WorldWideScience

Sample records for soluble form precipitates

  1. Lipid-Based Formulations Can Enable the Model Poorly Water-Soluble Weakly Basic Drug Cinnarizine to Precipitate in an Amorphous-Salt Form during in Vitro Digestion

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben J

    2016-01-01

    The tendency for poorly water-soluble weakly basic drugs to precipitate in a noncrystalline form during the in vitro digestion of lipid-based formulations (LBFs) was linked to an ionic interaction between drug and fatty acid molecules produced upon lipid digestion. Cinnarizine was chosen as a model...... from the starting free base crystalline material to the hydrochloride salt, thus supporting the case that ionic interactions between weak bases and fatty acid molecules during digestion are responsible for producing amorphous-salts upon precipitation. The conclusion has wide implications...... weakly basic drug and was dissolved in a medium-chain (MC) LBF, which was subject to in vitro lipolysis experiments at various pH levels above and below the reported pKa value of cinnarizine (7.47). The solid-state form of the precipitated drug was analyzed using X-ray diffraction (XRD), Fourier...

  2. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  4. In Situ Lipolysis and Synchrotron Small-Angle X-ray Scattering for the Direct Determination of the Precipitation and Solid-State Form of a Poorly Water-Soluble Drug During Digestion of a Lipid-Based Formulation

    DEFF Research Database (Denmark)

    Khan, Jamal; Hawley, Adrian; Rades, Thomas

    2016-01-01

    In situ lipolysis and synchrotron small-angle X-ray scattering (SAXS) were used to directly detect and elucidate the solid-state form of precipitated fenofibrate from the digestion of a model lipid-based formulation (LBF). This method was developed in light of recent findings that indicate variab...... on drugs, and experimental conditions, which are anticipated to produce altered solid-state forms upon the precipitation of drug (i.e., polymorphs, amorphous forms, and salts). © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci....

  5. Nickel Solubility and Precipitation in Soils: A Thermodynamic Study

    International Nuclear Information System (INIS)

    Peltier, E.; Allada, R.; Navrotsky, A.; Sparks, D.

    2006-01-01

    The formation of mixed-metal-Al layered double hydroxide (LDH) phases similar to hydrotalcite has been identified as a significant mechanism for immobilization of trace metals in some environmental systems. These precipitate phases become increasingly stable as they age, and their formation may therefore be an important pathway for sequestration of toxic metals in contaminated soils. However, the lack of thermodynamic data for LDH phases makes it difficult to model their behavior in natural systems. In this work, enthalpies of formation for Ni LDH phases with nitrate and sulfate interlayers were determined and compared to recently published data on carbonate interlayer LDHs. Differences in the identity of the anion interlayer resulted in substantial changes in the enthalpies of formation of the LDH phases, in the order of increasing enthalpy carbonateprecipitates. Both mechanical mixture and solid-solution models could be used to predict the thermodynamic properties of the LDH phases. Modeling results based on these thermodynamic data indicated that the formation of LDH phases on soil mineral substrates decreased Ni solubility compared to Ni(OH)2 over pH 5-9 when soluble Al is present in the soil substrate. Over time, both of these precipitate phases will transform to more stable Ni phyllosilicates

  6. Composition and solubility of precipitated copper(II) arsenates

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Hanna; Shchukarev, Andrey; Sjoeberg, Staffan [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden); Loevgren, Lars, E-mail: lars.lovgren@chem.umu.se [Department of Chemistry, Umea University, SE-901 87 Umea (Sweden)

    2011-05-15

    Research Highlights: > By mixing solutions of Cu{sup 2+} and HAsO{sub 4}{sup 2-} solid phases are formed in a wide pH range. > Five different stoichiometric compositions were found. > Two of the solid phases formed in 0.1 M NaCl contained Na{sup +}. > Stability constants for all solid phases have been determined. > Aqueous complexes containing Cu{sup 2+} and AsO{sub 4}{sup 3-} ions could not be detected. - Abstract: Equilibrium reactions involving Cu(II) and As(V) have been studied with respect to formation of complexes in aqueous solutions as well as formation of solid phases. Potentiometric titrations performed at 25 deg. C (I = 0.1 M Na(Cl)) and at different Cu to As ratios gave no evidence for the existence of Cu(II) arsenate complexes in solution below the pH of the precipitation boundaries (pH {approx} 4), irrespective of the Cu to As ratio and pH. Mixing of solutions of Cu(II) and As(V) at different proportions and adjusting pH to values ranging from 4 to 9 resulted in precipitation of five different solid phases. The elemental composition of the solids was determined using X-ray Photoelectron Spectroscopy, and Environmental Scanning Microscopy-Field Emission Gun equipped with an energy dispersive spectroscopy detector. The average Cu/As ratio was determined by dissolving the solids. Total soluble concentrations of the components Cu(II) and As(V), as well as the basicity of the solid phases were determined by analysis of aqueous solutions. Based upon these experimental data the stoichiometric composition of the solid phases and their stability were determined. The resulting equilibrium model includes the solid phases Cu{sub 3}(AsO{sub 4}){sub 2}, Cu{sub 3}(AsO{sub 4})(OH){sub 3}, Cu{sub 2}(AsO{sub 4})(OH), Cu{sub 5}Na(HAsO{sub 4})(AsO{sub 4}){sub 3} and Cu{sub 5}Na{sub 2}AsO{sub 4}){sub 4}, where Cu{sub 5}Na(HAsO{sub 4})(AsO{sub 4}){sub 3} and Cu{sub 5}Na{sub 2}(AsO{sub 4}){sub 4} have not been reported previously. In 0.1 M Na(Cl), Na{sup +} was found to be

  7. Precipitation of sparingly soluble salts in packed sandbeds

    Science.gov (United States)

    Pavlakou, Efstathia I.; Sygouni, Varvara; Paraskeva, Christakis A.

    2015-04-01

    One of the main problems encountered by the oil extraction industry, is the reduction of the local permeability of the rock formation near the extraction wells because of salt deposition in the pores of the rocks during the injection of brine water to displace the trapped oil ganglia within the oil formations. This phenomenon makes the oil recovery less efficient and under extreme cases the well is abandoned with a large amount of oil entrapped. Several detailed studies have been conducted in the past concerning sand bed consolidation using sparingly soluble salts for varying conditions (e.g. temperature, grain size, sand type, salt concentrations etc) and various salts [1]. Nevertheless, salt precipitation in the rock formation pores under the presence of other miscible or immiscible substances with water has not been investigated in details yet. In the present study, salt (CaCO3) precipitation experiments were performed in small beds packed with sea sand mixed with a low amount of CaCO3 seed grains. The experiments were performed using pure solutions (NaHCO3, CaCl2.2H2O) and solutions mixed with Ethylene Glycol in sand beds. Additionally, precipitation experiments were performed using pure solutions in sand beds saturated with oil phase (n-dodecane) for a wide range of solution supersaturation. During the experiments the ionic strength was kept constant. pH and concentration values of calcium ion of the effluent were measured and the precipitated salt crystals were identified using X-ray Diffraction (XRD) method. At the end of each experiment Scanning Electron Microscope (SEM) was conducted using a sample of the precipitated sand to identify the morphology of the precipitated crystals and their cohesion with sand grains. Acknowledgments This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420). References

  8. Relationships between particle precipitation and auroral forms

    International Nuclear Information System (INIS)

    Burch, J.L.; Winningham, J.D.

    1978-01-01

    The present state of knowledge on the relationships between high-latitude particle precipitation and the aurora is reviewed. Attention is focused on the largescale relationships between auroral forms and magnetospheric particle populations, on the relationships between satellite and sounding-rocket measurements, and on the interaction of auroral electrons with the atmosphere. While significant progress is being made in relating the largescale features of the aurora to magnetospheric plasma domains, and in understanding the way in which auroral electrons deposit their energy in the atmosphere, only slight progress has been made in relating satellite data to the small-scale phenomena associated with auroral arcs. (author)

  9. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development.

    Science.gov (United States)

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Polyethylene glycol (PEG)-induced protein precipitation is often used to extrapolate apparent protein solubility at specific formulation compositions. The procedure was used for several fields of application such as protein crystal growth but also protein formulation development. Nevertheless, most studies focused on applicability in protein crystal growth. In contrast, this study focuses on applicability of PEG-induced precipitation during high-concentration protein formulation development. In this study, solubility of three different model proteins was investigated over a broad range of pH. Solubility values predicted by PEG-induced precipitation were compared to real solubility behaviour determined by either turbidity or content measurements. Predicted solubility by PEG-induced precipitation was confirmed for an Fc fusion protein and a monoclonal antibody. In contrast, PEG-induced precipitation failed to predict solubility of a single-domain antibody construct. Applicability of PEG-induced precipitation as indicator of protein solubility during formulation development was found to be not valid for one of three model molecules. Under certain conditions, PEG-induced protein precipitation is not valid for prediction of real protein solubility behaviour. The procedure should be used carefully as tool for formulation development, and the results obtained should be validated by additional investigations. © 2017 Royal Pharmaceutical Society.

  10. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations.

    Science.gov (United States)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-03-01

    An increasing number of newly discovered drugs are poorly water-soluble and the use of natural and synthetic lipids to improve the oral bioavailability of these drugs by utilizing the digestion pathway in-vivo has proved an effective formulation strategy. The mechanisms responsible for lipid digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms of drug on precipitation may affect the total amount of drug absorbed in-vivo through their different physico-chemical properties, and the possibility that the dynamic environment of the small intestine may afford re-dissolution of precipitated drug if present in a high-energy form. This review describes the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance to the total drug absorbed.

  11. Solubility and precipitation of Fe on reduced TiO{sub 2}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Busiakiewicz, Adam, E-mail: adambus@uni.lodz.pl

    2014-01-01

    The solubility of Fe in reduced rutile TiO{sub 2} crystals and the followed precipitation on the (001) surface have been studied using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM) in ultra-high vacuum. The first step includes dissolving Fe in reduced TiO{sub 2} at 1073 K by the means of thermal diffusion and as a result the saturated solid solution is formed. Then, it undergoes fast cooling which leads to obtaining a supersaturated solid solution. When this supersaturated crystal is annealed at low temperatures of about 500 K, Fe starts to precipitate on the (001) surface forming spherical Fe-containing nanoparticles. The fast migration of Fe cations to the surface and their precipitation at relatively low temperatures are caused by high diffusion anisotropy and the reduction of the TiO{sub 2}. At about 900 K, the size of nanoparticles increases and they are transformed into nanocrystals with clearly visible facets. Simultaneously, the number of the nanocrystals substantially decreases. The partial oxidation of Fe is also observed around 900 K, which is related to strong metal support interaction between Fe and reduced TiO{sub 2}(001). The XPS and STM results suggest that the nanocrystals are mostly composed of mixed Fe/Ti oxides like FeTiO{sub 3} of ilmenite structure. Above 973 K, the nanocrystals disappear which is explained by the restored solubility of Fe cations in the reduced TiO{sub 2}. The process of the nanoparticle precipitation at lower temperatures is repeatable and the precipitation and disappearance of Fe-containing nanocrystals on TiO{sub 2}(001) are also a fully reversible phenomenon easily controlled by annealing temperature. - Highlights: • The supersaturated solid solution of Fe in TiO{sub 2}(001) is obtained at 1073 K. • Fe precipitates forming nanoparticles above 500 K and nanocrystals above 900 K. • Nanocrystals are ascribed to formation of FeTiO{sub 3} compound.

  12. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Solubility limit and precipitation kinetics of iron-phosphide in ferritic iron

    International Nuclear Information System (INIS)

    Suzuki, Shigeru

    1992-01-01

    The solubility limit of iron-phosphide in ferritic iron was examined with electrical resistivity measurements by using the relationship between resistivity and the amount of dissolved phosphorous. The temperature dependence of the solubility obtained was in good agreement with previous results. The kinetics of precipitation of the phosphide from a supersaturated Fe-3.75 at.% P alloy was also investigated with changes of the resistivity by isochronal and isothermal annealing. The activation energy for the precipitation process of the phosphide was about 2.6 eV. Diffusivities of phosphorus were estimated from the annealing behaviour and the morphology of the precipitates, which were comparable to those obtained with the tracer method previously. This suggests that the precipitation process of phosphide is rate controlled by diffusion of phosphorus in ferritic iron-phosphorus alloys. (orig.) [de

  14. Comprehensive Study of the Solubility, Thermochemistry, Ion Exchange, and Precipitation Kinetics of NO3 Cancrinite and NO3 Sodalite

    International Nuclear Information System (INIS)

    Navrotsky, Alexandra; Liu, Qinyuan

    2004-01-01

    The precipitation of aluminosilicate phases from caustic nuclear wastes has proven to be problematic in a number of processes including radionuclide separations (cementation of columns by aluminosilicate phases), tank emptying (aluminosilicate tank heels), and condensation of wastes in evaporators (aluminosilicate precipitates in the evaporators, providing nucleation sites for growth of critical masses of radioactive actinide salts). In a collaboration between SNL and UCD, we have investigated why and how these phases form, and which conditions favor the formation of which phases. These studies have involved synthesis and characterization of aluminosilicate phases formed using a variety of synthesis techniques, kinetics of precipitation, structural investigations of aluminosilicate phases, thermodynamic calculations of aluminosilicate solubility, calorimetric studies of aluminosilicate precipitation, and a limited investigation of radionuclide partitioning and ion exchange processes (involving typical tank fluid chemistries and these materials). The predominant phases that are observed in the aluminosilicate precipitates from basic tanks wastes (i.e. Hanford, Savannah River Site ''SRS'' wastes) are the salt enclathrated zeolites: sodium nitrate, sodium carbonate and sodium hydroxide sodalite and cancrinite. These phases precipitate readily from the high ionic strength, highly basic solutions at ambient temperatures as well as at elevated temperatures, with or without the presence of an external Al and Si source (both are contained in the waste solutions), and upon interactions with reactive soil components such as clays

  15. Novel furosemide cocrystals and selection of high solubility drug forms.

    Science.gov (United States)

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  16. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  17. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    This report contains the results from a study requested by High Level Waste Division on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na+] increased the rate at which cesium tetraphenylborate (KTPB) in the presence of high [Na+] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice

  18. Application of mixture experimental design to simvastatin apparent solubility predictions in the microemulsifion formed by self-microemulsifying.

    Science.gov (United States)

    Meng, Jian; Zheng, Liangyuan

    2007-09-01

    Self-microemulsifying drug delivery systems (SMEDDS) are useful to improve the bioavailability of poorly water-soluble drugs by increasing their apparent solubility through solubilization. However, very few studies, to date, have systematically examined the level of drug apparent solubility in o/w microemulsion formed by self-microemulsifying. In this study, a mixture experimental design was used to simulate the influence of the compositions on simvastatin apparent solubility quantitatively through an empirical model. The reduced cubic polynomial equation successfully modeled the evolution of simvastatin apparent solubility. The results were presented using an analysis of response surface showing a scale of possible simvastatin apparent solubility between 0.0024 ~ 29.0 mg/mL. Moreover, this technique showed that simvastatin apparent solubility was mainly influenced by microemulsion concentration and, suggested that the drug would precipitate in the gastrointestinal tract due to dilution by gastrointestinal fluids. Furthermore, the model would help us design the formulation to maximize the drug apparent solubility and avoid precipitation of the drug.

  19. Co-precipitation and solubility studies of cesium, potassium and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Peterson, R.A.

    2000-01-01

    This report contains the results from a study requested by High Level Waste on the co-precipitation and solubility of cesium, potassium, and sodium tetraphenylborate. Co-precipitation of cesium (Cs), potassium (K), and sodium (Na) tetraphenylborate (TPB) helps determine the efficiency of reagent usage in the Small Tank Precipitation Process. This process uses NaTPB to remove cesium from waste by means of precipitation. Previous studies by McCabe suggested that if the sodium ion concentration [Na + ] increased the rate at which cesium tetraphenylborate (CsTPB) precipitates also increases. Serkiz also demonstrated that the precipitation of potassium tetraphenylborate (KTPB) in the presence of high [Na + ] (∼5M) appears to produce a mixed solid phase composed of NaTPB and KTPB together in the crystal lattice. In the crystallographic structure of these three tetraphenylborate salts (Cs,K,NaTPB), the tetraphenylborate ion dominates the size of the crystals. Also, note that the three crystals have nearly identical structures with the exception of two additional peaks in the cesium pattern. Given these similarities, TPB precipitation in the presence of Na + , Cs + and K + likely produces an impure isomorphic crystalline mixture of CsTPB, KTPB and NaTPB. The authors speculate that the primary crystalline structure resembles that of KTPB with NaTPB and CsTPB mixed throughout the crystal structure. The precipitation of NaTPB makes some of the anticipated excess tetraphenylborate relatively unavailable for precipitation of cesium. Thus, the amount of excess tetraphenylborate required to completely precipitate all of the potassium and cesium may increase significantly

  20. Role of Molecular Interactions for Synergistic Precipitation Inhibition of Poorly Soluble Drug in Supersaturated Drug-Polymer-Polymer Ternary Solution.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2016-03-07

    We are reporting a synergistic effect of combined Eudragit E100 and PVP K90 in precipitation inhibition of indomethacin (IND) in solutions at low polymer concentration, a phenomenon that has significant implications on the usefulness of developing novel ternary solid dispersion of poorly soluble drugs. The IND supersaturation was created by cosolvent technique, and the precipitation studies were performed in the absence and the presence of individual and combined PVP K90 and Eudragit E100. The studies were also done with PEG 8000 as a noninteracting control polymer. A continuous UV recording of the IND absorption was used to observe changes in the drug concentration over time. The polymorphic form and morphology of precipitated IND were characterized by Raman spectroscopy and scanning electron microscopy. The change in the chemical shift in solution (1)H NMR was used as novel approach to probe IND-polymer interactions. Molecular modeling was used for calculating binding energy between IND-polymer as another indication of IND-polymer interaction. Spontaneous IND precipitation was observed in the absence of polymers. Eudragit E100 showed significant inhibitory effect on nuclei formation due to stronger interaction as reflected in higher binding energy and greater change in chemical shift by NMR. PVP K90 led to significant crystal growth inhibition due to adsorption on growing IND crystals as confirmed by modified crystal habit of precipitate in the presence of PVP K90. Combination of polymers resulted in a synergistic precipitation inhibition and extended supersaturation. The NMR confirmed interaction between IND-Eudragit E100 and IND-PVP K90 in solution. The combination of polymers showed similar peak shift albeit using lower polymer concentration indicating stronger interactions. The results established the significant synergistic precipitation inhibition effect upon combining Eudragit E100 and PVP K90 due to drug-polymer interaction.

  1. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Hu, Jun; Shen, Shoucang; Tan, Reginald B H

    2010-02-15

    Rapid and homogeneous mixing of the solvent and antisolvent is critical to achieve submicron drug particles by antisolvent precipitation technique. This work aims to develop a continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs with spironolactone as a model drug. Continuous antisolvent production of drug nanoparticles was carried out with a SMV DN25 static mixer comprising 6-18 mixing elements. The total flow rate ranged from 1.0 to 3.0 L/min while the flow rate ratio of solvent to antisolvent was maintained at 1:9. It is found that only 6 mixing elements were sufficient to precipitate the particles in the submicron range. Increasing the number of elements would further reduce the precipitated particle size. Increasing flow rate from 1.0 to 3.0 L/min did not further reduce the particle size, while higher drug concentrations led to particle size increase. XRD and SEM results demonstrated that the freshly precipitated drug nanoparticles are in the amorphous state, which would, in presence of the mixture of solvent and antisolvent, change to crystalline form in short time. The lyophilized spironolactone nanoparticles with lactose as lyoprotectant possessed good redispersibility and showed 6.6 and 3.3 times faster dissolution rate than that of lyophilized raw drug formulation in 5 and 10 min, respectively. The developed static mixing process exhibits high potential for continuous and large-scale antisolvent precipitation of submicron drug particles. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique.

    Science.gov (United States)

    Zu, Yuangang; Wu, Weiwei; Zhao, Xiuhua; Li, Yong; Wang, Weiguo; Zhong, Chen; Zhang, Yin; Zhao, Xue

    2014-08-25

    scanning electron microscopy (SEM), fourier-transform infrared spectroscopy (FTIR), high performance liquid chromatography-mass spectrometry (LC-MS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermo gravimetric (TG), and the conclusion was drawn that taxifolin nanoparticles can be converted into an amorphous form but its chemical construction cannot been changed. Furthermore, dissolving capability test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity and reducing power assay, solvent residue test were also carried out. The experimental data showed that the solubility and the dissolution rate of taxifolin nanoparticles were about 1.72 times and 3 times of raw taxifolin, the bioavailability of taxifolin nanoparticles increased 7 times compared with raw taxifolin, and the antioxidant capacity of taxifolin nanoparticles was also superior to raw taxifolin. Furthermore, the residual ethanol of the taxifolin nanoparticles was less than the ICH limit for class 3 solvents of 5000 ppm or 0.5% for solvents and could be used for pharmaceutical. These results suggested that taxifolin nanoparticles might have potential value to become a new oral taxifolin formulation with high bioavailability. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I.-Lin; Li, Lin

    2012-03-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  5. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  6. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    International Nuclear Information System (INIS)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin

    2012-01-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  7. Kinetics of the isothermal decomposition of zirconium hydride: terminal solid solubility for precipitation and dissolution

    Science.gov (United States)

    Denisov, E. A.; Kompaniets, T. N.; Voyt, A. P.

    2018-05-01

    The hydrogen permeation technique in the surface-limited regime (SLR) was first used to study the isothermal decomposition of zirconium hydride. It is shown that under isothermal conditions, the hydrogen terminal solid solubility in the α-phase for hydride precipitation (TSSp) and dissolution (TSSd) differ only by 6%, in contrast to the 20-30% indicated in the available literature. It is demonstrated that even the minimum heating/cooling rate (1 C/min) used in the traditional methods of studying TSSp and TSSd is too high to exclude the effect of kinetics on the results obtained.

  8. Morphology and solubility of multiple crystal forms of Taka-amylase A

    Science.gov (United States)

    Ninomiya, Kumiko; Yamamoto, Tenyu; Oheda, Tadashi; Sato, Kiyotaka; Sazaki, Gen; Matsuura, Yoshiki

    2001-01-01

    An α-amylase originating from a mold Aspergillus oryzae, Taka-amylase A (Mr of 52 kDa, pI of 3.8), has been purified to an electrophoretically single band grade. Crystallization behaviors were investigated using ammonium sulfate and polyethleneglycol 8000 as precipitants. The variations in the morphology of the crystals obtained with changing crystallization parameters are described. Five apparently different crystal forms were obtained, and their morphology and crystallographic data have been determined. Solubility values of four typical forms were measured using a Michelson-type two-beam interferometer. The results of these experiments showed that this protein can be a potentially interesting and useful model for crystal growth study with a gram-amount availability of pure protein sample.

