaining drugs is an urgent task of pharmaceutical technology. Material & methods. Objects of study were solid dispersions of thioctic acid (SDTA on the basis of cellulose derivatives: microcrystalline (MCC, HPMC (hydroxypropyl methylcellulose and polyvinylpyrrolidone (PVP as compared to thioctic acid (TA. The samples were made by solid phase method using micronization in a laboratory shredder at a ratio of 1: 1. Pharmacological and technological parameters were determined according to generally accepted methods. Results & discussion. In appearance the resulting mixtures had lemon color, without inclusions and the formation of conglomerates, with homogeneous sized particles According to the pharmaco-technological studies, the samples do not have a satisfactory flowability. The values of the Carr index and the ratio of Hausner make it possible to conclude that there is a large force of cohesion between the

  8. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    Science.gov (United States)

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  9. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  10. Binary and ternary solid-liquid phase equilibrium for the systems formed by succinic acid, urea and diethylene glycol: Determination and modelling

    International Nuclear Information System (INIS)

    Li, Yanxun; Li, Congcong; Han, Shuo; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubility of succinic acid in diethylene glycol was determined. • Solubility of succinic acid + urea + diethylene glycol was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were correlated using NRTL model. - Abstract: In this work, the solid-liquid phase equilibrium for binary system of succinic acid + diethylene glycol at the temperatures ranging from (298.15 to 333.15) K and ternary system of (succinic acid + urea + diethylene glycol) at 298.15 K, 313.15 K and 333.15 K was built by using the isothermal saturation method under atmospheric pressure (101.2 kPa), and the solubilities were determined by a high-performance liquid chromatography. The solid-phases formed in the ternary system of ((succinic acid + urea + diethylene glycol)) were confirmed by Schreinemaker’s method of wet residue, which corresponded to urea, succinic acid, and adduct 2:1 urea-succinic acid (mole ratio). Three isothermal phase diagrams for the ternary system were constructed based on the measured mutual solubility. Each isothermal phase diagram included six crystallization fields, three invariant curves, two invariant points and two co-saturated points. The crystalline region of adduct 2:1 urea-succinic acid is larger than those of the other two solids. The solubility of succinic acid in diethylene glycol was correlated with the modified Apelblat equation, λh equation and NRTL model; and the mutual solubility of the ternary ((succinic acid + urea + diethylene glycol)) system was correlated and calculated by the NRTL model. The interaction parameters’ values of succinic acid-urea were acquired. The value of RMSD was 7.11 × 10 −3 for the ternary system. The calculation results had good agreement with the experiment values. Furthermore, the densities of equilibrium liquid phase were acquired. The phase diagrams and the thermodynamic model of the ternary system could provide the basis for design of

  11. Determination of solubility isotherms of barium and strontium nitrates in the system acetic acid-water at 250 C

    International Nuclear Information System (INIS)

    Hubicki, W.; Piskorek, M.

    1976-01-01

    Investigastions of the solubility of barium and strontium nitrates were carried out in the system: acetic acid - water at 25 0 C. When one compares the isotherms of solubility of barium and strontium nitrates, one can observe that it is possible to separate the admixtures of barium from strontium nitrates as a result of fractional crystallization of these nitrates from actic acid solution at the temperatures lower than 31.3 0 C, i.e. below the temperature of transformation: Sr(NO 3 ) 2 . 4H 2 O reversible to Sr(NO 3 ) 2 + 4H 2 O for aqueous solution. (author)

  12. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  13. Determinations of the temperature of terminal solid solubility in dissolution and precipitation of hydrogen/deuterium in irradiated Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, P [CNEA-CONICET, Centro Atomico Ezeiza (Argentina)

    2012-07-01

    The proposed plan is an approach to the metallurgical consequences of the high neutron fluencies (10''2''2 n/cm''2) on the hydrogen behavior in zirconium based alloys, based on the significance of the microstructural behavior of the high burn up fuel claddings during the dry storage period. The studies are focused on Zircaloy-4, concerning to two processes: Neutron irradiation damage; Hydrogen pick up. The Zircaloy-4 was taken from cooling channels of the PHWR Atucha 1. These components remained more than 10 years in service, reaching neutron fluencies up to 10''2''2 n/cm''2. In the last recent years, measurements of the hydride dissolution temperatures have shown that hydrogen solubility is affected by the neutron irradiation, increasing it respect to the unirradiated Zircaloy solubility. In addition, in this material the amorphization/dissolution of the second phase particles (SPPs) was observed, being proposed an interaction between the hydrogen atoms, the SPPs and the irradiation defects as a possible explanation of the observed behavior. For the present case, attention will be focused on the hydride precipitation process, since it is strongly related with delay hydrogen cracking initiation, a problem of direct concern for the dry storage. The goal of the present proposal is to make an approach to the source of the observed effect, applying several specific techniques as differential scanning calorimetry (DSC), high resolution x-ray diffraction and transmission electron microscopy. The objectives can be divided as follows: Determination of the temperatures of terminal solid solubility in dissolution (TTSSd) and in precipitation (TTSSp) in high fluency irradiated Zircaloy-4, reproducing the temperatures at which the Zircaloy fuel claddings remain during dry storage by an annealing program during the DSC experiments; Observations by optical and transmission electron microscopy of the hydride distribution before (as received material) and after high temperature

  14. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    Science.gov (United States)

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  15. Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.

    Science.gov (United States)

    Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J

    2013-10-15

    Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sulfur solubility of liquid and solid Fe-Cr alloys. A thermodynamic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, Peter [Leoben Univ. (Austria). Dept. of General, Analytical and Physical Chemistry

    2015-04-15

    Gibbs energy modeling for sulfur solving liquid and solid iron-chromium phases with body- and face-centered cubic structure has been carried out using a substitutional approach. Experimental data available from the literature on sulfur potentials in the temperature range 1 525 to 1 755 C for the liquid metallic phase and 1 000 to 1 300 C for the solid alloys have been taken into consideration. Recent thermodynamic evaluations of the Fe-S and Cr-S binary subsystems served as basis for the presented work. The obtained models allow a satisfactory reproduction of the majority of the sulfur potential data as well as the prediction of an isothermal partial section at 1 300 C. Consistent embedding of the optimized Gibbs energies within a recent thermodynamic modeling of the complete Cr-Fe-S system is achieved.

  17. Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide

    DEFF Research Database (Denmark)

    Svagan, Anna Justina; Müllertz, Anette; Löbmann, Korbinian

    2017-01-01

    OBJECTIVES: This study aimed to prepare a furosemide-loaded sustained release cellulose nanofibre (CNF)-based nanofoams with buoyancy. METHODS: Dry foams consisting of CNF and the model drug furosemide at concentrations of 21% and 50% (w/w) have been prepared by simply foaming a CNF-drug suspension...... followed by drying. The resulting foams were characterized towards their morphology, solid state properties and dissolution kinetics. KEY FINDINGS: Solid state analysis of the resulting drug-loaded foams revealed that the drug was present as an amorphous sodium furosemide salt and in form of furosemide...... form I crystals embedded in the CNF foam cell walls. The foams could easily be shaped and were flexible, and during the drug release study, the foam pieces remained intact and were floating on the surface due to their positive buoyancy. Both foams showed a sustained furosemide release compared...

  18. Electrospun 4th-Generation Solid Dispersions of Poorly Water-Soluble Drug Utilizing Two Different Processes

    Directory of Open Access Journals (Sweden)

    Zhu Zhang

    2018-01-01

    Full Text Available Different from traditional solid dispersion (SD for improving the dissolution rates of poorly water-soluble drugs, the upgraded 4th SD was developed to furnish a drug sustained-release profile. In this work, two different kinds of 4th SDs were fabricated using two electrospinning processes. One is a ternary SD (nanofibers F2 that consisted of ethyl cellulose (EC, polyethylene glycol 1000 (PEG, and tamoxifen citrate (TAM from a modified coaxial process, and the other is a binary SD (nanofibers F1 which is comprised of EC and TAM from a single-fluid blending process. Scanning electronic microscopic observations demonstrated that F2 (330±50 nm showed a better quality than F1 (870±230 nm in terms of size and size distribution although both of them had a smooth surface morphology and a cross section. X-ray diffraction patterns verified that both SDs were amorphous nanocomposites owing to the favorable secondary interactions among these components, as suggested from the results of FTIR. In vitro dissolution experiments indicated that F2 could furnish an improved drug sustained-release characteristics compared to F1, exhausting all the contained TAM and having weaker leveling-off late release. The molecular behaviors of drug sustained-release from the binary 4th SD were suggested. The protocols reported here paved an alternative way for developing novel functional nanomaterials for effective delivery of poorly water-soluble drugs.

  19. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  20. Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling.

    Science.gov (United States)

    Tres, Alba; Heenan, Samuel P; van Ruth, Saskia

    2014-11-01

    Demand for ethanol substituted fuels from the utilisation of cereal based biofuel has resulted in an over production of dried distillers grains with solubles (DDGS) that are now readily available on the animal feed market. With this rapid emerging availability comes potential variability in the nutritional value of DDGS and possible risks of feed contaminants. Subsequently, the authentication and traceability of alternative animal feed sources is of high priority. In this study and as part of the EU research project "Quality and Safety of Feeds and Food for Europe (QSAFFE FP7-KBBE-2010-4) an attempt was made to classify the geographical origin of cereal grains used in the production of DDGS material. DDGS material of wheat and corn origin were obtained from Europe, China, and the USA. Fatty acid profiles and volatile fingerprints were assessed by gas chromatography flame ionisation (GC-FID) and rapid proton transfer reaction mass spectrometry (PTR-MS) respectively. Chemometric analysis of fatty acid profiles and volatile fingerprints allowed for promising classifications of cereals used in DDGS material by geographical and botanical origin and enabled visual representation of the data. This objective analytical approach could be adapted for routine verification of cereal grains used in the production of DDGS material.

  1. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  2. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    International Nuclear Information System (INIS)

    Hare, W.R.; Wahle, K.W.

    1991-01-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation

  3. Enhancement of Solubility of Lamotrigine by Solid Dispersion and Development of Orally Disintegrating Tablets Using 32 Full Factorial Design

    Directory of Open Access Journals (Sweden)

    Jatinderpal Singh

    2015-01-01

    Full Text Available Present investigation deals with the preparation and evaluation of orally disintegrating tablets (ODTs of lamotrigine using β-cyclodextrin and PVP-K30 as polymers for the preparation of solid dispersion which help in enhancement of aqueous solubility of this BCS CLASS-II drug and sodium starch glycolate (SSG and crospovidone as a superdisintegrating agent, to reduce disintegration time. The ODTs were prepared by direct compression method. Nine formulations were developed with different ratios of superdisintegrating agents. All the formulations were evaluated for disintegration time, weight variation, hardness, friability, drug content uniformity, wetting time, and in vitro drug release study. In vitro drug release study was performed using United States Pharmacopoeia (USP type 2 dissolution test apparatus employing paddle stirrer at 50 rpm using 900 mL of 0.1 N HCl maintained at 37°C ± 0.5°C as the dissolution medium. On the basis of evaluation parameters formulations were prepared using β-CD 1 : 1 solid dispersion. Then 32 full factorial design was applied using SSG and crospovidone in different ratios suggested by using design expert 8.0.7.1 and optimized formulation was prepared using amount of SSG and crospovidone as suggested by the software. The optimized formulation prepared had disintegrating time of 15 s, wetting time of 24 s, and % friability of 0.55.

  4. Solid state radiolysis of amino acids in an astrochemical perspective

    International Nuclear Information System (INIS)

    Cataldo, Franco; Angelini, Giancarlo; Iglesias-Groth, Susana; Manchado, Arturo

    2011-01-01

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T 1/2 for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6x10 9 years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6x10 9 years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant k rac .

  5. Solid state radiolysis of amino acids in an astrochemical perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Franco, E-mail: franco.cataldo@fastwebnet.i [Istituto Nazionale di Astrofisica-Osservatorio Astrofisica di Catania, Via S. Sofia 78, 95123 Catania (Italy); Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy); Angelini, Giancarlo [Istituto di Metodologie Chimiche, CNR, Via Salaria Km 29300, 00016 Monterotondo Stazione, Rome (Italy); Iglesias-Groth, Susana [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain); Manchado, Arturo [Instituto de Astrofisica de Canarias, Via Lactea s/n, E-38200, La Laguna, Tenerife (Spain) and CSIC (Spain)

    2011-01-15

    The aliphatic amino acids L-alanine and L-leucine and the aromatic amino acids L-phenylalanine, L-tyrosine and L-tryptophan were irradiated in the solid state to a dose of 3.2 MGy. The degree of decomposition was measured by differential scanning calorimetry (DSC). Furthermore the degree of radioracemization was measured by optical rotatory dispersion (ORD) spectroscopy. From the DSC measurement a radiolysis rate constant k and the half life T{sub 1/2} for each amino acid have been determined and extrapolated to a dose of 14 MGy, which corresponds to the expected total dose delivered by the decay of radionuclides to the organic molecules present in comets and asteroids in 4.6x10{sup 9} years, the age of the Solar System. It is shown that all the amino acids studied can survive a radiation dose of 14 MGy although they are reduced to 1/4-1/5 of their original value they had at the beginning of the history of the Solar System. Consequently, the amount of alanine or leucine found today in the meteorites known as carbonaceous chondrites is just 1/4-1/5 of the amount originally present at the epoch of the formation of the Solar System 4.6x10{sup 9} years ago. Among the amino acids studied, tyrosine shows the highest radiation resistance while tryptophan does not combine its relatively high radiation resistance with an elevated level of radioracemization resistance. Apart from the exception of tryptophan, it is shown that the radiolysis rate constants k of all the amino acids studied are in reasonable agreement with the radioracemization rate constant k{sub rac}.

  6. Green synthesis of 3,4-dihydropyrimidinones using nano Fe3O4@meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Leila Moradi

    2018-01-01

    Full Text Available Design, synthesis and characterization of nano Fe3O4@meglumine sulfonic acid as a new solid acid catalyst for the simple and green one pot multicomponent synthesis of 3,4-dihydropyrimidin-2(1H-ones/thiones was studied. New solid acid catalyst was prepared through a clean and simple protocol and characterized using FTIR, VSM, TGA, SEM, elemental analysis (CHN and XRD techniques. Heterogenization of homogeneous catalyst as a green approach is a useful method for enhancing the efficiency of catalyst. Presented study was a new method for attachment of homogeneous highly soluble catalyst (meglumine sulfate to the magnetite nanoparticle surfaces for preparing a heterogeneous and effective catalyst. Obtained heterogeneous and reusable solid acid catalyst has high performance in the synthesis of Biginelli compounds. The reaction was performed under microwave irradiation as a rapid and green condition. Easy work up as well as excellent yield (90–98% of products in short reaction times (40–200 s and reusable catalyst are the main advantages of presented procedure. Reaction products were characterized in details using physical and chemical techniques such as melting point, 1H NMR, 13C NMR and FTIR.

  7. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    Directory of Open Access Journals (Sweden)

    Cai LL

    2013-12-01

    Full Text Available Lulu Cai,1,* Neng Qiu,2,* Mingli Xiang,3,* Rongsheng Tong,1 Junfeng Yan,1 Lin He,1 Jianyou Shi,1 Tao Chen,4 Jiaolin Wen,3 Wenwen Wang,3 Lijuan Chen31Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, 2College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 3State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 4Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada *These authors contributed equally to this paperAbstract: The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa methoxy poly(ethylene glycol methyl ether (mPEG to gambogic acid (GA-mPEG2000 through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy.Keywords: gambogic acid, poly(ethylene glycol-drug conjugate, micelle, antitumor, toxicity

  8. Seasonal variation in Hibiscus sabdariffa (Roselle) calyx phytochemical profile, soluble solids and α-glucosidase inhibition.

    Science.gov (United States)

    Ifie, Idolo; Ifie, Beatrice E; Ibitoye, Dorcas O; Marshall, Lisa J; Williamson, Gary

    2018-09-30

    Seasonal variations in crops can alter the profile and amount of constituent compounds and consequentially any biological activity. Differences in phytochemical profile, total phenolic content and inhibitory activity on α-glucosidase (maltase) of Hibiscus sabdariffa calyces grown in South Western Nigeria were determined over wet and dry seasons. The phenolic profile, organic acids and sugars were analysed using HPLC, while inhibition of rat intestinal maltase was measured enzymically. There was a significant increase (1.4-fold; p ≤ 0.05) in total anthocyanin content in the dry compared to wet planting seasons, and maltase inhibition from the dry season was slightly more potent (1.15-fold, p ≤ 0.05). Fructose (1.8-fold), glucose (1.8-fold) and malic acid (3.7-fold) were significantly higher (p ≤ 0.05) but citric acid was lower (62-fold, p ≤ 0.008) in the dry season. Environmental conditions provoke metabolic responses in Hibiscus sabdariffa affecting constituent phytochemicals and nutritional value. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines.

    Science.gov (United States)

    Doktorovova, Slavomira; Souto, Eliana B; Silva, Amélia M

    2018-01-01

    Curcumin, a phenolic compound from turmeric rhizome (Curcuma longa), has many interesting pharmacological effects, but shows very low aqueous solubility. Consequently, several drug delivery systems based on polymeric and lipid raw materials have been proposed to increase its bioavailability. Solid lipid nanoparticles (SLN), consisting of solid lipid matrix and a surfactant layer can load poorly water-soluble drugs, such as curcumin, deliver them at defined rates and enhance their intracellular uptake. In the present work, we demonstrate that, despite the drug's affinity to lipids frequently used in SLN production, the curcumin amount loaded in most SLN formulations may be too low to exhibit anticancer properties. The predictive curcumin solubility in solid lipids has been thoroughly analyzed by Hansen solubility parameters, in parallel with the lipid-screening solubility tests for a range of selected lipids. We identified the most suitable lipid materials for curcumin-loaded SLN, producing physicochemically stable particles with high encapsulation efficiency (>90%). Loading capacity of curcumin in SLN allowed preventing the cellular damage caused by cationic SLN on MCF-7 and BT-474 cells but was not sufficient to exhibit drug's anticancer properties. But curcumin-loaded SLN exhibited antioxidant properties, substantiating the conclusions that curcumin's effect in cancer cells is highly dose dependent.

  10. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  11. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    Science.gov (United States)

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  12. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  13. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    Science.gov (United States)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  14. Light exposure during storage preserving soluble sugar and l-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia).

    Science.gov (United States)

    Zhan, Lijuan; Hu, Jinqiang; Ai, Zhilu; Pang, Lingyun; Li, Yu; Zhu, Meiyun

    2013-01-01

    Minimally processed romaine lettuce (MPRL) leaves were stored in light condition (2500lux) or darkness at 4°C for 7d. Light exposure significantly delayed the degradation of chlorophyll and decrease of glucose, reducing sugar, and sucrose content, and thus preserved more total soluble solid (TSS) content at the end of storage in comparison with darkness. While, it did not influenced starch content that progressively decreased over time. The l-ascorbic acid (AA) accumulated in light-stored leaves, but deteriorated in dark-stored leaves during storage. The dehydroascorbic acid (DHA) increased in all leaves stored in both light and dark condition, of which light condition resulted in less DHA than darkness. In addition, the fresh weight loss and dry matter significantly increased and these increases were accelerated by light exposure. Conclusively, light exposure in applied intensity effectively alleviated MPRL quality deterioration by delaying the decreases of pigments, soluble sugar, TSS content and accumulating AA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acid-soluble Component with Inductively Coupled Plasma-Mass Spectrometry.

    Science.gov (United States)

    Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro

    2018-01-01

    Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.

  16. Variation of Soluble Solids Concentration During the Day in Three Pastures During the Dry Season in the Middle River Sinú Valley

    Directory of Open Access Journals (Sweden)

    Emiro Suárez Paternina

    2015-07-01

    Full Text Available The aim of this study was to determine the concentration of soluble solids at different times of the day in three tropical pastures. The experiment was conducted at the Research Center Turipaná of Colombian Agricultural Research Corporation, located in Cereté, Colombia. During January and February of 2011, we assessed the concentration of soluble solids in three fertirrigated pastures: Panicum maximum, Cynodon nlemfuensis and Brachiaria hybrid cv. Mulato II, in an intensive model of meat production at different sampling times 7:00 and 10:00 a. m., 1:00 and 4:00 p.m. The statistical design of the experiment consisted of a block design completely randomized three-factor under 3*3*4 (pasture*stocking*time and three replicates for each evaluation day. An analysis of variance and differences were statistically significant when the means were separated by Tukey test (p<0.05. The analysis found highly significant differences (p<0.01 in the concentration of soluble solids in different pastures, in all periods of the day evaluated, with the cultivar Mulato II that presented the highest values with 9.19 %, followed by Cynodon nlemfuensis and Panicum maximum with 8.27 % and 7.07 %, respectively. The soluble solids concentration varied during the day and between pastures. The time periods close to noon —10:00 a. m. and 1:00 p. m.— presented the highest concentrations of soluble solids in all pastures; this can be used as a tool for paddock rotation.

