WorldWideScience

Sample records for soluble organic substances

  1. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  2. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  3. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    International Nuclear Information System (INIS)

    He Shijun; Wang Jianlong; Wan Jianxin; Sun Mengmeng; Ye Longfei

    2012-01-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD 5 ), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV 254 ) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton< MW<3000 Dalton, in short MMW) into low molecular weight (MW<1000 Dalton, in short LWM), which is readily degraded by the subsequently activated sludge process. (author)

  4. Effect of Gamma Irradiation and Coagualtion on the Molegular Weight Distribution of Soluble Organic Substances in Paper Mill Effluent

    Energy Technology Data Exchange (ETDEWEB)

    Shijun, He; Jianlong, Wang [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); Jianxin, Wan; Mengmeng, Sun [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070 (China); Longfei, Ye [Institute of Nuclear and New Energy Technology (INET), Tsinghua University, Beijing 100084 (China); College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2012-07-01

    In order to look into the insights of the influence of gamma irradiation and coagulation on the molecular weight distribution (MWD) of soluble organic substances in real paper mill effluent, various parameters of wastewater samples before and after treated were investigated, including chemical oxygen demand (COD), biochemical oxygen demand (BOD{sub 5}), dissolved organic carbon (DOC) and absorbance at 254 nm wavelength (UV{sub 254}) as well. In addition, the effects of irradiation on oxygen uptake and on acute toxicity were also presented. The results showed that irradiation alone cannot promote the biodegradability and oxygen uptake as originally expected. The whole acute toxicity of samples was reduced after gamma irradiation. On the other side, coagulation can not only effectively eliminate the sectors with high molecular weight (MW>3000 Dalton, in short HMW), but also improve the capacity of ionizing irradiation initiated the transformation of medium molecular weight (1000 Dalton

  5. Treatment of coaly substances. [production of soluble products

    Energy Technology Data Exchange (ETDEWEB)

    Janner, J; Gonre, O

    1928-05-01

    A process is described for the production of soluble products from coaly substances. The process consists of heating coal or the like under pressure, and if desired with the addition of gases or vapors which do not react to a substantial extent with the coaly matter under the conditions of working. The product may be treated with a solvent at an elevated temperature and under pressure, with or without the addition of said gases or vapors. The products obtained by the above process may be subjected to a further treatment, in particular a cracking process and/or a destructive hydrogenation. The products may also be separated by the aid of suitable solvents into resins, waxes, and other substances.

  6. Decomposition of 14C-labeled organic substances in marine sediments

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The depth variation of total organic carbon (TOC), organic matter composition and porewater composition in marine sediments suggest that different components of the organic matter undergo decomposition at widely different rates. The decomposition of 14 C-labeled organic substances was followed in sediment microcosms in the laboratory. The substances used were chosen to simulate a portion of material settling to the sediment-water interface (a marine diatom) or hypothesized components of refractory sediment organic matter (melanoidins and a bacterial polymer). The microcosms were found to be good models of the sediment-water interface in terms of how well they mimicked sediment decomposition rates and processes. The decomposition of the labeled material and the natural sediment TOC were monitored over 1 month: the water overlying the sediment remained oxic, and net consumption of nitrate was small. There was no detectable sulfate reduction. The algae and the bacterial polymer were decomposed on average 9x faster than the melanoidins and 90x faster than the natural sediment TOC. The soluble fraction of the algae was decomposed more rapidly than the particulate material

  7. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  8. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  9. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  10. The influence of organic substances type on the properties of mineral-organic fertilizers

    Science.gov (United States)

    Huculak-Mä Czka, Marta; Hoffmann, Krystyna; Hoffmann, Józef

    2010-05-01

    which are used for suspension fertilizers manufacturing meet these requirements as well. In the presented studies lignite coal was applied as a component of mineral-organic preparations. The advantages of lignite coal are positive influence on the soil heat balance and reduction of the temperature fluctuations influence as well as humic acids contents that are extracted during its decomposition improving the soil structure and enrichment with humus substances. The lignite coal used in examinations contained 50 - 60 wt. % of Corg, about 45 cmol/kg Ca, 18.5 cmol/kg Mg and P, K, N in the ppm amount. Unfortunately the fertilizer components included in the lignite coal are rather unavailable for plants. It seems, that progress of lignite coal mineralization and humification can be expressed in the increasing content of humus substances. Humus acids are of great importance for plants on account of their solubility. During examination on the selection of fertilizer components a Corg content was analyzed as a parameter determining the quality of mineral-organic preparations. As the analytical technique for Corg determination particularly a Tiurin method was applied. Apart from lignite coal and peat as the source of organic substance the poultry droppings and compost on their basis were analyzed. Poultry droppings depending on bird species as well as feeding and breeding method are characterized by variable composition. A high pH values and a large content of nitrogen are their distinctive features, sometimes too high on account of plant nutritional requirements, and toxic as well as limiting cropping. Taking environmental protection requirements into consideration as well as on account of proper plants nutrition an appropriate preparation of mineral-organic fertilizer is recommended what can be obtained by applying lignite coal and poultry droppings as components of fertilizer using appropriate proportion. Adapting composted poultry droppings is more beneficial, but requires

  11. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  12. Soluble organic nanotubes for catalytic systems.

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  13. The possible use of soluble humic substances for remediation of heavy metal polluted soils

    DEFF Research Database (Denmark)

    Borggaard, Ole K.; Jensen, Julie Katrine; Holm, Peter Engelund

    2008-01-01

    Polluted soil is a common and serious environmental problem. While reliable methods exist for cleaning soil contaminated by organic compounds through degradation, remediation of heavy metal polluted soils awaits an appropriate solution. This is because heavy metals are nondegradable and generally....... Therefore, the potential of soluble natural humic substances (HS) to extract heavy metals from contaminated soils is tested as an environmental friendly substitute for EDTA. A strongly polluted urban soil and a moderately polluted agricultural soil were extracted at neutral pH in batch mode by three HS...... extraction. Heavy metal extraction with dissolved HS is compared with EDTA at the same concentration and sequential extraction has been performed to identify extracted pools. The results indicate a clear potential of using HS solutions for remediation of heavy metal polluted soils, which is fortunate...

  14. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  15. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W

    2014-07-01

    In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  17. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  18. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  19. Geochemical behaviour of palladium in soils and Pd/PdO model substances in the presence of the organic complexing agents L-methionine and citric acid.

    Science.gov (United States)

    Zereini, Fathi; Wiseman, Clare L S; Vang, My; Albers, Peter; Schneider, Wolfgang; Schindl, Roland; Leopold, Kerstin

    2016-01-01

    Risk assessments of platinum group metal (PGE) emissions, notably those of platinum (Pt), palladium (Pd) and rhodium (Rh), have been mostly based on data regarding the metallic forms used in vehicular exhaust converters, known to be virtually biologically inert and immobile. To adequately assess the potential impacts of PGE, however, data on the chemical behaviour of these metals under ambient conditions post-emission is needed. Complexing agents with a high affinity for metals in the environment are hypothesized to contribute to an increased bioaccessibility of PGE. The purpose of this study is to examine the modulating effects of the organic complexing agents, L-methionine and citric acid, on the geochemical behavior of Pd in soils and model substances (Pd black and PdO). Batch experimental tests were conducted with soils and model substances to examine the impacts of the concentration of complexing agents, pH and length of extraction period on Pd solubility and its chemical transformation. Particle surface chemistry was examined using X-ray photoelectron spectroscopy (XPS) on samples treated with solutions under various conditions, including low and high O2 levels. Pd was observed to be more soluble in the presence of organic complexing agents, compared to Pt and Rh. Pd in soils was more readily solubilized with organic complexing agents compared to the model substances. After 7 days of extraction, L-methionine (0.1 M) treated soil and Pd black samples, for instance, had mean soluble Pd fractions of 12.4 ± 5.9% and 0.554 ± 0.024%, respectively. Surface chemistry analyses (XPS) confirmed the oxidation of metallic Pd surfaces when treated with organic complexing agents. The type of organic complexing agent used for experimental purposes was observed to be the most important factor influencing solubility, followed by solution pH and time of extraction. The results demonstrate that metallic Pd can be transformed into more bioaccessible species in the presence of

  20. Organic substances in ashes; Organiska aemnen i askor

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden)

    2006-12-15

    Based on a review of available literature the following conclusions have been reached: Organic substances constitute a minor part of the TOC, Total Organic Carbon, and inert, elemental carbon constitutes the major part, TOC being expressed as weight percent of the ash. Organic substances are trace substances, with concentrations of the order a few mg/kg, exceptionally g/kg, in screening analyses, and of the order of ng/kg to mg/kg in dedicated analyses. The results from a screening of organic content depend largely on sample preparation and the method of analysis. The substances that are commonly identified are aliphatic acids and n-alkanes (semi-volatile substances). However, in one investigation chlorinated hydrocarbons such as trichloroethylene were found instead, which are more volatile than acids and n-alkanes In the leachates, organic substances are mostly humus-like relatively high molecular products of degradation. There is not any experimental evidence for substances to be terminated, which evidence would allow an assessment of their importance. The concentrations of dioxins and furans in all ashes seem to be low, from a few ng/kg TEQ ta few tens of ng/kg TEQ. Their concentration in bioashes is significantly lower than the default value in UNEP's guidelines for national inventories of sources of dioxins. The exception is air pollution control residues from waste incineration, which residues contain 200 - 2,000 ng/kg TEQ depending on the type of plant. If combustion residues from waste incineration are well investigated, residues from other fuels are not. The concentration of PAH varies more widely and is more uncertain, from 0.015 mg/kg DS ta few hundreds of mg/kg DS. It is not feasible tassess the consequences for the environment of the presence of organic substances in ashes in this survey. This demands a separate study.

  1. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  2. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    Science.gov (United States)

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  3. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha

    International Nuclear Information System (INIS)

    Sures, Bernd; Zimmermann, Sonja

    2007-01-01

    Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl 4 , PdSO 4 , RhCl 3 ) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances. - Precious metal accumulation in Dreissena polymorpha is affected by humic substances

  4. Nutrients and bioactive substances in aquatic organisms

    International Nuclear Information System (INIS)

    Devadasan, K.; Mukundan, M.K.; Antony, P.D.; Viswanathan Nair, P.G.; Perigreen, P.A.; Joseph, Jose

    1994-01-01

    The International Symposium on Nutrients and Bioactive Substances in Aquatic Organisms, was held during 16-17 September 1993 by the Society of Fisheries Technologists (India) to review the progress of research in this area in India and elsewhere. The papers presented indicate that scientific productivity in this field is substantial and that some of the bioactive materials isolated from aquatic organisms have potential application in human health, nutrition and therapy. The symposium focussed attention on toxicants, nutrients and bioactive substances in aquatic organisms in general, and also on pollution of aquatic systems due to thermal effluents. Paper relevant to INIS database is indexed separately. (M.K.V.)

  5. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  6. Interaction of acetamiprid with extracellular polymeric substances ...

    African Journals Online (AJOL)

    Extracellular polymeric substances (EPS) are important components of activated sludge and it plays an important role in removing pollutants. The interaction between EPS and organic pollutants is still little known. In the present study, the interaction of soluble/bound EPS with acetamiprid, a neonicotinoid insecticide, was ...

  7. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  8. Basic Substances under EU Pesticide Regulation: An Opportunity for Organic Production?

    Directory of Open Access Journals (Sweden)

    Patrice A. Marchand

    2017-02-01

    Full Text Available Some of the active substances allowed in organic production are now approved as basic sub- stances under the EU plant protection products regulation. Previously, all organic farming permitted active substances were approved as conventional plant protection products. In accordance with the criteria of Article 23 of the EU regulation (EC No 1107/2009, basic substances are granted without maximum residue limits and have a good prospect for being included in Annex II of organic farming Regulation (EC 889/2008. In fact, most of them are already permitted in organic farming. At this stage, it seems desirable to organize applications in order to avoid duplications and to clarify strategy across Europe. This organization should be planned in order to identify corresponding knowledge and data from field experiments, and to further constitute the most crucial issues related to organic production. A work of this nature was initially supported by IFOAM-EU for lecithin, calcium hydroxide and Quassia extract. The Institut Technique de l’Agriculture Biologique (ITAB was previously engaged in a large-scale approval plan motivated by the continuous demand for the regularization of compounds/substances already in use and has a mandate for testing and approving new compatible substances. Thus, the horsetail extract (Equisetum arvense was the first approved basic substance and ITAB has obtained 11 of the 15 basic substances approved at the EU level.

  9. Refractory organic substances in the environment

    National Research Council Canada - National Science Library

    Frimmel, F. H

    2002-01-01

    ... and its Quality Control in Fractions of Refractory Organic Substances and the Corresponding Original Water Samples 39 Introduction 39 Description of Analytical Methods 41 Sample Treatment 41 Fl...

  10. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Sures, Bernd [Department of Applied Zoology/Hydrobiology, University of Duisburg-Essen, D-45177 Essen (Germany)]. E-mail: bernd.sures@uni-due.de; Zimmermann, Sonja [Department of Applied Zoology/Hydrobiology, University of Duisburg-Essen, D-45177 Essen (Germany)

    2007-03-15

    Zebra mussels (Dreissena polymorpha) were exposed to different types of water containing PGE salts (PtCl{sub 4}, PdSO{sub 4}, RhCl{sub 3}) to investigate the influence of humic substances on the aqueous solubility, uptake and bioaccumulation of noble metals. The results showed a time dependent decrease of the aqueous PGE concentrations in tank water for all groups. This could mainly be related to non-biological processes. The aqueous solubility of Pd and Rh was higher in humic water compared with non-chlorinated tap water, whereas Pt showed opposing results. Highest metal uptake rates and highest bioaccumulation plateaus were found for Pd, followed by Pt and Rh. Pd uptake and bioaccumulation was significantly hampered by humic substances, whose presence appear to increase Pt uptake and bioaccumulation. No clear trend emerged for Rh. Differences in effects of humic matter among the PGE may be explained by formation of metal complexes with different fractions of humic substances. - Precious metal accumulation in Dreissena polymorpha is affected by humic substances.

  11. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  12. Mesoporous calcium carbonate as a phase stabilizer of amorphous celecoxib--an approach to increase the bioavailability of poorly soluble pharmaceutical substances.

    Science.gov (United States)

    Forsgren, Johan; Andersson, Mattias; Nilsson, Peter; Mihranyan, Albert

    2013-11-01

    The bioavailability of crystalline pharmaceutical substances is often limited by their poor aqueous solubility but it can be improved by formulating the active substance in the amorphous state that is featured with a higher apparent solubility. Although the possibility of stabilizing amorphous drugs inside nano-sized pores of carbon nanotubes and ordered mesoporous silica has been shown, no conventional pharmaceutical excipients have so far been shown to possess this property. This study demonstrates the potential of using CaCO3 , a widely used excipient in oral drug formulations, to stabilize the amorphous state of active pharmaceutical ingredients, in particular celecoxib. After incorporation of celecoxib in the vaterite particles, a five to sixfold enhancement in apparent solubility of celecoxib is achieved due to pore-induced amorphization. To eliminate the possibility of uncontrolled phase transitions, the vaterite particles are stored in an inert atmosphere at 5 °C throughout the study. Also, to demonstrate that the amorphization effect is indeed associated with vaterite mesopores, accelerated stress conditions of 100% relative humidity are employed to impose transition from mesoporous vaterite to an essentially non-porous aragonite phase of CaCO3 , which shows only limited amorphization ability. Further, an improvement in solubility is also confirmed for ketoconazole when formulated with the mesoporous vaterite. Synthesis of the carrier particles and the incorporation of the active substances are carried out simultaneously in a one-step procedure, enabling easy fabrication. These results represent a promising approach to achieve enhanced bioavailability in new formulations of Type II BCS drugs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  14. Coagulation and flocculation of dissolved organic substances with organic polymers

    OpenAIRE

    Kvinnesland, Thomas

    2002-01-01

    Coagulation of natural organic matter (NOM) in water is a well-established process, enabling or enhancing the removal of these substances by different particle separation processes. The dominating coagulating agents used are, however, inorganic salts of iron (Fe3+) and aluminium (Al3+). The primary use of organic polymers is as flocculating agents for already coagulated aggregates. However, in recent years the use of cationic organic polymers have received increasing attent...

  15. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  16. Chemical characteristics and acidity of soluble organic substances from a northern hardwood forest floor, central Maine, USA

    International Nuclear Information System (INIS)

    Vance, G.F.; David, M.B.

    1991-01-01

    The authors understanding of the chemistry, structure, and reactions of organic substances in forest floor leachates is limited and incomplete. Therefore, the authors examined the organic and inorganic chemistry of forest floor leachates collected from a hardwood forest in central Maine over a two-year period (1987-1989), including detailed study of dissolved organic carbon (DOC). Seasonal variations in NH 4 + , NO 3 - , K + , and total Al were believed due to organic matter decomposition and release. Leaching of other base cations closely followed that of NO 3 - . Total DOC ranged from 2,228 to 7,193 μmol L -1 with an average of 4,835 μmol L -1 . Monosaccharides and polyphenols constituted 3.9% (range of 3.4 to 4.4%) and 3.0% (2.2 to 3.7%) of the DOC, respectively, which suggests DOC may contain partially oxidized products that are possibly of a lignocellulose nature. Fractionation of the forest floor DOC indicated high organic acid contents (hydrophobic and hydrophilic acids) that averaged 92% of the total DOC. Organic acids were isolated and analyzed for elemental content (C, H, N, and S), and determination of UV absorptivity (E 4 /E 6 ) ratios, CuO oxidation products, FT-IR and 13 C-NMR spectra, and acidity by potentiometric titration. Their FT-IR and 13 C-NMR spectra suggest they are primarily carboxylic acids, with aliphatic and aromatic structure. An organic charge contribution model was developed using titration data, DOC fractionation percentages, and the total DOC in the forest floor leachates. Application of the model to all solutions accounted for 97% of the charge balance deficits

  17. Measurement and correlation of solubility of ciclesonide in seven pure organic solvents

    International Nuclear Information System (INIS)

    Zhou, Lina; Yin, Qiuxiang; Guo, Zhiqiang; Lu, Haijiao; Liu, Mingyan; Chen, Wei; Hou, Baohong

    2017-01-01

    Highlights: • The solubility of ciclesonide in seven pure organic solvents was determined by gravimetric method. • The solubility order was interpreted by virtue of density function theory (DFT). • The experimental solubility of ciclesonide was correlated by four thermodynamic models. • Mixing thermodynamic properties of ciclesonide were calculated and discussed. - Abstract: The solubility of ciclesonide in seven organic solvents (ethanol, 2-propanol, 1-propanol, 1-butanol, acetonitrile, toluene and ethyl acetate) in the temperature range from 278.15 K to 313.15 K was measured by gravimetrical method under atmospheric pressure. The results indicate that the solubility of ciclesonide increases with elevating temperature in all investigated solvents. The solubility order in different solvents was interpreted through comparing interaction force between solute and solvent molecules by virtue of density function theory (DFT). Thermodynamic equations including the modified Apelblat equation, λh equation, Wilson equation and NRTL equation are all suitable to correlate the solubility results. Based on the Wilson equation, the thermodynamic parameters from the mixing process are calculated, and the results indicate the mixing process of ciclesonide in the selected pure solvents is spontaneous and entropy-driven.

  18. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  19. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  20. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    Science.gov (United States)

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  1. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  2. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  3. Organic Aerosols as Cloud Condensation Nuclei

    Science.gov (United States)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  4. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-08-01

    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C

  5. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  6. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  7. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  8. Nitrogen mineralization in a simulated rhizosphere as influenced by low molecular weight organic substances

    OpenAIRE

    Begum, Shamim Ara; Kader, MD Abdul; Sleutel, Steven; De Neve, Stefaan

    2012-01-01

    Rhizodeposits consist of over 200 organic compounds, mainly low-molecular-weight organic substances (LMWOS) such as amino acids (AA), carbohydrates (CH) and carboxylic acids (CA), lipids and phenols. Those LMWOS influence nutrient turnover, particularly N turnover. However, the exact influence of these organic substances on nitrogen mineralization is yet unknown. Therefore, the stimulatory effects of low molecular weight organic substances on nitrogen mineralization in the rhizosphere of a si...

  9. 7 CFR 205.604 - Nonsynthetic substances prohibited for use in organic livestock production.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonsynthetic substances prohibited for use in organic livestock production. 205.604 Section 205.604 Agriculture Regulations of the Department of Agriculture... organic livestock production. The following nonsynthetic substances may not be used in organic livestock...

  10. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  11. Effect of soil invertebrates on the formation of humic substances under laboratory conditions

    Science.gov (United States)

    Frouz, J.; Li, X.; Brune, A.; Pizl, V.; Abakumov, E. V.

    2011-08-01

    The complete polymerization of phenols and proteins (one of the processes involved in the formation of humic substances) was explained. It was shown that fly ( Bibio marci) larvae and earthworms ( Aporrectodea caliginosa) participate in the complete polymerization of phenols and proteins. In a laboratory experiment, invertebrates participated in the degradation of organic matter and the synthesis of humic substances, which was proved in experiments with 14C-labeled phenols and proteins. The same organic substances (phenols and proteins) without the impact of invertebrates were used as the control substances. The distributions of the 14C isotope in alkaline extracts separated by solubility in acids (humic and fulvic acids) was compared to those of the control substances. The portion of the 14C isotope in the humic acids in the excrements of Bibio marci was higher than that in the control substances. The content of 14C-labeled humic substances in the excrements of the earthworm Aporrectodea caliginosa exceeded the control values only in the experiment with proteins. When clay material was added to the organic substances, the portion of the 14C isotope in the humic acids increased in both experiments with phenols and proteins. When these substrates passed through the digestive tracts of the invertebrates, the polymerization of organic substances and the inclusion of proteins and phenols into humic acids occurred.

  12. Filtration behavior of organic substance through a compacted bentonite

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Kuno, Yoshio; Yui, Mikazu

    1999-07-01

    Filtration behavior of organic substance through a compacted bentonite was investigated. Na-type bentonite containing 30wt% of quartz sand was compacted in a column and the dry density was adjusted to be 1.6 g/cm 3 . Polyacrylic acid solution (including three types of polyacrylic acid, average molecular weight 2,100, 15,000 and 450,000) was prepared and was passed through the compacted bentonite. Molecular weight distributions of polyacrylic acid in the effluent solution were analysed by GPC (Gel Permeation Chromatography). A batch type experiment was also carried out in order to examine a sorption behavior of these organic substances onto the surfaces of grains of the bentonite. The results indicated that the smaller size polyacrylic acid (molecular weight < 100,000) was passed through the compacted bentonite. On the other hand, the larger size polyacrylic acid (molecular weight ≥100,000) was mostly filtrated by the compacted bentonite. The batch type sorption tests clarified that the polyacrylic acid did not sorb onto the surfaces of minerals constituting the bentonite. Therefore it was suggested that the larger size molecules (≥100,000) of organic substances could be predominantly filtrated by the microstructure of the compacted bentonite. (author)

  13. Characteristics of arsenic in humic substances extracted from natural organic sediments.

    Science.gov (United States)

    Hara, Junko; Norota, Susumu; Kawebe, Yoshishige; Sugita, Hajime; Zhang, Ming

    2018-06-01

    The stability and dispersion of naturally occurring As have been receiving increasing attention, because As is toxic and its contamination is a widespread problem in many countries. This study investigated As fractionation and speciation in organic sediments collected from different depositional settings to elucidate the existence of stable As in humic substances. Eleven organic sediment samples were collected from marine and terrestrial alluvial regions in Hokkaido prefecture, Japan, and the chemical fraction of As and species of humic substances were identified by sequential extraction. In addition, stable As bound in organic matter was evaluated by FT-IR spectroscopy. The As fraction mainly comprised inorganic substances, especially sulfur, iron, and manganese, and terrestrial sediments (lacustrine and inland deposits) were rich in sulfides and Fe and Al (hydr)oxides. When the residual fraction was excluded, the organic fraction of As was higher in seawater sediments than in terrestrial sediments. Among humic substances, cellulose, humic acid, and hydrophilic fulvic acid were clearly associated with As accumulation, and As speciation showed that the As was of organic origin. Cellulose, an organic compound of plant origin, was abundant in As=S and As (III)=O bonds, and As accumulation was higher in sulfur-rich peat sediments, corresponding with the physiological activities of As in plants. Hydrophilic fulvic acid and humic acid in these sediments, originating from small animals and microorganisms in addition to plants, denote higher As contents and abound in As (III, V)=C and C-H, CH 3 bonds even in sulfur-rich sediments. The methylated As bonds reflect the ecological transition of organisms.

  14. Multicomponent analysis of fat- and water-soluble vitamins and auxiliary substances in multivitamin preparations by qNMR.

    Science.gov (United States)

    Eiff, Julia; Monakhova, Yulia B; Diehl, Bernd W K

    2015-04-01

    A nuclear magnetic resonance (NMR) spectroscopic method was tested to control 12 vitamins and accompanying substances in multivitamin preparations. The limits of detection (LODs) and limits of quantification (LOQs) varied in the 9.0-77.0 mg/kg and in the 34.5-93.5 mg/kg range, respectively. The coefficients of variation (CVs) ranged between 0.9% and 12%. The (1)H NMR spectra showed linearity for the 140-260 mg sample weight (R(2) > 0.918). The NMR spectra of multivitamin preparations showed the presence of different degradation products of ascorbic acid. The NMR method was applied to 13 different multivitamin preparations including tablets, capsules, and effervescent tablets with average recovery rates between 85% and 132%. A number of accompanying substances (citric acid, mannitol, saccharin, cyclamate, sum of steviol glycosides, and butylhydroxytoluene) were additionally identified and quantified. NMR was found to be suitable for the simultaneous qualitative measurement of water- and fat-soluble vitamins and accompanying substances and shows some promise for quantitative determination of at least 5 vitamins (B1, B3, B5, B6, and E) in multivitamin preparations.

  15. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  16. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H.Y. [Hebei University of Engineering, Handan (China)

    2009-02-15

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  17. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  18. Organic Substances from Unconventional Oil and Gas Production in Shale

    Science.gov (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.

    2014-12-01

    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  19. Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances

    Directory of Open Access Journals (Sweden)

    Cácio Luiz Boechat

    2016-01-01

    Full Text Available ABSTRACT Bioavailability of heavy metals at contaminated sites is largely controlled by the physicochemical properties of the environmental media such as dissolved organic matter, hydroxides and clay colloids, pH, soil cation exchange capacity and oxidation-reduction potential. The aim of this study was to investigate soil pH and heavy metal solubility effect by levels of humic and fulvic acids applied in soil samples with different levels of contamination by heavy metals. The soil samples used in this study were collected in a known metal-contaminated site. Humic acid (HA and fulvic acid (FA were purchased as a commercially available liquid material extracted from Leonardite. The experiment was carried out in a factorial scheme of 4 × (4 + 1, with four contaminated soil samples and four treatments, comprised of two levels of HA, two levels of FA and a control. The HA treatments increased the solubility of Cu, Zn, Ni, Cr, Cd, Pb, As and Ba from soils, while FA treatments decreased, thus raising or not their availability and mobility in soil. Humic acid concentration did not influence soil pH and FA decreased soil pH until 0.7 units. The initial heavy metal concentration in soil affects the magnitude of the processes involving humic substances. The lower releases of heavy metals by FA verified the importance of the complexation properties of organic compounds. These results appear to encourage the use of HA for increased plant-availability of heavy metals in remediation projects and the use of FA for decreased plant-availability of heavy metals at contaminated sites with a risk of introducing metals into the food chain.

  20. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  1. A method for embedding granulated or spent ion-exchanging organic substances in concrete

    International Nuclear Information System (INIS)

    Christensen, H.; Jejes, P.

    1976-01-01

    A method of embedding in concrete a spent ion-exchanging organic substance originating from a scrubbing-circuit of a nuclear reactor Prior to solidification of the mixture, a substance is incorporated therewith said substance being capable of preventing water in the grains of the ion-exchanging substance from penetrating into the solidified product

  2. Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes

    Science.gov (United States)

    Odod, A. V.; Gadirov, R. M.; Solodova, T. A.; Kurtsevich, A. E.; Il'gach, D. M.; Yakimanskii, A. V.; Burtman, V.; Kopylova, T. N.

    2018-04-01

    Ink compositions for inkjet printing based on poly(9.9-dioctylfluorene) and its alcohol-soluble analog are created. Current-voltage, brightness-voltage, and spectral characteristics are compared for one- and twolayer polymer structures of organic light-emitting diodes. It is shown that the efficiency of the alcohol-soluble polyfluorene analog is higher compared to poly(9.9-dioctylfluorene), and the possibility of viscosity optimization is higher compared to aromatic chlorinated solvents.

  3. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  4. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    Science.gov (United States)

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  5. Soils and organic sediments

    International Nuclear Information System (INIS)

    Head, M.J.

    1999-01-01

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  6. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  7. Humic and fluvic acids and organic colloidal materials in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States); Clark, S.B. [Univ. of Georgia, Aiken, SC (United States)

    1996-04-01

    Humic substances are ubiquitous in the environment, occurring in all soils, waters, and sediments of the ecosphere. Humic substances arise from the decomposition of plant and animal tissues yet are more stable than their precursors. Their size, molecular weight, elemental composition, structure, and the number and position of functional groups vary, depending on the origin and age of the material. Humic and fulvic substances have been studied extensively for more than 200 years; however, much remains unknown regarding their structure and properties. Humic substances are those organic compounds found in the environment that cannot be classified as any other chemical class of compounds. They are traditionally defined according to their solubilities. Fulvic acids are those organic materials that are soluble in water at all pH values. Humic acids are those materials that are insoluble at acidic pH values (pH < 2) but are soluble at higher pH values. Humin is the fraction of natural organic materials that is insoluble in water at all pH values. These definitions reflect the traditional methods for separating the different fractions from the original mixture. The humic content of soils varies from 0 to almost 10%. In surface waters, the humic content, expressed as dissolved organic carbon (DOC), varies from 0.1 to 50 ppm in dark-water swamps. In ocean waters, the DOC varies from 0.5 to 1.2 ppm at the surface, and the DOC in samples from deep groundwaters varies from 0.1 to 10 ppm. In addition, about 10% of the DOC in surface waters is found in suspended matter, either as organic or organically coated inorganic particulates. Humic materials function as surfactants, with the ability to bind both hydrophobic and hydrophyllic materials, making numic and fluvic materials effective agents in transporting both organic and inorganic contaminants in the environment.

  8. Integration of Substance Abuse Treatment Organizations into Accountable Care Organizations: Results from a National Survey

    Science.gov (United States)

    D’Aunno, Thomas; Friedmann, Peter D.; Chen, Qixuan; Wilson, Donna M.

    2016-01-01

    To meet their aims of managing population health to improve the quality and cost of health care in the United States, accountable care organizations (ACOs) will need to focus on coordinating care for individuals with substance abuse disorders. The prevalence of these disorders is high, and these individuals often suffer from comorbid chronic medical and social conditions. This article examines the extent to which the nation’s fourteen thousand specialty substance abuse treatment (SAT) organizations, which have a daily census of more than 1 million patients, are contracting with ACOs across the country; we also examine factors associated with SAT organization involvement with ACOs. We draw on data from a recent (2014) nationally representative survey of executive directors and clinical supervisors from 635 SAT organizations. Results show that only 15 percent of these organizations had signed contracts with ACOs. Results from multivariate analyses show that directors’ perceptions of market competition, organizational ownership, and geographic location are significantly related to SATinvolvement with ACOs. We discuss implications for integrating the SAT specialty system with the mainstream health care system. PMID:26124307

  9. Substance Flow Analyses of Organic Pollutants in Stockholm

    International Nuclear Information System (INIS)

    Jonsson, A.; Friden, U.; Thuresson, K.; Soerme, L.

    2008-01-01

    This paper summarizes substance flow analyses for four organic substances in the City of Stockholm, Sweden: diethylhexyl phthalate (DEHP), alkylphenolethoxylates (APEO), polybrominated diphenylethers (PBDE) and chlorinated paraffins (CP). The results indicate that the stocks of APEO, PBDE and CP all are approximately 200-250 tonnes, whereas the DEHP stock is two orders of magnitude larger. Emissions can be linked to imported consumer goods such as electronics (PBDE) and textiles (APEO), and to construction materials (DEHP, CP). For several of the substances considerable amounts remain in the technosphere for a long time, even after use of the substance in new products has been eliminated. For example, the use of DEHP as plasticizer for PVC plastics in cables and floorings has more or less been phased-out, but still these applications make up a stock of some 20,000 tonnes (85% of the total DEHP stock in Stockholm) and emit 28 tonnes of DEHP annually (93% of overall emissions). Likewise, the use of chlorinated paraffins in sealants has been radically reduced, but there are 170 tonnes of CP in sealants in Stockholm making up 75% of the stock, and causing half of the emissions to water and air. These emissions are likely to continue for decades, and the stocks therefore have to be considered when analysing and managing the impact of urban substance flows on the environment

  10. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  11. Hybrid biofilm-membrane bioreactor (Bf-MBR) for minimization of bulk liquid-phase organic substances and its positive effect on membrane permeability.

    Science.gov (United States)

    Sun, F Y; Li, P; Li, J; Li, H J; Ou, Q M; Sun, T T; Dong, Z J

    2015-12-01

    Four biofilm membrane bioreactors (Bf-MBRs) with various fixed carrier volumes (C:M) were operated in parallel to investigate the effect of attached-growth mode biomass involvement to the change of liquid-phase organics characteristics and membrane permeability, by comparing with conventional MBR. The experiments displayed that C:M and co-existence of biofilm with suspended solids in Bf-MBRs resulted in slight difference in pollutants removal effectiveness, and in rather distinct biomass properties and bacterial activities. The membrane permeability and specific resistance of bulk suspension of Bf-MBRs related closely with the liquid-phase organic substance, including soluble microbial products (SMP) and biopolymer cluster (BPC). Compared with conventional MBR, Bf-MBR with proper C:M had a low total biomass content and food-chain, where biofilm formation and its dominance affected liquid-phase organics, especially through reducing their content and minimizing strongly and weakly hydrophobic components with small molecular weight, and thus to mitigate membrane fouling significantly. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Radiation treatment of organic substances which are difficult to decompose for utilizing sewage water again. Radiation decomposition of lignin

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Sawai, Taruko; Tanabe, Hiroko

    1996-01-01

    The sewerage model projects utilizing sewage-treated water and the sewerage model project for the future city executed in Tokyo are described. It is important to obtain the treated water which is suitable to purposes by setting up the target for control and reducing the organic contamination which is difficult to decompose. In fiscal year 1995, as to the decomposing treatment of lignin by radiation, the effect of reducing coloring and the influence when actual flowing-in sewage and treated water coexist were examined. The experimental samples were lignin aqueous solution, synthetic sewage and flowing-in sewage, treated water, and the mixture of treated water and synthetic sewage. The measurement of water quality is explained. The γ ray irradiation with a Co-60 source was carried out. The results of respective samples are reported. When total organic carbon was at the level in flowing-in sewage and treated water, irradiation was effective for eliminating coloring. The soluble organic substances which are difficult to decompose were efficiently decomposed by irradiation. (K.I.)

  13. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  14. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  15. Impact of tree cutting on water-soluble organic compounds in podzolic soils of the European North-East

    Science.gov (United States)

    Lapteva, Elena; Bondarenko, Natalia; Shamrikova, Elena; Kubik, Olesya; Punegov, Vasili

    2016-04-01

    Water-soluble organic compounds (WOCs) and their single components, i.e. low-molecular organic acids, alcohols, and carbohydrates, attain a great deal of attention among soil scientists. WOCs are an important component of soil organic matter (SOM) and form as a results of different biological and chemical processes in soils. These processes are mainly responsible for formation and development of soils in aboveground ecosystems. The purpose of the work was identifying qualitative and quantitative composition of low-molecular organic substances which form in podzolic loamy soils against natural reforestation after spruce forest cutting. The studies were conducted on the territory of the European North-East of Russia, in the middle taiga subzone (Komi Republic, Ust-Kulom region). The study materials were soil of undisturbed bilberry spruce forest (Sample Plot 1 (SP1)) and soils of different-aged tree stands where cutting activities took place in winter 2001/2002 (SP2) and 1969/1970 (SP3). Description of soils and vegetation cover on the plots is given in [1]. Low-molecular organic compounds in soil water extracts were identified by the method of gas chromatography mass-spectrometry [2, 3]. Finally, reforestationafterspruceforestcutting was found to be accompanied by different changes in soil chemical composition. In contrast with soils under undisturbed spruce forest, organic soil horizons under different-aged cuts decreased in organic carbon reserves and production of low-molecular organic compounds, changed in soil acidity. Within the soil series of SP1→SP2→SP3, the highest content of WOCs was identified for undisturbed spruce forest (738 mg kg-1 soil). In soils of coniferous-deciduous forests on SP1 and SP3, WOC content was 294 and 441 mg kg-1 soil, correspondingly. Soils at cuts decreased in concentration of any water-soluble low-molecular SOM components as low-molecular acids, alcohols, and carbohydrates. Structure of low-molecular WOCs in the study podzolic

  16. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs.

    Science.gov (United States)

    Mosharraf, M; Sebhatu, T; Nyström, C

    1999-01-15

    The effects of experimental design on the apparent solubility of two sparingly soluble hydrophilic compounds (barium sulphate and calcium carbonate) were studied in this paper. The apparent solubility appeared to be primarily dependent on the amount of solute added to the solvent in each experiment, increasing with increased amounts. This effect seems to be due to the existence of a peripheral disordered layer. However physico-chemical methods used in the present study were not able to unambiguously verify the existence of any disorder in the solid state structure of the drugs. At higher proportions of solute to solvent, the solubility reached a plateau corresponding to the solubility of the disordered or amorphous molecular form of the material. Milling the powders caused the plateau to be reached at lower proportions of solute to solvent, since this further disordered the surface of the drug particles. It was also found that the apparent solubility of the drugs tested decreased after storage at high relative humidities. A model for describing the effects of a disordered surface layer of varying thickness and continuity on the solubility of a substance is presented. This model may be used as a method for detection of minute amount of disorder, where no other technique is capable of detecting the disordered structure. It is suggested that recrystallisation of the material occurs via slow solid-state transition at the surface of the drug particle; this would slowly reduce the apparent solubility of the substance at the plateau level to the thermodynamically stable value. A biphasic dissolution rate profile was obtained. The solubility of the disordered surface of the particles appeared to be the rate-determining factor during the initial dissolution phase, while the solubility of the crystalline core was the rate-determining factor during the final slower phase.

  17. Through-furnace for burning solid organic substances

    International Nuclear Information System (INIS)

    Kemmler, G.; Schlich, E.

    1984-01-01

    The through-furnace for burning radio-active organic solid waste consists of a reaction pipe heated from the outside, an input device and an output device. A solid pump is used as the input device, which has a common longitudinal axis with the reaction pipe. The reaction pipe is widened in the transport direction of the combustion pipe, where the angle between the longitudinal axis and the pipe wall is 0.5 to 5 0 . The pipe wall is wholely or partially permeable to gas. The thermal treatment of the solid organic substances can occur by combustion or by pyrohydrolysis or pyrolysis in the through-furnace. (orig./HP) [de

  18. Emission of organic substances from chip-boards

    Energy Technology Data Exchange (ETDEWEB)

    Deppe, H.J.

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  19. Organic substances of bituminous shales

    Energy Technology Data Exchange (ETDEWEB)

    Lanin, V A; Pronina, M V

    1944-01-01

    Samples of Gdov (Estonia) and Volga (Russia) oil shales were oxidized by alkaline permanganate to study the distribution of carbon and the composition of the resulting oxidation products. Gdov shale was rather stable to oxidation and, after 42 hours 61.2 percent of the organic material remained unoxidized. Five hundred hours were required for complete oxidation, and the oxidation products consisted of CO/sub 2/, acetic, oxalic, and succinic acids. The oxidation products from Volga shale consisted of CO/sub 2/, acetic, oxalic, succinic, adipic, phthalic, benzenetricarboxylic, benzenetetracarboxylic, and benzenepentacarboxylic acids. The results indicated that Gdov shale is free of humic substances and is of sapropelic origin, while Volga shale is of sapropelic-humic origin.

  20. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    International Nuclear Information System (INIS)

    Leuenberger, H.

    2002-01-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins

  1. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    International Nuclear Information System (INIS)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-01-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate ( 90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst

  2. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  3. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  4. Algal growth inhibition test results of 425 organic chemical substances

    DEFF Research Database (Denmark)

    Kusk, Kresten Ole; Christensen, Anne Munch; Nyholm, Niels

    2018-01-01

    The toxicity towards the algal species Pseudokirchneriella subcapitata of 425 organic chemical substances was tested in a growth inhibition test. Precautions were taken to prevent loss of the compounds from the water phase and the test system (closed test system, low biomass, shorter test duration......, silanized glass) and to keep pH constant by applying a higher alkalinity. Chemical phase distribution was modelled taking ionization, volatilisation, and adsorption to glass and biomass into consideration. If the modelled water concentration was below 90% of the nominal concentration the calculated EC...... values were corrected accordingly. The model helped to identify substances, where the calculated water concentration was too uncertain. Substances covering a wide range of physical-chemical properties and different modes of action were tested. Median effect concentrations (EC50) lower than 1000 mg/L were...

  5. "JCE" Classroom Activity #105. A Sticky Situation: Chewing Gum and Solubility

    Science.gov (United States)

    Montes-Gonzalez, Ingrid; Cintron-Maldonado, Jose A.; Perez-Medina, Ilia E.; Montes-Berrios, Veronica; Roman-Lopez, Saurie N.

    2010-01-01

    In this Activity, students perform several solubility tests using common food items such as chocolate, chewing gum, water, sugar, and oil. From their observations during the Activity, students will initially classify the substances tested as soluble or insoluble. They will then use their understanding of the chemistry of solubility to classify the…

  6. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen

    International Nuclear Information System (INIS)

    Libert, M.F.; Walczak, I.