  9. The Precipitation Behavior of Poorly Water-Soluble Drugs with an Emphasis on the Digestion of Lipid Based Formulations

    DEFF Research Database (Denmark)

    Khan, Jamal; Rades, Thomas; Boyd, Ben

    2016-01-01

    digestion and drug solubilisation during gastrointestinal transit have been explored in detail, but the implications of drug precipitation beyond the potential adverse effect on bioavailability have received attention only in recent years. Specifically, these implications are that different solid forms...... the events that lead to drug precipitation during the dispersion and digestion of lipid based formulations, common methods used to inhibit precipitation, as well as conventional and newly emerging characterization techniques for studying the solid state form of the precipitated drug. Moreover, selected case...... studies are discussed where drug precipitation has ensued from the digestion of lipid based formulations, as well as the apparent link between drug ionisability and altered solid forms on precipitation, culminating in a discussion about the importance of the solid form on precipitation with relevance...

  10. A study of transformation water - soluble forms of hevy metals at waste incenerator for detoxicationof ash.

    Directory of Open Access Journals (Sweden)

    Bilets'ka V. А.

    2011-11-01

    Full Text Available The complex research processes of transformation of soluble forms of heavy metals in sediment interaction with ash. Proved that the adsorption processes of immobilization lead to a significant decrease of soluble forms of heavy metals in the waste.

  11. Properties of precipitates formed during ammonization of extractional phosphoric acid

    International Nuclear Information System (INIS)

    Zakharova, B.S.; Komissarova, L.N.; Naumov, S.V.; Traskin, V.Yu.

    1992-01-01

    Dimensions of precipitated rare-earth phosphate particles -(0.1 μm)- are near the boundary of colloidal system sedimentation stability range at neutralization of extraction phosphoric acid. Thus, formation of multiple aggregates of colloidal particles results in immediate sedimentation of the precipitate. Processes occurring within the system may be described using second order reaction equation. Average efficient size of precipitates grows at reduction of reaction mixture pH. About 30% of rare-earth elements and yttrium in the extraction phosphoric acid is extracted from it; concentration of rare-earth elements, yttrium and scandium in precipitate is maximum 2 mass. %

  12. The solubility of {sup 242}PuO{sub 2} in the presence of aqueous Fe(II). The impact of precipitate preparation

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Moore, Dean A.; Buck, Edgar; Kukkadapu, Ravi; Sweet, Lucas; Abrecht, David; Ilton, Eugene S. [Pacific Northwest National Laboratory, Richland, WA (United States); Conrados, Steven D. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-07-01

    The solubility of different forms of precipitated {sup 242}PuO{sub 2}(am) were examined in solutions containing aqueous Fe(II) over a range of pH values. The first series of {sup 242}PuO{sub 2}(am) suspensions were prepared from a {sup 242}Pu(IV) stock that had been treated with thenoyltrifluoroacetone (TTA) to remove the {sup 241}Am originating from the decay of {sup 241}Pu. These {sup 242}PuO{sub 2}(am) suspensions showed much higher solubilities at the same pH value and Fe(II) concentration than previous studies using {sup 239}PuO{sub 2}(am). X-ray absorption fine structure (XAFS) spectroscopy of the precipitates showed a substantially reduced Pu-Pu backscatter over that previously observed in {sup 239}PuO{sub 2}(am) precipitates, indicating that the {sup 242}PuO{sub 2}(am) precipitates purified using TTA lacked the long range order previously found in{sup 239}PuO{sub 2}(am) precipitates. The Pu(IV) stock solution was subsequently re-purified using an ion exchange resin and an additional series of {sup 242}PuO{sub 2}(am) precipitates prepared. These suspensions showed higher redox potentials and total aqueous Pu concentrations than the TTA purified stock solution. The higher redox potential and aqueous Pu concentrations were in general agreement with previous studies on {sup 242}PuO{sub 2}(am) precipitates, presumably due to the removal of possible organic compounds originally present in the TTA purified stock. {sup 242}PuO{sub 2}(am) suspensions prepared with both stock solutions showed almost identical solubilities in Fe(II) containing solutions even though the initial aqueous Pu concentrations before the addition of Fe(II) were orders of magnitude different. By examining the solubility of {sup 242}PuO{sub 2}(am) prepared from both stocks in this way we have essentially approached equilibrium from both the undersaturated and oversaturated conditions. The final aqueous Pu concentrations are predictable using a chemical equilibrium model which includes the

  13. Application of a PEG precipitation method for solubility screening: A tool for developing high protein concentration formulations

    OpenAIRE

    Li, Li; Kantor, Angela; Warne, Nicholas

    2013-01-01

    Previous publications demonstrated that the extrapolated solubility by polyethylene glycol (PEG) precipitation method (Middaugh et al., J Biol Chem 1979; 254:367–370; Juckes, Biochim Biophys Acta 1971; 229:535–546; Foster et al., Biochim Biophys Acta 1973; 317:505; Mahadevan and Hall, AIChE J 1990; 36:1517–1528; Stevenson and Hageman, Pharm Res 1995; 12:1671–1676) has a strong correlation to experimentally measured solubility of proteins. Here, we explored the utility of extrapolated solubili...

  14. Precipitation kinetics in warm forming of AW-7020 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M., E-mail: Manoj.kumar@ait.ac.at [Leichtmetall-Kompetenzzentrum Ranshofen GmbH, Austrian Institute of Technology, Postfach 26, A-5282 Ranshofen (Austria); Institute of Material Science and Technology, TU Vienna (Austria); Poletti, C. [Present address: Institute of Material Science and Welding, TU Graz (Austria); Institute of Material Science and Technology, TU Vienna (Austria); Degischer, H.P. [Institute of Material Science and Technology, TU Vienna (Austria)

    2013-01-20

    The warm formability of the precipitation hardening AW-7020 (AlZn 4.5Mg1) alloy is investigated by testing extruded tubes. The precipitation kinetics of different conditions before and after warm deformation is studied by differential scanning calorimetry and transmission electron microcopy. The precipitation conditions are correlated with the results of hardness tests at room temperature and of tensile tests at temperatures between 200 and 350 Degree-Sign C at different strain rates. The yield strength decreases with increasing test temperature approaching that of samples in the annealed condition, while the strain at fracture increases. The overall influence of the strain rate on ductility is dominated by the corresponding time required for deformation. The formability of the starting condition T1 as well as the corresponding strain hardening exponent is particularly promising for high strain rates at 250 Degree-Sign C, where the metastable precipitates of the T1 condition are dissolved. The short exposure of about 30 s at 250 Degree-Sign C re-establishes the potential for precipitation strengthening by natural ageing after the warm deformation and a following paint baking heat treatment maintains the hardness level.

  15. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    Energy Technology Data Exchange (ETDEWEB)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey; Bovaird, Chase C.

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.

  16. PROCESS USING POTASSIUM LANTHANUM SULFATE FOR FORMING A CARRIER PRECIPITATE FOR PLUTONIUM VALUES

    Science.gov (United States)

    Angerman, A.A.

    1958-10-21

    A process is presented for recovering plutonium values in an oxidation state not greater than +4 from fluoride-soluble fission products. The process consists of adding to an aqueous acidic solution of such plutonium values a crystalline potassium lanthanum sulfate precipitate which carries the plutonium values from the solution.

  17. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    International Nuclear Information System (INIS)

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E.

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs

  18. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E. [QuantiSci, Barcelona (Spain)

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs.

  19. Influencing the solubility of oxalates for the preparation of ceramic powders from mixed precipitates

    International Nuclear Information System (INIS)

    Krueger, C.; Fischer, S.; Fischer, St.; Chebani, M.Kh.

    1991-01-01

    Based on investigations of the solubility of oxalate with 140 Ba, 64 Cu and 59 Fe, techniques for quantitative oxalate coprecipitation were developed. Addition of organic solvents lowers the solubility and leads to a smaller particle size of products. (orig.) [de

  20. A step toward development of printable dosage forms for poorly soluble drugs

    DEFF Research Database (Denmark)

    Raijada, Dharaben Kaushikkumar; Genina, Natalja; Fors, Daniela

    2013-01-01

    The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet...

  1. Influence of phosphorus precipitation on permeability and soluble microbial product concentration in a membrane bioreactor

    Czech Academy of Sciences Publication Activity Database

    Gómez, M.; Dvořák, L.; Růžičková, I.; Wanner, J.; Holba, Marek; Sýkorová, E.

    2013-01-01

    Roč. 129, Feb 2013 (2013), s. 164-169 ISSN 0960-8524 Institutional support: RVO:67985939 Keywords : membrane bioreactor * coagulant adition * soluble microbial products Subject RIV: EF - Botanics Impact factor: 5.039, year: 2013

  2. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  3. A soluble form of the transcobalamin receptor CD320 can be detected in human serum

    DEFF Research Database (Denmark)

    Arendt, Johan Frederik Berg; Quadros, Edward V.; Christensen, Anna Lisa

    2010-01-01

    Background: Recently, the cell-surface receptor involved in the internalisation of the cobalamin(vitamin B12, Cbl) transporting protein, transcobalamin(TC), was described, and was found to be CD320(1). So far, it remains unsolved whether CD320 is present in a soluble form (sCD320) in serum. Our aim...

  4. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability

    DEFF Research Database (Denmark)

    Olson, Fredrik J; Thurison, Tine; Ryndel, Mikael

    2009-01-01

    OBJECTIVES:: To test if circulating forms of the soluble urokinase-type plasminogen activator receptor (suPAR) are potential biomarkers of plaque vulnerability. DESIGN AND METHODS:: Plasma concentrations of suPAR(I-III), suPAR(II-III) and uPAR(I) were measured by time-resolved fluorescence immuno...

  5. Determinations of the temperature of terminal solid solubility in dissolution and precipitation of hydrogen/deuterium in irradiated Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, P [CNEA-CONICET, Centro Atomico Ezeiza (Argentina)

    2012-07-01

    The proposed plan is an approach to the metallurgical consequences of the high neutron fluencies (10''2''2 n/cm''2) on the hydrogen behavior in zirconium based alloys, based on the significance of the microstructural behavior of the high burn up fuel claddings during the dry storage period. The studies are focused on Zircaloy-4, concerning to two processes: Neutron irradiation damage; Hydrogen pick up. The Zircaloy-4 was taken from cooling channels of the PHWR Atucha 1. These components remained more than 10 years in service, reaching neutron fluencies up to 10''2''2 n/cm''2. In the last recent years, measurements of the hydride dissolution temperatures have shown that hydrogen solubility is affected by the neutron irradiation, increasing it respect to the unirradiated Zircaloy solubility. In addition, in this material the amorphization/dissolution of the second phase particles (SPPs) was observed, being proposed an interaction between the hydrogen atoms, the SPPs and the irradiation defects as a possible explanation of the observed behavior. For the present case, attention will be focused on the hydride precipitation process, since it is strongly related with delay hydrogen cracking initiation, a problem of direct concern for the dry storage. The goal of the present proposal is to make an approach to the source of the observed effect, applying several specific techniques as differential scanning calorimetry (DSC), high resolution x-ray diffraction and transmission electron microscopy. The objectives can be divided as follows: Determination of the temperatures of terminal solid solubility in dissolution (TTSSd) and in precipitation (TTSSp) in high fluency irradiated Zircaloy-4, reproducing the temperatures at which the Zircaloy fuel claddings remain during dry storage by an annealing program during the DSC experiments; Observations by optical and transmission electron microscopy of the hydride distribution before (as received material) and after high temperature

  6. Determination and correlation of solubility and mixing properties of isonicotinamide (form II) in some pure solvents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bingxue; Wu, Yanyang, E-mail: wyywitty@ecust.edu.cn; Zhu, Jiawen; Chen, Kui; Wu, Bin; Ji, Lijun

    2016-03-20

    Highlights: • Solubility data of isonicotinamide in seven pure solvents were determined. • Five regular thermodynamic models were used to correlate solubility data. • The dissolution properties and mixing properties were predicted. • All solutions studied exhibit high non-ideality by calculating activity coefficients. - Abstract: Solubility data were determined for isonicotinamide in water, ethanol, 2-propanol, n-butanol, 2-butanol, ethyl acetate and butyl acetate from 298.15 to 323.15 K with a static analytic method. The Van’t Hoff equation, modified Apelblat equation, λh (Buchowski) equation and two local composition models (NRTL and UNIQUAC) were used to correlate the solubility data, and modified Apelblat equation shows the best agreement among all the five models. Besides, differential scanning calorimetry were used to determine the crystal forms crystallized in the seven solvents and obtain the melting temperature T{sub m} and fusion enthalpy Δ{sub fus}H{sub m}. Furthermore, the activity coefficients of isonicotinamide and mixing Gibbs free energies, enthalpies, and entropies of the solutions were predicted. All solutions studied exhibit high non-ideality, indicating the important role of homo-molecules interactions for solubility behavior. The dissolution enthalpies and entropies were also estimated in this work.

  7. When do oxide precipitates form during consolidation of oxide dispersion strengthened steels?

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@grenoble-inp.fr [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); De Geuser, F. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Malaplate, J.; Sornin, D. [DEN, DANS, DMN, Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, 91191 Gif-Sur-Yvette (France)

    2016-12-15

    The processing of oxide dispersion strengthened (ODS) steels involves ball milling, where the oxide forming species are driven in solid solution. Precipitation of the nanometre-scale oxides occurs during subsequent annealing and consolidation. This paper reports in-situ Small-Angle X-ray Scattering measurements of the formation of these precipitates during heating of cold-compressed as-milled powders. Clusters are already initially present, and precipitation starts at 300 °C. The maximum precipitate density is achieved at 600 °C, followed by very slow coarsening at higher temperature. These results open the way to understand the coupled evolution of precipitation and crystalline defects during heating and consolidation of ODS steels.

  8. Chemical Composition of Water Soluble Inorganic Species in Precipitation at Shihwa Basin, Korea

    Directory of Open Access Journals (Sweden)

    Seung-Myung Park

    2015-05-01

    Full Text Available Weekly rain samples were collected in coastal areas of the Shihwa Basin (Korea from June 2000 to November 2007. The study region includes industrial, rural, and agricultural areas. Wet precipitation was analyzed for conductivity, pH, Cl−, NO3−, SO42−, Na+, K+, Mg2+, NH4+, and Ca2+. The major components of precipitation in the Shihwa Basin were NH4+, volume-weighted mean (VWM of 44.6 µeq∙L−1, representing 43% of all cations, and SO42−, with the highest concentration among the anions (55% at all stations. The pH ranged from 3.4 to 7.7 with a VMM of 4.84. H+ was weakly but positively correlated with SO42− (r = 0.39, p < 0.001 and NO3− (r = 0.38, p < 0.001. About 66% of the acidity was neutralized by NH4+ and Ca2+. The Cl−/Na+ ratio of the precipitation was 37% higher than seawater Cl−/Na+. The high SO42−/NO3− ratio of 2.3 is attributed to the influence of the surrounding industrial sources. Results from positive matrix factorization showed that the precipitation chemistry in Shihwa Basin was influenced by secondary nitrate and sulfate (41% ± 1.1%, followed by sea salt and Asian dust, contributing 23% ± 3.9% and 17% ± 0.2%, respectively. In this study, the annual trends of SO42− and NO3− (p < 0.05 increased, different from the trends in some locations, due to the influence of the expanding power generating facilities located in the upwind area. The increasing trends of SO42− and NO3− in the study region have important implications for reducing air pollution in accordance with national energy policy.

  9. Preparation and Characterization of Hydrous Zirconium Oxide Formed by Homogeneous Precipitation

    Directory of Open Access Journals (Sweden)

    Silva G.L.J.P. da

    2002-01-01

    Full Text Available This paper reports on the preparation, characterization and study of the ion exchange behavior of hydrous zirconium oxides formed by homogeneous precipitation from zirconium oxychloride. The precipitants used were obtained by thermal decomposition of urea, sodium nitrite or ammonium carbonate. Seven compounds were prepared and characterized by thermal analysis, X-ray diffractometry and by surface area measurements. Amorphous forms were obtained in each case, a result that agrees with those obtained by conventional gel precipitation methodology. All these materials present surface area values of >148 m².g-1, determined after heat treatment at 50 °C. The ion exchange behavior of each hydrous zirconium oxide prepared was studied using K+ as the exchanged species and the results compared with those obtained for hydrous zirconium oxide originally precipitated by the sol gel method.

  10. Characterization of the precipitates formed during the denitration of simulated HRLW

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.; Popovic, S.

    1989-01-01

    The denitration of several chemical compositions of simulated highly radioactive liquid waste (HRLW) was performed using formic acid as reducing agent. Precipitates formed during the denitration of simulated HRLW were analyzed using x-ray diffraction and 57 Fe Moessbauer spectroscopy. Goethite and amorphous fractions were the principal phases in these precipitates. It was found that the chemical composition of HRLW and the experimental conditions of denitration had more influence on the crystal formation and the particle size than on the phase composition of the precipitates. (author) 27 refs.; 6 figs.; 6 tabs

  11. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  12. Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joonoh, E-mail: mjo99@kims.re.kr [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Lee, Tae-Ho [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Heo, Yoon-Uk [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of); Han, Young-Soo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Kang, Jun-Yun; Ha, Heon-Young [Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science, Changwon, Gyeongnam 642-831 (Korea, Republic of); Suh, Dong-Woo [Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Gyeongbuk 790-784 (Korea, Republic of)

    2015-10-01

    The precipitation sequence during ageing of Fe–14Cr–20Ni–0.9Nb–2.5Al based alumina-forming austenitic (AFA) steel was explored through a transmission electron microscopy analysis and a small angle neutron scattering experiment. The samples were aged at 700 °C for up to 504 h. Particles of NbC, M{sub 23}C{sub 6} and Ni{sub 3}Al-type L1{sub 2} were observed in the early stage of ageing. Metastable L1{sub 2} particles were formed both in grain interior and along grain boundary. M{sub 23}C{sub 6} carbides precipitated along grain boundary accompanied with precipitation of L1{sub 2} particles. After ageing for longer than 48 h, particles of B2-NiAl and Laves-Fe{sub 2}Nb were newly formed. We suggest the possibility of phase transition from L1{sub 2} to B2 with increase in ageing time. Finally, this study examined the change of mechanical properties during ageing through a Gleeble hot tension test and a Vickers hardness test, and then the relationship between precipitation behavior and mechanical properties was carefully investigated and discussed in terms of precipitation behavior.

  13. Activation of human natural killer cells by the soluble form of cellular prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  14. Activation of human natural killer cells by the soluble form of cellular prion protein

    International Nuclear Information System (INIS)

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-01-01

    Cellular prion protein (PrP C ) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP C in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP C protein on human natural killer (NK) cells. Recombinant soluble PrP C protein was generated by fusion of human PrP C with the Fc portion of human IgG 1 (PrP C -Fc). PrP C -Fc binds to the surface of human NK cells, particularly to CD56 dim NK cells. PrP C -Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP C -Fc facilitated the IL-15-induced proliferation of NK cells. PrP C -Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP C -Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP C (PrP C -Fc) was generated by fusion of human PrP C with IgG1 Fc portion. • PrP C -Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP C -Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways

  15. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  16. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  17. Segregation gettering by implantation-formed cavities and B-Si precipitates in silicon

    International Nuclear Information System (INIS)

    Myers, S.M.; Petersen, G.A.; Follstaedt, D.M.

    1998-01-01

    The authors show that Fe, Co, Cu, and Au in Si undergo strong segregation gettering to cavities and B-Si precipitates formed by He or B ion implantation and annealing. The respective mechanisms are argued to be chemisorption on the cavity walls and occupation of solution sites within the disordered, B-rich, B-Si phase. The strengths of the reactions are evaluated, enabling prediction of gettering performance

  18. Is beryllium-induced lung cancer caused only by soluble forms and high exposure levels?

    Science.gov (United States)

    Schubauer-Berigan, Mary K; Couch, James R; Deddens, James A

    2017-08-01

    The US Occupational Safety and Health Administration (OSHA) recently proposed a permissible exposure limit of 0.2 µg/m 3 for beryllium, based partly on extrapolated estimates of lung cancer risk from a pooled occupational cohort. The purpose of the present analysis was to evaluate whether cohort members exposed at lower levels to mainly insoluble forms of beryllium exhibit increased risk of lung cancer. We conducted Cox proportional hazards regression analyses among 75 lung cancer cases in age-based risk sets within two lower exposure plants in the pooled cohort followed from 1940 to 2005. We used categorical and power models to evaluate exposure-response patterns for mean and cumulative beryllium exposures in the two-plant cohort, comparing findings with the full pooled cohort. We also evaluated the distribution of exposure-years in each cohort by solubility class (soluble, insoluble and mixed). 98% of workers in the two-plant cohort were hired between 1955 and 1969. The mean beryllium exposure averaged 1.3 µg/m 3 and the predominant form was insoluble. Adjusting for confounders, we observed a monotonic increase in lung cancer mortality across exposure categories in the two-plant cohort. The exposure-response coefficients (per unit ln exposure) were 0.270 (p=0.061) for mean exposure and 0.170 (p=0.033) for cumulative exposure, compared with 0.155 and 0.094 (respectively) in the full cohort. The low-exposure levels at these two plants and the predominance of insoluble beryllium suggest that the overall pooled cohort findings on which OSHA's lung cancer risk assessment is based are relevant for current workers exposed to any form of beryllium. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  20. Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1

    Science.gov (United States)

    Koch, Alisa E.; Halloran, Margaret M.; Haskell, Catherine J.; Shah, Manisha R.; Polverini, Peter J.

    1995-08-01

    ENDOTHELIAL adhesion molecules facilitate the entry of leukocytes into inflamed tissues. This in turn promotes neovascularization, a process central to the progression of rheumatoid arthritis, tumour growth and wound repair1. Here we test the hypothesis that soluble endothelial adhesion molecules promote angiogenesis2á¤-4. Human recombinant soluble E-selectin and soluble vascular cell adhesion molecule-1 induced chemotaxis of human endothelial cells in vitro and were angiogenic in rat cornea. Soluble E-selectin acted on endothelial cells in part through a sialyl Lewis-X-dependent mechanism, while soluble vascular cell adhesion molecule-1 acted on endothelial cells in part through a very late antigen (VLA)-4 dependent mechanism. The chemotactic activity of rheumatoid synovial fluid for endothelial cells, and also its angiogenic activity, were blocked by antibodies to either soluble E-selectin or soluble vascular cell adhesion molecule-1. These results suggest a novel function for soluble endothelial adhesion molecules as mediators of angiogenesis.

  1. Coarsening of AA6013-T6 Precipitates During Sheet Warm Forming Applications

    Science.gov (United States)

    Di Ciano, M.; DiCecco, S.; Esmaeili, S.; Wells, M. A.; Worswick, M. J.