  17. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  18. Solid solubility of MgO in the calcium silicates of portland clinker. The effect of CaF2

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1992-03-01

    Full Text Available The solid solubility of MgO in the calcium silicates of portland clinker has been determined by XRD and XDS. The influence that the presence of CaF2 has on said solubility has also been verified. The solid solution limit of MgO in C3S at 1275 ºC lies at about 1.0% wt, where the triclinic form II stabilizes. The presence of CaF2 does not alter the maximum value of the MgO solubilized in that silicate, although there does take place the stabilization of the triclinic polymorph II at lower MgO contents (between 0.3 - 0.6% wt. The maximum amount of solubilized MgO in βC2 at 1.050 ºC lies around 0.5% wt. This value does not change by the presence of CaF2.Se ha determinado por DRX y EDX la solubilidad sólida del MgO en los silicatos cálcicos del clínker portland. Se ha comprobado, así mismo la influencia que sobre dicha solubilidad tiene la presencia de CaF2. El límite de disolución sólida del MgO en el C3S a 1.275º C se sitúa alrededor del 1,0% en peso, estabilizándose la forma triclínica II. La presencia de CaF2 no altera el valor máximo de MgO solubilizado en este silicato, aunque si se produce la estabilización del polimorfo triclínico II a contenidos menores de MgO (entre 0,3 – 0,6% en peso. La cantidad máxima de MgO solubilizado en e/ βC2S a 1.050 ºC se sitúa en torno al 0,5% en peso. Este valor no se ve modificado por la presencia de CaF2.

  19. FORMULATION AND EVALUATION OF MEFENAMIC ACID SOLID DISPERSIONS USING PEG-4000

    OpenAIRE

    Shaik Jamal Shariff; Shaik Saleem; Alaparthi Naga Pavan Kumar; Bachupally Ajay Kumar; Punuru Madhusudhan

    2013-01-01

    Mefenamic acid (MA) solid Dispersions were prepared employing methanol as a common solvent using PEG-4000 as a drug carrier with two different techniques namely, melting method and solvent evaporation in varied ratios. The prepared solid dispersions were evaluated and compared with that of pure drug (mefenamic acid) in respect to the dissolution rate and dissolution efficiency. It is noted that solid dispersions of mefenamic acid showed a remarkable increase in dissolution rate and dissolutio...

  20. The solubility of solid fission products in carbides and nitrides of uranium and plutonium: Pt.2. Solubility rules based on lattice parameter differences

    International Nuclear Information System (INIS)

    Benedict, U.

    1977-01-01

    The Relative Lattice Parameter Difference (RLPD) is defined for a solute element with respect to cubic carbides and nitrides of uranium and plutonium as solvents. Rules are given for the relationship between the solubility and the RLPD. NaCl type monocarbides with RLPD's from -10.2% to +7.8% are completely miscible with UC and PuC. NaCl type mononitrides with RLPD's from -7.5% to +8.5% are completely miscible with UN and PuN. The solubility in the sesquicarbides increases with decreasing RPLD and becomes complete in Pu 2 C 3 at RLPD = +4%, and in U 2 C 3 at RLPD approximately +1.5%. Solubilities are predicted on the basis of these rules for the cases where no experimental results are available

  1. Starch saccharification by carbon-based solid acid catalyst

    Science.gov (United States)

    Yamaguchi, Daizo; Hara, Michikazu

    2010-06-01

    The hydrolysis of cornstarch using a highly active solid acid catalyst, a carbon material bearing SO 3H, COOH and OH groups, was investigated at 353-393 K through an analysis of variance (ANOVA) and an artificial neural network (ANN). ANOVA revealed that reaction temperature and time are significant parameters for the catalytic hydrolysis of starch. The ANN model indicated that the reaction efficiency reaches a maximum at an optimal condition (water, 0.8-1.0 mL; starch, 0.3-0.4 g; catalyst, 0.3 g; reaction temperature, 373 K; reaction time, 3 h). The relationship between the reaction and these parameters is discussed on the basis of the reaction mechanism.

  2. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  3. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  4. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Zubeir, Lawien F.; Van Osch, Dannie J.G.P.; Rocha, Marisa A.A.; Banat, Fawzi; Kroon, Maaike C.

    2018-01-01

    The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing

  5. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  6. Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13.

    Science.gov (United States)

    Liu, Huan; Yue, Xuemin; Jin, Yuhan; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-10-01

    Fumaric acid production from lignocellulosic materials is an alternative chemicals production system. This work investigated the suitable conditions for hydrolysis of dried distiller's grains with solubles (DDGS). The hydrolytic liquid was subsequently used for the production of fumaric acid. After optimizing the hydrolysis conditions, the most suitable concentration of H 2 SO 4 (2%), hydrolysis temperature (120 °C), hydrolysis time (100min) and solid/liquid ratio (1:10) were obtained. The yield of monosaccharides reached 258 mg/g DDGS and 15.88 g/L glucose, 7.53 g/L xylose and 2.35 g/L arabinose were obtained in unprocessed hydrolytic liquid. The furfural inhibitor in the hydrolytic liquid was also detected and the yield of it was reducing progressively in the pretreatment process. The ferment ability of the hydrolytic liquid from DDGS was tested through the process of fumaric acid production by Rhizopus arrhizus RH 7-13. The unprocessed hydrolytic liquid was not appropriate for the fermentation process. The yield of fumaric acid from the concentrated processed hydrolytic liquid reached 18.93 g/L, which was close to the yield of fermenting 80 g/L glucose. This result indicated that the commonly used carbon resource glucose could to some extent be replaced by processed hydrolytic liquid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

    Science.gov (United States)

    Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung

    2008-11-01

    This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p guava leaf extract and the health function of guava leaves against type 2 diabetes.

  8. Evaluation of total soluble solids content (TSSC and endogenous pH in antimicrobials of pediatric use

    Directory of Open Access Journals (Sweden)

    Alessandro Leite Cavalcanti

    2013-01-01

    Full Text Available Background: The use of liquid pharmaceutical preparations is a daily occurrence for some children. Evidences show a significant relation between the intake of oral sucrose based medicines and an increase incidence in dental caries. Aim: This in vitro experimental study evaluated the Total Soluble Solids Content (TSSC by means of Brix scale refractometry and the endogenous pH of antimicrobials of pediatric use presented as oral suspensions. Materials and Methods: Nine medications (6 chemotherapics and 3 antibiotics were evaluated by random experiment with 3 repetitions for each sample. The analysis of TSSC readings were performed by Brix refractometry using the Abbé refractometer, and the pH values were determined by potentiometry. Results: The mean TSS contents ranged from 11.73 (Keflaxina to 63.83 (Azitromed. The minimum and maximum mean pH values were 4.12 (Keflaxina and 10.97 (Zitroneo, respectively. Conclusions: The chemotherapic antimicrobials evaluated in this study presented the highest TSSC means, while the antibiotics showed pHs below the values considered as critical, which may contribute to the development of caries lesions in case of inadequate administration of these medications to children.

  9. Hyperspectral Imaging Coupled with Random Frog and Calibration Models for Assessment of Total Soluble Solids in Mulberries

    Directory of Open Access Journals (Sweden)

    Yan-Ru Zhao

    2015-01-01

    Full Text Available Chemometrics methods coupled with hyperspectral imaging technology in visible and near infrared (Vis/NIR region (380–1030 nm were introduced to assess total soluble solids (TSS in mulberries. Hyperspectral images of 310 mulberries were acquired by hyperspectral reflectance imaging system (512 bands and their corresponding TSS contents were measured by a Brix meter. Random frog (RF method was used to select important wavelengths from the full wavelengths. TSS values in mulberry fruits were predicted by partial least squares regression (PLSR and least-square support vector machine (LS-SVM models based on full wavelengths and the selected important wavelengths. The optimal PLSR model with 23 important wavelengths was employed to visualise the spatial distribution of TSS in tested samples, and TSS concentrations in mulberries were revealed through the TSS spatial distribution. The results declared that hyperspectral imaging is promising for determining the spatial distribution of TSS content in mulberry fruits, which provides a reference for detecting the internal quality of fruits.

  10. Acute and Chronic Toxicity of Soluble Fractions of Industrial Solid Wastes on Daphnia magna and Vibrio fischeri

    Directory of Open Access Journals (Sweden)

    Letícia Flohr

    2012-01-01

    Full Text Available Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3 induced the highest toxicity level to Daphnia magna(CE50,48 h=2.21%. A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min=12.08%. All samples of pulp and paper wastes, and a textile waste (sample TX2 induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

  11. Effects of thermal processing by nanofluids on vitamin C, total phenolics and total soluble solids of tomato juice.

    Science.gov (United States)

    Jafari, S M; Jabari, S S; Dehnad, D; Shahidi, S A

    2017-03-01

    In this research, our main idea was to apply thermal processing by nanofluids instead of conventional pasteurization processes, to shorten duration of thermal procedure and improve nutritional contents of fruit juices. Three different variables of temperature (70, 80 and 90 °C), nanofluid concentration (0, 2 and 4%) and time (30, 60 and 90 s) were selected for thermal processing of tomato juices by a shell and tube heat exchanger. The results demonstrated that 4% nanofluid concentration, at 30 °C for 30 s could result in 66% vitamin C retention of fresh juice while it was about 56% for the minimum nanofluid concentration and maximum temperature and time. Higher nanoparticle concentrations made tomato juices that require lowered thermal durations, because of better heat transfer to the product, and total phenolic compounds dwindle less severely; In fact, after 30 s thermal processing at 70 °C with 0 and 4% nanoparticles, total phenolic compounds were maintained by 71.9 and 73.6%, respectively. The range of total soluble solids for processed tomato juices was 5.4-5.6, meaning that nanofluid thermal processing could preserve the natural condition of tomato juices successfully. Based on the indices considered, a nanofluid thermal processing with 4% nanoparticle concentration at the temperature of 70 °C for 30 s will result in the best nutritional contents of final tomato juices.

  12. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Directory of Open Access Journals (Sweden)

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  13. Mesoporous (Ta, Nb3W7 Modified with Stearic Acid Used as Solid Acids for Esterification

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2017-01-01

    Full Text Available Mesoporous solid acids Ta3W7 and Nb3W7 were prepared from TaCl5 and NbCl5 with WCl6 in the presence of stearic acid (SA via a sol-gel method, respectively. For comparison, mesoporous Ta3W7-P123 mixed oxides and mesoporous Nb3W7-P123 mixed oxides were synthesized in the same way. The catalysts were characterized through TGA, XRD, SEM, TEM, BET, and NH3-TPD. Experimental results showed that Ta3W7-SA and Nb3W7-SA exhibited several advantages such as higher activity, shorter preparation period, lower cost, stronger acid sites, and higher surface area, which had potential to be used as mesoporous heterogeneous catalysts in biodiesel production.

  14. Acidity of cations and the solubility of oxides in the eutectic KCl-LiCl melt at 700 Deg C

    International Nuclear Information System (INIS)

    Cherginets, V.L.; Rebrova, T.P.

    1999-01-01

    Products of MgO, NiO and CoO solubility in KCl-LiCl melt at 700 Deg C were determined by the method of potentiometric titration using Pt(O 2 )IZrO 2 (Y 2 O 3 ) membrane oxygen electrode. It was ascertained that acid properties of Cd 2+ and Pb'2 + cations are levelled to Li + properties, a break in E-pO graduation dependence in KCl-LiCl melt was observed at pO ∼ 2. Increase in oxides solubility in the melt studied compared with KCl-NaCl and CsCl-KCl-NaCl melts stems from the presence of Li + cations in the melt studied, which possess stronger acid properties than those of Na + or K + [ru

  15. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions

    OpenAIRE

    Wang, Ling-Ling; Chen, Jian-Tao; Wang, Long-Fei; Wu, Sha; Zhang, Guang-zhao; Yu, Han-Qing; Ye, Xiao-dong; Shi, Qing-Shan

    2017-01-01

    Soluble microbial products (SMPs) are of significant concern in the natural environment and in engineered systems. In this work, poly-γ-glutamic acid (γ-PGA), which is predominantly produced by Bacillus sp., was investigated in terms of pH-induced conformational changes and molecular interactions in aqueous solutions; accordingly, its sedimentation coefficient distribution and viscosity were also elucidated. Experimental results indicate that pH has a significant impact on the structure and m...

  16. Advantageous Solubility-Permeability Interplay When Using Amorphous Solid Dispersion (ASD) Formulation for the BCS Class IV P-gp Substrate Rifaximin: Simultaneous Increase of Both the Solubility and the Permeability.

    Science.gov (United States)

    Beig, Avital; Fine-Shamir, Noa; Lindley, David; Miller, Jonathan M; Dahan, Arik

    2017-05-01

    Rifaximin is a BCS class IV (low-solubility, low-permeability) drug and also a P-gp substrate. The aims of this work were to assess the efficiency of different rifaximin amorphous solid dispersion (ASDs) formulations in achieving and maintaining supersaturation and to investigate the consequent solubility-permeability interplay. Spray-dried rifaximin ASDs were prepared with different hydrophilic polymers and their ability to achieve and maintain supersaturation was assessed. Then, rifaximin's apparent intestinal permeability was investigated as a function of increasing supersaturation both in vitro using the parallel artificial membrane permeability assay (PAMPA) and in vivo using the single-pass rat intestinal perfusion (SPIP) model. The efficiency of the different ASDs to achieve and maintain supersaturation of rifaximin was found to be highly polymer dependent, and the copovidone/HPC-SL formulation was found to be superior to the other two, allowing supersaturation of 200× that of the crystalline solubility for 20 h. In vitro, rifaximin flux was increased and the apparent permeability was constant as a function of increasing supersaturation level. In vivo, on the other hand, absorption rate coefficient (k a ) was first constant as a function of increasing supersaturation, but at 250×, the crystalline solubility k a was doubled, similar to the k a in the presence of the strong P-gp inhibitor GF120918. In conclusion, a new and favorable nature of solubility-permeability interplay was revealed in this work: delivering high supersaturation level of the BCS class IV drug rifaximin via ASD, thereby saturating the drugs' P-gp-mediated efflux transport, led to the favorable unique win-win situation, where both the solubility and the permeability increased simultaneously.

  17. Effectiveness of anchovy substrate application on decreasing acid solubility of Sprague Dawley rats’ tooth enamel (in vivo)

    Science.gov (United States)

    Triputra, F.; Puspitawati, R.; Gunawan, H. A.

    2017-08-01

    Anchovies (Stolephorus insularis), a natural resource of Indonesia, contain fluoride in the form of CaF2 and can function as a fluoridation material to prevent dental caries. The aim of this study is to study the effectiveness of anchovy substrate, through food or topical application, in decreasing the acid solubility of tooth enamel. This research used 14 Sprague Dawley rats as subjects divided into the following 5 groups: baseline, experimental feeding, experimental smearing, and their negative controls. After 15 days of anchovy substrate application, lower incisors were extracted and the acid solubility of enamel was analyzed qualitatively and quantitatively using a stereo microscope and a Micro-Vickers Hardness Tester. Analysis of enamel surface destruction and enamel surface microscopic hardness shifting after a 60 sec application of H2PO4 (50% concentration) resulted in a decrease in acid solubility of enamel treated with anchovy substrate. This result can be seen with both the chewing and smearing method. S. insularis can be used as an alternative material for fluoridation.

  18. Consequences of acid strength for isomerization and elimination catalysis on solid acids.

    Science.gov (United States)

    Macht, Josef; Carr, Robert T; Iglesia, Enrique

    2009-05-13

    We address here the manner in which acid catalysis senses the strength of solid acids. Acid strengths for Keggin polyoxometalate (POM) clusters and zeolites, chosen because of their accurately known structures, are described rigorously by their deprotonation energies (DPE). Mechanistic interpretations of the measured dynamics of alkane isomerization and alkanol dehydration are used to obtain rate and equilibrium constants and energies for intermediates and transition states and to relate them to acid strength. n-Hexane isomerization rates were limited by isomerization of alkoxide intermediates on bifunctional metal-acid mixtures designed to maintain alkane-alkene equilibrium. Isomerization rate constants were normalized by the number of accessible protons, measured by titration with 2,6-di-tert-butylpyridine during catalysis. Equilibrium constants for alkoxides formed by protonation of n-hexene increased slightly with deprotonation energies (DPE), while isomerization rate constants decreased and activation barriers increased with increasing DPE, as also shown for alkanol dehydration reactions. These trends are consistent with thermochemical analyses of the transition states involved in isomerization and elimination steps. For all reactions, barriers increased by less than the concomitant increase in DPE upon changes in composition, because electrostatic stabilization of ion-pairs at the relevant transition states becomes more effective for weaker acids, as a result of their higher charge density at the anionic conjugate base. Alkoxide isomerization barriers were more sensitive to DPE than for elimination from H-bonded alkanols, the step that limits 2-butanol and 1-butanol dehydration rates; the latter two reactions showed similar DPE sensitivities, despite significant differences in their rates and activation barriers, indicating that slower reactions are not necessarily more sensitive to acid strength, but instead reflect the involvement of more unstable organic

  19. Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents

    Czech Academy of Sciences Publication Activity Database

    Sobechko, I.; Dibrivnyi, V.; Horak, Y.; Velychkivska, Nadiia; Kochubei, V.; Obushak, M.

    2017-01-01

    Roč. 11, č. 4 (2017), s. 397-404 ISSN 1996-4196 Institutional support: RVO:61389013 Keywords : enthalpy * entropy * Gibbs energy of solubility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  20. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    Science.gov (United States)

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  1. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    Science.gov (United States)

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  2. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300{sup o}C

    Energy Technology Data Exchange (ETDEWEB)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D

    1999-12-01

    The major contributions of the isotopes {sup 122}Sb and {sup 124}Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300{sup o}C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb{sub 2}O{sub 3} increases by about two orders of magnitude between 25 and 200{sup o}C, and then levels out or decreases slightly. At 250{sup o}C, in oxidizing solutions, Sb{sub 2}O{sub 5}{center_dot}xH{sub 2}O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na{sub 2{alpha}}[H(H{sub 2}O)]{sub 2-2{alpha}}Sb{sub 2}O{sub 6}, which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200{sup o}C and decreases at temperatures above 250{sup o}C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO{sub 3}{sup -} or Sb(OH){sub 6}{sup -}), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations {>=} 0.00005 mol{center_dot}dm{sup -3} in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be

  3. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  4. Assessment of hupu gum for its carrier property in the design and evaluation of solid mixtures of poorly water soluble drug - rofecoxib.

    Science.gov (United States)

    Vadlamudi, Harini Chowdary; Raju, Y Prasanna; Asuntha, G; Nair, Rahul; Murthy, K V Ramana; Vulava, Jayasri

    2014-01-01

    There are no reports about the pharmaceutical applications of hupu gum (HG). Hence the present study was undertaken to test its suitability in the dissolution enhancement of poorly water soluble drug. Rofecoxib (RFB) was taken as model drug. For comparison solid mixtures were prepared with carriers such as poly vinyl pyrrolidone (PVP), sodium starch glycollate (SSG) and guar gum (GG). Physical mixing (PM), co-grinding (CG), kneading (KT) and solvent evaporation (SE) techniques were used to prepare the solid mixtures, using all the carriers in different carrier and drug ratios. The solid mixtures were characterized by powder X-ray diffraction (XRD) and Fourier-transformed infrared spectroscopy (FTIR). There was a significant improvement in the dissolution rate of solid mixtures of HG, when compared with the solid mixtures of other carriers. There was an increase in dissolution rate with increase in concentration of HG upto 1:1 ratio of carrier and drug. No drug-carrier interaction was found by FTIR studies. XRD studies indicated reduction in crystallinity of the drug with increase in HG concentration. Hence HG could be a useful carrier for the dissolution enhancement of poorly water soluble drugs.

  5. Development of an irrigation control device based on solar radiation and its adaptability for cultivation of high soluble solid tomato fruit in root zone restriction culture

    International Nuclear Information System (INIS)

    Nitta, M.; Shibuya, K.; Kubai, K.; Komatsu, H.; Hosokawa, T.; Nakamura, K.

    2009-01-01

    An irrigation control device based on solar radiation was developed to allow automatic irrigation management for high soluble solid tomato fruit production in root zone restriction culture. Its adaptability for long-term cultivation (planting carried out in early September and harvesting ending in late June) of high soluble solid tomato fruit in root zone restriction culture was examined. The following results were obtained: 1. The control device was composed of generally available electronic parts. A change of setting was possible for the irrigation starting point, the irrigation time period, and the once amount of irrigation. For the first irrigation of the day, one of two irrigation control modes can be chosen; the first determines irrigation dependent on the solar radiation after the irrigated time of the previous day. The second mode irrigates at a set time. 2. The correlation between the total integrated solar radiation and the evapotranspiration rate of tomato plants were investigated. Positive correlations were observed for each month from October to June. Moreover, total integrated solar radiation per unit evapotranspiration was different for each month. 3. In long-term cultivation of tomato fruit using this device, the marketable yield of high soluble solid tomato fruit (more than Brix 8%) was 9.7t/10a. 4. This device exhibited the necessary adaptability for use in long-term cultivation of high soluble solid tomato fruit in root zone restriction culture, by changing the set value of the irrigation starting point and the irrigation time period in accordance with the growth period

  6. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation.