    2000-01-01

    Bitumen is employed as an embedding matrix for low and medium level radioactive wastes. An high impermeability and a great resistance against most of chemicals are two of main bitumen properties. These characteristics of bitumen confinement properties may be modified under environmental parameters during intermediate storage or deep repository such as radiations or the presence of water. The radio-oxidation induces an increase of the quantity of leached organic matter. The evolution of the soluble organic species release seems to be linear with the irradiation dose, as soon as the dose is higher than 20 kGy, and seems to be no dependant of the dose rate. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. An increase of the quantity of leached organic matter is also observed in presence of alkaline solutions. Identified molecules, by GC/MS analysis, are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. (authors)

  7. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.

    2016-01-01

    . The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution

  8. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs

  9. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  10. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    Science.gov (United States)

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    Science.gov (United States)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  12. Effect of Technological Conditions on Removing Organic Substances from Landfill Leachates

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2018-01-01

    Full Text Available The paper presents the research on how the effectiveness ofremoving organic substances is affected bythe use of polyurethane foam fillings characterized by a varied porosity and the temperature of the process of treating landfill leachate in a biological sequencing batch reactor. The information on the conversion of organic compounds during the operation of the reactor was obtained by measuring the absorbance for selected wavelengths to describe the process of humification. It was found that the technological conditions used in the experiment affected the effectiveness of reducing the COD, but did not affect the type or amount of the humic substances in the leachate treated. In all of the variants examined, the COD decreased the as the humification level increased, and yet this relation was not linear in character.

  13. Major 20th century changes of water-soluble humic-like substances (HULISWS) aerosol over Europe inferred from Alpine ice cores

    Science.gov (United States)

    Guilhermet, J.; Preunkert, S.; Voisin, D.; Baduel, C.; Legrand, M.

    2013-05-01

    Using a newly developed method dedicated to measurements of water-soluble humic-like substances (HULISWS) in atmospheric aerosol samples, the carbon mass quantification of HULISWS in an Alpine ice core is achieved for the first time. The method is based on the extraction of HULISWS with a weak anion-exchanger resin and the subsequent quantification of the extracted carbon fraction with a total organic carbon (TOC) analyzer. Measurements were performed along a Col du Dôme (4250 m above sea level, French Alps) ice core covering the 1920-2004 time period. The HULISWS concentrations exhibit a well-marked seasonal cycle with winter minima close to 7 ppbC and summer maxima ranging between 10 and 50 ppbC. Whereas the winter HULISWS concentrations remained unchanged over the twentieth century, the summer concentrations increased from 20 ppbC prior to the Second World War to 35 ppbC in the 1970-1990s. These different trends reflect the different types of HULISWS sources in winter and summer. HULISWS are mainly primarily emitted by domestic wood burning in winter and secondary in summer being produced from biogenic precursors. For unknown reason, the HULISWS signal is found to be unusual in ice samples corresponding to World War II.

  14. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    International Nuclear Information System (INIS)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-01-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P OW ) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility

  15. Lipid solubility of the platinum group metals Pt, Pd and Rh in dependence on the presence of complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Sonja; Menzel, Christoph M.; Stueben, Doris; Taraschewski, Horst; Sures, Bernd

    2003-07-01

    All complexing agents had a significant influence on octanol solubility of PGM. - Investigations on the bioaccumulation of the platinum group metals (PGM) Pt, Pd and Rh in aquatic organisms are of growing interest in environmental research due to the increasing emission of these metals by motor vehicles with catalytic converters. Until now, nothing is known about the possible influence of complexing agents on the bioaccumulation capacity of these precious metals. According to the partition coefficient between 1-octanol and water (P{sub OW}) as a measure of bioaccumulation, in this study a simple shaking method was performed in order to investigate the effects of different complexing agents (L-methionine, thio urea, EDTA, humic substances, bile compounds) on the octanol solubility of the PGM. The results demonstrated a significant influence of all agents used. L-Methionine and thio urea decreased the lipid solubility. In contrast, the presence of EDTA, humic substances and especially bile caused a higher transfer of metals in the octanol phase. For most complexing agents tested, the transfer of Pd to the lipid phase was significantly higher compared with Rh and Pt, except for bile acid where the highest octanol solubility was found for Pt. Recent experimental results on PGM accumulation in zebra mussels confirm a high bioaccumulation of Pd which could be predicted from the lipid solubility.

  16. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  17. 7 CFR 205.603 - Synthetic substances allowed for use in organic livestock production.

    Science.gov (United States)

    2010-01-01

    ... livestock production. 205.603 Section 205.603 Agriculture Regulations of the Department of Agriculture... organic livestock production. In accordance with restrictions specified in this section the following synthetic substances may be used in organic livestock production: (a) As disinfectants, sanitizer, and...

  18. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions

    International Nuclear Information System (INIS)

    Duarte, Regina M.B.O.; Pio, Casimiro A.; Duarte, Armando C.

    2005-01-01

    The composition of the water-soluble organic matter from fine aerosols collected in a rural location during two different meteorological conditions (summer and autumn) was investigated by UV-vis, synchronous fluorescence (with Δλ = 20 nm), FT-IR and CPMAS- 13 C NMR spectroscopies. A seasonal variation in the concentration of total carbon, organic carbon and water-soluble organic carbon was confirmed, with higher values during the autumn and lower values during the summer season. The chemical characterisation of the water-soluble organic matter showed that both samples are dominated by a high content of aliphatic structures, carboxyl groups and aliphatic carbons single bonded to one oxygen or nitrogen atom. However, the autumn sample exhibits a higher aromatic content than the summer sample, plus signals due to carbons of phenol, ketones and methoxyl groups. These signals were attributed to lignin breakdown products which are likely to be released during wood combustion processes. The obtained results put into evidence the major contribution of biomass burning processes in domestic fireplaces during low temperature conditions into both the concentration and the bulk chemical properties of the WSOC from fine aerosols

  19. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    Science.gov (United States)

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  20. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  1. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    Science.gov (United States)

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    Energy Technology Data Exchange (ETDEWEB)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  3. Organic components and plutonium and americium state in soils and soil solutions

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kimlenko, I.M.

    2002-01-01

    The fraction composition of humus substances of different type soils and soil solutions have been studied. A distribution of Pu 239, 240 and Am 241 between humus substances fractions of different dispersity and mobility in soil-vegetation cover has been established. It was shown that humus of organic soils fixes plutonium and americium in soil medium in greater extent than humus of mineral soils. That leads to lower migration ability of radionuclides in organic soils. The lower ability of americium to form difficultly soluble organic and organic-mineral complexes and predomination of its anion complexes in soil solutions may be a reason of higher mobility and biological availability of americium in comparison to plutonium during soil-plant transfer (authors)

  4. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  5. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  6. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    Science.gov (United States)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  7. BIOPHARMACEUTICS CLASSIFICATION SYSTEM: A STRATEGIC TOOL FOR CLASSIFYING DRUG SUBSTANCES

    OpenAIRE

    Rohilla Seema; Rohilla Ankur; Marwaha RK; Nanda Arun

    2011-01-01

    The biopharmaceutical classification system (BCS) is a scientific approach for classifying drug substances based on their dose/solubility ratio and intestinal permeability. The BCS has been developed to allow prediction of in vivo pharmacokinetic performance of drug products from measurements of permeability and solubility. Moreover, the drugs can be categorized into four classes of BCS on the basis of permeability and solubility namely; high permeability high solubility, high permeability lo...

  8. Biostimulants and Its Potential Utilization in Functional Water-soluble Fertilizers

    Directory of Open Access Journals (Sweden)

    ZHANG Qiang

    2018-02-01

    Full Text Available Biostimulants are becoming widely applied and extended in the fertilizer industry, because of their effects on soil improvement, anti-stress ability enhancement and root growth promotion, which can increase efficient uptake and utilization of soil nutrients, crop yield and quality.This review introduced the concepts of biostimulants, and summarized the functions and related mechanisms of commonly-applied biostimulants in the market, i.e.humic acid, amino acid, seaweed extracts and plant-growth-promoting bacteria(PGPR. The properties and applied characteristics of different organic wastes containing some biostimulating compounds as the main material of functional water soluble fertilizers (WSFin the industry were presented. The technical keys to compound these organic wastes with some bio-active substances to produce the functional WSF were explored, with the aims to support the value -added utilization of organic wastes, reduce the use of fertilizers, and promote crops忆 quality and quantity.

  9. Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment

    Science.gov (United States)

    Frka, Sanja; Grgić, Irena; Turšič, Janja; Gini, Maria I.; Eleftheriadis, Konstantinos

    2018-01-01

    Long-term measurements of carbon in HUmic-LIke Substances (HULIS-C) of ambient size-segregated water soluble organic aerosols were performed using a ten-stage low-pressure Berner impactor from December 2014 to November 2015 at an urban background environment in Ljubljana, Slovenia. The mass size distribution patterns of measured species (PM - particulate matter, WSOC - water-soluble organic carbon and HULIS-C) for all seasons were generally tri-modal (primarily accumulation mode) but with significant seasonal variability. HULIS-C was found to have similar distributions as WSOC, with nearly the same mass median aerodynamic diameters (MMADs), except for winter when the HULIS-C size distribution was bimodal. In autumn and winter, the dominant accumulation mode with MMAD at ca. 0.65 μm contributed 83 and 97% to the total HULIS-C concentration, respectively. HULIS-C accounted for a large fraction of WSOC, averaging more than 50% in autumn and 40% in winter. Alternatively, during warmer periods the contributions of ultrafine (27% in summer) and coarse mode (27% in spring) were also substantial. Based on mass size distribution characteristics, HULIS-C was found to be of various sources. In colder seasons, wood burning was confirmed as the most important HULIS source; secondary formation in atmospheric liquid water also contributed significantly, as revealed by the MMADs of the accumulation mode shifting to larger sizes. The distinct difference between the spring and summer ratios of HULIS-C/WSOC in fine particles (ca. 50% in spring, but only 10% in summer) indicated different sources and chemical composition of WSOC in summer (e.g., SOA formation from biogenic volatile organic compounds (BVOCs) via photochemistry). The enlarged amount of HULIS-C in the ultrafine mode in summer suggests that the important contribution was most likely from new particle formation during higher emissions of BVOC due to the vicinity of a mixed deciduous forest; the higher contribution of

  10. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale

    Science.gov (United States)

    Orem, William H.; Tatu, Calin A.; Varonka, Matthew S.; Lerch, Harry E.; Bates, Anne L.; Engle, Mark A.; Crosby, Lynn M.; McIntosh, Jennifer

    2014-01-01

    Organic substances in produced and formation water from coalbed methane (CBM) and gas shale plays from across the USA were examined in this study. Disposal of produced waters from gas extraction in coal and shale is an important environmental issue because of the large volumes of water involved and the variable quality of this water. Organic substances in produced water may be environmentally relevant as pollutants, but have been little studied. Results from five CBM plays and two gas shale plays (including the Marcellus Shale) show a myriad of organic chemicals present in the produced and formation water. Organic compound classes present in produced and formation water in CBM plays include: polycyclic aromatic hydrocarbons (PAHs), heterocyclic compounds, alkyl phenols, aromatic amines, alkyl aromatics (alkyl benzenes, alkyl biphenyls), long-chain fatty acids, and aliphatic hydrocarbons. Concentrations of individual compounds range from gas shale unimpacted by production chemicals have a similar range of compound classes as CBM produced water, and TOC levels of about 8 mg/L. However, produced water from the Marcellus Shale using hydraulic fracturing has TOC levels as high as 5500 mg/L and a range of added organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at levels of 1000 s of μg/L for individual compounds. Levels of these hydraulic fracturing chemicals and TOC decrease rapidly over the first 20 days of water recovery and some level of residual organic contaminants remain up to 250 days after hydraulic fracturing. Although the environmental impacts of the organics in produced water are not well defined, results suggest that care should be exercised in the disposal and release of produced waters containing these organic substances into the environment because of the potential toxicity of many of these substances.

  11. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  12. Bioactive substances of the Techirghiol therapeutic mud

    Directory of Open Access Journals (Sweden)

    Mihail Hoteteu

    2018-02-01

    Full Text Available The study aims to characterize Techirghiol's sapropelic mud both by determining the organic and inorganic composition of the constituent phases and by isolating some compounds of humic substances. The distribution between the solid and liquid phases of the peloid of the Ca2+, Mg2+, Fe3+cations, PO43- anion, bioactive compounds of the protein, lipid and carbohydrate classes as well as the phosphatase activity of Techirghiol sapropelic mud are analyzed. The mud is fractionated using the pH and solvent polarity variation and is spectrophotometrically characterized based on absorption in the wavelength range 340-700 nm humic acids and fulvic acids differentiated on the basis of solubility and molecular mass.

  13. On the organ distribution of a selection of 99mTc-tagged tetracyclines

    International Nuclear Information System (INIS)

    Weinhold, S.E.M.

    1983-01-01

    During this study the time course of organ concentrations of 99mTc-tagged tetracycline and of 99mTc-rolitetracycline that had been labeled according to two different methods was investigated with reference to that of two standard preparations, 99mTcO 4 and 3 H-labeled tetracycline, which differ from the test substances in their chemical structures (lipohilia - hydrophilia). As the substances to be investigated here are chemically related, they showed mostly consistent organ concentrations and great vivo stability. The concentrations measured in the organs examined (particularly the lungs) followed the same pattern as the concentrations in the blood and were thus regarded as being primarily the result of convection processes, whereas the concentrations seen in some other organs (especially the kidneys and, to a lesser extent, the liver) rather appeared to be determined by invasion and evasion processes; this held true for 99mTc-labeled tetracyclines as well as for pertechnetate. None of the five substances tested during this study appeared to be able to pass the blood-brain barrier. As regards solubility in water, the 99mTc-labeled tetracyclines occupy an intermediate position between pertechnetate (extremely water-soluble) and 3 H-labeled tetracyclines (extremely lipophil), which can be seen from the moderately high blood concentrations of these preparations. In view of the high organ concentrations that are observed particularly in the kidneys following administration of 99mTc-labeled tetracycline and rolitetracycline, the use of these substances for renal scintiscanning appears worth considering, as only approx. one tenth of the dose of pertechnetate would be required for this purpose. (TRV) [de

  14. Determination of microscopic interactions between actinides and humic substances

    International Nuclear Information System (INIS)

    Brunel, Benoit

    2015-01-01

    Large amount of plutonium has been introduced into the environment as a result of nuclear weapons testing, and nuclear power-plant accidents. Contaminated areas, which need a particular survey, have become a very interesting place to study and understand the plutonium behaviour in the environment. Until few years ago, it was admitted that plutonium introduced into subsurface environment is relatively immobile, owing to its low solubility in ground water and strong sorption onto rocks. However, studies of contaminated areas show that humic substances, which are ubiquitous in environment, can alter the speciation of metal ion, e.g. plutonium, and thus their migration. These humic substances are major components of the natural organic matter in soil and water as well as in geological organic deposits such as lake sediments, peats and brown coals. They are complex heterogeneous mixtures of polydisperse supra-molecules formed by biochemical and chemical reactions during the decay and transformation of plant and microbial remains. The knowledge of the impact of humic substances on the plutonium migration is required to assess their transport in natural systems. However, due to the complex and heterogeneous nature of humic substances, there are a lot of difficulties in the description of microscopic interactions. The aim of this PhD thesis is to evaluate as precisely as possible interactions between actinides and humic substances. This work is divided in two parts: on the one hand humic substances will be separated to identify each component, on the other hand the speciation of actinides with characterized humic substances will be studied. In the first part of this study, new methods are developed to study the speciation of actinides with humic substances using two kinds of mass spectrometers: an ICP-MS and a high resolution mass spectrometer using various ionization devices (ESI, APCI, DART, APPI) in order to determine all active molecules for the complexation. In the

  15. Near-infrared imaging system for detecting small organic foreign substances in foods

    Science.gov (United States)

    Tashima, Hiroto; Genta, Tsuneaki; Ishii, Yuya; Ishiyama, Takeshi; Arai, Shinichi; Fukuda, Mitsuo

    2013-09-01

    Contamination of foodstuffs with foreign substances is a serious problem because it often has negative effects on consumer health. However, detection of small organic substances in foods can be difficult because they are undetectable with traditional inspection apparatus. In this work, we developed new equipment that can detect small organic contaminant substances in food at high speed using a near-infrared (NIR) imaging technique. The absorption spectra of various foods were measured, and the spectra showed low absorbance at wavelengths from 600 nm to 1150 nm. Based on the observable wavelength range of a CMOS camera, which has a high dynamic range, superluminescent diodes (SLDs) with a wavelength of 830 nm were selected as light sources. We arranged 40 SLDs on a flat panel and placed a diffusion panel over them. As a result, uniformly distributed light with an intensity of 0.26 mW/cm2 illuminated an area of 6.0 cm × 6.0 cm. Insects (3 mm wide) and hairs (0.1 mm in diameter) were embedded in stacked ham slices and in chocolate, with a total thickness of 5 mm in each case, and the transmission images were observed. Both insects and hairs were clearly observed as dark shadows with high contrast. We also compensated the images by using software developed in this study to eliminate low spatial frequency components in the images and improve the sharpness and contrast. As a result, the foreign substances were more clearly distinguished in the 5-mm-thick ham.

  16. Effect of amides on sodium tetraborate solubility

    International Nuclear Information System (INIS)

    Tsekhanskij, R.S.; Skvortsov, V.G.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1986-01-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate

  17. Effect of amides on sodium tetraborate solubility

    Energy Technology Data Exchange (ETDEWEB)

    Tsekhanskij, R S; Skvortsov, V G; Molodkin, A K; Sadetdinov, Sh V

    1986-11-01

    Methods of solubility and refractometry at 25 deg C were applied to investigate sodium tetraborate - formamide (dimethylformamide) - water systems. It is stated that they are of simple eutonic type as well as the earlier described sodium tetraborate-acetamide-water system. Amides reduce solubility of the salt. The effect of contact interaction between dissolved substances on salt cation hydration and thus on the value of liotropic amide effect is confirmed. This value is found to be also depend on the number of molecules of coordination water in the initial crystalline hydrate.

  18. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor.

    Science.gov (United States)

    Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W

    2013-11-01

    The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Fixation and transport of uranium by humic substances (1962)

    International Nuclear Information System (INIS)

    Martin, J.

    1962-03-01

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [fr

  20. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  1. Effect of the structure, solid state and lipophilicity on the solubility of novel bicyclic derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Volkova, Tatyana V.; Proshin, Alexey N.; Perlovich, German L.

    2014-01-01

    Highlights: • The solubility in buffer pH 7.4 of novel bicyclo-derivatives of amine were measured. • The influence of melting parameters and lipophilicity on the solubility was studied. • The thermodynamic parameters of the solubility process were calculated. - Abstract: Novel bicyclic derivatives have been synthesized. The solubility of drug-like substances in phosphate buffer rH 7.4 has been measured within the range of (9.02 · 10 −5 to 1.05 · 10 −4 ) mol/l. The relationship between the chemical nature and the structure of the aryl substituents and the solubility parameter was investigated. The fusion temperatures, enthalpies and entropies have been determined experimentally. The influence of thermophysical characteristics and lipophilicity on the solubility was studied using regression analysis. The calculations by the solubility/lipophilicity equation showed an overall improvement of the predictions equal to 0.5 log units. It was concluded that the solvation has a considerable influence on the solubility of the compounds under consideration. It was also determined that the alkyl- and halogen-derivatives solubility values correlate with HYBOT descriptors characterizing the (donor + acceptor) properties of the substances. The thermodynamic parameters of the solubility process were calculated using the temperature dependences. The study also revealed that the solubility of the bicyclic compounds is characterized by high endothermicity of the processes and negative entropies

  2. Soluble dendrimers europium(III) β-diketonate complex for organic memory devices

    International Nuclear Information System (INIS)

    Wang Binbin; Fang Junfeng; Li Bin; You Han; Ma Dongge; Hong Ziruo; Li Wenlian; Su Zhongmin

    2008-01-01

    We report the synthesis of a soluble dendrimers europium(III) complex, tris(dibenzoylmethanato)(1,3,5-tris[2-(2'-pyridyl) benzimidazoly]methylbenzene)-europium(III), and its application in organic electrical bistable memory device. Excellent stability that ensured more than 10 6 write-read-erase-reread cycles has been performed in ambient conditions without current-induced degradation. High-density, low-cost memory, good film-firming property, fascinating thermal and morphological stability allow the application of the dendrimers europium(III) complex as an active medium in non-volatile memory devices

  3. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    Science.gov (United States)

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An attempt to characterize certain organic and mineral substances by their stable isotope composition

    International Nuclear Information System (INIS)

    Bricout, J.; Fontes, J.C.; Letolle, R.; Mariotti, A.; Merlivat, L.

    1975-01-01

    The determination of the relative abundance of various stable isotopes - deuterium, oxygen-18, carbon-13, nitrogen-15, sulphur-34 - can be used to characterize the origin of a water body and of an organic or mineral substance in the environment. This results from the discovery that isotopic fractioning by living organisms occurs. The stable isotope composition of any substance reflects, at least partly, the various stages of its formation. A number of examples supporting this hypothesis are given. The passage of water through plants, or alcoholic fermentation, substantially modifies the stable isotope composition of water. The assimilation of atmospheric carbon dioxide involves a reduction in the carbon-13 content which varies depending on the enzymatic mechanism of photosynthesis. The enzymatic reactions that cause the biosynthesis of various organic substances in higher plants are accompanied by partial exclusion of deuterium, an exclusion which is greater or smaller depending on the biosynthesis pathway followed. The bacterial reduction of sulphur compounds involves a high rate of isotopic fractioning. As a result, industrial sulphates obtained by oxidation of reduced sulphur associated with hydrocarbon deposits are depleted in 34 S in comparison with natural sulphates. Similarly, the authors have observed that nitrates produced by the plant biological cycle are rich in nitrogen-15 compared to synthesized nitrates

  5. Nanometer-scale structure of alkali-soluble bio-macromolecules of maize plant residues explains their recalcitrance in soil.

    Science.gov (United States)

    Adani, Fabrizio; Salati, Silvia; Spagnol, Manuela; Tambone, Fulvia; Genevini, Pierluigi; Pilu, Roberto; Nierop, Klaas G J

    2009-07-01

    The quantity and quality of plant litter in the soil play an important role in the soil organic matter balance. Besides other pedo-climatic aspects, the content of recalcitrant molecules of plant residues and their chemical composition play a major role in the preservation of plant residues. In this study, we report that intrinsically resistant alkali-soluble bio-macromolecules extracted from maize plant (plant-humic acid) (plant-HA) contribute directly to the soil organic matter (OM) by its addition and conservation in the soil. Furthermore, we also observed that a high syringyl/guaiacyl (S/G) ratio in the lignin residues comprising the plant tissue, which modifies the microscopic structure of the alkali-soluble plant biopolymers, enhances their recalcitrance because of lower accessibility of molecules to degrading enzymes. These results are in agreement with a recent study, which showed that the humic substance of soil consists of a mixture of identifiable biopolymers obtained directly from plant tissues that are added annually by maize plant residues.

  6. Justification of the solvent choice for the industrial amizon substance production

    Directory of Open Access Journals (Sweden)

    V. A. Georgiyants

    2014-08-01

    solvents as the most similar in their properties and acceptable cost, we considered for possible use in industrial amizone production. In the first phase the solubility of the intermediate (Bink and amizone in these solvents were studied. It was found that substance was very slightly soluble in cold organic solvents and was easily soluble in boiling. Water adding to these solvents in various ratios significantly improved solubility, and the best solubility, as expected, had water. To justify the choice of solvents for the first and second stage of the synthesis and crystallization an experimental study of the efficacy of using ethanol, acetone and 2-propanol in various processes of synthesis was done. Thus the yield of final product was evaluated and the amount of associated impurities before and after crystallization was measured. It was proved that at the synthesis stage it is expedient to use 2-propanol and as crystallization solvent – ethanol. CONCLUSIONS 1. Experimental studies for the justification for the choice of solvent for the industrial synthesis of isonicotinic acid benzylamide iodomethylate substance considering QbD concepts and classes of toxic solvents were done. 2. It was established that in the synthesis is optimal to use 2-propanol and for crystallization - ethanol.

  7. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    Science.gov (United States)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  8. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  9. SPATIAL AND TEMPORAL DISTRIBUTION OF COLORED DISSOLOVED ORGANIC MATTER (CDOM) IN SOUTHERN NEW ENGALND COASTAL WATERS

    Science.gov (United States)

    The concentration of colored dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. CDOM is extracted from water-soluble humic substances and transported by runoff into lakes and coastal waters. CDOM is a...

  10. [Postfire restoration of organic substance in the ground cover of the larch forests in the permafrost zone of central Evenkia].

    Science.gov (United States)

    Prokushkin, S G; Bogdanov, V V; Prokushkin, A S; Tokareva, I V

    2011-01-01

    The role of ground fires in transformation of organic substances in the ground cover of larch stands in the permafrost zone of Central Siberia was studied, as was the postfire restoration dynamics of organic substances. Ground fires lead to a considerable decrease in concentrations and resources of organic carbon and its individual fractions in the ground cover, and restoration takes many decades.

  11. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  12. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sotelo, M., E-mail: m.felipe-sotelo@lboro.ac.uk [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Edgar, M. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Beattie, T. [MCM Consulting. Täfernstrasse 11, CH 5405 Baden-Dättwil (Switzerland); Warwick, P. [Enviras Ltd., LE11 3TU Loughborough, Leicestershire (United Kingdom); Evans, N.D.M.; Read, D. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom)

    2015-12-30

    Highlights: • Citrate increases the solubility of Ni, Th and U between 3 and 4 orders of magnitude. • Theophrastite is the solubility controlling phase of Ni in 95%-saturated Ca(OH){sub 2}. • U(VI) and Ni may form Metal-citrate-OH complexes stabilised by the presence of Ca{sup 2+}. - Abstract: The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1 M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH){sub 2} solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2–4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH){sub 2} (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca{sup 2+}. Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes.

  13. Pharmaceutical cocrystals: the coming wave of new drug substances.

    Science.gov (United States)

    Brittain, Harry G

    2013-02-01

    Solid crystalline phases containing two cocrystallized components offer a new development pathway whereby one can potentially improve the physical characteristics (i.e., equilibrium solubility, dissolution rate, solid-state stability, etc.) of a drug substance that exhibits a profile that is less than desirable. In this commentary, the topic of pharmaceutical cocrystals will be briefly explored, and a short exposition of the solubility and dissolution rate advantages that have been realized in various systems will be provided. The Guidance for Industry document recently proposed by United States Food and Drug Administration will be outlined, and its requirements explained. Finally, the subset of pharmaceutical cocrystals that consist of a drug substance and a salt of that substance (termed a salt cocrystal) will be examined to illustrate this additional class of pharmaceutical cocrystals that may offer significant scientific and regulatory advantages. Copyright © 2012 Wiley Periodicals, Inc.

  14. Prediction of the solubility in lipidic solvent mixture: Investigation of the modeling approach and thermodynamic analysis of solubility.

    Science.gov (United States)

    Patel, Shruti V; Patel, Sarsvatkumar

    2015-09-18

    Self-micro emulsifying drug delivery system (SMEDDS) is one of the methods to improve solubility and bioavailability of poorly soluble drug(s). The knowledge of the solubility of pharmaceuticals in pure lipidic solvents and solvent mixtures is crucial for designing the SMEDDS of poorly soluble drug substances. Since, experiments are very time consuming, a model, which allows for solubility predictions in solvent mixtures based on less experimental data is desirable for efficiency. Solvents employed were Labrafil® M1944CS and Labrasol® as lipidic solvents; Capryol-90®, Capryol-PGMC® and Tween®-80 as surfactants; Transcutol® and PEG-400 as co-solvents. Solubilities of both drugs were determined in single solvent systems at temperature (T) range of 283-333K. In present study, we investigated the applicability of the thermodynamic model to understand the solubility behavior of drugs in the lipiodic solvents. By using the Van't Hoff and general solubility theory, the thermodynamic functions like Gibbs free energy, enthalpy and entropy of solution, mixing and solvation for drug in single and mixed solvents were understood. The thermodynamic parameters were understood in the framework of drug-solvent interaction based on their chemical similarity and dissimilarity. Clotrimazole and Fluconazole were used as active ingredients whose solubility was measured in single solvent as a function of temperature and the data obtained were used to derive mathematical models which can predict solubility in multi-component solvent mixtures. Model dependent parameters for each drug were calculated at each temperature. The experimental solubility data of solute in mixed solvent system were measured experimentally and further correlated with the calculates values obtained from exponent model and log-linear model of Yalkowsky. The good correlation was observed between experimental solubility and predicted solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 2,6-Bis(benzo[b]thiophen-2-yl-3,7-dipentadecyltetrathienoacene (DBT-TTAR2 as an Alternative of Highly Soluble p-type Organic Semiconductor for Organic Thin Film Transistor (OTFT Application

    Directory of Open Access Journals (Sweden)

    Mery B. Supriadi

    2013-03-01

    Full Text Available A new compound of organic semiconductor based on tetrathienoacene (TTA derivatives, DBT-TTAR2 was synthesized and characterized. The corporation of dibenzo[b,d]thiophene (DBT group and alkyl substituent in both ends of TTA core have a significant effect on their π-π molecular conjugation length, energy gaps value and solubility properties. DBT-TTAR2 is fabricated as p-type organic semiconductor of organic thin film transistor (OTFT by solution process at Industrial Technology Research Institute, Taiwan. A good optical, electrochemical, and thermal properties of DBT-TTAR2 showed that its exhibits a better performance as highly soluble p-type organic semiconductor.

  16. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing

    DEFF Research Database (Denmark)

    Seiler, Thomas-Benjamin; Best, Nina; Fernqvist, Margit Møller

    2014-01-01

    to animal testing in (eco)toxicology. However, for hydrophobic organic chemicals it remains a technical challenge to ensure constant freely dissolved concentration at the maximum exposure level during such biotests. Passive dosing with PDMS silicone was thus applied to control the freely dissolved...... further data to support the close relationship between the chemical activity and the toxicity of hydrophobic organic compounds. Passive dosing from PDMS silicone enabled reliable toxicity testing of (highly) hydrophobic substances at aqueous solubility, providing a practical way to control toxicity...... exactly at the maximum exposure level. This approach is therefore expected to be useful as a cost-effective initial screening of hydrophobic chemicals for potential adverse effects to freshwater vertebrates....

  18. The effect of humus on biological cleaning of soils - association of harmful organic substances from mineral oil contaminators

    International Nuclear Information System (INIS)

    Richnow, H.H.; Seifert, R.; Michaelis, W.

    1993-01-01

    The association of organic harmful substances and particularly their metabolites with the humin fraction is a process which has great ecological importance. The knowledge of the type and extent of such associations of harmful substances with the humin fraction of the soil plays a central part in the assessment of loading by harmful substances or the success of biological cleaning up measures. (orig.) [de

  19. Zinc and lead detoxifying abilities of humic substances relevant to environmental bacterial species.

    Science.gov (United States)

    Perelomov, L V; Sarkar, Binoy; Sizova, O I; Chilachava, K B; Shvikin, A Y; Perelomova, I V; Atroshchenko, Y M

    2018-04-30

    The effect of humic substances (HS) and their different fractions (humic acids (HA) and hymatomelanic acids (HMA)) on the toxicity of zinc and lead to different strains of bacteria was studied. All tested bacteria demonstrated a lower resistance to zinc than lead showing minimum inhibitory concentrations of 0.1 - 0.3mM and 0.3-0.5mM, respectively. The highest resistance to lead was characteristic of Pseudomonas chlororaphis PCL1391 and Rhodococcus RS67, while Pseudomonas chlororaphis PCL1391 showed the greatest resistance to zinc. The combined fractions of HS and HA alone reduced zinc toxicity at all added concentrations of the organic substances (50 - 200mgL -1 ) to all microorganisms, while hymatomelanic acids reduced zinc toxicity to Pseudomonas chlororaphis PCL1391 at 200mgL -1 organic concentration only. The HS fractions imparted similar effects on lead toxicity also. This study demonstrated that heavy metal toxicity to bacteria could be reduced through complexation with HS and their fractions. This was particularly true when the metal-organic complexes held a high stability, and low solubility and bioavailability. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Effect of coexisting organic substances on radiation resistance of Bacillus pumilus spores suspended in water

    International Nuclear Information System (INIS)

    Kigawa, Akiko; Tateishi, Tsuneo; Iso, Katsuaki; Kimura, Toshio; Mamuro, Tetsuo

    1987-01-01

    D values of B. pumilus spores suspended in water have been shown to increase in the presence of some coexisting organic substances. For elucidation of a mechanism or mechanisms involved in such a phenomenon, D-values of B.p. spores were examined by suspending them in aqueous solutions containing various concentrations of ethanol, glycerin, inulin and PVA. All these substances showed abrupt changes in D value at a narrow concentration range of 1 - 10 weight ppm. Solutions containing these substances at their lower limit concentrations and upper limit were prepared, sealed in incubator bottles leaving no air layer and irradiated at 0.7 Mrad with γ-rays. Winkler's method was used for the determination of oxygen concentrations in these solutions. The initial concentration of dissolved oxygen was 8.2 ppm. After irradiation, 3 - 5 ppm of oxygen remained in those solutions containing the lower limit (1 ppm), whereas only less than 0.5 ppm in those containing the upper limits, 2.5 ppm of ethanol, 5 ppm of PVA and 10 ppm each of glycerin and inulin. Therefore, the observed effect of coexisting organic substances on radiation resistance of B. pumilus can be explained by the so-called ''oxygen effect''. (author)

  1. Microstructural control over soluble pentacene deposited by capillary pen printing for organic electronics.

    Science.gov (United States)

    Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung

    2013-08-28

    Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.

  2. Extraction of scandium by organic substance melts

    International Nuclear Information System (INIS)

    Gladyshev, V.P.; Lobanov, F.I.; Zebreva, A.I.; Andreeva, N.N.; Manuilova, O.A.; Il'yukevich, Yu.A.

    1984-01-01

    Regularities of scandium extraction by the melts of octadecanicoic acid, n-carbonic acids of C 17 -C 20 commerical fraction and mixtures of tributylphosphate (TBP) with paraffin at (70+-1) deg C have been studied. The optimum conditions for scandium extraction in the melt of organic substances are determined. A scheme of the extraction by the melts of higher carbonic acids at ninitial metal concentrations of 10 -5 to 10 -3 mol/l has been suggested. The scandium compound has been isolated in solid form, its composition having been determined. The main advantages of extraction by melts are as follows: a possibility to attain high distribution coefficients, distinct separation of phases after extraction, the absence of emulsions, elimination of employing inflammable and toxic solvents, a possibility of rapid X-ray fluorescence determinatinon of scandium directly in solid extract

  3. Estimation of Properties of Pure Organic Substances with Group and Pair Contributions

    Directory of Open Access Journals (Sweden)

    J.E.S. Ourique

    1997-06-01

    Full Text Available ABSTRACTbstract - This work presents a new predictive method for the estimation of properties of pure organic substances. Each compound is assigned a molecular graph or an adjacency matrix representing its chemical structure, from which properties are then obtained as a summation of all contributions associated with functional groups and chemically bonded pairs of groups. The proposed technique is applied to the estimation of critical temperature, critical pressure, critical volume and normal boiling point of 325 organic compounds from different chemical species. Accurate predictions based solely on chemical structure are obtained

  4. Sorption of Tannin and Related Phenolic Compounds and Effects on Extraction of Soluble-N in Soil Amended with Several Carbon Sources

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2012-02-01

    Full Text Available Some tannins sorb to soil and reduce soluble-N. However, we know little about how they interact with organic amendments in soil. Soil (0–5 cm from plots, which were amended annually with various carbon substances, was treated with water (control or solutions containing tannins or related phenolic subunits. Treatments included a proanthocyanidin, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG, gallic acid, and methyl gallate. We applied solutions of each of these materials to soil and measured soluble-C and -N in supernatants after application and following extraction with hot water (16 h, 80 °C. Sorption was low for non-tannin phenolics, methyl gallate, gallic acid, and catechin, and unaffected by amendment. Sorption of tannins, proanthocyanidin, tannic acid, and PGG, was higher and greater in plots amended with biosolids or manure. Extraction of soluble-N was not affected by amendment or by catechin, proanthocyanidin, or methyl gallate, but was reduced with PGG, tannic acid and gallic acid. Soil cation exchange capacity increased following treatment with PGG but decreased with gallic acid, irrespective of amendment. Tannins entering soil may thus influence soil organic matter dynamics and nutrient cycling but their impact may be influenced by the composition of soil organic matter.

  5. Solubility of ocular therapeutic agents in self-emulsifying oils. I. Self-emulsifying oils for ocular drug delivery: solubility of indomethacin, aciclovir and hydrocortisone.

    Science.gov (United States)

    Czajkowska-Kośnik, Anna; Sznitowska, Małgorzata

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) were prepared by dissolving Cremophor EL, Tween 20, Tween 80 and Span 80 (1% or 5%) in oils (Miglyol 812 or castor oil). Solubilities of three ophthalmic drugs, namely aciclovir, hydrocortisone and indomethacin were determined in these systems. In addition, the effect of a small amount of water (0.5% and 2%) on solubilization properties of the systems was estimated. Of the three substances, indomethacin showed the best solubility in Miglyol while aciclovir was practically insoluble in this oil. The surfactants usually increased drug solubility in the oily phase. Only Tween 20 was found to decrease the solubility of aciclovir and hydrocortisone in Miglyol. Addition of a small amount of water to the oil/surfactant system increased solubility of hydrocortisone, but not of indomethacin. The results of the current study may be utilized to design a suitable composition of SEDDS and allow continuation of research on this type of drug carriers.

  6. [Designer drugs and caffeine - characteristics of psychoactive substances and their impact on the organism].

    Science.gov (United States)

    Wierzejska, Regina

    2014-01-01

    For many teenagers the time of growing up is a period of trying prohibited substances. Nowadays apart from alcohol and tobacco new designed, psychoactive substances known as "smart drugs" or "legal highs" are available. Intensive development of their market is taking place in the last few years which is difficult to overcome by regulations only. Toxicological tests used now are not able to detect the presence of many such substances in the body. Designer drugs cause the interest of young people even from small towns and many times taking them give effects requiring medical help. Caffeine is also a psychoactive substance but depending on the dose it can have positive or detrimental effect. Recently there are more and more products with caffeine, especially drinks and dietary supplements, what can cause the increase of consumption of caffeine. Children are particularly exposed to the adverse effect of high consumption of caffeine because of their small body weight and development of the central nervous system. This article presents actual data about the market of designer drugs, frequency of using them, consumption of caffeine by children and teenagers and about the impact of these substances on the organism.

  7. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  8. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Chalbot, M.-C.; Nikolich, G.; Etyemezian, V.; Dubois, D.W.; King, J.; Shafer, D.; Gamboa da Costa, G.; Hinton, J.F.; Kavouras, I.G.

    2013-01-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  9. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  10. Reversible, reagentless solubility changes in phosphatidylcholine-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Mackiewicz, Marilyn R; Ayres, Benjamin R; Reed, Scott M

    2008-01-01

    Phosphatidylcholine (PC) is a versatile ligand for synthesizing gold nanoparticles that are soluble in either organic or aqueous media. Here we report a novel route to organic-soluble, PC-stabilized gold nanoparticles that can be re-suspended in water after removal of the organic solvent. Similarly, we show that PC-stabilized gold nanoparticles synthesized in water can be re-suspended in organic solvents after complete removal of water. Without complete removal of the solvent, the nanoparticles retain their original solubility and do not phase transfer. This change in solvent preference from organic to aqueous and vice versa without the use of an additional phase transfer reagent is novel, visually striking, and of utility for synthetic modification of nanoparticles. This approach allows chemical reactions to be performed on nanoparticles in organic solvents followed by conversion of the products to water-soluble materials. A narrow distribution of PC-stabilized gold nanoparticles was obtained after phase transfer to water as characterized by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM), demonstrating that the narrow distribution obtained from the organic synthesis is retained after transfer to water. This method produces water-soluble nanoparticles with a narrower dispersity than is possible with direct aqueous synthesis

  11. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    International Nuclear Information System (INIS)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na + , Ca 2+ , SO 4 2- and HCO 3 - , and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author)

  12. Solubility measurement and correlation of the form A of ibrutinib in organic solvents from 278.15 to 323.15 K

    International Nuclear Information System (INIS)

    Chen, Zhenzhen; Zhai, Jinghuan; Liu, Xijian; Mao, Shimin; Zhang, Lijuan; Rohani, Sohrab; Lu, Jie

    2016-01-01

    Highlights: • The solubility of ibrutinib (form A) in organic solvents was firstly reported. • Apelblat, λh, empirical polynomial equations were used to correlate the solubility. • The solubility order: MEK > acetone > EA > 1-butanol > acetonitrile ≈ IPA > MTBE. - Abstract: In this work, the solubility of the form A of ibrutinib in isopropanol (IPA), 1-butanol, ethyl acetate (EA), acetonitrile, acetone, methyl ethyl ketone (MEK) and methyl tertiary butyl ether (MTBE) was firstly experimentally determined by a gravimetric method in the temperature range from 278.15 to 323.15 K at atmospheric pressure. The experimental solubility data were correlated by several commonly used models including the modified Apelblat equation, the Buchowski-Ksiazczak λh equation and an empirical quartic polynomial equation. The results showed that, in the temperature range investigated, the solubility of ibrutinib generally increased with the increasing temperature, and the solubility order at the room temperature in the studied solvents was: MEK > acetone > ethyl acetate > 1-butanol > acetonitrile ≈ isopropanol > MTBE. In addition, all the models gave satisfactory correlation results, in which the empirical quartic polynomial equation stood out to be more suitable with a higher accuracy than the other two equations.

  13. Fixation and transport of uranium by humic substances (1962); Fixation et transport de l'uranium par les substances humiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-03-15

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [French] L'etude du role des matieres organiques dans les minerais contenant de l'uranium sous une forme disseminee, sans mineralisation, est abordee en envisageant les reactions de l'uranium et de l'humus. Des 'acides humiques' sont extraits de la tourbe par l'ammoniaque. Par leur capacite d'echange cationique, ils forment des humates avec les cations metalliques; les humates de metaux monovalents, normalement solubles dans l'eau, peuvent etre rendus insolubles apres traitement des acides humiques par le methanal. Les humates de metaux plurivalents sont insolubles dans l'eau, en particulier ceux de U (IV) et d'uranyle U (VI). L'action de solutions d'uranylcarbonates de Li, Na, K, Mg, Ca sur

  14. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  15. An evaluation of organic substance fraction removal during ion exchange with Miex-DOC resin.