    2018-03-01

    The use of warm forming for AA6xxx-T6 sheet is of interest to improve its formability; however, the effect warm forming may have on the coarsening of precipitates and the mechanical strength of these sheets has not been well studied. In this research, the coarsening behavior of AA6013-T6 precipitates has been explored, in the temperature range of 200-300 °C, and time of 30 s up to 50 h. Additionally, the effect of warm deformation on coarsening behavior was explored using: (1) simulated warm forming tests in a Gleeble thermo-mechanical simulator and (2) bi-axial warm deformation tests. Using a strong obstacle model to describe the yield strength (YS) evolution of the AA6013-T6 material, and a Lifshitz, Slyozov, and Wagner (LSW) particle coarsening law to describe the change in precipitate size with time, the coarsening kinetics were modeled for this alloy. The coarsening kinetics in the range of 220-300 °C followed a trend similar to that previously found for AA6111 for the 180-220 °C range. There was strong evidence that coarsening kinetics were not altered due to warm deformation above 220 °C. For warm forming between 200 and 220 °C, the YS of the AA6013-T6 material increased slightly, which could be attributed to strain hardening during warm deformation. Finally, a non-isothermal coarsening model was used to assess the potential reduction in the YS of AA6013-T6 for practical processing conditions related to auto-body manufacturing. The model calculations showed that 90% of the original AA6013-T6 YS could be maintained, for warm forming temperatures up to 280 °C, if the heating schedule used to get the part to the warm forming temperature was limited to 1 min.

  2. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC.

    Science.gov (United States)

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria; Nielsen, Line Hagner; Sandau, Martin; Andersen, Klaus; Müllertz, Anette; Rades, Thomas

    2017-12-04

    Many drug candidates today have a low aqueous solubility and, hence, may show a low oral bioavailability, presenting a major formulation and drug delivery challenge. One way to increase the bioavailability of these drugs is to use a supersaturating drug delivery strategy. The aim of this study was to develop a video-microscopic method, to evaluate the effect of a precipitation inhibitor on supersaturated solutions of the poorly soluble drug tadalafil, using a novel video-microscopic small scale setup. Based on preliminary studies, a degree of supersaturation of 29 was chosen for the supersaturation studies with tadalafil in FaSSIF. Different amounts of hydroxypropyl methyl cellulose (HPMC) were predissolved in FaSSIF to give four different concentrations, and the supersaturated system was then created using a solvent shift method. Precipitation of tadalafil from the supersaturated solutions was monitored by video-microscopy as a function of time. Single-particle analysis was possible using commercially available software; however, to investigate the entire population of precipitating particles (i.e., their number and area covered in the field of view), an image analysis algorithm was developed (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single-particle and multiparticle analyses yielded the same ranking of the HPMC concentrations, regarding the inhibitory effect on precipitation. The developed small scale method to assess the effect of precipitation inhibitors can speed up the process of choosing the right precipitation inhibitor and the concentration to be used.

  3. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    Science.gov (United States)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  4. Yielding Unexpected Results: Precipitation of Ba[subscript3](PO[subscript4])[subscript2] and Implications for Teaching Solubility Principles in the General Chemistry Curriculum

    Science.gov (United States)

    Hazen, Jeffery L.; Cleary, David A.

    2014-01-01

    Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…

  5. A soluble form of CTLA-4 is present in serum of pediatric patients with acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    R. Simone

    2011-01-01

    Full Text Available CTLA-4 can regulate and maintain self-telerance, providing a negative signal limiting immunoresponses. Acute lymphoblastic leukemia is a clonal disorder of lymphoid progenitors representing the most frequent malignancy of childhood. Here, we show the presence of significantly elevated levels of a soluble form of CTLA-4 in 70% of B-ALL patients. A possible role of this soluble molecule in the pathogenesis of this neoplastic disease can be envisaged.

  6. Optimization of precipitation conditions of thorium oxalate precipitate

    International Nuclear Information System (INIS)

    Pazukhin, Eh.M.; Smirnova, E.A.; Krivokhatskij, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1986-01-01

    Thorium precipitation in the form of difficultly soluble oxalate has been investigated. The equation binding the concentration of metal with the nitric acid in the initial solution and quantity of a precipitator necessary for minimization of desired product losses is derived. The graphical solution of this equation for a case, when the oxalic acid with 0.78 mol/l concentration is the precipitator, is presented

  7. Precipitation of Scale-Forming Species During Processing of High-Level Wastes

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Hobbs, David T.; Parker, Kent E.; McCready, David E.

    2004-01-01

    High-level wastes from fuel-reprocessing operations are being evaporated at the DOE Savannah River Site to concentrate the liquids to about 30 to 40% of their original volume before they are discharged into a holding tank. Recently, the operation of one of the evaporators became progressively more difficult due to more frequent buildup of limited solubility aluminosilicate compounds resulting in the shutdown of the evaporator. Our research objectives were to identify and characterize the chemistry and microstructure of these scale-forming species and to determine the kinetics of formation and transformation of these solids under evaporator conditions. The data we obtained from these tests showed that hydroxide concentration and process temperature are the key factors that control the rate of formation and transformation of the scale forming solids such as zeolite A, sodalite and cancrinite

  8. Drug-Drug Multicomponent Solid Forms: Cocrystal, Coamorphous and Eutectic of Three Poorly Soluble Antihypertensive Drugs Using Mechanochemical Approach.

    Science.gov (United States)

    Haneef, Jamshed; Chadha, Renu

    2017-08-01

    The present study deals with the application of mechanochemical approach for the preparation of drug-drug multicomponent solid forms of three poorly soluble antihypertensive drugs (telmisartan, irbesartan and hydrochlorothiazide) using atenolol as a coformer. The resultant solid forms comprise of cocrystal (telmisartan-atenolol), coamorphous (irbesartan-atenolol) and eutectic (hydrochlorothiazide-atenolol). The study emphasizes that solid-state transformation of drug molecules into new forms is a result of the change in structural patterns, diminishing of dimers and creating new facile hydrogen bonding network based on structural resemblance. The propensity for heteromeric or homomeric interaction between two different drugs resulted into diverse solid forms (cocrystal/coamorphous/eutectics) and become one of the interesting aspects of this research work. Evaluation of these solid forms revealed an increase in solubility and dissolution leading to better antihypertensive activity in deoxycorticosterone acetate (DOCA) salt-induced animal model. Thus, development of these drug-drug multicomponent solid forms is a promising and viable approach to addressing the issue of poor solubility and could be of considerable interest in dual drug therapy for the treatment of hypertension.

  9. Potential application of surfactant systems in formulation of dosage forms with slightly soluble substances

    Directory of Open Access Journals (Sweden)

    Ibrić Svetlana R.

    2012-01-01

    Full Text Available In order to achieve fast release of ibuprofen, slightly soluble model substance (0.52104 mol/l, surfactant systems for oral use with different PEG-40 hydrogenated castor oil (C/diethylene glycol monoethyl ether (T ratios were investigated. Comparison between dissolution profiles for ibuprofen from formulated systems and from two commercial products, film tablets and soft capsules, is presented in this paper. Photon correlation spectroscopy has shown that after high dilution with water, surfactant systems were able to form micellar solutions. The size of micelles varies from 14.8 ± 0,075 nm to 16.2 ± 0,021 nm with increasing C/T ratio from 1:2 to 2:1. Although with increasing content of PEG-40 hydrogenated castor oil larger micelles have formed, lower values of polydispersity index indicated that more homogeneous distribution of micelles size was gained. Conductometric analysis has demonstrated that system composing of C/T ratio 2:1, has shown most pronounced interaction between droplets, which can be seen as high rise of electrical conductivity with increasing water content (% (wwater/wtotal in the sample. No significant difference in percolation threshold between formulations with different C/T ratios was observed. Different surfactant systems were adsorbed on magnesium aluminometasilicate, as adsorbent with high specific active surface (≈300 m2/g, in order to investigate potential influence of adsorbent on ibuprofen dissolution rate. Formulated systems, with or without adsorbent were filled in hard gelatin capsules. The dissolution profiles of ibuprofen from different formulations were obtained in 30 minutes by dissolution apparatus with rotating baskets and compared with dissolution profiles of ibuprofen from commercial products. For formulations without adsorbent faster release of ibuprofen in first minutes of dissolution test, showed formulations with C/T ratio 2:1 and 1:1. Magnesium aluminometasilicate, as adsorbent with high specific

  10. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO{sub 2} crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 {times} 10{sup {minus}6} M) of the separate solution and solid phases.

  11. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    International Nuclear Information System (INIS)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO 2 crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 x 10 -6 M) of the separate solution and solid phases

  12. Serum Level of a Soluble Form of Endoglin (CD105 is Decreased after Goeckerman’s Therapy of Psoriasis

    Directory of Open Access Journals (Sweden)

    David Pohl

    2011-01-01

    Full Text Available Background. Goeckerman’s therapy (GT of psoriasis is based on daily application of pharmacy grade coal tar on affected skin with subsequent exposure to UV light. Disturbances in angiogenic activity are characteristic for the immunopathogenesis of psoriasis. The aim of study was to evaluate the influence of GT of psoriasis on proinflammatory and angiogenic activities expressed as changes in levels of endoglin (CD105. Methods. Serum levels of a soluble form of endoglin were measured in peripheral blood samples of 38 patients with psoriasis before and after therapy. Sixty three otherwise healthy blood donors serve as a control group. The efficacy of GT was expressed as changes in Psoriasis Area and Severity Index (PASI. Results. PASI score was significantly diminished by GT (p<0.001. Serum levels of soluble CD105 were significantly diminished after GT. The serum level of soluble CD105 dropped from 7.85 ± 2.26 ng/ml before therapy to 7.01 ± 1.71 ng/ml after therapy (p= 0.0002. Compared to serum levels of soluble CD105 in healthy blood donors, serum levels of soluble CD105 in patients before GT were significantly higher (p<0.001 and remained elevated after therapy (p<0.001. Angiogenic activity expressed as serum endoglin is diminished in patients with psoriasis treated by GT.

  13. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Science.gov (United States)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  14. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement.

    Science.gov (United States)

    Sadeghi, Fatemeh; Ashofteh, Mohammad; Homayouni, Alireza; Abbaspour, Mohammadreza; Nokhodchi, Ali; Garekani, Hadi Afrasiabi

    2016-11-01

    Curcumin with a vast number of pharmacological activities is a poorly water soluble drug which its oral bioavailability is profoundly limited by its dissolution or solubility in GI tract. Curcumin could be a good anticancer drug if its solubility could be increased. Therefore, the aim of the present study was to increase the dissolution rate of curcumin by employing antisolvent crystallization technique and to investigate the effect of polyvinyl pyrrolidone K30 (PVP) as colloidal particles in crystallization medium on resultant particles. Curcumin was crystalized in the presence of different amounts of PVP by antisolvent crystallization method and their physical mixtures were prepared for comparison purposes. The samples were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR). The solubility and dissolution of the treated and untreated curcumin were also determined. Antisolvent crystallization of curcumin led to the formation of particles with no definite geometric shape. It was interesting to note that the DSC and XRPD studies indicated the formation of a new polymorph and less crystallinity for particles crystallized in the absence of PVP. However, the crystallized curcumin in the presence of PVP was completely amorphous. All crystalized curcumin samples showed much higher dissolution rate compared to untreated curcumin. The amount of curcumin dissolved within 10 for treated curcumin in the presence of PVP (1:1 curcumin:PVP) was 7 times higher than untreated curcumin and this enhancement in the dissolution for curcumin samples crystallized in the absence of PVP was around 5 times. Overall' the results of this study showed that antisolvent crystallization method in the absence or presence of small amounts of PVP is very efficient in increasing the dissolution rate of curcumin to achieve better efficiency for curcumin. Copyright © 2016

  15. Implication of Soluble Forms of Cell Adhesion Molecules in Infectious Disease and Tumor: Insights from Transgenic Animal Models

    Directory of Open Access Journals (Sweden)

    Etsuro Ono

    2018-01-01

    Full Text Available Cell adhesion molecules (CAMs are surface ligands, usually glycoproteins, which mediate cell-to-cell adhesion. They play a critical role in maintaining tissue integrity and mediating migration of cells, and some of them also act as viral receptors. It has been known that soluble forms of the viral receptors bind to the surface glycoproteins of the viruses and neutralize them, resulting in inhibition of the viral entry into cells. Nectin-1 is one of important CAMs belonging to immunoglobulin superfamily and herpesvirus entry mediator (HVEM is a member of the tumor necrosis factor (TNF receptor family. Both CAMs also act as alphaherpesvirus receptor. Transgenic mice expressing the soluble form of nectin-1 or HVEM showed almost complete resistance against the alphaherpesviruses. As another CAM, sialic acid-binding immunoglobulin-like lectins (Siglecs that recognize sialic acids are also known as an immunoglobulin superfamily member. Siglecs play an important role in the regulation of immune cell functions in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer. Siglec-9 is one of Siglecs and capsular polysaccharide (CPS of group B Streptococcus (GBS binds to Siglec-9 on neutrophils, leading to suppress host immune response and provide a survival advantage to the pathogen. In addition, Siglec-9 also binds to tumor-produced mucins such as MUC1 to lead negative immunomodulation. Transgenic mice expressing the soluble form of Siglec-9 showed significant resistance against GBS infection and remarkable suppression of MUC1 expressing tumor proliferation. This review describes recent developments in the understanding of the potency of soluble forms of CAMs in the transgenic mice and discusses potential therapeutic interventions that may alter the outcomes of certain diseases.

  16. A water-soluble, mucoadhesive quaternary ammonium chitosan-methyl-β-cyclodextrin conjugate forming inclusion complexes with dexamethasone.

    Science.gov (United States)

    Piras, Anna Maria; Zambito, Ylenia; Burgalassi, Susi; Monti, Daniela; Tampucci, Silvia; Terreni, Eleonora; Fabiano, Angela; Balzano, Federica; Uccello-Barretta, Gloria; Chetoni, Patrizia

    2018-03-30

    The ocular bioavailability of lipophilic drugs, such as dexamethasone, depends on both drug water solubility and mucoadhesion/permeation. Cyclodextrins and chitosan are frequently employed to either improve drug solubility or prolong drug contact onto mucosae, respectively. Although the covalent conjugation of cyclodextrin and chitosan brings to mucoadhesive drug complexes, their water solubility is restricted to acidic pHs. This paper describes a straightforward grafting of methyl-β-cyclodextrin (MCD) on quaternary ammonium chitosan (QA-Ch60), mediated by hexamethylene diisocyanate. The resulting product is a water-soluble chitosan derivative, having a 10-atom long spacer between the quaternized chitosan and the cyclodextrin. The derivative is capable of complexing the model drug dexamethasone and stable complexes were also observed for the lyophilized products. Furthermore, the conjugate preserves the mucoadhesive properties typical of quaternized chitosan and its safety as solubilizing excipient for ophthalmic applications was preliminary assessed by in vitro cytotoxicity evaluations. Taken as a whole, the observed features appear promising for future processing of the developed product into 3D solid forms, such as controlled drug delivery systems, films or drug eluting medical devices.

  17. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products

    Science.gov (United States)

    Tamrat, Wuhib Zewde; Rose, Jérôme; Grauby, Olivier; Doelsch, Emmanuel; Levard, Clément; Chaurand, Perrine; Basile-Doelsch, Isabelle

    2018-05-01

    Because of their large surface area and reactivity, nanometric-size soil mineral phases have a high potential for soil organic matter stabilization, contaminant sorption or soil aggregation. In the literature, Fe and Al phases have been the main targets of batch-synthesized nanomineral studies while nano-aluminosilicates (Al and Si phases) have been mainly studied in Andic soils. In the present work, we synthesized secondary nanophases of Fe, Al and Si. To simulate a system as close as possible to soil conditions, we conducted laboratory simulations of the processes of (1) biotite alteration in acidic conditions producing a Al Si Fe Mg K leachate solution and (2) the following neoformation of secondary nanophases by titrating the leachate solution to pH 4.2, 5 and 7. The morphology of the nanophases, their size, crystallinity and chemistry were characterized by TEM-EDX on single particles and their local atomic structure by EXAFS (Extended X-ray Absorption Fine Structure) at the Fe absorption K-edge. The main nanophases formed were amorphous particles 10-60 nm in size whose composition (dominated by Fe and Si) was strongly controlled by the pH conditions at the end of the titration. At pH 4.2 and pH 7, the structure of the nanophases was dominated by the polymerization of Fe, which was hindered by Al, Si, Mg and K. Conversely, at pH 5, the polymerization of Fe was counteracted by precipitation of high amounts of Si. The synthetized nanophases were estimated to be rather analogous to nanophases formed in natural biotite-bearing soils. Because of their small size and potential high surface reactivity, the adsorption capacities of these nanophases with respect to the OM should be revisited in the framework of soil C storage.

  18. Microstructure and properties of A15 superconductors formed by direct precipitation

    International Nuclear Information System (INIS)

    Hong, M.; Dietderich, D.R.; Wu, I.W.; Morris, J.W. Jr.

    1980-09-01

    Superconducting materials were made by quenching supersaturated solutions of V-Ga and Nb-Al, deforming the quenched specimens, and then precipitating the A15 phase by aging at intermediate temperature. The critical current characteristics of the product materials depend both on the inherent properties of the A15 phase, which presumably reflect its composition, and on the details of the precipitation process, which determine the grain size, continuity, and volume fraction of the A15. These features of the precipitation process differ qualitatively between V-Ga and Nb-Al. They are described and used to interpret the critical current characteristics

  19. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO{sub 4}(s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO{sub 4}(s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO{sub 4}(s). The production of 226Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO{sub 4}(s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO{sub 4} to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the

  20. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    International Nuclear Information System (INIS)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi

    2008-08-01

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226 Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO 4 (s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO 4 (s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO 4 (s). The production of 226 Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO 4 (s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO 4 to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the behaviour of the

  1. Life-span health effects of relatively soluble forms of internally deposited beta-emitting radionuclides

    International Nuclear Information System (INIS)

    Boecker, B.B.; Muggenburg, B.A.; Hahn, F.F.; Nikula, K.J.; Griffith, W.C.

    1991-01-01

    As part of a large research effort to study the lifetime health risks of inhaled radionuclides, Beagle dogs inhaled 90 SrCl 2 or 144 CeCl 3 or were injected intravenously with 137 CsCl. Because these three compounds were soluble in body fluids, the resulting widely differing patterns of radionuclide distribution and dose reflected tissue affinities of the elements involved. Long-term health effects, predominantly cancers, were seen in the organs receiving the highest doses. Investigations are continuing on the extent to which other less irradiated organs may have also been affected

  2. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Yukiko, E-mail: ytomi@muses.tottori-u.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Morimatsu, Masami, E-mail: mmorimat@vetmed.hokudai.ac.jp [Division of Disease Model Innovation, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815 (Japan); Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818 (Japan); Nishijima, Ken-ichi, E-mail: nishijma@nubio.nagoya-u.ac.jp [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Usui, Tatsufumi, E-mail: usutatsu@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); Yamamoto, Sayo, E-mail: ysayo@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Suyama, Haruka, E-mail: sharuka@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ozaki, Kinuyo, E-mail: k-ozaki@anim.med.kyushu-u.ac.jp [Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Ito, Toshihiro, E-mail: toshiito@muses.tottori-u.ac.jp [Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-8553 (Japan); and others

    2014-07-18

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation.

  3. A soluble form of Siglec-9 provides an antitumor benefit against mammary tumor cells expressing MUC1 in transgenic mice

    International Nuclear Information System (INIS)

    Tomioka, Yukiko; Morimatsu, Masami; Nishijima, Ken-ichi; Usui, Tatsufumi; Yamamoto, Sayo; Suyama, Haruka; Ozaki, Kinuyo; Ito, Toshihiro

    2014-01-01

    Highlights: • Tumor-associated antigen MUC1 binds to Siglec-9. • Soluble Siglec-9 reduced proliferation of MUC1-positive tumor in transgenic mice. • Soluble Siglec-9 and MUC1 on tumor cells were colocalized in transgenic mice. • MUC1 expression on tumor cells were reduced in soluble Siglec-9 transgenic mice. - Abstract: Tumor-associated MUC1 binds to Siglec-9, which is expected to mediate tumor cell growth and negative immunomodulation. We hypothesized that a soluble form of Siglec-9 (sSiglec-9) competitively inhibits a binding of MUC1 to its receptor molecules like human Siglec-9, leading to provide antitumor benefit against MUC1-expressing tumor, and generated transgenic mouse lines expressing sSiglec-9 (sSiglec-9 Tg). When mammary tumor cells expressing MUC1 were intraperitoneally transplanted into sSiglec-9 Tg, tumor proliferation was slower with the lower histological malignancy as compared with non-transgenic mice. The sSiglec-9 was detected in the ascites caused by the tumor in the sSiglec-9 Tg, and sSiglec-9 and MUC1 were often colocalized on surfaces of the tumor cells. PCNA immunohistochemistry also revealed the reduced proliferation of the tumor cells in sSiglec-9 Tg. In sSiglec-9 Tg with remarkable suppression of tumor proliferation, MUC1 expressions were tend to be reduced. In the ascites of sSiglec-9 Tg bearing the tumor, T cells were uniformly infiltrated, whereas aggregations of degenerative T cells were often observed in the non-transgenic mice. These results suggest that sSiglec-9 has an antitumor benefit against MUC1-expressing tumor in the transgenic mice, which may avoid the negative immunomodulation and/or suppress tumor-associated MUC1 downstream signal transduction, and subsequent tumor proliferation

  4. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  5. Soluble Form of Canine Transferrin Receptor Inhibits Canine Parvovirus Infection In Vitro and In Vivo

    Science.gov (United States)

    Wen, Jiexia; Pan, Sumin; Liang, Shuang; Zhong, Zhenyu; He, Ying; Lin, Hongyu; Li, Wenyan; Wang, Liyue; Li, Xiujin; Zhong, Fei

    2013-01-01

    Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo. PMID:24089666

  6. Soluble Form of Canine Transferrin Receptor Inhibits Canine Parvovirus Infection In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jiexia Wen

    2013-01-01

    Full Text Available Canine parvovirus (CPV disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.

  7. Enhanced resistance to herpes simplex virus type 1 infection in transgenic mice expressing a soluble form of herpesvirus entry mediator

    International Nuclear Information System (INIS)

    Ono, Etsuro; Yoshino, Saori; Amagai, Keiko; Taharaguchi, Satoshi; Kimura, Chiemi; Morimoto, Junko; Inobe, Manabu; Uenishi, Tomoko; Uede, Toshimitsu

    2004-01-01

    Herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family used as a cellular receptor by virion glycoprotein D (gD) of herpes simplex virus (HSV). Both human and mouse forms of HVEM can mediate entry of HSV-1 but have no entry activity for pseudorabies virus (PRV). To assess the antiviral potential of HVEM in vivo, three transgenic mouse lines expressing a soluble form of HVEM (HVEMIg) consisting of an extracellular domain of murine HVEM and the Fc portion of human IgG1 were generated. All of the transgenic mouse lines showed marked resistance to HSV-1 infection when the mice were challenged intraperitoneally with HSV-1, but not to PRV infection. The present results demonstrate that HVEMIg is able to exert a significant antiviral effect against HSV-1 infection in vivo

  8. Study of the contamination of components of the marine environment by soluble and insoluble forms of radionuclides

    International Nuclear Information System (INIS)

    Fraizier, A.; Ancellin, J.C.