    Science.gov (United States)

    Li, Shujuan; Wang, Xiaoyu; Wang, Yingying; Zhao, Qianqian; Zhang, Lina; Yang, Xinggang; Liu, Dandan; Pan, Weisan

    2015-01-01

    In this study, a novel controlled release osmotic pump capsule consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen (FP) was developed to improve the solubility and oral bioavailability of FP and to minimize the fluctuation of plasma concentration. The pH-modulated solid dispersion containing FP, Kollidon® 12 PF and Na2CO3 at a weight ratio of 1/4.5/0.02 was prepared using the solvent evaporation method. The osmotic pump capsule was assembled by semi-permeable capsule shell of cellulose acetate (CA) prepared by the perfusion method. Then, the solid dispersion, penetration enhancer, and suspending agents were tableted and filled into the capsule. Central composite design-response surface methodology was used to evaluate the influence of factors on the responses. A second-order polynomial model and a multiple linear model were fitted to correlation coefficient of drug release profile and ultimate cumulative release in 12 h, respectively. The actual response values were in good accordance with the predicted ones. The optimized formulation showed a complete drug delivery and zero-order release rate. Beagle dogs were used to be conducted in the pharmacokinetic study. The in vivo study indicated that the relative bioavailability of the novel osmotic pump system was 133.99% compared with the commercial preparation. The novel controlled delivery system with combination of pH-modulated solid dispersion and osmotic pump system is not only a promising strategy to improve the solubility and oral bioavailability of poorly soluble ionizable drugs but also an effective way to reduce dosing frequency and minimize the plasma fluctuation.

  7. Solid state fermentation studies of citric acid production

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... solid waste management, biomass energy conservation, production of high value products and little risk ... The carrier, sugarcane bagasse for solid state fermentation was procured from National Sugar Institute ... constant weight and designated as dry solid residue (DSR). The filtrate (consisting of biomass, ...

  8. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2010-01-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and

  9. Biowaiver monograph for immediate-release solid oral dosage forms: acetylsalicylic acid.

    Science.gov (United States)

    Dressman, Jennifer B; Nair, Anita; Abrahamsson, Bertil; Barends, Dirk M; Groot, D W; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Zimmer, Markus

    2012-08-01

    A biowaiver monograph for acetylsalicylic acid (ASA) is presented. Literature and experimental data indicate that ASA is a highly soluble and highly permeable drug, leading to assignment of this active pharmaceutical ingredient (API) to Class I of the Biopharmaceutics Classification System (BCS). Limited bioequivalence (BE) studies reported in the literature indicate that products that have been tested are bioequivalent. Most of the excipients used in products with a marketing authorization in Europe are not considered to have an impact on gastrointestinal motility or permeability. Furthermore, ASA has a wide therapeutic index. Thus, the risks to the patient that might occur if a nonbioequivalent product were to be incorrectly deemed bioequivalent according to the biowaiver procedure appear to be minimal. As a result, the BCS-based biowaiver procedure can be recommended for approval of new formulations of solid oral dosage forms containing ASA as the only API, including both multisource and reformulated products, under the following conditions: (1) excipients are chosen from those used in ASA products already registered in International Conference on Harmonization and associated countries and (2) the dissolution profiles of the test and the comparator products comply with the BE guidance. Copyright © 2012 Wiley Periodicals, Inc.

  10. Polymorphism in sulfadimidine/4-aminosalicylic acid cocrystals: solid-state characterization and physicochemical properties.

    Science.gov (United States)

    Grossjohann, Christine; Serrano, Dolores R; Paluch, Krzysztof J; O'Connell, Peter; Vella-Zarb, Liana; Manesiotis, Panagiotis; Mccabe, Thomas; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2015-04-01

    Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1385-1398, 2015. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    Science.gov (United States)

    Jiang, Yijun; Li, Xiutao; Cao, Quan; Mu, Xindong

    2011-02-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that -SO3H, -COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  12. Acid functionalized, highly dispersed carbonaceous spheres: an effective solid acid for hydrolysis of polysaccharides

    International Nuclear Information System (INIS)

    Jiang Yijun; Li Xiutao; Cao Quan; Mu Xindong

    2011-01-01

    Highly dispersed carbonaceous spheres with sulfonic acid groups were successfully prepared from glucose by hydrothermal method. Transmission electron microscopy (TEM) showed the as-synthesized carbonaceous materials were uniform, spherical in shape with an average diameter of about 450 nm. Fourier transform infrared (FT-IR) proved that –SO 3 H, –COOH, OH groups were grafted on the surface of the carbonaceous spheres during the sulfonation. Interestingly, the functionalized carbonaceous spheres exhibited high dispersibility in the polar solvent due to the hydrophilic groups on the surface. The mechanism of the formation for the carbonaceous spheres was also discussed based on the analysis of structure and composition. At last, the functionalized carbonaceous spheres were employed as solid acid to hydrolyze starch and cellulose. By comparison, the as-synthesized catalyst showed considerable high yield of glucose.

  13. Selective hydrogenation of 1,3-butadiene from crude C{sub 4} cracker stream with a solid catalyst with ionic liquid layer (SCILL). DSC and solubility study

    Energy Technology Data Exchange (ETDEWEB)

    Mangartz, T.; Korth, W.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In petroleum as well as in fine chemical industry, selective catalytic hydrogenation is an important reaction. The selective hydrogenation of 1,3-butadiene (BD) to butene (trans-,1- and cis-butene) from the crude C4 steam cracker fraction represents one example, but under today's technical conditions undesired butane forms inevitably in relevant amounts. To increase the butene yield, the concept of Solid Catalyst with Ionic Liquid Layer (SCILL) was employed. The SCILL catalyst, in contrast to the uncoated catalyst, yielded a remarkably high selectivity to butenes (S{sub butenes} > 99 %) even at high residence times or at high hydrogen partial pressure. Nearly no butane (S{sub butane} {approx} 0 %) was analytically detected. We expected that due to different solubility, the poorer soluble compounds discharged from the ionic liquid and, thus, caused the shift in selectivity to a great extent. Temperature dependent solubility measurements in the used ionic liquid ([DMIM][DMP]) revealed that the order of increasing solubility is 1,3-butadiene > butenes > butane which matches the assumption. However, since differences in solubility cannot explain this SCILL effect satisfyingly, ionic liquids are expected to affect the surface of the catalyst (side-specific ligand-type effect). Investigations using spectroscopic methods (e.g. FTIR) confirmed this suggestion. (orig.)

  14. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  15. Solubility and hydrolysis of Np(V) in dilute to concentrated alkaline NaCl solutions. Formation of Na-Np(V)-OH solid phases at 22 C

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Vladimir G. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Fellhauer, David; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Altmaier, Marcus [Karlsruhe Institute of Technology (Germany). Inst. for Nuclear Waste Disposal; Kalmykov, Stepan N. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; NRC Kurchatov Institute, Moscow (Russian Federation)

    2017-03-01

    The solubility of Np(V) was investigated at T=22±2 C in alkaline NaCl solutions of different ionic strength (0.1-5.0 M). The solid phases controlling the solubility at different -log{sub 10} m{sub H{sup +}}(pH{sub m}) and NaCl concentration were characterized by XRD, quantitative chemical analysis, SEM-EDS and XAFS (both XANES and EXAFS). Aqueous phases in equilibrium with Np(V) solids were investigated for selected samples within 8.9≤pH{sub m}≤10.3 by UV-vis/NIR absorption spectroscopy. In 0.1 M NaCl, the experimental solubility of the initial greenish NpO{sub 2}OH(am) solid phase is in good agreement with previous results obtained in NaClO{sub 4} solutions, and is consistent with model calculations for fresh NpO{sub 2}OH(am) using the thermodynamic data selection in NEA-TDB. Below pH{sub m}∝11.5 and for all NaCl concentrations studied, Np concentration in equilibrium with the solid phase remained constant during the timeframe of this study (∝2 years). This observation is in contrast to the aging of the initial NpO{sub 2}OH(am) into a more crystalline modification with the same stoichiometry, NpO{sub 2}OH(am, aged), as reported in previous studies for concentrated NaClO{sub 4} and NaCl. Instead, the greenish NpO{sub 2}OH(am) transforms into a white solid phase in those systems with [NaCl]≥1.0 M and pH{sub m}≥11.5, and into two different pinkish phases above pH{sub m}∝13.2. The solid phase transformation is accompanied by a drop in Np solubility of 0.5-2 log{sub 10}-units (depending upon NaCl concentration). XANES analyses of green, white and pink phases confirm the predominance of Np(V) in all cases. Quantitative chemical analysis shows the incorporation of Na{sup +} in the original NpO{sub 2}OH(am) material, with Na:Np ≤ 0.3 for the greenish solids and 0.8 ≤ Na:Np ≤ 1.6 for the white and pinkish phases. XRD data confirms the amorphous character of the greenish phase, whereas white and pink solids show well-defined but discrepant XRD patterns

  16. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 3,5-dinitrobenzoic acid, m-nitrobenzoic acid and acetone

    International Nuclear Information System (INIS)

    Li, Xinbao; Du, Cunbin; Zhao, Hongkun

    2017-01-01

    Highlights: • The solubility of 3,5-dinitrobenzoic acid in acetone was determined. • Solubility of m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were calculated by Wilson model and NRTL model. - Abstract: The solubility of 3,5-dinitrobenzoic acid in acetone at the temperatures ranging from (283.15 to 318.15) K and the mutual solubility of the ternary m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone system at (283.15, 298.15 and 313.15) K were determined experimentally by using the isothermal saturation method under atmosphere pressure (101.2 kPa). Three isothermal ternary phase diagrams were constructed according to the measured mutual solubility data. In each ternary phase diagram, there was one co-saturated point, two boundary curves, and three crystalline regions. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 3,5-dinitrobenzoic acid in acetone; and the NRTL and Wilson models, the mutual solubility for the ternary m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone system. The value of root-mean-square deviation (RMSD) was 8.53 × 10 −4 for the binary system of 3,5-dinitrobenzoic acid + acetone; and the largest value of RMSD was 81.08 × 10 −4 for the ternary system.

  17. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model systems: insight into mechanisms of improved availability.

    Science.gov (United States)

    Dynkowska, Wioletta M; Cyran, Malgorzata R; Ceglińska, Alicja

    2015-03-30

    The bread-making process influences bread components, including phenolics that significantly contribute to its antioxidant properties. Five bread model systems made from different rye cultivars were investigated to compare their impact on concentration of ethanol-soluble (free and ester-bound) and insoluble phenolics. Breads produced by a straight dough method without acid addition (A) and three-stage sourdough method with 12 h native starter preparation (C) exhibited the highest, genotype-dependent concentrations of free phenolic acids. Dough acidification by direct acid addition (method B) or by gradual production during prolonged starter fermentation (24 and 48 h, for methods D and E) considerably decreased their level. However, breads B were enriched in soluble ester-bound fraction. Both direct methods, despite substantial differences in dough pH, caused a similar increase in the amount of insoluble ester-bound fraction. The contents of phenolic fractions in rye bread were positively related to activity level of feruloyl esterase and negatively to those of arabinoxylan-hydrolysing enzymes in wholemeal flour. The solubility of rye bread phenolics may be enhanced by application of a suitable bread-making procedure with respect to rye cultivar, as the mechanisms of this process are also governed by a response of an individual genotype with specific biochemical profile. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  19. Measurement and prediction of the solubility of acid gases in monoethanolamine solutions at low partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, P; Mather, A E

    1977-12-01

    An apparatus for the determination of the solubility of hydrogen sulfide, carbon dioxide, and their mixtures in ethanolamine solutions at low pressures is described. With this apparatus, the solubility of H/sub 2/S, CO/sub 2/ and their mixtures in aqueous solutions of monoethanolamine was measured at partial pressures between 0.001 kPa and 9 kPa at temperatures of 80 and 100/sup 0/C. The results for the mixture were compared with two methods of prediction based on a thermodynamic model. 6 figures, 4 tables.

  20. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  1. Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam.

    Science.gov (United States)

    Minh Thuy, Le Thi; Okazaki, Emiko; Osako, Kazufumi

    2014-04-15

    Acid-soluble collagen (ASC) was successfully extracted from the scales of lizard fish (Saurida spp.) and horse mackerel (Trachurus japonicus) from Japan and Vietnam and grey mullet (Mugil cephalis), flying fish (Cypselurus melanurus) and yellowback seabream (Dentex tumifrons) from Japan. ASC yields were about 0.43-1.5% (on a dry weight basis), depending on the species. The SDS-PAGE profile showed that the ASCs were type I collagens, and consisted of two different α chains, α1 and α2, as well as a β component. ASC of horse mackerel from Vietnam contained a higher imino acid level than that from Japan. ASC denaturation temperature (Td) ranged from 26 to 29 °C, depending on fish species and imino acid content (p0.4M, regardless of fish type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    NARCIS (Netherlands)

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  3. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  4. Solubility of Ferulic Acid in Supercritical Carbon Dioxide with Ethanol as Cosolvent

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2001-01-01

    Roč. 46, č. 5 (2001), s. 1255-1257 ISSN 0021-9568 R&D Projects: GA ČR GA203/98/1445 Institutional research plan: CEZ:AV0Z4072921 Keywords : solubility * supercritical carbon * ethanol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.960, year: 2001

  5. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  6. 7 CFR 51.1178 - Maximum anhydrous citric acid permissible for corresponding total soluble solids.

    Science.gov (United States)

    2010-01-01

    ... of Florida Oranges and Tangelos Standards for Internal Quality of Common Sweet Oranges (citrus... Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF...

  7. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    Science.gov (United States)

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  8. Effect of Different Inclusion Level of Condensed Distillers Solubles Ratios and Oil Content on Amino Acid Digestibility of Corn Distillers Dried Grains with Solubles in Growing Pigs

    Directory of Open Access Journals (Sweden)

    P. Li

    2015-01-01

    Full Text Available The purpose of this experiment was to determine and compare the digestibility of crude protein (CP and amino acids (AA in full-oil (no oil extracted and de-oiled (oil extracted corn distillers dried grains with solubles (DDGS with different condensed distillers solubles (CDS ratios. Six barrows (29.6±2.3 kg fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3% was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID of lysine (from 56.16% to 71.15% and tryptophan (from 54.90% to 68.38% had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2 were greater (p0.05 than full-oil with high CDS ratio DDGS (source 2; however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3 were non-significantly lower (p>0.05 than de-oiled with high CDS ratio DDGS (source 4; and the de-oiled DDGS with middle CDS ratio (source 5 but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS.

  9. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    International Nuclear Information System (INIS)

    Hu, Chengyao; Huang, Pei

    2011-01-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  10. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    International Nuclear Information System (INIS)

    Moussa, M.N.H.; El-Far, A.A.; El-Shafei, A.A.

    2007-01-01

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation

  11. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, M.N.H.; El-Far, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt); El-Shafei, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt)], E-mail: ashafei@mans.edu.eg

    2007-09-15

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation.

  12. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  13. SOLID AND LIQUID PINEAPPLE WASTE UTILIZATION FOR LACTIC ACID FERMENTATION USING Lactobacillus delbrueckii

    Directory of Open Access Journals (Sweden)

    Abdullah Abdullah

    2012-01-01

    Full Text Available The liquid and solid  pineapple wastes contain mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for fermentation to produce organic acid. Recently, lactic acid has been considered to be an important raw material for production of biodegradable lactate polymer. The experiments were  carried out in batch fermentation using  the  liquid and solid pineapple wastes to produce lactic acid. The anaerobic fermentation of lactic acid were performed at 40 oC, pH 6, 5% inocolum and  50 rpm. Initially  results show that the liquid pineapple waste by  using Lactobacillus delbrueckii can be used as carbon source  for lactic acid fermentation. The production of lactic acid  are found to be 79 % yield, while only  56% yield was produced by using solid waste. 

  14. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms.

    Directory of Open Access Journals (Sweden)

    Guilherme Rodrigues Teodoro

    Full Text Available The aim of this study was to increase the solubility of gallic acid (GA for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents.

  15. Effect of Acid Hydrolysis and Thermal Hydrolysis on Solubility and Properties of Oil Palm Empty Fruit Bunch Fiber Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Sinyee Gan

    2015-11-01

    Full Text Available Cellulose hydrogel was produced from pretreated oil palm empty fruit bunch fiber (EFB that went through acid hydrolysis and thermal hydrolysis. The pretreated EFB was dissolved in LiOH/urea aqueous solution using the rapid dissolution method and was subjected to a crosslinking process with the aid of epichlorohydrin to form hydrogel. The effects of both hydrolyses’ time on average molecular weight (Mŋ, solubility, and properties of EFB hydrogels were evaluated. Both hydrolyses led to lower Mŋ, lower crystallinity index (CrI and hence, resulted in higher cellulose solubility. X-ray diffraction (XRD characterization revealed the CrI and transition of crystalline structure of EFB from cellulose I to II. The effects of hydrolysis time on the transparency, degree of swelling (DS, and morphology of the regenerated cellulose hydrogel were also investigated using an ultraviolet-visible (UV-Vis spectrophotometer and a Field emission scanning electron microscope (FESEM, respectively. These findings provide an efficient method to improve the solubility and properties of regenerated cellulose products.

  16. The Solubility of metal oxides in molten carbonates - why the acid-basic chemistry fails?

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Qingfeng, Li; Borup, Flemming

    1999-01-01

    Solubilities of various metal oxides in molten Li/K carbonates have been measured at 650°C under carbon dioxide atmosphere. It is found that the solubility of NiO and PbO decreases with increasing lithium mole fraction and decreasing CO2 partial pressure. On the other hand, the emf measurement...... shows opposite effects, i.e., decreasing CO2 pressure leads to more negative emf values but increasing lithium content gives more positive emf values. This contradiction is explained by means of a complex formation model. The possible species for lead are proposed to be [Pb(CO3)2]-2 and/or [Pb(CO3) 3...

  17. Solubility of DCH18C6 and n-octanol in nitric acid system

    International Nuclear Information System (INIS)

    He Qiange; Wang Jianchen; Chen Jing

    2011-01-01

    Equilibrium solubility of DCH18C6 and n-octanol in aqueous solution were determined by GC. And effects of temperature, concentration of Sr 2+ or HNO 3 were studied. The results indicate that solubility of DCH18C6 is substantial and make the crown ether continually drain from organic phase which could be 3% at most. As diluent, n-octanol could dissolve in water with certain quantity. So n-octanol, and then kerosene should be used to extract DCH18C6 and n-octanol from aqueous phase. Or toluene is taken to recover DCH18C6 and n-octanol at the same time. Above extractants could recover more than 99% of solute from aqueous solution in the volume ratio 1:1. (author)

  18. Functionalized carbon nanofibers as solid acid catalysts for transesterification

    NARCIS (Netherlands)

    Stellwagen, D.R.; van der Klis, Frits; van Es, D.S.; de Jong, K.P.; Bitter, J.H.

    2013-01-01

    Carbon nanofibers (CNFs) were functionalized with aryl sulfonic acid groups using in situ diazonium coupling. The use of diazonium coupling yielded an acidic carbon material, in which the introduced acidic groups are readily accessible to the triglyceride substrate. The material is an efficient

  19. Functionalized carbon nanofibers as solid-acid catalysts for transesterification

    NARCIS (Netherlands)

    Stellwagen, D.R.; Klis, van der F.; Es, van D.S.; Jong, de K.P.; Bitter, J.H.

    2013-01-01

    Carbon nanofibers (CNFs) were functionalized with aryl sulfonic acid groups using in situ diazonium coupling. The use of diazonium coupling yielded an acidic carbon material, in which the introduced acidic groups are readily accessible to the triglyceride substrate. The material is an efficient

  20. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esquivel Kranksith, L.; Negron-Mendoza, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico); Mosqueira, F.G. [Direcion General de Divulgacion de la Ciencia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, AP. 70-487 Mexico D.F. (Mexico); Ramos-Bernal, Sergio, E-mail: ramos@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2010-07-21

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a {sup 60}Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  1. Solid solubility of fission product and other transition elements in carbides and nitrides of uranium and plutonium

    International Nuclear Information System (INIS)

    Benedict, U.

    1979-01-01

    Solubility studies were made in some MX-Me systems (M:U or Pu; X: C or N; Me: fission product or other transition element) by X-ray diffraction and partly by microprobe determination of solute concentrations. Up to 23 m/o ZrC and 17 m/o TaC dissolved in the PuC phases of sintered PuC-ZrC and PuC-TaC samples; the lattice parameter/concentration relationships were derived. The relative lattice parameter difference (RLPD) between MXy and MeXy (y: ratio X/(M+Me)) was used as a solubility criterion. NaCl type monocarbides with RLPD's from -10.2% to +7.8% are completely miscible with UC and PuC. NaCl type mononitrides with RLPD's from -7.5% to 8.5% are completely miscible with UN and PuN. The solubility in the sesquicarbides increases with decreasing RLPD and becomes complete in Pu 2 C 3 at RLPD =+4%, and in U 2 C 3 at RLPD ca. +1.5%. Solubilities are predicted on the basis of these rules for the cases where no experimental results are available. A general review on the experimental and predicted solubilities is given. (orig.) [de

  2. Ferulic Acid Dehydrodimer and –Dehydrotrimer Profiles of Distillers Dried Grains with Solubles from Different Cereal Species

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Bunzel, Mirko; Schäfer, Judith

    2015-01-01

    Ferulic acid dehydrodimers- (DFA) and trimers (TriFA) ester-linked to plant cell wall polymers may not only cross-link cell wall polysaccharides, but also other cell wall components including proteins and lignin, thus, enhancing the rigidity and potentially affect the enzymatic degradation...... of the plant cell wall. Corn-, wheat-, and mixed cereal distillers dried grains with solubles (DDGS) were investigated for composition of DFAs and TriFAs by reversed phase high performance liquid chromatography with ultra violet detection. Corn DDGS contained 5.3 and 5.9 times higher contents of total DFAs...... acid cross-links in the corn cell wall are presumably not modified during fermentation and DDGS processing....