    Science.gov (United States)

    Wolska, Małgorzata

    2015-07-01

    In this study, the usefulness of Miex-DOC resin in eliminating organic substances and their fractions from water sources for drinking water was evaluated. The objects of study were samples from three surface water sources and one infiltration water source taken at water treatment plants before treatment in technical conditions. In particular, the effectiveness of removing biodegradable and non-biodegradable fractions as a function of resin dosages and water-resin contact times was evaluated. The ion exchange process with the Miex-DOC resin achieved a high effectiveness in removing aromatic non-biodegradable organic substances, and therefore a reduction in UV254 absorbance. The biodegradable fraction is much less susceptible to removal yet its removal effectiveness allows for a significant reduction in hazards connected with secondary microorganism development. The results of this study indicate the possibility of using ion exchange with the Miex-DOC resin for effective removal of disinfection by-product precursors.

  16. X-ray photoelectron spectroscopy of HUPA organic substances: natural and synthetic humic compounds

    International Nuclear Information System (INIS)

    Barre, N.; Mercier-Bion, F.; Reiller, P.

    2004-01-01

    X-ray photoelectron spectroscopy (XPS) results on the characterisation of the HUPA organic materials, i.e. natural humic substances ''GOHY 573'' (fulvic acid FA and humic acid HA) extracted from the Gorleben ground waters, and synthetic humic acids ''M1'' and ''M42'' obtained from a standard melanoidin preparation from FZ Rossendorf, are presented in this paper. XPS investigations were focused on the determination of the chemical environment of the major elements as carbon, nitrogen, oxygen and sulphur, and on the identification of trace metals trapped by these organic compounds. (orig.)

  17. Humification and nonhumification pathways of the organic matter stabilization in soil: A review

    Science.gov (United States)

    Semenov, V. M.; Tulina, A. S.; Semenova, N. A.; Ivannikova, L. A.

    2013-04-01

    Polymeric and supramolecular models of humic substances (HSs) are considered. It has been noted that the HSs in natural objects can simultaneously occur in the forms of macromolecular polymers and supramolecularly organized monomers; macromolecular polymers of HSs can have some properties of suprastructures or be associated into aggregates, and covalent bonds can be formed between the monomers of supramolecules. Mineral particles of soil act as catalysts in chemical reactions between individual compounds, sorbents of biomolecules, and a surface for self-assembling HSs. It is supposed that the combination of such physicochemical processes and phenomena in soil as cementation, charring, incrustation, occlusion, sedimentation, sorption, coagulation, flocculation, encapsulation, complexation, and intercalation, as well as the entrapment of macroorganic, particulate, and soluble organic substances in micropores, can be as important for the stabilization of organic matter as the interactions between biomolecules with the formation of HSs.

  18. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  19. Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts

    International Nuclear Information System (INIS)

    Wenzel, T.J.; Zaia, J.

    1987-01-01

    Lanthanide complexes of the formula [Ln(fod) 4 ] - (FOD, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) are effective organic-soluble nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. The shift reagent is formed in solution from Ln(fod) 3 and Ag(fod) or K(fod). The selection of Ag(fod) or K(fod) in forming the shift reagent is dependent on the anion of the organic salt. Ag(fod) is more effective with halide salts, whereas K(fod) is preferred with tetrafluoroborate salts. Resolution of diastereotopic hydrogen atoms was observed in the shifted spectra of certain substrates. Enantiomeric resolution was obtained in the spectrum of sec-butylisothiouronium chloride with a chiral shift reagent. The reagents can be employed in solvents such as chloroform and benzene

  20. Solubility and solution thermodynamics of 2-methyl-6-nitroaniline in ten organic solvents at elevated temperatures

    International Nuclear Information System (INIS)

    Cong, Yang; Wang, Jian; Du, Cunbin; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 2-methyl-6-nitroaniline in ten solvents were determined. • The solubility were correlated with four thermodynamic models. • Standard dissolution enthalpy and excess enthalpy of the solutions were computed. - Abstract: Knowledge of solubility for 2-methyl-6-nitroaniline in different solvents is essential for its purification and further theoretical studies. In this paper, the solid-liquid equilibrium for 2-methyl-6-nitroaniline in ten pure organic solvents (methanol, ethanol, n-propanol, isopropanol, toluene, ethyl acetate, acetonitrile, acetone, cyclohexane and 1,4-dioxane) was established using the isothermal saturation method at temperatures T = (278.15–313.15) K under pressure of 101.2 kPa, and the solubility of 2-methyl-6-nitroaniline in these solvents were determined by a high-performance liquid chromatography (HPLC). In general, the mole fraction solubility followed the following order from high to low in different solvents: 1,4-dioxane (0.1799–0.3390) > acetone (0.1128–0.3010) > ethyl acetate (0.08414–0.2654) > acetonitrile (0.04179–0.2027) > toluene (0.02367–0.1104) > n-propanol (0.01080–0.04514) > ethanol (0.01020–0.04202) > isopropanol (0.008595–0.03763) > methanol (0.007391–0.03198) > cyclohexane (0.001027–0.005617). The modified Apelblat equation, λh equation, Wilson model and NRTL model were employed to correlate the measured solubility data of 2-methyl-6-nitroaniline in the selected solvents. Results indicated that the largest values of RAD and RMSD acquired by the four models were less than 0.76% and 9.13 × 10"−"4, respectively. The modified Apelblat equation provided better results than the other three models. Furthermore, the standard dissolution enthalpy and excess enthalpy of the solutions were computed from the solubility values. The standard dissolution enthalpies vary within the range from (14.88 to 45.57) kJ·mol"−"1 and are all positive, the dissolution process of 2-methyl-6

  1. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries

    Science.gov (United States)

    Kim, Hyun-seung; Lee, Keon-Joon; Han, Young-Kyu; Ryu, Ji Heon; Oh, Seung M.

    2017-04-01

    A methyl-substituted p-phenylenediamine (PD), N,N,N‧,N‧-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.

  3. An exploratory screening of organic substances in combustion residues; En orienterande screening av organiska aemnen i askor

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Lennart; Lind, Bo (Swedish Geotechnical Inst., Linkoeping (Sweden)); Bjurstroem, Henrik (AaF-Process, Stockholm (Sweden))

    2008-09-15

    Ash consists of the inorganic incombustible part of fuels, but it also always contains a small amount of organic matter, occurring as trace substances with concentrations in the order of mg/kg and lower. A few types of compounds are analysed comparatively frequently, e.g. PCDD/F (the so-called dioxins), but knowledge about the other organic substances is far from exhaustive. In this investigation, three ash samples have been subjected to a semi-quantitative GC/MS screening of semi-volatile substances. In this method of analysis the substances are extracted, separated in a gas chromatograph and identified as well as quantified using a mass spectrometer. Even if this type of analysis can be performed by researchers at universities, we chose to let commercial analytical laboratories do it in order to assess results from a nearly routine work. Residues from woody biofuels (recovered wood, virgin wood and bark) were chosen in order to complement the information that has previously been obtained on ash from municipal solid waste incineration. The GC/MS screening was carried out on both non-derivatised samples (non-polar compounds) and derivatised samples (polar compounds). The investigation aimed also at assessing the potential and the limitations of the screening method. In addition, the potentially hazardous properties of each identified substance were examined. Screening without and with derivatization is a cost-effective method to chart the content of semi-volatile organic substances. The results are relevant, but the method commercially available in Sweden is at present not mature enough for the use considered. It must be further developed before it can be included in e.g. regulatory texts. Limitations may be found in several steps of the method, principally: - Extraction and derivatisation, as the internal standard added is recovered only to a small extent for some ash samples, indicating that not everything has been found - Detection, i.e. both the sensitivity of

  4. Critical analysis of the data on complexation of lanthanides and actinides by natural organic matter: particular case of humic substances

    International Nuclear Information System (INIS)

    Reiller, P.

    2010-01-01

    This document proposes a critical analysis of the models that describe the actinides and lanthanides complexation by natural organic matter in general and by humic substances in particular. In order to better delimit the particular properties of these substances the most influent physical and chemical properties on complexation are recalled as a preamble. Models as well as data that has been used are reviewed, compiled, and eventually compared to independent data in order to identify (i) their application domain, (ii) the possible simplifications which permit to obtain operational models, (iii) the conditions in which simplifications cannot be ascertained yet, and (iv) the data or fields of knowledge which are still too uncertain. A comparison between the different models is proposed in order to adapt parameters from one model to another minimising the experimental acquisitions, or at least to focus on missing data. Usually, data on the complexation of free ions M z+ are reliable; as soon as hydrolysis, or competition with another ligand in general, in at stake data are much less reliable. Predictions from models are much more uncertain: formation of mixed complexes with hydroxide or carbonate anions is not univocal whatever the modelling strategy. Hints for transfer functions between models which are believed to be incompatible could be explored in order to justify necessary simplifications for using operational modelling. Influence on the solubility of oxides could be quantified, but it is difficult to clearly separate it from colloidal particles stabilisation. The account of the competition between cations by the models has also been tested. In view of the small number of available experimental data there still lie some uncertainties especially for the media that are close to neutrality and in the case of competition with magnesium, but overall in the case of the competition with aluminium and iron. The influence of redox activity of humic substances is also

  5. On the Chemical Characterization of Organic Matter in Rain at Mexico City.

    Science.gov (United States)

    Montero-Martinez, G.; Andraca-Ayala, G. L.; Hernández-Nagay, D. P.; Mendoza-Trejo, A.; Rivera-Arellano, J.; Rosado-Abon, A.; Roy, P. D.

    2016-12-01

    The chemical composition of the aerosol plays a central role in atmospheric processes and has influence on the hydrological cycle. Clouds form through the nucleation of water vapor on certain atmospheric aerosol particles, called cloud condensation nuclei (CCN). Also, precipitating particles scavenge some other aerosol particles on their way to the surface. Atmospheric particles are a mixture of organic and inorganic materials, both soluble and insoluble in water. Aerosol chemical characterization indicates a larger variety of compounds in urban areas respect to other regions. Thus, chemical composition of rainwater may represent an important aspect for estimating atmospheric air pollution. It has been recognized that organic species present in aerosol particles are important in the formation of cloud droplets. Therefore, the information about the organic compounds in precipitation samples may be helpful to understand their effects on the formation of clouds and rain, as well as their sources. Organic acids are ubiquitous components of aerosols and have been identified in precipitation water. In this work, preliminary results of the content of soluble organic (neutral and acidic) matter in rainwater samples collected in Mexico City during 2015 will be presented. The organic compounds content was performed by using an ionic chromatographic methodology with gradient elution; so the total amount was evaluated as the sum of four fractions: neutral/basic, mono-, bi-, and poly-acid compounds. The outcomes suggest that most of the amount of organic substances soluble in water is contained by the neutral/basic and mono-acid fractions. Regarding the total amount of water soluble organic compounds, the rain samples collected in Mexico City are in agreement with some others reported for large urban areas.

  6. Characterization of an organ-specific differentiator substance

    International Nuclear Information System (INIS)

    Steele, V.E.

    1975-01-01

    The objectives of this research are to characterize a diffusible brain inhibitory substance, to elucidate its role in the maintenance of anterior-posterior polarity during head or tail regeneration, and to utilize its action in measuring the differentiative integrity of the stem cells following x-irradiation. Crude, cell-free homogenates of whole planarians (Dugesia etrusca) were centrifuged, Millipore filtered, ultrafiltered using Dow Hollow Fibers, chromatographed using Sephadex and Bio-Gel gel filtration media, electrophoresed using a continuous flow paper electrophoresis apparatus, digested by various enzymatic procedures, and ion focused using LKB Ampholine Electrofocusing equipment. The activities of the various fractions were assayed by placing decapitated planarians in the fractions, then, after nine days the resultant regenerated brain volumes were measured. In order to measure the effect that this substance has on the post-irradiation survival of both the whole animal and the differentiative integrity of the stem cells, x-irradiated planarians were decapitated and allowed to regenerate with or without addition of the inhibitory substance. The inhibitory activity is destroyed when the extract is treated with Pronase, but remains unaffected when treated with RNase, DNase, or Lipase. The inhibitory substance migrates toward the positive electrode when electrophoresed, and has an isoelectric point of between pH 4.75 and 5.38 when isoelectrically focused

  7. Water chemistry in Kuji river. Its spatial and seasonal variations in major ions and organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Niina, Toshiaki; Matsunaga, Takeshi; Amano, Hikaru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    As a basic research with a aim to clarify the migration behavior of radionuclides in rivers, the characteristics of dissolved ions and organic substances in river water, which characteristics may affect the behavior, was investigated. The investigation was carried out for the Kuji river in the northern Kanto district (Japan) comprising four sampling campaigns in 1994 for 10 locations from the upstream to the downstream. Concentrations of major ions, iron and manganese species and organic substances were analyzed in laboratory. Values of temperature of the water, pH, conductivity, dissolved oxygen were measured in the field. This investigation was conducted mainly under low water flow conditions of the river, while a limited number of campaigns were under high flow conditions due to precipitation events. The concentrations of major inorganic ions increased steadily toward the down-stream, resulting in approximately two times increase for the traveling distance of 100 km. They showed a seasonal variation that they were highest in the spring and lowest in the autumn when there were most concentrated precipitation events in a year. The constituents were mainly Na{sup +}, Ca{sup 2+}, SO{sub 4}{sup 2-} and HCO{sub 3}{sup -}, and were similar for every sampling locations and seasons. Concentrations of dissolved organic substances (carbon compounds) were lowest in the upstream and increased about twice in the downstream as well as major inorganic ions. Their level was 1-3 mg/l, which can be ranked as relatively lower in general values for fresh water environments. They were highest in the spring (average over the locations: 2.2 mg/l) and lowest in the autumn (1.3 mg/l) and also in the winter (1.3 mg/l). These results will be useful as a basic understanding of spatial and seasonal variations of river water chemistry, especially related to the organic substances which can bind with radionuclides to make a mobile complex. (author).

  8. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Science.gov (United States)

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  10. Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens

    Directory of Open Access Journals (Sweden)

    O. Zielinski

    2009-09-01

    Full Text Available Marine environments are influenced by a wide diversity of anthropogenic and natural substances and organisms that may have adverse effects on human health and ecosystems. Real-time measurements of pollutants, toxins, and pathogens across a range of spatial scales are required to adequately monitor these hazards, manage the consequences, and to understand the processes governing their magnitude and distribution. Significant technological advancements have been made in recent years for the detection and analysis of such marine hazards. In particular, sensors deployed on a variety of mobile and fixed-point observing platforms provide a valuable means to assess hazards. In this review, we present state-of-the-art of sensor technology for the detection of harmful substances and organisms in the ocean. Sensors are classified by their adaptability to various platforms, addressing large, intermediate, or small areal scales. Current gaps and future demands are identified with an indication of the urgent need for new sensors to detect marine hazards at all scales in autonomous real-time mode. Progress in sensor technology is expected to depend on the development of small-scale sensor technologies with a high sensitivity and specificity towards target analytes or organisms. However, deployable systems must comply with platform requirements as these interconnect the three areal scales. Future developments will include the integration of existing methods into complex and operational sensing systems for a comprehensive strategy for long-term monitoring. The combination of sensor techniques on all scales will remain crucial for the demand of large spatial and temporal coverage.

  11. Symposium on refractory organic substances in the environment - Rose II. Abstracts of oral and poster papers

    Energy Technology Data Exchange (ETDEWEB)

    Frimmel, F H; Abbt-Braun, G [eds.

    2000-07-01

    Again the Deutsche Forschungsgemeinschaft has generously supported the 25 research projects working together on Refractory Organic Substances in the Environment (ROSE). Numerous researchers from universities and research institutes all over Germany focused upon the characterization of refractory organic material from brown water, soil seepage water as well as treated and untreated waste water through the compilation of analytical and biochemical data on the genesis and transformation of the isolated organic material and its interactions with other water constituents. (orig.)

  12. Importance of nitrogen in the decomposition of various organic substances in the Bihugas process

    Energy Technology Data Exchange (ETDEWEB)

    Scheffer, F; Bruene, H

    1955-01-01

    About 30 percent of the organic matter is decomposed during the fermentation process, 20-25 percent of the organic N being mineralized to NH/sub 3/. Trials with straw, sisal, peat, etc., showed that additional mineral N promotes the fermentation process of substances which decompose rapidly or are poor in easily available N compounds, except potato starch which decomposes without any notable fixation of N. Results did not confirm claims on the beneficial effects of hormone preparations and on killing of pathogenic typhus-enteritis bacteria during fermentation.

  13. Activity-Based Approach for Teaching Aqueous Solubility, Energy, and Entropy

    Science.gov (United States)

    Eisen, Laura; Marano, Nadia; Glazier, Samantha

    2014-01-01

    We describe an activity-based approach for teaching aqueous solubility to introductory chemistry students that provides a more balanced presentation of the roles of energy and entropy in dissolution than is found in most general chemistry textbooks. In the first few activities, students observe that polar substances dissolve in water, whereas…

  14. Regulating specific organic substances and heavy metals in industrial wastewater discharged to municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Grüttner, Henrik; Munk, L.; Pedersen, F.

    1994-01-01

    Due to the extension of wastewater treatment plants to nutrient removal and the development towards reuse of sludge m agriculture, new guidelines for regulating industrial discharges m Denmark were needed. The paper describes how a concept for regulating the discharge of specific organic substances...... substances, present knowledge of fate and effects in biological treatment plants is too scarce to underpin the setting of general standards. Therefore, it has been decided to base the developed priority system on the data used in the EEC-system for classification of hazardous chemicals. This includes ready...... degradability, defined by the OECD-test, bio-sorption and bio-accumulation, defined by the octanol/water distribution coefficient and toxic effects on water organisms. Several potential effects of seven heavy metals have been evaluated, and the most critical effects were found to be the quality criteria...

  15. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  16. Determination of Anti-nutrients and Toxic Substances of Selected ...

    African Journals Online (AJOL)

    USER

    ABSTRACT: Determination of antinutrients and toxic substances in leafy vegetables is an imperative facet in nutritional studies as it establishes the baseline concentrations index for phytotoxins in the vegetables. Concentrations of cyanide, nitrate, soluble and total oxalates were quantitatively determined in the common ...

  17. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  18. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  19. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  20. The influence of soluble organic matter on shale reservoir characterization

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-06-01

    Full Text Available Shale with a maturity within the “oil window” contains a certain amount of residual soluble organic matter (SOM. This SOM have an important influence on characterization of shale reservoir. In this study, two shale samples were collected from the Upper Permian Dalong Formation in the northwestern boundary of Sichuan Basin. Their geochemistry, mineral composition, and pore structure (surface area and pore volume were investigated before and after removing the SOM by means of extraction via dichloromethane or trichloromethane. The results show that the TOC, S1, S2, and IH of the extracted samples decrease significantly, but the mineral composition has no evident change as compared with their raw samples. Thus, we can infer that the original pore structure is thought to be unaffected from the extraction. The SOM occupies pore volume and hinders pores connectivity. The extraction greatly increases the surface area and pore volume of the samples. The residual SOM in the shale samples occur mainly in the micropores and smaller mesopores, and their occupied pore size range seems being constrained by the maturity. For the lower mature shale samples, the SOM is mainly hosted in organic pores that are less than 5 nm in size. For the middle mature shale samples, the micropores and some mesopores ranging between 2 and 20 nm in size are the main storage space for the SOM.

  1. An odd–even effect on solubility of dicarboxylic acids in organic solvents

    International Nuclear Information System (INIS)

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubilities of the homologous series of C2–C10 dicarboxylic acids were determined in four selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The odd–even effect of solubility was found and explained. • The enthalpy, entropy and the molar Gibbs free energy of solution were predicted. - Abstract: The solubility of the homologous series of dicarboxylic acids, HOOC-(CH 2 ) n−2 -COOH (n = 2 to 10), in ethanol, acetic acid, acetone and ethyl acetate was measured at temperatures ranging from (278.15 to 323.15) K by a static analytic method at atmospheric pressure. Dicarboxylic acids with even number of carbon atoms exhibit lower values of solubility than adjacent homologues with odd carbon numbers. This odd–even effect of solubility is attributed to the twist of molecules and interlayer packing in solid state as explained in our previous work. The alternation varies in different solvents, which is believed to be associated with the properties of solvents. Finally, the dissolution enthalpy, dissolution entropy and the molar Gibbs free energy were calculated using the fitting parameters of the modified Apelblat equation. The molar Gibbs free energy also showed apparent odd–even alternation in keeping with the alternation of solubility

  2. Attachment as an organizer of behavior: implications for substance abuse problems and willingness to seek treatment

    Directory of Open Access Journals (Sweden)

    Troutman Beth

    2006-11-01

    Full Text Available Abstract Background Attachment theory allows specific predictions about the role of attachment representations in organizing behavior. Insecure attachment is hypothesized to predict maladaptive emotional regulation whereas secure attachment is hypothesized to predict adaptive emotional regulation. In this paper, we test specific hypotheses about the role of attachment representations in substance abuse/dependence and treatment participation. Based on theory, we expect divergence between levels of maladaptive functioning and adaptive methods of regulating negative emotions. Methods Participants for this study consist of a sample of adoptees participating in an ongoing longitudinal adoption study (n = 208. The Semi-Structured Assessment of the Genetics of Alcohol-II 41 was used to determine lifetime substance abuse/dependence and treatment participation. Attachment representations were derived by the Adult Attachment Interview [AAI; 16]. We constructed a prior contrasts reflecting theoretical predictions for the association between attachment representations, substance abuse/dependence and treatment participation. Results Logistic regression was used to test our hypotheses. As predicted, individuals classified as dismissing, preoccupied or earned-secure reported the highest rates of substance abuse/dependence. Individuals classified as dismissing reported significantly lower rates of treatment participation despite their high rates of substance abuse/dependence. As expected, the continuous-secure group reported lowest rates of both substance abuse/dependence and treatment participation. Conclusion The findings from this study identify attachment representations as an influential factor in understanding the divergence between problematic substance use and treatment utilization. The findings further imply that treatment may need to take attachment representations into account to promote successful recovery.

  3. Root growth of tomato seedlings intensified by humic substances from peat bogs

    Directory of Open Access Journals (Sweden)

    Alexandre Christofaro Silva

    2011-10-01

    Full Text Available Peats are an important reserve of humified carbon in terrestrial ecosystems. The interest in the use of humic substances as plant growth promoters is continuously increasing. The objective of this study was to evaluate the bioactivity of alkaline soluble humic substances (HS, humic (HA and fulvic acids (FA isolated from peats with different decomposition stages of organic matter (sapric, fibric and hemic in the Serra do Espinhaço Meridional, state of Minas Gerais. Dose-response curves were established for the number of lateral roots growing from the main plant axis of tomato seedlings. The bioactivity of HA was greatest (highest response in lateral roots at lowest concentration while FA did not intensify root growth. Both HS and HA stimulated root hair formation. At low concentrations, HS and HA induced root hair formation near the root cap, a typical hormonal imbalance effect in plants. Transgenic tomato with reporter gene DR5::GUS allowed the observation that the auxin-related signalling pathway was involved in root growth promotion by HA.

  4. Bis[(lprolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations

    Directory of Open Access Journals (Sweden)

    Roona Poddar

    2017-05-01

    Full Text Available Under the green chemistry perspective, bis[(lprolinate-N,O]Zn (also called zinc–proline or Zn[(l-pro]2 has proven its competence as a promising alternative in a plethora of applications such as catalyst or promoter. Owing to its biodegradable and non-toxic nature of bis[(lprolinate-N,O]Zn, it is being actively investigated as a water soluble green catalyst for synthetic chemistry. Bis[(lprolinate-N,O]Zn are readily utilized under mild conditions and have high selectivity and reactivity with broad range of substrate acceptance to make it better reaction medium for a wide variety of organic transformations. This Review summarizes the till date literature on its synthesis, characterization, and its catalytic role in various organic reactions.

  5. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  6. Humic Substances in waters for supply

    International Nuclear Information System (INIS)

    Camargo Valero, Miller; Cruz Torres, Luis Eduardo

    1999-01-01

    The humic substances make part of the degradation products of the organic matter of the soil and they are incorporate to the superficial waters for the action of laundry that they carry out by the superficial waters. These substances have been recognized as precursors in the formation of the disinfections sub-products, with free chlorine in treatment of drinkable water plants. The disinfections sub-product and the compound organic halogens, they have been classified potentially in human as cancerigenic substances, and therefore the interest in knowing more about the precursors substances, mechanisms of formation of disinfections sub-products, national situation and methods to diminish their formation

  7. Soluble CD30 serum level--an adequate marker for allograft rejection of solid organs?

    Science.gov (United States)

    Schlaf, G; Altermann, W W; Rothhoff, A; Seliger, B

    2007-11-01

    The CD30 molecule, a 120 kDa cell surface glycoprotein, is a member of the tumor necrosis factor receptor (TNF-R) superfamily and was originally identified on the surface of Reed-Sternberg cells and anaplastic large cell lymphomas in Hodgkin's disease patients. In addition to lymphoproliferative disorders the expression of CD30 was found in both activated CD8+ and CD4+ Th2 cells which lead to the activation of B-cells and consequently to the inhibition of the Th1-type cellular immunity. The membrane-bound CD30 molecule can be proteolytically cleaved, thereby generating a soluble form (sCD30) of about 85 kDa. Low serum levels of soluble CD30 were found in healthy humans, whereas increased sCD30 serum concentrations were detected under pathophysiological situations such as systemic lupus erythematosus, rheumatoid arthritis, certain viral infections and adult T cell leukaemia/lymphoma. In addition, it has recently been suggested that pre- or post-transplant levels of sCD30 represent a biomarker for graft rejection associated with an impaired outcome for transplanted patients. We here review (i) the current knowledge of the clinical significance of sCD30 serum levels for solid organ transplantations and (ii) our own novel data regarding inter- and intra-individual variations as well as time-dependent alterations of sCD30 levels in patients. (iii) Based on this information the implementation of sCD30 as predictive pre-transplant or post-transplant parameter for solid organ transplantation is critically discussed.

  8. Organic Matter Stocks and the Interactions of Humic Substances with Metals in Araucaria Moist Forest Soil with Humic and Histic Horizons

    Directory of Open Access Journals (Sweden)

    Daniel Hanke

    Full Text Available ABSTRACT Soils with humic and histic horizons in tropical and subtropical ecosystems play an important role in determining the atmospheric C stock and its stabilization, climate regulation, water holding capacity, and environmental filtering, due to the different functions of soil organic matter (SOM. However, the processes and mechanisms that regulate SOM dynamics in these soils are not clear. The objectives of this study were: i determine the C and N stocks and ii investigate the SOM chemical fractions and their interactions with Fe and Al ions in soils with humic and histic horizons of a toposequence under Araucaria moist forest in southern Brazil. The soils sampled were classified as Humic Hapludox (top - not hydromorphic, Fluvaquentic Humaquepts (lower third - hydromorphic, and Typic Haplosaprists (floodplain - hydromorphic. The C and N contents were determined in bulk soil samples and SOM chemical fractions; in these fractions, Fe and Al co-extracted contents were also determined. The chemical composition of humin and humic acid fractions was investigated by FTIR spectroscopy. The C content in the toposequence increased from the top to the lowest position. The differences observed in SOM content and SOM chemical composition were defined by the differences in soil water regime. The amount of C stored in the subsurface horizons is about 70 % of total organic C. The carbohydrate-like structures in the humin fraction were protected from solubilization through interaction with iron oxides, which may represent an important mechanism for labile organic compound preservation in these soils. The soluble humic substances showed the highest Fe and Al contents, and their compartments have different affinities for Fe and Al.

  9. Impact of humic substances and nitrogen fertilising on the fruit quality and yield of custard apple

    Directory of Open Access Journals (Sweden)

    Marcelo dos Santos Cunha

    2014-09-01

    Full Text Available The custard apple (Annona squamosa L., also known as the sugar apple, is a fruit species native to Brazil that has been poorly studied, especially in relation to the effect of humic substances on its fruit quality and yield. An experiment was conducted from December 2010 to November 2011 to evaluate the fruit quality and yield of the custard apple as a function of nitrogen fertilising and the use of humic substances. The experimental design consisted of randomised blocks, with treatments distributed in a factorial arrangement (4 x 2, using four nitrogen doses (0, 100, 175 and 250 g of N plant-1 and two humic substance applications (with and without humic substances, with four replications. The fruit yield and fruit characteristics, such as fruit mass, titratable acidity (TA, soluble solids (SS, pulp pH and SS/TA ratio, were recorded. The humic substances and the nitrogen levels significantly affected the soluble solids, titratable acidity and SS/TA ratio, while the pH pulp was only influenced by the humic substances. The humic substances promoted a quantitative increase in the fruit yield of 0.63 ton ha-1. The fruit quality and yield of the custard apple depend on the nitrogen fertiliser and the interaction of the humic substances. Nitrogen fertilising of 100 g per plant, associated with humic substances, could be recommended for use in the production of custard apples.

  10. Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions

    International Nuclear Information System (INIS)

    Li, Xinbao; Wang, Mingju; Du, Cunbin; Cong, Yang; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubilities of 3-nitro-o-toluic acid in nine organic solvents were determined. • The solubilities were correlated by using four thermodynamic models. • The mixing properties of solution were computed based on Wilson model. - Abstract: Separation of 3-nitro-o-toluic acid from its isomeric mixtures has essential significance in industry. In this work, by using isothermal saturation method, the solid-liquid equilibrium for 3-nitro-o-toluic acid in nine organic solvents (acetonitrile, methanol, ethanol, n-propanol, isopropanol, ethyl acetate, acetone, 1,4-dioxane and 2-butanone) were obtained experimentally within a temperature range from (283.15 to 318.15) K under atmosphere pressure of 101.2 kPa, and the solubility values of 3-nitro-o-toluic acid in these solvents were determined by a high-performance liquid chromatography. Within the studied temperature range, the mole fraction solubility of 3-nitro-o-toluic acid in selected organic solvents increased with increasing temperature. Except for ethyl acetate, the descending order of the mole fraction solubility values were as follow: 1,4-dioxane > acetone > 2-butanone > methanol > ethanol > isopropanol > n-propanol > acetonitrile. The solubility values determined for 3-nitro-o-toluic acid in the selected solvents were correlated and back calculated with the modified Apelblat equation, λh equation, Wilson model and NRTL model. The largest values of RAD and RMSD obtained with the four models were 0.67% and 4.02 × 10 −4 , respectively. In general, the four thermodynamic models were all acceptable for describing the solubility behaviour of 3-nitro-o-toluic acid in these solvents. In addition, the apparent mixing Gibbs energy, mixing enthalpy, mixing entropy, activity coefficient at infinitesimal concentration and reduced excess enthalpy were calculated. The acquired solubility data and thermodynamic studies would be very important in optimizing the separation process of 3-nitro-o-toluic acid from

  11. pH-metric solubility. 2: correlation between the acid-base titration and the saturation shake-flask solubility-pH methods.

    Science.gov (United States)

    Avdeef, A; Berger, C M; Brownell, C

    2000-01-01

    The objective of this study was to compare the results of a normal saturation shake-flask method to a new potentiometric acid-base titration method for determining the intrinsic solubility and the solubility-pH profiles of ionizable molecules, and to report the solubility constants determined by the latter technique. The solubility-pH profiles of twelve generic drugs (atenolol, diclofenac.Na, famotidine, flurbiprofen, furosemide, hydrochlorothiazide, ibuprofen, ketoprofen, labetolol.HCl, naproxen, phenytoin, and propranolol.HCl), with solubilities spanning over six orders of magnitude, were determined both by the new pH-metric method and by a traditional approach (24 hr shaking of saturated solutions, followed by filtration, then HPLC assaying with UV detection). The 212 separate saturation shake-flask solubility measurements and those derived from 65 potentiometric titrations agreed well. The analysis produced the correlation equation: log(1/S)titration = -0.063(+/- 0.032) + 1.025(+/- 0.011) log(1/S)shake-flask, s = 0.20, r2 = 0.978. The potentiometrically-derived intrinsic solubilities of the drugs were: atenolol 13.5 mg/mL, diclofenac.Na 0.82 microg/mL, famotidine 1.1 mg/ mL, flurbiprofen 10.6 microg/mL, furosemide 5.9 microg/mL, hydrochlorothiazide 0.70 mg/mL, ibuprofen 49 microg/mL, ketoprofen 118 microg/mL, labetolol.HCl 128 microg/mL, naproxen 14 microg/mL, phenytoin 19 microg/mL, and propranolol.HCl 70 microg/mL. The new potentiometric method was shown to be reliable for determining the solubility-pH profiles of uncharged ionizable drug substances. Its speed compared to conventional equilibrium measurements, its sound theoretical basis, its ability to generate the full solubility-pH profile from a single titration, and its dynamic range (currently estimated to be seven orders of magnitude) make the new pH-metric method an attractive addition to traditional approaches used by preformulation and development scientists. It may be useful even to discovery

  12. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle.

    Science.gov (United States)

    Jekel, Martin; Dott, Wolfgang; Bergmann, Axel; Dünnbier, Uwe; Gnirß, Regina; Haist-Gulde, Brigitte; Hamscher, Gerd; Letzel, Marion; Licha, Tobias; Lyko, Sven; Miehe, Ulf; Sacher, Frank; Scheurer, Marco; Schmidt, Carsten K; Reemtsma, Thorsten; Ruhl, Aki Sebastian

    2015-04-01

    An increasing number of organic micropollutants (OMP) is detected in anthropogenically influenced water cycles. Source control and effective natural and technical barriers are essential to maintain a high quality of drinking water resources under these circumstances. Based on the literature and our own research this study proposes a limited number of OMP that can serve as indicator substances for the major sources of OMP, such as wastewater treatment plants, agriculture and surface runoff. Furthermore functional indicators are proposed that allow assessment of the proper function of natural and technical barriers in the aquatic environment, namely conventional municipal wastewater treatment, advanced treatment (ozonation, activated carbon), bank filtration and soil aquifer treatment as well as self-purification in surface water. These indicator substances include the artificial sweetener acesulfame, the anti-inflammatory drug ibuprofen, the anticonvulsant carbamazepine, the corrosion inhibitor benzotriazole and the herbicide mecoprop among others. The chemical indicator substances are intended to support comparisons between watersheds and technical and natural processes independent of specific water cycles and to reduce efforts and costs of chemical analyses without losing essential information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  15. On the organ distribution of several 99mTc-labelled tetracyclines

    International Nuclear Information System (INIS)

    Weinhold, S.E.M.

    1983-01-01

    Experiments in rats have pointed to a high stability of 99m Tc-labelled tetracyclines, which are found in vivo in the form of chemically stable chelate complexes. Their biokinetic behaviour in most organs (the lungs) and the blood is predominantly determined by convection processes. In other organs (notably the kidneys and, to a lesser extent, the liver and spleen) their passage can be described in terms of influx and efflux, with accumulation, metabolisation and excretion of the drug administered being the main steps involved. 3 H-Labelled tetracyclines are chemically unchanged tetracyclines showing pronounced lipophilia that tend to be taken up and eliminated via influx and efflux processes in the large majority of organs. The highest blood levels were measured for 99m TcO 4 , which is a hydrophilic substance. None of the substances tested appeared to be able to cross the blood-brain barrier. As far as their chemical structure and solubility in water is concerned, 99m Tc-labelled tetracyclines occupy a position intermediate between the two comparative substances and the blood concentrations measured here were only moderately high. As they are accumulated to a considerable degree in the kidneys, the possibility of these substances' use in connection with renal scintiscans does not seem remote. In view of the fact that only one tenth of the dose of pertechnetate would be required for this purpose, radiation exposure could be reduced to a reasonable minimum. (TRV) [de

  16. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  17. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  18. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  19. Sampling and analytical methods for assessing the levels of organic pollutants in the atmosphere: PAH, phthalates and psychotropic substances: a short review.

    Science.gov (United States)

    Cecinato, Angelo; Balducci, Catia; Mastroianni, Daniele; Perilli, Mattia

    2012-07-01

    This short review presents the procedures used to monitor PAHs, phthalates and psychotropic substances in the air, and the results of some measurements made in Italy and abroad. Organic contaminants are characterized by a variety of physical and chemical properties, including aggregation phase, concentration level, and life time. This variety widens the spectrum of procedures developed to assess their occurrence in the environment and biota, but prevents the complete speciation of the "organic fraction" of air, waters and particulates, and attention is paid to a few substances. The progress in health sciences stimulates the concern on contaminants and the development of new instrumental apparatuses and methods; new chemicals are continuously identified or recognized as capable of injuring the environment and organisms. Persistent organic pollutants and persistent biologically active toxicants are subject to regulation and extensively measured by means of standard procedures. For instance, polycyclic aromatic hydrocarbons, polychlorobiphenyls and polychlorodibenzodioxins are recovered from air through phase partition, thermal desorption or solvent extraction, then separated and detected through GC-MS or HPLC-MS procedures. By contrast, dedicated methods must be still optimized to monitor candidates or possible candidates as emerging organic pollutants, e.g. phthalates, flame retardants and perfluoroalkanes. Also, psychotropic substances appear of potential concern. Legal and illicit substances are commonly detected in the urban air besides waste and surface waters. If nicotine, caffeine and cocaine will result to enough persistence in the air, their monitoring will become an important issue of global chemical watching in the next future.

  20. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD waters of environmental and biological systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. On links of 137Cs with organic compounds of the vegetative organs of pine (Pinus sylvestris L.)

    International Nuclear Information System (INIS)

    Jokhanson, K.J.; Dolgilevich, M.I.

    2000-01-01

    The samples of structural parts of pine were taken in 1997 in forest ecosystems in the Ovruch district of the Zhytomyr region, Ukraine. The ground depositions of 137 Cs range from 21 to 214kBq/m 2 . The high level of radioactivity reaches 40...79% of the total activity and is found in water soluble substances of young growing organs as: cambium, twigs, and needles. The activity of radiocesium associated with hemi cellulose was the most in wood and branches and reached 38%, the less in twigs and needles. The activity of 137 Cs associated with cellulose of all organs was at most 0.5-5%. The residues of samples after hydrolysis accumulated 2...46% of radiocaesium, the most was in external bark and old needles, and the less was in branches and twigs

  2. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  4. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  5. Priority Substances and Emerging Organic Pollutants in Portuguese Aquatic Environment: A Review.

    Science.gov (United States)

    Ribeiro, Cláudia; Ribeiro, Ana Rita; Tiritan, Maria Elizabeth

    Aquatic environments are among the most noteworthy ecosystems regarding chemical pollution due to the anthropogenic pressure. In 2000, the European Commission implemented the Water Framework Directive, with the aim of progressively reducing aquatic chemical pollution of the European Union countries. Therefore, the knowledge about the chemical and ecological status is imperative to determine the overall quality of water bodies. Concerning Portugal, some studies have demonstrated the presence of pollutants in the aquatic environment but an overall report is not available yet. The aim of this paper is to provide a comprehensive review about the occurrence of priority substances included in the Water Framework Directive and some classes of emerging organic pollutants that have been found in Portuguese aquatic environment. The most frequently studied compounds comprise industrial compounds, natural and synthetic estrogens, phytoestrogens, phytosterols, pesticides, pharmaceuticals and personal care products. Concentration of these pollutants ranged from few ng L(-1) to higher values such as 30 μg L(-1) for industrial compounds in surface waters and up to 106 μg L(-1) for the pharmaceutical ibuprofen in wastewaters. Compounds already banned in Europe such as atrazine, alkylphenols and alkylphenol polyethoxylates are still found in surface waters, nevertheless their origin is still poorly understood. Beyond the contamination of the Portuguese aquatic environment by priority substances and emerging organic pollutants, this review also highlights the need of more research on other classes of pollutants and emphasizes the importance of extending this research to other locations in Portugal, which have not been investigated yet.

  6. Rheological online determination of the organic dry substance concentration of sewage sludge; Rheologische online Bestimmung des oTS-Gehalts von Klaerschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, P.; Boehm, A.; Fessler, J.; Liebelt, U. [BASF AG, Ludwigshafen am Rhein (Germany); Traegner, U. [Fachhochschule fuer Technik, Mannheim (Germany)

    1999-07-01

    In order to adjust the filter cake to a certain calorific value and to enhance the dehydratability of sludge, ash, carbon and flocculation agents are added to the latter prior to filtration. Dosage of the additives depends on the sludge's content of organic solids, determined in the form of the so-called organic dry substance concentration. In bench-scale and technical-scale experiments on the rheological properties of sewage sludge, a correlation between organic dry substance concentration and rheological properties, especially the liquid limit of sewage sludge, was established. This knowledge was used to develop a measuring technique for online determination of organic dry substance concentration by means of rheology. (orig.) [German] Zur Einstellung eines bestimmten Heizwertes des Filterkuchens und zur Verbesserung der Entwaesserbarkeit werden dem Schlamm vor der Filtration Asche, Kohle und Flockungsmittel zugegeben. Die Dosierung der Zuschlagsstoffe erfolgt in Abhaengigkeit vom Gehalt des Schlamms an organischem Feststoff, bestimmt in Form der sog. oTS-Konzentration. In Labor- und Betriebsversuchen zum rheologischen Verhalten von Klaerschlamm konnte eine Korrelation zwischen der oTS-Konzentration und den Fliesseigenschaften, insbesondere der Fliessgrenze von Klaerschlamm ermittelt werden. Diese Erkenntnis wurde in ein Messverfahren zur online-Bestimmung der oTS-Konzentration mittels Rheologie umgesetzt. (orig.)