    1975-01-01

    The experimental contamination of various physical components and organisms of the marine environment was carried out using radionuclides such as 137 Cs, 51 Cr, 60 Co, 106 Ru and 59 Fe. The relationships between the physico-chemical states of the radionuclides, the variations in the environmental conditions, and the properties of the experimental samples were clarified. Marine organisms were more readily contaminated by the insoluble forms of 106 Ru and 59 Fe than by the soluble forms. It appears that the physiology of the marine organisms can have a bearing on the degree and evolution of the contamination whatever the physico-chemical state of the radionuclides may be, but in certain circumstances the contamination level is independent of the variations in environmental conditions and the related variations in the physiology of the organism. (author)

  9. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

    Directory of Open Access Journals (Sweden)

    Frank KJ

    2012-11-01

    Full Text Available Kerstin J Frank,1,3 Ulrich Westedt,2 Karin M Rosenblatt,2 Peter Hölig,2 Jörg Rosenberg,2 Markus Mägerlein,2 Gert Fricker,3 Martin Brandl11Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark; 2Abbott GmbH and Co. KG, Ludwigshafen, Germany; 3Department of Pharmaceutical Technology, University of Heidelberg, Heidelberg, GermanyAbstract: Amorphous solid dispersions (ASDs are a promising formulation approach for poorly soluble active pharmaceutical ingredients (APIs, because they ideally enhance both dissolution rate and solubility. However, the mechanism behind this is not understood in detail. In the present study, we investigated the supramolecular and the nano/microparticulate structures that emerge spontaneously upon dispersion of an ASD in aqueous medium and elucidated their influence on solubility. The ASD, prepared by hot melt extrusion, contained the poorly soluble ABT-102 (solubility in buffer, 0.05 µg/mL, a hydrophilic polymer, and three surfactants. The apparent solubility of ABT-102 from the ASD-formulation was enhanced up to 200 times in comparison to crystalline ABT-102. At the same time, the molecular solubility, as assessed by inverse equilibrium dialysis, was enhanced two times. Asymmetrical flow field-flow fractionation in combination with a multiangle light-scattering detector, an ultraviolet detector, and a refractometer enabled us to separate and identify the various supramolecular assemblies that were present in the aqueous dispersions of the API-free ASD (placebo and of binary/ternary blends of the ingredients. Thus, the supramolecular assemblies with a molar mass between 20,000 and 90,000 could be assigned to the polyvinylpyrrolidone/vinyl acetate 64, while two other kinds of assemblies were assigned to different surfactant assemblies (micelles. The amount of ABT-102 remaining associated with each of the assemblies upon fractionation was quantified offline with high

  10. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  11. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    Science.gov (United States)

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Alumina-Forming Austenitic Stainless Steels Strengthened by Laves Phase and MC Carbide Precipitates

    Science.gov (United States)

    Yamamoto, Y.; Brady, M. P.; Lu, Z. P.; Liu, C. T.; Takeyama, M.; Maziasz, P. J.; Pint, B. A.

    2007-11-01

    Creep strengthening of Al-modified austenitic stainless steels by MC carbides or Fe2Nb Laves phase was explored. Fe-20Cr-15Ni-(0-8)Al and Fe-15Cr-20Ni-5Al base alloys (at. pct) with small additions of Nb, Mo, W, Ti, V, C, and B were cast, thermally-processed, and aged. On exposure from 650 °C to 800 °C in air and in air with 10 pct water vapor, the alloys exhibited continuous protective Al2O3 scale formation at an Al level of only 5 at. pct (2.4 wt pct). Matrices of the Fe-20Cr-15Ni-5Al base alloys consisted of γ (fcc) + α (bcc) dual phase due to the strong α-Fe stabilizing effect of the Al addition and exhibited poor creep resistance. However, adjustment of composition to the Fe-15Cr-20Ni-5Al base resulted in alloys that were single-phase γ-Fe and still capable of alumina scale formation. Alloys that relied solely on Fe2Nb Laves phase precipitates for strengthening exhibited relatively low creep resistance, while alloys that also contained MC carbide precipitates exhibited creep resistance comparable to that of commercially available heat-resistant austenitic stainless steels. Phase equilibria studies indicated that NbC precipitates in combination with Fe2Nb were of limited benefit to creep resistance due to the solution limit of NbC within the γ-Fe matrix of the alloys studied. However, when combined with other MC-type strengtheners, such as V4C3 or TiC, higher levels of creep resistance were obtained.

  13. The conflicting roles of boron on the radiation response of precipitate-forming austenitic alloys

    International Nuclear Information System (INIS)

    Okita, T.; Sekimura, N.; Garner, F.

    2007-01-01

    Full text of publication follows: Boron is often a deliberately added solute to improve the radiation resistance of austenitic structural alloys, with boron exerting its greatest influence on carbide precipitation. However, boron also a source of helium via transmutation and therefore tends to accelerate the onset of void nucleation. These conflicting contributions of boron with respect to radiation resistance are not easily separated, but are sometimes utilized to mimic fusion-relevant gas generation rates when testing in surrogate fission spectra. In an earlier study the authors demonstrated that in simple model ternary alloys that boron additions tended to homogenize swelling somewhat via increased helium generation but not to exert any significant influence on the total swelling. In these easily swelling alloys void nucleation was not significantly influenced by additional helium or by boron's chemical effect, with boron remaining primarily in solution. In the current study, Fe-15Cr-16Ni-0.25 Ti-0.05C alloys with four levels of natural boron addition (0, 100, 500, 2500 appm) were irradiated side-by-side at ∼400 deg. C in the Fast Flux Test Facility under active temperature control in the Materials Open Test Assembly. Although three sets of irradiation conditions were explored, the boron variation was the only variable operating in each data set. The bulk swelling was measured using an immersion density technique and electron microscopy was employed to determine the details of void, dislocation and precipitate microstructure. It was found that by 100 appm B the strongest and most immediate effect of boron was to reduce swelling at all irradiation conditions explored, but the boron-induced increases in overall helium content were rather small over the 0-100 appm B range. This indicates that boron's primary effect was chemical in nature, expressed via its effect on precipitation. As the boron level was progressively increased, however, there was a reversal in

  14. Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of 'soluble CD163' in plasma

    DEFF Research Database (Denmark)

    Etzerodt, Anders; Berg, Ronan M.G.; Plovsing, Ronni R.

    2017-01-01

    CD163 is the macrophage receptor for uptake of hemoglobin-haptoglobin complexes. The human receptor can be shed from the macrophage surface owing to a cleavage site for the inflammation-inducible TACE/ADAM17 enzyme. Accordingly, plasma â €soluble CD163' (sCD163) has become a biomarker for macroph......CD163 is the macrophage receptor for uptake of hemoglobin-haptoglobin complexes. The human receptor can be shed from the macrophage surface owing to a cleavage site for the inflammation-inducible TACE/ADAM17 enzyme. Accordingly, plasma â €soluble CD163' (sCD163) has become a biomarker...

  15. Development of a new generation of waste form for entrapment and immobilization of highly volatile and soluble radionuclides.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Mark Andrew; Bencoe, Denise Nora; Brinker, C. Jeffrey; Murphy, Andrew Wilson; Holt, Kathleen Caroline; Turnham, Rigney; Kruichak, Jessica Nicole; Tellez, Hernesto; Miller, Andy; Xiong, Yongliang; Pohl, Phillip Isabio; Ockwig, Nathan W.; Wang, Yifeng; Gao, Huizhen

    2010-09-01

    The United States is now re-assessing its nuclear waste disposal policy and re-evaluating the option of moving away from the current once-through open fuel cycle to a closed fuel cycle. In a closed fuel cycle, used fuels will be reprocessed and useful components such as uranium or transuranics will be recovered for reuse. During this process, a variety of waste streams will be generated. Immobilizing these waste streams into appropriate waste forms for either interim storage or long-term disposal is technically challenging. Highly volatile or soluble radionuclides such as iodine ({sup 129}I) and technetium ({sup 99}Tc) are particularly problematic, because both have long half-lives and can exist as gaseous or anionic species that are highly soluble and poorly sorbed by natural materials. Under the support of Sandia National Laboratories (SNL) Laboratory-Directed Research & Development (LDRD), we have developed a suite of inorganic nanocomposite materials (SNL-NCP) that can effectively entrap various radionuclides, especially for {sup 129}I and {sup 99}Tc. In particular, these materials have high sorption capabilities for iodine gas. After the sorption of radionuclides, these materials can be directly converted into nanostructured waste forms. This new generation of waste forms incorporates radionuclides as nano-scale inclusions in a host matrix and thus effectively relaxes the constraint of crystal structure on waste loadings. Therefore, the new waste forms have an unprecedented flexibility to accommodate a wide range of radionuclides with high waste loadings and low leaching rates. Specifically, we have developed a general route for synthesizing nanoporous metal oxides from inexpensive inorganic precursors. More than 300 materials have been synthesized and characterized with x-ray diffraction (XRD), BET surface area measurements, and transmission electron microscope (TEM). The sorption capabilities of the synthesized materials have been quantified by using stable

  16. Development of a new generation of waste form for entrapment and immobilization of highly volatile and soluble radionuclides

    International Nuclear Information System (INIS)

    Rodriguez, Mark Andrew; Bencoe, Denise Nora; Brinker, C. Jeffrey; Murphy, Andrew Wilson; Holt, Kathleen Caroline; Turnham, Rigney; Kruichak, Jessica Nicole; Tellez, Hernesto; Miller, Andy; Xiong, Yongliang; Pohl, Phillip Isabio; Ockwig, Nathan W.; Wang, Yifeng; Gao, Huizhen

    2010-01-01

    The United States is now re-assessing its nuclear waste disposal policy and re-evaluating the option of moving away from the current once-through open fuel cycle to a closed fuel cycle. In a closed fuel cycle, used fuels will be reprocessed and useful components such as uranium or transuranics will be recovered for reuse. During this process, a variety of waste streams will be generated. Immobilizing these waste streams into appropriate waste forms for either interim storage or long-term disposal is technically challenging. Highly volatile or soluble radionuclides such as iodine ( 129 I) and technetium ( 99 Tc) are particularly problematic, because both have long half-lives and can exist as gaseous or anionic species that are highly soluble and poorly sorbed by natural materials. Under the support of Sandia National Laboratories (SNL) Laboratory-Directed Research and Development (LDRD), we have developed a suite of inorganic nanocomposite materials (SNL-NCP) that can effectively entrap various radionuclides, especially for 129 I and 99 Tc. In particular, these materials have high sorption capabilities for iodine gas. After the sorption of radionuclides, these materials can be directly converted into nanostructured waste forms. This new generation of waste forms incorporates radionuclides as nano-scale inclusions in a host matrix and thus effectively relaxes the constraint of crystal structure on waste loadings. Therefore, the new waste forms have an unprecedented flexibility to accommodate a wide range of radionuclides with high waste loadings and low leaching rates. Specifically, we have developed a general route for synthesizing nanoporous metal oxides from inexpensive inorganic precursors. More than 300 materials have been synthesized and characterized with x-ray diffraction (XRD), BET surface area measurements, and transmission electron microscope (TEM). The sorption capabilities of the synthesized materials have been quantified by using stable isotopes I and

  17. Fundamental chemistry of precipitation and mineral scale formation

    Science.gov (United States)

    Alan W. Rudie; Peter W. Hart

    2005-01-01

    The mineral scale that deposits in digesters and bleach plants is formed by a chemical precipitation process. As such, it is accurately described or modeled using the solubility product equilibrium constant. Although solubility product identifies the primary conditions that need to be met for a scale problem to exist, the acid base equilibria of the scaling anions...

  18. Influence of precipitation on the Portevin-Le Chatelier effect in Al-Mg alloys

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In the alloy with solute content higher than the limiting solubility,the solute atoms that have failed to dissolve will precipitate from the solid solution and form precipitations.In this study, the Portevin-Le Chatelier(PLC) effects in annealed 5456 and 5052 aluminum alloys with different precipitation contents have been investigated under different applied strain rates.The results suggest that precipitations have significant effect on the PLC effect and the more the precipitations are, the greater the ...

  19. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  20. Solubility measurement and correlation of the form A of ibrutinib in organic solvents from 278.15 to 323.15 K

    International Nuclear Information System (INIS)

    Chen, Zhenzhen; Zhai, Jinghuan; Liu, Xijian; Mao, Shimin; Zhang, Lijuan; Rohani, Sohrab; Lu, Jie

    2016-01-01

    Highlights: • The solubility of ibrutinib (form A) in organic solvents was firstly reported. • Apelblat, λh, empirical polynomial equations were used to correlate the solubility. • The solubility order: MEK > acetone > EA > 1-butanol > acetonitrile ≈ IPA > MTBE. - Abstract: In this work, the solubility of the form A of ibrutinib in isopropanol (IPA), 1-butanol, ethyl acetate (EA), acetonitrile, acetone, methyl ethyl ketone (MEK) and methyl tertiary butyl ether (MTBE) was firstly experimentally determined by a gravimetric method in the temperature range from 278.15 to 323.15 K at atmospheric pressure. The experimental solubility data were correlated by several commonly used models including the modified Apelblat equation, the Buchowski-Ksiazczak λh equation and an empirical quartic polynomial equation. The results showed that, in the temperature range investigated, the solubility of ibrutinib generally increased with the increasing temperature, and the solubility order at the room temperature in the studied solvents was: MEK > acetone > ethyl acetate > 1-butanol > acetonitrile ≈ isopropanol > MTBE. In addition, all the models gave satisfactory correlation results, in which the empirical quartic polynomial equation stood out to be more suitable with a higher accuracy than the other two equations.

  1. Negative events and their potential risk of precipitating pathological forms of dental anxiety

    NARCIS (Netherlands)

    Oosterink, F.M.D.; de Jongh, A.; Aartman, I.H.A.

    2009-01-01

    The purpose of the present study was to assess which types of experiences are most closely associated with pathological forms of dental anxiety. Data came from a sample of dental patients (n = 1462). Pathological dental anxiety was operationalized in two ways: (1) a score of ≥36 on the Short form of

  2. Evaluation of the low corrosion resistant phase formed during the sigma phase precipitation in duplex stainless steels

    Directory of Open Access Journals (Sweden)

    Darlene Yuko Kobayashi

    1999-10-01

    Full Text Available The duplex stainless steels, having a volumetric fraction of 50% ferrite and 50% austenite, conciliate high corrosion resistance with good mechanical properties. But, in many circumstances different phase transformations may occur, such as that responsible for sigma phase precipitation, which make the steel susceptible to localized corrosion. During the sigma phase precipitation a new austenitic phase is formed with a very low corrosion resistance. In the present research the composition of this new austenitic phase was evaluated in four duplex stainless steels, with different Mo, N and Cu contents. After the solution anneal at 1050 °C, samples of these steels were aged at 850 °C during 1 h and 5 h for sigma phase precipitation. Using the ferritoscope and an image analyzer it was possible to determine the volumetric fractions of ferrite and sigma phase, respectively, while those of austenite and the new austenitic phase were determined by difference to 100% volume. Finally, by using mass balance it was possible to determine theoretically the composition of the new austenitic phase. This phase is poor in Cr and Mo free, which explains its poor corrosion resistance.

  3. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    Science.gov (United States)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  4. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter.

    Science.gov (United States)

    Mazrui, Nashaat M; Seelen, Emily; King'ondu, Cecil K; Thota, Sravan; Awino, Joseph; Rouge, Jessica; Zhao, Jing; Mason, Robert P

    2018-04-25

    The methylation of mercury is known to depend on the chemical forms of mercury (Hg) present in the environment and the methylating bacterial activity. In sulfidic sediments, under conditions of supersaturation with respect to metacinnabar, recent research has shown that mercury precipitates as β-HgS(s) nanoparticles (β-HgS(s)nano). Few studies have examined the precipitation of β-HgS(s)nano in the presence of marine dissolved organic matter (DOM). In this work, we used dynamic light scattering (DLS) coupled with UV-Vis spectroscopy and transmission electron microscopy (TEM) to investigate the formation and fate of β-HgS(s)nano formed in association with marine DOM extracted from the east and west of Long Island Sound, and at the shelf break of the North Atlantic Ocean, as well as with low molecular weight thiols. We found that while the β-HgS(s)nano formed in the presence of oceanic DOM doubled in size after 5 weeks, those forming in solutions with coastal DOM did not grow over time. In addition, when the HgII : DOM ratio was varied, β-HgS(s)nano only rapidly aggregated at high ratios (>41 μmol HgII per mg C) where the concentration of thiol groups was determined to be substantially low relative to HgII. This suggests that functional groups other than thiols could be involved in the stabilization of β-HgS(s)nano. Furthermore, we showed that β-HgS(s)nano forming under anoxic conditions remained stable and could therefore persist in the environment sufficiently to impact the methylation potential. Exposure of β-HgS(s)nano to sunlit and oxic environments, however, caused rapid aggregation and sedimentation of the nanoparticles, suggesting that photo-induced changes or oxidation of organic matter adsorbed on the surface of β-HgS(s)nano affected their stability in surface waters.

  5. Distribution and Solubility of Radionuclides and Neutron Absorbers in Waste Forms for Disposition of Plutonium Ash and Scraps, Excess Plutonium, and Miscellaneous Spent Nuclear Fuels

    International Nuclear Information System (INIS)

    Dr. Denis M. Strachan; Dr. David K. Shuh; Dr. Rodney C. Ewing; Dr. Eric R. Vance

    2002-01-01

    The initial goal of this project was to investigate the solubility of radionuclides in glass and other potential waste forms for the purpose of increasing the waste loading in glass and ceramic waste forms. About one year into the project, the project decided to focus on two potential waste forms - glass at PNNL and initiate ceramics at the Australian Nuclear Science and Technology Organisation (ANSTO)

  6. Uranyl Oxalate Solubility

    Energy Technology Data Exchange (ETDEWEB)

    Leturcq, G.; Costenoble, S.; Grandjean, S. [CEA Marcoule DEN/DRCP/SCPS/LCA - BP17171 - 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    The solubility of uranyl oxalate was determined at ambient temperature by precipitation in oxalic-nitric solutions, using an initial uranyl concentration of 0.1 mol/L. Oxalic concentration varied from 0.075 to 0.3 mol/L while nitric concentration ranged between 0.75 and 3 mol/L. Dissolution tests, using complementary oxalic-nitric media, were carried out for 550 hours in order to study the kinetic to reach thermodynamic equilibrium. Similar solubility values were reached by dissolution and precipitation. Using the results, it was possible to draw the solubility surface versus oxalic and nitric concentrations and to determine both the apparent solubility constant of UO{sub 2}C{sub 2}O{sub 4}, 3H{sub 2}O (Ks) and the apparent formation constant of the first uranyl-oxalate complex UO{sub 2}C{sub 2}O{sub 4} (log {beta}1), for ionic strengths varying between 1 and 3 mol/L. Ks and log {beta}1 values were found to vary from 1.9 10{sup -8} to 9.2 10{sup -9} and from 5.95 to 6.06, respectively, when ionic strength varied from 1 to 3 mol/L. A second model may fit our data obtained at an ionic strength of 3 mol/L suggesting as reported by Moskvin et al. (1959) that no complexes are formed for [H{sup +}] at 3 M. The Ks value would then be 1.3 10{sup -8}. (authors)

  7. Effects of Acute Exercise on Circulating Soluble Form of the Urokinase Receptor in Patients With Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Anna Gustafsson

    2017-04-01

    Full Text Available Inflammation has been proposed to play a role in the generation of depressive symptoms. Previously, we demonstrated that patients with major depressive disorder (MDD have increased plasma levels of the soluble form of the urokinase receptor (suPAR, a marker for low-grade inflammation. The aim of this study was to test the hypothesis that acute exercise would induce inflammatory response characterized by increased suPAR and elucidate whether patients with MDD display altered levels of suPAR in response to acute exercise. A total of 17 patients with MDD and 17 controls were subjected to an exercise challenge. Plasma suPAR (P-suPAR was analyzed before, during, and after exercise. There was a significantly higher baseline P-suPAR in the patients with MDD, and the dynamic changes of P-suPAR during the exercise were significantly lower in the patients with MDD, compared with the controls. This study supports the hypothesis that an activation of systemic inflammatory processes, measured as elevated P-suPAR, is involved in the pathophysiology of depression. The study concludes that P-suPAR is influenced by acute exercise, most likely due to release from activated neutrophils.

  8. Analysis of Circulating Vascular Endothelial Growth Factor and Its Soluble Receptors in Patients with Different Forms of Chronic Urticaria

    Directory of Open Access Journals (Sweden)

    Julia Jagodzinska

    2015-01-01

    Full Text Available Background. Vascular endothelial growth factor (VEGF is a powerful enhancer of vascular permeability and inflammatory response; however its significance in chronic urticaria is poorly recognised. Aim. To compare free circulating levels of VEGF and its soluble receptors (sVEGFR1 and VEGFR2 in patients with different forms of chronic urticaria. Methods. The concentrations of VEGF and its receptors in plateletpoor plasma (PPP/plasma were measured using enzyme-linked immunosorbent assay in chronic urticaria: (1 chronic spontaneous urticaria (CSU with positive autologous serum skin test (ASST, (2 CSU with negative response to ASST, (3 CSU with concomitant euthyroid Hashimoto’s thyroiditis (CSU/Hashimoto, (4 delayed pressure urticaria (DPU, and the healthy subjects. Results. There were no significant differences in VEGF concentration in PPP between CSU groups and the healthy subjects. Contrary, VEGF concentration was significantly higher in DPU and CSU/Hashimoto patients as compared with the healthy subjects and CSU groups. Furthermore, VEGF value in CSU/Hashimoto patients during the remission was similar to that of the active period and significantly higher than the healthy subjects; VEGF concentration was significantly correlated with TSH. Plasma concentrations of sVEGF1 and sVEGF2 were similar in chronic urticaria patients and the healthy subjects. Conclusions. Increased free circulating VEGF concentration may result from the urticarial process itself as well as concomitant Hashimoto’s thyroiditis.

  9. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  10. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    Science.gov (United States)

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  11. Contribution to the study of external contamination by radioactive products: skin contamination by radioactive cobalt in soluble form and decontamination

    International Nuclear Information System (INIS)

    Tymen, H.