  3. Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available BACKGROUND: Hemozoin (Hz is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH (the synthetic counterpart of Hz formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO and a series of polyethyleneglycols (PEGs. We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000 increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300 caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. CONCLUSIONS: The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.

  4. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    Science.gov (United States)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  5. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    OpenAIRE

    Justel, F. J.; Claros, M.; Taboada, M. E.

    2015-01-01

    Abstract In Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different...

  6. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Science.gov (United States)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  7. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    Science.gov (United States)

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solid solubility, phase transitions, thermal expansion, and compressibility in Sc{sub 1−x}Al{sub x}F{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Morelock, Cody R.; Gallington, Leighanne C. [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); Wilkinson, Angus P., E-mail: angus.wilkinson@chemistry.gatech.edu [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)

    2015-02-15

    With the goal of thermal expansion control, the synthesis and properties of Sc{sub 1−x}Al{sub x}F{sub 3} were investigated. The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. Solid solutions (x≤0.50) were characterized by synchrotron powder diffraction at ambient pressure between 100 and 900 K and at pressures <0.414 GPa while heating from 298 to 523 K. A phase transition from cubic to rhombohedral is observed. The transition temperature increases smoothly with Al{sup 3+} content, approaching 500 K at the solid solubility limit, and also upon compression at fixed Al{sup 3+} content. The slope of the pressure–temperature phase boundary is ∼0.5 K MPa{sup −1}, which is steep relative to that for most symmetry-lowering phase transitions in perovskites. The volume coefficient of thermal expansion (CTE) for the rhombohedral phase is strongly positive, but the cubic-phase CTE varies from negative (x<0.15) to near-zero (x=0.15) to positive (x>0.20) between ∼600 and 800 K. The cubic solid solutions elastically stiffen on heating, while Al{sup 3+} substitution causes softening at a given temperature. - Graphical abstract: The cubic-phase coefficient of thermal expansion for Sc{sub 1−x}Al{sub x}F{sub 3}(solubility limit ∼50% at ∼1340 K) becomes more positive with increased Al{sup 3+} substitution, but the average isothermal bulk modulus decreases (elastic softening). - Highlights: • The solubility limit of AlF{sub 3} in ScF{sub 3} at ∼1340 K is ∼50%. • The phase transition temperature of Sc{sub 1−x}Al{sub x}F{sub 3} increases smoothly with x. • The cubic-phase volume CTE varies from negative to positive with increasing x. • The cubic solid solutions elastically stiffen on heating. • Al{sup 3+} substitution causes softening at a given temperature.

  9. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  10. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2

    DEFF Research Database (Denmark)

    Löbmann, K.; Laitinen, R.; Strachan, C.

    2013-01-01

    spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs...

  11. Pretreatment of dried distillers grains with solubles by soaking in aqueous ammonia and subsequent enzymatic/dilute acid hydrolysis to produce fermentable sugars

    Science.gov (United States)

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15% w/w NH4OH solution at a solid:liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied...

  12. Rheology of dilute acid hydrolyzed corn stover at high solids concentration.

    Science.gov (United States)

    Ehrhardt, M R; Monz, T O; Root, T W; Connelly, R K; Scott, C T; Klingenberg, D J

    2010-02-01

    The rheological properties of acid hydrolyzed corn stover at high solids concentration (20-35 wt.%) were investigated using torque rheometry. These materials are yield stress fluids whose rheological properties can be well represented by the Bingham model. Yield stresses increase with increasing solids concentration and decrease with increasing hydrolysis reaction temperature, acid concentration, and rheometer temperature. Plastic viscosities increase with increasing solids concentration and tend to decrease with increasing reaction temperature and acid concentration. The solids concentration dependence of the yield stress is consistent with that reported for other fibrous systems. The changes in yield stress with reaction conditions are consistent with observed changes in particle size. This study illustrates that torque rheometry can be used effectively to measure rheological properties of concentrated biomass.

  13. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review

    International Nuclear Information System (INIS)

    Mansir, Nasar; Taufiq-Yap, Yun Hin; Rashid, Umer; Lokman, Ibrahim M.

    2017-01-01

    Highlights: • Solid acid catalysts are proficient to esterifying high free fatty acid feedstocks to biodiesel. • Heterogeneous catalysts have the advantage of easy separation and reusability. • Heterogeneous basic catalysts have limitations due to high FFA of low cost feedstocks. • Solid catalysts having acid and base sites reveal better catalyst for biodiesel production. - Abstract: The conventional fossil fuel reserves are continually declining worldwide and therefore posing greater challenges to the future of the energy sources. Biofuel alternatives were found promising to replace the diminishing fossil fuels. However, conversion of edible vegetable oils to biodiesel using homogeneous acids and base catalysts is now considered as indefensible for the future particularly due to food versus fuel competition and other environmental problems related to catalyst system and feedstock. This review has discussed the progression in research and growth related to heterogeneous catalysts used for biodiesel production for low grade feedstocks. The heterogeneous base catalysts have revealed effective way to produce biodiesel, but it has the limitation of being sensitive to high free fatty acid (FFA) or low grade feedstocks. Alternatively, solid acid catalysts are capable of converting the low grade feedstocks to biodiesel in the presence of active acid sites. The paper presents a comprehensive review towards the investigation of solid acid catalyst performance on low grade feedstock, their category, properties, advantages, limitations and possible remedy to their drawbacks for biodiesel production.

  14. Two-stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol

    NARCIS (Netherlands)

    Grootscholten, T.I.M.; Strik, D.P.B.T.B.; Steinbusch, K.J.J.; Buisman, C.J.N.; Hamelers, B.

    2014-01-01

    Chain elongation is an anaerobic fermentation that produces medium chain fatty acids (MCFAs) from volatile fatty acids and ethanol. These MCFAs can be used as biochemical building blocks for fuel production and other chemical processes. Producing MCFAs from the organic fraction of municipal solid

  15. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2007-01-01

    Full Text Available The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.

  16. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    Science.gov (United States)

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  17. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Mishelevich, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il

    2008-05-15

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution.

  18. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    International Nuclear Information System (INIS)

    Mishelevich, Alexander; Apelblat, Alexander

    2008-01-01

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution

  19. All-solid-state potentiometric sensors for ascorbic acid by using a screen-printed compatible solid contact

    International Nuclear Information System (INIS)

    Veltsistas, Panayotis G.; Prodromidis, Mamas I.; Efstathiou, Constantinos

    2004-01-01

    The development of all-solid-state potentiometric ion selective electrodes for monitoring of ascorbic acid, by using a screen-printed compatible solid contact is described. The applied methodology is based on the use of PVC membrane modified with some firstly-tested ionophores (triphenyltin(IV)chloride, triphenyltin(IV)hydroxide and palmitoyl-L-ascorbic acid) and a novel one synthesized in our laboratory (dibutyltin(IV) diascorbate). Synthesis protocol and some preliminary identification studies are given. A conductive graphite-based polymer thick film ink was used as an internal solid contact between the graphite electrode and the PVC membrane. The presence and the nature of the solid contact (plain or doped with lanthanum 2,6-dichlorophenolindophenol (DCPI)) seem to enhance the analytical performance of the electrodes in terms of sensitivity, dynamic range, and response time. The analytical performance of the constructed electrodes was evaluated with potentiometry, constant-current chronopotentiometry and electrochemical impedance spectroscopy (EIS). The interference effect of various compounds was also tested. The potential response of the optimized Ph 3 SnCl-based electrode was linear against ascorbic acid concentration range 0.005-5.0 mM. The applicability of the proposed sensors in real samples was also tested. The detection limit was 0.002 mM ascorbic acid (50 mM phosphate, pH 5 in 50 mM KCl). The slope of the electrodes was super-Nernstian and pH dependent, indicating a mechanism involving a combination of charge transfer and ion exchange processes. Fabrication of screen-printed ascorbate ISEs has also been demonstrated

  20. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

    International Nuclear Information System (INIS)

    Meral, Kadem; Erbil, H. Yıldırım; Onganer, Yavuz

    2011-01-01

    Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area (π-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

  1. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Erbil, H. Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I m [Department of Chemical Engineering, Gebze Institute of Technology, Cay Latin-Small-Letter-Dotless-I rova, Gebze 41400, Kocaeli (Turkey); Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2011-12-01

    Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area ({pi}-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

  2. Solid-phase route to Fmoc-protected cationic amino acid building blocks

    DEFF Research Database (Denmark)

    Clausen, Jacob Dahlqvist; Linderoth, Lars; Nielsen, Hanne Mørck

    2012-01-01

    Diamino acids are commonly found in bioactive compounds, yet only few are commercially available as building blocks for solid-phase peptide synthesis. In the present work a convenient, inexpensive route to multiple-charged amino acid building blocks with varying degree of hydrophobicity...... was developed. A versatile solid-phase protocol leading to selectively protected amino alcohol intermediates was followed by oxidation to yield the desired di- or polycationic amino acid building blocks in gram-scale amounts. The synthetic sequence comprises loading of (S)-1-(p-nosyl)aziridine-2-methanol onto...... of simple neutral amino acids as well as analogs displaying high bulkiness or polycationic side chains was prepared. Two building blocks were incorporated into peptide sequences using microwave-assisted solid-phase peptide synthesis confirming their general utility....

  3. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  4. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  5. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    Science.gov (United States)

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  6. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    Science.gov (United States)

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  7. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  8. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  9. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    Science.gov (United States)

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))

  10. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Science.gov (United States)

    Collins, John; Li, Xiaohong; Pletcher, Derek; Tangirala, Ravichandra; Stratton-Campbell, Duncan; Walsh, Frank C.; Zhang, Caiping

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm × 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%.

  11. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John; Stratton-Campbell, Duncan [C-Tech Innovation Ltd., Capenhurst, Chester CH1 6EH (United Kingdom); Li, Xiaohong; Tangirala, Ravichandra; Walsh, Frank C.; Zhang, Caiping [Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, University Road, Southampton SO17 1BJ (United Kingdom); Pletcher, Derek [Electrochemistry and Surface Science Group, School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-05-01

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm x 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%. (author)

  12. Uncharged water-soluble porphyrin tweezers as a supramolecular sensor for α-amino acids

    International Nuclear Information System (INIS)

    Villari, Valentina; Mineo, Placido; Micali, Norberto; Angelini, Nicola; Vitalini, Daniele; Scamporrino, Emilio

    2007-01-01

    The binding between uncharged cobalt porphyrin tweezers and L-amino acids in aqueous solutions is studied by means of UV-vis and circular dichroism spectroscopy. By varying the length of the aliphatic bridge between the two porphyrin units, the number of cobalt ions in the porphyrin cores and the pH of the solution, the chirality induction phenomenon has been investigated. The binding of the amino acid to the porphyrin seems to occur via a coordination mechanism between the metal and the nitrogen of the amino group; the steric, hydrophobic and π-π interactions operate to stabilize the complexes. The chirogenesis displays an opposite behaviour in the presence of aromatic guests with respect to the non-aromatic ones. Moreover, the UV-vis and the induced circular dichroism spectral changes suggest that the amino acid arrangement in the tweezers is determined by many factors, so that, unlike in organic solvent, the porphyrin tweezers in aqueous solution allow for two different arrangements of the same aromatic amino acid. The experimental findings indicate that the porphyrins tweezers reported in the paper are promising in opening perspectives toward their application as a selective molecular sensor in aqueous solutions directly

  13. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  14. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  15. Effect of initial total solids concentration on volatile fatty acid production from food waste during anaerobic acidification.

    Science.gov (United States)

    Wang, Quan; Jiang, Jianguo; Zhang, Yujing; Li, Kaimin

    2015-01-01

    The effect of initial total solids (TS) concentration on volatile fatty acid (VFAs) production from food waste under mesophilic conditions (35 °C) was determined. VFAs concentration and composition, biogas production, soluble chemical oxygen demand concentration, TS and volatile solids (VS) reduction, and ammonia nitrogen [Formula: see text] release were investigated. The VFAs concentrations were 26.10, 39.68, 59.58, and 62.64 g COD/L at TS contents of 40, 70, 100, and 130 g/L, respectively. While the VFAs' yields ranged from 0.467 to 0.799 g COD/g VSfed, decreased as initial TS increased. The percentage of propionate was not affected by TS concentration, accounting for 30.19-34.86% of the total VFAs, while a higher percentage of butyrate and lower percentage of acetate was achieved at a higher TS concentration. Biogas included mainly hydrogen and carbon dioxide and the maximum hydrogen yield of 148.9 ml/g VSfed was obtained at 130 g TS/L. [Formula: see text] concentration, TS and VS reductions increased as initial TS increased. Considering the above variables, we conclude that initial TS of 100 g/L shall be the most appropriate to VFAs production.

  16. Selective production of aromatics from alkylfurans over solid acid catalysts

    DEFF Research Database (Denmark)

    Wang, Dong; Dumesic, James A.; Osmundsen, Christian Mårup

    2013-01-01

    to deactivation by carbon deposition than do microporous materials. Results from Raman spectroscopy and the trend of turnover frequency with varying tungsten surface densities for a series of WOx-ZrO2 catalysts are consistent with previous investigations of other acid-catalyzed reactions; this suggests...

  17. A molecular dynamics calculation of solid phase of malonic acid

    Indian Academy of Sciences (India)

    Recent studies suggest that hydrogen bonds, in particular, hydrogen bond chains play an important role in determining the properties of a substance.We report an investigation into the triclinic phase of crystalline malonic acid. One of two intermolecular interaction potentials proposed here is seen to predict the lattice ...

  18. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan)

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and {sup 1}H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. - Highlights: • Development of a new synthetic methodology • Synthesis of organo-soluble chitosan (CS) derivatives • VERO cells proliferation • Nanofibrous membranes from the synthesized chitosan derivatives and polycaprolactone.

  19. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    OpenAIRE

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution...

  20. [*C]octanoic acid breath test to measure gastric emptying rate of solids.

    Science.gov (United States)

    Maes, B D; Ghoos, Y F; Rutgeerts, P J; Hiele, M I; Geypens, B; Vantrappen, G

    1994-12-01

    We have developed a breath test to measure solid gastric emptying using a standardized scrambled egg test meal (250 kcal) labeled with [14C]octanoic acid or [13C]octanoic acid. In vitro incubation studies showed that octanoic acid is a reliable marker of the solid phase. The breath test was validated in 36 subjects by simultaneous radioscintigraphic and breath test measurements. Nine healthy volunteers were studied after intravenous administration of 200 mg erythromycin and peroral administration of 30 mg propantheline, respectively. Erythromycin significantly enhanced gastric emptying, while propantheline significantly reduced gastric emptying rates. We conclude that the [*C]octanoic breath test is a promising and reliable test for measuring the gastric emptying rate of solids.

  1. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  2. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  3. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids.

    Science.gov (United States)

    Xie, Shuyu; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Wang, Yan; Li, Xihe; Zhou, WenZhong

    2011-04-01

    Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Synthesis and solubility measurement in supercritical carbon dioxide of two solid derivatives of 2-methylnaphthalene-1,4-dione (menadione): 2-(Benzylamino)-3-methylnaphthalene-1,4-dione and 3-(phenethylamino)-2-methylnaphthalene-1,4-dione

    International Nuclear Information System (INIS)

    Zacconi, Flavia C.; Nuñez, Olga N.; Cabrera, Adolfo L.; Valenzuela, Loreto M.

    2016-01-01

    Highlights: • Two menadione derivatives were synthesized, purified and characterized. • Solubility of menadione derivatives in SC-CO 2 was measured at T < 333 K, p < 28 MPa. • Thermodynamic consistency of solubility data measured was evaluated. • Solubility data was correlated in terms of temperature and CO 2 density. - Abstract: Synthesis of two solid derivatives of vitamin K 3 (2-methylnaphthalene-1,4-dione or menadione), 2-(benzylamino)-3-methylnaphthalene-1,4-dione and 3-(phenethylamino)-2-methylnaphthalene-1,4-dione was completed using a 1,4 Michael addition reaction at 323 K in an inert atmosphere, with reaction yields of 62% mol·mol −1 and 71% mol·mol −1 , respectively, and a purity grade of 98% mol·mol −1 for each component. Isothermal solubility (mole fraction) of each solid derivative in supercritical carbon dioxide was performed using an analytic-recirculation methodology, with direct determination of the molar composition of the carbon dioxide-rich phase by using high performance liquid chromatography, at temperatures of (313, 323 and 333) K and pressures from (8–28) MPa. Results indicated that the range of measured solubilities were from (59 × 10 −6 to 368 × 10 −6 ) mol·mol −1 for solid 2-(benzylamino)-3-methylnaphthalene-1,4-dione and from (40 × 10 −6 to 205 × 10 −6 ) mol·mol −1 for solid 3-(phenethylamino)-2-methylnaphthalene-1,4-dione. The experimental solubility was validated using three approaches, estimating the combined expanded uncertainty of measurement for each solubility data point, evaluating the thermodynamic consistency of the data utilizing a test based on the Gibbs–Duhem equation, and verifying the self-consistency by correlating the experimental solubility values with a semi-empirical model as a function of temperature, pressure and pure carbon dioxide density.

  5. Recovery of Terephthalic Acid by employing magnetic nanoparticles as a solid support

    Directory of Open Access Journals (Sweden)

    Elmira Ghamary

    2018-03-01

    Full Text Available Abstract The aim of this research work is focused on the improvement of Terephthalic acid recovery from PET wastes by using organically modified nano-Fe3O4@Cyanuric Chloride as the solid support. The performance of organically modified nano magnetic was examined in detail and the obtained results were compared with the unsupported reaction data. Required reaction time for complete glycolysis of the wastes, consumption of the solvent as well as catalyst decreases up 99%, 37.5% and 40% respectively. Result showed that nano-Fe 3O4@Cyanuric Chloride delivered good performance as solid support in depolymerizing of PET to the terephthalic acid.

  6. Preparation and Characterization of a Solid Acid Catalyst from Macro Fungi Residue for Methyl Palmitate Production

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-07-01

    Full Text Available During the process of fungal polysaccharide extraction for health care products and food factories, a large quantity of macro-fungi residues are produced, but most of the residues are abandoned and become environmental pollutants. A solid acid catalyst, prepared by sulfonating carbonized Phellinus igniarius residue, was shown to be an efficient and environmentally benign catalyst for the esterification of palmitate acid (PA and methanol. As a comparison, two types of common biomass catalysts, wheat straws and wood chips, were prepared. In this study, characterizations, including scanning electron microscopy, thermo-gravimetric analysis, Fourier transform infrared spectrometry, Brunauer-Emmett-Teller assays and elemental analysis, and reaction conditions for the synthesis of methyl palmitate (MP using solid acid catalysts were investigated. Experiments showed that the solid acid catalyst prepared from P. igniarius residue had a higher catalytic activity than the other two catalysts, and the highest yield of MP catalyzed by P. igniarius residue solid acid catalyst was 91.5% under the following optimum conditions: molar ratio of methanol/PA of 10:1, reaction temperature of 60 °C, mass ratio of catalyst/substrate of 2%, and a reaction time of 1.5 h. Thus, the use of this catalyst offers a method for producing MP.

  7. Effect of Citric Acid Surface Modification on Solubility of Hydroxyapatite Nanoparticles.

    Science.gov (United States)

    Samavini, Ranuri; Sandaruwan, Chanaka; De Silva, Madhavi; Priyadarshana, Gayan; Kottegoda, Nilwala; Karunaratne, Veranja

    2018-04-04

    Worldwide, there is an amplified interest in nanotechnology-based approaches to develop efficient nitrogen, phosphorus, and potassium fertilizers to address major challenges pertaining to food security. However, there are significant challenges associated with fertilizer manufacture and supply as well as cost in both economic and environmental terms. The main issues relating to nitrogen fertilizer surround the use of fossil fuels in its production and the emission of greenhouse gases resulting from its use in agriculture; phosphorus being a mineral source makes it nonrenewable and casts a shadow on its sustainable use in agriculture. This study focuses on development of an efficient P nutrient system that could overcome the inherent problems arising from current P fertilizers. Attempts are made to synthesize citric acid surface-modified hydroxyapatite nanoparticles using wet chemical precipitation. The resulting nanohybrids were characterized using powder X-ray diffraction to extract the crystallographic data, while functional group analysis was done by Fourier transform infrared spectroscopy. Morphology and particle size were studied using scanning electron microscopy along with elemental analysis using energy-dispersive X-ray diffraction spectroscopy. Its effectiveness as a source of P was investigated using water release studies and bioavailability studies using Zea mays as the model crop. Both tests demonstrated the increased availability of P from nanohybrids in the presence of an organic acid compared with pure hydroxyapatite nanoparticles and rock phosphate.