  7. Exploring Diversification as A Management Strategy in Substance Use Disorder Treatment Organizations.

    Science.gov (United States)

    Fields, Dail; Riesenmy, Kelly; Roman, Paul M

    2015-10-01

    Implementation of the Affordable Care Act (ACA) creates both environmental uncertainties and opportunities for substance use disorder (SUD) treatment providers. One managerial response to uncertainties and emergent opportunities is strategic diversification of various dimensions of organizational activity. This paper explored organizational outcomes related to diversification of funding sources, services offered, and referral sources in a national sample of 590 SUD treatment organizations. Funding diversification was related to higher average levels of census, organization size, and recent expansion of operations. Service diversification was related to higher average levels of use of medication-assisted treatment (MAT), organization size, and expansion. Referral source diversification was related only to greater average use of MAT. Overall, strategic diversification in the three areas explored was related to positive organizational outcomes. Considering alternative strategies of diversification may help position SUD treatment centers to deliver more innovative treatments such as MAT as well as enhance capacity to satisfy current unmet treatment needs of individuals with behavioral health coverage provided under the ACA. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Bacillus sp. BS061 Suppresses Gray Mold and Powdery Mildew through the Secretion of Different Bioactive Substances.

    Science.gov (United States)

    Kim, Young-Sook; Song, Ja-Gyeong; Lee, In-Kyoung; Yeo, Woon-Hyung; Yun, Bong-Sik

    2013-09-01

    A Bacillus sp. BS061 significantly reduced disease incidence of gray mold and powdery mildew. To identify the active principle, the culture filtrate was partitioned between butanol and water. The antifungal activity against B. cinerea was evident in the butanol-soluble portion, and active substances were identified as cyclic lipopeptides, iturin A series, by nuclear magnetic resonance spectrometry (NMR) and mass analysis. Interestingly, antifungal activity against powdery mildew was observed in the water-soluble portion, suggesting that cyclic lipopeptides have no responsibility to suppress powdery mildew. This finding reveals that biocontrol agents of Bacillus origin suppress gray mold and powdery mildew through the secretion of different bioactive substances.

  9. Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin.

    Science.gov (United States)

    de Lima Petito, Nicolly; da Silva Dias, Daiana; Costa, Valéria Gonçalves; Falcão, Deborah Quintanilha; de Lima Araujo, Kátia Gome

    2016-10-01

    Red bell pepper carotenoids were complexed with 2-hydroxypropyl-β-cyclodextrin (2-HPβCD) in different mass ratios (1:4, 1:6, 1:8 and 1:10) through ultrasonic homogenization in order to increase carotenoid solubility and their use as natural pigment in food. Inclusion complexes, red bell pepper extract and physical mixtures were analyzed by DSC, FT-IR, (1)H NMR and DLS. Solubility assay was performed to identify the effect of complexation on the solubility of carotenoids. From characterization assays, results showed that inclusion process occurred for all tested ratios. Results for water solubility assays demonstrated clear differences between solubility index of inclusion complexes (8.06±2.59-16.55±4.40mg/mL) and physical mixtures (3.53±1.44-7.3±1.88mg/mL), while carotenoid extract was no water soluble, as expected. These results indicated that molecular inclusion of carotenoids in 2-HPβCD was efficient to enhance their solubility in water, enabling application of red bell pepper carotenoid as natural pigment and/or bioactive substances in food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The associations between psychotic experiences and substance use and substance use disorders: findings from the World Health Organization World Mental Health surveys.

    Science.gov (United States)

    Degenhardt, Louisa; Saha, Sukanta; Lim, Carmen C W; Aguilar-Gaxiola, Sergio; Al-Hamzawi, Ali; Alonso, Jordi; Andrade, Laura H; Bromet, Evelyn J; Bruffaerts, Ronny; Caldas-de-Almeida, José Miguel; de Girolamo, Giovanni; Florescu, Silvia; Gureje, Oye; Haro, Josep M; Karam, Elie G; Karam, Georges; Kovess-Masfety, Viviane; Lee, Sing; Lepine, Jean-Pierre; Makanjuola, Victor; Medina-Mora, Maria E; Mneimneh, Zeina; Navarro-Mateu, Fernando; Piazza, Marina; Posada-Villa, José; Sampson, Nancy A; Scott, Kate M; Stagnaro, Juan Carlos; Ten Have, Margreet; Kendler, Kenneth S; Kessler, Ronald C; McGrath, John J

    2018-05-01

    Prior research has found bidirectional associations between psychotic experiences (PEs) and selected substance use disorders. We aimed to extend this research by examining the bidirectional association between PEs and various types of substance use (SU) and substance use disorders (SUDs), and the influence of antecedent mental disorders on these associations. We used data from the World Health Organization World Mental Health surveys. A total of 30 902 adult respondents across 18 countries were assessed for (a) six types of life-time PEs, (b) a range of types of SU and DSM-IV SUDs and (c) mental disorders using the Composite International Diagnostic Interview. Discrete-time survival analyses based on retrospective age-at-onset reports examined the bidirectional associations between PEs and SU/SUDs controlling for antecedent mental disorders. After adjusting for demographics, comorbid SU/SUDs and antecedent mental disorders, those with prior alcohol use disorders [odds ratio (OR) = 1.6, 95% confidence interval (CI) = 1.2-2.0], extra-medical prescription drug use (OR = 1.5, 95% CI = 1.1-1.9), alcohol use (OR = 1.4, 95% CI = 1.1-1.7) and tobacco use (OR = 1.3, 95% CI = 1.0-1.8) had increased odds of subsequent first onset of PEs. In contrast, those with temporally prior PEs had increased odds of subsequent onset of tobacco use (OR = 1.5, 95% CI = 1.2-1.9), alcohol use (OR = 1.3, 95% CI = 1.1-1.6) or cannabis use (OR = 1.3, 95% CI = 1.0-1.5) as well as of all substance use disorders (ORs ranged between 1.4 and 1.5). There was a dose response relationship between both count and frequency of PEs and increased subsequent odds of selected SU/SUDs. Associations between psychotic experiences (PEs) and substance use/substance use disorders (SU/SUDs) are often bidirectional, but not all types of SU/SUDs are associated with PEs. These findings suggest that it is important to be aware of the presence of PEs within those with SUDs or at risk of SUDs

  11. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in “Starkrimson” during the Ripening Period in China

    Directory of Open Access Journals (Sweden)

    Yulian Liu

    2016-06-01

    Full Text Available “Starkrimson” is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of “Starkrimson” fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC and gas chromatography-mass spectrometry (GC-MS. The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal, fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.

  12. Occurrence of antibiotics as emerging contaminant substances in aquatic environment.

    Science.gov (United States)

    Milić, Nataša; Milanović, Maja; Letić, Nevena Grujić; Sekulić, Maja Turk; Radonić, Jelena; Mihajlović, Ivana; Miloradov, Mirjana Vojinović

    2013-01-01

    The occurrence of pharmaceutical residues in the environment has become a subject of growing concern. Due to the constant input of the emerging contaminants in the surface water via wastewater which leads to the long-term adverse effects on the aquatic and terrestrial organisms, special attention is being paid to their presence in the aquatic environment. Most of the emerging substances, especially pharmaceuticals, could not be completely removed using the wastewater treatment. Pharmaceuticals are usually water soluble and poorly degradable. They can pass through all natural filtrations and then reach the groundwater and, finally, the drinking water. The trace levels of antibiotics could have a negative impact on the environment and public health because of their inherent bioactivity. This article is an overview of the presence of the antibiotic residual concentrations, methods and levels of detection and possible risks to both health and environment.

  13. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  14. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  15. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms.

    Science.gov (United States)

    Clausen, Per Axel; Spaan, Suzanne; Brouwer, Derk H; Marquart, Hans; le Feber, Maaike; Engel, Roel; Geerts, Lieve; Jensen, Keld Alstrup; Kofoed-Sørensen, Vivi; Hansen, Brian; De Brouwere, Katleen

    2016-01-01

    The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer ∼ 2%), whereas relative transfer efficiencies from spiked substrates were high (∼ 50%). For consumer articles, high correlation (r(2)=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.

  16. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. δ15N measurement of organic and inorganic substances by EA-IRMS: a speciation-dependent procedure.

    Science.gov (United States)

    Gentile, Natacha; Rossi, Michel J; Delémont, Olivier; Siegwolf, Rolf T W

    2013-01-01

    Little attention has been paid so far to the influence of the chemical nature of the substance when measuring δ(15)N by elemental analysis (EA)-isotope ratio mass spectrometry (IRMS). Although the bulk nitrogen isotope analysis of organic material is not to be questioned, literature from different disciplines using IRMS provides hints that the quantitative conversion of nitrate into nitrogen presents difficulties. We observed abnormal series of δ(15)N values of laboratory standards and nitrates. These unexpected results were shown to be related to the tailing of the nitrogen peak of nitrate-containing compounds. A series of experiments were set up to investigate the cause of this phenomenon, using ammonium nitrate (NH(4)NO(3)) and potassium nitrate (KNO(3)) samples, two organic laboratory standards as well as the international secondary reference materials IAEA-N1, IAEA-N2-two ammonium sulphates [(NH(4))(2)SO(4)]-and IAEA-NO-3, a potassium nitrate. In experiment 1, we used graphite and vanadium pentoxide (V(2)O(5)) as additives to observe if they could enhance the decomposition (combustion) of nitrates. In experiment 2, we tested another elemental analyser configuration including an additional section of reduced copper in order to see whether or not the tailing could originate from an incomplete reduction process. Finally, we modified several parameters of the method and observed their influence on the peak shape, δ(15)N value and nitrogen content in weight percent of nitrogen of the target substances. We found the best results using mere thermal decomposition in helium, under exclusion of any oxygen. We show that the analytical procedure used for organic samples should not be used for nitrates because of their different chemical nature. We present the best performance given one set of sample introduction parameters for the analysis of nitrates, as well as for the ammonium sulphate IAEA-N1 and IAEA-N2 reference materials. We discuss these results considering the

  18. Salt Solubility Products of Diprenorphine Hydrochloride, Codeine and Lidocaine Hydrochlorides and Phosphates – Novel Method of Data Analysis Not Dependent on Explicit Solubility Equations

    Directory of Open Access Journals (Sweden)

    Gergely Völgyi

    2013-12-01

    Full Text Available A novel general approach was described to address many of the challenges of salt solubility determination of drug substances, with data processing and refinement of equilibrium constants encoded in the computer program pDISOL-XTM. The new approach was illustrated by the determinations of the solubility products of diprenorphine hydrochloride, codeine hydrochloride and phosphate, lidocaine hydrochloride and phosphate at 25 oC, using a recently-optimized saturation shake-flask protocol.  The effects of different buffers (Britton-Robinson universal and Sörensen phosphate were compared. Lidocaine precipitates were characterized by X-ray powder diffraction (XRPD and polarization light microscopy. The ionic strength in the studied systems ranged from 0.25 to 4.3 M. Codeine (and possibly diprenorphine chloride were less soluble than the phosphates for pH > 2. The reverse trend was evident with lidocaine.  Diprenorphine saturated solutions showed departure from the predictions of the Henderson-Hasselbalch equation in alkaline (pH > 9 solutions, consistent with the formation of a mixed-charge anionic dimer.

  19. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

    Science.gov (United States)

    Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Cao, Gang; Fang, Yanhua; Wang, Junxia; Zhu, Tong; Yu, Jianzhen; Hu, Di

    2018-04-01

    Water-soluble humic-like substances (HULISWS) are a major redox-active component of ambient fine particulate matter (PM2.5); however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT) activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( > 59 %) to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for > 70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  20. Optimization and scale up of trickling bed bioreactors for degradation of volatile organic substances

    International Nuclear Information System (INIS)

    Schindler, I.

    1996-01-01

    For optimization and scale up of trickling bed bioreactors used in waste gas cleaning following investigations were made: the degradation of toluene was measured in reactors with various volumes and diameter to high ratios. The degradation of toluene was investigated in bioreactors with different carrier materials. It turned out, that the increase of the elimination capacity with the height of the reactor depends on the carrier material. At low gas velocities PU-foam allows higher elimination capacities than pallrings, VSP and DINPAC. On the other hand for PU-foam there is a permanent danger of clogging. The other materials allowed a stable operation for several months. Mass transfer of toluene was studied by absorption experiments in a 100 litre plant without microorganisms. The experiments lead to a henry coefficient of 0,23 (kg/m3)g/(kg/m3)l. Mass transfer coefficients were calculated between 3,6 and 5,2 depending an the space velocity of the gas and the trickling density of the water phase. The degradation of ethyl acetate, toluene and heptane was investigated considering the different water solubility of these substances. Further on degradation of toluene and heptane in several mixtures was investigated. (author)

  1. ISOLATION AND CHARACTERIZATION OF SOLUBLE POLYSACCHARIDES FROM CALAMAGROSTIS ANGUSTIFOLIA KOM

    Directory of Open Access Journals (Sweden)

    Xue-Fei Cao

    2011-06-01

    Full Text Available Sequential treatments of dewaxed Calamagrostis angustifolia Kom with water (60 ºC and 90 ºC, 70% ethanol, and 70% ethanol containing 0.2%, 1.0%, 2.0%, 4.0%, and 8.0% NaOH at a solid to liquid ratio of 1:25 (g/mL at 80 ºC for 3 h yielded 36.2% soluble polysaccharides of the dry dewaxed material. The eight polysaccharide fractions obtained were comparatively studied by sugar analysis, GPC, FT-IR, 1H and 13C-NMR, and 2D-NMR (HSQC spectroscopy. The results showed that the water-soluble polysaccharides might contain noticeable amounts of β-D-glucan, as well as some pectic substances and galactoarabinoxylan. 70% ethanol-soluble polysaccharide was mainly arabinogalactan. The five alkali-soluble hemicelluloses were mainly galactoarabinoxylans. The Ara/Xyl and Ara/Gal values of H5-H8 fractions decreased with the increment of NaOH concentration from 1.0% to 8.0%. Meanwhile, the molecular weights had a declining trend from ~60,000 to ~40,000 g/mol. The smaller sized and more branched polysaccharides tended to be extracted in the early stages under milder conditions, and the larger molecular sized and more linear hemicelluloses tended to be isolated under more highly alkaline conditions.

  2. Toxic effect of a marine bacterium on aquatic organisms and its algicidal substances against Phaeocystis globosa.

    Directory of Open Access Journals (Sweden)

    Qiuchan Yang

    Full Text Available Harmful algal blooms have caused enormous damage to the marine ecosystem and the coastal economy in China. In this paper, a bacterial strain B1, which had strong algicidal activity against Phaeocystis globosa, was isolated from the coastal waters of Zhuhai in China. The strain B1 was identified as Bacillus sp. on the basis of 16S rDNA gene sequence and morphological characteristics. To evaluate the ecological safety of the algicidal substances produced by strain B1, their toxic effects on marine organisms were tested. Results showed that there were no adverse effects observed in the growth of Chlorella vulgaris, Chaetoceros muelleri, and Isochrystis galbana after exposure to the algicidal substances at a concentration of 1.0% (v/v for 96 h. The 48h LC50 values for Brachionus plicatilis, Moina mongolica Daday and Paralichthys olivaceus were 5.7, 9.0 and 12.1% (v/v, respectively. Subsequently, the algicidal substances from strain B1 culture were isolated and purified by silica gel column, Sephadex G-15 column and high-performance liquid chromatography. Based on quadrupole time-of-flight mass spectrometry and PeakView Software, the purified substances were identified as prolyl-methionine and hypoxanthine. Algicidal mechanism indicated that prolyl-methionine and hypoxanthine inhibited the growth of P. globosa by disrupting the antioxidant systems. In the acute toxicity assessment using M. mongolica, 24h LC50 values of prolyl-methionine and hypoxanthine were 7.0 and 13.8 g/L, respectively. The active substances produced by strain B1 can be considered as ecologically and environmentally biological agents for controlling harmful algal blooms.

  3. A framework for API solubility modelling

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Crafts, Peter

    . In addition, most of the models are not predictive and requires experimental data for the calculation of the needed parameters. This work aims at developing an efficient framework for the solubility modelling of Active Pharmaceutical Ingredients (API) in water and organic solvents. With this framework......-SAFT) are used for solubility calculations when the needed interaction parameters or experimental data are available. The CI-UNIFAC is instead used when the previous models lack interaction parameters or when solubility data are not available. A new GC+ model for APIs solvent selection based...... on the hydrophobicity, hydrophilicity and polarity information of the API and solvent is also developed, for performing fast solvent selection and screening. Eventually, all the previous developments are integrated in a framework for their efficient and integrated use. Two case studies are presented: the first...

  4. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L. under drought stress and organic fertilizer treatments

    Directory of Open Access Journals (Sweden)

    Amin Salehi

    2016-10-01

    Conclusions: Totally, organic fertilization by vermicompost could partly alleviate the effect of drought stress on chamomile by increasing N, P and K uptake and leaf soluble sugar, especially in stressed treatments.

  5. Humic Substances in Organic Wastes and their Effects on Amended Soils

    Science.gov (United States)

    Senesi, N.; Ciavatta, C.; Plaza, C.

    2009-04-01

    Soil humic substances (HS) are universally recognized to play a major role in a wide number of agronomic and environmental processes. For example, soil HS are able to bind mineral particles together, thus promoting a good soil structure, constitute an important source of nutrients for plants and microorganisms, contribute largely to the acid-base buffering capacity of soils, and exert a marked control on the biological availability, physico-chemical behavior, and environmental fate of toxic metal ions and xenobiotics. For these reasons, the knowledge of the short- and long-term effects of organic amendments on the status, quality, and reactivity of indigenous soil HS is of paramount importance. The objective of this presentation is to provide an overview of the chemical and physico-chemical data available in the literature for the evaluation of the effects of organic wastes of various origin and nature used as soil amendments on the composition, structure, and chemical reactivity of native soil HS. In general, HS-like components of organic wastes are typically characterized by a relatively larger presence of aliphatic, amide, and polysaccharide structures, simple structural components of wide molecular heterogeneity, smaller contents of oxygen, acidic functional groups, and organic free radicals, and smaller degrees of aromatic ring polycondensation, polymerization, and humification than native soil HS. Further, with respect to native soil HS, HS-like fractions from organic wastes generally exhibit smaller binding capacities and affinities for metal ions and organic xenobiotics. Appropriate treatment processes of raw organic wastes able to produce environmentally safe and agronomically efficient soil amendments, such as composting, yield HS-like fractions characterized by chemical and physico-chemical features that approach those of native soil HS. In general, aliphatic, polysaccharide, and lignin structures and S- and N-containing groups of the HS-like fractions

  6. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  7. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  8. The formation and fate of chlorinated organic substances in temperate and boreal forest soils.

    Science.gov (United States)

    Clarke, Nicholas; Fuksová, Kvetoslava; Gryndler, Milan; Lachmanová, Zora; Liste, Hans-Holger; Rohlenová, Jana; Schroll, Reiner; Schröder, Peter; Matucha, Miroslav

    2009-03-01

    Chlorine is an abundant element, commonly occurring in nature either as chloride ions or as chlorinated organic compounds (OCls). Chlorinated organic substances were long considered purely anthropogenic products; however, they are, in addition, a commonly occurring and important part of natural ecosystems. Formation of OCls may affect the degradation of soil organic matter (SOM) and thus the carbon cycle with implications for the ability of forest soils to sequester carbon, whilst the occurrence of potentially toxic OCls in groundwater aquifers is of concern with regard to water quality. It is thus important to understand the biogeochemical cycle of chlorine, both inorganic and organic, to get information about the relevant processes in the forest ecosystem and the effects on these from human activities, including forestry practices. A survey is given of processes in the soil of temperate and boreal forests, predominantly in Europe, including the participation of chlorine, and gaps in knowledge and the need for further work are discussed. Chlorine is present as chloride ion and/or OCls in all compartments of temperate and boreal forest ecosystems. It contributes to the degradation of SOM, thus also affecting carbon sequestration in the forest soil. The most important source of chloride to coastal forest ecosystems is sea salt deposition, and volcanoes and coal burning can also be important sources. Locally, de-icing salt can be an important chloride input near major roads. In addition, anthropogenic sources of OCls are manifold. However, results also indicate the formation of chlorinated organics by microorganisms as an important source, together with natural abiotic formation. In fact, the soil pool of OCls seems to be a result of the balance between chlorination and degradation processes. Ecologically, organochlorines may function as antibiotics, signal substances and energy equivalents, in descending order of significance. Forest management practices can affect

  9. The effectiveness of removing precursors of chlorinated organic substances in pilot water treatment plant

    Science.gov (United States)

    Wolska, Małgorzata; Szerzyna, Sławomir; Machi, Justyna; Mołczan, Marek; Adamski, Wojciech; Wiśniewski, Jacek

    2017-11-01

    The presence of organic substances in the water intaken for consumption could be hazardous to human health due to the potential formation of disinfection by-products (TOX). The study were carried out in the pilot surface water treatment system consisting of coagulation, sedimentation, filtration, ozonation, adsorption and disinfection. Due to continuous operation of the system and interference with the parameters of the processes it was possible not only assess the effectiveness of individual water treatment processes in removing TOX, but also on factors participating on the course of unit processes.

  10. Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin.

    Science.gov (United States)

    Liu, Jin; Svärd, Michael; Hippen, Perschia; Rasmuson, Åke C

    2015-07-01

    Two crystal polymorphs of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) have been obtained by crystallization from ethanol (EtOH) solution. The polymorphs have been characterized by differential scanning calorimetry, infrared spectroscopy, and X-ray powder diffraction and shown to be the previously described forms I and III. The solubility of both polymorphs in EtOH and of one polymorph in ethyl acetate (EA) has been measured between 10°C and 50°C with a gravimetric method. Primary nucleation of curcumin from EtOH solution has been investigated in 520 constant temperature crystallization experiments in sealed, magnetically stirred vials under different conditions of supersaturation, temperature, and agitation rate. By a thermodynamic analysis of the melting data and solubility of form I, the solid-state activity is estimated from 10°C up to the melting point. The solubility is lower in EtOH than in EA, and in both solvents, a positive deviation from Raoult's law is observed. Form I has lower solubility than form III and is accordingly thermodynamically more stable over the investigated temperature interval. Extrapolation of solubility regression models indicates that there should be a low-temperature enantiotropic transition point, below which form I will be metastable. By slurry conversion experiments, it is established that this temperature is below -30°C. All nucleation experiments resulted in the stable form I. The induction time is observed to decrease with increasing agitation rate up to a certain point, and then increase with further increasing agitation rate; a trend previously observed for other compounds. By correlating the induction time data obtained at different supersaturation and temperature, the interfacial energy of form I in EtOH is estimated to be 3.0 mJ/m(2) . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  12. [Immunotoxicity and environmental substances].

    Science.gov (United States)

    Teshima, Reiko

    2014-01-01

    A well functioning immune system is essential in maintaining integrity of the organism, and malfunction may have severe health consequences. Environmental substances may pose direct toxicity to components of the immune system, often leading to immunosuppression and resulting reduced resistance to infections and tumors. Alternatively, such substances may be recognized by the immune system in a specific fashion, which may result in allergy and autoimmunity. A proper risk assessment of environmental substances in terms of immunotoxicity is necessary. In this manuscript, I reviewed recent three topics about immunotoxicity: (1) IPCS/WHO Guidance for immunotoxicity risk assessment for chemicals, (2) Intestinal immunotoxicity, and (3) Epicutaneous sensitization of food proteins.

  13. Microbial utilization of low molecular weight organics in soil depends on the substances properties

    Science.gov (United States)

    Gunina, Anna

    2016-04-01

    Utilization of low molecular weight organic substances (LMWOS) in soil is regulated by microbial uptake from solution and following incorporation of into specific cell cycles. Various chemical properties of LMWOS, namely oxidation state, number of carbon (C) atoms, number of carboxylic (-COOH) groups, can affect their uptake from soil solution and further microbial utilization. The aim of the study was to trace the initial fate (including the uptake from soil solution and utilization by microorganisms) of three main classes of LMWOS, having contrast properties - sugars, carboxylic and amino acids. Top 10 cm of mineral soil were collected under Silver birch stands within the Bangor DIVERSE experiment, UK. Soil solution was extracted by centrifugation at 4000 rpm during 15 min. Soil was spiked with 14C glucose or fructose; malic, succinic or formic acids; alanine or glycine. No additional non-labeled LMWOS were added. 14C was traced in the dissolved organic matter (DOM), CO2, cytosol and soil organic matter (SOM) during one day. To estimate half-life times (T1 /2)of LMWOS in soil solution and in SOM pools, the single and double first order kinetic equations were fitted to the uptake and mineralization dynamics, respectively. The LMWOS T1 /2in DOM pool varied between 0.6-5 min, with the highest T1 /2for sugars (3.7 min) and the lowest for carboxylic acids (0.6-1.4 min). Thus, initial uptake of LMWOS is not a limiting step of microbial utilization. The T1 /2 of carboxylic and amino acids in DOM were closely related with oxidation state, showing that reduced substances remain in soil solution longer, than oxidized. The initial T1 /2 of LMWOS in SOM ranged between 30-80 min, with the longest T1 /2 for amino acids (50-80 min) and the shortest for carboxylic acids (30-48 min). These T1 /2values were in one-two orders of magnitude higher than LMWOS T1 /2 in soil solution, pointing that LMWOS mineralization occur with a delay after the uptake. Absence of correlations between

  14. Effect of irradiation for recovery of organic wastes from potato starch wastewater with chitosan

    International Nuclear Information System (INIS)

    Kume, T.; Takehisa, M.

    1984-01-01

    The irradiation effect on recovery of organic substances from potato starch wastewater with aid of chitosan and disinfection were investigated for recycling the organic wastes into animal feeds. Chitosan was effective as a coagulant for suspended solids in the wastewater and the optimum concentration was 8 to 10 x 10 -3 %. The irradiation promotes the coagulation of the organic wastes. Especially, the coagulation of the proteins with chitosan increased by irradiation since the soluble proteins became insoluble by irradiation. The numbers of total aerobic bacteria in the wastewater and in the coagulum with chitosan were 8.0 x 10 7 and 3.5 x 10 8 counts/ml, respectively, and decreased to 11 and 45 counts/ml by 1.0 Mrad irradiation. (author)

  15. Characterization of an organ-specific differentiator substance

    International Nuclear Information System (INIS)

    Steele, V.E.

    1975-01-01

    Cell regeneration in planaria (Dugesia etrusca) was studied. An attempt was made to characterize a diffusible brain inhibitory substance, to elucidate its role in the maintenance of anterior-posterior polarity during head or tail regeneration, and to utilize its action in measuring the differentiative integrity of the stem cells following x-irradiation. (U.S.)

  16. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    Science.gov (United States)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  17. Urgent need to reevaluate the latest World Health Organization guidelines for toxic inorganic substances in drinking water.

    Science.gov (United States)

    Frisbie, Seth H; Mitchell, Erika J; Sarkar, Bibudhendra

    2015-08-13

    The World Health Organization (WHO) has established guidelines for drinking-water quality that cover biological and chemical hazards from both natural and anthropogenic sources. In the most recent edition of Guidelines for Drinking-water Quality (2011), the WHO withdrew, suspended, did not establish, or raised guidelines for the inorganic toxic substances manganese, molybdenum, nitrite, aluminum, boron, nickel, uranium, mercury, and selenium. In this paper, we review these changes to the WHO drinking-water guidelines, examining in detail the material presented in the WHO background documents for each of these toxic substances. In some cases, these WHO background documents use literature reviews that do not take into account scientific research published within the last 10 or more years. In addition, there are instances in which standard WHO practices for deriving guidelines are not used; for example, rounding and other mathematical errors are made. According to published meeting reports from the WHO Chemical Aspects Working Group, the WHO has a timetable for revising some of its guidelines for drinking-water quality, but for many of these toxic substances the planned changes are minimal or will be delayed for as long as 5 years. Given the limited nature of the planned WHO revisions to the inorganic toxic substances and the extended timetable for these revisions, we suggest that governments, researchers, and other stakeholders might establish independent recommendations for inorganic toxic substances and possibly other chemicals to proactively protect public health, or at the very least, revert to previous editions of the Guidelines for Drinking-water Quality, which were more protective of public health.

  18. Lattice energy calculation - A quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids

    Science.gov (United States)

    Kuleshova, L. N.; Hofmann, D. W. M.; Boese, R.

    2013-03-01

    Cocrystals (or multicomponent crystals) have physico-chemical properties that are different from crystals of pure components. This is significant in drug development, since the desired properties, e.g. solubility, stability and bioavailability, can be tailored by binding two substances into a single crystal without chemical modification of an active component. Here, the FLEXCRYST program suite, implemented with a data mining force field, was used to estimate the relative stability and, consequently, the relative solubility of cocrystals of flavonoids vs their pure crystals, stored in the Cambridge Structural Database. The considerable potency of this approach for in silico screening of cocrystals, as well as their relative solubility, was demonstrated.

  19. The role of dissolved organic substance in radionuclide migration in river water of the Kiev's water reservoir

    International Nuclear Information System (INIS)

    Domin, V.V.; Bondarenko, G.N.; Zheldakov, Yu.A.

    1989-01-01

    The role of organic substance dissolved (DOS) in radionuclide migration in the river water of the Kiev's water reservoir was considered. It was ascertained, that metal complexes with fulvic acids were stable and complexing properties of fulvic acids affected radionuclide migration. When DOS content increased sharply during the freshet period, radionuclide migration also increased. 8 refs.; 4 figs.; 3 tabs

  20. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    Energy Technology Data Exchange (ETDEWEB)

    Szcześ, Aleksandra, E-mail: aszczes@poczta.umcs.lublin.pl [Department of Physical Chemistry – Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland); Czemierska, Magdalena; Jarosz-Wilkołazka, Anna [Department of Biochemistry, Maria Curie-Skłodowska University, Lublin 20-031 (Poland)

    2016-10-15

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO{sub 3} polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO{sub 3} crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  1. Calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus

    International Nuclear Information System (INIS)

    Szcześ, Aleksandra; Czemierska, Magdalena; Jarosz-Wilkołazka, Anna

    2016-01-01

    Extracellular polymeric substance (EPS) extracted from Rhodococcus opacus bacterial strain was used as a matrix for calcium carbonate precipitation using the vapour diffusion method. The total exopolymer and water-soluble exopolymer fraction of different concentrations were spread on the mica surface by the spin-coating method. The obtained layers were characterized using the atomic force microscopy measurement and XPS analysis. The effects of polymer concentration, initial pH of calcium chloride solution and precipitation time on the obtained crystals properties were investigated. Raman spectroscopy and scanning electron microscopy were used to characterize the precipitated minerals. It was found that the type of precipitated CaCO 3 polymorph and the crystal size depend on the kind of EPS fraction. The obtained results indicates that the water soluble fraction favours vaterite dissolution and calcite growth, whereas the total EPS stabilizes vaterite and this effect is stronger at basic pH. It seems to be due to different contents of the functional group of EPS fractions. - Highlights: • CaCO 3 crystal size and polymorph can be controlled by EPS substance obtained from R. opacus. • The water soluble fraction favours vaterite dissolution and calcite growth. • The total EPS stabilizes vaterite. • This effect is stronger at basic pH.

  2. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe.

    Science.gov (United States)

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Pereira, Guilherme; Vasconcellos, Pérola; Gioda, Adriana; Carreira, Renato; Silva, Artur M S; Duarte, Armando C; Smichowski, Patricia; Rojas, Nestor; Sanchez-Ccoyllo, Odon

    2017-08-01

    This study describes and compares the key structural units present in water-soluble organic carbon (WSOC) fraction of atmospheric aerosols collected in different South American (Colombia - Medellín and Bogotá, Peru - Lima, Argentina - Buenos Aires, and Brazil - Rio de Janeiro, São Paulo, and Porto Velho, during moderate (MBB) and intense (IBB) biomass burning) and Western European (Portugal - Aveiro and Lisbon) locations. Proton nuclear magnetic resonance ( 1 H NMR) spectroscopy was employed to assess the relative distribution of non-exchangeable proton functional groups in aerosol WSOC of diverse origin, for the first time to the authors' knowledge in South America. The relative contribution of the proton functional groups was in the order H-C > H-C-C= > H-C-O > Ar-H, except in Porto Velho during MBB, Medellín, Bogotá, and Buenos Aires, for which the relative contribution of H-C-O was higher than that of H-C-C=. The 1 H NMR source attribution confirmed differences in aging processes or regional sources between the two geographic regions, allowing the differentiation between urban combustion-related aerosol and biological particles. The aerosol WSOC in Aveiro, Lisbon, and Rio de Janeiro during summer are more oxidized than those from the remaining locations, indicating the predominance of secondary organic aerosols. Fresh emissions, namely of smoke particles, becomes important during winter in Aveiro and São Paulo, and in Porto Velho during IBB. The biosphere is an important source altering the chemical composition of aerosol WSOC in South America locations. The source attribution in Medellín, Bogotá, Buenos Aires, and Lima confirmed the mixed contributions of biological material, secondary formation, as well as urban and biomass burning emissions. Overall, the information and knowledge acquired in this study provide important diagnostic tools for future studies aiming at understanding the water-soluble organic aerosol problem, their sources and

  3. Photochemical Degradation of Petroleum-Derived Water-Soluble Organics into the Background Dissolved Organic Carbon Pool

    Science.gov (United States)

    Podgorski, D. C.; Ray, P. Z.; Roland, N. V.; Corilo, Y. E.; Tarr, M. A.; Guillemette, F.; Spencer, R. G.

    2016-02-01

    Water-soluble organic (WSO) photoproducts produced from Macondo crude oil (MC252) and a heavy fuel oil (HFO), a surrogate for that which was spilled into the San Francisco Bay by the M/V Cosco Busan, were isolated and irradiated with simulated sunlight to examine the photochemical fate of the products in aquatic ecosystems. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals marked transformations in the elemental composition of WSOs at specific irradiation periods across a time series that correspond with shifts in bulk properties determined with optical measurements. Blue shifts in EEMs spectra correlate with an increase in formulas classified as unsaturated, high oxygen while the polyphenols and unsaturated, low oxygen compounds decrease. The characteristic A and C humic- and fulvic-like FDOM signatures begin to appear in the EEM spectra of WSOs that were irradiated for as little as 8 to 12 hours, the equivalent of 2 to 3 days of natural sunlight. The presence of the A and C signatures correlate to elemental compositions that exhibit a further decrease in the unsaturated, low oxygen and subsequent increase of unsaturated, high oxygen and highly oxygenated aliphatic compounds. Furthermore, van Krevelen plots reveal a shift toward the compositional space associated with carboxyl-rich aromatic moieties (CRAM) as a function of irradiation period and the appearance of the humic- and fulvic-like FDOM signatures in the EEM spectra. Although the photodegraded WSO products show similarities in FDOM and elemental composition to representative natural dissolved organic matter from their respective pools, persistent petroleum signatures that are not photoactive are still detected. Future studies are required to examine the bioavailability of these photodegraded WSO products to determine if they degrade or persist in the environment.

  4. Study of the formation of soluble complexes of sodium caseinate and xanthan in solution.

    Science.gov (United States)

    Bouhannache, Bouchra; HadjSadok, Abdelkader; Touabet, Abdelkrim

    2017-09-01

    The main objective of this work was to determinate the optimum conditions for the formation of soluble complexes between sodium caseinate and xanthan in solution at neutral pH, in the presence of the NaCl. The study of the influence of the concentrations of these three substances showed that salt was the most influent factor. It worsens the thermodynamic incompatibility of the two biopolymers in solution, when they are present at large amounts. However, it contributes to soluble complexes formation, when sodium caseinate concentration is below 5.5%. In this case, gels with enhanced rheological properties were obtained. Infrared spectroscopy confirmed that the complexes formation within these gels involves hydrophobic interactions. On the other hand, dynamic light scattering revealed that dilution cause their dissociation. These soluble complexes are promising ingredients to ensure new texturing properties.

  5. Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution

    Science.gov (United States)

    Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.

    2011-12-01

    Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.

  6. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    International Nuclear Information System (INIS)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-01-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L"−"1). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ"1"8O, δ"1"5N and δ"3"4S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L"−"1. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ"1"5N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with

  7. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Esmeralda, E-mail: eestevez@proyinves.ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Cabrera, María del Carmen, E-mail: mcarmen.cabrera@ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); IMDEA Water Institute, Alcalá de Henares, Madrid (Spain); Fernández-Vera, Juan Ramón, E-mail: jrfernandezv@grancanaria.com [Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Molina-Díaz, Antonio, E-mail: amolina@ujaen.es [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Robles-Molina, José, E-mail: jroblesmol@gmail.com [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Palacios-Díaz, María del Pino, E-mail: mp.palaciosdiaz@ulpgc.es [Dpt. de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Canary Islands (Spain)

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L{sup −1}). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ{sup 18}O, δ{sup 15}N and δ{sup 34}S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L{sup −1}. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ{sup 15}N and the lowest contaminants occurrence. The area is an example of a complex

  8. Experimental estimation of migration and transfer of organic substances from consumer articles to cotton wipes: Evaluation of underlying mechanisms

    NARCIS (Netherlands)

    Clausen, P.A.; Spaan, S.; Brouwer, D.H.; Marquart, H.; Feber, M. le; Engel, R.; Geerts, L.; Jensen, K.A.; Kofoed-Sørensen, V.; Hansen, B.; Brouwere, K. de

    2016-01-01

    The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles

  9. Sources and oxidative potential of water-soluble humic-like substances (HULISWS in fine particulate matter (PM2.5 in Beijing

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2018-04-01

    Full Text Available Water-soluble humic-like substances (HULISWS are a major redox-active component of ambient fine particulate matter (PM2.5; however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( >  59 % to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for  >  70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  10. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  11. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Science.gov (United States)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  12. Agrogenic transformation of soil organic C in conditions of southern-taiga zone, European Russia

    Science.gov (United States)

    Yashin, Ivan; Vasenev, Ivan; Atenbekov, Ramiz

    2017-04-01

    The principal regional features of soil organic carbon (SOC) agrogenic transformation and water-soluble organic substances (WSOS) genesis and environmental functions have been investigated in the Podzols and Podzoluvisols of the representative natural and agro- ecosystems in the southern taiga subzone of the European part of Russia. Especial attention has been done to the role of SOC agrogenic degradation and WSOS with acidic and ligand properties in soil carbon dioxide emission. The long-term agroecological investigations run in the regional set of representative agrolandscape monitoring stations in the educational farm "Mikhailovskoye" (Podolsk district, Moscow region), Field experimental station and Forest experimental station (RTSAU campus, Moscow) and in the Central Forest biosphere reserve (Nelidovo district, Tver region). Field research methods include sorption lysimetry and radioactive tracers. The laboratory ones - chromatography and spectrophotometry. There were used activated charcoal brand "Carbolite", chemically purified quartz sand and barley plant residues (2-3 mm), totally labeled with 14C in the soil-horizontally distributed sorption columns. Obtained results became useful for quantitative assessment of the principal stages and processes in soil CO2 emission, including the water-soluble organic substances formation (3.0 g of SOC per 100 g of plant litter or 60-75 g of SOC per square meter of the organo-mineral horizon A0 per year) and CO2 emission. In the middle taiga ecosystem conditions (with relatively low soil biological activity) the highest emission of CO2 (83,0±4.1 % of the newly formed WSOS) was in case of arable Podzoluvisols, and lowest one (32,4±2,5%) - in their semihydromorphic versions.

  13. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  14. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Science.gov (United States)

    Zhang, Yan-Lin; El-Haddad, Imad; Huang, Ru-Jin; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Zotter, Peter; Bozzetti, Carlo; Daellenbach, Kaspar R.; Slowik, Jay G.; Salazar, Gary; Prévôt, André S. H.; Szidat, Sönke

    2018-03-01

    Water-soluble organic carbon (WSOC) is a large fraction of organic aerosols (OA) globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32-47 % of WSOC. Secondary organic carbon (SOC) dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 %) and Xi'an (26 ± 9 %). The most important primary sources were biomass burning emissions, contributing 17-26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 %) to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  15. **1**5N-NMR INVESTIGATION OF HYDROXYLAMINE DERIVATIZED HUMIC SUBSTANCES.

    Science.gov (United States)

    Thorn, Kevin A.; Arterburn, Jeffrey B.; Mikita, Michael A.

    1986-01-01

    Humic substances are the most abundant naturally occurring refactory organic compounds in soils and water. They have a broad range of physical, chemical and physiological properties. In soils, humic substances contribute to the cation exchange capacity, help maintain the physical structure, and play a role in plant growth and nutrition. In aquatic systems, humic substances serve to regulate the levels of inorganic constituents, yield trihalomethanes upon chlorination, and transport or concentrate organic and inorganic pollutants. The oxygen containing functional groups of humic and fulvic acids are believed to play a key role in the chemical properties of humic substances. This study was undertaken to gain additional information on the specific types of oxygen functionalities in humic substances. Since the analysis of hydroxyl moieties had been earlier established, we focused our attention on the analysis of ketone and aldehyde functional groups in humic substances.

  16. Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity

    Science.gov (United States)

    Nehir, Münevver; Koçak, Mustafa

    2018-03-01

    Aerosol and rain sampling in two size fractions was carried out at a rural site located on the coast of the eastern Mediterranean, Erdemli, Turkey (36°33'54'' N, 34°15'18'' E). A total of 674 aerosol samples in two size fractions (337 coarse, 337 fine) and 23 rain samples were collected between March 2014 and April 2015. Samples were analyzed for NO3-, NH4+ and ancillary water-soluble ions using ion chromatography and water-soluble total nitrogen (WSTN) by applying a high-temperature combustion method. The mean aerosol water-soluble organic nitrogen (WSON) was 23.8 ± 16.3 nmol N m-3, reaching a maximum of 79 nmol N m-3, with about 66 % being associated with coarse particles. The volume weighted mean (VWM) concentration of WSON in rain was 21.5 µmol N L-1. The WSON contributed 37 and 29 % to the WSTN in aerosol and rainwater, respectively. Aerosol WSON concentrations exhibited large temporal variation, mainly due to meteorology and the origin of air mass flow. The highest mean aerosol WSON concentration was observed in the summer and was attributed to the absence of rain and resuspension of cultivated soil in the region. The mean concentration of WSON during dust events (38.2 ± 17.5 nmol N m-3) was 1.3 times higher than that of non-dust events (29.4 ± 13.9 nmol N m-3). Source apportionment analysis demonstrated that WSON was originated from agricultural activities (43 %), secondary aerosol (20 %), nitrate (22 %), crustal material (10 %) and sea salt (5 %). The dry and wet depositions of WSON were equivalent and amounted to 36 % of the total atmospheric WSTN flux.