    2002-12-01

    The aim of this work was to characterize the behavior of the radioactive cobalt isotopes, which are present in reactor coolant systems of a pressurized water reactor (PWR), in the case of occupational skin exposure, and to study different therapies. Our experimental approach stems from standardized methods in skin pharmacology. In a first step, a physico-chemical study of a primary coolant water was carried out to characterize the soluble fraction of radio-cobalt and its skin affinity. The second step consisted in quantifying the diffusion through the skin, in vivo and in vitro in rats, and in vitro in human. Parallel experiments were carried out to study biokinetics of cobalt in rats, after intravenous, intramuscular and subcutaneous injection. Whatever the route of administration, cobalt diffuses easily in the organism. On the contrary, its skin absorption is very limited. In a fourth step, the influence of the skin injuries on absorption was estimated in vivo on rat skin. Several skin models were developed to standardize different injuries: excoriation, heat burns (convection, conduction) and chemical burns (acid or alkaline). Biokinetics study over 24 hours and histological study have shown a relation between skin absorption and stratum corneum alteration. In the latest step of this work, we compared the efficacy of various decontaminating agents administered under different galenic forms. Per (3, 6- anhydro, 2-O-carboxy-methyl)-α-cyclo-dextrin exhibited a significant efficacy for cobalt decontamination of skin. This macromolecule was tested in aqueous solution, in agarose gel and loaded on 'functionalized' fibers intended for development of new decontaminating tissues. (author)

  12. Supersaturation-nucleation behavior of poorly soluble drugs and its impact on the oral absorption of drugs in thermodynamically high-energy forms.

    Science.gov (United States)

    Ozaki, Shunsuke; Minamisono, Takuma; Yamashita, Taro; Kato, Takashi; Kushida, Ikuo

    2012-01-01

    In order to better understand the oral absorption behavior of poorly water-soluble drugs, their supersaturation-nucleation behavior was characterized in fasted state simulated intestinal fluid. The induction time (t(ind)) for nucleation was measured for four model drugs: itraconazole, erlotinib, troglitazone, and PLX4032. Supersaturated solutions were prepared by solvent shift method, and nucleation initiation was monitored by ultraviolet detection. The relationship between t(ind) and degree of supersaturation was analyzed in terms of classical nucleation theory. The defined supersaturation stability proved to be compound specific. Clinical data on oral absorption were investigated for drugs in thermodynamically high-energy forms such as amorphous forms and salts and was compared with in vitro supersaturation-nucleation characteristics. Solubility-limited maximum absorbable dose was proportionate to intestinal effective drug concentrations, which are related to supersaturation stability and thermodynamic solubility. Supersaturation stability was shown to be an important factor in determining the effect of high-energy forms. The characterization of supersaturation-nucleation behavior by the presented method is, therefore, valuable for assessing the potential absorbability of poorly water-soluble drugs. Copyright © 2011 Wiley-Liss, Inc.

  13. A soluble form of the high affinity IgE receptor, Fc-epsilon-RI, circulates in human serum.

    Directory of Open Access Journals (Sweden)

    Eleonora Dehlink

    Full Text Available Soluble IgE receptors are potential in vivo modulators of IgE-mediated immune responses and are thus important for our basic understanding of allergic responses. We here characterize a novel soluble version of the IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI, the high affinity receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and contains an intact IgE-binding site. In human serum, sFcεRI is found as a soluble free IgE receptor as well as a complex with IgE. Using a newly established ELISA, we show that serum sFcεRI levels correlate with serum IgE in patients with elevated IgE. We also show that serum of individuals with normal IgE levels can be found to contain high levels of sFcεRI. After IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in the exosome-depleted, soluble fraction of cell culture supernatants. We further show that sFcεRI can block binding of IgE to FcεRI expressed at the cell surface. In summary, we here describe the alpha-chain of FcεRI as a circulating soluble IgE receptor isoform in human serum.

  14. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  15. Real-Time Chord Length Analysis of Strontium and Manganese Precipitates Formed from Hanford Tank 241-AN-107 Simulant

    International Nuclear Information System (INIS)

    KING, WILLIAMD

    2004-01-01

    Removal of radioactive strontium and transuranic elements from Hanford Envelope C waste solutions can be accomplished by the sequential addition of sodium hydroxide, strontium nitrate, and sodium permanganate solutions. This multistep precipitation process is the baseline technology in the River Protection Project -Waste Treatment Plant (RPP-WTP) for the removal of these radioactive species from Hanford Waste Tanks. Decontamination targets are easily met using these precipitation technologies and current work in this area focuses on optimization to minimize reagent levels. Downstream treatment processes require filtration of the precipitate slurry. In order to avoid further precipitation after filtration, it is necessary to know the precipitation reaction time-scale. In addition, precipitate slurry filter flux is a primary parameter of interest to plant design personnel. Optimization of the filtration process is benefited by an understanding of the parameters that impact particle size distribution. Filter cake packing and, hence, filter flux are often sensitive to small changes in the particle size distribution. However, traditional methods of particle size analysis often are not sufficiently sensitive to develop correlations to filterability. Focused Beam Reflectance Measurements (FBRM) are a relatively new chord length analysis method with extremely high sensitivity. The method is suited for continuous monitoring of chord length distributions in the process medium. The instrument is equipped with statistical data analysis software for the identification of small shifts in the population. Reported herein are the results of FBRM analysis of strontium and manganese precipitation tests with Hanford AN-107 simulant. The objectives of the testing were to: (1) evaluate the impacts of precipitation parameters (temperature and reagent levels) upon the strontium and manganese particle chord length distributions; (2) evaluate the stability of the particles under shear; (3

  16. Study on solubility and leaching property of Iodine-129 waste-forms for geological disposal. Document prepared by other institute, based on the trust contract

    Energy Technology Data Exchange (ETDEWEB)

    Sakashita, A.; Izumi, J. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Kitao, H. [Nuclear Development Corp., Tokai, Ibaraki (Japan); Ueta, S.; Okada, K.; Nakazawa, T.; Muroi, M. [Mitsubishi Materials Corp., Tokyo (Japan)

    2002-02-01

    As concern the study on the property of Iodine-129 waste-forms, the solubilities and leachabilities of iodine-sodalite and leachabilities of apatite containing Iodine were measured last year. The results in this year are summarized as follows. 1. Solubility and Leachability of Iodine-sodalite. Leachabilities and solubilities of the synthesized iodine-sodalite by HIP method were measured by means of a long-term leach test in the solution with chloride ions and high pH (12.5). The measured solubilities were within a range of 10{sup -3} - 10{sup -2} mol/L, which were larger compare with the previous values. The leachabilities were 10{sup -6} g/cm{sup 2}/day (powder) and 10{sup -3} g/cm{sup 2}/day (block). After the leach test, the solid phases were analyzed and the alternation was not observed. 2. Leaching Property of Apatite Sample which contains Iodine adsorption medicine. Apatite sample was manufactured from apatite and zeorait which adsorbs iodine matrix by plasma-hotpress. The porosity of the samples was under 5% and release rate of iodine was about 10% at plasma-hotpress manufacturing. The leachabilities of iodine were 10{sup -4} - 10{sup -3} g/cm{sup 2}/d at 56 day soaking period. These values were 1 - 2 digits higher compare with the leachabilities of calcium. It is thought that the iodine selectively is leached from apatite sample. (author)

  17. Multiplex bead-based immunoassay for the free soluble forms of the HLA-G receptors, ILT2 and ILT4

    DEFF Research Database (Denmark)

    Wu, Ching-Lien; Svendsen, Signe Goul; Riviere, Adrien

    2016-01-01

    in the plasma of healthy controls, but that elevated levels of plasmatic sILT2 were present in non-muscle-infiltrating bladder cancer patients. This demonstrated that the titration test is indeed working, and that soluble ILT2 molecules do exist in pathological contexts, which relevance may now be sought......Human leukocyte antigen (HLA)-G is an immune-inhibitory molecule that exerts its function via interaction with two main inhibitory receptors: ILT2 and ILT4. This interaction is considered to be an immune checkpoint. HLA-G can be found as a soluble molecule, but it is not known if its receptors can...... reveals that it specifically detects the free soluble forms of sILT2 and sILT4, and not those complexed to HLA Class I molecules such as their ligand of highest affinity HLA-G. A study on two small cohorts of cancer patients demonstrated that soluble ILT2 and ILT4 molecules were of low abundance...

  18. Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species.

    Science.gov (United States)

    Li, Yuyan; Yang, Jian; Liu, Hongwu; Yang, Jing; Du, Lei; Feng, Haiwei; Tian, Yanli; Cao, Jianqin; Ran, Chongzhao

    2017-11-01

    Amyloid peptides and proteins are associated with the pathologies of numerous diseases. In the progression of a disease, amyloids exist in soluble and insoluble forms, which are the dominant species at different stages of the disease and they have different degrees of toxicity. However, differentiating between the soluble and insoluble forms is very challenging with small molecule probes due to multiple obstacles that need to be overcome. Inspired by the recognition principle of antibodies for sAβ, we hypothesized that the accessibility/tightness of soluble and insoluble amyloids could be utilized to design imaging probes to recognize different amyloid forms and the stereo-hindrance tuning strategy could be used to design imaging probes for selectively detecting the soluble amyloid beta (sAβ) species in Alzheimer's disease (AD). Herein, we demonstrated that tuning the stereo-hindrance of the phenoxy-alkyl chains at the 4-position of a curcumin scaffold could lead to certain selectivity for sAβ over insoluble Aβs (insAβ). Among the designed compounds, CRANAD-102 showed a 68-fold higher affinity for sAβ than for insAβ (7.5 ± 10 nM vs. 505.9 ± 275.9 nM). Moreover, our imaging data indicated that CRANAD-102 was indeed capable of detecting sAβ in vivo using 4 month old APP/PS1 mice, in which sAβ is the predominant species in the brain. In addition, we also demonstrated that CRANAD-102 could be used to monitor the increase in sAβ loading from the ages of 4 months old to 12 months old. We believe that CRANAD-102 can be a useful probe for selectively detecting sAβ species in AD and that our probe designing strategy can be applied to other amyloids and will have tremendous impact on AD drug development and other amyloid research.

  19. Morphology and Kinetics of Growth of CaCO3 Precipitates Formed in Saline Water at 30°C

    Science.gov (United States)

    Sui, Xin; Wang, Baohui; Wu, Haiming

    2018-02-01

    The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).

  20. The interaction of hepatitis A virus (HAV with soluble forms of its cellular receptor 1 (HAVCR1 share the physiological requirements of infectivity in cell culture

    Directory of Open Access Journals (Sweden)

    Kaplan Gerardo G

    2009-10-01

    Full Text Available Abstract Background Hepatitis A virus (HAV, an atypical Picornaviridae that causes acute hepatitis in humans, usurps the HAV cellular receptor 1 (HAVCR1 to infect cells. HAVCR1 is a class 1 integral membrane glycoprotein that contains two extracellular domains: a virus-binding immunoglobulin-like (IgV domain and a mucin-like domain that extends the IgV from the cell membrane. Soluble forms of HAVCR1 bind, alter, and neutralize cell culture-adapted HAV, which is attenuated for humans. However, the requirements of the HAV-HAVCR1 interaction have not been fully characterized, and it has not been determined whether HAVCR1 also serves as a receptor for wild-type (wt HAV. Here, we used HAV soluble receptor neutralization and alteration assays to study the requirements of the HAV-HAVCR1 interaction and to determine whether HAVCR1 is also a receptor for wt HAV. Results Treatment of HAV with a soluble form of HAVCR1 that contained the IgV and two-thirds of the mucin domain fused to the Fc fragment of human IgG1 (D1 muc-Fc, altered particles at 37°C but left a residual level of unaltered particles at 4°C. The kinetics of neutralization of HAV by D1 muc-Fc was faster at 37°C than at 4°C. Alteration of HAV particles by D1 muc-Fc required Ca, which could not be replaced by Li, Na, Mg, Mn, or Zn. Neutralization of HAV by D1 muc-Fc occurred at pH 5 to 8 but was more efficient at pH 6 to 7. D1 muc-Fc neutralized wt HAV as determined by a cell culture system that allows the growth of wt HAV. Conclusion The interaction of HAV with soluble forms of HAVCR1 shares the temperature, Ca, and pH requirements for infectivity in cell culture and therefore mimics the cell entry process of HAV. Since soluble forms of HAVCR1 also neutralized wt HAV, this receptor may play a significant role in pathogenesis of HAV.

  1. Development of a Video-Microscopic Tool To Evaluate the Precipitation Kinetics of Poorly Water Soluble Drugs: A Case Study with Tadalafil and HPMC

    DEFF Research Database (Denmark)

    Christfort, Juliane Fjelrad; Plum, Jakob; Madsen, Cecilie Maria

    2017-01-01

    (multiparticle analysis). The induction time for precipitation of tadalafil in FaSSIF was significantly prolonged by adding 0.01% (w/v) HPMC to FaSSIF, and the maximum inhibition was reached at 0.1% (w/v) HPMC, after which additional HPMC did not further increase the induction time. The single...

  2. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  3. The part of soluble and insoluble forms of Pb, Be, Ba, Ca, Mg, Sr in particulate matter and in the pharyngeal tonsils

    Directory of Open Access Journals (Sweden)

    Maria Gerycka

    2014-09-01

    Full Text Available Introduction. Previous studies have confirmed that the pharyngeal tonsil is a good biomarker of exposure due to its position relative to inhaled air so that multiple elements can be accumulated in this organ. The aim of the study is to determine the share of soluble and insoluble compounds of individual elements in suspended particles in the accumulation of Pb, Be, Ba, Sr, Ca,Mg by the pharyngeal tonsils. Material and methods. The content of the analyzed elements is defined in 86 samples of pharyngeal tonsils from children living in Tychy and in 76 samples of pharyngeal tonsils from children living in Chorzów, as well as in the suspended particles in the air occurring in soluble and insoluble form. The specified coefficients k1, k2 present in the equation division allow the indication the greater importance of soluble and insoluble fraction of an element present in the inhaled air. Results. The value of the coefficients in the equation division based on gender confirmed its importance. Conclusions. The values detect area variation in relation to passive smoking in the extent of accumulation of Pb, Be, Ba, Sr, Mg, Ca in pharyngeal tonsils.

  4. Efficient expression of a soluble lipid transfer protein (LTP) of Platanus orientalis using short peptide tags and structural comparison with the natural form.

    Science.gov (United States)

    Salari, Farhad; Vahedi, Fatemeh; Chamani, Jamshidkhan; Varasteh, Abdolreza; Ketabdar, Hanieh; Sankian, Mojtaba

    2015-01-01

    Successful recombinant allergen-based immunotherapy has drawn a great deal of attention to use recombinant allergens for new therapeutic and/or diagnostic strategies. The Escherichia coli expression system is frequently used to produce recombinant allergens; however, protein expression in E. coli often results in inclusion bodies. Here, we focused on the expression of two recombinant soluble forms of Pla or 3 using solubility-enhancing peptide tags, human immune deficiency virus type 1 transactivator of transcription core domain and poly-arginine-lysine: rTAT-Pla or 3 and rPoly-Arg-Lys-Pla or 3. Structural characteristics and IgE reactivity of purified recombinant proteins were compared with natural Pla or 3 (nPla or 3) isolated from Platanus orientalis using circular dichroism spectra, fluorescence spectroscopy, and immunoblotting. Likewise, intrinsic viscosity and Stokes radius of the natural and recombinant Pla or 3 allergens were determined to analyze structural compactness in aqueous media. The results indicate high-level solubility and efficient expression of the fusion proteins (rTAT-Pla or 3 and rPoly-Arg-Lys-Pla or 3) compared with the wild-type recombinant. Furthermore, the similar structural characteristics and IgE-binding activities of the fusion proteins to nPla or 3 provide a promising tool for allergy diagnosis and treatment. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. Early-life supplementation of vitamins A and D, in water-soluble form or in peanut oil, and allergic diseases during childhood.

    Science.gov (United States)

    Kull, Inger; Bergström, Anna; Melén, Erik; Lilja, Gunnar; van Hage, Marianne; Pershagen, Göran; Wickman, Magnus

    2006-12-01

    Early vitamin supplementation is given routinely to infants in many countries, but it is unclear whether this affects the risk of allergic diseases. We sought to study the association between early-life supplementation of vitamins A and D in water-soluble form or in peanut oil and allergic diseases up to 4 years of age. A prospective birth cohort of 4089 newborn infants was followed for 4 years using parental questionnaires repeatedly to collect information on exposure and health. At 4 years, the response rate was 90%, and allergen-specific IgE levels to food and airborne allergens were measured in 2614 of the participating children. Vitamins A and D were given to 98% of the children in infancy, and vitamins based in peanut oil dominated (90%). Children supplemented with vitamins A and D in water-soluble form during the first year of life had an almost 2-fold increased risk of asthma (adjusted odds ratio [OD], 2.18; 95% CI, 1.45-3.28), food hypersensitivity (adjusted OR, 1.89; 95% CI, 1.33-2.65), and sensitization to common food and airborne allergens (adjusted OR, 1.88; 95% CI, 1.34-2.64) at age 4 years compared with those receiving vitamins in peanut oil. No increased risk of IgE antibodies to peanut was seen in children receiving vitamins in peanut oil. Supplementation of vitamins A and D in water-soluble form seems to increase the risk of allergic disease up to the age of 4 years compared with supplementation with the same vitamins given in peanut oil. Vitamins A and D in oil does not seem to increase the risk of allergic disease during childhood.

  6. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO 2 partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility products

  7. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  8. Thorium oxalate solubility and morphology

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.; Hall, R.

    1981-10-01

    Thorium was used as a stand-in for studying the solubility and precipitation of neptunium and plutonium oxalates. Thorium oxalate solubility was determined over a range of 0.001 to 10.0 in the concentration parameter [H 2 C 2 O 4 ]/[HNO 3 ] 2 . Morphology of thorium oxide made from the oxalate precipitates was characterized by scanning electron microscopy. The different morphologies found for oxalate-lean and oxalate-rich precipitations were in agreement with predictions based on precipitation theory

  9. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    Science.gov (United States)

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  10. Structure of short-range-ordered iron(III)-precipitates formed by iron(II) oxidation in water containing phosphate, silicate, and calcium

    Science.gov (United States)

    Voegelin, A.; Frommer, J.; Vantelon, D.; Kaegi, R.; Hug, S. J.

    2009-04-01

    The oxidation of Fe(II) in water leads to the formation of Fe(III)-precipitates that strongly affect the fate of nutrients and contaminants in natural and engineered systems. Examples include the cycling of As in rice fields irrigated with As-rich groundwater or the treatment of drinking water for As removal. Knowledge of the types of Fe(III)-precipitates forming in such systems is essential for the quantitative modeling of nutrient and contaminant dynamics and for the optimization of water purification techniques on the basis of a mechanistic understanding of the relevant biogeochemical processes. In this study, we investigated the local coordination of Fe, P, and Ca in Fe(III)-precipitates formed by aeration of synthetic Fe(II)-containing groundwater with variable composition (pH 7, 2-30 mg/L Fe(II), 2-20 mg/L phosphate-P, 2-20 mg/L silicate-Si, 8 mM Na-bicarbonate or 2.5 mM Ca-&1.5 mM Mg-bicarbonate). After 4 hours of oxidation, Fe(III)-precipitates were collected on 0.2 µm nylon filters and dried. The precipitates were analyzed by Fe K-edge EXAFS (XAS beamline, ANKA, Germany) and by P and Ca K-edge XANES spectroscopy (LUCIA beamline, SLS, Switzerland). The Fe K-edge EXAFS spectra indicated that local Fe coordination in the precipitates systematically shifted with water composition. As long as water contained P, mainly short-range-ordered Fe(III)-phosphate formed (with molar P/Fe ~0.5). In the absence of P, Fe(III) precipitated as hydrous ferric oxide at high Si/Fe>0.5, as ferrihydrite at intermediate Si/Fe, and mainly as lepidocrocite at Si/Fe<0.2. Analysis of the EXAFS by shell-fitting indicated that Fe(III)-phosphates mainly contained mono- or oligomeric (edge- or corner-sharing) Fe and that the linkage between neighboring Fe(III)-octahedra changed from predominantly edge-sharing in Si-rich hydrous ferric oxide to edge- and corner-sharing in ferrihydrite. Electron microscopic data showed that changes in local precipitate structure were systematically

  11. Accumulation of a soluble form of human nectin-2 is required for exerting the resistance against herpes simplex virus type 2 infection in transfected cells.

    Science.gov (United States)

    Fujimoto, Y; Ozaki, K; Iwamori, N; Takakuwa, H; Ono, E

    2016-03-01

    Cell entry of herpes simplex virus type 2 (HSV-2) requires the interaction of viral glycoprotein D (gD) with the receptor nectin-1 and herpesvirus entry mediator (HVEM). In addition, it is known that nectin-2 is also functional as a receptor for HSV-2, although the binding to the gD is weak. To examine an antiviral potential of a soluble form of human nectin-2 (hNectin-2Ig), transfected Vero cells expressing the entire ectodomain of nectin-2 fused to the Fc portion of human IgG were established. Specific binding of hNectin-2Ig to HSV-2 gD was confirmed by ELISA. Competitive ELISA demonstrated that accumulation of hNectin-2Ig in transfected cells increased significantly in a cell culture time dependent manner. Viral growth of several HSV-2 strains was significantly inhibited in the transfected cells that were cultured for 72 hr compared with control Vero cells, but not in cells that were cultured for 24 hr. These results indicate that accumulation of a soluble form of nectin-2 is required for exerting the resistance against HSV-2 infection.

  12. Soluble Forms of Intercellular and Vascular Cell Adhesion Molecules Independently Predict Progression to Type 2 Diabetes in Mexican American Families.

    Directory of Open Access Journals (Sweden)

    Hemant Kulkarni

    Full Text Available While the role of type 2 diabetes (T2D in inducing endothelial dysfunction is fairly well-established the etiological role of endothelial dysfunction in the onset of T2D is still a matter of debate. In the light of conflicting evidence in this regard, we conducted a prospective study to determine the association of circulating levels of soluble intercellular adhesion molecule 1 (sICAM-1 and soluble vessel cell adhesion molecule 1 (sVCAM-1 with incident T2D.Data from this study came from 1,269 Mexican Americans of whom 821 initially T2D-free individuals were longitudinally followed up in the San Antonio Family Heart Study. These individuals were followed for 9752.95 person-years for development of T2D. Prospective association of sICAM-1 and sVCAM-1 with incident T2D was studied using Kaplan-Meier survival plots and mixed effects Cox proportional hazards modeling to account for relatedness among study participants. Incremental value of adhesion molecule biomarkers was studied using integrated discrimination improvement (IDI and net reclassification improvement (NRI indexes.Decreasing median values for serum concentrations of sICAM-1 and sVCAM-1 were observed in the following groups in this order: individuals with T2D at baseline, individuals who developed T2D during follow-up, individuals with prediabetes at baseline and normal glucose tolerant (NGT individuals who remained T2D-free during follow-up. Top quartiles for sICAM-1 and sVCAM-1 were strongly and significantly associated with homeostatic model of assessment--insulin resistance (HOMA-IR. Mixed effects Cox proportional hazards modeling revealed that after correcting for important clinical confounders, high sICAM-1 and sVCAM-1 concentrations were associated with 2.52 and 1.99 times faster progression to T2D as compared to low concentrations, respectively. Individuals with high concentrations for both sICAM-1 and sVCAM-1 progressed to T2D 3.42 times faster than those with low values for both

  13. On the effect of incremental forming on alpha phase precipitation and mechanical behavior of beta-Ti-10V-2Fe-3Al

    Science.gov (United States)

    Winter, S.; F-X Wagner, M.