  8. Amino acid digestibility of corn distillers dried grains with solubles, liquid condensed solubles, pulse dried thin stillage, and syrup balls fed to growing pigs.

    Science.gov (United States)

    Soares, J A; Stein, H H; Singh, V; Shurson, G S; Pettigrew, J E

    2012-04-01

    Distillers dried grains with solubles (DDGS) has low and variable AA digestibility. The variability is often attributed to damage during the heating process, and it has been suggested that the damage happens to the soluble components of DDGS such as reducing sugars. Combining solubles and grains sometimes produces syrup balls (SB); their digestibility is unknown. The objective of this experiment was to identify potential sources of poor and variable AA digestibility in DDGS. Specifically, our objective was to determine whether the problems are associated with the solubles component or with SB. The ingredients evaluated were DDGS, intact SB, ground SB, liquid condensed solubles (LCS), and pulse dried thin stillage (PDTS) obtained from the same ethanol plant. The LCS is produced by evaporation of thin stillage. Each ingredient was used as the only source of AA in an experimental diet. In a duplicate 6 × 6 Latin square design with 7-d adaptation and collection periods, the 6 treatments consisted of an N-free diet and the 5 test ingredients. Pigs had 5 d of adaptation to each diet, and on d 6 and 7 ileal digesta were collected from an ileal cannula for 8 h each day. Both SB treatments had apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA that were similar or greater (P < 0.05) than those of DDGS. The AID and SID values of Lys and a few other AA were similar in LCS (SID Lys: 63.1%) and DDGS (SID Lys: 61.5%), but the digestibility values of most AA in LCS were less than in DDGS (P < 0.05). The low digestibility of AA in LCS was most pronounced for Met (SID: LCS, 41.9% vs. DDGS, 82.8%). The LCS had less (P < 0.05) AID and SID of CP (SID: 67.8%) than intact SB (SID: 85.2%) and ground SB (SID: 85.9%) as well as all AA. The PDTS generally had the least AID and SID and had less (P < 0.05) CP (SID: 55.3%) and several AA, including Lys, compared with LCS. In conclusion, the presence of SB does not decrease AA digestibility of DDGS, and the LCS

  9. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  10. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  11. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    Science.gov (United States)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  12. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W

    2014-07-01

    In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  14. Solid dispersions, part I: recent evolutions and future opportunities in manufacturing methods for dissolution rate enhancement of poorly water-soluble drugs.

    Science.gov (United States)

    Bikiaris, Dimitrios N

    2011-11-01

    In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.

  15. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Novel in situ self-assembly nanoparticles for formulating a poorly water-soluble drug in oral solid granules, improving stability, palatability, and bioavailability

    Directory of Open Access Journals (Sweden)

    Guo S

    2016-04-01

    Full Text Available Shujie Guo,1 Kevin Pham,2 Diana Li,2 Scott R Penzak,3 Xiaowei Dong2 1State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Pharmaceutical Sciences, 3Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA Purpose: The purpose of this study was to develop a novel lipid-based nanotechnology to formulate poorly water-soluble drugs in oral solid granules to improve stability, palatability, and bioavailability. Materials and methods: In one method, we prepared ritonavir (RTV nanoparticles (NPs by a microemulsion-precursor method and then converted the RTV NPs to solid granules by wet granulation to produce RTV NP-containing granules. In the other innovative method, we did not use water in the formulation preparation, and discovered novel in situ self-assembly nanoparticles (ISNPs. We prepared RTV ISNP granules that did not initially contain NPs, but spontaneously produced RTV ISNPs when the granules were introduced to water with gentle agitation. We fully characterized these RTV nanoformulations. We also used rats to test the bioavailability of RTV ISNP granules. Finally, an Astree electronic tongue was used to assess the taste of the RTV ISNP granules. Results: RTV NP-containing granules only had about 1% drug loading of RTV in the solid granules. In contrast, RTV ISNP granules achieved over 16% drug loading and were stable at room temperature over 24 weeks. RTV ISNPs had particle size between 160 nm and 300 nm with narrow size distribution. RTV ISNPs were stable in simulated gastric fluid for 2 hours and in simulated intestinal fluid for another 6 hours. The data from the electronic tongue showed that the RTV ISNP granules were similar in taste to blank ISNP granules, but were much different from RTV solution. RTV ISNP granules increased RTV bioavailability

  17. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  18. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  19. Biocompatible Water Soluble Polyacrylic Acid Coated CdSe/Cu Quantum Dot Conjugates for Biomolecule Detection.

    Science.gov (United States)

    Gomaa, Ola M; Okasha, Aly; Hosni, Hany M; El-Hag Ali, Amr

    2018-01-01

    Biocompatible polyacrylic acid functionalized CdSe/Cu quantum dot conjugates were synthesized to be used for biomolecules detection. The study results demonstrate the conjugation of the 2.5-3 nm QD with gram negative bacteria with a low detection limit of 28 cfu/ml. The photoluminescence (PL) intensity was correlated to bacterial count, cellular proteins and exopolysaccharides in the tested samples. Confocal Scanning Laser Microscopy (CSLM) images showed significant QD uptake within the cells, both cytoplasm and DNA were the predominant targeted biomolecules, higher fluorescent uptake was shown in gram negative bacteria than that observed for gram positive bacteria. Moreover, PL showed that there was a distinction between live and dead cells as well as gram negative and gram positive cells. Cell viability was not affected even after 6 days (100% viability) rendering it a non-toxic QD. The method is simple and is performed in a single step within approximately 10 min as compared to multi-step protocols for classical microbial count or fluorescent dye staining. All the above results indicate that the CdSe/Cu-PAA QDs are suitable for biomolecule detection, bio-labeling and bioimaging applications.

  20. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  1. Solid Silica-based Sulphonic Acid as an Efficient Green Catalyst for ...

    African Journals Online (AJOL)

    NJD

    Solid Silica-based Sulphonic Acid as an Efficient Green. Catalyst for the Selective Oxidation of Sulphides to. Sulphoxides using NaCIO in Aqueous Media. Ali Amoozadeh* and Firouzeh Nemati. Department of Chemistry, Faculty of Science, Semnan University, Semnan, Iran. Received 21 October 2008, revised 6 December ...

  2. A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins

    DEFF Research Database (Denmark)

    Nandurkar, Nitin Subhash; Petersen, Rico; Qvortrup, Katrine

    2011-01-01

    An efficient method for the solid-phase synthesis of hydroxamic acids is described. The method comprises the nucleophilic displacement of esters immobilized on PEGA resins with hydroxylamine/sodium hydroxide in isopropanol. The hydroxyaminolysis protocol is compatible with a broad range of PEGA...

  3. Proton-conducting solid acid electrolytes based upon MH(PO3H)

    NARCIS (Netherlands)

    Zhou, W.

    2011-01-01

    Solid acids, such as CsHSO4 and CsH2PO4, are a novel class of anhydrous proton-conducting compounds that can be used as electrolyte in H2/O2 and direct methanol fuel cells. The disordering of the hydrogen-bonded network above the so-called superprotonic phase transition results in an increase of the

  4. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China

    International Nuclear Information System (INIS)

    Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi

    2010-01-01

    Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g -1 , 141-237 ng g -1 and 413-755 ng g -1 , respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (< C8) in some individual cases, PFOA and PFOS were still the major pollution compounds in most cases and they constituted 2-34% and 1-9% of the total PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.

  5. Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China.

    Science.gov (United States)

    Li, Fei; Zhang, Chaojie; Qu, Yan; Chen, Jing; Chen, Ling; Liu, Ying; Zhou, Qi

    2010-01-01

    Perfluorinated acids (PFAs) have been recognized as emerging environmental pollutants because of their widespread occurrences, persistence, and bioaccumulative and toxicological effects. PFAs have been detected in aquatic environment and biota in China, but the occurrences of these chemicals have not been reported in solid matrices in China. In the present study, short- and long-chain PFAs (C2-C14) have been quantitatively determined in solid matrices including sediments, soils and sludge collected in Shanghai, China. The results indicate that sludge contains more PFAs than sediments and soils, and the total PFAs concentrations in sediments, soil and sludge are 62.5-276 ng g(-1), 141-237 ng g(-1) and 413-755 ng g(-1), respectively. In most cases, trifluoroacetic acid was the major PFA and accounted for 22-90% of the total PFAs. Although the levels of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) were not only lower than trifluoroacetic acid, but also lower than some short-chain PFCAs (PFAs, respectively. Meanwhile, unlike previous studies, PFOS levels were not always higher than PFOA in solids collected in Shanghai, China. Given that some short-chain PFAs such as trifluoroacetic acid are mildly phytotoxic and their higher levels in solid matrices were collected in Shanghai, China, these chemicals should be included in future environmental monitoring efforts.

  6. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation

    NARCIS (Netherlands)

    D. Kuypers (Dirk); Y. le Meur (Yann); M. Cantarovich (Marcelo); M.J. Tredger (Michael); S.E. Tett (Susan); D. Cattaneo (Dario); B. Tönshoff (Burkhard); D.W. Holt (David); J. Chapman (Jeremy); T. van Gelder (Teun)

    2010-01-01

    textabstractWith the increasing use of mycophenolic acid (MPA) in solid organ transplantation, the need for more accurate drug dosing has become evident. Personalized immunosuppressive therapy requires better strategies for avoidance of drug-related toxicity while maintaining efficacy. Few studies

  7. Solid solubility in 1:13 phase of doping element for La(Fe,Si13 alloys

    Directory of Open Access Journals (Sweden)

    S. T. Zong

    2016-05-01

    Full Text Available The influences of Ni, Cr and Nb as substitution elements for Fe were investigated. The change in microstructure and the magnetic properties have been discussed in detail. Substitution elements Ni, Cr and Nb not only have limited solubility in NaZn13-type (1:13 phase, but also hinder the peritectoid reaction. Ni element mainly enters into La-rich phase while Cr element mainly concentrates in α-Fe phase, which both have detriment effect on the peritectoid reaction, leading to a large residual of impurity phases after annealing and a decrease of magnetic entropy change. Besides, Ni and Cr participated in peritectoid reaction by entering parent phases but slightly entering 1:13 phase, which would cause the disappearance of first order magnetic phase transition. A new phase (Fe,Si2Nb was found when Nb element substitutes Fe in La(Fe,Si13, suggesting that Nb does not participate in peritectoid reaction and only exists in (Fe,Si2Nb phase after annealing. The alloy with Nb substitution maintains the first order magnetic phase transition character.

  8. Simultaneous Saccharification and Fermentation of Lactic Acid from Empty Fruit Bunch at High Solids Loading

    Directory of Open Access Journals (Sweden)

    Nursia Hassan

    2016-03-01

    Full Text Available The production of value-added chemicals from the bioconversion of lignocellulose biomass has been considered a promising venture. In this study, microwave, alkali-pretreated empty fruit bunch (EFB was used as the substrate, utilizing pelletized filamentous Rhizopus oryzae NRRL 395 and cellulolytic enzymes for lactic acid production in a fed-batch simultaneous saccharification and fermentation (SSF process. Insoluble solids generally do not affect the SSF process until a certain concentration is exceeded. To achieve a high lactic acid concentration in the broth, a high solids loading was required to allow a higher rate of glucose conversion. However, the results revealed a decrease in the final lactic acid yield when running SSF at a massive insoluble solids level. High osmotic pressure in the medium led to poor cellular performance and caused the Rhizopus oryzae pellets to break down, affecting the lactic acid production. To improve the process performance, a fed-batch operation mode was used. The fed-batch operation was shown to facilitate higher lactic acid yield, compared with the SSF batch mode. Enzyme feeding, as well as substrate feeding, was also investigated as a means of enabling a higher dry matter content, with a high glucose conversion in SSF of cellulose-rich EFB.

  9. Effects of polyurethane matrices on fungal tannase and gallic acid production under solid state culture

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of the physical structure of polyurethane matrix as a support in a solid state culture in tannase production and gallic acid accumulation by Aspergillus niger Aa-20 was evaluated. Three different polyurethane matrices were used as the support: continuous, semi-discontinuous and discontinuous. The highest tannase production at 2479.59 U/L during the first 12 h of culture was obtained using the discontinuous matrix. The gallic acid was accumulated at 7.64 g/L at the discontinuous matrix. The results show that the discontinuous matrix of polyurethane is better for tannase production and gallic acid accumulation in a solid state culture bioprocess than the continuous and semi-discontinuous matrices.

  10. Aqueous Microwave-Assisted Solid-Phase Synthesis Using Boc-Amino Acid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yoshinobu Fukumori

    2013-07-01

    Full Text Available We have previously developed water-based microwave (MW-assisted peptide synthesis using Fmoc-amino acid nanopaticles. It is an organic solvent-free, environmentally friendly method for peptide synthesis. Here we describe water-based MW-assisted solid-phase synthesis using Boc-amino acid nanoparticles. The microwave irradiation allowed rapid solid-phase reaction of nanoparticle reactants on the resin in water. We also demonstrated the syntheses of Leu-enkephalin, Tyr-Gly-Gly-Phe-Leu-OH, and difficult sequence model peptide, Val-Ala-Val-Ala-Gly-OH, using our water-based MW-assisted protocol with Boc-amino acid nanoparticles.

  11. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    International Nuclear Information System (INIS)

    Juan, Joon Ching; Jiang Yajie; Meng Xiujuan; Cao Weiliang; Yarmo, Mohd Ambar; Zhang Jingchang

    2007-01-01

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  12. Investigation of solid-phase hydrogenation of amino acids and peptides

    International Nuclear Information System (INIS)

    Zolotarev, Yu.A.; Myasoedov, N.F.; Zajtsev, D.A.; Lubnin, M.Yu.; Tatur, V.Yu.; Kozik, V.S.; Dorokhova, E.M.; Rozenberg, S.N.

    1990-01-01

    The possibility of synthesizing amino acids and peptides multiply labelled with tritium or deuterium by the method of solid-phase isotopic exchange with gaseous hydrogen isotopes was verified. Establishment of the isotopic hydrogen equilibrium between the gaseous phase and the solid phase formed by the amino acid molecules was found experimentally. The activation energy of the isotopic exchange is 13 kcal/mol. A mathematical model was set up for the isotopic exchange with a probable substitution of hydrogen atoms. Uniformly labelled amino acids were obtained in a high optical purity and with 80 to 90% hydrogen substitution by deuterium and tritium. Tritiated peptides were prepared in high yields at molar activities of 1.5 to 3.7 TBq/mmol. (author). 4 tabs

  13. Effect of Periodic Water Addition on Citric Acid Production in Solid State Fermentation

    Science.gov (United States)

    Utpat, Shraddha S.; Kinnige, Pallavi T.; Dhamole, Pradip B.

    2013-09-01

    Water addition is one of the methods used to control the moisture loss in solid state fermentation (SSF). However, none of the studies report the timing of water addition and amount of water to be added in SSF. Therefore, this work was undertaken with an objective to evaluate the performance of periodic water addition on citric acid production in SSF. Experiments were conducted at different moistures (50-80 %) and temperatures (30-40 °C) to simulate the conditions in a fermenter. Citric acid production by Aspergillus niger (ATCC 9029) using sugarcane baggase was chosen as a model system. Based on the moisture profile, citric acid and sugar data, a strategy was designed for periodic addition of water. Water addition at 48, 96, 144 and 192 h enhanced the citric acid production by 62 % whereas water addition at 72, 120, and 168 h increased the citric acid production by just 17 %.

  14. The water soluble composite poly(vinylpyrrolidone–methylaniline: A new class of corrosion inhibitors of mild steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    R. Karthikaiselvi

    2017-02-01

    Full Text Available In recent years poly methyl aniline has been reported as one of the efficient corrosion inhibitors of mild steel in acidic media. In view of the major limitation of the insolubility of polymethyl aniline PMA, we propose to convert PMA into a water soluble composite using supporting polymer polyvinylpyrrolidone to get higher solubility and corrosion inhibition efficiency. The water soluble composite poly(vinylpyrrolidone-methyl aniline was synthesized by chemical oxidative polymerization and its inhibitive effect on mild steel in 1 M HCl has been investigated using weight loss and electrochemical techniques (potentiodynamic polarization studies and impedance spectroscopy. SEM and EDX analyses are carried out to establish a protective film formation on the metal surface.

  15. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  16. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  17. Chromium–tungsten–titanium mixed oxides solid catalyst for fatty acid methyl ester synthesis from palm fatty acid distillate

    International Nuclear Information System (INIS)

    Wan, Zuraida; Hameed, B.H.

    2014-01-01

    Highlights: • Chromium–tungsten–titanium mixed oxides as solid catalyst. • Catalyst used for esterification of palm fatty acid distillate to methyl esters. • The maximum methyl ester content is 83%. • Catalyst has shown good activity and can be recycled for 4 times. - Abstract: Chromium–tungsten–titanium mixed oxides solid catalysts were prepared and evaluated in the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). Esterification was conducted in a batch reactor at 110–200 °C temperature ranges. The catalysts were characterized by several techniques such as BET, TEM, FTIR, TGA, XRD, EDX and SEM. The treatment conditions during catalyst preparation, effect of reaction parameters, leaching of the active species and the recycled use of the catalyst were investigated. The catalyst with formula CrWTiO 2 was found to be the most active with maximum FAME content of 83% obtained at best reaction conditions of 170 °C for 3 h, 2:1 (methanol to oil molar ratio) and 2 wt.% catalyst dosage. The catalyst can be recycled for 4 times. The results revealed CrWTiO 2 good potentials for use in esterification of high acid value oil

  18. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 μL of Serum or Plasma by High-Throughput Mass Spectrometry.

    Science.gov (United States)

    Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M

    2016-11-01

    Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.

  19. Myristoylation as a general method for immobilization and alignment of soluble proteins for solid-state NMR structural studies

    International Nuclear Information System (INIS)

    Mesleh, M.F.; Valentine, K.G.; Opella, S.J.; Louis, J.M.; Gronenborn, A.M.

    2003-01-01

    N-terminal myristoylation of the immunoglobulin-binding domain of protein G (GB1) from group G Streptococcus provides the means to bind the protein to aligned phospholipid bilayers for solid-state NMR structural studies. The myristoylated protein is immobilized by its interactions with bilayers, and the sample alignment enables orientationally dependent 15 N chemical shifts and 1 H- 15 N-dipolar couplings to be measured. Spectra calculated for the average solution NMR structure of the protein at various orientations with respect to the magnetic field direction were compared to the experimental spectrum. The best fit identified the orientation of the myristoylated protein on the lipid bilayers, and demonstrated that the protein adopts a similar structure in both its myristoylated and non-myristoylated forms, and that the structure is not grossly distorted by its interaction with the phosholipid bilayer surface or by its location in the restricted aqueous space between bilayer leaflets. The protein is oriented such that its charged sides face the phosphatidylcholine headgroups of the lipids with the single amphiphilic helix running parallel to the bilayer surface

  20. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    Science.gov (United States)

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  1. Determination of solubility isotherms of barium and strontium nitrates in the system acetic acid-water at 25/sup 0/ C

    Energy Technology Data Exchange (ETDEWEB)

    Hubicki, W.; Piskorek, M. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    1976-01-01

    Investigations of the solubility of barium and strontium nitrates were carried out in the system: acetic acid - water at 25/sup 0/ C. When one compares the isotherms of solubility of barium and strontium nitrates, one can observe that it is possible to separate the admixtures of barium from strontium nitrates as a result of fractional crystallization of these nitrates from actic acid solution at the temperatures lower than 31.3/sup 0/ C, i.e. below the temperature of transformation: Sr(NO/sub 3/)/sub 2/ . 4H/sub 2/O reversible to Sr(NO/sub 3/)/sub 2/ + 4H/sub 2/O for aqueous solution.

  2. The effect of ammonium sulfate on the solubility of amino acids in water at (298.15 and 323.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luisa A.; Macedo, Eugenia A. [Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Pinho, Simao P. [Laboratory of Separation and Reaction Engineering, Departamento de Tecnologia Quimica e Biologica, Instituto Politecnico de Braganca, Campus e Santa Apolonia, 5301-857 Braganca (Portugal)], E-mail: spinho@ipb.pt

    2009-02-15

    Using the analytical gravimetric method the solubility of glycine, DL-alanine, L-isoleucine, L-threonine, and L-serine in aqueous systems of (NH{sub 4}){sub 2}SO{sub 4}, at (298.15 and 323.15) K, were measured for salt concentrations ranging up to 2.0 molal. In the electrolyte molality range studied the experimental observations showed that ammonium sulfate is a salting-in agent for most of the amino acids studied. Furthermore, the change of the relative solubility with electrolyte concentration shows a maximum, which makes the representation of the data by a simple empirical correlation such as the Setschenow equation difficult. For the development and evaluation of a robust thermodynamic framework that makes it possible to more profoundly understand aqueous amino acid solutions with ammonium sulfate additional experimental information is needed.