  17. A comparative study of changes in immunological reactivity during prolonged introduction of radioactive and chemical substances into the organism with drinking water

    International Nuclear Information System (INIS)

    Shubik, V.M.; Nevstrueva, M.A.; Kalnitskij, S.A.; Livshits, R.E.; Merkushev, G.N.; Pilshchik, E.M.; Ponomareva, T.V.

    1978-01-01

    A comparative study was conducted into the factors of non-specific protection and specific immunity, allergic and autoallergic reactivities during prolonged exposure of experimental animals to 6 different radioactive and 7 harmful chemical substances. Qualitative and quantitative peculiarities were found in the changes in immunological reactivity during the exposure of the organism to radionuclides and stable chemical compounds. Impairment of immunity plays an essential role in the course and the outcome of effects induced by chronic action of the substances examined. (author)

  18. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    Science.gov (United States)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  19. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Science.gov (United States)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  20. Dry season aerosol iron solubility in tropical northern Australia

    Directory of Open Access Journals (Sweden)

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  1. Fate of bulk and trace organics during a simulated aquifer recharge and recovery (ARR)-ozone hybrid process

    KAUST Repository

    Yoon, Min

    2013-11-01

    The attenuation of bulk organic matter and trace organic contaminants (TOrCs) was evaluated for various aquifer recharge and recovery (ARR)-ozone (O3) hybrid treatment process combinations using soil-batch reactor and bench-scale ozonation experiments as a proof of concept prior to pilot and/or field studies. In water reclamation and especially potable reuse, refractory bulk organic matter and TOrCs are of potential health concern in recycled waters. In this study, the role of biotransformation of bulk organic matter and TOrCs was investigated considering different simulated treatment combinations, including soil passage (ARR) alone, ARR after ozonation (O3-ARR), and ARR prior to ozonation (ARR-O3). During oxic (aerobic) ARR simulations, soluble microbial-like substances (e.g., higher molecular weight polysaccharides and proteins) were easily removed while (lower molecular weight) humic substances and aromatic organic matter were not efficiently removed. During ARR-ozone treatment simulations, removals of bulk organic matter and TOrCs were rapid and effective compared to ARR alone. A higher reduction of effluent-derived organic matter, including aromatic organic matter and humic substances, was observed in the ARR-O3 hybrid followed by the O3-ARR hybrid. An enhanced attenuation of recalcitrant TOrCs was observed while increasing the ozone dose slightly (O3: DOC=1). TOrC removal efficiency also increased during the post-ozone treatment combination (i.e., ARR-O3). In addition, the carcinogenic wastewater disinfection byproduct N-nitrosodimethylamine (NDMA) was eliminated below the method reporting limit (<5ngL-1) both during ARR treatment alone and the ARR-ozone hybrid. © 2013 Elsevier Ltd.

  2. Inhibitory effects of extracellular polymeric substances on ofloxacin sorption by natural biofilms.

    Science.gov (United States)

    Zhang, Liwen; Dong, Deming; Hua, Xiuyi; Guo, Zhiyong

    2018-06-01

    Natural biofilms have strong affinities for organic contaminants, and their extracellular polymeric substances (EPS) have been thought to control the sorption process. However, the role of EPS in the sorption of antibiotics, an emerging concern, is poorly understood. Here, soluble (SEPS) and bound EPS (BEPS) were extracted from intact biofilms incubated at different lengths of time to obtain SEPS- and BEPS-free biofilms. Batch sorption experiments and infrared spectroscopy were used to investigate the role of EPS in the sorption of ofloxacin (OFL) by natural biofilms. The sorption capacities of OFL onto intact biofilms were lower than that those onto SEPS-free and BEPS-free biofilms. Partition and Langmuir adsorption contributed to the sorption of OFL onto these biofilms. SEPS and BEPS suppressed partitioning of OFL into biofilm organic matter. Meanwhile, the formation of hydrogen bonds could affect the Langmuir adsorption of OFL onto BEPS-free biofilms. These sorption mechanisms occurred simultaneously and enhanced the sorption capacities of biofilms after EPS removal. The information obtained in this study is beneficial for understanding the interaction mechanisms between antibiotics and natural biofilms. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Studying the processes relating to oxidation of organic substances contained in the coolant of thermal and nuclear power stations

    Science.gov (United States)

    Khodyrev, B. N.; Krichevtsov, A. L.; Sokolyuk, A. A.

    2010-07-01

    A radical-chain mechanism governing thermal-oxidation destruction of organic substances contained in the coolant of thermal and nuclear power stations is considered. Hypotheses on the chemical nature of antioxidation properties of amines are presented. Theoretical conjectures about the fundamental processes through which protective amine films are formed on the surface of metals are suggested.

  4. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    Energy Technology Data Exchange (ETDEWEB)

    Albers, Christian N., E-mail: calbers@ruc.d [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark); Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Banta, Gary T. [Dept. of Environmental, Social and Spatial Change, Roskilde University, DK-4000 Roskilde (Denmark); Hansen, Poul Erik [Dept. of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Jacobsen, Ole S. [Dept. of Geochemistry, Geological Survey of Denmark and Greenland, DK-1350 Copenhagen (Denmark)

    2009-10-15

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, approx40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only approx10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  5. The influence of organic matter on sorption and fate of glyphosate in soil - Comparing different soils and humic substances

    International Nuclear Information System (INIS)

    Albers, Christian N.; Banta, Gary T.; Hansen, Poul Erik; Jacobsen, Ole S.

    2009-01-01

    Soil organic matter (SOM) is generally believed not to influence the sorption of glyphosate in soil. To get a closer look on the dynamics between glyphosate and SOM, we used three approaches: I. Sorption studies with seven purified soil humic fractions showed that these could sorb glyphosate and that the aromatic content, possibly phenolic groups, seems to aid the sorption. II. Sorption studies with six whole soils and with SOM removed showed that several soil parameters including SOM are responsible for the strong sorption of glyphosate in soils. III. After an 80 day fate experiment, ∼40% of the added glyphosate was associated with the humic and fulvic acid fractions in the sandy soils, while this was the case for only ∼10% of the added glyphosate in the clayey soils. Glyphosate sorbed to humic substances in the natural soils seemed to be easier desorbed than glyphosate sorbed to amorphous Fe/Al-oxides. - Glyphosate was sorbed by purified humic substances and a significant amount of glyphosate was found to be associated with soil organic matter in whole soils.

  6. Improving the Carprofen Solubility: Synthesis of the Zn2Al-LDH Hybrid Compound.

    Science.gov (United States)

    Capsoni, Doretta; Quinzeni, Irene; Bruni, Giovanna; Friuli, Valeria; Maggi, Lauretta; Bini, Marcella

    2018-01-01

    The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M 2+ 1-x M 3+ x (OH) 2 ](A n- ) x/n yH 2 O (M 2+  = Zn, Mg; M 3+  = Al; A n-  = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn 2 Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  8. Provider-agency fit in substance abuse treatment organizations: implications for learning climate, morale, and evidence-based practice implementation.

    Science.gov (United States)

    Ramsey, Alex T; van den Berk-Clark, Carissa

    2015-05-12

    Substance abuse agencies have been slow to adopt and implement evidence-based practices (EBPs), due in part to poor provider morale and organizational climates that are not conducive to successful learning and integration of these practices. Person-organization fit theory suggests that alignment, or fit, between provider- and agency-level characteristics regarding the implementation of EBPs may influence provider morale and organizational learning climate and, thus, implementation success. The current study hypothesized that discrepancies, or lack of fit, between provider- and agency-level contextual factors would negatively predict provider morale and organizational learning climate, outcomes shown to be associated with successful EBP implementation. Direct service providers (n = 120) from four substance abuse treatment agencies responded to a survey involving provider morale, organizational learning climate, agency expectations for EBP use, agency resources for EBP use, and provider attitudes towards EBP use. Difference scores between combinations of provider- and agency-level factors were computed to model provider-agency fit. Quadratic regression analyses were conducted to more adequately and comprehensively model the level of the dependent variables across the entire "fit continuum". Discrepancies, or misfit, between agency expectations and provider attitudes and between agency resources and provider attitudes were associated with poorer provider morale and weaker organizational learning climate. For all hypotheses, the curvilinear model of provider-agency discrepancies significantly predicted provider morale and organizational learning climate, indicating that both directions of misfit (provider factors more favorable than agency factors, and vice-versa) were detrimental to morale and climate. However, outcomes were most negative when providers viewed EBPs favorably, but perceived that agency expectations and resources were less supportive of EBP use. The

  9. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Palumbo-Roe, Barbara [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Dept. Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom)

    2011-07-15

    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg{sup -1} and 362 mgCu kg{sup -1}) and Pb/Zn mine (4550 mgPb kg{sup -1} and 908 mgZn kg{sup -1}) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. - Graphical abstract: Display Omitted Highlights: > Compost reduced the mobility of Cu, Pb and Zn. > Compost increased the mobility of As. > Earthworms decreased water soluble As and Cu but increased Pb and Zn in porewater. > These effects are explained by the impact of the earthworms and compost on pH and DOC. - The effect of earthworms on metal solubility was due to changes in dissolved organic carbon and pH but was reduced with increasing compost amendments.

  10. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost

    International Nuclear Information System (INIS)

    Sizmur, Tom; Palumbo-Roe, Barbara; Hodson, Mark E.

    2011-01-01

    The common practice of remediating metal contaminated mine soils with compost can reduce metal mobility and promote revegetation, but the effect of introduced or colonising earthworms on metal solubility is largely unknown. We amended soils from an As/Cu (1150 mgAs kg -1 and 362 mgCu kg -1 ) and Pb/Zn mine (4550 mgPb kg -1 and 908 mgZn kg -1 ) with 0, 5, 10, 15 and 20% compost and then introduced Lumbricus terrestris. Porewater was sampled and soil extracted with water to determine trace element solubility, pH and soluble organic carbon. Compost reduced Cu, Pb and Zn, but increased As solubility. Earthworms decreased water soluble Cu and As but increased Pb and Zn in porewater. The effect of the earthworms decreased with increasing compost amendment. The impact of the compost and the earthworms on metal solubility is explained by their effect on pH and soluble organic carbon and the environmental chemistry of each element. - Graphical abstract: Display Omitted Highlights: → Compost reduced the mobility of Cu, Pb and Zn. → Compost increased the mobility of As. → Earthworms decreased water soluble As and Cu but increased Pb and Zn in porewater. → These effects are explained by the impact of the earthworms and compost on pH and DOC. - The effect of earthworms on metal solubility was due to changes in dissolved organic carbon and pH but was reduced with increasing compost amendments.

  11. Potential application of surfactant systems in formulation of dosage forms with slightly soluble substances

    Directory of Open Access Journals (Sweden)

    Ibrić Svetlana R.

    2012-01-01

    Full Text Available In order to achieve fast release of ibuprofen, slightly soluble model substance (0.52104 mol/l, surfactant systems for oral use with different PEG-40 hydrogenated castor oil (C/diethylene glycol monoethyl ether (T ratios were investigated. Comparison between dissolution profiles for ibuprofen from formulated systems and from two commercial products, film tablets and soft capsules, is presented in this paper. Photon correlation spectroscopy has shown that after high dilution with water, surfactant systems were able to form micellar solutions. The size of micelles varies from 14.8 ± 0,075 nm to 16.2 ± 0,021 nm with increasing C/T ratio from 1:2 to 2:1. Although with increasing content of PEG-40 hydrogenated castor oil larger micelles have formed, lower values of polydispersity index indicated that more homogeneous distribution of micelles size was gained. Conductometric analysis has demonstrated that system composing of C/T ratio 2:1, has shown most pronounced interaction between droplets, which can be seen as high rise of electrical conductivity with increasing water content (% (wwater/wtotal in the sample. No significant difference in percolation threshold between formulations with different C/T ratios was observed. Different surfactant systems were adsorbed on magnesium aluminometasilicate, as adsorbent with high specific active surface (≈300 m2/g, in order to investigate potential influence of adsorbent on ibuprofen dissolution rate. Formulated systems, with or without adsorbent were filled in hard gelatin capsules. The dissolution profiles of ibuprofen from different formulations were obtained in 30 minutes by dissolution apparatus with rotating baskets and compared with dissolution profiles of ibuprofen from commercial products. For formulations without adsorbent faster release of ibuprofen in first minutes of dissolution test, showed formulations with C/T ratio 2:1 and 1:1. Magnesium aluminometasilicate, as adsorbent with high specific

  12. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  13. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  14. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  15. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  16. Interaction and transport of actinides in natural clay rock with consideration of humic substances and clay organic compounds

    International Nuclear Information System (INIS)

    Marquardt, C.M.

    2012-01-01

    The present report summarizes the progress and the results obtained within the BMWi financed Joint Research Project Interaction and Transport of Actinides in Natural Clay Rock with Consideration of Humic Substances and Clay Organic Compounds. The basic approach of the work was to obtain a fundamental process understanding on the molecular level of complexation and sorption reactions as well as diffusion processes. The experimental findings are supported by quantum mechanical modeling.

  17. Calculating the Solubilities of Drugs and Drug-Like Compounds in Octanol.

    Science.gov (United States)

    Alantary, Doaa; Yalkowsky, Samuel

    2016-09-01

    A modification of the Van't Hoff equation is used to predict the solubility of organic compounds in dry octanol. The new equation describes a linear relationship between the logarithm of the solubility of a solute in octanol to its melting temperature. More than 620 experimentally measured octanol solubilities, collected from the literature, are used to validate the equation without using any regression or fitting. The average absolute error of the prediction is 0.66 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 3. Heavy Lanthanides (Gd–Lu)

    Energy Technology Data Exchange (ETDEWEB)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warszawa (Poland); Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warszawa (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2015-06-15

    This is the third part of the volume devoted to solubility data for the rare earth metal (REM) fluorides in water and in aqueous ternary and multicomponent systems. It covers experimental results of trivalent fluorides of Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu (so-called heavy lanthanides), since no quantitative data on solubilities of TbF{sub 4} and YbF{sub 2} (the most stable compounds at these valencies) are available. The related literature has been covered through the end of 2014. Compilations of all available papers with the solubility data are introduced for each REM fluoride with a corresponding critical evaluation. Every such assessment contains a collection of all solubility results in aqueous solution, a selection of suggested solubility data, a solubility equation, and a brief discussion of the multicomponent systems. Only simple fluorides (no complexes or double salts) are treated as the input substances in this report. General features of the systems, such as nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, solution pH, mixed solvent medium on the solubility, quality of the solubility results, and the solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  19. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  20. Characterization of an organ-specific differentiator substance in the planarian Dugesia etrusca

    Energy Technology Data Exchange (ETDEWEB)

    Steele, V.E.; Lange, C.S.

    1977-01-01

    A substance which inhibits brain formation in decapitated regenerating planarians (Dugesia etrusca) was characterized and partially purified. The substance's inhibitory activity was followed during each purification procedure by adding freshly decapitated animals of a standard size to each fraction, and later measuring the resultant regenerated brain volume. The inhibitory activity remained in the supernatant after a 10000 g centrifugation of a cell-free homogenate. Most of the activity sedimented when the 10000 g supernatant was centrifuged at 32000 g. The degree of inhibitory activity increased with increased numbers of animals in the initial homogenate. The substance has an apparent molecular weight between 2 x 10/sup 5/ and 4 x 10/sup 5/ daltons. Digestion by pronase destroyed the activity, but treatment with RNase, DNase I, or lipase had no significant effect. The inhibiting substance has an isoelectric point (pI) of between 4.75 and 5.38 and migrates to the anode when electrophorezed in pH 6.8 buffer.

  1. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract.

    Science.gov (United States)

    Bennett, Ryan C; Brough, Chris; Miller, Dave A; O'Donnell, Kevin P; Keen, Justin M; Hughey, Justin R; Williams, Robert O; McGinity, James W

    2015-03-01

    Acetyl-11-keto-β-boswellic acid (AKBA), a gum resin extract, possesses poor water-solubility that limits bioavailability and a high melting point making it difficult to successfully process into solid dispersions by fusion methods. The purpose of this study was to investigate solvent and thermal processing techniques for the preparation of amorphous solid dispersions (ASDs) exhibiting enhanced solubility, dissolution rates and bioavailability. Solid dispersions were successfully produced by rotary evaporation (RE) and KinetiSol® Dispersing (KSD). Solid state and chemical characterization revealed that ASD with good potency and purity were produced by both RE and KSD. Results of the RE studies demonstrated that AQOAT®-LF, AQOAT®-MF, Eudragit® L100-55 and Soluplus with the incorporation of dioctyl sulfosuccinate sodium provided substantial solubility enhancement. Non-sink dissolution analysis showed enhanced dissolution properties for KSD-processed solid dispersions in comparison to RE-processed solid dispersions. Variances in release performance were identified when different particle size fractions of KSD samples were analyzed. Selected RE samples varying in particle surface morphologies were placed under storage and exhibited crystalline growth following solid-state stability analysis at 12 months in comparison to stored KSD samples confirming amorphous instability for RE products. In vivo analysis of KSD-processed solid dispersions revealed significantly enhanced AKBA absorption in comparison to the neat, active substance.

  2. Influence of sulphur addition on emissions of organic substances during combustion; Inverkan av formen av svaveladditiv paa emissionerna av kolmonoxid och organiska aemnen vid foerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Jonsson, Claes; Almark, Matts; Berg, Magnus; Streibel, Thorsten; Zimmermann, Ralf

    2008-02-15

    Reduction of emissions of carbon monoxide and organic substances by injecting either ammonium sulphate or elemental sulphur and the importance of the point of injection has been investigated in full scale in a grate-fired bark boiler. The effect was monitored downstream of the economizer and air preheater, immediately upstream of the electrostatic precipitator. Concentrations determined in the comprehensive monitoring program include principally carbon monoxide, TOC and several organic substances, including PAH, PCDD/F and polychlorinated benzenes (PCBz). Additionally, the gaseous PAH were determined on-line using a novel mass spectrometer, REMPI-TOF MS, that measures specifically the 2- to 4-ring PAH's. All concentrations of substances of interest here fluctuate in concert and peak simultaneously. The relationship between the concentrations is not straightforward: there appears to be a threshold in carbon monoxide concentration. Below this threshold, the concentration of organics is low and above it concentrations increase rapidly with increasing carbon monoxide concentration. It has been confirmed that using sulphur additives not only reduces the concentration of carbon monoxide, but also that of organic substances in the flue gases. These additives do not only reduce the mean level of concentrations, but also dampen the fluctuations in these concentrations. Any measure leading to a reduction in carbon monoxide will also decrease the concentration of most organics, under the conditions prevalent in this boiler. Both additives tested are equally effective per kg of pure sulphur. The point of injection, in the fuel or above the grate, is not important. The PCDD/F concentration in the flue gases is very low even without additives, and the effect of sulphur on these emissions is therefore difficult to observe. Here, the effect is masked by the variation of data. The PAH concentration is lowered by an injection of sulphur additives. The variation in data is though

  3. Influence of sulphur addition on emissions of organic substances during combustion; Inverkan av formen av svaveladditiv paa emissionerna av kolmonoxid och organiska aemnen vid foerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik; Jonsson, Claes; Almark, Matts; Berg, Magnus; Streibel, Thorsten; Zimmermann, Ralf

    2008-02-15

    Reduction of emissions of carbon monoxide and organic substances by injecting either ammonium sulphate or elemental sulphur and the importance of the point of injection has been investigated in full scale in a grate-fired bark boiler. The effect was monitored downstream of the economizer and air preheater, immediately upstream of the electrostatic precipitator. Concentrations determined in the comprehensive monitoring program include principally carbon monoxide, TOC and several organic substances, including PAH, PCDD/F and polychlorinated benzenes (PCBz). Additionally, the gaseous PAH were determined on-line using a novel mass spectrometer, REMPI-TOF MS, that measures specifically the 2- to 4-ring PAH's. All concentrations of substances of interest here fluctuate in concert and peak simultaneously. The relationship between the concentrations is not straightforward: there appears to be a threshold in carbon monoxide concentration. Below this threshold, the concentration of organics is low and above it concentrations increase rapidly with increasing carbon monoxide concentration. It has been confirmed that using sulphur additives not only reduces the concentration of carbon monoxide, but also that of organic substances in the flue gases. These additives do not only reduce the mean level of concentrations, but also dampen the fluctuations in these concentrations. Any measure leading to a reduction in carbon monoxide will also decrease the concentration of most organics, under the conditions prevalent in this boiler. Both additives tested are equally effective per kg of pure sulphur. The point of injection, in the fuel or above the grate, is not important. The PCDD/F concentration in the flue gases is very low even without additives, and the effect of sulphur on these emissions is therefore difficult to observe. Here, the effect is masked by the variation of data. The PAH concentration is lowered by an injection of sulphur additives. The variation in data is

  4. Daily rhythm of circulating fat soluble vitamin concentration (A, D, E and K in the horse

    Directory of Open Access Journals (Sweden)

    Caola Giovanni

    2004-07-01

    Full Text Available Abstract Background Many physiological processes of mammalian species exhibit daily rhythmicity. An intrinsic relationship exists between fat soluble vitamins (A, D, E and K and several body functions. Few investigations on the rhythmic pattern of vitamins in domestic animals have been carried out. The present study evaluated the circadian rhythmicity of fat soluble vitamins in the horse. Methods Blood samples from 5 Thoroughbred mares were collected at four-hour intervals over a 48-hour period (starting at 8:00 hours on day 1 and finishing at 4:00 on day 2 via an intravenous cannula inserted into the jugular vein. Fat soluble vitamin concentration in the serum (A, D, E and K was measured by HPLC. One-way repeated measures analysis of variance (ANOVA was used to determine significant differences. p values Results ANOVA showed a highly significant effect of time in all the horses for the vitamins studied (p Conclusion Fat soluble vitamins exhibit daily rhythmicity with diurnal peak. Further investigations could help optimize the use of these substances according to their circadian (or other rhythms.

  5. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  6. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2018-03-01

    Full Text Available Water-soluble organic carbon (WSOC is a large fraction of organic aerosols (OA globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32–47 % of WSOC. Secondary organic carbon (SOC dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 % and Xi'an (26 ± 9 %. The most important primary sources were biomass burning emissions, contributing 17–26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 % to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  7. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  8. Influencing the solubility of oxalates for the preparation of ceramic powders from mixed precipitates

    International Nuclear Information System (INIS)

    Krueger, C.; Fischer, S.; Fischer, St.; Chebani, M.Kh.

    1991-01-01

    Based on investigations of the solubility of oxalate with 140 Ba, 64 Cu and 59 Fe, techniques for quantitative oxalate coprecipitation were developed. Addition of organic solvents lowers the solubility and leads to a smaller particle size of products. (orig.) [de

  9. The physicochemical properties and solubility of pharmaceuticals – Methyl xanthines

    International Nuclear Information System (INIS)

    Pobudkowska, Aneta; Domańska, Urszula; Kryska, Justyna A.

    2014-01-01

    Highlights: • Solubility of methyl xanthines in water and alcohols was measured. • Solubility in water, or alcohols was of the order of 10 −4 in mole fraction. • Experimental aqueous pK a ’s values are reported for the selected drugs. • The basic thermodynamic functions were determined. - Abstract: The aim of this study was to evaluate the physio-chemical properties and solubility of three pharmaceuticals (Phs): theophylline, 7-(β-hydroxyethyl) theophylline, and theobromine in binary systems in different solvents. The solvents used were water, ethanol, and 1-octanol. Score of the solubility of these substances is being important for their dissolution effect inside the cell, the transportation by body fluids and the penetration possibility of lipid membranes. The Phs were classified to the group of methyl xanthines, which contain purine in their structure. Although they are mainly obtained via chemical synthesis, they can be also found in natural ingredients such as cocoa beans and tea leaves. These drugs are mainly acting on the central nervous system but are also used in the treatment of asthma or blood vessels. Solubility of 7 (β-hydroxyethyl) theophylline and theophylline were tested using synthetic method. In case of theobromine, which solubility is very small in the solvents noted, the spectrophotometric method has been used to measure its solubility. After designating phase diagrams of each of the solubility in the bipolar system, the experimental points have been correlated with the equations: Wilson, NRTL, UNIQUAC. Results show that theophylline and its derivatives show the best solubility from all tested Phs. Another method also used during this study was the differential scanning calorimetry (DSC), which allowed designation of the thermal properties of Phs. The fusion temperature and the enthalpy of melting were measured. Unfortunately, it was not possible to determine the fusion temperature and enthalpy of melting of theobromine, because of

  10. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.

    Science.gov (United States)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several

  11. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  12. Longitudinal dispersion of radioactive substances in Federal waterways

    Energy Technology Data Exchange (ETDEWEB)

    Krause, W.J. [Bundesanstalt fuer Gewaesserkunde (BfG), Koblenz (Germany); Speer, W.; Luellwitz, T.; Cremer, M.; Tolksdorf, W.

    2007-08-15

    In the context of radioactivity monitoring in German Federal Waterways (BWStr) by the Federal Institute of Hydrology (BfG) according to the Precautionary Radiation Protection Act (StrVG), the prediction of the dispersion of radioactive substances in water is one of the key tasks. The aim is the forecasting of the longitudinal dispersion of concentrations of soluble hazardous substances in flowing water. These predictions are based on the so-called dispersion tests with tritium as a tracer that the BfG has performed since 1980. Characteristic parameters like discharge-dependent flow velocities, dispersion and elimination constants related to emission sources or selected river sections are determined. They will serve as basis for a mathematical model to forecast discharge-dependent flow velocities, expected impact times, concentration maxima, and the duration of critical increases in concentrations. In the following, the results obtained till now from three investigation campaigns on the River Weser and its source rivers Werra and Fulda are described. (orig.)

  13. Soluble and colloidal iron in the oligotrophic North Atlantic and North Pacific.

    Science.gov (United States)

    Wu, J; Boyle, E; Sunda, W; Wen, L S

    2001-08-03

    In the oligotrophic North Atlantic and North Pacific, ultrafiltration studies show that concentrations of soluble iron and soluble iron-binding organic ligands are much lower than previously presumed "dissolved" concentrations, which were operationally defined as that passing through a 0.4-micrometer pore filter. Our studies indicate that substantial portions of the previously presumed "dissolved" iron (and probably also iron-binding ligands) are present in colloidal size range. The soluble iron and iron-binding organic ligands are depleted at the surface and enriched at depth, similar to distributions of major nutrients. By contrast, colloidal iron shows a maximum at the surface and a minimum in the upper nutricline. Our results suggest that "dissolved" iron may be less bioavailable to phytoplankton than previously thought and that iron removal through colloid aggregation and settling should be considered in models of the oceanic iron cycle.

  14. Organic material in clay-based buffer materials and its potential impact on radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Goulard, M.; Stroes-Gascoyne, S.; Haveman, S.A.; Bachinski, D.B.; Hamon, C.J.; Comba, R.

    1997-03-01

    AECL has submitted an Environmental Impact Statement (EIS) to evaluate the concept of nuclear fuel disposal at depth in crystalline rock of the Canadian Shield. In this disposal concept used fuel would be emplaced in corrosion-resistant containers which would be surrounded by clay-based buffer and backfill materials. Once groundwater is able to penetrate the buffer and corrosion-resistant container, radionuclides could be transported from the waste form to the surrounding geosphere, and eventually to the biosphere. The release of radionuclides from the waste form and their subsequent transport would be determined by the geochemistry of the disposal vault and surrounding geosphere. Organic substances affect the geochemistry of radionuclides through complexation reactions that increase solubility and alter mobility, by affecting the redox of certain radionuclides and by providing food for microbes. The purpose of this study was to determine whether the buffer and backfill materials proposed for use in a disposal vault contain organics that could be leached by groundwater in large enough quantities to complex with radionuclides and affect their mobility within the disposal vault and surrounding geosphere. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon, humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 deg C and 90 deg C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. Humic substances were isolated from the leachates to determine the concentrations of humic and fulvic acids and to determine their functional group content by acid-base titrations. The results showed that groundwater would leach significant amounts of organics that would complex with radionuclides such as

  15. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  16. Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution FT-ICR mass spectrometry.

    Science.gov (United States)

    Leclair, Jeffrey P; Collett, Jeffrey L; Mazzoleni, Lynn R

    2012-04-17

    Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.

  17. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  18. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  19. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  20. Heavy metals and organic pollutants in soils. Concentrations - sorption and solubility - effects on micro-organisms; Schwermetalle und organische Schadstoffe in Boeden. Gehalte - Sorption und Loeslichkeit - Wirkung auf Mikroorganismen

    Energy Technology Data Exchange (ETDEWEB)

    Welp, G.

    2000-07-01

    The thesis comprises six manuscripts published in different journals. Soil protection being the main theme the articles deal with different aspects that represent a necessary scientific basis of a risk assessment for polluted soils. The first step is to look at the total contents of different soil contaminants and to decide whether a pollution is given or not. In chapter II the contents of 18 elements in 335 soil samples of North Rhine-Westphalia are analysed, in order to determine groups of soil samples that are characterized by a certain range of element contents in connection with other common features (e.g., parent material, sampling region, specific source of pollution). The study bases on a detailed inspection of frequency distributions which are evaluated with a parametric method (assuming several single lognormal distributions) and with a nonparametric approach (Kemel density estimation). The latter method proved to be a useful tool to derive background concentrations for toxic elements in soils. It is necessary to differentiate between soluble (mobile, available) and insoluble (immobile, strongly adsorbed, precipitated) fractions of pollutants in soil. The sorption and solubility of pollutants in soils, therefore, is a second important parameter for an appropriate risk assessment. Four papers (chapter III-VI) deal with this aspect. In chapter III sorption and solubility of ten metals in four soil samples is studied. The quantity-intensity relations of eight metals [except Cr(III) and Fe(III)] are governed by sorption and complexation procecces and can be fitted by Freundlich isotherms. In three further papers sorption and solubility experiments with inorganic and organic toxicants are combined with microbial tests in order to detect effects on microorganisms in relation to soil properties. The large data set of about 500 dose-response curves was also used to examine the general reaction patterns of heterogeneous microbial populations under chemical stress

  1. Ozonation of humic substances: Effects on molecular weight distributions of organic carbon and trihalomethane formation potential

    International Nuclear Information System (INIS)

    Amy, G.L.; Kuo, C.J.; Sierka, R.A.

    1988-01-01

    Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O 3 /mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, uv absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed

  2. Characteristics of selected bioaccumulative substances and their impact on fish health

    Directory of Open Access Journals (Sweden)

    Walczak Marek

    2016-12-01

    Full Text Available The aim of this article was to evaluate the influence and effects of chosen bioaccumulative substances i.e. heavy metals, pesticides, and polychlorinated biphenyls (PCBs on fish, as well as provide information on time trends and potential threat to human health. Chemical substances which pollute water may affect living organisms in two ways. First of all, large amounts of chemical substances may cause sudden death of a significant part of the population of farmed fish, without symptoms (i.e. during breakdown of factories or industrial sewage leaks. However, more frequently, chemical substances accumulate in tissues of living organisms affecting them chronically. Heavy metals, pesticides, and polychlorinated biphenyls are persistent substances with a long-lasting biodegradation process. In a water environment they usually accumulate in sediments, which makes them resistant to biodegradation processes induced by, e.g., the UV light. These substances enter the fish through direct consumption of contaminated water or by contact with skin and gills. Symptoms of intoxication with heavy metals, pesticides, and PCBs may vary and depend on the concentration and bioavailability of these substances, physicochemical parameters of water, and the fish itself.

  3. Some biochemical characteristics of a toxic substance isolated from organs of lethally irradiated animals in the course of the intestinal syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Meter, J D; Sirota, N S [Tsentral' nyj Nauchno-Issledovatel' skij Rentgeno-Radiologicheskij Inst., Leningrad (USSR)

    1976-05-01

    A toxic substance isolated from organs of lethally irradiated (1300 rads) animals in the period when intestinal syndrome has developed is classified according to the parameters under study (namely, the molecular weight, UV-absorption curve, extinction coefficient, specific monosaccharides, the presence and percentage of KDA, etc.) as lipopolysaccharide of Escherichia coli, the main inhabitant of the gastroenteric tract of mice. That endotoxins (sensitivity to which is increased in this period of radiation sickness) are detected in the blood and organs of lethally irradiated animals, might indicate their participation in the pathogenesis of the intestinal syndrome.

  4. Some biochemical characteristics of a toxic substance isolated from organs of lethally irradiated animals in the course of the intestinal syndrome

    International Nuclear Information System (INIS)

    Meter, J.D.; Sirota, N.S.

    1976-01-01

    A toxic substance isolated from organs of lethally irradiated (1300 rads) animals in the period when intestinal syndrome has developed is classified according to the parameters under study (namely, the molecular weight, UV-absorption curve, extinction coefficient, specific monosaccharides, the presence and percentage of KDA, etc.) as lipopolysaccharide of Escherichia coli, the main inhabitant of the gastroenteric tract of mice. That endotoxins (sensitivity to which is increased in this period of radiation sickness) are detected in the blood and organs of lethally irradiated animals, might indicate their participation in the pathogenesis of the intestinal syndrome

  5. Critical micelle concentrations of allelopathic substances produced by Nannochloris oculata which affect a red tide organism, Gymnodinium breve.

    Science.gov (United States)

    Pérez, E; Martin, D F

    2001-01-01

    Laboratory cultures of the green algae Nannochloris oculata and Nannochloris eucaryotum are known to cause lysis of Gymnodinium breve, which is Florida's red tide organism. Two cytolytic agents were previously identified as methyl palmitate and methyl stearate. In this study, the critical micelle concentrations of these substances were determined by ultraviolet light and turbidimetric methods to be 3.5 +/- 0.3 ppm (methyl stearate) and 4.3 +/- 0.6 (methyl palmitate). There were no significant differences in results obtained using the two methods.

  6. Synchronous fluorescence spectroscopy for studying extracellular organic substances of Ulva rigida C. Ag; Analisi spettroscopica per fluorescenza sincrona nello studio delle sostanze organiche extracellulari dell`Ulva rigida C. Ag

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, G.M. [IRSA, Marine Environment Unit, Ispra (Italy). Centro Comune di Ricerca; Targa, C. [Univ. degli studi, Venice (Italy). Dip. di scienze ambientali

    1996-01-01

    Experiments performed using Ulva rigida thalli and enriched culture solutions demonstrated that Ulva emits extra-cellular organic substances the complexity of which can be monitored by synchronous fluorescence spectroscopy. It was found that synchronous peak intensities hA (excitation at 270-280 nm), hB (340-350 nm) and hC (390-400 nm) varies in relation to the age of the thallus and the quality of the emitted substances by the alga. The peak height ratio hA/hB display an inverse relationship with the age of the alga and a direct relationship with the slope of the absorption curves. That occurs since hA, after a first increase, tends to diminish in correspondence to a progressive increase of the peaks hB and hC due to the emission of the more and more complex fluorescent organic substances.

  7. Insights in groundwater organic matter from Liquid Chromatography-Organic Carbon Detection

    Science.gov (United States)

    Rutlidge, H.; Oudone, P.; McDonough, L.; Andersen, M. S.; Baker, A.; Meredith, K.; O'Carroll, D. M.

    2017-12-01

    Understanding the processes that control the concentration and characteristics of organic matter in groundwater has important implications for the terrestrial global carbon budget. Liquid Chromatography - Organic Carbon Detection (LC-OCD) is a size-exclusion based chromatography technique that separates the organic carbon into molecular weight size fractions of biopolymers, humic substances, building blocks (degradation products of humic substances), low molecular weight acids and low molecular weight neutrals. Groundwater and surface water samples were collected from a range of locations in Australia representing different surface soil, land cover, recharge type and hydrological properties. At one site hyporheic zone samples were also collected from beneath a stream. The results showed a general decrease in the aromaticity and molecular weight indices going from surface water, hyporheic downwelling and groundwater samples. The aquifer substrate also affected the organic composition. For example, groundwater samples collected from a zone of fractured rock showed a relative decrease in the proportion of humic substances, suggestive of sorption or degradation of humic substances. This work demonstrates the potential for using LC-OCD in elucidating the processes that control the concentration and characteristics of organic matter in groundwater.

  8. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  9. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  10. Implementation of Electronic Health Records and Entrepreneurial Strategic Orientation in Substance Use Disorder Treatment Organizations.

    Science.gov (United States)

    Fields, Dail; Riesenmy, Kelly; Blum, Terry C; Roman, Paul M

    2015-11-01

    This research studied the relationships of the components of entrepreneurial strategic orientation (ESO) with implementation of electronic health records (EHRs) within organizations that treat patients with substance use disorders (SUDs). A national sample of 317 SUD treatment providers were studied in a period after the Health Information Technology for Economic and Clinical Health (HITECH) Act was enacted (2009) and meaningful use EHR requirements were established (2010), but before implementation of the Affordable Care Act. The study sample was selected using stratified random sampling and was part of a longitudinal study of treatment providers across the United States. After we controlled for potentially confounding variables, four components of ESO had a significant relationship with EHR implementation. Levels of slack resources in an organization moderated the relationship of ESO with meaningful use of EHRs, increasing the strength of the relationship for some components but reducing the strength of others. From a policy and practice perspective, the results suggest that training and education to develop higher levels of ESO within SUD treatment organizations are likely to increase their level of meaningful use of EHRs, which in turn may enhance the integration of SUD treatment with primary medical providers, better preparing SUD treatment providers for the environmental changes of the Affordable Care Act.

  11. Non biodegradable and weakly adsorbing substances in the river Elbe

    International Nuclear Information System (INIS)

    Mueller, U.; Wricke, B.; Sontheimer, H.

    1993-01-01

    The quality of the river Elbe in East Germany has been investigated in a research project subsidized by the German minstry of research and technology, iwth respect to drinking water quality and treatment using laboratory methods similar to the treatment processes in waterworks. The experiments included analysis of sum- and group-parameters before and after biological degradation and a study of adsorption on activated carbon. Comparing these results with data already published from the river Rhine in West Germany, the water of the river Elbe showed approximately double the concentration of dissolved organic carbon (DOC), absorbable organic halogen (AOX) and ion-pair-extractable organic sulphur (IOS). Mathematical models have been used to obtain further information from these measurements about the origin of the organic substances in the river Elbe. As a consequence, an important part of the relatively high DOC-concentration in the Elbe-river is due to natural humic substances. Therefore the operation of better waste water treatment plants along the elbe-river might reduce the concentration of organic halogen and sulphur substances in particular, whereas the concentration of DOC will decrease only slightly in the future. (orig.) [de

  12. Evaluating the effectiveness of mulch application to store carbon belowground: Short-term effects of mulch application on soluble soil and microbial C and N in agricultural soils with low and high organic matter

    Science.gov (United States)

    Chen, Janet; Heiling, Maria; Resch, Christian; Gruber, Roman; Dercon, Gerd

    2017-04-01

    Agricultural soils have the potential to contain a large pool of carbon and, depending on the farming techniques applied, can either effectively store carbon belowground, or further release carbon, in the form of CO2, into the atmosphere. Farming techniques, such as mulch application, are frequently proposed to increase carbon content belowground and improve soil quality and can be used in efforts to reduce greenhouse gas levels, such as in the "4 per 1000" Initiative. To test the effectiveness of mulch application to store carbon belowground in the short term and improve soil nutrient quality, we maintained agricultural soils with low and high organic carbon content (disturbed top soil from local Cambisols and Chernozems) in greenhouse mesocosms (70 cm deep with a radius of 25 cm) with controlled moisture for 4 years. Over the 4 years, maize and soybean were grown yearly in rotation and mulch was removed or applied to soils once plant material was harvested at 2 ton/ha dry matter. In addition, soil disturbance was kept to a minimum, with only surface disturbance of a few centimeters to keep soil free from weeds. After 4 years, we measured effects of mulch application on soluble soil and microbial carbon and nitrogen in the mesocosms and compared effects of mulch application versus no mulch on soils from 0-5 cm and 5-15 cm with low and high organic matter. We predicted that mulch would increase soil carbon and nitrogen content and mulch application would have a greater effect on soils with low organic matter than soils with high organic matter. In soils with low organic carbon content and larger predicted potential to increase soil carbon, mulch application did not increase soluble soil or microbial carbon or nitrogen compared to the treatments without mulch application. However, mulch application significantly increased the δ13C of both microbial and soluble soil carbon in these soils by 1 ‰ each, indicating a shift in belowground processes, such as increased

  13. Hazardous substances in wastewater systems:a delicate issue for wastewater management

    OpenAIRE

    Palmquist, Helena

    2001-01-01

    Many substances derived from human activity end up in wastewater systems at some point. A large number of different substances - up to 30,000 - are present in wastewater. Some of them are valuable, such as nitrogen and phosphorus, but there are also hazardous substances such as heavy metals and anthropogenic organic substances. To be able to utilise the wastewater nutrients on arable land (agriculture, forestry or other alternatives), it is of great importance to investigate the sources of ha...

  14. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    Science.gov (United States)

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  15. Effect of humic substances on P sorption capacity of three different soils

    Science.gov (United States)

    Delgado, Antonio

    2010-05-01

    Organic matter decreases P sorption by soils. It has been demonstrated the effect of low molecular weight compounds decreasing P adsorption on active surfaces and the effect of humic and fulvic acids inhibiting the precipitation of hydroxyapatite and favouring the formation of more soluble phosphates. This contributes to increase the recovery of applied P fertilizer. The objective of this work was to study the effect of 4 different humic substances (commercially available and provided by Tradecorp Internacional S.A.) on the sorption capacity of three soils differing widely in chemical properties (two calcareous from south Spain, pH 8 and 8.5, and other acidic from Brazil, pH 5.9 and 50 % of exchangeable basic cations). To this end, sorption isotherms were performed at a soil:0.01 M CaCl2 ratio of 1:10 at 6, 30 and 90 days. 2.5 mg of humic substances per g of soil were added to the solution. Data were fitted to the best model and linearized sorption curves for each humic substance were compared with the linearized sorption curve for the control without humic substances application (intersection point and slopes). Soil from Brazil showed a much higher sorption capacity (400 mg P kg-1 soil sorbed at 1 mg L-1 of P in the solution at 1 day) than the other two soils (50 and 100 mg P kg-1). Slow reactions significantly contributed to P sorption in the three soils, amounts sorbed at 90 days being twice than those sorbed at 1 day. Two of the products increased P sorption in the soil from Brazil at 1 day. At 90 days all the products increased P sorption significantly. This increased P sorption can be only explained by metal complexation by the substances applied, which may result in organo-metallic compounds with a high P sorption capacity. This effect was independent of the proportion of humic and fulvic acids in the applied products because the amounts of metal complexed by these compouds depend on the amount of functional groups to coordinate with metals. In the Spanish

  16. Biomaterials in Artificial Organs.

    Science.gov (United States)

    Kambic, Helen E.; And Others

    1986-01-01

    Biomaterials are substances or combinations of substances that can be used in a system that treats, augments, or replaces any tissue, organ, or body function. The nature and role of these substances, particularly in the cadiovascular system, are discussed. (JN)

  17. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  18. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  19. Factors affecting actinide solubility in a repository for spent fuel, 1

    International Nuclear Information System (INIS)

    Snellman, Margit

    1986-07-01

    The main tasks in the study were to get information on the chemical conditions in a repository for spent fuel and information on factors affecting releases of actinides from spent fuel and solubility of actinides in a repository for spent fuel. The work in this field started at the Reactor Laboratory of the Technical Research Centre of Finland (VTT) in 1982. This is a report on the effects on the main parameters, Eh, pH, carbonate, organic compounds, colloids, microbes and radiation on the actinide solubility in the nearfield of the repository. Another task has been to identify available models and reported experience from actinide solubility calculations with different codes. 167 refs

  20. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules.