    2016-03-01

    A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.

  14. First-principles investigation on the composition of Ni-Si precipitates formed in irradiated stainless steels

    Science.gov (United States)

    Chen, Dongyue; Murakami, Kenta; Dohi, Kenji; Nishida, Kenji; Ohnuma, Toshiharu; Soneda, Naoki; Li, Zhengcao; Liu, Li; Sekimura, Naoto

    2017-10-01

    Recent atom probe tomography (APT) study has revealed the complicated nature of Ni-Si precipitates in irradiated stainless steels. Although Ni3Si γ‧ phase has been confirmed under transmission electron microscopy (TEM), the Ni/Si ratio of the precipitates detected by APT is smaller than its theoretical value 3. An interpretation of the APT results is provided in this work by considering the lattice defects in the Ni3Si γ‧ phase. Using first principles calculations, Si substitutions on Ni sites were found to be the most thermodynamically stable among all the single defects considered here. Although two such substitutional defects are repulsive to each other, the repulsion decreases quickly as their separation distance grows. By keeping a large enough distance between each other, multiple Si substitutions can appear at high densities in the γ‧ phase, which can be one important contributor to the small Ni/Si atom ratio in Ni-Si precipitates observed by APT.

  15. Chemical composition of sublates (difficultly soluble substances) which form on interaction of polyvalent metal ions with potassium alkylcarboxylate

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Skryleva, T.L.; Sazonova, V.F.

    1996-01-01

    The pH value is considered for its effect on chemical composition of sublates which form on interaction of fatty acid collectors (potassium alkylcarboxylate) with polyvalent ions of Ni, An, Cu and Be. It is shown that interaction of these ions with fatty acid collectors in weakly acid, neutral and weakly alkaline solutions is accompanied by formation of medium soaps. Acid soaps are formed in more acid solutions, while in more alkaline-basic soaps. Domains of stability for medium soaps of Ni, Zn, Cu and Be are determined. 17 refs.; 4 figs

  16. Cerium oxalate precipitation

    International Nuclear Information System (INIS)

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs

  17. A soluble form of CTLA-4 is present in paediatric patients with acute lymphoblastic leukaemia and correlates with CD1d+ expression.

    Directory of Open Access Journals (Sweden)

    Rita Simone

    Full Text Available CTLA-4 is a key factor in regulating and maintaining self tolerance, providing a negative signal to the T cell and thus limiting immune responses. Several polymorphisms within the CTLA-4 gene have been associated with an increased risk of developing autoimmune diseases and, very recently, with susceptibility to human cancer. Acute lymphoblastic leukemia is a clonal disorder of lymphoid progenitors representing the most frequent malignancy of childhood. Here, we show the presence at significantly elevated levels of a circulating soluble form of CTLA-4 in 70% of B-ALL pediatric patients with active disease, the positive correlation between the percentage of leukemic B lymphocytes and the amount of serum sCTLA-4, and the expression of sCTLA-4 transcript by B cells in patients. Finally, a correlation between CD1d expression (a negative prognostic marker and the sCTLA-4 in B-ALL patients was observed. This suggests a possible role of this soluble molecule as a marker of progression or severity of the neoplastic disease.

  18. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI+] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI+] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems.

  19. The 26S Proteasome Degrades the Soluble but Not the Fibrillar Form of the Yeast Prion Ure2p In Vitro

    Science.gov (United States)

    Wang, Kai; Redeker, Virginie; Madiona, Karine; Melki, Ronald; Kabani, Mehdi

    2015-01-01

    Yeast prions are self-perpetuating protein aggregates that cause heritable and transmissible phenotypic traits. Among these, [PSI +] and [URE3] stand out as the most studied yeast prions, and result from the self-assembly of the translation terminator Sup35p and the nitrogen catabolism regulator Ure2p, respectively, into insoluble fibrillar aggregates. Protein quality control systems are well known to govern the formation, propagation and transmission of these prions. However, little is known about the implication of the cellular proteolytic machineries in their turnover. We previously showed that the 26S proteasome degrades both the soluble and fibrillar forms of Sup35p and affects [PSI +] propagation. Here, we show that soluble native Ure2p is degraded by the proteasome in an ubiquitin-independent manner. Proteasomal degradation of Ure2p yields amyloidogenic N-terminal peptides and a C-terminal resistant fragment. In contrast to Sup35p, fibrillar Ure2p resists proteasomal degradation. Thus, structural variability within prions may dictate their ability to be degraded by the cellular proteolytic systems. PMID:26115123

  20. Micro-scale prediction method for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion.

    Science.gov (United States)

    Bochmann, Esther S; Neumann, Dirk; Gryczke, Andreas; Wagner, Karl G

    2016-10-01

    A new predictive micro-scale solubility and process model for amorphous solid dispersions (ASDs) by hot-melt extrusion (HME) is presented. It is based on DSC measurements consisting of an annealing step and a subsequent analysis of the glass transition temperature (Tg). The application of a complex mathematical model (BCKV-equation) to describe the dependency of Tg on the active pharmaceutical ingredient (API)/polymer ratio, enables the prediction of API solubility at ambient conditions (25°C). Furthermore, estimation of the minimal processing temperature for forming ASDs during HME trials could be defined and was additionally confirmed by X-ray powder diffraction data. The suitability of the DSC method was confirmed with melt rheological trials (small amplitude oscillatory system). As an example, ball milled physical mixtures of dipyridamole, indomethacin, itraconazole and nifedipine in poly(vinylpyrrolidone-co-vinylacetate) (copovidone) and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) were used. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Electroluminescence properties of Si MOS structures with incorporation of FeSi2 precipitates formed by iron implantation

    International Nuclear Information System (INIS)

    Chow, C.F.; Wong, S.P.; Gao, Y.; Ke, N.; Li, Q.; Cheung, W.Y.; Lourenco, M.A.; Homewood, K.P.

    2005-01-01

    Silicon MOS structures with FeSi 2 precipitates embedded in the MOS active region have been fabricated and the electroluminescence (EL) properties from these FeSi 2 -Si MOS structures were measured as a function of temperature from 80 K to 300 K. Clear EL signals were observed even at room temperature for samples prepared at appropriate processing conditions. The EL spectra consist of two peaks, one attributed to FeSi 2 and the other attributed to Si band edge emission. While the intensity of the FeSi 2 peak showed the usual thermal quenching behavior, the Si band edge emission showed the opposite trend with its intensity increased with increasing temperature. Details of the line shapes and their temperature dependence are analyzed and discussed

  2. Inhibition of calcium phosphate precipitation under environmentally-relevant conditions

    International Nuclear Information System (INIS)

    Cao Xinde; Harris, Willie G.; Josan, Manohardeep S.; Nair, Vimala D.

    2007-01-01

    Precipitation of Ca phosphates plays an important role in controlling P activity and availability in environmental systems. The purpose of this study was to determine inhibitory effects on Ca phosphate precipitation by Mg 2+ , SO 4 2- , CO 3 2- , humic acid, oxalic acid, biogenic Si, and Si-rich soil clay commonly found in soils, sediments, and waste streams. Precipitation rates were determined by measuring decrease of P concentration in solutions during the first 60 min; and precipitated solid phases identified using X-ray diffraction and electron microscopy. Poorly-crystalline hydroxyapatite (HAP: Ca 5 (PO 4 ) 3 OH) formed in control solutions over the experiment period of 24 h, following a second-order dependence on P concentration. Humic acid and Mg 2+ significantly inhibited formation of HAP, allowing formation of a more soluble amorphous Ca phosphate phase (ACP), and thus reducing the precipitation rate constants by 94-96%. Inhibition caused by Mg 2+ results from its incorporation into Ca phosphate precipitates, preventing formation of a well-crystalline phase. Humic acid likely suppressed Ca phosphate precipitation by adsorbing onto the newly-formed nuclei. Presence of oxalic acid resulted in almost complete inhibition of HAP precipitation due to preemptive Ca-oxalate formation. Carbonate substituted for phosphate, decreasing the crystallinity of HAP and thus reducing precipitation rate constant by 44%. Sulfate and Si-rich solids had less impact on formation of HAP; while they reduced precipitation in the early stage, they did not differ from the control after 24 h. Results indicate that components (e.g., Mg 2+ , humic acid) producing relatively soluble ACP are more likely to reduce P stability and precipitation rate of Ca phosphate in soils and sediments than are components (e.g., SO 4 2- , Si) that have less effect on the crystallinity

  3. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    Science.gov (United States)

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1 H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  4. Laminae development in opal-A precipitates associated with seasonal growth of the form-genus Calothrix (Cyanobacteria), Rehai geothermal area, Tengchong, Yunnan Province, China

    Science.gov (United States)

    Jones, Brian; Peng, Xiaotong

    2015-04-01

    The western discharge apron at Meinuquan (Rehai geothermal area, Yunnan Province, China), which incorporates the upper terrace, terrace front, and lower terrace, is covered with laminated opal-A precipitates that have formed from the spring waters that flow across its surface. Laminae are formed of silicified Calothrix mats or featureless opal-A that contains no microbes, scattered spherical and rod-shaped microbes, and/or rare Calothrix. Rapid silicification of the Calothrix led to preservation of their basal heterocysts, vegetative cells, trichomes, tapering filaments, and laminated and splayed sheaths. The Calothrix mats grew during the dry season when there was maximum sunlight because of low cloud cover. During this time, the mats grew under stable conditions because the water that flowed across the discharge apron was sourced from the springs, and temperature and water geochemistry was more or less constant. Growth of the Calothrix mats decreased during the wet season (April to late September) when sunlight is reduced due to the extensive cloud cover associated with the monsoonal rains. During the wet season, water flowing over the discharge apron is a mixture of rainwater, runoff from the surrounding hillsides, and spring water. Such variable flow conditions, water temperatures, and water geochemistry curtailed microbe growth and impacted silica precipitation. The precipitates at Meinuquan are like those associated with some Icelandic hot springs. Although growth of Calothrix is controlled by sunlight in both settings, the periods of maximum sunlight in China (October-March) and Iceland (June-August) are at different times of the year because of their geographic locations.

  5. Evaluation of precipitates used in strainer head loss testing: Part III. Long-term aluminum hydroxide precipitation tests in borated water

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Research highlights: → Aluminum hydroxide precipitation boundary is similar to that for amorphous phase. → Various precipitation tests are combined into one map in temperature-'pH + p[Al] T '. → Flocculation tendency of precipitates depend on pH and total Al concentration. → DLVO theory explains qualitatively the dependency of flocculation tendency on pH. - Abstract: Long-term aluminum (Al) hydroxide precipitation tests were conducted in slightly alkaline solutions containing 2500 ppm boron. The solution temperature was cycled to obtain a temperature history more representative of emergency core cooling system temperatures after a loss-of-coolant accident. The observed Al precipitation boundary was close to predicted results for amorphous precipitates, which are higher than the solubility expected for crystalline forms. Bench-scale and loop head loss test results under various conditions were successfully combined into single map in a temperature - 'pH + p[Al] T ' domain, which yielded two bounding lines for Al hydroxide solubility in borated alkaline water that depend on whether or not loop head loss tests with Al alloy coupons are included. Precipitates were observed to form either as fine, cloudy suspensions, which showed very little tendency to settle, or as flocculated precipitates. The flocculation tendency of the precipitates can be qualitatively explained by a colloid stability theory or a phase diagram for protein solutions.

  6. Spectroscopic analysis of the precipitate formed in the mixture of 5.25% sodium hypochlorite and 2% chlorhexidine: study in vitro: part II

    International Nuclear Information System (INIS)

    Cespedes Viquez, Carolina; Flores Cruz, Gema; Orozco Munoz, Juan Ignacio; Sanchez Benavides, Jesus Francisco; Villalobos Montero, Alexander Enrique

    2013-01-01

    The content of precipitate formed is determined as a product of the interaction between 5.25% sodium hypochlorite and 2% chlorhexidine. Three groups of samples have analyzed. Group A: Pure lyophilized chlorhexidine gluconate. Group B: mixture of 2 ml of 2% chlorhexidine with 2 ml of 5.25% sodium hypochlorite. Group C: a mixture of 6 ml with 2 ml of 2% chlorhexidine with 2 ml of 2.25% sodium hypochlorite and 2 ml of 100% acetic acid. The analysis obtained by thin layer chromatography were generated over a chemical substance with similar characteristics. The method has allowed to isolate the compound part needed to be analyzed by nuclear magnetic resonance spectroscopy. The nuclear magnetic resonance 13 C at 100 MHz has determined that the signal appears at lower field (δ: 146.5 ppm) and indicated the presence or absence of Para-chlorophenylurea in samples from the precipitate formed by 5.25% sodium hypochlorite, 2% chlorhexidine gluconate. The measurements have resulted in the lack of Para-chlorophenylurea, either the signal has occurred when acetic acid is included. (author) [es

  7. Chemical forms of the fluorine and carbon in fly ashes recovered from electrostatic precipitators of pulverized coal-fired plants

    Energy Technology Data Exchange (ETDEWEB)

    Naoto Tsubouchi; Hidekazu Hayashi; Akiyuki Kawashima; Masahide Sato; Noboru Suzuki; Yasuo Ohtsuka [Tohoku University, Sendai (Japan). Institute of Multidisciplinary Research for Advanced Materials

    2011-01-15

    The functionalities of the fluorine and carbon present in fly ashes formed in pulverized coal combustion have been studied with X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD) techniques. The ash samples include 20-130 {mu}g/g-dry and 0.4-4.1 mass%-dry of fluorine and carbon elements, respectively, and these components are enriched at the outermost layer of the ash surface. The F consists of both inorganic and organic functionalities, and the proportion of the latter is as high as 84-98 mol%. The C has different types of surface oxygen species, such as carboxyl, lactone/acid anhydride and phenolic groups, and most of these groups decompose to CO{sub 2} or CO up to 700{sup o}C to yield carbon active sites. When the amount of the O-functional forms increases, the content of organic C-F forms tends to increase almost linearly. On the basis of the above results, it may be speculated as one possibility that the formation of covalent C-F bonds takes place mainly through secondary reactions between gaseous F-containing compounds (HF and/or F{sub 2}) in flue gas and carbon active sites produced below 700{sup o}C downstream of coal-fired boilers. 30 refs., 8 figs., 4 tabs.

  8. Anomalous Solubility Behavior of Several Acidic Drugs

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  9. PrPST, a Soluble, Protease Resistant and Truncated PrP Form Features in the Pathogenesis of a Genetic Prion Disease

    Science.gov (United States)

    Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrPC into PrPSc in the transmissible form of prion disease requires a preexisting PrPSc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrPST), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrPST as in TgMHu2ME199K mice, and “classical” PrPSc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition. PMID:23922744

  10. PrP(ST), a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Science.gov (United States)

    Friedman-Levi, Yael; Mizrahi, Michal; Frid, Kati; Binyamin, Orli; Gabizon, Ruth

    2013-01-01

    While the conversion of PrP(C) into PrP(Sc) in the transmissible form of prion disease requires a preexisting PrP(Sc) seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST)), a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST) as in TgMHu2ME199K mice, and "classical" PrP(Sc) as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  11. PrP(ST, a soluble, protease resistant and truncated PrP form features in the pathogenesis of a genetic prion disease.

    Directory of Open Access Journals (Sweden)

    Yael Friedman-Levi

    Full Text Available While the conversion of PrP(C into PrP(Sc in the transmissible form of prion disease requires a preexisting PrP(Sc seed, in genetic prion disease accumulation of disease related PrP could be associated with biochemical and metabolic modifications resulting from the designated PrP mutation. To investigate this possibility, we looked into the time related changes of PrP proteins in the brains of TgMHu2ME199K/wt mice, a line modeling for heterozygous genetic prion disease linked to the E200K PrP mutation. We found that while oligomeric entities of mutant E199KPrP exist at all ages, aggregates of wt PrP in the same brains presented only in advanced disease, indicating a late onset conversion process. We also show that most PK resistant PrP in TgMHu2ME199K mice is soluble and truncated (PrP(ST, a pathogenic form never before associated with prion disease. We next looked into brain samples from E200K patients and found that both PK resistant PrPs, PrP(ST as in TgMHu2ME199K mice, and "classical" PrP(Sc as in infectious prion diseases, coincide in the patient's post mortem brains. We hypothesize that aberrant metabolism of mutant PrPs may result in the formation of previously unknown forms of the prion protein and that these may be central for the fatal outcome of the genetic prion condition.

  12. Periodic precipitation a microcomputer analysis of transport and reaction processes in diffusion media, with software development

    CERN Document Server

    Henisch, H K

    1991-01-01

    Containing illustrations, worked examples, graphs and tables, this book deals with periodic precipitation (also known as Liesegang Ring formation) in terms of mathematical models and their logical consequences, and is entirely concerned with microcomputer analysis and software development. Three distinctive periodic precipitation mechanisms are included: binary diffusion-reaction; solubility modulation, and competitive particle growth. The book provides didactic illustrations of a valuable investigational procedure, in the form of hypothetical experimentation by microcomputer. The development

  13. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  14. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    Science.gov (United States)

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  15. Investigation of the precipitation of Na2SO4 in supercritical water

    DEFF Research Database (Denmark)

    Voisin, T.; Erriguible, A.; Philippot, G.

    2017-01-01

    solubility in sub-and supercritical water is determined on a wide temperature range using a continuous set-up. Crystallite sizes formed after precipitation are measured with in situ synchrotron wide angle X-ray scattering (WAXS). Combining these experimental results, a numerical modeling of the precipitation......SuperCritical Water Oxidation process (SCWO) is a promising technology for treating toxic and/or complex chemical wastes with very good efficiency. Above its critical point (374 degrees C, 22.1 MPa), water exhibits particular properties and organic compounds can be easily dissolved and degraded...... with the addition of oxidizing agents. But these interesting properties imply a main drawback regarding inorganic compounds. Highly soluble at ambient temperature in water, these inorganics (such as salts) are no longer soluble in supercritical water and precipitate into solids, creating plugs in SCWO processes...

  16. A soluble form of IL-13 receptor alpha 1 promotes IgG2a and IgG2b production by murine germinal center B cells.

    Science.gov (United States)

    Poudrier, J; Graber, P; Herren, S; Gretener, D; Elson, G; Berney, C; Gauchat, J F; Kosco-Vilbois, M H

    1999-08-01

    A functional IL-13R involves at least two cell surface proteins, the IL-13R alpha 1 and IL-4R alpha. Using a soluble form of the murine IL-13R alpha 1 (sIL-13R), we reveal several novel features of this system. The sIL-13R promotes proliferation and augmentation of Ag-specific IgM, IgG2a, and IgG2b production by murine germinal center (GC) B cells in vitro. These effects were enhanced by CD40 signaling and were not inhibited by an anti-IL4R alpha mAb, a result suggesting other ligands. In GC cell cultures, sIL-13R also promoted IL-6 production, and interestingly, sIL-13R-induced IgG2a and IgG2b augmentation was absent in GC cells isolated from IL-6-deficient mice. Furthermore, the effects of the sIL-13R molecule were inhibited in the presence of an anti-IL-13 mAb, and preincubation of GC cells with IL-13 enhanced the sIL-13R-mediated effects. When sIL-13R was injected into mice, it served as an adjuvant-promoting production to varying degrees of IgM and IgG isotypes. We thus propose that IL-13R alpha 1 is a molecule involved in B cell differentiation, using a mechanism that may involve regulation of IL-6-responsive elements. Taken together, our data reveal previously unknown activities as well as suggest that the ligand for the sIL-13R might be a component of the IL-13R complex or a counterstructure yet to be defined.

  17. Students’ misconceptions on solubility equilibrium

    Science.gov (United States)

    Setiowati, H.; Utomo, S. B.; Ashadi

    2018-05-01

    This study investigated the students’ misconceptions of the solubility equilibrium. The participants of the study consisted of 164 students who were in the science class of second year high school. Instrument used is two-tier diagnostic test consisting of 15 items. Responses were marked and coded into four categories: understanding, misconception, understand little without misconception, and not understanding. Semi-structured interviews were carried out with 45 students according to their written responses which reflected different perspectives, to obtain a more elaborated source of data. Data collected from multiple methods were analyzed qualitatively and quantitatively. Based on the data analysis showed that the students misconceptions in all areas in solubility equilibrium. They had more misconceptions such as in the relation of solubility and solubility product, common-ion effect and pH in solubility, and precipitation concept.

  18. Continuous precipitation process of plutonium salts; Procede continu de precipitation des sels de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-03-01

    This work concerns the continuous precipitation process of plutonium oxalate. Investigations about the solubility of different valence states in nitric-oxalic and in nitric-sulfuric-oxalic medium lead to select the precipitation process of tetravalent plutonium oxalate. Settling velocity and granulometry of tetravalent oxalate plutonium have been studied with variation of several precipitation parameters such as: temperature, acidity, excess of oxalic acid and aging time. Then are given test results of some laboratory continuous apparatus. Conditions of operation with adopted tubular apparatus are defined in conclusion. A flow-sheet is given for a process at industrial scale. (author) [French] Cette etude porte sur la precipitation continue de l'oxalate de plutonium. L'etude de la solubilite des differentes valences du plutonium dans des milieux acides nitrique-oxalique, puis nitrique-sulfurique-oxalique conduit a choisir la precipitation de l'oxalate de plutonium tetravalent. L'etude porte ensuite sur la sedimentation et la granulometrie de l'oxalate de Pu{sup 4+} obtenue en faisant varier differents parametres de la precipitation : la temperature, l'acidite, l'exces oxalique et le temps de murissement. La derniere partie traite des resultats obtenus avec plusieurs types d'appareils continus essayes au laboratoire. En conclusion sont donnees les conditions de marche de l'appareil tubulaire adopte, ainsi qu'une extrapolation a l'echelle industrielle sous forme d'un flow-sheet. (auteur)

  19. Two-stage precipitation of neptunium (IV) oxalate

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    Neptunium (IV) oxalate was precipitated using a two-stage precipitation system. A series of precipitation experiments was used to identify the significant process variables affecting precipitate characteristics. Process variables tested were input concentrations, solubility conditions in the first stage precipitator, precipitation temperatures, and residence time in the first stage precipitator. A procedure has been demonstrated that produces neptunium (IV) oxalate particles that filter well and readily calcine to the oxide

  20. Simplified sample treatment for the determination of total concentrations and chemical fractionation forms of Ca, Fe, Mg and Mn in soluble coffees.