  3. Senior high school students’ need analysis of Three-Tier Multiple Choice (3TMC) diagnostic test about acid-base and solubility equilibrium

    Science.gov (United States)

    Ardiansah; Masykuri, M.; Rahardjo, S. B.

    2018-05-01

    Students’ conceptual understanding is the most important comprehension to obtain related comprehension. However, they held their own conception. With this need analysis, we will elicit student need of 3TMC diagnostic test to measure students’ conception about acid-base and solubility equilibrium. The research done by a mixed method using questionnaire analysis based on descriptive of quantitative and qualitative. The research subject was 96 students from 4 senior high schools and 4 chemistry teachers chosen by random sampling technique. Data gathering used a questionnaire with 10 questions for student and 28 questions for teachers. The results showed that 97% of students stated that the development this instrument is needed. In addition, there were several problems obtained in this questionnaire include learning activity, teacher’s test and guessing. In conclusion, this is necessary to develop the 3TMC instrument that can diagnose and measure the student’s conception in acid-base and solubility equilibrium.

  4. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  5. Short communication: Effect of conjugated linoleic acid on concentrations of fat-soluble vitamins in milk of lactating ewes.

    Science.gov (United States)

    Zeitz, J O; Most, E; Eder, K

    2015-10-01

    Conjugated linoleic acids (CLA) are well known as milk fat-reducing feed supplements in diets for lactating ruminants. However, their effects on milk concentrations of fat-soluble vitamins are unknown. This study was performed to investigate the hypothesis that CLA affect the concentrations of retinol and tocopherol in ewe milk. For that purpose, group-housed Merino ewes (101 ± 13.7 kg) nursing twin lambs and fed with a hay:concentrate diet were supplemented with either 45 g of a rumen-protected CLA supplement containing 3.4 g of cis-9,trans-11-CLA and 3.4 g of trans-10,cis-12-CLA (CLA group, n=11) or with 45 g of a hydrogenated vegetable fat (control group, n=12) per ewe per day during the first 6 wk of lactation. Feed intake was recorded daily (concentrate) or weekly (hay) per group. Milk spot samples were collected at the beginning of the experiment (5 ± 2.4 d postpartum) and then weekly after lambs had been separated for 2 h from their mothers. The milk fat content was determined and feed and milk were analyzed for concentrations of α-, γ-, and δ-tocopherol and for retinol by HPLC. Dietary intake of tocopherol and retinol was similar in both groups. Feeding CLA decreased milk fat concentration by 23% on average, and during the first 3 wk of the study milk tocopherol concentration tended to be increased by feeding CLA (+17%), but retinol concentrations were not influenced. When related to milk fat, CLA feeding significantly increased both milk tocopherol (+40%) and retinol (+32%) and these effects were evident during the whole experimental period corresponding to the first half of lactation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Surface acidity and solid-state compatibility of excipients with an acid-sensitive API: case study of atorvastatin calcium.

    Science.gov (United States)

    Govindarajan, Ramprakash; Landis, Margaret; Hancock, Bruno; Gatlin, Larry A; Suryanarayanan, Raj; Shalaev, Evgenyi Y

    2015-04-01

    The objectives of this study were to measure the apparent surface acidity of common excipients and to correlate the acidity with the chemical stability of an acid-sensitive active pharmaceutical ingredient (API) in binary API-excipient powder mixtures. The acidity of 26 solid excipients was determined by two methods, (i) by measuring the pH of their suspensions or solutions and (ii) the pH equivalent (pHeq) measured via ionization of probe molecules deposited on the surface of the excipients. The chemical stability of an API, atorvastatin calcium (AC), in mixtures with the excipients was evaluated by monitoring the appearance of an acid-induced degradant, atorvastatin lactone, under accelerated storage conditions. The extent of lactone formation in AC-excipient mixtures was presented as a function of either solution/suspension pH or pHeq. No lactone formation was observed in mixtures with excipients having pHeq > 6, while the lactone levels were pronounced (> 0.6% after 6 weeks at 50°C/20% RH) with excipients exhibiting pHeq 6, 3-6, and < 3) were consistent with the reported solution pH-stability profile of AC. In contrast to the pHeq scale, lactone formation did not show any clear trend when plotted as a function of the suspension/solution pH. Two mechanisms to explain the discrepancy between the suspension/solution pH and the chemical stability data were discussed. Acidic excipients, which are expected to be incompatible with an acid-sensitive API, were identified based on pHeq measurements. The incompatibility prediction was confirmed in the chemical stability tests using AC as an example of an acid-sensitive API.

  7. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  8. Biodiesel production from acid oils and ethanol using a solid basic resin as catalyst

    International Nuclear Information System (INIS)

    Marchetti, J.M.; Errazu, A.F.

    2010-01-01

    In the search of an alternative fuel to substitute diesel fuel, biodiesel appears as one of the most promising sources of energy for diesel engines because of its environmental advantages and also due to the evolution of the petroleum market. Refined oil is the conventional raw material for the production of this biofuel; however, its major disadvantage is the high cost of its production. Therefore, frying oils, waste oils, crude oils and/or acid oils are being tested as alternative raw materials; nevertheless, there will be some problems if a homogeneous basic catalyst (NaOH) is employed due to the high amount of free fatty acid present in the raw oil. In this work, the transesterification reaction of acid oil using solid resin, Dowex monosphere 550 A, was studied as an alternative process. Ethanol was employed to have a natural and sustainable final product. The reaction temperature's effects, the initial amount of free fatty acid, the molar ratio of alcohol/oil and the type of catalyst (homogeneous or heterogeneous) over the main reaction are analyzed and their effects compared. The results obtained show that the solid resin is an alternative catalyst to be used to produce fatty acid ethyl esters (FAEEs) by a transesterification reaction with a final conversion over 90%. On the other hand, the time required to achieve this conversion is bigger than the one required using conventional technology which employs a homogeneous basic catalyst. This reaction time needs to be optimized. (author)

  9. Influence of lactose hydrolysis and solids concentration on alcohol production by yeast in acid whey ultrafiltrate

    Energy Technology Data Exchange (ETDEWEB)

    O' leary, V S; Sutton, C; Bencivengo, M; Sullivan, B; Holsinger, V H

    1977-11-01

    Alcohol yields of 6.5 percent were obtained with Saccharomyces cerevisiae in lactase-hydrolyzed acid whey permeate containing 30 to 35 percent total solids. Maximum alcohol yields obtained with Kluyveromyces fragilis were 4.5 percent in lactase-hydrolyzed acid whey permeate at a solids concentration of 20 percent and 3.7 percent in normal permeate at a solids concentration of 10 percent. Saccharomyces cerevisiae efficiently converted the glucose present in lactase-hydrolyzed whey permeates containing 5 to 30 percent total solids (2 to 13 percent glucose) to alcohol. However, the galactose, which comprised about half the available carbohydrate in lactase-hydrolyzed whey, was not utilized by S. cerevisiae, so that even though alcohol yields were higher when this organism was used, the process was wasteful in that a substantial proportion of the substrate was not fermented. For the process to become commercially feasible, an efficient means of rapidly converting both the galactose and glucose to alcohol must be found.

  10. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  11. Nature of the activates places of the acid solid catalysts of the sulphated metallic oxides type

    International Nuclear Information System (INIS)

    Gomez, Miguel A; Fontalvo Javier

    1998-01-01

    In this revision the state of the knowledge is presented with respect to the understanding of the nature of the active places for the strongly acid solid catalysts of the type sulphated metallic oxides. The results presented by means of models are based on the characterization of the properties physicochemical carried out by means of technical as XPS, to GO, NMR etc., and the evaluation of the catalytic activity in different applications

  12. Selective synthesis of thioethers in the presence of a transition-metal-free solid Lewis acid

    Directory of Open Access Journals (Sweden)

    Federica Santoro

    2016-12-01

    Full Text Available The synthesis of thioethers starting from alcohols and thiols in the presence of amorphous solid acid catalysts is reported. A silica alumina catalyst with a very low content in alumina gave excellent results in terms of both activity and selectivity also under solvent-free conditions. The reaction rate follows the electron density of the carbinol atom in the substrate alcohol and yields up to 99% and can be obtained for a wide range of substrates under mild reaction conditions.

  13. By-products from the biodiesel chain as a substrate to citric acid production by solid-state fermentation.

    Science.gov (United States)

    Schneider, Manuella; Zimmer, Gabriela F; Cremonese, Ezequiel B; de C de S Schneider, Rosana; Corbellini, Valeriano A

    2014-07-01

    In this study, we propose the use of tung cake for the production of organic acids, with an emphasis on citric acid by solid-state fermentation. We evaluated the conditions of production and the by-products from the biodiesel chain as raw materials involved in this bioprocess. First, we standardized the conditions of solid-state fermentation in tung cake with and without residual fat and with different concentrations of glycerine using the fungus Aspergillus niger The solid-state fermentation process was monitored for 7 days considering the biomass growth and pH level. Citric acid production was determined by high-performance liquid chromatography. Fungal development was better in the crude tung cake, consisting of 20% glycerine. The highest citric acid yield was 350 g kg(-1) of biomass. Therefore, the solid-state fermentation of the tung cake with glycerine led to citric acid production using the Aspergillus niger fungus. © The Author(s) 2014.

  14. Graphene oxide for solid-phase extraction of bioactive phenolic acids.

    Science.gov (United States)

    Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong

    2017-05-01

    A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.

  15. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  17. A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments.

    Science.gov (United States)

    Tian, Xi; Li, Jiangbo; Wang, Qingyan; Fan, Shuxiang; Huang, Wenqian

    2018-01-15

    Hyperspectral imaging technology was used to investigate the effect of various peel colors on soluble solids content (SSC) prediction model and build a SSC model insensitive to the color distribution of apple peel. The SSC and peel pigments were measured, effective wavelengths (EWs) of SSC and pigments were selected from the acquired hyperspectral images of the intact and peeled apple samples, respectively. The effect of pigments on the SSC prediction was studied and optimal SSC EWs were selected from the peel-flesh layers spectra after removing the chlorophyll and anthocyanin EWs. Then, the optimal bi-layer model for SSC prediction was built based on the finally selected optimal SSC EWs. Results showed that the correlation coefficient of prediction, root mean square error of prediction and selected bands of the bi-layer model were 0.9560, 0.2528 and 41, respectively, which will be more acceptable for future online SSC prediction of various colors of apple. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Investigation on the Solubility of GaN in Supercritical Ammonia Containing Acidic, Neutral, and Some Basic Mineralizers

    National Research Council Canada - National Science Library

    Ehrentraut, Dirk

    2009-01-01

    ... material due to the superior structural quality over HVPE GaN. In order to hold up with the progress, not at least provide a scientific platform, the solubility of GaN in supercritical ammonia (NH3...

  19. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  1. Palm Frond and Spikelet as Environmentally Benign Alternative Solid Acid Catalysts for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Yahaya Muhammad Sani

    2015-04-01

    Full Text Available A carbonization-sulfonation method was utilized in synthesizing sulfonated mesoporous catalysts from palm tree biomass. Brunauer-Emmet-Teller (BET, powder X-ray diffraction (XRD, energy dispersive X-ray (EDX, and field emission scanning emission microscopy (FE-SEM analyses were used to evaluate the structural and textural properties of the catalysts. Further, Fourier transform infrared (FT-IR spectroscopy and titrimetric analyses measured the strong acid value and acidity distribution of the materials. These analyses indicated that the catalysts had large mesopore volume, large surface area, uniform pore size, and high acid density. The catalytic activity exhibited by esterifying used frying oil (UFO containing high (48% free fatty acid (FFA content further indicated these properties. All catalysts exhibited high activity, with sPTS/400 converting more than 98% FFA into fatty acid methyl esters (FAMEs. The catalyst exhibited the highest acid density, 1.2974 mmol/g, determined by NaOH titration. This is outstanding considering the lower reaction parameters of 5 h, 5:1 methanol-to-oil ratio, and a moderate temperature range between 100 and 200 °C. The study further illustrates the prospect of converting wastes into highly efficient, benign, and recyclable solid acid catalysts.

  2. (Solid + liquid) phase diagram for (indomethacin + nicotinamide)-methanol or methanol/ethyl acetate mixture and solubility behavior of 1:1 (indomethacin + nicotinamide) co-crystal at T = (298.15 and 313.15) K

    International Nuclear Information System (INIS)

    Sun, Xiaowei; Yin, Qiuxiang; Ding, Suping; Shen, Zhiming; Bao, Ying; Gong, Junbo; Hou, Baohong; Hao, Hongxun; Wang, Yongli; Wang, Jingkang; Xie, Chuang

    2015-01-01

    Highlights: • Ternary phase diagrams of (IMC + NCT)-methanol or methanol/ethyl acetate mixture at T = (298.15 and 313.15) K were measured. • The effects of temperature and introduced ethyl acetate on solid phase stability were discussed. • Solubility of (IMC + NCT) cocrystals was first correlated using a model considering solubility product and complexation. • Solubility of (IMC + NCT) cocrystals as a function of co-former concentration was evaluated. - Abstract: (Solid + liquid) equilibrium data for indomethacin (IMC) and nicotinamide (NCT) in both methanol (MeOH) and methanol/ethyl acetate (EA) mixture were determined using a static method at T = (298.15 and 313.15) K under atmospheric pressure. The 1:1 (IMC + NCT) co-crystal and IMC·MeOH were found in both systems under conditions investigated. The solubility of the 1:1 (IMC + NCT) co-crystal was correlated using a mathematical model consisting of both solubility product and a complexation process. Solubility of (IMC + NCT) co-crystals as a function of co-former (NCT) concentration was evaluated. It was found that temperature has a significant effect on the formation of methanol solvate in the systems investigated. Solvate formation could be suppressed either by increasing temperature or using solvent mixtures. Additionally, the solvent mixture could level out the solubility differences between IMC and NCT, resulting in larger and more symmetric regions for the (IMC + NCT) co-crystal, which would be helpful to the development of the co-crystallization process for the 1:1 (IMC + NCT) co-crystal

  3. Production of Biodiesel by Esterification of Free Fatty Acid over Solid Catalyst from Biomass Waste

    Science.gov (United States)

    Mukti, N. I. F.; Sutrisno, B.; Hidayat, A.

    2018-05-01

    Recently, low cost feedstocks have been utilized to replace vegetable oils in order to improve the economic feasibility of biodiesel. The esterification of free fatty acid (FFA) on Palm Fatty Acid Distillate (PFAD) with methanol using solid catalyst generated from bagasse fly ash is a promising method to convert FFA into biodiesel. In this research, the esterification of FFA on PFAD using the sulfonated bagasse fly ash catalyst was studied. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, and the catalyst loading. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimum conditions were methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%wt. of PFAD, and reaction temperature of 6°C. The reusability of the solid acid carbon catalysts was also studied in this work. The catalytic activity decreased up to 38% after third cycle. The significant decline in catalyst esterification activity was due to acid site leaching. The physico-characteristics and acid site densities were analyzed by Nitrogen gas adsorption, surface functional groups by Fourier transform infrared spectroscopy (FT-IR), elemental analysis using X-ray fluorescent (XRF), and acid-base back titration methods for determination of acid density.

  4. Waste fatty acid addition to black liquor to decrease tall oil soap solubility and increase skimming efficiency in kraft mills pulping mountain pine beetle-infested wood

    Energy Technology Data Exchange (ETDEWEB)

    Uloth, V.; Guy, E. [FPInnovations, Prince George, BC (Canada). PAPRICAN Div.; Shewchuk, D. [Cariboo Pulp and Paper, Quesnel, BC (Canada); Van Heek, R. [Aker Kvaerner, Vancouver, BC (Canada)

    2009-07-01

    This paper presented the results of tests conducted to determine if the addition of waste fatty acids from vegetable oil processing might decrease tall oil soap solubility in pine-beetle impacted wood from British Columbia (BC). The soap recovery and tall oil production at BC mills has fallen by 30 to 40 percent in recent years due to the pulping of high proportions of grey-stage beetle-impacted wood. Full-scale mill tests were conducted over a 4-day period. The study showed that the addition of tall oil fatty acids or waste fatty acids from vegetable oil processing could decrease tall oil soap solubility and increase the soup skimming efficiency in mills pulping a large percentage of grey stage beetle-infested wood. The addition of fatty acids increased tall oil soap skimming efficiency from 50.2 percent in the baseline tests to 71.8 percent based on the total soap available, and from 76.7 percent in the baseline tests to 87.5 percent based on insoluble soap only. The economic analyses indicated that waste fatty acid addition could be economical when natural gas and oil prices are high. 4 tabs., 9 figs.

  5. Degradation of L-Ascorbic Acid in the Amorphous Solid State.

    Science.gov (United States)

    Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J

    2018-03-01

    Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of

  6. Solid phase extraction of uranium from phosphoric acid. Kinetic and thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Magied, Ahmed Fawzy [Nuclear Materials Authority, Cairo (Egypt); Stockholm Univ. (Sweden). Dept. of Organic Chemistry

    2017-07-01

    There is a high interest to develop suitable solid phase extractants for uranium separation from aqueous solutions in order to reduce cost and enhance the efficiency. This paper describes solid phase extraction of uranium(VI) from aqueous phosphoric acid solution using MCM-41 based D2HEPA-TOPO organophosphorous extractants. The mixture of D2HEPA (di-2-ethyl-hexylphosphoric acid) and TOPO (tri-n-octylphosphine oxide) was impregnated into the pores of MCM-41 and the synthesized sorbent was fully characterized. The influences of different factors such as synergistic mixture ratio, phosphoric acid concentration, mixing time and temperature were investigated. The results showed that 90% of uranium(VI) extraction can be achieved within 5 min, using D2HEPA-TOPO rate at MCM-41 (mass ratio 2:1 w/w) from 1 M phosphoric acid containing 64 ppm of uranium at room temperature. High adsorption capacity of uranium(VI) have been achieved at the mentioned conditions. The rate constant for the chemical adsorption of uranium(VI) was 0.988 g mg{sup -1} min{sup -1} calculated by the pseudo-second order rate equation. The obtained thermodynamics parameters showed that uranium(VI) adsorption from H{sub 3}PO{sub 4} is an exothermic and spontaneous process.

  7. The binary (solid + liquid) phase diagrams of (caprylic or capric acid) + (1-octanol or 1-decanol)

    International Nuclear Information System (INIS)

    Carareto, Natália D.D.; Castagnaro, Thamires; Costa, Mariana C.; Meirelles, Antonio J.A.

    2014-01-01

    Highlights: • SLE of mixtures of caprylic acid, (capric acid + 1-octanol), 1-decanol were studied. • Experimental data were obtained through DSC and Stepscan DSC. • Systems presented eutectic and peritectic points. • Liquidus line was modeled using Margules and NRTL models. • Solid phase was modeled using the Slaughter and Doherty approach. - Abstract: In the present study the phase diagrams of four (fatty acid + fatty alcohol) binary mixtures composed of caprylic (C8O2) or capric acid (C10O2) + 1-octanol (C8OH) or 1-decanol (C10OH) were obtained by differential scanning calorimetry (DSC). Eutectic and peritectic reactions occurred in the systems. In standard DSC analyses of the (C8O2 + C10OH) and (C10O2 + C8OH) systems, an exothermic transition occurs in association with the melting of a metastable phase. A Stepscan DSC method was used in order to avoid the formation of this metastable phase during the heating of the mixtures. The approach suggested by Slaughter and Doherty (1995) [24] was used for modeling the solid phase, and the Margules 2-suffix, Margules 3-suffix and NRTL models were applied for calculating the activity coefficients of the liquid phase. The best modeling results were obtained using the Margules-3-suffix with an average deviation between experimental and calculated values ranging from T = (0.3 to 0.9) K

  8. Automated solid-phase extraction of phenolic acids using layered double hydroxide-alumina-polymer disks.

    Science.gov (United States)

    Ghani, Milad; Palomino Cabello, Carlos; Saraji, Mohammad; Manuel Estela, Jose; Cerdà, Víctor; Turnes Palomino, Gemma; Maya, Fernando

    2018-01-26

    The application of layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks for solid-phase extraction is reported for the first time. Al 2 O 3 is embedded in a polymer matrix followed by an in situ metal-exchange process to obtain a layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disk with excellent flow-through properties. The extraction performance of the prepared disks is evaluated as a proof of concept for the automated extraction using sequential injection analysis of organic acids (p-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, gallic acid) following an anion-exchange mechanism. After the solid-phase extraction, phenolic acids were quantified by reversed-phase high-performance liquid chromatography with diode-array detection using a core-shell silica-C18 stationary phase and isocratic elution (acetonitrile/0.5% acetic acid in pure water, 5:95, v/v). High sensitivity and reproducibility were obtained with limits of detection in the range of 0.12-0.25 μg/L (sample volume, 4 mL), and relative standard deviations between 2.9 and 3.4% (10 μg/L, n = 6). Enrichment factors of 34-39 were obtained. Layered double hydroxide-Al 2 O 3 -polymer mixed-matrix disks had an average lifetime of 50 extractions. Analyte recoveries ranged from 93 to 96% for grape juice and nonalcoholic beer samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  10. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali

    2017-12-15

    Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.