    Science.gov (United States)

    Kudryavtseva, Valeriya L; Zhao, Li; Tverdokhlebov, Sergei I; Sukhorukov, Gleb B

    2017-09-01

    We propose the use of polylactic acid/calcium carbonate (PLA/CaCO 3 ) hybrid micro-particles for achieving improved encapsulation of water-soluble substances. Biodegradable porous CaCO 3 microparticles can be loaded with wide range of bioactive substance. Thus, the formation of hydrophobic polymeric shell on surface of these loaded microparticles results on encapsulation and, hence, sealing internal cargo and preventing their release in aqueous media. In this study, to encapsulate proteins, we explore the solid-in-oil-in-water emulsion method for fabricating core/shell PLA/CaCO 3 systems. We used CaCO 3 particles as a protective core for encapsulated bovine serum albumin, which served as a model protein system. We prepared a PLA coating using dichloromethane as an organic solvent and polyvinyl alcohol as a surfactant for emulsification; in addition, we varied experimental parameters such as surfactant concentration and polymer-to-CaCO 3 ratio to determine their effect on particle-size distribution, encapsulation efficiency and capsule permeability. The results show that the particle size decreased and the size distribution narrowed as the surfactant concentration increased in the external aqueous phase. In addition, when the CaCO 3 /PLA mass ratio dropped below 0.8, the hybrid micro-particles were more likely to resist treatment by ethylenediaminetetraacetic acid and thus retained their bioactive cargos within the polymer-coated micro-particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. MMP-15 is upregulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin.

    Directory of Open Access Journals (Sweden)

    Tu'uhevaha J Kaitu'u-Lino

    Full Text Available Preeclampsia is a major pregnancy complication, characterized by severe endothelial dysfunction, hypertension and maternal end-organ damage. Soluble endoglin is an anti-angiogenic protein released from placenta and thought to play a central role in causing the endothelial dysfunction and maternal organ injury seen in severe preeclampsia. We recently reported MMP-14 was the protease producing placentally-derived soluble endoglin by cleaving full-length endoglin present on the syncytiotrophoblast surface. This find identifies a specific drug target for severe preeclampsia; interfering with MMP-14 mediated cleavage of endoglin could decrease soluble endoglin production, ameliorating clinical disease. However, experimental MMP-14 inhibition alone only partially repressed soluble endoglin production, implying other proteases might have a role in producing soluble endoglin. Here we investigated whether MMP-15--phylogenetically the closest MMP relative to MMP-14 with 66% sequence similarity--also cleaves endoglin to produce soluble endoglin. MMP-15 was localized to the syncytiotrophoblast layer of the placenta, the same site where endoglin was localized. Interestingly, it was significantly (p = 0.03 up-regulated in placentas from severe early-onset preeclamptic pregnancies (n = 8 compared to gestationally matched preterm controls (n = 8. However, siRNA knockdown of MMP-15 yielded no significant decrease of soluble endoglin production from either HUVECs or syncytialised BeWo cells in vitro. Importantly, concurrent siRNA knockdown of both MMP-14 and MMP-15 in HUVECS did not yield further decrease in soluble endoglin production compared to MMP-14 siRNA alone. We conclude MMP-15 is up-regulated in preeclampsia, but does not cleave endoglin to produce soluble endoglin.

  2. Use of cluster rhenium substances with alkyl ligands for inhibition of the Guerin carcinoma Growth

    Directory of Open Access Journals (Sweden)

    O. S. Voronkova

    2007-04-01

    Full Text Available Quantity and quality of erythrocytes, blood haemoglobin concentration, glucose levels in the erythrocytes and plasma, content of TBA-active products in blood plasma of rats were studied during development of the Guerin carcinoma, introduction of cis-platinum and cluster rhenium substances with organic ligands. It was shown that rhenium substances had essential antioxidant effects and changed the dynamic of tumour growth. The conclusion on perspectiveness of further investigations of rhenium substances with cluster fragment and organic ligands in experiments in vivo with changed redox-status of an organism was drawn.

  3. The ecotoxicity of zinc and zinc-containing substances in soil with consideration of metal-moiety approaches and organometal complexes.

    Science.gov (United States)

    Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska

    2017-12-01

    Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown

  4. Water-soluble contrast media compared with barium in enteric follow-through

    International Nuclear Information System (INIS)

    Laerum, F.; Stordahl, A.; Aase, S.

    1988-01-01

    The local effects and radiographic efficacy of 4 water-soluble contrast media, barium and saline were evaluated in 86 anaesthetized rats with the distal ileum ligated. The rats were observed for 8 hours after instillation of 3 ml of the test substance via orogastric tube. Radiographs were taken after 1, 4 and 8 hours of observation. After 8 hours the intestines were weighed and biopsied for light microscopy, and blood and urine were sampled for testing. Sodium diatrizoate caused increased fluid influx to the bowel lumen and, like barium, provided poorer radiographic images as compared with iohexol, ioxaglate or iodixanol. Barium showed slower progression through the small bowel than the other agents, while sodium diatrizoate was the most rapidly progressing contrast medium and caused the greatest distension. Correlation to osmolality was obvious. No significant morphologic effects on the small bowel mucosa were seen in any of the groups. Low-osmolar, water-soluble contrast media may have prospects for clinical use in patients with suspected small bowel obstruction. (orig.)

  5. Reductions of plant cover induced by sheep grazing change the above-belowground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina.

    Science.gov (United States)

    Larreguy, C; Carrera, A L; Bertiller, M B

    2017-09-01

    The objective of this study was to estimate the size and chemical quality of the total organic C stock and its partition between above-belowground plant parts and soil at sites with different plant cover induced by sheep grazing in the arid Patagonian Monte. This study was conducted at six representative sites with increasing signs of canopy disturbance attributed to grazing pressure. We used faeces density as a proxy of grazing pressure at each site. We assessed the total plant cover, shrub and perennial grass cover, total standing aboveground biomass (AGB), litter mass and belowground biomass (BGB) at each site. We further estimated the content of organic C, lignin and soluble phenols in plant compartments and the content of organic C, organic C in humic substances (recalcitrant C) and water soluble C (labile C) in soil at each site. Total plant cover was significantly related to grazing pressure. Standing AGB and litter mass decreased with increasing canopy disturbance while BGB did not vary across sites. Total organic C stock and the organic C stock in standing AGB increased with increasing total plant, shrub, and perennial grass cover. The organic C stock in litter mass increased with increasing total plant and shrub cover, while the organic C stock in BGB did not vary across sites. Lignin content in plant compartments increased with increasing total and shrub cover, while soluble phenols content did not change across sites. The organic C stock and the water soluble C content in soil were positively associated with perennial grass cover. Changes in total plant cover induced by grazing pressure negatively affected the size of the total organic C stock, having minor impact on the size of belowground than aboveground components. The reduction of perennial grass cover was reflected in decreasing chemical quality of the organic C stock in soil. Accordingly, plant managerial strategies should not only be focused on the amount of organic C sequestered but also on the

  6. Soluble polymer conjugates for drug delivery.

    Science.gov (United States)

    Minko, Tamara

    2005-01-01

    The use of water-soluble polymeric conjugates as drug carriers offers several possible advantages. These advantages include: (1) improved drug pharmacokinetics; (2) decreased toxicity to healthy organs; (3) possible facilitation of accumulation and preferential uptake by targeted cells; (4) programmed profile of drug release. In this review, we will consider the main types of useful polymeric conjugates and their role and effectiveness as carriers in drug delivery systems.: © 2005 Elsevier Ltd . All rights reserved.

  7. Solubility data and modeling for sugar alcohols in ionic liquids

    International Nuclear Information System (INIS)

    Okuniewski, Marcin; Ramjugernath, Deresh; Naidoo, Paramespri; Domańska, Urszula

    2014-01-01

    Highlights: • Solubility of D-sorbitol and xylitol in six ILs. • The (liquid + liquid) phase equilibrium of (SA + IL) with UCST. • Interesting properties of [BMIM][TDI] IL. • The correlation with NRTL model. - Abstract: Ionic liquids (ILs) are novel media characterized by strong interactions with different organic substances which leads to a wide spectrum of applications involving extraction. Ionic liquids have been used as a solvent for sugar alcohols, sugars and hydrates. This work demonstrates the experimental and theoretical study of (liquid + liquid) phase equilibria for two sugar alcohols, D-sorbitol and xylitol in a few ILs based on different cations and anions (namely, 1-ethyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [EMPIP][NTf 2 ], 1-hexyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [HMPIP][NTf 2 ], N-hexylquinolinium bis(trifluoromethylsulfonyl)imide [HQuin][NTf 2 ], N-hexylisoquinolinium bis(trifluoromethylsulfonyl)imide [HiQuin][NTf 2 ], 1-butyl-1-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [BMIM][TDI] and 1-(cyanomethyl)-3-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [CCNMIM][TDI]). This study was conducted to assess the applicability of the studied ILs for dissolution of these biomass-related materials. (Liquid + liquid) phase equilibrium diagrams (LLE) in binary systems (sugar alcohol + ionic liquid) were measured using the dynamic technique. The influence of the chemical structure of both the ionic liquids and sugar alcohols were established and is discussed

  8. Self-organizing maps as a chemometric tool for aromatic pattern recognition of soluble coffee - doi: 10.4025/actascitechnol.v34i1.10892

    Directory of Open Access Journals (Sweden)

    Evandro Bona

    2011-11-01

    Full Text Available The electronic nose (EN is an instrument very used for food flavor analysis. However, it is also necessary to integrate the equipment with a multivariable pattern recognition system, and to this end the principal component analysis (PCA is the first choice. Alternatively, self-organizing maps (SOM had been also suggested, since they are a nonlinear and reliable technique. In this study SOM were used to distinguish soluble coffee according to EN data. The proposed methodology had identified all of the seven coffees evaluated; in addition, the groups and relationships detected were similar to those obtained through PCA. Also, the analysis of network weights allowed gathering the e-nose sensors into 4 groups according to the behavior regarding the samples. Results confirm SOM as an efficient tool to EN data pos-processing, and have showed the methodology as a promising choice for the development of new products and quality control of soluble coffee.

  9. The release of organic material from clay based buffer materials and its potential implications for radionuclide transport

    International Nuclear Information System (INIS)

    Vilks, P.; Stroes-Gascoyne, S.; Goulard, M.; Haveman, S.A.; Bachinski, D.B.

    1998-01-01

    In the Canadian nuclear fuel waste disposal concept used fuel would be placed in corrosion resistant containers which would be surrounded by clay-based buffer and backfill materials in an engineered vault excavated at 500 to 1000 m depth in crystalline rock formations in the Canadian shield. Organic substances could affect radionuclide mobility due to the effects of redox and complexation reactions that increase solubility and alter mobility. The purpose of this study was to determine whether the buffer and backfill materials, proposed for use in a disposal vault, contain organics that could be leached by groundwater in large enough quantities to affect radionuclide mobility within the disposal vault and surrounding geosphere complex. Buffer material, made from a mixture of 50 wt.% Avonlea sodium bentonite and 50 wt.% silica sand, was extracted with deionized water to determine the release of dissolved organic carbon (DOC), humic acid and fulvic acid. The effect of radiation and heat from the used fuel was simulated by treating samples of buffer before leaching to various amounts of heat (60 and 90 C) for periods of 2, 4 and 6 weeks, and to ionizing radiation with doses of 25 kGy and 50 kGy. The results showed that groundwater would leach significant amounts of organics from buffer that complex with radionuclides such as the actinides, potentially affecting their solubility and transport within the disposal vault and possibly the surrounding geosphere. In addition, the leached organics would likely stimulate microbial growth by several orders of magnitude. Heating and radiation affect the amount and nature of leachable organics. (orig.)

  10. Efficient singlet exciton fission in pentacene prepared from a soluble precursor

    Directory of Open Access Journals (Sweden)

    Maxim Tabachnyk

    2016-11-01

    Full Text Available Carrier multiplication using singlet exciton fission (SF to generate a pair of spin-triplet excitons from a single optical excitation has been highlighted as a promising approach to boost the photocurrent in photovoltaics (PVs thereby allowing PV operation beyond the Shockley-Queisser limit. The applicability of many efficient fission materials, however, is limited due to their poor solubility. For instance, while acene-based organics such as pentacene (Pc show high SF yields (up to200%, the plain acene backbone renders the organic molecule insoluble in common organic solvents. Previous approaches adding solubilizing side groups such as bis(tri-iso-propylsilylethynyl to the Pc core resulted in low vertical carrier mobilities due to reduction of the transfer integrals via steric hindrance, which prevented high efficiencies in PVs. Here we show how to achieve good solubility while retaining the advantages of molecular Pc by using a soluble precursor route. The precursor fully converts into molecular Pc through thermal removal of the solubilizing side groups upon annealing above 150 °C in the solid state. The annealed precursor shows small differences in the crystallinity compared to evaporated thin films of Pc, indicating that the Pc adopts the bulk rather than surface polytype. Furthermore, we identify identical SF properties such as sub-100 fs fission time and equally long triplet lifetimes in both samples.

  11. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Stadtherr, M.A.

    1999-01-01

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO 2 . Extraction with CO 2 is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO 2 to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO 2 and CO 2 /cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO 2 and CO 2 /co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO 2 , as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination

  12. Metformin as a prevention and treatment for preeclampsia: effects on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion and endothelial dysfunction.

    Science.gov (United States)

    Brownfoot, Fiona C; Hastie, Roxanne; Hannan, Natalie J; Cannon, Ping; Tuohey, Laura; Parry, Laura J; Senadheera, Sevvandi; Illanes, Sebastian E; Kaitu'u-Lino, Tu'uhevaha J; Tong, Stephen

    2016-03-01

    Preeclampsia is associated with placental ischemia/hypoxia and secretion of soluble fms-like tyrosine kinase 1 and soluble endoglin into the maternal circulation. This causes widespread endothelial dysfunction that manifests clinically as hypertension and multisystem organ injury. Recently, small molecule inhibitors of hypoxic inducible factor 1α have been found to reduce soluble fms-like tyrosine kinase 1 and soluble endoglin secretion. However, their safety profile in pregnancy is unknown. Metformin is safe in pregnancy and is also reported to inhibit hypoxic inducible factor 1α by reducing mitochondrial electron transport chain activity. The purposes of this study were to determine (1) the effects of metformin on placental soluble fms-like tyrosine kinase 1 and soluble endoglin secretion, (2) to investigate whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion are regulated through the mitochondrial electron transport chain, and (3) to examine its effects on endothelial dysfunction, maternal blood vessel vasodilation, and angiogenesis. We performed functional (in vitro and ex vivo) experiments using primary human tissues to examine the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion from placenta, endothelial cells, and placental villous explants. We used succinate, mitochondrial complex II substrate, to examine whether the effects of metformin on soluble fms-like tyrosine kinase 1 and soluble endoglin secretion were mediated through the mitochondria. We also isolated mitochondria from preterm preeclamptic placentas and gestationally matched control subjects and measured mitochondrial electron transport chain activity using kinetic spectrophotometric assays. Endothelial cells or whole maternal vessels were incubated with metformin to determine whether it rescued endothelial dysfunction induced by either tumor necrosis factor-α (to endothelial cells) or placenta villous

  13. Soluble fullerene derivatives : The effect of electronic structure on transistor performance and air stability

    NARCIS (Netherlands)

    Ball, James M.; Bouwer, Ricardo K.M.; Kooistra, Floris B.; Frost, Jarvist M.; Qi, Yabing; Buchaca Domingo, Ester; Smith, Jeremy; de Leeuw, Dago M.; Hummelen, Jan C.; Nelson, Jenny; Kahn, Antoine; Stingelin, Natalie; Bradley, Donal D.C.; Anthopoulos, Thomas D.

    2011-01-01

    The family of soluble fullerene derivatives comprises a widely studied group of electron transporting molecules for use in organic electronic and optoelectronic devices. For electronic applications, electron transporting (n-channel) materials are required for implementation into organic

  14. Unchanged Levels of Soluble CD14 and IL-6 Over Time Predict Serious Non-AIDS Events in HIV-1-Infected People

    Science.gov (United States)

    Sunil, Meena; Nigalye, Maitreyee; Somasunderam, Anoma; Martinez, Maria Laura; Yu, Xiaoying; Arduino, Roberto C.; Bell, Tanvir K.

    2016-01-01

    Abstract HIV-1-infected persons have increased risk of serious non-AIDS events (SNAEs) despite suppressive antiretroviral therapy. Increased circulating levels of soluble CD14 (sCD14), soluble CD163 (sCD163), and interleukin-6 (IL-6) at a single time point have been associated with SNAEs. However, whether changes in these biomarker levels predict SNAEs in HIV-1-infected persons is unknown. We hypothesized that greater decreases in inflammatory biomarkers would be associated with fewer SNAEs. We identified 39 patients with SNAEs, including major cardiovascular events, end stage renal disease, decompensated cirrhosis, non-AIDS-defining malignancies, and death of unknown cause, and age- and sex-matched HIV-1-infected controls. sCD14, sCD163, and IL-6 were measured at study enrollment (T1) and proximal to the event (T2) or equivalent duration in matched controls. Over ∼34 months, unchanged rather than decreasing levels of sCD14 and IL-6 predicted SNAEs. Older age and current illicit substance abuse, but not HCV coinfection, were associated with SNAEs. In a multivariate analysis, older age, illicit substance use, and unchanged IL-6 levels remained significantly associated with SNAEs. Thus, the trajectories of sCD14 and IL-6 levels predict SNAEs. Interventions to decrease illicit substance use may decrease the risk of SNAEs in HIV-1-infected persons. PMID:27344921

  15. Compositions, methods, and systems comprising fluorous-soluble polymers

    Science.gov (United States)

    Swager, Timothy M.; Lim, Jeewoo; Takeda, Yohei

    2015-10-13

    The present invention generally relates to compositions, methods, and systems comprising polymers that are fluorous-soluble and/or organize at interfaces between a fluorous phase and a non-fluorous phase. In some embodiments, emulsions or films are provided comprising a polymer. The polymers, emulsions, and films can be used in many applications, including for determining, treating, and/or imaging a condition and/or disease in a subject. The polymer may also be incorporated into various optoelectronic device such as photovoltaic cells, organic light-emitting diodes, organic field effect transistors, or the like. In some embodiments, the polymers comprise pi-conjugated backbones, and in some cases, are highly emissive.

  16. New York hazardous substances emergency events surveillance: learning from hazardous substances releases to improve safety

    International Nuclear Information System (INIS)

    Welles, Wanda Lizak; Wilburn, Rebecca E.; Ehrlich, Jenny K.; Floridia, Christina M.

    2004-01-01

    Since 1993, the New York State Department of Health, funded by the Agency for Toxic Substances and Disease Registry, has collected data about non-petroleum hazardous substances releases through the Hazardous Substances Emergency Events Surveillance (NYHSEES) project. This study investigates risk factors for hazardous substances releases that may result in public health consequences such as injury or reported health effects. The 6428 qualifying events that occurred during the 10-year-period of 1993-2002 involved 8838 hazardous substances, 842 evacuations, more than 75,419 people evacuated, and more than 3120 people decontaminated. These events occurred both at fixed facilities (79%) and during transport (21%). The causative factors most frequently contributing to reported events were equipment failure (39%) and human error (33%). Five of the 10 chemicals most frequently associated with injuries were also among the 10 chemicals most frequently involved in reported events: sulfuric acid, hydrochloric acid, ammonia, sodium hypochlorite, and carbon monoxide. The chemical categories most frequently associated with events, and with events with adverse health effects were volatile organic compounds (VOCs) and solvents, and acids. Events with releases of hazardous substances were associated with injuries to 3089 people including employees (37%), responders (12%), the general public (29%) and students (22%). The most frequently reported adverse health effects were respiratory irritation, headache, and nausea or vomiting. Most of the injured were transported to the hospital, treated, and released (55%) or treated at the scene (29%). These data have been used for emergency response training, planning, and prevention activities to reduce morbidity and mortality from future events

  17. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  18. Substance use and duration of untreated psychosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Glen P. Davis

    2016-05-01

    Full Text Available Background: Substance use and psychiatric disorders cause significant burden of disease in low- and middle-income countries. Co-morbid psychopathology and longer duration of untreated psychosis (DUP can negatively affect treatment outcomes. Objectives: The study assessed substance use amongst adults with severe mental illness receiving services at a regional psychiatric hospital in KwaZulu-Natal (South Africa. We describe the prevalence and correlates of lifetime substance use and examine the association between substance use and DUP. Methods: A cross-sectional survey recruited adults diagnosed with severe mental illness and assessed lifetime and past 3-month substance use using the World Health Organization Alcohol, Smoking and Substance Involvement Screening Test. Regression analyses were conducted to determine associations between lifetime substance use (other than alcohol and tobacco and DUP as measured by the World Health Organization Encounter Form. Results: Amongst 87 participants, alcohol (81.6%, tobacco (75.6% and cannabis (49.4% were the most common substances reported for lifetime use. Risk of health-related problems (health, social, financial, legal and relationship of cannabis use was associated with younger age, single marital status and lower education. Adjusted regression analyses indicated that use of amphetamines and methaqualone is associated with longer DUP. Conclusions: Substance use is prevalent amongst psychiatric patients in KwaZulu-Natal and may contribute to longer DUP. Mental health services in this region should address co-morbid substance use and psychiatric disorders. Keywords: Substance Use; Psychosis; KwaZulu-Natal

  19. Prediction of aqueous and nonaqueous solubilities of chemicals with environmental interest by UNIFAC

    International Nuclear Information System (INIS)

    Kan, A.T.; Tomson, M.B.

    1995-01-01

    This paper is to investigate the accuracy and precision of predicting the aqueous and non-aqueous solubilities of a vast number of chemicals with significant environmental roles using the latest version of UNIFAC group interaction parameters. A few critical measurements to test specific UNIFAC calculations of nonaqueous solubilities are also reported. The chemicals included in the calculation have aqueous solubilities that span eleven orders of magnitude. Good agreement was observed between the UNIFAC predicted and literature reported aqueous solubilities for eleven groups of compounds. Similarly, UNIFAC successfully predicts the co-solvency of PCB in methanol/water solutions. The error between predicted and literature reported aqueous solubilities was larger for three groups of chemicals: long chain alkanes, phthalates, and chlorinated alkenes. The average absolute error in UNIFAC precision of aqueous solubilities is about 0.5 log units, but the average absolute error is only about 0.2 log units for chlorinated aromatic compounds in organic solvents. The application of UNIFAC approach to predict the fate of hydrocarbons and PCBs in soil column flushing, cosolvency and in natural gas pipeline liquids will be discussed

  20. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  1. Molecular simulation of a model of dissolved organic matter.

    Science.gov (United States)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S; Schulten, Hans-Rolf

    2005-08-01

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na+ or Ca2+ were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal-humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na+, Ca2+ was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca2+. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  2. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  3. Eletroquímica de latossolos brasileiros após a remoção da matéria orgânica humificada solúvel Eletrochemistry of Brazilian oxisols after removal of soluble organic matter

    Directory of Open Access Journals (Sweden)

    Leonardo Barros Dobbss

    2008-06-01

    Full Text Available A eletroquímica e a concentração de matéria orgânica nos horizontes superficiais de Latossolos correlacionam-se estreitamente. No presente trabalho, avaliaram-se as propriedades eletroquímicas do horizonte superficial de sete Latossolos brasileiros após a remoção das substâncias húmicas em meio alcalino. Os solos foram separados em dois grupos, segundo sua mineralogia, caulinítica e oxídica. O extrator NaOH 0,1 mol L-1 solubilizou substâncias húmicas correspondentes a menos de 3 % da MO total, indicando forte adsorção específica do material orgânico à fração mineral. A extração de ácidos húmicos e fúlvicos foi capaz de inverter o sinal de carga da superfície; no entanto, o efeito mais acentuado da retirada das substâncias húmicas solúveis foi a perda da capacidade-tampão das cargas do solo. A capacidade da dupla camada elétrica, uma medida indireta desse poder-tampão, aumentou de 3 a 15 vezes depois da extração das substâncias húmicas alcalino-solúveis. Solos com mineralogia predominantemente oxídica apresentaram maiores valores do ponto de efeito salino nulo, da capacidade da dupla camada elétrica, além da diminuição na capacidade de troca de cátions do que aqueles de natureza caulinítica.Electrochemistry and organic matter concentrations in the surface horizons of Oxisols are closely related. This study evaluated the electrochemical properties in the surface horizon of seven Brazilian Oxisols after the removal of humic substances by alkaline extraction. Based on their mineralogy the soils were grouped as kaolinitic or oxidic. Less than 3 % of the total organic matter were soluble humic substances extractable by NaOH 0.1 mol L-1, indicating their strong specific adsorption to the inorganic mineral sites. The removal of the humic and fulvic acids reversed the soil surface charge and also led to a marked loss in the buffering capacity of the soil charge. The electric double layer capacity, an indirect

  4. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    Science.gov (United States)

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  6. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  7. ORGANIC MATTER FRACTIONS OF AN IRRIGATED OXISOL UNDER NO - TILL AND CONVENTIONAL TILLAGE IN THE BRAZILIAN SEMI - ARID REGION

    Directory of Open Access Journals (Sweden)

    RAFAEL PEREIRA SALES

    2017-01-01

    Full Text Available The replacement of natural vegetation by crop systems directly impacts the soil organic matter fractions. The objective of this study was to evaluate the total organic carbon (TOC and nitrogen (TN contents in different fractions of the soil organic matter (SOM of an Oxisol of the Brazilian semiarid region under different irrigated crops and different soil management systems. Seven treatments were evaluated, which consisted of two soil management systems (no - till and conventional tillage and three crops (maize, sunflower and sorghum, using as reference the soil under a native forest (NF. The summer crops preceded common bean crops in the autumn - winter. The total organic carbon content, total nitrogen, carbon content in humic substances and their constituents (fulvic acids, humic acids and humin and labile, non - labile and water - soluble carbon contents were evaluated two years and three months after the experiment implementation to determine the carbon lability (L lability index (LI, partitioning index (CPI and management index (CMI. The greatest carbon, nitrogen and organic matter contents in the soil surface layer (0.00 - 0.05 m were found in crops under no - till system (NTS, especially maize. The crops under NTS presented greater carbon content in humic substances than the conventional tillage system (CTS ones in the layer 0.05 - 0.10 m. The crops under NTS presented greater sustainability in the Brazilian semiarid region compared with those under CTS, as shown by their higher CMI in the soil surface layer.

  8. Soluble organic additive effects on stress development during drying of calcium carbonate suspensions.

    Science.gov (United States)

    Wedin, Pär; Lewis, Jennifer A; Bergström, Lennart

    2005-10-01

    The effect of polymer, plasticizer, and surfactant additives on stress development during drying of calcium carbonate particulate coatings was studied using a controlled-environment apparatus that simultaneously monitors drying stress, weight loss, and relative humidity. We found that the calcium carbonate coatings display a drying stress evolution typical of granular films, which is characterized by a sharp capillary-induced stress rise followed by a rapid stress relaxation. The addition of a soluble polymer to the CaCO3 suspension resulted in a two-stage stress evolution process. The initial stress rise stems from capillary-pressure-induced stresses within the film, while the second, larger stress rise occurs due to solidification and shrinkage of the polymeric species. Measurements on the corresponding pure polymer solutions established a clear correlation between the magnitude of residual stress in both the polymer and CaCO3-polymer films to the physical properties of the polymer phase, i.e. its glass transition temperature, T(g), and Young's modulus. The addition of small organic molecules can reduce the residual stress observed in the CaCO3-polymer films; e.g., glycerol, which acts as a plasticizer, reduces the drying stress by lowering T(g), while surfactant additions reduce the surface tension of the liquid phase, and, hence, the magnitude of the capillary pressure within the film.

  9. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  10. Measurement and modelling of the solubility of carbon dioxide in aqueous 1,8-p-menthane-diamine solution

    International Nuclear Information System (INIS)

    Li, Jie; Lin, Xiao; Ning, Peng-Ge; Cao, Hong-Bin; Zhang, Yi

    2014-01-01

    Highlights: • Solubility of CO 2 was measured in aqueous MDA up to 1.97 CO 2 loading. • KE model was used to correlate VLE data in α 1 regions separately. • Four chemical equilibrium constants were determined. • Sterically hindering effect for MDA in CO 2 absorption was demonstrated. • MDA absorption efficiency was compared with MEA, MDEA and PZ. -- Abstract: The solubility of CO 2 in aqueous 1,8-p-menthane-diamine (MDA) solution with substance concentrations of 0.625 and 1.25 mol · L −1 was measured at temperatures (313.15, 333.15 and 353.15) K with CO 2 partial pressures ranging from (0.55 to 776.0) kPa and CO 2 loading ranging from (0.120 to 1.97) mol CO 2 per mol MDA. The gas solubility results are expressed as the partial pressure of CO 2 (P CO 2 ) against its mole ratio, i.e.α CO 2 (mol CO 2 per mol MDA). The chemical absorption reaction and thermodynamic model have been proposed. The physicochemical Kent–Eisenberg model was used to correlate all the experimental results of the solubility of CO 2 in the aqueous MDA solutions under investigation. The chemical equilibrium constants and model parameters were determined by fitting the VLE data

  11. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  12. A preferred provider organization (PPO) case study for mental health and substance abuse.

    Science.gov (United States)

    Gomillion, I; Self, D R

    1988-01-01

    The Preferred Provider Organization concept is quickly becoming more popular because of its relative cost-effectiveness and recent successes. Managed care through means of this mental health and substance abuse PPO may well serve as the prototype for the general health care cost containment efforts of the future for the self-insured insurance plans for Alabama state employees and teachers. The first year also revealed several problems in the original proposal especially with respect to the unintended attractiveness of inpatient/residential care. Consequently, copayment plans were added to dissuade unnecessary lengthy stays (see Table 2). Second, a new quality assurance mechanism has been added to further evaluate the need for admissions to facilities, as well as for the need for continued inpatient treatment. The Alabama Quality Assurance Foundation (AQAF) began on January 1, 1988, conducting the preadmission certification on all admissions based upon criteria established jointly by AQAF and the PPO providers. In addition, AQAF will conduct continuing stay reviews at predetermined time periods to ensure that continued treatment in an inpatient setting is indeed necessary.

  13. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-09-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different

  14. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  15. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    Science.gov (United States)

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Study of electrophysical processes during spontaneous combustion of gases and vapors of organic substances

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Shebeko, Yu.N.; Muravlev, V.K.; Il' in, A.B.

    Combustion of organic substances is accompanied by non-equilibrium ionization, the greatest degree of ionization being in the high temperature zone of the flame, although notable concentrations of ions have been observed in the earlier, low temperature stages of combustion. Since this phenomenon has been studied for only a small number of compounds, a study was undertaken of the electrophysical phenomena taking place during spontaneous combustion of a large variety of compounds, viz., ethanol, acetone, benzene, diethylamine, pentane, diethyl ether, A-72 gasoline, dibromotetrafluoroethane, dichloromethane, and three mixtures of ethanol with 1,2-dibromotetrafluoroethane. Relationships of temperature to passive sonde potential and conductivity current during the induction period were determined. The effective activation energy for the conductivity current-temperature relationship was found to be 230 kilojoules per mole, which agrees with that determined for the induction period in the spontaneous combustion of acetylene-air mixtures in shock waves. 14 references, 3 figures.

  17. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  18. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  19. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  20. Sensory qualities of pastry products enriched with dietary fiber and polyphenolic substances.

    Science.gov (United States)

    Komolka, Patrycja; Górecka, Danuta; Szymandera-Buszka, Krystyna; Jędrusek-Golińska, Anna; Dziedzic, Krzysztof; Waszkowiak, Katarzyna

    2016-01-01

    Growing consumer demand for products with pro-health properties is forcing food manufacturers to introduce new food items onto the market, which will not only possess such health-enhancing properties but will also compete on the grounds of sensory attributes - taste, flavour, texture etc. The aim was to evaluate these sensory attributes of pastry products enhanced with biologically active compounds, such as inulin, buckwheat hull and buckwheat flour. For decreasing the energy value of the products tested (crispy cookies, muesli cookies, waffles and pancakes) some ingredients were replaced: vegetable butter or oil by inulin and wheat flour by roasted buckwheat flour and thermally processed buckwheat hull. The substances mentioned are rich sources of soluble and insoluble buckwheat fiber, and also polyphenolic substances. Dry chokeberry and mulberry leaf extract were added as a rich source of flavonoids and 1-deoxynorijimycin, respectively. These substances are recommended for people with obesity. The processing was carried out at 175°C for 15 minutes using a convection oven (Rational Combi-Steamer CCC). Pastry products with buckwheat flour, buckwheat hulls, mulberry extract, chokeberry and inulin had a lower food energy, a higher dietary fiber content and scored high on customer desirability. Pastry products which contain ingredients carrying biologically active substances are not only attractive from the sensory point of view, but also low in calories, and are thus recommendable for obesity people.

  1. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    Science.gov (United States)

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO 2 partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility products

  3. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  4. Two novel heat-soluble protein families abundantly expressed in an anhydrobiotic tardigrade.

    Directory of Open Access Journals (Sweden)

    Ayami Yamaguchi

    Full Text Available Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis. In the anhydrobiotic state, tardigrades can withstand various extreme environments including space, but their molecular basis remains largely unknown. Late embryogenesis abundant (LEA proteins are heat-soluble proteins and can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms, but their relevance to tardigrade anhydrobiosis is not clarified. In this study, we focused on the heat-soluble property characteristic of LEA proteins and conducted heat-soluble proteomics using an anhydrobiotic tardigrade. Our heat-soluble proteomics identified five abundant heat-soluble proteins. All of them showed no sequence similarity with LEA proteins and formed two novel protein families with distinct subcellular localizations. We named them Cytoplasmic Abundant Heat Soluble (CAHS and Secretory Abundant Heat Soluble (SAHS protein families, according to their localization. Both protein families were conserved among tardigrades, but not found in other phyla. Although CAHS protein was intrinsically unstructured and SAHS protein was rich in β-structure in the hydrated condition, proteins in both families changed their conformation to an α-helical structure in water-deficient conditions as LEA proteins do. Two conserved repeats of 19-mer motifs in CAHS proteins were capable to form amphiphilic stripes in α-helices, suggesting their roles as molecular shield in water-deficient condition, though charge distribution pattern in α-helices were different between CAHS and LEA proteins. Tardigrades might have evolved novel protein families with a heat-soluble property and this study revealed a novel repertoire of major heat-soluble proteins in these anhydrobiotic animals.

  5. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  6. The effects of soluble salts at the metal/paint interface: advances in knowledge

    OpenAIRE

    Fuente, Daniel de la; Chico, Belén; Morcillo, Manuel

    2006-01-01

    The presence of soluble salts (particularly sulphates and chlorides) at the metal/paint interface is known to have a detrimental effect on the integrity of most paint systems. Though this is a long-standing problem, it has recently come to receive greater attention from the protective coatings industry. International Standards Organization (ISO) has for some time been trying to develop a standard about guidance levels for water-soluble salt contamination before the application of paints and r...

  7. Effect of organic carbon, active carbon, calcium ions and aging on the sorption of per- and polyfluoroalkylated substances (PFASs) to soil

    OpenAIRE

    Schedin, Erika

    2013-01-01

    Per- and polyfluoroalkylated substances (PFASs) are a large group of organic chemicals that have gained an increased attention during recent years. Many of the compounds have shown to be persistent, toxic and bioaccumulating and they are found in water, soils, sediments, biota, animals and humans across the globe. The effects of PFASs to humans and animals are still being debated. It is suspected that the compounds can be carcinogenic, disrupt different hormone systems and have other severe e...

  8. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  9. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  10. Modelling the behaviour of organic degradation products

    International Nuclear Information System (INIS)

    Cross, J.E.; Ewart, F.T.; Greenfield, B.F.

    1989-03-01

    Results are presented from recent studies at Harwell which show that the degradation products which are formed when certain organic waste materials are exposed to the alkaline conditions typical of a cementitious environment, can enhance the solubility of plutonium, even at pH values as high as 12, by significant factors. Characterisation of the degradation products has been undertaken but the solubility enhancement does not appear to be related to the concentration of any of the major organic species that have been identified in the solutions. While it has not been possible to identify by analysis the organic ligand responsible for the increased solubility of plutonium, the behaviour of D-Saccharic acid does approach the behaviour of the degradation products. The PHREEQE code has been used to simulate the solubility of plutonium in the presence of D-Saccharic acid and other model degradation products, in order to explain the solubility enhancement. The extrapolation of the experimental conditions to the repository is the major objective, but in this work the ability of a model to predict the behaviour of plutonium over a range of experimental conditions has been tested. (author)

  11. Simple multipurpose apparatus for solubility measurement of solid solutes in liquids

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Christensen, Lars Porskjær

    2016-01-01

    students of chemical engineering program at University of Southern Denmark. The exercises included solubility measurement and cooling crystallization of salicylic acid from five different organic solvents and extraction of artemisinin from the leaves of the plant Artemisia annua by using different solvents...

  12. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    Science.gov (United States)

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-01-01

    with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer...... to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion...

  14. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  15. Biological monitoring of organic substances in workers of a hazardous waste incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, C.; Domingo, J.L.; Bocio, A.; Nadal, M. [Lab. of Toxicology and Environmental Health, Reus (Spain); Muller, L. [SGS GmbH, Antwerpen (Belgium)

    2004-09-15

    In recent years, incineration has been one of the most frequently used technologies for hazardous waste treatment. However, health risks and the potential environmental impact of hazardous waste incinerators (HWI) are still issues of major concern. The reason is the association of stack emissions of semivolatile and volatile compounds from HWI with their potential adverse health effects. Some compounds of special interest are polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). In relation to this, HWI workers can be potentially exposed to PCDD/Fs, polychlorinated biphenyls (PCBs) and other pollutants with a well-known toxicity. Since 1999, the only HWI in Spain has been operating in Constanti (Tarragona, Catalonia). It has a burning furnace that operates at a temperature of 1100 C and can burn 30,000 tons of hazardous waste per year. The purpose of the present survey was to determine after four years of regular operations in the facility, the concentrations in blood and urine of the HWI workers of a number of organic substances directly related with HWI and to which workers could be exposed. Human biological monitoring evaluates the degree of internal exposure to a defined environmental or occupational pollutant of individuals or population groups. The results of the current study have been compared with the baseline levels.

  16. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    Science.gov (United States)

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  18. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  19. Qualidade textural de tomates cultivados em substratos orgânicos submetidos à aplicação de substâncias húmicas Textural quality of tomatoes grown in organic substrates subjected to application of humic substances

    Directory of Open Access Journals (Sweden)

    Caroline Roberta Freitas Pires

    2009-11-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de substâncias húmicas e de diferentes substratos orgânicos na qualidade textural dos frutos do tomateiro híbrido Vênus, em ambiente protegido. Utilizaram-se, quatro tipos de substratos: fibra de coco; fibra de coco e casca de café carbonizada 1/3 (v/v; fibra de coco e casca de café carbonizada 2/3 (v/v; e casca de café carbonizada. As doses de substâncias húmicas (ácido húmico, 10% + ácido fúlvico 10,2% utilizadas foram 0, 20, 40 e 80 L ha-1, aplicadas ao substrato quinzenalmente, a partir do oitavo dia após o transplantio. O delineamento utilizado foi o de blocos ao acaso, em arranjo fatorial 4x4. Avaliaram-se firmeza dos frutos, percentagem de solubilização péctica e atividade enzimática (pectinametilesterase e poligalacturonase. Observou-se variação na atividade das enzimas pectinametilesterase e poligalacturonase, em consequência das doses de substâncias húmicas adicionadas, nos diferentes substratos. O efeito das doses de substâncias húmicas sobre a firmeza, solubilidade de pectinas e atividade enzimática, em frutos de tomate, depende do substrato utilizado. Frutos obtidos de plantas cultivadas em fibra de coco apresentaram aumento de firmeza e redução da percentagem de solubilização péctica com a aplicação de doses crescentes de substâncias húmicas.The objective of this work was to evaluate the effects of humic substances and of different organic substrates on the textural quality of tomato fruit of the Vênus hybrid, in a protected environment. Four types of substrates were used: coconut fiber; coconut fiber and carbonized coffee husk 1/3 (v/v; coconut fiber and carbonized coffee husk 2/3 (v/v; and carbonized coffee husk. The humic substances (humic acid, 10% + fulvic acid, 10,2% dosages of 0, 20, 40 and 80 L ha-1 were applied onto the substrates fortnightly from the eighth day after transplanting. The experimental design was in randomized block in a 4x4

  20. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1998 annual progress report

    International Nuclear Information System (INIS)

    Kurth, M.J.; Miller, R.B.; Sawan, S.; Smith, B.F.