    Science.gov (United States)

    Pohl, Pawel; Stelmach, Ewelina; Szymczycha-Madeja, Anna

    2014-11-15

    A simpler, and faster than wet digestion, sample treatment was proposed prior to determination of total concentrations for selected macro- (Ca, Mg) and microelements (Fe, Mn) in soluble coffees by flame atomic absorption spectrometry. Samples were dissolved in water and acidified with HNO3. Precision was in the range 1-4% and accuracy was better than 2.5%. The method was used in analysis of 18 soluble coffees available on the Polish market. Chemical fractionation patterns for Ca, Fe, Mg and Mn in soluble coffees, as consumed, using a two-column solid-phase extraction method, determined Ca, Mg and Mn were present predominantly as cations (80-93% of total content). This suggests these elements are likely to be highly bioaccessible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of solid fission products forming dissolved oxide(Nd) and metallic precipitate(Ru) on the thermophysical properties of MOX fuel

    International Nuclear Information System (INIS)

    Kim, Dong Joo

    2006-02-01

    This study experimentally investigated the effect of solid fission products on the thermophysical properties of the mixed oxide fuel and evaluated them on the basis of the analytical theory. Neodymium and ruthenium were selected for the experiments to represent the physical states of the solid fission product as a 'dissolved oxide' and 'metallic precipitate', respectively. The state of the additives, crystal structures, lattice parameters, and theoretical densities were investigated with X-ray diffraction (XRD). Thermal diffusivities and thermal expansion rates were measured with laser flash method and dilatometry, respectively. The thermal expansion data were then fitted to obtain an correlation equation of the density variation as a function of the temperature. The specific heat capacity values were determined using the Neumann-Kopp's rule. The thermal expansion of the 'Nd.added' sample linearly increased with the concentration of the neodymium, which is primarily due to the fact that the melting point of Nd 2 O 3 is lower than that of UO 2 . On the other hand, the thermal expansion of the 'Ru.added' sample hardly changed with increasing ruthenium content. Thermal conductivities of the simulated MOX fuel were determined on the basis of the thermal diffusivities, density variation, and specific heat values measured in this study. The effect of additives on the thermal conductivity of the samples was quantified in the form of the thermal resistance equation, the reciprocal of the phonon conduction equation, which was determined from measured data. For 'dissolved oxide' sample in the UO 2 matrix, the effect is mainly attributed to the increase of lattice point defects caused by U 4+ , Ce 4+ , Nd 3+ and O 2- ions, which play the role of phonon scattering centers, that is, mean free path of phonon scattering decreases with the point defects, thus increase the thermal resistance. Also, the mass difference between the host (U) and the substituted atom (Ce and/or Nd) can

  2. Serodiagnosis of bovine trypanosomosis caused by non-tsetse transmitted Trypanosoma (Duttonella) vivax parasites using the soluble form of a Trypanozoon variant surface glycoprotein antigen.

    Science.gov (United States)

    Uzcanga, Graciela L; Pérez-Rojas, Yenis; Camargo, Rocío; Izquier, Adriana; Noda, José A; Chacín, Ronny; Parra, Nereida; Ron, Lenin; Rodríguez-Hidalgo, Richar; Bubis, José

    2016-03-15

    Previous studies have shown that a 64-kDa antigen (p64) that was purified from the Venezuelan TeAp-N/D1 isolate of Trypanosoma (Trypanozoon) equiperdum corresponds to the soluble form of its predominant variant surface glycoprotein (VSG), and exhibited cross-reactivity with Trypanosoma (Duttonella) vivax. The course of experimental acute infections of bovines with T. vivax were followed by measuring whole anti-p64 antibodies and specific anti-p64 IgG and IgM antibodies in animal sera by indirect enzyme-linked immunosorbent assay (ELISA). The value of p64 to diagnose bovine trypanosomosis was also examined using 350 sera from healthy and T. vivax-infected cows living in a trypanosomosis-endemic and enzootic stable area, and 48 sera obtained during a trypanosomosis outbreak. Serological assays showed that ∼ 70-80% of the infected sera contained anti-p64 antibodies, based on the comparative immunodetection of the T. equiperdum clarified antigenic fraction used as a reference test. In the absence of a gold standard, Bayesian analysis for multiple testing estimated a sensitivity and specificity of 71.6% and 98.8%, respectively, for the indirect ELISA using p64 as antigen. An apparent prevalence of 37.7% for bovine trypanosomosis infection was also estimated with a Bayesian approach when the p64 ELISA test was used. Employing blood from acute infected cows, the indirect ELISA response against p64 was contrasted with the microhematocrit centrifuge method and analyses by polymerase chain reaction (PCR) using specific primers targeting the inter-specific length variation of the internal transcribed spacer 1 region of the 18S ribosomal gene. The efficiency of p64 for the detection of anti-trypanosome antibodies in acute infected bovines was also corroborated serologically by comparing its response to that of the Indonesian Trypanosoma evansi Rode Trypanozoon antigen type (RoTat) 1.2 VSG, which possesses high specificity and sensitivity. As expected, PCR was the best

  3. Soluble form of membrane attack complex independently predicts mortality and cardiovascular events in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Lindberg, Søren; Pedersen, Sune H; Mogelvang, Rasmus

    2012-01-01

    The complement system is an important mediator of inflammation, which plays a pivotal role in atherosclerosis and acute myocardial infarction (AMI). Animal studies suggest that activation of the complement cascade resulting in the formation of soluble membrane attack complex (sMAC), contributes...

  4. Discontinuous drainage systems formed by highland precipitation and ground-water outflow in the Navua Valles and southwest Hadriacus Mons regions, Mars

    Science.gov (United States)

    Hargitai, H. I.; Gulick, V. C.; Glines, N. H.

    2017-09-01

    The Navua Valles are systems of paleodrainages located north of Dao Vallis, which empty into Hellas Planitia, the largest impact basin on Mars. In this study, we mapped and characterized the Navua Valles Region's individual drainage systems, including drainages along the southwestern flank of Hadriacus Mons, and one valley network from the same source as Navua Valles but flowing in the opposite direction. The major drainage systems share morphological characteristics common to both outflow channels and valley networks. The slopes in this region are dissected by two major Navua drainage systems (here Navua A* and B*) and several shorter, sub-parallel valleys formed on the highest gradient (approximately 20 m/km [1.15°]) slopes, at the lowest part of Hellas Basin's rim. The two major drainage systems originate in the highlands, and empty into the basin. Our mapping suggests that water in Navua Valles reached the basin floor in a complicated descent and included several episodes of surface ponding, surface runoff, infiltration, subsurface flow and subsequent outflow. The most prominent channel system, Navua A, forms a repetitive sequence of deep incision into bedrock, followed by a transition into broad channels in erodible materials, and then into unconfined deposits. This successive erosion-transport-deposition sequence continues to repeat along the valley's entire length forming a discontinuous pattern that is consistent with classical fluvial process models. The channels cut into volcanic plains likely emplaced from the formation of Tyrrhenus and Hadriacus Montes. The dendritic source valleys of Navua A originate from the rim of a highland crater while the rest of this subsystem consists of a single, discontinuous channel which is consistent with a single water source zone that likely supplied water for all channels downslope. These drainages may have formed as discontinuous channels, revealing the potential existence of subsurface drainage pathways located

  5. Comparison of the antiviral potential among soluble forms of herpes simplex virus type-2 glycoprotein D receptors, herpes virus entry mediator A, nectin-1 and nectin-2, in transgenic mice.

    Science.gov (United States)

    Fujimoto, Yoshikazu; Tomioka, Yukiko; Ozaki, Kinuyo; Takeda, Keiko; Suyama, Haruka; Yamamoto, Sayo; Takakuwa, Hiroki; Morimatsu, Masami; Uede, Toshimitsu; Ono, Etsuro

    2017-07-01

    Herpesvirus entry mediator A (HVEM), nectin-1 and nectin-2 are cellular receptors of glycoprotein D (gD) of herpes simplex virus type-2 (HSV-2). It has been shown that soluble forms of HSV gD receptors have the antiviral potential in cultured cells and transgenic mice. Here, to compare antiviral potential of soluble forms of HVEM, nectin-1 and nectin-2 against HSV-2 infections in vivo, transgenic mice expressing fusion proteins consisting of the entire ectodomain of HVEM, nectin-1 or nectin-2 and the Fc portion of human IgG (HVEMIg, nectin-1Ig and nectin-2Ig, respectively) were intraperitoneally infected with HSV-2. In the infection with 3 MLD50 (50 % mouse lethal dose), effective resistance was not observed in transgenic mice expressing nectin-2Ig. In a transgenic mouse line with high expression of nectin-1Ig, significant protection from the infection with 30 and 300 MLD50 was observed (survival rate of 100 and 71 %, respectively). On the other hand, transgenic mice expressing HVEMIg showed a complete resistance to the lethal infection even with 300 MLD50 (survival rate of 100 %). These results demonstrated that HVEMIg could exert effective antiviral activities against HSV-2 infections in vivo as compared with other soluble forms of HSV gD receptors.

  6. The precipitation and effect of nano nitrides in HSLC steel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The existing forms of N and Al in HSLC (high strength low carbon) steel produced by TSCR (thin slab casting and rolling process), the precipitation thermodynamics and kinetics of AlN, and its effects on structure and mechanical property are studied. The experimental results show that only a small quantity of nitrogen is com- bined into AlN in HSLC steel produced by TSCR and most of the nitrogen in steel is still free nitrogen. Aluminum-nitride is mainly precipitated during the period of slow air cooling after coiling, but not during rolling and water cooling. The acid-soluble aluminum has no obvious effect on the grain size and mechanical property of HSLC steel produced by TSCR whose acid-soluble aluminum content is 0.005%―0.043%. The precipitation of AlN is not the main cause of grain refinement of HSLC steel produced by TSCR, nor is AlN the dominating precipitate that has precipitation strengthening effect. The nano nitrides are not pure AlN, but have complex compositions.

  7. Rotational temperature of N2+ (0,2 ions from spectrographic measurements used to infer the energy of precipitation in different auroral forms and compared with radar measurements

    Directory of Open Access Journals (Sweden)

    D. Lummerzheim

    2008-05-01

    Full Text Available High resolution spectral data are used to estimate neutral temperatures at auroral heights. The data are from the High Throughput Imaging Echelle Spectrograph (HiTIES which forms part of the Spectrographic Imaging Facility (SIF, located at Longyearbyen, Svalbard in Norway. The platform also contains photometers and a narrow angle auroral imager. Quantum molecular spectroscopy is used for modelling N2+ 1NG (0,2, which serves as a diagnostic tool for neutral temperature and emission height variations. The theoretical spectra are convolved with the instrument function and fitted to measured rotational transition lines as a function of temperature. Measurements were made in the magnetic zenith, and along a meridian slit centred on the magnetic zenith. In the results described, the high spectral resolution of the data (0.08 nm allows an error analysis to be performed more thoroughly than previous findings, with particular attention paid to the correct subtraction of background, and to precise wavelength calibration. Supporting measurements were made with the Svalbard Eiscat Radar (ESR. Estimates were made from both optical and radar observations of the average energy of precipitating electrons in different types of aurora. These provide confirmation that the spectral results are in agreement with the variations observed in radar profiles. In rayed aurora the neutral temperature was highest (800 K and the energy lowest (1 keV. In a bright curling arc, the temperature at the lower border was about 550 K, corresponding to energies of 2 keV. The radar and modelling results confirm that these average values are a lower limit for an estimation of the characteristic energy. In each event the energy distribution is clearly made up of more than one spectral shape. This work emphasises the need for high time resolution as well as high spectral resolution. The present work is the first to provide rotational temperatures using a method which pays particular

  8. Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloy

    International Nuclear Information System (INIS)

    Chen, Y.Q.; Francis, E.; Robson, J.; Preuss, M.; Haigh, S.J.

    2015-01-01

    Size-dependent compositional variations under different cooling regimes have been investigated for ordered L1 2 -structured gamma prime (γ′) precipitates in the commercial powder metallurgy Ni-based superalloy RR1000. Using scanning transmission electron microscope imaging combined with absorption-corrected energy-dispersive X-ray spectroscopy, we have discovered large differences in the Al, Ti and Co compositions for γ′ precipitates in the size range 10–300 nm. Our experimental results, coupled with complementary thermodynamic calculations, demonstrate the importance of kinetic factors on precipitate composition in Ni-based superalloys. In particular, these results provide new evidence for the role of elemental diffusion kinetics and aluminium antisite atoms on the low-temperature growth kinetics of fine-scale γ′ precipitates. Our findings have important implications for understanding the microstructure and precipitation behaviour of Ni-based superalloys, suggesting a transition in the mechanism of vacancy-mediated diffusion of Al from intrasublattice exchange at high temperatures to intersublattice antisite-assisted exchange at low temperatures

  9. Precipitation in partially stabilized zirconia

    International Nuclear Information System (INIS)

    Bansal, G.K.

    1975-01-01

    Transmission electron microscopy was used to study the substructure of partially stabilized ZrO 2 (PSZ) samples, i.e., 2-phase systems containing both cubic and monoclinic modifications of zirconia, after various heat treatments. Monoclinic ZrO 2 exists as (1) isolated grains within the polycrystalline aggregate (a grain- boundary phase) and (2) small plate-like particles within cubic grains. These intragranular precipitates are believed to contribute to the useful properties of PSZ via a form of precipitation hardening. These precipitates initially form as tetragonal ZrO 2 , with a habit plane parallel to the brace 100 brace matrix planes. The orientation relations between the tetragonal precipitates and the cubic matrix are brace 100 brace/sub matrix/ 2 parallel brace 100 brace /sub precipitate/ or (001)/sub precipitate/ and broken bracket 100 broken bracket/sub matrix/ 2 parallel broken bracket 100 broken bracket/sub precipitate/ or [001]/sub precipitate/. (U.S.)

  10. Preparation, characterization and solubility product constant of AmOHCO3

    International Nuclear Information System (INIS)

    Silva, R.J.

    1985-01-01

    An investigation into the nature and solubility of a stable solid phase formed by a trivalent actinide, 243 Am 3+ , in dilute aqueous carbonate solutions was conducted. The compound exhibited an x-ray powder diffraction pattern which was nearly identical to that reported for NdOHCO 3 - type A. The pattern could be indexed in the orthorhombic system with unit cell parameters a = 4.958, b = 8.487, and c = 7.215 A. The steady-state solubility of the compound was determined from the results of both dissolution and precipitation experiments. The average solubility product quotient for 0.1M ionic strength, 25 +- 1 0 C and 1 atmosphere pressure was found to be 583 +- 206. The solubility product constant for zero ionic strength was estimated to be 335 +- 120. 22 references, 3 tables

  11. Preparation, characterization and solubility product constant of AmOHCO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.J.

    1985-01-12

    An investigation into the nature and solubility of a stable solid phase formed by a trivalent actinide, /sup 243/Am/sup 3 +/, in dilute aqueous carbonate solutions was conducted. The compound exhibited an x-ray powder diffraction pattern which was nearly identical to that reported for NdOHCO/sub 3/ - type A. The pattern could be indexed in the orthorhombic system with unit cell parameters a = 4.958, b = 8.487, and c = 7.215 A. The steady-state solubility of the compound was determined from the results of both dissolution and precipitation experiments. The average solubility product quotient for 0.1M ionic strength, 25 +- 1/sup 0/C and 1 atmosphere pressure was found to be 583 +- 206. The solubility product constant for zero ionic strength was estimated to be 335 +- 120. 22 references, 3 tables.

  12. Effect of indifferent anions on reactions of cadmium ferrocyanide precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Gyunner, Eh A; Mel' nichenko, L M; Vel' mozhnyj, I S [Simferopol' skij Gosudarstvennyj Univ. (Ukrainian SSR)

    1982-08-01

    To clarify the effect of indifferent anions on the processes of cadmium ferrocyanide precipitation the interaction in six systems of the type CdXsub(m)-Msub(4)R-Hsub(2)O (X-Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/; M-K/sup +/, NH/sub 4//sup +/; R-(Fe(CN)/sub 6/)/sup 4 -/) is studied using the methods of physicochemical analysis (the method of residual concentrations, refractometry). Composition and formation regions of low-soluble interaction products are determined. Effect of anion X nature on interaction character is stated in the series Cl/sup -/, CH/sub 3/COO/sup -/, SO/sub 4//sup 2 -/ in mixtures with incomplete Cd/sup 2 +/ precipitation a tendency for the increase of Cd/sup 2 +/:R/sup 4 -/ ratios in precipitates formed is observed.

  13. The adsorption of orthophosphate onto casein-iron precipitates.

    Science.gov (United States)

    Mittal, Vikas A; Ellis, Ashling; Ye, Aiqian; Edwards, Patrick J B; Singh, Harjinder

    2018-01-15

    This study explored the interactions of orthophosphate with casein-iron precipitates. Casein-iron precipitates were formed by adding ferric chloride at ≥10mM to sodium caseinate solutions ranging in concentration from 1 to 3%(w/v). The addition of different concentrations of orthophosphate solution to the casein-iron precipitates resulted in gradual adsorption of the orthophosphate, causing re-dispersion of the casein-iron complexes. The interactions of added orthophosphate with iron in the presence and absence of caseins are postulated, and new mechanisms are proposed. The re-dispersed soluble complexes of casein-iron-orthophosphate generated using this process could be used as novel iron fortificants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preliminary considerations concerning actinide solubilities

    International Nuclear Information System (INIS)

    Newton, T.W.; Bayhurst, B.P.; Daniels, W.R.; Erdal, B.R.; Ogard, A.E.

    1980-01-01

    Work at the Los Alamos Scientific Laboratory on the fundamental solution chemistry of the actinides has thus far been confined to preliminary considerations of the problems involved in developing an understanding of the precipitation and dissolution behavior of actinide compounds under environmental conditions. Attempts have been made to calculate solubility as a function of Eh and pH using the appropriate thermodynamic data; results have been presented in terms of contour maps showing lines of constant solubility as a function of Eh and pH. Possible methods of control of the redox potential of rock-groundwater systems by the use of Eh buffers (redox couples) is presented

  15. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  16. Kinetics of cadmium hydroxide precipitation

    International Nuclear Information System (INIS)

    Patterson, J.W.; Marani, D.; Luo, B.; Swenson, P.

    1987-01-01

    This paper presents some preliminary results on the kinetics of Cd(OH)/sub 2/ precipitation, both in the absence and the presence of citric acid as an inhibiting agent. Batch and continuous stirred tank reactor (CSTR) precipitation studies are performed by mixing equal volumes of NaOH and Cd(NO/sub 3/)/sub 2/ solutions, in order to avoid localized supersaturation conditions. The rate of metal removal from the soluble phase is calculated from the mass balance for the CSTR precipitation tests. In addition, precipitation kinetics are studied in terms of nucleation and crystal growth rates, by means of a particle counter that allows a population balance analysis for the precipitation reactor at steady state conditions

  17. Precipitation and measurements of precipitation

    NARCIS (Netherlands)

    Schmidt, F.H.; Bruin, H.A.R. de; Attmannspacher, W.; Harrold, T.W.; Kraijenhoff van de Leur, D.A.

    1977-01-01

    In Western Europe, precipitation is normal phenomenon; it is of importance to all aspects of society, particularly to agriculture, in cattle breeding and, of course, it is a subject of hydrological research. Precipitation is an essential part in the hydrological cycle. How disastrous local

  18. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    International Nuclear Information System (INIS)

    Hoetzel, Isidro; Cheevers, William P.

    2005-01-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain β-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding

  19. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Cynthia L. [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Connolly, Sarah A. [Department of Health Sciences, DePaul University, Chicago, IL 60614 (United States); Chen, Jia [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States); Jardetzky, Theodore S. [Department of Structural Biology, Stanford University School of Medicine, 371 Serra Mall, Stanford, CA 94305 (United States); Longnecker, Richard, E-mail: r-longnecker@northwestern.edu [Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 (United States)

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  20. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  1. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  2. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  3. UV-vis Imaging of Piroxicam Supersaturation, Precipitation, and Dissolution in a Flow-Through Setup.

    Science.gov (United States)

    Sun, Yu; Chapman, Alex; Larsen, Susan W; Jensen, Henrik; Petersen, Nickolaj J; Goodall, David M; Østergaard, Jesper

    2018-06-05

    Evaluation of drug precipitation is important in order to address challenges regarding low and variable bioavailability of poorly water-soluble drugs, to assess potential risk of patient safety with infusion therapy, and to explore injectable in situ suspension-forming drug delivery systems. Generally, drug precipitation is assessed in vitro through solution concentration analysis methods. Dual-wavelength UV-vis imaging is a novel imaging technique that may provide an opportunity for simultaneously monitoring changes in both solution and solid phases during precipitation. In the present study, a multimodal approach integrating UV-vis imaging, light microscopy, and Raman spectroscopy was developed for characterization of piroxicam supersaturation, precipitation, and dissolution in a flow-through setup. A solution of piroxicam dissolved in 1-methyl-2-pyrrolidinone was injected into a flowing aqueous environment (pH 7.4), causing piroxicam to precipitate. Imaging at 405 and 280 nm monitored piroxicam concentration distributions during precipitation and revealed different supersaturation levels dependent on the initial concentration of the piroxicam solution. The combination with imaging at 525 nm, light microscopy, and Raman spectroscopy measurements demonstrated concentration-dependent precipitation and the formation, growth, and dissolution of individual particles. Results emphasize the importance of the specific hydrodynamic conditions on the piroxicam precipitation. The approach used may facilitate comprehensive understanding of drug precipitation and dissolution processes and may be developed further into a basic tool for formulation screening and development.

  4. nfluences of ammonium-nitrate, food waste compost and bacterial fertilizer on soluble soil nitrogen forms and on the growth of carrot (Daucus Carota L.

    Directory of Open Access Journals (Sweden)

    Andrea Balla Kovács

    2014-04-01

    Full Text Available This paper reports a greenhouse study to compare the effects of food waste compost, bacterial fertilizer and their combination with the effect of mineral fertilizer on yield of carrot and the available nutrient content of soils. The study was conducted on calcareous chernozem and acidic sandy soils and consisted of 8 treatments in a randomized complete block design with four replications. The NH4NO3 resulted in reduced growing of carrot plant in sandy soil, and the treatment effect of mineral fertilizer was not observed significantly in chernozem soil. Sandy soil showed higher response of growth of carrot to food waste compost fertilization than chernozem soil. Sole application of EM-1 bacterial fertilizer did not have marked effect on yield parameters and sizes of roots. When EM-1 bacterial fertilizer was applied together with ammonium-nitrate or with compost in chernozem soil, the weights of roots and the sizes of roots in some cases became higher compared to the values of appropriate treatments without inoculation. In sandy soil the diameter of roots slightly increased when EM-1 bacterial fertilizer was applied with ammonium-nitrate and with ammonium-nitrate+compost combination compared to appropriate treatment without inoculation. In chernozem soil the maximum weights and sizes of roots were achieved with the combined treatment of ammonium-nitrate+compost+EM-1 bacterial fertilizer and in sandy soil with compost treatment. Our results of soluble nitrogen content of soils are in good agreement with yield parameters of carrot. Results suggest that food waste compost could be a good substitute for mineral fertilizer application in carrot production mainly in sandy soil. EM-1 bacterial fertilizer did not cause marked effect on yield and yield parameters of carrot plant, but its combination with other fertilizers promises a little bit higher yield or plant available nutrient in the soil. These effects do not clear exactly, so further studies are

  5. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  6. Effects of initial supersaturation on spontaneous precipitation of calcium carbonate in the presence of charged poly-L-amino acids.