  11. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    International Nuclear Information System (INIS)

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-01-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180 degrees C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200 degrees C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air

  12. Using urinary solubility data to estimate the level of safety concern of low levels of melamine (MEL) and cyanuric acid (CYA) present simultaneously in infant formulas.

    Science.gov (United States)

    Dominguez-Estevez, Manuel; Constable, Anne; Mazzatorta, Paolo; Renwick, Andrew G; Schilter, Benoit

    2010-01-01

    Melamine (MEL) and cyanuric acid (CYA) may occur simultaneously in milk products. There is no health based guidance value for the mixture of MEL+CYA. Limited toxicological data indicate that MEL+CYA toxicity occurs at levels lower than the toxic doses of the single compounds. The key adverse effect of MEL+CYA is the formation of crystals in the urinary tract, which is dependent on the solubility of the MEL+CYA complex. Urinary concentrations resulting from oral doses of MEL+CYA and MEL alone have been calculated from published data from animal studies. A human exposure scenario assuming consumption of infant formula contaminated at a level of 1 ppm of MEL and CYA each (2 ppm of MEL+CYA) was also analyzed. Margins of more than two orders or magnitude were observed between estimated urine concentrations known to be without detectable effects in rats and calculated human urine concentrations. Because the hazard is related to the physico-chemical characteristics of the mixture, there would be a negligible concern associated with crystal formation if the urinary concentration of the complex is within the solubility range. The solubility of MEL+CYA was higher in urine than in water. A strong pH-dependency was observed with the lowest solubility found at pH 5-5.5. The calculated human urinary concentration was about 30 times less than the solubility limit for MEL+CYA in adult human urine. Altogether, these data provide preliminary evidence suggesting that the presence of 1 ppm of MEL and CYA each in infant formula is unlikely to be of significant health concern. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  14. Characterization and Design of Zeolite Catalysts Solid Acidity, Shape Selectivity and Loading Properties

    CERN Document Server

    Niwa, Miki; Okumura, Kazu

    2010-01-01

    Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. Zeolite-based catalysts are used by industrial chemical companies in the interconversion of hydrocarbons and the alkylation of aromatic compounds. The current book deals with the characterization of specific properties of Zeolites and calculations for the design of catalysts. Measurements and utilization of solid acidity, shape selectivity, and loading properties, that are three prominent properties of a Zeolite catalyst, are treated in detail. These features concern chemical vapor deposition of silica, shape selectivity, loading properties, solid activity, Brønsted or Lewis character, ammonia temperature programmed desorption, control of the pore-opening size by chemical vapor deposition of silica and XAFS analysis of metals being highly dispersed inside and outside a framework.

  15. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  16. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  17. Formation of 1,2-diaminomaleodinitrile crystals in radiolyzed solid hydrocyanic acid

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Aliev, Z.G.; Kiryukhin, D.P.; Atovmyan, L.O.; Barkalov, I.M.

    1994-01-01

    Hydrocyanic molecules, HCN, are widely found in various extraterrestrial objects and have come to be regarded as the building blocks of chemical evolution, because they convert directly to more complex organic compounds, such as amino acids, nucleotides, and proteins. While observing the low-temperature conversion of radiolyzed solid HCN, the authors noted the formation of an amorphous polymer and the nucleation and growth of needle shaped crystals. The crystals were studied by X-ray diffraction methods and believed to be formed by 1,2-diaminomaleodinitrile, a tetramer of HCN, arising by recombination of aminocyanocarbene diradicals. Cobalt 60 was used as the radiation source, preirradiating with a 800 kGy dose a solid HCN sample at 77K

  18. Quantification of Lycopene, β-Carotene, and Total Soluble Solids in Intact Red-Flesh Watermelon (Citrullus lanatus) Using On-Line Near-Infrared Spectroscopy.

    Science.gov (United States)

    Tamburini, Elena; Costa, Stefania; Rugiero, Irene; Pedrini, Paola; Marchetti, Maria Gabriella

    2017-04-11

    A great interest has recently been focused on lycopene and β-carotene, because of their antioxidant action in the organism. Red-flesh watermelon is one of the main sources of lycopene as the most abundant carotenoid. The use of near-infrared spectroscopy (NIRS) in post-harvesting has permitted us to rapidly quantify lycopene, β-carotene, and total soluble solids (TSS) on single intact fruits. Watermelons, harvested in 2013-2015, were submitted to near-infrared (NIR) radiation while being transported along a conveyor belt system, stationary and in movement, and at different positions on the belt. Eight hundred spectra from 100 samples were collected as calibration set in the 900-1700 nm interval. Calibration models were performed using partial least squares (PLS) regression on pre-treated spectra (derivatives and SNV) in the ranges 2.65-151.75 mg/kg (lycopene), 0.19-9.39 mg/kg (β-carotene), and 5.3%-13.7% (TSS). External validation was carried out with 35 new samples and on 35 spectra. The PLS models for intact watermelon could predict lycopene with R² = 0.877 and SECV = 15.68 mg/kg, β-carotene with R² = 0.822 and SECV = 0.81 mg/kg, and TSS with R² = 0.836 and SECV = 0.8%. External validation has confirmed predictive ability with R² = 0.805 and RMSEP = 16.19 mg/kg for lycopene, R2 = 0.737 and RMSEP = 0.96 mg/kg for β-carotene, and R² = 0.707 and RMSEP = 1.4% for TSS. The results allow for the market valorization of fruits.

  19. Impact of pH and Total Soluble Solids on Enzyme Inactivation Kinetics during High Pressure Processing of Mango (Mangifera indica) Pulp.

    Science.gov (United States)

    Kaushik, Neelima; Nadella, Tejaswi; Rao, P Srinivasa

    2015-11-01

    This study was undertaken with an aim to enhance the enzyme inactivation during high pressure processing (HPP) with pH and total soluble solids (TSS) as additional hurdles. Impact of mango pulp pH (3.5, 4.0, 4.5) and TSS (15, 20, 25 °Brix) variations on the inactivation of pectin methylesterase (PME), polyphenol oxidase (PPO), and peroxidase (POD) enzymes were studied during HPP at 400 to 600 MPa pressure (P), 40 to 70 °C temperature (T), and 6- to 20-min pressure-hold time (t). The enzyme inactivation (%) was modeled using second order polynomial equations with a good fit that revealed that all the enzymes were significantly affected by HPP. Response surface and contour models predicted the kinetic behavior of mango pulp enzymes adequately as indicated by the small error between predicted and experimental data. The predicted kinetics indicated that for a fixed P and T, higher pulse pressure effect and increased isobaric inactivation rates were possible at lower levels of pH and TSS. In contrast, at a fixed pH or TSS level, an increase in P or T led to enhanced inactivation rates, irrespective of the type of enzyme. PPO and POD were found to have similar barosensitivity, whereas PME was found to be most resistant to HPP. Furthermore, simultaneous variation in pH and TSS levels of mango pulp resulted in higher enzyme inactivation at lower pH and TSS during HPP, where the effect of pH was found to be predominant than TSS within the experimental domain. Exploration of additional hurdles such as pH, TSS, and temperature for enzyme inactivation during high pressure processing of fruits is useful from industrial point of view, as these parameters play key role in preservation process design. © 2015 Institute of Food Technologists®

  20. Consumption of a solid fat rich in lauric acid results in a more favorable serum lipid profile in healthy men and women than consumption of a solid fat rich in trans-fatty acids

    NARCIS (Netherlands)

    Roos, de N.M.; Schouten, E.G.; Katan, M.B.

    2001-01-01

    Solid fats are used in food manufacturing to provide texture and firmness to foods. Such fats are rich in either saturated or trans-fatty acids, both of which increase the risk of coronary heart disease. Epidemiological and experimental studies suggest that trans-fatty acids increase risk more than

  1. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    Full Text Available Qi-Wei Fu,1,* Yun-Peng Zi,1,* Wei Xu,1 Rong Zhou,1 Zhu-Yun Cai,1 Wei-Jie Zheng,1 Feng Chen,2 Qi-Rong Qian1 1Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(D,L-lactic acid (ACP-PLA nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63 cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due

  2. Influence of water solubility, side chain degradability and side chain configuration on the degradation of phthalic acid esters under methanogenic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alnervik, M.

    1996-12-31

    Water solubility and degradability of side chains estrifying phthalic acid are factors possible to influence the degradation of phthalic acid esters (PAEs). To investigate the importance of these factors degradation of butyl 2-ethylhexyl phthalate (BEHP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dihexyl phthalate (DHP), dioctyl phthalate (DOP) and didecyl phthalate (DDP) were examined under methanogenic conditions as well as was the degradability of the alcohols estrifying these PAEs. We also investigated if the degradation of resistant PAEs could be stimulated by the addition of a degradable PAE. Synthesis of degradation intermediates and two methods for PAE analyses are presented. The investigation showed that all alcohols were degraded to methane and carbon dioxide and that the degradation of PAE occurred in incubations amended with BBP, BEHP, DHP and DBP, whilst DEHP, DOP and DDP were unaffected throughout the experimental period. BBP added to incubations with DEHP, could not stimulate DEHP degradation. In conclusion, the degradability of alcohols estrifying phthalic acid in this study does not affect the anaerobic degradability of PAEs. Water solubility of a PAE can not be rejected as a factor limiting phthalate degradation under methanogenic conditions. Anaerobic degradation of persistent PAEs can not be stimulated by mixing it with a degradable phthalate. 23 refs, 11 figs, 2 tabs

  3. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in “Starkrimson” during the Ripening Period in China

    Directory of Open Access Journals (Sweden)

    Yulian Liu

    2016-06-01

    Full Text Available “Starkrimson” is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of “Starkrimson” fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC and gas chromatography-mass spectrometry (GC-MS. The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal, fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.

  4. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.

    Science.gov (United States)

    Hüsch, Jan; Gerbeth, Kathleen; Fricker, Gert; Setzer, Constanze; Zirkel, Jürgen; Rebmann, Herbert; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2012-10-26

    Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration.

  5. Study of the molecular mobility of methyl-methacrylate and methacrylic acid copolymers by solid state NMR

    International Nuclear Information System (INIS)

    Tavares, Maria Ines B.; Mansur, Claudia R.E.; Monteiro, Elisabeth E.C.

    1997-01-01

    Several methyl-methacrylate/methacrylic acid copolymers were prepared in the presence of concentrated nitric acid. The obtained copolymers were characterized by molecular weigh determination and hydrolization degree. The molecular mobility of these copolymers was studied by solid state nuclear magnetic resonance. Results are presented

  6. Solid state radiolysis of sulphur-containing amino acids. Cysteine, cystine and methionine

    International Nuclear Information System (INIS)

    Franco Cataldo; Pietro Ragni; Susana Iglesias-Groth; Arturo Manchado

    2011-01-01

    The sulphur-containing proteinaceous amino acids l-cysteine, l-cystine and l-methionine were irradiated in the solid state to a dose of 3.2 MGy. This dose corresponds to that delivered by radionuclide decay in a timescale of 1.05 x 10 9 years to the organic matter buried at a depth >20 m in comets and asteroids. The purity of the sulphur-containing amino acids was studied by differential scanning calorimetry (DSC) before and after the solid state radiolysis and the preservation of the chirality after the radiolysis was studied by chirooptical methods (optical rotatory dispersion, ORD) and by FT-IR spectroscopy. Although the high radiation dose of 3.2 MGy delivered, all the amino acids studied show a high radiation resistance. The best radiation resistance was offered by l-cysteine. The radiolysis of l-cysteine leads to the formation of l-cystine. The radiation resistance of l-methionine is not at the level of l-cysteine but also l-methionine is able to survive the dose of 3.2 MGy. Furthermore in all cases examined the preservation of chirality after radiolysis was clearly observed by the ORD spectroscopy although a certain level of radioracemization was measured in all cases. The radioracemization is minimal in the case of l-cysteine and is more pronounced in the case of l-methionine. In conclusion, the study shows that the sulphur-containing amino acids can survive for 1.05 x 10 9 years and, after extrapolation of the data, even to the age of the Solar System i.e. to 4.6 x 10 9 years. (author)

  7. Characteristics of immobilized lactobacillus delbrueckii in a liquid-solid fluidized bed bioreactor for lactic acid production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Henian; Seki, M.; Furusaki, S. [The Univ. of Tokyo (Japan). Faculty of Engineering

    1995-04-20

    A fluidized bed bioreactor was employed for lactic acid production using immobilized cells. First, the cell release rate was discussed. A liquid-solid fluidized bed reactor with immobilized cells was used to perform continuous lactic acid fermentation without any operational problems. The performance of the reactor was investigated under different conditions. Cell release rate and contribution of free cells to lactic acid production were studied quantitatively. The results showed that under low gel holdup and low dilution rate conditions, free cells played a significant role in lactic acid production. However, increasing solid holdup decreased the free cell concentration in the broth due to high lactic acid concentration and also decreased the contribution of the free cells to lactic acid production. The effects of growth nutrients on reactor performance were investigated. 16 refs., 12 figs.

  8. Preparation of an aminopropyl imidazole-modified silica gel as a sorbent for solid-phase extraction of carboxylic acid compounds and polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Wang, Na; Guo, Yong; Wang, Licheng; Liang, Xiaojing; Liu, Shujuan; Jiang, Shengxiang

    2014-05-21

    In this paper, a kind of aminopropyl imidazole-modified silica sorbent was synthesized and used as a solid-phase extraction (SPE) sorbent for the determination of carboxylic acid compounds and polycyclic aromatic hydrocarbons (PAHs). The resultant aminopropyl imidazole-modified silica sorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (EA) to ensure the successful binding of aminopropyl imidazole on the surface of silica gel. Then the aminopropyl imidazole-modified silica sorbent served as a SPE sorbent for the enrichment of carboxylic acid compounds and PAHs. The new sorbent exhibited high extraction efficiency towards the tested compounds and the results show that such a sorbent can offer multiple intermolecular interactions: electrostatic, π-π, and hydrophobic interactions. Several parameters affecting the extraction recovery, such as the pH of sample solution, the pH of eluent, the solubility of eluent, the volume of eluent, and sample loading, were also investigated. Under the optimized conditions, the proposed method was applied to the analysis of four carboxylic acid compounds and four PAHs in environmental water samples. Good linearities were obtained for all the tested compounds with R(2) larger than 0.9903. The limits of detection were found to be in the range of 0.0065-0.5 μg L(-1). The recovery values of spiked river water samples were from 63.2% to 112.3% with relative standard deviations (RSDs) less than 10.1% (n = 4).

  9. Decontamination of materials contaminated with Bacillus anthracis and Bacillus thuringiensis Al Hakam spores using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Wells, C M; Young, A A; Minter, Z A; Johnson, C A; Payne, A N; McPherson, D C

    2013-08-01

    To develop test methods and evaluate survival of Bacillus anthracis Ames, B. anthracis ∆Sterne and B. thuringiensis Al Hakam spores after exposure to PES-Solid (a solid source of peracetic acid), including PES-Solid formulations with bacteriostatic surfactants. Spores (≥ 7 logs) were dried on seven different test materials and treated with three different PES-Solid formulations (or preneutralized controls) at room temperature for 15 min. There was either no spore survival or less than 1 log (<10 spores) of spore survival in 56 of 63 test combinations (strain, formulation and substrate). Less than 2.7 logs (<180 spores) survived in the remaining seven test combinations. The highest spore survival rates were seen on water-dispersible chemical agent resistant coating (CARC-W) and Naval ship topcoat (NTC). Electron microscopy and Coulter analysis showed that all spore structures were intact after spore inactivation with PES-Solid. Three PES-Solid formulations inactivated Bacillus spores that were dried on seven different materials. A test method was developed to show that PES-Solid formulations effectively inactivate Bacillus spores on different materials. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  10. Thermal decomposition of dimethoxymethane and dimethyl carbonate catalyzed by solid acids and bases

    International Nuclear Information System (INIS)

    Fu Yuchuan; Zhu Haiyan; Shen Jianyi

    2005-01-01

    The thermal decomposition of dimethoxymethane (DMM) and dimethyl carbonate (DMC) on MgO, H-ZSM-5, SiO 2 , γ-Al 2 O 3 and ZnO was studied using a fixed bed isothermal reactor equipped with an online gas chromatograph. It was found that DMM was stable on MgO at temperatures up to 623 K, while it was decomposed over the acidic H-ZSM-5 with 99% conversion at 423 K. On the other hand, DMC was easily decomposed on the strong solid base and acid. The conversion of DMC was 76% on MgO at 473 K, and 98% on H-ZSM-5 at 423 K. It was even easier decomposed on the amphoteric γ-Al 2 O 3 . Both DMM and DMC were relatively stable on SiO 2 possessing little surface acidity and basicity. They were even more stable on ZnO with the conversion of DMM and DMC of about 1.5% at 573 K. Thus, metal oxides with either strong acidity or basicity are not suitable for the selective oxidation of DMM to DMC, while ZnO may be used as a component for the reaction

  11. Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation.

    Science.gov (United States)

    Patel, Gopal; Patil, Mahesh D; Soni, Surbhi; Chisti, Yusuf; Banerjee, Uttam Chand

    2017-05-01

    Solid-state fermentation using the microfungus Penicillium brevicompactum for the production of mycophenolic acid is reported in this paper. Of the initial substrates tested (whole wheat, cracked wheat, long grain Basmati rice, and short grain Parmal rice), Parmal rice proved to be the best. Under initial conditions, using steamed Parmal rice with 80% (w/w) initial moisture content, a maximum mycophenolic acid concentration of 3.4 g/kg substrate was achieved in 12 days of fermentation at 25 °C. The above substrate was supplemented with the following additional nutrients (g/L packed substrate): glucose 40.0, peptone 54.0, KH 2 PO 4 8.0, MgSO4⋅7H 2 O 2.0, glycine 7.0, and methionine 1.65 (initial pH 5.0). A small amount of a specified trace element solution was also added. The final mycophenolic acid concentration was increased to nearly 4 g/kg substrate by replacing glucose with molasses. Replacing Parmal rice with rice bran as substrate further improved the mycophenolic acid production to nearly 4.5 g/kg substrate.

  12. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation

    Directory of Open Access Journals (Sweden)

    MOKULA MD. RAFI

    2014-08-01

    Full Text Available Itaconic acid (IA is one of the hopeful substances within the cluster of organic acids. IA is used in artificial glass, bioactive compounds in pharmacy, medicine, agriculture, for the synthesis of fiber, resin, plastic, rubber, paints, surfactant, ion-exchange resins and lubricant. Most recurrently used microorganism for commercial production of IA is Aspergillus terreus. Some filamentous fungi belonging to Ustilaginales also produce IA. In the present work, an attempt was made to produce IA by Ustilago maydis employing Solid State Fermentation (SSF from various agro wastes like ground nut shells, rice bran, rice husk, orange pulp, ground nut oil cake, orange pulp and sugarcane bagasse as carbon substrates, which were used after pretreatment. 10 g of each substrate was taken in a 500 ml conical flasks separately and supplemented with 20 mL nutrient solution containing glucose, at pH 3. One milliliter inoculum containing 1×107 spores was added and moisture was maintained at 60%. After incubation at 32°C for 5 days, the acid production was estimated by spectrophotometric method and by HPLC analysis. Interestingly, the yield of itaconic acid was promising with all the above substrates, where orange pulp, sugarcane bagasse and rice bran supported higher yields.

  14. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.

    Science.gov (United States)

    Jong, Tony; Parry, David L

    2004-04-01

    Heavy metal mobility, bioavailability and toxicity depends largely on the chemical form of metals and ultimately determines potential for environmental pollution. For this reason, determining the chemical form of heavy metals and metalloids, immobilized in sludges by biological mediated sulfate reduction, is important to evaluate their mobility and bioavailability. A modified Tessier sequential extraction procedure (SEP), complemented with acid volatile sulfide (AVS) and simultaneous extracted metals (SEM) measurements, were applied to determine the partitioning of five heavy metals (defined as Fe, Ni, Zn and Cu, and the metalloid As) in anoxic solid-phase material (ASM) from an anaerobic, sulfate reducing bioreactor into six operationally defined fractions. These fractions were water soluble, exchangeable, bound to carbonates (acid soluble), bound to Fe-Mn oxides (reducible), bound to organic matter and sulfides (oxidizable) and residual. It was found that the distribution of Fe, Ni, Zn, Cu and As in ASM was strongly influenced by its association with the above solid fractions. The fraction corresponding to organic matter and sulfides appeared to be the most important scavenging phases of As, Fe, Ni, Zn and Cu in ASM (59.8-86.7%). This result was supported by AVS and SEM (Sigma Zn, Ni and Cu) measurements, which indicated that the heavy metals existed overwhelmingly as sulfides in the organic matter and sulfide fraction. A substantial amount of Fe and Ni at 16.4 and 20.1%, respectively, were also present in the carbonate fraction, while an appreciable portion of As (18.3%) and Zn (19.4%) was bound to Fe-Mn oxides. A significant amount of heavy metals was also associated with the residual fraction, ranging from 2.1% for Zn to 18.8% for As. Based on the average total extractable heavy metal (TEHM) values, the concentration of heavy metals in the ASM was in the order of Cu > Ni > Zn > Fe > As. If the mobility and bioavailability of heavy metals are assumed to be

  15. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  16. Prediction of Starch, Soluble Sugars and Amino Acids in Potatoes (Solanum tuberosum L.) Using Hyperspectral Imaging, Dielectric and LF-NMR Methodologies

    DEFF Research Database (Denmark)

    Kjær, Anders; Nielsen, Glenn; Stærke, Søren

    2016-01-01

    Handling and processing of potatoes is performed in increasingly large and more automated facilities, and the industry calls for more automated machinery for quality assessment and sorting by concentration of starch, soluble sugars, protein, amino acids etc. of the potato tubers. The present study...... cultivars were simultaneously sampled for analyses of content and scanned by the five different scanning methods. The resulting multivariate dataset was used to estimate the prediction ability of the individual scanning methods on starch-related parameters, selected simple sugars, selected amino acids......, conductivity of pressed cell sap and cell sizes. Results showed that most types of spectral analyses had relatively high potential for predicting the starch-related parameters and medium potential for predicting the concentration of the reducing sugars fructose and glucose. Most methods showed medium potential...