    1998-01-01

    '(1) Develop rapid discovery and optimization approaches to new water-soluble chelating polymers for use in Polymer Filtration (PF) systems, and (2) evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. Polymer Filtration (PF), which uses water-soluble metal-binding polymers to sequester metal ions in dilute solution with ultrafiltration (UF) to separate the polymers, is a new technology to selectively remove or recover hazardous and valuable metal ions. Future directions in PF must include rapid development, testing, and characterization of new metal-binding polymers. Thus, the authors are building upon and adapting the combinatorial chemistry approach developed for rapid molecule generation for the drug industry to the rapid development of new chelating polymers. The authors have focused on four areas including the development of: (1) synthetic procedures, (2) small ultrafiltration equipment compatible with organic- and aqueous-based combinatorial synthesis, (3) rapid assay techniques, and (4) polymer characterization techniques.'

  1. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives.

    Science.gov (United States)

    Breda, Susana A; Jimenez-Kairuz, Alvaro F; Manzo, Ruben H; Olivera, María E

    2009-04-17

    The hydrochlorides of the 1:3 aluminum:norfloxacin and aluminum:ciprofloxacin complexes were characterized according to the Biopharmaceutics Classification System (BCS) premises in comparison with their parent compounds. The pH-solubility profiles of the complexes were experimentally determined at 25 and 37 degrees C in the range of pH 1-8 and compared to that of uncomplexed norfloxacin and ciprofloxacin. Both complexes are clearly more soluble than the antibiotics themselves, even at the lowest solubility pHs. The increase in solubility was ascribed to the species controlling solubility, which were analyzed in the solid phases at equilibrium at selected pHs. Additionally, permeability was set as low, based on data reported in the scientific literature regarding oral bioavailability, intestinal and cell cultures permeabilities and also considering the influence of stoichiometric amounts of aluminum. The complexes fulfill the BCS criterion to be classified as class 3 compounds (high solubility/low permeability). Instead, the active pharmaceutical ingredients (APIs) currently used in solid dosage forms, norfloxacin and ciprofloxacin hydrochloride, proved to be BCS class 4 (low solubility/low permeability). The solubility improvement turns the complexes as potential biowaiver candidates from the scientific point of view and may be a good way for developing more dose-efficient formulations. An immediate release tablet showing very rapid dissolution was obtained. Its dissolution profile was compared to that of the commercial ciprofloxacin hydrochloride tablets allowing to dissolution of the complete dose at a critical pH such as 6.8.

  2. Hydrotropic effect and thermodynamic analysis on the solubility and mass transfer coefficient enhancement of ethylbenzene

    International Nuclear Information System (INIS)

    Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra

    2013-01-01

    Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L"−"1) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K_s, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined

  3. Hydrotropic effect and thermodynamic analysis on the solubility and mass transfer coefficient enhancement of ethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra [Anna University, Chennai (India)

    2013-04-15

    Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L{sup −1}) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K{sub s}, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined.

  4. Linear and nonlinear methods in modeling the aqueous solubility of organic compounds.

    Science.gov (United States)

    Catana, Cornel; Gao, Hua; Orrenius, Christian; Stouten, Pieter F W

    2005-01-01

    Solubility data for 930 diverse compounds have been analyzed using linear Partial Least Square (PLS) and nonlinear PLS methods, Continuum Regression (CR), and Neural Networks (NN). 1D and 2D descriptors from MOE package in combination with E-state or ISIS keys have been used. The best model was obtained using linear PLS for a combination between 22 MOE descriptors and 65 ISIS keys. It has a correlation coefficient (r2) of 0.935 and a root-mean-square error (RMSE) of 0.468 log molar solubility (log S(w)). The model validated on a test set of 177 compounds not included in the training set has r2 0.911 and RMSE 0.475 log S(w). The descriptors were ranked according to their importance, and at the top of the list have been found the 22 MOE descriptors. The CR model produced results as good as PLS, and because of the way in which cross-validation has been done it is expected to be a valuable tool in prediction besides PLS model. The statistics obtained using nonlinear methods did not surpass those got with linear ones. The good statistic obtained for linear PLS and CR recommends these models to be used in prediction when it is difficult or impossible to make experimental measurements, for virtual screening, combinatorial library design, and efficient leads optimization.

  5. Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents

    Czech Academy of Sciences Publication Activity Database

    Sobechko, I.; Dibrivnyi, V.; Horak, Y.; Velychkivska, Nadiia; Kochubei, V.; Obushak, M.

    2017-01-01

    Roč. 11, č. 4 (2017), s. 397-404 ISSN 1996-4196 Institutional support: RVO:61389013 Keywords : enthalpy * entropy * Gibbs energy of solubility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  6. Aversion substance(s) of the rat coagulating glands

    Science.gov (United States)

    Gawienowski, Anthony M.; Berry, Iver J.; Kennelly, James J.

    1982-01-01

    The aversive substance(s) present in adult male urine were not found in castrate rat urine. Removal of the coagulating glands also resulted in a loss of the aversion compounds. The aversion substances were restored to the urine after androgen treatment of the castrate rats.

  7. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  8. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan)

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and {sup 1}H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. - Highlights: • Development of a new synthetic methodology • Synthesis of organo-soluble chitosan (CS) derivatives • VERO cells proliferation • Nanofibrous membranes from the synthesized chitosan derivatives and polycaprolactone.

  9. Organic composition of fogwater in the Texas-Louisiana gulf coast corridor

    Science.gov (United States)

    Raja, Suresh; Raghunathan, Ravikrishna; Kommalapati, Raghava R.; Shen, Xinhua; Collett, Jeffrey L.; Valsaraj, Kalliat T.

    Fogwater and air samples were collected in Baton Rouge between November 2004-February 2005 and during February 2006 at Houston. Organic compounds present in the fog samples were detected, quantified and then grouped into different compound classes based on molecular size, solubility and polarity using gas chromatography/mass spectrometry, high performance liquid chromatography with diode array detection and ion chromatography. Organic compounds were grouped as n-alkanes, aromatics and polycyclic aromatics, carbonyls, alcohols, amides and esters. Organic compounds in fog and air samples in Houston indicated clear urban/industrial anthropogenic origin, while compounds detected in Baton Rouge fog and air samples showed a mix of both agricultural and urban/industrial anthropogenic inputs. Among the various polycyclic aromatic compounds detected, the total concentration of naphthalene and its derivatives was 2.8 μg m -3 in Houston and 0.08 μg m -3 in Baton Rouge air. Analysis of concentrations of organic compounds pre- and post- fog revealed that compounds with low vapor pressure had higher scavenging efficiency in fog sampled at the two locations. Concentrations of organic compounds in fog samples were higher than those predicted by conventional air-water Henry's law equilibrium. Observed higher concentrations in the aqueous phase were modeled accounting for surface adsorption and accumulation of gas phase species and the presence of humic-like substances in fogwater.

  10. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  11. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  12. Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden--geochemical modeling of organic matter solubility during acidification recovery.

    Science.gov (United States)

    Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage

    2010-12-01

    Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Basin scale survey of marine humic fluorescence in the Atlantic: relationship to iron solubility and H2O2

    OpenAIRE

    Heller, Maija; Gaiero, Diego; Croot, Peter

    2013-01-01

    Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with para...

  14. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  15. Definition of Substance and Non-substance Addiction.

    Science.gov (United States)

    Zou, Zhiling; Wang, Huijun; d'Oleire Uquillas, Federico; Wang, Xiaomei; Ding, Jianrui; Chen, Hong

    2017-01-01

    Substance addiction (or drug addiction) is a neuropsychiatric disorder characterized by a recurring desire to continue taking the drug despite harmful consequences. Non-substance addiction (or behavioral addiction) covers pathological gambling, food addiction, internet addiction, and mobile phone addiction. Their definition is similar to drug addiction but they differ from each other in specific domains. This review aims to provide a brief overview of past and current definitions of substance and non-substance addiction, and also touches on the topic of diagnosing drug addiction and non-drug addiction, ultimately aiming to further the understanding of the key concepts needed for a foundation to study the biological and psychological underpinnings of addiction disorders.

  16. Elucidation of molecular and elementary composition of organic and inorganic substances involved in 19th century wax sculptures using an integrated analytical approach

    International Nuclear Information System (INIS)

    Regert, M.; Langlois, J.; Laval, E.; Le Ho, A.-S.; Pages-Camagna, S.

    2006-01-01

    Wax sculptures contain several materials from both organic and inorganic nature. These works of art are particularly fragile. Determining their chemical composition is thus of prime importance for their preservation. The identification of the recipes of waxy pastes used through time also provides valuable information in the field of art history. The aim of the present research was to develop a convenient analytical strategy, as non-invasive as possible, that allows to identify the wide range of materials involved in wax sculptures. A multi-step analytical methodology, based on the use of complementary techniques, either non- or micro-destructive, was elaborated. X-ray fluorescence and micro-Raman spectroscopy were used in a non-invasive way to identify inorganic pigments, opacifiers and extenders. The combination of structural and separative techniques, namely infrared spectroscopy, direct inlet electron ionisation mass spectrometry and high temperature gas chromatography, was shown to be appropriate for unravelling the precise composition of the organic substances. A micro-chemical test was also performed for the detection of starch. From this study it has been possible to elucidate the composition of the waxy pastes used by three different sculptors at the end of the 19th century. Complex and elaborated recipes, in which a large range of natural substances were combined, were highlighted

  17. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  18. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  19. Design of tablets for the delayed and complete release of poorly water-soluble weak base drugs using SBE7M-β-CD as a solubilizing agent.

    Science.gov (United States)

    Rao, Venkatramana M; Zannou, Erika A; Stella, Valentino J

    2011-04-01

    The challenge of designing a delayed-release oral dosage form is significantly increased when the drug substance is poorly water soluble. This manuscript describes the design and characterization of a novel controlled-release film-coated tablet for the pH-triggered delayed and complete release of poorly water-soluble weak base drugs. Delivery of weak bases is specifically highlighted with the use of dipyridamole and prazosin as model compounds. Tailored delayed release is achieved with a combination of an insoluble but semipermeable polymer and an enteric polymer, such as cellulose acetate and hydroxypropyl cellulose phthalate, respectively, as coatings. The extent of the time lag prior to complete release depends on the film-coating composition and thickness. Complete release is achieved by the addition of a cyclodextrin, namely SBE7M-β-CD with or without a pH modifier added to the tablet core to ensure complete solubilization and release of the drug substance. The film-coating properties allow the complex formation/solubilization to occur in situ. Additionally, the drug release rate can be modulated on the basis of the cyclodextrin to drug molar ratio. This approach offers a platform technology for delayed release of potent but poorly soluble drugs and the release can be modulated by adjusting the film-coating composition and thickness and/or the cyclodextrin and pH modifier, if necessary. Copyright © 2010 Wiley-Liss, Inc.

  20. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge.

    Science.gov (United States)

    Linlin, Wu; Xuan, Zhao; Meng, Zhang

    2011-04-01

    In the paper the combination process of ozonation, slow sand filtration (SSF) and nanofiltration (NF) was investigated with respect to dissolved organic matter (DOM) removal as high quality pre-treatment option for artificial groundwater recharge. With the help of ozonation leading to breakdown of the large organic molecules, SSF preferentially removes soluble microbial by-product-like substances and DOM with molecular weight (MW) less than 1.0 kDa. NF, however, removes aromatic, humic acid-like and fulvic acid-like substances efficiently and specially removes DOM with MW above 1.0 kDa. The residual DOM of the membrane permeate is dominated by small organics with MW 500 Da, which can be further reduced by the aquifer treatment, despite of the very low concentration. Consequently, the O(3)/SSF/NF system offers a complementary process in DOM removal. Dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP) can be reduced from 6.5±1.1 to 0.7±0.3 mg L(-1) and from 267±24 to 52±6 μg L(-1), respectively. The very low DOC concentration of 0.6±0.2 mg L(-1) and THMFP of 44±4 μg L(-1) can be reached after the aquifer treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. 77 FR 33290 - National Organic Program (NOP); Sunset Review (2012)

    Science.gov (United States)

    2012-06-06

    ... resistance in human pathogens; (ii) inconsistency with the prohibition on antibiotic use in organic livestock... synthetic substances that may be used in organic production and nonsynthetic (natural) substances that are prohibited in organic crop and livestock production. The National List also identifies nonagricultural...

  2. Levitation of water and organic substances in high static magnetic fields

    Science.gov (United States)

    Beaugnon, E.; Tournier, R.

    1991-08-01

    The levitation of various diamagnetic liquid and solid substances such as water, ethanol, acetone, bismuth, antimony, graphite, wood and plastic has been achieved at room temperature in a strong inhomogeneous static magnetic field. These experiments were performed in the hybrid magnet at the Service National des Champs Intenses (CNRS, Grenoble). These findings show that high field superconducting magnets could be used to provide a contactless, low gravity environment for the elaboration of a wide range of materials. En utilisant les forts champs magnétiques produits par la bobine hybride du Service National des Champs Intenses (CNRS, Grenoble), nous avons obtenu àtempérature ambiante la lévitation de substances diamagnétiques solides ou liquides telles que l'eau, l'alcool, l'acétone, le bismuth, l'antimoine, le graphite, le bois et le plastique. Ces résultats montrent que les bobines supraconductrices peuvent être utilisées pour l'élaboration de nombreux matériaux en gravité réduite, sans contact avec un contenant.

  3. Comparative animal studies for the determination of the extracellular space with several radioactively labelled substances

    International Nuclear Information System (INIS)

    Pippart, S.

    1973-01-01

    The volume of the total extracellular space and of the extracellular space of the organs (liver, lungs, heart, spleen, brain) was determined with the aid of 5 radioactively labelled substances, each in 10 rats. The test substances (inulin- 3 H, 51 Cr-EDTA, thiosulfate- 35 S, NH 4 - 82 Br, 60 Co-vitamin B 12 ) are described in the relevant literature as substances for the determination of the extracellular space and as clearance substances. (BSC/AK) [de

  4. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  5. Behaviour of polycrystalline fluoride-selective membrane electrode in aqueous-organic media

    International Nuclear Information System (INIS)

    Manakova, L.I.; Bausova, N.V.; Moiseev, V.E.; Bamburov, V.G.; Sivoplyas, A.P.

    1978-01-01

    The behaviour of polycrystalline fluoride membrane electrode (RFME) in aqueous-organic media has been studied when the content of the organic component (methanol, ethanol, acetone, dioxane) has been changed from 20 to 80 mass%. Since LaF 3 is the base of the membrane, its solubility has been studied depending on the organic component content in the solution. It has been established that LaF 3 solubility decreases with increasing content of of the organic component. This explains the effect of the composition of an aqueous-organic solvent on the electrode sensitivity. The electrode sensitivity rises with increasing content of the organic component in an aqueous-organic solvent. A greater decrease of LaF 3 solubility in aqueous-organic solvents as compared with that of LaCl 3 , La(NO 3 ) 3 , and La 2 (SO 4 ) 3 causes a higher selectivity of RFME with respect to the anions under study

  6. The role of lecithin cholesterol acyltransferase and organic substances from coal in the etiology of Balkan endemic nephropathy: A new hypothesis

    Science.gov (United States)

    Pavlovic, N.M.; Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Bunnell, J.E.; Feder, G.L.; Kostic, E.N.; Ordodi, V.L.

    2008-01-01

    Balkan endemic nephropathy (BEN) occurs in Serbia, Bulgaria, Romania, Bosnia and Herzegovina, and Croatia. BEN has been characterized as a chronic, slowly progressive renal disease of unknown etiology. In this study, we examined the influence of soluble organic compounds in drinking water leached from Pliocene lignite from BEN-endemic areas on plasma lecithin-cholesterol acyltransferase (LCAT) activity. We found that changes for all samples were the most prominent for the dilution category containing 90% plasma and 10% of diluting media. Water samples from BEN villages from Serbia and Romania showed higher LCAT inhibiting activity (p = 0.02) and (p = 0.003), respectively, compared to deionised water and non-endemic water. A secondary LCAT deficiency could result from this inhibitory effect of the organic compounds found in endemic water supplies and provide an ethiopathogenic basis for the development of BEN in the susceptible population. ?? 2007 Elsevier Ltd. All rights reserved.

  7. Generation of soluble microbial products by bio-activated carbon filter during drinking water advanced treatment and its influence on spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hong, E-mail: song.wei0326@163.com [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Chen, Xin, E-mail: 742702437@qq.com [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Dong, E-mail: zhdongtj7021@sina.com [National Engineering Research Center of Urban Water Resources, Shanghai National Engineering Research Center of Urban Water Resources Co. Ltd, Shanghai 200082 (China); Chen, Hong-bin, E-mail: hbctxc@tongji.edu.cn [National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2016-11-01

    In order to improve our understanding of bio-activated carbon (BAC) filter, the water quality of influent and effluent treated with BAC in a drinking water treatment plant (DWTP) of Shanghai during 2015 was valued. Combining the results from UV{sub 254}, SUVA{sub 254}, dissolved organic carbon (DOC) and scanning electron microscopic (SEM), it is found that performance of BAC treatment will be affected by characteristics of activated carbon (AC), which is relevant to the type of activated carbon (including shape and operating time) in this study. Fluorescence excitation–emission matrix (FEEM) shows that the humification index (HIX) and index of recent autochthonous contribution (BIX) is a reliable indicator to descript the variation of dissolved organic matter (DOM) during BAC process. The pattern of variation in BIX and HIX implies that soluble microbial products (SMPs) are formed and humic-like substances are removed during BAC treatment, which is also confirmed by the change of peaks of FEEM in BAC effluent. Large, positive correlations between SUVA{sub 254} and disinfection by-products formation potential yield (DBPFP yield) demonstrate that UV-absorbing DOM is directly related to the generation of DBPs. Poor correlations of HIX with DBPFP suggest that non-humic substances with UV-absorbing properties play an important role in the generation of DBPs in water with low SUVA{sub 254}. Finally, strong but negative correlations between BIX and DBPFP suggest that vigorous microbial metabolism of BAC results in a decrease in DBPFP. However, the DBPFP yield will be enhanced for the generation of SMPs by BAC, especially in summer. - Highlights: • SMPs can be produced by BAC during drinking water advanced treatment. • BAC can reduce DBPFP, while there are risks associated with increasing DBPFP yield. • SUVA{sub 254} is strongly correlated with the DBPFP yields. • BIX is strongly correlated with DBPFP and THMFP, but weakly with HAAFP.

  8. Choice of test organisms for determination of oil dispersant toxicity in marine waters. Auswahl von Testorganismen zur Bestimmung der Toxizitaet von Dispergatoren bei der Oelbekaempfung in marinen Gewaessern

    Energy Technology Data Exchange (ETDEWEB)

    Henke, G.A.

    1987-06-01

    Several marine organisms were investigated regarding their qualification for oil dispersant toxicity determination. Appropriate organisms were chosen for two different test procedures: Using mortality as a test criterion an acute toxicity test can be carried out very easy with larvae of the brine shrimp Artemia sp. The sensitivity for different dispersants ranges over several orders of magnitude. Another test indicator is the cell multiplication-inhibition test, conducted with the microalga Scrippsiella trochoidea, a representative of phytoplankton. The sensitivity for a common dispersant ranges a hundredfold higher than the acute toxicity test. Both test procedures are also practicable for other water-soluble substances, as well. One oil-spill dispersant efficiency test is proposed provisionally. (orig.) With 62 refs., 20 tabs., 11 figs.

  9. Investigation of the mechanism of microplasma impact on iron and aluminum load using solutions of organic substances

    International Nuclear Information System (INIS)

    Lobanova, G L; Yurmazova, T A; Shiyan, L N; Voyno, D A

    2015-01-01

    The paper reports on the study of mechanism of electroeffects on iron and aluminum and pellets with using solutions of organic substances. Methylene blue solution, furacilin and eosin were used. It is observed the reactions of the pulse at the time and after switching off the voltage source. It is shown that there are two developing process in the conditions studied. The first process depends on material of electrodes and pulse parameters. The second process occurs spontaneously and it is determined by the redox reaction and sorption processes. The products of electrode erosion and active particles react in the redox reactions. Active particles are formed in solution by the action of pulsed electric discharge in water. The highest efficiency of the process was demonstrated on an iron pellets. (paper)

  10. Students’ misconceptions on solubility equilibrium

    Science.gov (United States)

    Setiowati, H.; Utomo, S. B.; Ashadi

    2018-05-01

    This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.

  11. Experimental measurements of the solubility of technetium under near-field conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Wilkins, J.D.

    1988-05-01

    The solubility of technetium in contact with hydrated technetium dioxide under near-field conditions has been measured experimentally. The values obtained were changed little by a change in pH or in the filtration method used. The presence of organic degradation products increased slightly the solution concentration of technetium. (author)

  12. Hazardous substances in the aquatic environment of Estonia.

    Science.gov (United States)

    Roots, Ott; Roose, Antti

    2013-09-01

    The Water Framework Directive (WFD) aims to regulate the management of European surface water bodies. Directive 2008/105/EC, which establishes the environmental quality standards of priority substances and certain other pollutants, the content of which in the surface water should be monitored, has been transposed by the Estonian Ministry of Environment 9 September 2010 Regulation No. 49. Sampled hazardous substances were selected primarily based on their toxicity, as well as their lifetime in environment and ability to accumulate in living organisms (bioaccumulation). The contents of hazardous substances and their groups determined from Estonian surface waters remained below the limits of quantifications of used analysis methods in most cases. However, the content of some heavy metals, mono- and dibasic phenols in the surface water/waste water and sewage sludge/bottom sediments can still reach the delicate levels in the Estonian oil shale region in particular. Among new substances analysed in Estonia historically first time in 2010, amounts of organotin compounds in sediments and some alkylphenols, their ethoxylates and phthalates were found in various sample matrices. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Substance Identification Information from EPA's Substance Registry

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Substance Registry Services (SRS) is the authoritative resource for basic information about substances of interest to the U.S. EPA and its state and tribal...

  14. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Peculiarities of the processes of hydration of binding substances in the arbolite mixture

    Science.gov (United States)

    Innokentieva, L. S.; Egorova, A. D.; Emelianova, Z. V.

    2017-09-01

    Cement and sand solution is traditionally used for production of wood concrete. But it is known that impact of water-soluble substances of wood on the hardening cement is shown in the stabilizing effect. The "Cement poisons" consisting generally of the HOCH carbohydrate groups, sedimented on a surface of particles of minerals of cement 3CaO.SiO2 (three-calcic silicate) and 3CaO.Al2O3 (three-calcic aluminate) form the thinnest covers which complicate the course of processes of hydration of cement. Plaster in comparison with cement is less sensitive to extractive substances of wood therefore their combination to wood (including waste of logging and a woodworking) both coniferous and deciduous species is allowed. Composite plaster binding with hongurin as active mineral additive agent are applied at selection of composition of arbolite, at the same time dependences of their physicomechanical properties on characteristics of filler are received.

  16. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  17. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  18. Comparative animal studies for the determination of the extracellular space with several radioactively labelled substances

    Energy Technology Data Exchange (ETDEWEB)

    Pippart, S

    1973-01-01

    The volume of the total extracellular space and of the extracellular space of the organs (liver, lungs, heart, spleen, brain) was determined with the aid of 5 radioactively labelled substances, each in 10 rats. The test substances (inulin-/sup 3/H, /sup 51/Cr-EDTA, thiosulfate-/sup 35/S, NH/sub 4/-/sup 82/Br, /sup 60/Co-vitamin B/sub 12/) are described in the relevant literature as substances for the determination of the extracellular space and as clearance substances.

  19. Sequential extraction procedures to ascertain the role of organic matter in the fate of iodine in soils

    International Nuclear Information System (INIS)

    Gavalda, D.; Colle, C.

    2004-01-01

    In the assessment of the radiological impact on man of radioactive substances the fate of the long-lived 129 I in soils is of special interest. In order to predict the behaviour of iodine in the environment the knowledge of soil parameters which are responsible for its sorption is necessary. Sequential extraction techniques were performed to investigate the degree of binding of iodine with soil components and more specifically with the different constituents of soil organic matter (humic acid, fulvic acid, humin) which are liable to change with time. A speciation scheme was especially developed to study the role of organic matter in iodine retention and complexation. In the first steps, several mineral fractions of iodine were extracted: water soluble (H 2 O), exchangeable (1M MgCl 2 ), carbonate bound (0.01N HCl), bound to Fe-Mn oxides (0.5 M NH 4 OH,HCl adjusted to pH=2 with HNO 3 ). After these preliminary steps, the extraction of organic matter was carried out with neutral pyrophosphate (Na 2 H 2 P 2 O 7 / K 4 P 2 O 7 1/1 0.1M pH=7) to determine iodine bound to organo-mineral complexes and sodium hydroxide (0.5 M NaOH) to quantify iodine bound to humic substances. For these extracts, the distribution of iodine between humic and fulvic acids was studied. Iodine bound to residual and insoluble organic matter (humin) was extracted with H 2 O 2 30% adjusted to pH=2 with HNO 3 . In the last step, iodine bound to the residual soil was extracted by wet digestion (H 2 SO 4 ). In this scheme, all the traditional organic reagents (acetate, acetic acid,..) were removed and replaced by mineral reagents to allow the monitoring of organic carbon in the soil extracts. (author)

  20. Security and health protection during the transport of hazardous substances

    International Nuclear Information System (INIS)

    Benkovic, Z.; Bobic, V.

    2009-01-01

    The introduction of this work describes the legal regulations which regulate the conditions and method of the transport of hazardous substances, necessary documentation for storage, forwarding and transport. Hazardous substances are defined and classified according to the ADR. The necessary security measures which are taken for the transport of particular types of hazardous substances are mentioned. Marking and labeling of vehicles for the transport of hazardous substances (plates and lists of hazards), packing and marking of packaging is important. The safety measures which are taken at the filling stations of combustible liquids as well as places specially organized for filling, prohibitions and limitations and necessary transport documentation are mentioned. It is visible from the above mentioned that the activity of the whole security chain is necessary and depends on the good knowledge of basic characteristics and features of substances. All the participants in the security chain have to be familiar with and consistently obey the legal regulations. The manufacturer must know the features of the hazardous substance, supervisory services must be acquainted with the threat and potential danger. The hauler and intervention forces must, in case of accidents and damage, be familiar with the emergency procedures in case of accidents and act properly regarding the threatening dangerous substance.(author)

  1. Aqueous Solubility of Hydrocarbon Mixtures Solubilité dans l'eau de mélanges d'hydrocarbures

    Directory of Open Access Journals (Sweden)

    De Hemptinne J. C.

    2006-12-01

    Full Text Available The solubility of hydrocarbon components in water is of great importance for the environmental sciences. Its prediction is usually based on using the pure component solubilities and the mole fraction of the components in the mixture. While the pure component solubilities are generally well known, few data exist on the solubility of mixtures. Using a simple relationship leads to an underestimation of the true solubility. This paper presents some new data on the aqueous solubility of binary hydrocarbon mixtures. Using a rigorous thermodynamic analysis, we explain the observed behavior, as well as other data from the literature, including the solubility of jet fuel mixtures in water. The activity coefficient models used for this purpose are NRTL, UNIQUAC and UNIFAC. Considering the small concentration in oil of some very soluble substances, the activity coefficient can become significant and thus explain the fact that solubilities of some component may be as much as twice as large as expected. La solubilité de composés hydrocarbonés dans l'eau est d'une importance cruciale pour les sciences environnementales. Sa prévision est généralement basée sur la solubilité des constituants purs et de leur fraction molaire en mélange. La solubilité des composés purs est généralement bien connue, mais peu de données ont été publiées concernant les mélanges. L'utilisation d'une relation simple conduit à une sous-estimation de la solubilité réelle. Cet article présente quelques données nouvelles de solubilités de mélanges hydrocarbonés simples. Une analyse thermodynamique rigoureuse permet de décrire la solubilité observée, aussi bien pour des mélanges modèles que pour des kérosènes. Les modèles de coefficient d'activité utilisés dans ce but sont NRTL, UNIQUAC et UNIFAC. Étant donné la faible concentration de certains constituants dans l'huile, leurs coefficients d'activité peut devenir important. Ceci explique une

  2. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  3. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  4. Stigma, treatment beliefs, and substance abuse treatment use in ...

    African Journals Online (AJOL)

    with individuals who need help tending to deny or hide their condition for fear ..... Centers for Disease Control and Prevention, Atlanta, Georgia, U. S. A,. 2004. 19. Strauss ... Community based organizations for substance users in Cape Town,.

  5. 75 FR 63878 - Self-Regulatory Organizations; Self-Regulatory Organizations; Notice of Filing and Immediate...

    Science.gov (United States)

    2010-10-18

    ...-Regulatory Organizations; Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of...(b)(1). \\2\\ 17 CFR 240.19b-4. I. Self-Regulatory Organization's Statement of the Terms of Substance... Public Reference Room. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory...

  6. THE EFFECT OF FORMULATION HUMIC SUBSTANCE AND Trichoderma sp TO INCREASE PRODUCTION AND GROWTH OF CORN (Zea Mays,L

    Directory of Open Access Journals (Sweden)

    Ruly Eko Kusuma Kurniawan

    2017-06-01

    Full Text Available Research to determine of formulation humic subtance and Trichoderma sp to increase the production and growth of corn (zea mays,L. This research was conducted by extracting humic substance with fractionation organic matter method from cattle manure organic material. Trichoderma sp grow on corn medium and harvested after reaching a density of 1015 cfu. Created this compound formulation with mixing humic substance and Trichoderma sp. Indicator plant with F1 sweet corn Jago varieties. Aplication used humic substance in range 8%, 16%, and 32% on the recommended use NPK fertilizer for corn, as well as control without humic substance. The result showed application use 8% humic substance most good for plant growth and harvest. Additionally, nutrient uptake NPK fertilizer efficiency is increased and more effective than control and use of the formulation 16% and 32% humic substance.

  7. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  8. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  9. Chemical substances as risk factors of nephropathy in diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Zofia Marchewka

    2009-12-01

    Full Text Available Although diabetes mellitus, a metabolic disease, does not fall into the group of diseases induced by toxic substances or environmental pollution, there is much evidence that some chemicals have considerable importance in its development. Exposure to substances with potential renal toxicity is especially dangerous for diabetics because it accelerates and intensifies diabetic nephropathy. This paper discusses the relationship between the xenobiotics and the development of diabetes mellitus and diabetic nephropathy with particular emphasis on those substances that causes the greatest damage to the kidneys. These are cadmium, iron, lead, arsenic, polychlorinated organic compounds, nitrogen compounds, and contrast agents. In addition, the mechanisms of diabetes mellitus induction or kidney damage by these xenobiotics are described.

  10. Substance use - prescription drugs

    Science.gov (United States)

    Substance use disorder - prescription drugs; Substance abuse - prescription drugs; Drug abuse - prescription drugs; Drug use - prescription drugs; Narcotics - substance use; Opioid - substance use; Sedative - substance ...

  11. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    fuel. It was determined that chemical composition of the water-soluble fractions of blends of biodiesels and petrodiesels can be modeled by a linear combination of the water-soluble fraction chemistries of the neat petro- and biodiesels. Petroleum diesels appear to be 5 to 10 times more acutely toxic to aquatic organisms than pure biodiesels. Biodiesels were found to disperse very completely in high energy conditions. 17 refs., 5 tabs., 3 figs

  12. The modulatory effect of substance P on rat pineal norepinephrine release and melatonin secretion

    DEFF Research Database (Denmark)

    Mukda, Sujira; Møller, Morten; Ebadi, Manuchair

    2009-01-01

    innervate the pineal gland. Some of these peptidergic nerve fibers contain substance P. Previously, we have characterized neurokinin 1 type substance P receptors in the pineal gland. However, the function of this receptor in the pineal gland remains unclear. Here, we examined the modulatory effect...... of substance P on rat pineal NE transmission. We show that at the presynaptic level, substance P stimulates the KCl-induced [(3)H]NE release from the pineal nerve ending. However, we found that substance P did not affect the basal levels of either arylalkylamine-N-acetyltransferase (AANAT) activity...... or melatonin secretion in rat pineal organ cultures. However, in the presence of NE, substance P inhibited the NE-induced increase in AANAT activity and melatonin secretion. This is the first time that a function for substance P in the mammalian pineal gland has been demonstrated....

  13. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid in Simulated Intestinal Fluids.

    Directory of Open Access Journals (Sweden)

    Patrik Knöös

    Full Text Available A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium or fed state (FeSSIF. The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated.

  14. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  15. Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid.

    Science.gov (United States)

    Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D

    1996-10-01

    The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.

  16. Liquid Salt as Green Solvent: A Novel Eco-Friendly Technique to Enhance Solubility and Stability of Poorly Soluble Drugs

    Science.gov (United States)

    Patel, Anant A.

    As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation

  17. Substance misuse and substance use disorders in sex offenders: a review

    NARCIS (Netherlands)

    Kraanen, F.L.; Emmelkamp, P.M.G.

    2011-01-01

    Substance abuse has often been associated with committing sex offenses. In this article, the following will be reviewed: 1) studies that assessed substance abuse in sex offenders; 2) differences in substance abuse among different types of sex offenders; 3) differences in substance abuse between sex

  18. Closed substance cycle and substance cycling management: Compilation and evaluation of data for the assessment of priority organic contaminants in secondary raw-material fertilisers (slightly polluted sewage sludge from rural areas and compost) and organic farm fertilisers (liquid manure and slurry) for a risk assessment; Kreislaufwirtschaft - Stoffstrommanagement: Ermittlung und Auswertung von Daten zur Beurteilung prioritaerer organischer Schadstoffe in Abfallduengern (niedrig belastete Klaerschlaemme aus laendlichen Regionen und Kompost) sowie in organischen Wirtschaftsduengern (Guelle und Jauche) fuer eine Risikobewertung

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, A.; Klein, M.

    2003-07-31

    In the scope of the presently discussed closed substance cycle management and the resulting substance cycling management the agricultural use of animal wastes, sewage sludges and composts as fertilisers and soil improvers, respectively, plays an important role. The aim of the present project was the scientific preparation of deliberations aiming to find out which concentrations of selected contaminants occurring in secondary raw-material fertilisers (sewage sludge and compost) and farm fertilisers can still be tolerated, which do not have harmful effects on the environment. Information on the occurrence in sewage sludges and soils and their effects on soil organisms were compiled and evaluated for the following substances: linear alkylbenzene sulfonates (LAS), nonylphenol (NP), tributyltin (TBT), benzo(a)pyrene (BaP), diethylhexyl phthalate (DEPH) and dibutyl phthalate (DBP). In addition, respective data were searched for polyacrylamide (PAM), polybrominated diphenyl ethers (PBDE) and polycyclic musk compounds. The impact of composts by organic contaminants was described giving examples for diethylhexyl phthalate and dibutyl phthalate, benzo(a)pyrene and polychlorinated biphenyls. Concerning the farm fertiliser slurry, information about organic pollutants stemming from cleaning agents or disinfectants, NP, LAS and quartenary ammonium compounds were collected. LAS, NP, TBT and DEHP were detected in most of the sewage sludge samples. DBP occurred less frequently and in lower concentrations than DEHP. Single exceedings of the respective limit-values of the 3{sup rd} Draft of the EU-Sewage Sludge Directive (LAS, NP, DEHP) or other expert groups (BaP) were observed. In compliance with the respective regulations, there seems to be no risk potential for terrestrial organisms. To derive reliable environmental standards for TBT, there is a need for more data. In compost, content of organic contaminants is generally dependent on impurities. Compost made of &apos

  19. Autoradiographic localization of substance P receptors using 125I substance P

    International Nuclear Information System (INIS)

    Shults, C.W.; Quirion, R.; Jensen, R.T.; Moody, T.W.; O'Donohue, T.L.; Chase, T.N.

    1982-01-01

    This paper describes a method for localization of substance P receptors in the rat central nervous system using 125 I labeled substance P in an autoradiographic procedure. Particularly high densities of substance P receptors were observed in the olfactory bulb, dentate gyrus, amygdala, superior colliculus, and locus coeruleus. Surprisingly low densities of substance P receptors were found in the substantia nigra pars reticulata, a region which contains high concentrations of substance P

  20. Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride.

    Science.gov (United States)

    León-Ruiz, V; Vera, S; San Andrés, M P

    2005-04-01

    Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.

  1. Study the properties of activated carbon and oxyhydroxide aluminum as sorbents for removal humic substances from natural waters

    International Nuclear Information System (INIS)

    Shiyan, L N; Machekhina, K I; Gryaznova, E N

    2016-01-01

    The present work relates to the problem of high-quality drinking water supply using processes of adsorption on activated carbon and aluminum oxyhydroxide for removal humic- type organic substances. Also the paper reports on sorbtion properties of the activeted carbon Norit SA UF and oxyhydroxide aluminum for removal humic substances. It was found out that the maximum adsorption capacity of activated carbon to organic substances is equal to 0.25 mg/mg and aluminum oxyhydroxide is equal to 0.3 mg/mg. It is shown that the maximum adsorption capacity of activated carbon Norit SA UF to iron (III) ions is equal to 0.0045 mg/mg and to silicon ions is equal to 0.024 mg/mg. Consequently, the aluminum oxyhydroxide has better adsorption characteristics in comparison with the activated carbon for removal of humic substances, iron and silicon ions. It is associated with the fact that activated carbon has a large adsorption surface, and this is due to its porous structure, but not all molecules can enter into these pores. Therefore, the fibrous structure of aluminum oxyhydroxide promotes better sorption capacity. The presented results suggest that activated carbon Norit SA UF and aluminum oxyhydroxide can be used as sorbents for removal humic substances or other organic substances from groundwater and natural waters. (paper)

  2. Rapid and efficient synthesis of soluble graphene nanosheets using N-methyl-p-aminophenol sulfate as a reducing agent

    International Nuclear Information System (INIS)

    Wang Xialie; Wen Xiaohong; Liu Zhanpeng; Tan Yi; Yuan Ye; Zhang Ping

    2012-01-01

    Mass production of soluble graphene still remains a challenge, although several methodologies have been proposed. Here we report a rapid and efficient method for the synthesis of soluble graphene nanosheets (GNSs) with long-term dispersion stability in both aqueous and common organic solvents. Within only 12 min at 95 °C, exfoliated graphite oxide in ammonia solution (pH 10) was reduced to soluble GNSs using N-methyl-p-aminophenol sulfate (metol) as a reducing agent without external stabilizers. The prepared GNSs were characterized by different techniques and a comparison of metol and hydrazine hydrate as reducing agents was made. The results indicated that, with the advantages of being rapid, efficient, inexpensive and relatively environmentally friendly, the reduction of graphite oxide into soluble GNSs by metol is a promising substitute for hydrazine hydrate in the mass production of soluble GNSs. (paper)

  3. Novel mitochondria-targeted heat-soluble proteins identified in the anhydrobiotic Tardigrade improve osmotic tolerance of human cells.

    Directory of Open Access Journals (Sweden)

    Sae Tanaka

    Full Text Available Tardigrades are able to tolerate almost complete dehydration through transition to a metabolically inactive state, called "anhydrobiosis". Late Embryogenesis Abundant (LEA proteins are heat-soluble proteins involved in the desiccation tolerance of many anhydrobiotic organisms. Tardigrades, Ramazzottius varieornatus, however, express predominantly tardigrade-unique heat-soluble proteins: CAHS (Cytoplasmic Abundant Heat Soluble and SAHS (Secretory Abundant Heat Soluble proteins, which are secreted or localized in most intracellular compartments, except the mitochondria. Although mitochondrial integrity is crucial to ensure cellular survival, protective molecules for mitochondria have remained elusive. Here, we identified two novel mitochondrial heat-soluble proteins, RvLEAM and MAHS (Mitochondrial Abundant Heat Soluble, as potent mitochondrial protectants from Ramazzottius varieornatus. RvLEAM is a group3 LEA protein and immunohistochemistry confirmed its mitochondrial localization in tardigrade cells. MAHS-green fluorescent protein fusion protein localized in human mitochondria and was heat-soluble in vitro, though no sequence similarity with other known proteins was found, and one region was conserved among tardigrades. Furthermore, we demonstrated that RvLEAM protein as well as MAHS protein improved the hyperosmotic tolerance of human cells. The findings of the present study revealed that tardigrade mitochondria contain at least two types of heat-soluble proteins that might have protective roles in water-deficient environments.

  4. Effect of Bacteriocin-like Inhibitory Substances Produced by Vaginal ...

    African Journals Online (AJOL)

    Reduction of vaginal Lactobacillus population leads to overgrowth of opportunistic organisms such as Streptococcus agalactiae (Group B Streptococcus, GBS), which causes life threatening neonatal infections. The activities of bacteriocin-like inhibitory substances (BLIS) produced by Lactobacillus species isolated from the ...

  5. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  6. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay

    Directory of Open Access Journals (Sweden)

    Avital Beig

    2016-10-01

    Full Text Available Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs' permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility-permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility-permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ~30-fold. A concomitant permeability decrease was evident both in-vitro and in-vivo (~17-fold for nicotinamide and ~9-fold for urea, revealing a solubility-permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility-permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility-permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.

  7. Light-induced aggregation of microbial exopolymeric substances.

    Science.gov (United States)

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Improved spectrophotometric analysis of fullerenes C60 and C70 in high-solubility organic solvents.

    Science.gov (United States)

    Törpe, Alexander; Belton, Daniel J

    2015-01-01

    Fullerenes are among a number of recently discovered carbon allotropes that exhibit unique and versatile properties. The analysis of these materials is of great importance and interest. We present previously unreported spectroscopic data for C60 and C70 fullerenes in high-solubility solvents, including error bounds, so as to allow reliable colorimetric analysis of these materials. The Beer-Lambert-Bouguer law is found to be valid at all wavelengths. The measured data were highly reproducible, and yielded high-precision molar absorbance coefficients for C60 and C70 in o-xylene and o-dichlorobenzene, which both exhibit a high solubility for these fullerenes, and offer the prospect of improved extraction efficiency. A photometric method for a C60/C70 mixture analysis was validated with standard mixtures, and subsequently improved for real samples by correcting for light scattering, using a power-law fit. The method was successfully applied to the analysis of C60/C70 mixtures extracted from fullerene soot.

  9. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  10. Enzyme-lipid complex. Koso-shishitsu fukugotai

    Energy Technology Data Exchange (ETDEWEB)

    Okahata, Y; Ijiro, K [Tokyo Inst. of Technology., Tokyo (Japan)

    1990-08-01

    Enzyme, as unstable against organic solvent, being to be designed not to be quenched, organic solvent was tried to be made soluble by making enzyme-lipid complex. By mixing aqueous solution of enzyme with aqueous dispersion liquid of lipid, white powder was obtaind. Enzyme has monomolecular film through which reaction substance passes. Lipase-lipid complex, of which monomolecular film is qualified by hydrogen and other soft linkages, homogeneously dissolves in organic solvent and has a high activity, not given by the conventional qualification method. That activity being applied, asymmetrical esterificating reaction of alcohol could be done in organic solvent, containing high concentration reactive substance. While substance selectivity, not known in water, was obtained. Through reaction of amine with amino acid dielectrics in isooctane solvent by {alpha}-chymotrypsin-lipid complex, was indicated an exact substance selectivity. Enzyme-lipid complex dissolving in organic solvent, monomolecular film can be formed without being quenched on aqueous surface, which film can be utilized as sensor film. 10 refs., 5 figs. 1 tab.

  11. Substance misuse and substance use disorders in sex offenders: a review.

    Science.gov (United States)

    Kraanen, Fleur L; Emmelkamp, Paul M G

    2011-04-01

    Substance abuse has often been associated with committing sex offenses. In this article, the following will be reviewed: 1) studies that assessed substance abuse in sex offenders; 2) differences in substance abuse among different types of sex offenders; 3) differences in substance abuse between sex offenders and nonsexual offenders and substance abuse in the normal population; 4) sex offenders' intoxication at the time of the offense; and 5) differences in intoxication at the time of the offense among different types of sex offenders. Studies will be discussed according to the method they used to assess substance abuse, i.e., file research, screening instruments or semi-structured interviews. This review shows that about half of the sex offenders has a history of substance abuse, a quarter to half of the sex offenders has a history of alcohol misuse and that about one fifth to a quarter of the sex offenders has a history of drug misuse. Furthermore, about a quarter to half of the sex offenders appeared to be intoxicated at the time of the offense. The review results in recommendations for future research. Because of the high prevalence of substance abuse in sex offenders it is advisable to routinely screen for substance abuse and, if necessary, to treat substance abuse. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Special aspects of the indirect radiotracer technique when used to study the adsorption and electrochemical reactions of organic substances at solid electrodes

    International Nuclear Information System (INIS)

    Andreev, V.N.; Horanyi, G.; Kazarinov, V.E.

    1986-01-01

    This paper analyzes the possibilities and special aspects of the indirect radiotracer technique with a number of examples. Data are presented concerning the effects of acetic and oxalic acid on chloride ion adsorption on platinized platinum electrodes at a potential E = 0.2 V. The effect on chloride ion adsorption is much larger in the case of oxalic acid, which is evidence for its higher adsorbability on platinum at E = 0.2 V. It is shown that the indirect radiotracer technique offers significant possibilities for studying the electrochemical properties of adsorption products of organic substances

  13. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  14. Solubilities of uranium for TILA-99

    International Nuclear Information System (INIS)

    Ollila, K.; Ahonen, L.

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters' compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO 2 and spent fuel. The latest literature includes studies on UO 2 solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR '97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO 2 dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author)

  15. Solubilities of uranium for TILA-99

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, K. [VTT Chemical Technology, Espoo (Finland); Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    This report presents the evaluation of the uranium solubilities in the reference waters of TILA-99. The behaviour of uranium has been discussed separately in the near-field and far-field conditions. The bentonite/groundwater interactions have been considered in the compositions of the fresh and saline near-field reference waters. The far-field groundwaters` compositions include fresh, brackish, saline and very saline, almost brine-type compositions. The pH and redox conditions, as the main parameters affecting the solubilities, are considered. A literature study was made in order to obtain information on the recent dissolution and leaching experiments of UO{sub 2} and spent fuel. The latest literature includes studies on UO{sub 2} solubility under anoxic conditions, in which the methods for simulating the reducing conditions of deep groundwater have been improved. Studies on natural uraninite and its alteration products give a valuable insight into the long-term behaviour of spent fuel. Also the solubility equilibria for some relevant poorly known uranium minerals have been determined. The solubilities of the selected solubility-limiting phases were calculated using the geochemical code, EQ3/6. The NEA database for uranium was the basis for the modelling. The recently extended and updated SR `97 database was used for comparison. The solubility products for uranophane were taken from the latest literature. The recommended values for solubilities were given after a comparison between the calculated solubilities, experimental information and measured concentrations in natural groundwaters. The experiments include several UO{sub 2} dissolution studies in synthetic groundwaters with compositions close to the reference groundwaters. (author) 81 refs.

  16. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis.

    Science.gov (United States)

    Müller, Alexander; Schulz, Wolfgang; Ruck, Wolfgang K L; Weber, Walter H

    2011-11-01

    Non-target screening via high performance liquid chromatography-mass spectrometry (HPLC-MS) has gained increasingly in importance for monitoring organic trace substances in water resources targeted for the production of drinking water. In this article a new approach for evaluating the data from non-target HPLC-MS screening in water is introduced and its advantages are demonstrated using the supply of drinking water as an example. The crucial difference between this and other approaches is the comparison of samples based on compounds (features) determined by their full scan data. In so doing, we take advantage of the temporal, spatial, or process-based relationships among the samples by applying the set operators, UNION, INTERSECT, and COMPLEMENT to the features of each sample. This approach regards all compounds, detectable by the used analytical method. That is the fundamental meaning of non-target screening, which includes all analytical information from the applied technique for further data evaluation. In the given example, in just one step, all detected features (1729) of a landfill leachate sample could be examined for their relevant influences on water purification respectively drinking water. This study shows that 1721 out of 1729 features were not relevant for the water purification. Only eight features could be determined in the untreated water and three of them were found in the final drinking water after ozonation. In so doing, it was possible to identify 1-adamantylamine as contamination of the landfill in the drinking water at a concentration in the range of 20 ng L(-1). To support the identification of relevant compounds and their transformation products, the DAIOS database (Database-Assisted Identification of Organic Substances) was used. This database concept includes some functions such as product ion search to increase the efficiency of the database query after the screening. To identify related transformation products the database function

  17. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix

    Directory of Open Access Journals (Sweden)

    Edyta Kudlek

    2016-11-01

    Full Text Available The paper determined the influence of inorganic substances and high-molecular organic compounds on the decomposition of diclofenac, ibuprofen, and carbamazepine in the process of photocatalysis conducted with the presence of Titanium dioxide (TiO2. It was determined that the presence of such ions as CO 3 2 − , HCO 3 − , HPO 4 2 − as well as SO 4 2 − inhibited the decomposition of carbamazepine, whereas the efficiency of diclofenac degradation was decreased only by the presence of CO 3 2 − and HCO 3 − anions. In case of ibuprofen sodium salt (IBU, all investigated anions influenced the increase in its decomposition rate. The process of pharmaceutical photooxidation conducted in suspensions with Al3+ and Fe3+ cations was characterized by a significantly decreased efficiency when compared to the solution deprived of inorganic compounds. The addition of Ca2+, Mg2+ and NH4+ affected the increase of reaction rate constant value of diclofenac and ibuprofen decomposition. On the other hand, high molecular organic compounds present in the model effluent additionally catalysed the degradation process of pharmaceutical compounds and constituted an additional sorbent that enabled to decrease their concentration. Toxicological analysis conducted in deionized water with pharmaceutical compounds’ patterns proved the production of by-products from oxidation and/or reduction of micropollutants, which was not observed for model effluent irradiation.

  18. Effects of aqueous-soluble organic compounds on the removal of selected radionuclides from high-level waste part I: Distribution of Sr, Cs, and Tc onto 18 absorbers from an irradiated, organic-containing leachate simulant for Hanford Tank 101-SY

    International Nuclear Information System (INIS)

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1995-01-01

    Many of the radioactive waste storage tanks at U.S. Department of Energy facilities contain organic compounds that have been degraded by radiolysis and chemical reactions. In this investigation, we measured the effect of some aqueous-soluble organic compounds on the sorption of strontium, cesium, and technetium onto 18 absorbers that offer high sorption of strontium from organic-free solutions. For our test solution we used a leachate from a simulated slurry for Hanford Tank 101-SY that initially contained ethylenediaminetetraacetic acid (EDTA) and then was gamma-irradiated to 34 Mrads. We measured distribution coefficients (Kds) for each element/absorber combination for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. To facilitate comparisons, we include Kd values for these same element/absorber combinations from three organic-free simulant solutions. The Kd values for strontium sorption from the simulant that contained the degraded organics usually decreased by large factors, whereas the Kd values for cesium and technetium sorption were relatively unaffected

  19. Determination of radionuclide solubility limits to be used in SR 97. Uncertainties associated to calculated solubilities

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Cera, E.; Duro, L.; Jordana, S. [QuantiSci S.L., Barcelona (Spain); Pablo, J. de [DEQ-UPC, Barcelona (Spain); Savage, D. [QuantiSci Ltd., Henley-on-Thames (United Kingdom)

    1997-12-01

    The thermochemical behaviour of 24 critical radionuclides for the forthcoming SR97 PA exercise is discussed. The available databases are reviewed and updated with new data and an extended database for aqueous and solid species of the radionuclides of interest is proposed. We have calculated solubility limits for the radionuclides of interest under different groundwater compositions. A sensitivity analysis of the calculated solubilities with the composition of the groundwater is presented. Besides selecting the most likely solubility limiting phases, in this work we have used coprecipitation approaches in order to calculate more realistic solubility limits for minor radionuclides, such as Ra, Am and Cm. The comparison between the calculated solubilities and the concentrations measured in relevant natural systems (NA) and in spent fuel leaching experiments helps to assess the validity of the methodology used and to derive source term concentrations for the radionuclides studied. The uncertainties associated to the solubilities of the main radionuclides involved in the spent nuclear fuel have also been discussed in this work. The variability of the groundwater chemistry; redox conditions and temperature of the system have been considered the main factors affecting the solubilities. In this case, a sensitivity analysis has been performed in order to study solubility changes as a function of these parameters. The uncertainties have been calculated by including the values found in a major extent in typical granitic groundwaters. The results obtained from this analysis indicate that there are some radionuclides which are not affected by these parameters, i.e. Ag, Cm, Ho, Nb, Ni, Np, Pu, Se, Sm, Sn, Sr, Tc and U

  20. Benthic organisms and marine toxic substances and pollutants collected using net and sediment samplers from the MT MITCHELL and other platforms from 22 May 1974 to 27 May 1974 (NODC Accession 7800886)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic organisms and marine toxic substances and pollutants were collected using sediment sampler and net casts in the coastal waters of the East coast of US. Data...

  1. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  2. DETERMINING LIGHTFASTNESS PROPERTIES OF VEGETABLE TANNINS AND CHEMICAL PROPERTIES OF THE LEATHERS TANNED WITH MODIFIED MIMOSA AND QUEBRACHO

    Directory of Open Access Journals (Sweden)

    OMUR Sukru

    2016-05-01

    Full Text Available The vegetable tannins are the oldest tanning agents used in leather industry. They give their natural character and colour to the leathers which they are applied to, but they have the disadvantage of colour change when they are exposed to light for prolonged times. In this study light fastness properties of leathers tanned with mimosa, quebracho, valonea and chestnut tannins were measured. Lightfastness properties of mimosa and quebracho tannins were found lower. Then these tannins were modified with sulphitation, novalac synthesis and sulphomethylation processes. Lightfastness and determination of volatile matter, determination of matter soluble in dichloromethane, determination of sulphated total ash and sulphated water-insoluble ash, determination of water soluble matter, water soluble inorganic matter and water soluble organic matter, determination of nitrogen content and hide substance, calculation of degree of tannage determination of formaldehyde content analyses were performed to the leathers tanned with modified mimosa and quebracho tannins. From comparison of results, it was understood that sulpmethylation process can be used for production of leathers with higher lightfastness and without major change on chemical properties. When chemical properties of leathers tanned with modified quebracho and mimosa are considered: volatile matter, sulphated total ash and sulphated water- insoluble ash, water soluble matter, water soluble inorganic matter and water soluble organic matter, hide substance and formaldehyde contents were found compatible with standard mimosa and quebracho. However degree of tannage and matter soluble in dichloromethane values were found lower, which means some enhancements in modification or fatliquoring process should be considered.

  3. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes

    Directory of Open Access Journals (Sweden)

    T. Steinsberger

    2017-07-01

    Full Text Available The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH, suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.

  4. The Solubility of Cr-Organic Produced by Hydrolysis, Bioprocess and Bioremediation and its Effect on Fermented Rate, Digestibility and Rumen Microbe Population (in vitro

    Directory of Open Access Journals (Sweden)

    UH Tanuwiria

    2010-09-01

    Full Text Available The research was conducted to study the production of organic chromium from the leather tanning waste and its effect on in vitro rumen fermentation activities. The research was divided into two phases. The first phase was production of organic chromium by alkali hydrolysis, S cereviceae bioprocess, and duckweed bioremediation that perceived solubility in neutral and acid solution. The second phase was the supplementation of organic-Cr in ration seen from in-vitro fermented rate, digestibility and microbe rumen population. Research was conducted experimentally using 4x4 factorial patterns, on the basis of Completely Randomized Design (CRD with three replications in each experimental unit. The first factor was the type of organic-Cr and the second factor was the supplement in ration at four levels, 1, 2, 3 and 4 ppm. The results of this research indicated that organic chromium can be synthesized by alkali hydrolysis, S cereviseae bioprocess and the activity of duckweed bioremediation. Among the three of processes referred, the highest level of Cr was obtained from S cereviseae bioprocess that was originated from leather-tanning waste. The levels of organic-Cr that was resulted from alkali hydrolysis, bioprocess from Cl3Cr.6H2O, bioprocess from Cr leather-tanning waste, and from duckweed bioremediation were 354, 1011, 3833 and 310 mg/kg, respectively. Organic-Cr characteristic of each product has relatively similar in ferment ability, dry matter and organic matter digestibility and rumen ecosystem. There is an indication that dry matter and organic matter digestibility and rumen microbe population in ration that was added with organic Cr from alkali hydrolysis was higher than other supplements. (Animal Production 12(3: 175-183 (2010Key Words: organic-Cr, rumen fermentation activities, rumen microbe population

  5. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    Science.gov (United States)

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  6. Modelling metal-humic substances-surface systems: reasons for success, failure and possible routes for peace of mind

    International Nuclear Information System (INIS)

    Reiller, P.E.

    2012-01-01

    Iron oxides and oxy-hydroxides are commonly of considerable importance in the sorption of ions onto rocks, soils and sediments. They can be the controlling sorptive phases even if they are present in relatively small quantities. In common with other oxides and clay minerals, the sorption pH-edge of metals is directly linked to their hydrolysis: the higher the residual charge on the metal ion, the lower the pH-edge. Modelling of this process has been successfully carried out using different microscopic or macroscopic definitions of the interface (e.g. surface complexation or ion exchange models that may or may not include mineralogical descriptions). The influence of organic material on the sorption of many metals is of significant. This organic material includes simple organic molecules and more complex exo-polymeric substances (e.g. humic substances) produced by the decay of natural organic matter. Sorption of this organic material to mineral surfaces has been the subject of a large body of work. The various types of organic substances do not share the same affinities for mineral surfaces in general, and for iron oxides and oxy-hydroxides in particular. In those cases in which successful models of the component binary systems (i.e. metal-surface, metal-organic, organic-surface) have been developed, the formation of mixed surface complexes, the evolution of the surface itself, the addition order in laboratory systems, and the evolution of natural organic matter fractions during sorption, have often precluded a satisfactory description of metal-surface-organic ternary systems over a sufficiently wide range of parameter values (i.e. pH, ionic strength, concentration of humic substances). This manuscript describes the reasons for some successes and failures in the modelling of the ternary systems. Promising recent advances and possible methods of providing more complete descriptions of these intricate systems are also discussed. (author)

  7. Barriers to addressing substance abuse in domestic violence court.

    Science.gov (United States)

    Riger, Stephanie; Bennett, Larry W; Sigurvinsdottir, Rannveig

    2014-03-01

    Substance abuse commonly co-occurs with intimate partner violence among both perpetrators and survivors. Specialized courts that focus on intimate partner violence provide a unique opportunity to address both problems simultaneously, but research has yet to identify whether this happens. In this qualitative study of a domestic violence court in a large midwestern metropolitan area, key informants were interviewed to understand how the Court treats substance abuse. Results indicate that substance abuse typically is not identified among perpetrators or survivors going through the Court unless it is mentioned in a police report. Barriers to such identification are the organization of the Court, bounded definition of actors' roles in the Court, limited resources, and negative attitudes towards survivors. These results suggest that specialized courts that attend to only one problem may overlook the possibility of addressing issues that commonly co-occur.

  8. Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug.

    Science.gov (United States)

    Mitra, Amitava; Li, Li; Marsac, Patrick; Marks, Brian; Liu, Zhen; Brown, Chad

    2016-05-30

    Amorphous solid dispersion formulations have been widely used to enhance bioavailability of poorly soluble drugs. In these formulations, polymer is included to physically stabilize the amorphous drug by dispersing it in the polymeric carrier and thus forming a solid solution. The polymer can also maintain supersaturation and promote speciation during dissolution, thus enabling better absorption as compared to crystalline drug substance. In this paper, we report the use of hot melt extrusion (HME) to develop amorphous formulations of a poorly soluble compound (FaSSIF solubility=1μg/mL). The poor solubility of the compound and high dose (300mg) necessitated the use of amorphous formulation to achieve adequate bioperformance. The effect of using three different polymers (HPMCAS-HF, HPMCAS-LF and copovidone), on the dissolution, physical stability, and bioperformance of the formulations was demonstrated. In this particular case, HPMCAS-HF containing HME provided the highest bioavailability and also had better physical stability as compared to extrudates using HPMCAS-LF and copovidone. The data demonstrated that the polymer type can have significant impact on the formulation bioperformance and physical stability. Thus a thorough understanding of the polymer choice is imperative when designing an amorphous solid dispersion formulation, such that the formulation provides robust bioperformance and has adequate shelf life. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Multi-organ dysfunction in bodybuilding possibly caused by prolonged hypercalcemia due to multi-substance abuse: case report and review of literature.

    Science.gov (United States)

    Schäfer, C N; Guldager, H; Jørgensen, H L

    2011-01-01

    A 26-year-old male bodybuilder was admitted to the surgical department of a Danish community hospital for hematemesis. During the clinical interview, he revealed that he had recently finished a course of anabolic steroids and erythropoietin. The patient also had a previous history of infections and chronic ulcers due to paraffin-oil injections in both upper arms one year before. Over the course of the next few hours, the patient developed signs of multi-organ dysfunction, including pancreatitis, hemorrhagic gastritis, nephropathy with temporary anuria, and respiratory insufficiency, and was transferred to the ICU. After manometric monitoring on the patient's upper arms proved difficult, invasive blood pressure monitoring was used and revealed that the patient was in a state of hypertensive crisis. This case of multi-organ dysfunction was possibly caused by multi-substance-induced hypercalcemia. © Georg Thieme Verlag KG Stuttgart · New York.

  10. On the Solubility and Lipophilicity of Metallacarborane Pharmacophores

    Czech Academy of Sciences Publication Activity Database

    Rak, J.; Dejlová, B.; Lampová, H.; Kaplánek, R.; Matějíček, P.; Cígler, Petr; Král, V.

    2013-01-01

    Roč. 10, č. 5 (2013), s. 1751-1759 ISSN 1543-8384 R&D Projects: GA MŠk(CZ) LH11027; GA TA ČR(CZ) TE01020028; GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GAP303/11/1291; Biomedreg Project(XE) CZ.1.05/2.1.00/01.0030 Program:GA Institutional support: RVO:61388963 Keywords : metallacarborane * cobalt bis(dicarbollide) * serum albumin * HIV protease * inhibitor * lipophilicity * P-ow * solubility Subject RIV: CC - Organic Chemistry Impact factor: 4.787, year: 2013

  11. Retrograde curves of solidus and solubility

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  12. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Plants as a source of natural harmful substances].

    Science.gov (United States)

    Czerwiecki, Ludwik

    2005-01-01

    In this review the several data concerning phytotoxins as natural harmful substances of plants and phycotoxins--toxicants of algae were described. For example plants are source of pyrrolizidine alkaloids, glycoalkaloids, glucosinolates as well as glycosides, saponine and psolarens. Possible adverse effects of phytoestrogens as endocrine disruptors versus beneficial influence these substances on human organism were mentioned. About lectins as possible factors of some diseases was reported, as well as some proteins as allergens of soy and peanuts was mentioned. Accumulated by shellfish and fish the most important phycotoxins such as saxitoxin, okadaic acid, brevetoxins and ciguatoxins were described. Phycotoxins produced several poisoning symptoms. Microcystins and nodularin--cyanobacterial phycotoxins of freshwater, was mentioned. In conclusion, the need of limitation of permissible levels of some plant toxicants, development of analytical methods as well as knowledge of influence of some technological processes on toxic plant substances was highlighted. The importance of balanced diet as a tool of defense against plant toxicants was concluded.

  14. Characteristics of the fluorescent substances in the Yodo River system by three-dimensional excitation emission matrix spectroscopy; Sanjigen reiki/keiko kodoho ni yoru yodogawa suikeichu no keiko busshitsu no tokucho

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y.; Nakaguchi, Y.; Hiraki, K.; Kudo, M.; Kimura, M.; Nagao, S. [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-08-01

    Organic substances in the river water in Yodo River system were analyzed by three-dimensional excitation emission matrix spectroscopy. Fluorescent substances were taken as an index of organic substances. The amount of fluorescent substances varied widely depending on the environment of river basin. It is suggested that the fluorescent substances are composed of organic substances which is not directly originated from biological activity. It is suggested that the fluorescent substances were produced by leaching of river bottom sediment. The fluorescent substances in Yodo River system consists of fulvic acid-like substances and protein. The analysis of fluorescent substances in river water by three-dimensional excitation emission matrix spectroscopy can be useful means for estimation of variation and origin of fluorescent substances. For better understanding of features of fluorescent substances in the surface water into which various kinds of substances enter, it is necessary to determine the exact sampling points based on the consideration of different sources and to make a database of peak positions for identification of fluorescent substances from fluorescence intensity peak. 29 refs., 3 figs., 2 tabs.

  15. Photoautotrophic Production of Biomass, Laurate, and Soluble Organics by Synechocystis sp. PCC 6803

    Science.gov (United States)

    Nguyen, Binh Thanh

    Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly. This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 muE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 muE/m2-s. Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI. How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently. Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (mumax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 muE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its mumax with a modest Ci concentration (≥1.0 mM). Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall

  16. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  17. Solubility limits of importance to leaching

    International Nuclear Information System (INIS)

    Ogard, A.; Bentley, G.; Bryant, E.; Duffy, C.; Grisham, J.; Norris, E.; Orth, C.; Thomas, K.

    1981-01-01

    The solubilities of some radionuclides, especially rare earths and actinides, may be an important and controlling factor in leaching of waste forms. These solubilities should be measured accurately as a function of pH and not as a part of a multicomponent system. Individual solubilities should be measured as a function of temperature to determine if a kinetic effect is being observed in the data. A negative temperature coefficient of solubility for actinides and rare earths in water would have important consequences for nuclear reactor safety and for the management of nuclear wastes

  18. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  19. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Soil contamination in south Backa region of Serbia with dangerous and harmful substances

    Directory of Open Access Journals (Sweden)

    Maksimović Livija

    2012-01-01

    Full Text Available Soil samples in disturbed state were taken in order to control fertility and monitor contents of harmful and hazardous substances in Vojvodina soils and possibilities of soil degradation in general. Moderately contaminated soils were selected for examination. Microbial activity in contaminated soil and the impact of harmful and hazardous substances (pesticides on soil microorganisms were observed and most resistant microorganisms were isolated. Vegetation experiments were organized to study the effect of chelating agents EDTA and EDDS on copper adoption and translocation in rapeseed and sunflower. Importance of some ions in the complexation of copper chelators and their undesirable effects on copper uptake were established. Field trials were organized to study the effect of hydrogel on water uptakes by plants, increase in rate and the increase in rate of removal of hazardous and harmful substances from soil solution. At all phases of the project, we monitored the effectiveness of soil bioremediation soils by means of the application of chelating agents, stimulative preparations such as hydrogel and certain microorganisms. It effectiveness was measured in terms of plant growth rate and intensity in removal of hazardous and harmful substances from contaminated soil.

  1. Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon - Effect of cation composition and pH.

    Science.gov (United States)

    Campos Pereira, Hugo; Ullberg, Malin; Kleja, Dan Berggren; Gustafsson, Jon Petter; Ahrens, Lutz

    2018-09-01

    Accurate prediction of the sorption of perfluoroalkyl substances (PFASs) in soils is essential for environmental risk assessment. We investigated the effect of solution pH and calculated soil organic matter (SOM) net charge on the sorption of 14 PFASs onto an organic soil as a function of pH and added concentrations of Al 3+ , Ca 2+ and Na + . Often, the organic C-normalized partitioning coefficients (K OC ) showed a negative relationship to both pH (Δlog K OC /ΔpH = -0.32 ± 0.11 log units) and the SOM bulk net negative charge (Δlog K OC  = -1.41 ± 0.40 per log unit mol c g -1 ). Moreover, perfluorosulfonic acids (PFSAs) sorbed more strongly than perfluorocarboxylic acids (PFCAs) and the PFAS sorption increased with increasing perfluorocarbon chain length with 0.60 and 0.83 log K OC units per CF 2 moiety for C 3 -C 10 PFCAs and C 4 , C 6 , and C 8 PFSAs, respectively. The effects of cation treatment and SOM bulk net charge were evident for many PFASs with low to moderate sorption (C 5 -C 8 PFCAs and C 6 PFSA). However for the most strongly sorbing and most long-chained PFASs (C 9 -C 11 and C 13 PFCAs, C 8 PFSA and perfluorooctane sulfonamide (FOSA)), smaller effects of cations were seen, and instead sorption was more strongly related to the pH value. This suggests that the most long-chained PFASs, similar to other hydrophobic organic compounds, are preferentially sorbed to the highly condensed domains of the humin fraction, while shorter-chained PFASs are bound to a larger extent to humic and fulvic acid, where cation effects are significant. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Dynamics of emerging organic pollutants from a municipal landfill

    Science.gov (United States)

    Le Guern, Cécile; Béchet, Béatrice; Lépinay, Alexandra; Conil, Pierre

    2017-04-01

    In large cities, municipal landfills may have received waste coming from hospitals, but also green waste. The corresponding anthroposol might thus be a source of organic emerging substances such as pharmaceutical or phytosanitary substances. The occurrence and fate of organic emerging substances from such a former landfill in urban areas has been studied as part of a research program dealing with the observation and the monitoring of the environment. Of the 261 substances sought (30 pharmaceutical molecules, 223 phytosanitary products and 8 other emerging substances), 11 pharmaceutical molecules in particular have been quantified in the leachates, 2 endocrine disruptors (bisphenol A and triclosan) and 10 phytosanitary substances. Most of these substances are found also in groundwater immediately downstream of the site (including carbamazepine) at concentrations ranging between 0.1 µg/l and 10 µg/l. The number of detected substances appears much smaller a few hundred meters far from the landfill (bisphenol A and diclofenac in particularly, with concentrations ranging from 0.1 to 1 µg/l and about 0.1 µg/l respectively). Natural attenuation occurs during transfer in the plume, as observed for PAHs or metals. Several mechanisms may explain the natural attenuation of the substances.

  3. Influence of humic substances on plant-microbes interactions in the rhizosphere

    Science.gov (United States)

    Puglisi, Edoardo; Pascazio, Silvia; Spaccini, Riccardo; Crecchio, Carmine; Trevisan, Marco; Piccolo, Alessandro

    2013-04-01

    Humic substances are known to play a wide range of effects on the physiology of plant and microbes. This is of particular relevance in the rhizosphere of terrestrial environments, where the reciprocal interactions between plants roots, soil constituents and microorganisms strongly influence the plants acquisition of nutrients. Chemical advances are constantly improving our knowledge on humic substances: their supra-molecular architecture, as well as the moltitude of their chemical constituents, many of which are biologically active. An approach for linking the structure of humic substances with their biological activity in the rhizosphere is the use of rhizoboxes, which allow applying a treatment (e.g., an amendment with humic substances) in an upper soil-plant compartment and take measurements in a lower isolated rhizosphere compartment that can be sampled at desired distances from the rhizoplane. This approach can be adopted to assess the effects of several humic substances, as well as composted materials, on maize plants rhizodeposition of carbon, and in turn on the structure and activity of rhizosphere microbial communities. In order to gain a complete understanding of processes occurring in the complex soil-plant-microorganisms tripartite system, rhizobox experiments can be coupled with bacterial biosensors for the detection and quantification of bioavailable nutrients, chemical analyses of main rhizodeposits constituents, advanced chemical characterizations of humic substances, DNA-fingerprinting of microbial communities, and multivariate statistical approaches to manage the dataset produced and to infer general conclusions. By such an approach it was found that humic substances are significantly affecting the amount of carbon deposited by plant roots. This induction effect is more evident for substances with more hydrophobic and complex structure, thus supporting the scientific hypothesis of the "microbial loop model", which assumes that plants feed

  4. Release of UV-absorbing substances from maize coleoptiles during auxin-, fusicoccin- and acid-mediated elongation growth

    International Nuclear Information System (INIS)

    Miyamoto, K.; Schopfer, P.

    1997-01-01

    Isolated cell walls from maize coleoptiles prepared under conditions that preserve the ability for enzymatic hemicellulose autolysis release UV-absorbing substances into the incubation medium in a time-dependent reaction with an optimal rate at pH 6–7. The reaction can be inhibited by low temperature and protein-denaturing treatments, indicating an enzymatic process. Spectroscopic and chromatographic analyses showed that the liberated substances represent a complex mixture of free and bound (alkali-hydrolyzable) phenolic compounds with similar absorption spectra restricted to the range below 300 nm and thus excluding hydroxycinnamic acids from cell-wall esters. A spectroscopically and chromatographically similar mixture of soluble UV-absorbing substances is released if living (abraded) maize coleoptiles or coleoptile segments are incubated in water or buffer, suggesting that insoluble phenolic materials in the cell wall are metabolized also in vivo. This reaction can be promoted by anaerobic conditions and application of fusicoccin whereas auxin had a slightly inhibitory effect. No clear relationship to elongation growth could be demonstrated. We conclude from these results that polymeric phenolic constituents of the cell wall are subject to enzymatic degradation in muro similar to polysaccharide autolysis and that this process is under metabolic control

  5. Influence of radiopacifying agents on the solubility, pH and antimicrobial activity of portland cement.

    Science.gov (United States)

    Weckwerth, Paulo Henrique; Machado, Adriano Cosme de Oliveira; Kuga, Milton Carlos; Vivan, Rodrigo Ricci; Polleto, Raquel da Silva; Duarte, Marco Antonio Hungaro

    2012-01-01

    The aim of this study was to evaluate the interference of the radiopacifiers bismuth oxide (BO), bismuth carbonate (BC), bismuth subnitrate (BS), and zirconiun oxide (ZO) on the solubility, alkalinity and antimicrobial properties of white Portland cement (WPC). The substances were incorporated to PC, at a ratio of 1:4 (v/v) and subjected to a solubility test. To evaluate the pH, the cements were inserted into retrograde cavities prepared in simulated acrylic teeth and immediately immersed in deionized water. The pH of the solution was measured at 3, 24, 72 and 168 h. The antimicrobial activity was evaluated by a radial diffusion method against the microorganisms S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), E. faecalis (ATCC 29212) and C. albicans (ATCC 10231). The zone of microbial growth inhibition was measured after 24 h. The addition of BS and BC increased the solubility of the cement. The pH values demonstrated that all materials produced alkaline levels. At 3 h, BS showed lower pH than WPC (p0.05). The materials did not present antimicrobial activity for S. aureus, P. aeruginosas and E. faecalis (p>0.05). With regards to C. albicans, all materials formed an inhibition zone, mainly the mixture of WPC with ZO (p<0.05). The type of radiopacifier incorporated into WPC interfered with its physical and antimicrobial properties. ZO was found to be a viable radiopacifier that can be used with WPC.

  6. Studeis on the immobilization of water soluble phosphatic fertilizer in some soils with 32P

    International Nuclear Information System (INIS)

    Zhang Yumei; Li Rensheng; Xu Xinyu

    1985-01-01

    Using superphosphate lablled with 32 P, we studied immobilization of water-soluble phosphatic fertilizer on 12 typies of soil. The experimental result showed that major factors to govern immobilization of water-soluble phosphatic fertilizer are: quickly availible Fe that showed positive correlation with the immobilization when it was 4.64-65.72 ppm; and pH that showed negative correlation with the immobilization when it was between 5.35 and 8.88. CaCO 3 and organic matter showed a great effect on the immobilization though there wasn't obvious correlation among them

  7. 42 CFR Appendix to Part 54a - Model Notice of Individuals Receiving Substance Abuse Services

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Model Notice of Individuals Receiving Substance... ORGANIZATIONS RECEIVING DISCRETIONARY FUNDING UNDER TITLE V OF THE PUBLIC HEALTH SERVICE ACT, 42 U.S.C. 290aa...—Model Notice of Individuals Receiving Substance Abuse Services Model Notice to Individuals Receiving...

  8. Benthic organism and marine toxic substances and pollutants collected using net and sediment sampler casts from NOAA Ship RESEARCHER in Gulf of Mexico from 1979-07-23 to 1980-12-13 (NODC Accession 8200103)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic organism and marine toxic substances and pollutants were collected using net, sediment sampler, and other instruments from NOAA Ship RESEARCHER and other...

  9. Toxic substances registry system: Index of material safety data sheets

    Science.gov (United States)

    1993-01-01

    The Material Safety Data Sheets (MSDS's) listed in this index reflect product inventories and associated MSDS's which were submitted to the Toxic Substances Registry database maintained by the Base Operations Contractor at the Kennedy Space Center. The purpose of this index is to provide KSC government, contractor, and tenant organizations a means to access information on the hazards associated with these chemicals. The Toxic Substance Registry Service (TSRS) was established to manage information dealing with the storage and use of toxic and otherwise hazardous materials at KSC. As a part of this service, the BOC Environmental Health Services maintains a central repository of MSDS's which were provided to TSRS. The data on the TSRS are obtained from NASA, contractor, and tenant organizations who use or store hazardous materials at KSC. It is the responsibility of these organizations to conduct inventories, obtain MSDS's, distribute Hazard Communication information to their employees, and otherwise implement compliance with appropriate Federal, State, and NASA Hazard Communication and Worker Right-to-Know regulations and policies.

  10. Uranyl Oxalate Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  11. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    Science.gov (United States)

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  12. 78 FR 9397 - International Drug Scheduling; Convention on Psychotropic Substances; World Health Organization...

    Science.gov (United States)

    2013-02-08

    ... the Controlled Substances Act (the CSA). DATES: Submit either electronic or written comments by... information, see also section IV of this document). ADDRESSES: Submit electronic comments to http://www.... The excerpts are currently available in English only, pending receipt of the official French...

  13. Inkjet-Printed Organic Transistors Based on Organic Semiconductor/Insulating Polymer Blends.

    Science.gov (United States)

    Kwon, Yoon-Jung; Park, Yeong Don; Lee, Wi Hyoung

    2016-08-02

    Recent advances in inkjet-printed organic field-effect transistors (OFETs) based on organic semiconductor/insulating polymer blends are reviewed in this article. Organic semiconductor/insulating polymer blends are attractive ink candidates for enhancing the jetting properties, inducing uniform film morphologies, and/or controlling crystallization behaviors of organic semiconductors. Representative studies using soluble acene/insulating polymer blends as an inkjet-printed active layer in OFETs are introduced with special attention paid to the phase separation characteristics of such blended films. In addition, inkjet-printed semiconducting/insulating polymer blends for fabricating high performance printed OFETs are reviewed.

  14. Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl, and sufentanil.

    Science.gov (United States)

    Roy, S D; Flynn, G L

    1989-02-01

    The pH dependence of the aqueous solubility of morphine, fentanyl, and sufentanil was investigated at 35 degrees C. Dissociation constants and corresponding pKa' values of the drugs were obtained from measured free-base solubilities (determined at high pH's) and the concentrations of saturated solutions at intermediate pH's. Morphine, fentanyl, and sufentanil exhibited pKa' values of 8.08, 8.99, and 8.51, respectively. Over the pH range of 5 to 12.5 the apparent solubilities are determined by the intrinsic solubility of the free base plus the concentration of ionized drug necessary to satisfy the dissociation equilibrium at a given pH. Consequently, the drug concentrations of saturated aqueous solutions fall off precipitously as the pH is raised and ionization is suppressed. Further, at low pH's the aqueous solubility of morphine increased in a linear fashion with increases in the molar strength of citric acid which was added to acidify the medium, suggesting the formation of a soluble morphine-citrate complex.

  15. Solubility studies of Np(IV)

    International Nuclear Information System (INIS)

    Zhang Yingjie; Yao Jun; Jiao Haiyang; Ren Lihong; Zhou Duo; Fan Xianhua

    2001-01-01

    The solubility of Np(IV) in simulated underground water and redistilled water has been measured with the variations of pH(6-12) and storage time (0-100 d) in the presence of reductant (Na 2 S 2 O 4 , metallic Fe). All experiments are performed in a low oxygen concentration glove box containing high purity Ar(99.99%), with an oxygen content of less than 5 x 10 -6 mol/mol. Experimental results show that the variation of pH in solution has little effect on the solubility of Np(IV) in the two kinds of water; the measured solubility of Np(IV) is affected by the composition of solution; with Na 2 S 2 O 4 as a reductant, the solubility of Np(IV) in simulated underground water is (9.23 +- 0.48) x 10 -10 mol/L, and that in redistilled water is (8.31 +- 0.35) x 10 -10 mol/L; with metallic Fe as a reductant, the solubility of Np(IV) in simulated underground water is (1.85 +- 0.56) x 10 -9 mol/L, and that in redistilled water is (1.48 +- 0.66) x 10 -9 mol/L

  16. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910.

    Science.gov (United States)

    Huang, Tao; Tan, Hailing; Lu, Fangju; Chen, Gong; Wu, Zhenqiang

    2017-11-21

    Monascus pigments are widely used in the food and pharmaceutical industries due to their safety to human health. Our previous study found that glucose concentration induced extracellular oxidoreduction potential (ORP) changes could influence extracellular water-soluble yellow pigment production by Monascus ruber CGMCC 10910 in submerged fermentation. In this study, H 2 O 2 and dithiothreitol (DTT) were used to change the oxidoreduction potential for investigating the effects of oxidative or reductive substances on Monascus yellow pigment production by Monascus ruber CGMCC 10910. The extracellular ORP could be controlled by H 2 O 2 and DTT. Both cell growth and extracellular water-soluble yellow pigment production were enhanced under H 2 O 2 -induced oxidative (HIO) conditions and were inhibited under dithiothreitol-induced reductive conditions. By optimizing the amount of H 2 O 2 added and the timing of the addition, the yield of extracellular water-soluble yellow pigments significantly increased and reached a maximum of 209 AU, when 10 mM H 2 O 2 was added on the 3rd day of fermentation with M. ruber CGMCC 10910. Under HIO conditions, the ratio of NADH/NAD+ was much lower than that in the control group, and the expression levels of relative pigment biosynthesis genes were up-regulated; moreover, the activity of glucose-6-phosphate dehydrogenase (G6PDH) was increased while 6-phosphofructokinase (PFK) activity was inhibited. Oxidative conditions induced by H 2 O 2 increased water-soluble yellow pigment accumulation via up-regulation of the expression levels of relative genes and by increasing the precursors of pigment biosynthesis through redirection of metabolic flux. In contrast, reductive conditions induced by dithiothreitol inhibited yellow pigment accumulation. This experiment provides a potential strategy for improving the production of Monascus yellow pigments.

  17. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  18. Organic Solvent Tolerant Lipases and Applications

    Directory of Open Access Journals (Sweden)

    Shivika Sharma

    2014-01-01

    Full Text Available Lipases are a group of enzymes naturally endowed with the property of performing reactions in aqueous as well as organic solvents. The esterification reactions using lipase(s could be performed in water-restricted organic media as organic solvent(s not only improve(s the solubility of substrate and reactant in reaction mixture but also permit(s the reaction in the reverse direction, and often it is easy to recover the product in organic phase in two-phase equilibrium systems. The use of organic solvent tolerant lipase in organic media has exhibited many advantages: increased activity and stability, regiospecificity and stereoselectivity, higher solubility of substrate, ease of products recovery, and ability to shift the reaction equilibrium toward synthetic direction. Therefore the search for organic solvent tolerant enzymes has been an extensive area of research. A variety of fatty acid esters are now being produced commercially using immobilized lipase in nonaqueous solvents. This review describes the organic tolerance and industrial application of lipases. The main emphasis is to study the nature of organic solvent tolerant lipases. Also, the potential industrial applications that make lipases the biocatalysts of choice for the present and future have been presented.

  19. A method and apparatus for preparing the storage of noxious substances, in particular radioactive substances

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to the storage of radioactive substances. It deals with a method for storing a substance, in particular a noxious or radioactive substance, comprising trapping said substance in a solid substance by bombarding said solid substance with ions of the above substance, so that the latter reaches a certain concentration level in the solid substance. This is applicable to the storage of radioactive wastes [fr

  20. Thermodynamic approach to improving solubility prediction of co-crystals in comparison with individual poorly soluble components

    International Nuclear Information System (INIS)

    Perlovich, German L.

    2014-01-01

    Highlights: • Thermodynamic approach for solubility improvement of co-crystal was developed. • The graphical technique for estimation of co-crystal solubility was elaborated. • Hydration enthalpies of some drugs and amino acids were calculated. • Applicability/operability of the approach was exemplified by some drugs and amino acids. - Abstract: A novel thermodynamic approach to compare poorly soluble components (active pharmaceutical ingredient (API)) both in co-crystals and individual compounds was developed. An algorithm of choosing potential co-crystals with improved solubility characteristics on the basis of the known solvation/hydration API and co-former enthalpies is described. The applicability and operability of the algorithm were tested exemplified by some drugs and amino acids