  17. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  18. Nitrogen-corrected True Metabolizable Energy and Amino Acid Digestibility of Chinese Corn Distillers Dried Grains with Solubles in Adult Cecectomized Roosters

    Directory of Open Access Journals (Sweden)

    F. Li

    2013-06-01

    Full Text Available This study was conducted to evaluate chemical composition, nitrogen-corrected true metabolizable energy (TMEn and true amino acids digestibility of corn distillers dried grains with solubles (DDGS produced in China. Twenty five sources of corn DDGS was collected from 8 provinces of China. A precision-fed rooster assay was used to determine TMEn and amino acids digestibility with 35 adult cecectomized roosters, in which each DDGS sample was tube fed (30 g. The average content of ash, crude protein, total amino acid, ether extract, crude fiber and neutral detergent fiber were 4.81, 27.91, 22.51, 15.22, 6.35 and 37.58%, respectively. TMEn of DDGS ranged from 1,779 to 3,071 kcal/kg and averaged 2,517 kcal/kg. Coefficient of variation for non-amino acid crude protein, ether extract, crude fiber and TMEn were 55.0, 15.7, 15.9 and 17.1%, respectively. The average true amino acid digestibility was 77.32%. Stepwise regression analysis obtained the following equation: TMEn, kcal/kg = −2,995.6+0.88×gross energy+49.63×a* (BIC = 248.8; RMSE = 190.8; p0.05. These results suggest that corn DDGS produced in China has a large variation in chemical composition, and gross energy and a* value can be used to generate TMEn predict equation.

  19. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang

    2008-01-01

    Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules

  20. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  1. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  2. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  3. Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ebru Oender [KOSGEB Bursa Business Development Center, Besevler Kucuk Sanayi Sitesi 16149 Nilufer/Bursa (Turkey); Koparal, Ali Savas; Oeguetveren, Uelker Bakir [Anadolu University, Iki Eylul Campus, Applied Research Center for Environmental Problems 26555 Eskisehir (Turkey); Anadolu University, Iki Eylul Campus, Department of Environmental Engineering, 26555 Eskisehir (Turkey)

    2009-01-15

    The aim of this work is to investigate the feasibility of simultaneous hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte (SPE) in an electrochemical reactor. Titanium oxide coated with iridium oxide as anode and carbon fibre with Pt catalyst as cathode were used in the experiments. Effects of applied current density, flow rates and temperature of formic acid solution, concentration of supporting electrolyte and pH of the solution on performance of the process have been investigated. The effect of membrane thickness has also been examined. The results suggest that electrolysis using SPE is a promising method for the treatment of organic pollutants. Hydrogen with purity of 99.999% at ambient temperature by using carbon fibre cathode with Pt catalyst can be produced simultaneously and COD removal efficiency of 95% has been achieved not requiring any chemical addition and temperature increase. Also complete electrochemical oxidation of formic acid at the original pH to CO{sub 2} and H{sub 2}O without production of intermediate has been proved by HPLC analysis. (author)

  4. MESOPOROUS ACID SOLID AS A CARRIER FOR METALLOCENE CATALYST IN ETHYLENE POLYMERIZATION AND A CATALYST IN CATALYTIC DEGRADATION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Wen-xi Cheng; Li-ya Shi; Shi-yun Li; Hui Chen; Tao Tang

    2007-01-01

    The possibility of mesoporous acid solid as a carrier for metallocene catalyst in ethylene polymerization and catalyst for polyethylene(PE)catalytic degradation was investigated.Here,HMCM-41 and AlMCM-41.and mesoporous silicoaluminophosphate molecular sieves(SAPO1 and SAPO2)were synthesized and used as acid solid.Much more gases were produced during catalytic degradation in PE/acid solid mixtures via in situ polymerization than those via physical mixing.The particle size distribution results exhibited that the particle size of SAPO1 in the PE/SAO1 mixture via in situ polymerization was about 1/14 times of that of the original SAPO1 or SAPO1.supported metallocene catalyst.This work shows a novel technology for chemical recycling of polyolefin.

  5. Investigating tautomeric polymorphism in crystalline anthranilic acid using terahertz spectroscopy and solid-state density functional theory.

    Science.gov (United States)

    Delaney, Sean P; Witko, Ewelina M; Smith, Tiffany M; Korter, Timothy M

    2012-08-02

    Terahertz spectroscopy is sensitive to the interactions between molecules in the solid-state and recently has emerged as a new analytical tool for investigating polymorphism. Here, this technique is applied for the first time to the phenomenon of tautomeric polymorphism where the crystal structures of anthranilic acid (2-aminobenzoic acid) have been investigated. Three polymorphs of anthranilic acid (denoted Forms I, II and III) were studied using terahertz spectroscopy and the vibrational modes and relative polymorph stabilities analyzed using solid-state density functional theory calculations augmented with London dispersion force corrections. Form I consists of both neutral and zwitterionic molecules and was found to be the most stable polymorph as compared to Forms II and III (both containing only neutral molecules). The simulations suggest that a balance between steric interactions and electrostatic forces is responsible for the favoring of the mixed neutral/zwitterion solid over the all neutral or all zwitterion crystalline arrangements.

  6. Measuring and validation for isothermal solubility data of solid 2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (nobiletin) in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Cabrera, Adolfo L.; Toledo, Alma R.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • Solubility of nobiletin in supercritical carbon dioxide was obtained. • Measured at T = (313, 323, and 333) K and at (17.97 to 31.40) MPa. • Correlated with empirical equation expressed in terms of SC-CO_2 density. • Binary interaction parameters were fitted from experimental data using PR-EOS with Wong–Sandler mixing rule. • Thermodynamic consistency of phase equilibria data was evaluated using the G–D equation. - Abstract: Isothermal solubility of 2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (nobiletin) in supercritical carbon dioxide at temperatures of (313, 323 and 333) K and pressures from (18 to 31) MPa was measured using an analytic-recirculation methodology, with direct determination of the molar composition of the carbon dioxide-rich phase by using high performance liquid chromatography. Results indicated that the range of the measured solubility of nobiletin was from 107 · 10"−"6 mol · mol"−"1 at T = 333 K and 18.35 MPa to 182 · 10"−"6 mol · mol"−"1 at T = 333 K and 31.40 MPa, with a temperature crossover around 18 MPa. The validation of the experimental solubility data was carried out by using three approaches, namely, estimation of combined expanded uncertainty for each solubility data point from experimental parameters values (⩽77 · 10"−"6 mol · mol"−"1); thermodynamic consistency, verified utilizing a test adapted from tools based on Gibbs–Duhem equation and solubility modelling results; and, self-consistency, proved by correlating the solubility data with a semi-empirical model as a function of temperature, pressure and pure CO_2 density.

  7. Solubility and acid-base properties of concentrated phytate in self-medium and in NaCl{sub aq} at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Cigala, Rosalia Maria; Crea, Francesco; Lando, Gabriele; Milea, Demetrio [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Via Ferdinando Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy); Sammartano, Silvio, E-mail: ssammartano@unime.i [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Via Ferdinando Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy)

    2010-11-15

    The acid-base properties of concentrated phytic acid were studied in self-medium and in NaCl{sub aq} (0.5 {<=} I/mol . L{sup -1} {<=} 4.0) by ISE-H{sup +} potentiometry and by direct calorimetry, at T = 298.15 K. At ligand concentrations c{sub (Phy)} > 0.012 mol . L{sup -1}, the formation of several binuclear H{sub i}(Phy){sub 2} (2 {<=} i {<=} 10) species was observed, in addition to the mononuclear H{sub i}Phy (1 {<=} i {<=} 7) ones. The solubility of phytate dodecasodium salt was studied in pure water and in NaCl{sub aq} at different ionic strengths; the total solubility in pure water is S{sub 0}{sup T}=(0.300{+-}0.004)mol.L{sup -1} and it decreases markedly with increasing ionic strength; for example the total solubility of Na{sub 12}Phy at I = 3.0 mol . L{sup -1} is 0.008 mol . L{sup -1}. By the dependence on ionic strength (salt concentration) of the solubility, it was possible to calculate the activity coefficients of phytate as a function of medium concentration. Direct calorimetric titrations were also carried out on Na{sub 12}Phy aqueous solutions at different phytate concentrations (0.025 {<=} c{sub (Phy)}/mol . L{sup -1} {<=} 0.100) and without addition of supporting electrolyte, in order to calculate the enthalpy changes for the protonation equilibria in self-medium of the binuclear H{sub i}(Phy){sub 2} species, at T = 298.15 K. It was observed that the {Delta}H/kJ . mol{sup -1} of the binuclear species are, within the experimental error, independent of the ionic strength; for example for the H{sub 2}(Phy){sub 2} species we obtained: {Delta}H{sub 22} = (-23.6 {+-} 0.6) kJ . mol{sup -1}, and (-23.7 {+-} 0.2) kJ . mol{sup -1} at I = 0.50 and 2.0 mol . L{sup -1}, respectively.

  8. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  9. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  10. Decontamination of materials contaminated with Francisella philomiragia or MS2 bacteriophage using PES-Solid, a solid source of peracetic acid.

    Science.gov (United States)

    Buhr, T L; Young, A A; Johnson, C A; Minter, Z A; Wells, C M

    2014-08-01

    The aim of the study was to develop test methods and evaluate survival of Francisella philomiragia cells and MS2 bacteriophage after exposure to PES-Solid (a solid source of peracetic acid) formulations with or without surfactants. Francisella philomiragia cells (≥7·6 log10 CFU) or MS2 bacteriophage (≥6·8 log10 PFU) were deposited on seven different test materials and treated with three different PES-Solid formulations, three different preneutralized samples and filter controls at room temperature for 15 min. There were 0-1·3 log10 CFU (6 log10 CFU/PFU F. philomiragia cells and/or MS2 bacteriophage on different materials. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach

    Directory of Open Access Journals (Sweden)

    Elisabetta Pancani

    2018-05-01

    Full Text Available Nowadays, biodegradable polymers such as poly(lactic acid (PLA, poly(D,L-lactic-co-glycolic acid (PLGA and poly(ε-caprolactone (PCL remain the most common biomaterials to produce drug-loaded nanoparticles (NPs. Pipemidic acid (PIP is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL–PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL–PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL–PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (w/w. The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer–PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs. KEY WORDS: Pipemidic acid, Nanoparticle, Antibiotic, Nanoprecipitation, Crystalline drug, Drug-initiated   polymerization

  12. Thermal decomposition of lanthanides (III) and yttrium (III) solid complexes from ethyl ene diamine tetraacetic acid

    International Nuclear Information System (INIS)

    Mercadante, A.

    1991-01-01

    Solid state compounds of lanthanides (III) and yttrium derived from ethyl ene diamine tetraacetic acid were prepared from respective basic carbonates, that were neutralized with EDTA stoichiometry quantities. Complexometry with EDTA, thermogravimetry (TG), differential thermal analysis (DTA) and X-ray diffraction have been used in the study of these compounds. The results of complexometry with EDTA as well as TG and DTA curves bed to the stoichiometry of these compounds the following general formula is obeyed: H[Ln(EDTA]. n H 2 O. X-ray powder patterns of these compounds permitted to establish two isomorphous series. The DTA ant TG curves allowed us to study the dehydration process, the thermal stability and thermal decomposition of these compounds. (C.G.C.)

  13. Microwave Effect for Glycosylation Promoted by Solid Super Acid in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Takahiko Maeda

    2009-12-01

    Full Text Available The effects of microwave irradiation (2.45 GHz, 200 W on glycosylation promoted by a solid super acid in supercritical carbon dioxide was investigated with particular attention paid to the structure of the acceptor substrate. Because of the symmetrical structure and high diffusive property of supercritical carbon dioxide, microwave irradiation did not alter the temperature of the reaction solution, but enhanced reaction yield when aliphatic acceptors are employed. Interestingly, the use of a phenolic acceptor under the same reaction conditions did not show these promoting effects due to microwave irradiation. In the case of aliphatic diol acceptors, the yield seemed to be dependent on the symmetrical properties of the acceptors. The results suggest that microwave irradiation do not affect the reactivity of the donor nor promoter independently. We conclude that the effect of acceptor structure on glycosylation yield is due to electric delocalization of hydroxyl group and dielectrically symmetric structure of whole molecule.

  14. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  15. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-05

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  17. Treatment of acid mine drainage with anaerobic solid-substrate reactors

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J.

    1999-10-01

    Anaerobic solid-substrate reactors were used in a laboratory study of acid mine drainage treatment. Parallel systems were run continuously for 23 months, both containing a solid substrate of 2:1 (weight) cow manure and sawdust. One system had cheese whey added with the mine drainage to provide an additional electron donor source to simulate sulfate-reducing bacteria activity. Effluent pH from the reactor with whey addition was relatively constant at 6.5. Effluent pH from the reactor without whey addition dropped over time from 6.7 to approximately 5.5. Whey addition increased effluent alkalinity [550 to 700 mg/L as calcium carbonate (CaCO{sub 3}) versus 50 to 300 mg/L as CaCO{sub 3}] and sulfate removal (98 to 80% versus 60 to 40%). Sulfate removal rate with whey addition decreased over time from 250 to 120 mmol/m{sup 3}{center{underscore}dot}d, whereas it decreased from 250 to 40 mmol/m{sup 3}{center{underscore}dot}d without whey addition. Whey addition increased removal of dissolved iron, dissolved manganese, and dissolved zinc in the second part of the experiment. Copper and cadmium removals were greater than 99%, and arsenic removal was 84% without whey addition and 89% with whey addition. Effluent sulfide concentrations were approximately 1 order of magnitude greater with whey addition. A 63-day period of excessive loading permanently decreased treatment efficiency without whey addition.

  18. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Terry, Brandon C., E-mail: terry13@purdue.edu [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Sippel, Travis R. [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011 (United States); Pfeil, Mark A. [School of Aeronautics and Astronautics, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States); Gunduz, I.Emre; Son, Steven F. [School of Mechanical Engineering, Purdue University, Zucrow Laboratories, 500 Allison Rd, West Lafayette, IN 47907 (United States)

    2016-11-05

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I{sub SP}). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I{sub SP} by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  19. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy

    International Nuclear Information System (INIS)

    Terry, Brandon C.; Sippel, Travis R.; Pfeil, Mark A.; Gunduz, I.Emre; Son, Steven F.

    2016-01-01

    Highlights: • Al-Li alloy propellant has increased ideal specific impulse over neat aluminum. • Al-Li alloy propellant has a near complete reduction in HCl acid formation. • Reduction in HCl was verified with wet bomb experiments and DSC/TGA-MS/FTIR. - Abstract: Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (I_S_P). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal I_S_P by ∼7 s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5 ± 4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption.

  20. Physicochemical characterization of tacrolimus-loaded solid dispersion with sodium carboxylmethyl cellulose and sodium lauryl sulfate.

    Science.gov (United States)

    Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon

    2009-06-01

    To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.

  1. [Effects of excess folic acid on growth and metabolism of water-soluble vitamins in weaning rats].

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-02-01

    In order to determine the tolerable upper intake level of folic acid in humans, we investigated the effects of excessive folic acid administration on the body weight gain, food intake, tissue weight, and metabolism of B-group vitamins in weaning rats. The rats were freely fed ordinary diet containing 0.0002% folic acid (control diet) or the same diet with 0.01%, 0.1%, or 1.0% folic acid for 29 days. The body weight gains and food intakes did not differ among the four groups. Diarrhea was not seen even in the 1.0% group. Excess folic acid did not affect the tissue weights of the brain, heart, liver, kidney, spleen, lung, or testis, or urinary excretion of other B-group vitamins. These results clearly showed that feeding a diet containing up to 1.0% folic acid did not affect the food intake, body weight gain, tissue weight, or urinary excretion of B-group vitamins in weaning rats.

  2. Isotopic study on mechanism for skeletal isomerization of n-butane over solid acids

    International Nuclear Information System (INIS)

    Suzuki, Tetsuo; Okuhara, Toshio

    2000-01-01

    Reaction mechanism for skeletal isomerization of n-butane over typical strong solid acids were investigated by using 1,4- 13 C 2 -n-butane. We used FI MASS for the analysis of 13 C distribution to get the parent pattern. 13 C-distribution of isobutane formed at 423 K over SO 3 2- /ZrO 2 (SZ) and Cs 2.5 H 0.5 PW 12 O 40 (Cs2.5) were close to binomial distributions, indicating that the isomerization proceeded mainly via a bimolecular mechanism on these catalysts. On the other hand, at 523 K over Cs2.5, the isotopic distribution pattern in isobutane was quite different from the binomial one; the fraction of 13 C 2 -isobutane was much greater than the binomial distribution. This result demonstrates that an intramolecular (monomolecular) rearrangement became significant at 523 K over Cs2.5. The contribution of monomolecular pathway was higher on Cs2.5 than on SZ. We presumed that the contribution of mechanism is related to the acidic property and the dehydrogenation ability of the catalyst. (S.Y.)

  3. Solid phosphoric acid oligomerisation: Manipulating diesel selectivity by controlling catalyst hydration

    International Nuclear Information System (INIS)

    Prinsloo, Nicolaas M.

    2006-01-01

    Solid phosphoric acid (SPA) catalyst is traditionally used in crude oil refineries to produce unhydrogenated motor-gasoline by propene and butene oligomerisation. SPA is also used in High-Temperature Fischer-Tropsch refineries (HTFT) to produce synthetic fuels albeit with a different emphasis. The petrol/diesel ratio of an HTFT refinery is very different from crude refining and it is often necessary to shift this ratio depending on market requirements. The influence of hydration was investigated as a means of improving diesel selectivity. This was achieved by studying SPA over a hydration range of 99-110% H 3 PO 4 , a temperature range of 140-230 o C and using C 3 -C 6 model and synthetic FT-derived olefinic feedstocks. A direct correlation was found between the selectivity towards diesel range products and the distribution of the phosphoric acid species viz. H 3 PO 4 , H 4 P 2 O 7 and H 5 P 3 O 10 . For various olefinic feedstocks, diesel selectivity increased with decreasing catalyst hydration with a maximum around 108% H 3 PO 4 for propene oligomerisation. Commercial tests confirmed the increase in diesel selectivity with lowered catalyst hydration. (author)

  4. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  5. 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts.

    Science.gov (United States)

    Zheng, Anmin; Liu, Shang-Bin; Deng, Feng

    2017-10-11

    Acid-base catalytic reaction, either in heterogeneous or homogeneous systems, is one of the most important chemical reactions that has provoked a wide variety of industrial catalytic processes for production of chemicals and petrochemicals over the past few decades. In view of the fact that the catalytic performances (e.g., activity, selectivity, and reaction mechanism) of acid-catalyzed reactions over acidic catalysts are mostly dictated by detailed acidic features, viz. type (Brønsted vs Lewis acidity), amount (concentration), strength, and local environments (location) of acid sites, information on and manipulation of their structure-activity correlation are crucial for optimization of catalytic performances as well as innovative design of novel effective catalysts. This review aims to summarize recent developments on acidity characterization of solid and liquid catalysts by means of experimental 31 P nuclear magnetic resonance (NMR) spectroscopy using phosphorus probe molecules such as trialkylphosphine (TMP) and trialkylphosphine oxides (R 3 PO). In particular, correlations between the observed 31 P chemical shifts (δ 31 P) of phosphorus (P)-containing probes and acidic strengths have been established in conjuction with density functional theory (DFT) calculations, rendering practical and reliable acidity scales for Brønsted and Lewis acidities at the atomic level. As illustrated for a variety of different solid and liquid acid systems, such as microporous zeolites, mesoporous molecular sieves, and metal oxides, the 31 P NMR probe approaches were shown to provide important acid features of various catalysts, surpassing most conventional methods such as titration, pH measurement, Hammett acidity function, and some other commonly used physicochemical techniques, such as calorimetry, temperature-programmed desorption of ammonia (NH 3 -TPD), Fourier transformed infrared (FT-IR), and 1 H NMR spectroscopies.

  6. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  8. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid.

    Science.gov (United States)

    Corware, Karina; Harris, Debra; Teo, Ian; Rogers, Matthew; Naresh, Kikkeri; Müller, Ingrid; Shaunak, Sunil

    2011-11-01

    Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major