    Science.gov (United States)

    Njegić-Dzakula, Branka; Falini, Giuseppe; Brecević, Ljerka; Skoko, Zeljko; Kralj, Damir

    2010-03-15

    Spontaneous precipitation of calcium carbonate was investigated in two precipitation systems: (1) with initial supersaturation lower than that corresponding to the solubility of amorphous calcium carbonate (ACC), at which vaterite precipitated, and (2) with initial supersaturation higher than that of ACC solubility, at which a mixture of calcite and vaterite was formed. After the addition of an acidic polypeptide, poly-L-glutamic acid (pGlu) or poly-L-aspartic acid (pAsp), into (1) a significant inhibition of nucleation, expressed as an increase in induction time, and growth of vaterite, perceived as a dead zone, was observed. Extent of inhibition decreased in the order: Inh(pAps)>Inh(pGlu)>Inh(pLys). The addition of a polypeptide into (2) caused the inhibition of precipitation and changed the morphology and polymorphic composition of the precipitate; only vaterite appeared at approximately c(pAsp)=3 ppm, c(pGlu)=6 ppm, or c(pLys)=7 ppm. This finding is explained as a consequence of kinetic constraints through the inhibition of calcite nucleation and stronger binding of acidic polypeptide by the calcite surfaces than by the vaterite surfaces. Laboratory precipitation studies using conditions that resemble those in living organism should be run at an initial supersaturation corresponding to the solubility of ACC as a limiting condition. 2009 Elsevier Inc. All rights reserved.

  7. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  8. Differential Ability of Maize and Soybean to Acquire and Utilize Phosphorus from Sparingly Soluble Forms in Low- and Medium-P Soils Using {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Gyamfi, J. J.; Aigner, M.; Linic, S. [Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf (Austria); Gludovacz, D. [Nuclear Material Laboratory, Safeguard Analytical Services, International Atomic Energy Agency, Seibersdorf (Austria)

    2013-11-15

    A glasshouse pot experiment was conducted to evaluate the differential ability of maize (Zea mays) and soybean (Glycine max) to utilize soil phosphorus (P) for plant growth from total-P, available-P and inorganic (Ca-P, Al-P and Fe-P) soil P pools using a carrier-free {sup 32}P solution. A maize variety (DK 315) and a soybean variety (TGX 1910-4F) were grown in pots containing 1 kg of a low available P soil (Hungarian) or a medium available P (Waldviertel) soil labelled with {sup 32}P for 42 days or without {sup 32}P (unlabelled) for 42 and 60 days. The shoot and root biomass of maize and soybean were significantly greater when grown on the Waldviertel than on the Hungarian soils. The shoot P concentrations were higher for soybean (1.7-2.2 g kg{sup -1}) than for maize (1.1-1.4 g kg{sup -1}). The total radioactivity (dpm x 10{sup 6}) was higher in plants grown in Waldviertel than in Hungarian soil and the values reflected plant P uptake and shoot biomass of soybean and maize. The L-values ({mu}g P g soil{sup -1}) of maize and soybean were higher in Waldviertel (72-78) than in Hungarian (9.6-20) soil. No significant differences in L-values were observed for maize and soybean grown on the Waldviertel soil, but for the Hungarian soil, the L-values were higher for maize (20.0) than for soybean (9.6) suggesting that in this low-P soil, maize was more efficient than soybean in taking up soil P. The available P (Bray II) and the Ca-P were the fractions most depleted by plants followed by the Fe-P fractions in the two soils, but differences between the crops were not significant. When soil P is limited, maize and soybean are able to access P mainly from the available P (Bray II), Fe- and Ca-P sparingly soluble fractions and not Al-P from the soil. (author)

  9. Data processing for potentiometric precipitation titration of mixtures of isovalent ions by linear regression analysis

    International Nuclear Information System (INIS)

    Mar'yanov, B.M.; Shumar, S.V.; Gavrilenko, M.A.

    1994-01-01

    A method for the computer processing of the curves of potentiometric differential titration using the precipitation reactions is developed. This method is based on transformation of the titration curve into a line of multiphase regression, whose parameters determine the equivalence points and the solubility products of the formed precipitates. The computational algorithm is tested using experimental curves for the titration of solutions containing Hg(2) and Cd(2) by the solution of sodium diethyldithiocarbamate. The random errors (RSD) for the titration of 1x10 -4 M solutions are in the range of 3-6%. 7 refs.; 2 figs.; 1 tab

  10. Precipitation Matters

    Science.gov (United States)

    McDuffie, Thomas

    2007-01-01

    Although weather, including its role in the water cycle, is included in most elementary science programs, any further examination of raindrops and snowflakes is rare. Together rain and snow make up most of the precipitation that replenishes Earth's life-sustaining fresh water supply. When viewed individually, raindrops and snowflakes are quite…

  11. A polychromatic turbidity microplate assay to distinguish discovery stage drug molecules with beneficial precipitation properties.

    Science.gov (United States)

    Morrison, John; Nophsker, Michelle; Elzinga, Paul; Donoso, Maria; Park, Hyunsoo; Haskell, Roy

    2017-10-05

    A material sparing microplate screening assay was developed to evaluate and compare the precipitation of discovery stage drug molecules as a function of time, concentration and media composition. Polychromatic turbidity time course profiles were collected for cinnarizine, probucol, dipyridamole as well as BMS-932481, and compared with turbidity profiles of monodisperse particle size standards. Precipitation for select sample conditions were further characterized at several time points by size, morphology, amount and form via laser diffraction, microscopy, size based particle counting and X-ray diffraction respectively. Wavelength dependent turbidity was found indicative of nanoprecipitate, while wavelength independent turbidity was consistent with larger microprecipitate formation. A transition from wavelength dependent to wavelength independent turbidity occurred for nanoparticle to microparticle growth, and a decrease in wavelength independent turbidity correlated with continued growth in size of microparticles. Other sudden changes in turbidity signal over time such as rapid fluctuation, a decrease in slope or a sharp inversion were correlated with very large or aggregated macro-precipitates exceeding 100μm in diameter, a change in the rate of precipitate formation or an amorphous to crystalline form conversion respectively. The assay provides an effective method to efficiently monitor and screen the precipitation fates of drug molecules, even during the early stages of discovery with limited amounts of available material. This capability highlights molecules with beneficial precipitation properties that are able to generate and maintain solubility enabling amorphous or nanoparticle precipitates. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.

    1978-01-01

    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  13. Neutralization of arsenic pollutants, contained in natural waters: The theoretical analysis of solubility of some arsenates and optimization of the processes

    Directory of Open Access Journals (Sweden)

    Marta Litynska

    2017-01-01

    Full Text Available Arsenic belongs to chemical elements, which are often found in natural waters and make it unsuitable for consumption without special treatment. Neutralization of arsenic pollutants of natural waters by converting them into insoluble form is one of the perspective methods of dearsenication. Precipitation (by iron or aluminium coagulants, lime and adsorption (by oxides and hydroxides of iron, aluminium or manganese are among the most popular dearsenication methods. The use of these chemicals entails the formation of poorly soluble arsenates. Since the possibility of the release of arsenic compounds into the water due to the dissolution of formed arsenates depends on its solubility under appropriate conditions, it is necessary to have information about the dependence of arsenates solubility on pH. According to the calculations the solubilities of arsenates of iron(III, aluminium, manganese(II and calcium are highly dependent on pH. At pH

  14. Altered specificity of single-chain antibody fragments bound to pandemic H1N1-2009 influenza virus after conversion of the phage-bound to the soluble form

    Directory of Open Access Journals (Sweden)

    Kaku Yoshihiro

    2012-09-01

    Full Text Available Abstract Background In 2009, a novel influenza A/H1N1 virus (H1N1pdm quickly spread worldwide and co-circulated with then-existing seasonal H1N1 virus (sH1N1. Distinguishing between these 2 viruses was necessary to better characterize the epidemiological properties of the emergent virus, including transmission patterns, pathogenesis, and anti-influenza drug resistance. This situation prompted us to develop a point-of-care virus differentiation system before entering the 2009–2010 influenza season. Aiming to establish H1N1pdm-specific detection tools rapidly, we employed phage display libraries to select H1N1pdm-specific single-chain variable fragments (scFvs. Findings Human single-fold scFv libraries (Tomlinson I + J underwent selection for the ability to bind H1N1pdm virus particles. Three rounds of panning brought 1152 phage-bound scFvs, of which 58 clones reacted with H1N1pdm specifically or preferentially over sH1N1 in an enzyme-linked immunosorbent assay (ELISA. After conversion of the scFvs to soluble form, 7 clones demonstrating high/stable expression were finally obtained. However, all the soluble scFvs except No. 29 were found to have lost their specificity/preference for H1N1pdm in ELISA. The specificity/preference of No. 29 was also confirmed by immunofluorescence assay and immunoprecipitation, and the viral nucleoprotein was identified by ELISA as its target protein. The change in specificity associated with scFv conversion from phage-bound to soluble form could be due to loss of phage scaffold pIII protein, which likely provides structural support for the scFv antigen-binding site. It is also possible that the similar antigenic properties of H1N1pdm and sH1N1 led to the observed alterations in scFv specificity. Discussion Using a phage display library, we obtained 7 soluble scFv clones reactive against H1N1pdm; however, only 1 showed specificity/preference toward H1N1pdm. Our results confirmed that using phage display

  15. Precipitation process for supernate decontamination

    International Nuclear Information System (INIS)

    Lee, L.M.; Kilpatrick, L.L.

    1982-11-01

    A precipitation and adsorption process has been developed to remove cesium, strontium, and plutonium from water-soluble, high-level radioactive waste. An existing waste tank serves as the reaction vessel and the process begins with the addition of a solution of sodium tetraphenylborate and a slurry of sodium titanate to the contained waste salt solution. Sodium tetraphenylborate precipitates the cesium and sodium titanate adsorbs the strontium and plutonium. The precipitate/adsorbate is then separated from the decontaminated salt solution by crossflow filtration. This new process offers significant capital savings over an earlier ion exchange process for salt decontamination. Chemical and small-scale engineering studies with actual waste are reported. The effect of many variables on the decontamination factors and filter performance are defined

  16. Hourly and Daily Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Precipitation reports submitted on many form types, including tabular and autographic charts. Reports are almost exclusively from the US Cooperative Observer Network.

  17. Formation and stability of Fe-rich precipitates in dilute Zr(Fe) single-crystal alloys

    International Nuclear Information System (INIS)

    Zou, H.; Hood, G.M.; Roy, J.A.; Schultz, R.J.

    1993-02-01

    The formation and stability of Fe-rich precipitates in two α-Zr(Fe) single-crystal alloys with nominal compositions (I, 50 ppma Fe, and II, 650 ppma Fe) have been investigated (the maximum solid solubility of Fe in α-Zr is 180 ppma - 800 C). Optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been used to examine the characteristics of Fe-rich precipitates. SEM and TEM micrographs show that in as-grown alloy II, Zr 2 Fe precipitates are located at 'stringers'. Precipitates were not observed in as-grown alloy I. During annealing, below the solvus, Fe diffuses to the surfaces to form Zr 3 Fe precipitates in both alloys. The precipitates on the surfaces of alloy I tend to be star-like (0001) or pyramidal (1010), and their distribution is heterogeneous. Dissolution of Zr 3 Fe surface precipitates of alloy I (annealing above the solvus) leaves precipitate-like features on the surfaces. Zr 2 Fe precipitates in as-grown alloy II can be dissolved only by β-phase annealing. (Author) 8 figs., 18 refs

  18. Existence of a soluble form of CD50 (intercellular adhesion molecule-3) produced upon human lymphocyte activation. Present in normal human serum and levels are increased in the serum of systemic lupus erythematosus patients.

    Science.gov (United States)

    Pino-Otín, M R; Viñas, O; de la Fuente, M A; Juan, M; Font, J; Torradeflot, M; Pallarés, L; Lozano, F; Alberola-Ila, J; Martorell, J

    1995-03-15

    CD50 (ICAM-3) is a leukocyte differentiation Ag expressed almost exclusively on hemopoietic cells, with a key role in the first steps of immune response. To develop a specific sandwich ELISA to detect a soluble CD50 form (sCD50), two different mAbs (140-11 and 101-1D2) recognizing non-overlapping epitopes were used. sCD50 was detected in the supernatant of stimulated PBMCs, with the highest levels after CD3 triggering. Simultaneously, the CD50 surface expression diminished during the first 24 h. sCD50 isolated from culture supernatant and analyzed by immunoblotting showed an apparent m.w. of 95 kDa, slightly smaller than the membrane form. These data, together with Northern blot kinetics analysis, suggest that sCD50 is cleaved from cell membrane. Furthermore, we detect sCD50 in normal human sera and higher levels in sera of systemic lupus erythematosus (SLE) patients, especially in those in active phase. The sCD50 levels showed a positive correlation with sCD27 levels (r = 0.4213; p = 0.0026). Detection of sCD50, both after in vitro CD3 triggering of PBMCs and increased in SLE sera, suggests that sCD50 could be used as a marker of lymphocyte stimulation.

  19. Recovery of uranium from (U,Gd)O{sub 2} nuclear fuel scrap using dissolution and precipitation in carbonate media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Wook, E-mail: nkwkim@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Hyun, Jun-Taek; Lee, Eil-Hee; Park, Geun-Il; Lee, Kune-Woo [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Yoo, Myung-June [KEPCO NF 1047 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of); Song, Kee-Chan; Moon, Jei-Kwon [Korea Atomic Energy Research Institute, 1045 Daedeok daero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-11-15

    Highlights: > A treatment of (U,Gd)O{sub 2} scrap with a dissolution in carbonate solution with H{sub 2}O{sub 2}. > Partial dissolution of Gd together with uranium in carbonate solution. > Solubilities of Gd in solutions with and without carbonate at several pHs. > Purification of Gd-contaminated UO{sub 4} by dissolution and precipitation of UO{sub 4}. - Abstract: This work studied a process to recover uranium from contaminated (U,Gd)O{sub 2} scraps generated from nuclear fuel fabrication processes by using the dissolution of (U,Gd)O{sub 2} scraps in a carbonate with H{sub 2}O{sub 2} and the precipitation of the dissolved uranium as UO{sub 4}. The dissolution characteristics of uranium, Gd, and impurity metal oxides were tested, and the behaviors of UO{sub 4} precipitation and Gd solubility were evaluated with changes of the pH of the solution. A little Gd was entrained in the UO{sub 4} precipitate to contaminate the uranium precipitate. Below a pH of 3, the uranium dissolved in the form of uranyl peroxo-carbonato complex ions in the carbonate solution was precipitated as UO{sub 4} with a high precipitation yield, and the Gd had a very high solubility. Using these characteristics, the Gd-contaminated UO{sub 4} could be purified using dissolution in a 1-M HNO{sub 3} solution with heating and re-precipitation upon addition of H{sub 2}O{sub 2} to the solution. Finally, an environmentally friendly and economical process to recover pure uranium from contaminated (U,Gd)O{sub 2} scraps was suggested.

  20. Studies on gadolinium precipitation in moderator system of nuclear reactor

    International Nuclear Information System (INIS)

    Joshi, Akhilesh C.; Rajesh, Puspalata; Rufus, A.L.; Velmurugan, S.

    2015-01-01

    Gadolinium is used in the moderator system of many Pressurised Heavy Water Reactors (PHWRs) for start-up, shut-down and reactivity control during operation. It is very much essential to maintain gadolinium concentration in the system as desired. It has been reported that gadolinium gets precipitated in as oxalate in carbonated water under the influence of γ-radiation. Hence, studies were carried out to investigate the effect of dose, presence of other metal ions and metal surfaces on the precipitation of gadolinium. The results showed that the amount of carboxylic acids viz., formic acid and oxalic acid, formed due to radiolysis is dependent on the dose and that the curve passes though a maxima. Gadolinium is added in higher concentration in Advanced Heavy Water Reactor. So, experiments with high concentration of gadolinium were also carried out. Ultra pure water saturated with high purity CO 2 containing gadolinium and desired ion/surface was irradiated with γ-radiation from 60 Co source at 25°C to doses ranging from 2.5-16.6 Mrad. At lower doses, formation of carboxylic acids takes place but as the dose increases, decomposition of these acids starts and hence the concentration Vs dose passes through a maximum. It was found that precipitation of gadolinium as oxalate occurred at lower doses. At higher doses, it was seen that pH of the solution decreases and hence solubility of gadolinium oxalate increases. It was also observed that the amount of gadolinium precipitated varied linearly with the initial concentration of gadolinium varying from 2 ppm to 20 ppm. While for gadolinium concentration from 20 ppm to 400 ppm, gadolinium in particulate form was observed. The amount of carboxylic acids formed depends on the nature of cations present in solution. It was found that the amount of oxalic acid formed in the case of gadolinium was more than that formed in the case of sodium. Presence of metal oxides such as ZrO 2 formed over zircoloy surfaces was found to

  1. Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Dajun D. Sun

    2014-02-01

    Full Text Available Water-insoluble materials containing amorphous solid dispersions (ASD are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate (PHEMA can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  2. Crosslinked hydrogels-a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2014-02-01

    Water-insoluble materials containing amorphous solid dispersions (ASD) are an emerging category of drug carriers which can effectively improve dissolution kinetics and kinetic solubility of poorly soluble drugs. ASDs based on water-insoluble crosslinked hydrogels have unique features in contrast to those based on conventional water-soluble and water-insoluble carriers. For example, solid molecular dispersions of poorly soluble drugs in poly(2-hydroxyethyl methacrylate) (PHEMA) can maintain a high level of supersaturation over a prolonged period of time via a feedback-controlled diffusion mechanism thus avoiding the initial surge of supersaturation followed by a sharp decline in drug concentration typically encountered with ASDs based on water-soluble polymers. The creation of both immediate- and controlled-release ASD dosage forms is also achievable with the PHEMA based hydrogels. So far, ASD systems based on glassy PHEMA have been shown to be very effective in retarding precipitation of amorphous drugs in the solid state to achieve a robust physical stability. This review summarizes recent research efforts in investigating the potential of developing crosslinked PHEMA hydrogels as a promising alternative to conventional water-soluble ASD carriers, and a related finding that the rate of supersaturation generation does affect the kinetic solubility profiles implications to hydrogel based ASDs.

  3. Evidence of sub-10 nm aluminum-oxygen precipitates in silicon

    International Nuclear Information System (INIS)

    Moutanabbir, Oussama; Isheim, Dieter; Mao, Zugang; Seidman, David N

    2016-01-01

    In this research, ultraviolet laser-assisted atom-probe tomography (APT) was utilized to investigate precisely the behavior at the atomistic level of aluminum impurities in ultrathin epitaxial silicon layers. Aluminum atoms were incorporated in situ during the growth process. The measured average aluminum concentration in the grown layers exceeds by several orders of magnitude the equilibrium bulk solubility. Three-dimensional atom-by-atom mapping demonstrates that aluminum atoms precipitate in the silicon matrix and form nanoscopic precipitates with lateral dimensions in the 1.3 to 6.2 nm range. These precipitates were found to form only in the presence of oxygen impurity atoms, thus providing clear evidence of the long-hypothesized role of oxygen and aluminum-oxygen complexes in facilitating the precipitation of aluminum in a silicon lattice. The measured average aluminum and oxygen concentrations in the precipitates are ∼10 ± 0.5 at.% and ∼4.4 ± 0.5 at.%, respectively. This synergistic interaction is supported by first-principles calculations of the binding energies of aluminum-oxygen dimers in silicon. The calculations demonstrate that there is a strong binding between aluminum and oxygen atoms, with Al-O-Al and O-Al-Al as the energetically favorable sequences corresponding to precipitates in which the concentration of aluminum is twice as large as the oxygen concentration in agreement with APT data. (paper)

  4. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  5. NEARSOL, Aqueous Speciation and Solubility of Actinides for Waste Disposal

    International Nuclear Information System (INIS)

    Leach, S.J.; Pryke, D.C.

    1989-01-01

    A - Description of program or function: NEARSOL models the aqueous speciation and solubility of actinides under near-field conditions for disposal using a simple thermodynamic approach. B - Method of solution: The program draws information from a thermodynamic data base consisting of solubility products and complex formation constants for all known species, and standard electrode potentials, at 25 C, corrected for ionic strength effects. By minimising the free energy of the system through a series of iterations, a precipitating solid phase is predicted which limits the solubility, and the concentration of the main aqueous species are calculated as a function of pH. Initially the program evaluates only hydroxide and carbonate species, but the effect of sulphate, phosphate and fluoride anions can also be included. The program is simple to use, requiring inputs of: 1. Actinide(s); 2. pH range; 3. Ionic strength; 4. Redox conditions; 5. Ligand concentrations. Functions are included to calculate the distribution of the protonated and un-protonated forms of carbonate and phosphate and the value of Eh as a function of pH under disposal conditions as required. The program can further evaluate the role of free calcium ions. C - Restrictions on the complexity of the problem: None

  6. Improvements in or relating to the production of metal-containing material in particulate form

    International Nuclear Information System (INIS)

    Woodhead, J.L.; Scott, K.T.B.; Ball, P.W.

    1977-01-01

    The process described refers mainly to production of the material in the form of very small spheres. It comprises forming a metal compound-containing gel precipitate by mixing a solution or sol of the metal compound with a soluble organic polymer and contacting the mixture with a precipitating reagent to precipitate the metal as an insoluble compound bound with the polymer. The precipitate is then subjected in the liquid phase to a breaking down and dispersing process to produce an intermediate product suitable for spray drying, and the intermediate product is spray dried to form the particulate product. The breaking down and dispersing process may be performed by means of a colloid mill or vibratory stirrer. Examples of application of the process are described. (U.K.)

  7. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  8. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  9. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    Science.gov (United States)

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  10. The solubility of palladium(II) bis-dimethylglyoximate

    International Nuclear Information System (INIS)

    Maghzian, R.

    1978-01-01

    The solubility of palladium(II) bis-dimethylglyoximate in different solutions has been determined. Values obtained for the solubility of the palladium complex are tabulated. The solubility is the lowest in water, ammonium acetate and a 25% acetone-water mixture. It is highest in dilute HCl and acetone but precipitation from aqueous acetone should be satisfactory for most purposes if the acetone content of the solvent is roughly less than 50% by volume. The solubility in dilute HCl reflects the concern by previous workers for losses in precipitation from mineral acid. In general, however, the losses are unlikely to be significant unless the quantity of palladium to be precipitated and weighed is small. (T.G.)

  11. Retrograde curves of solidus and solubility

    International Nuclear Information System (INIS)

    Vasil'ev, M.V.

    1979-01-01

    The investigation was concerned with the constitutional diagrams of the eutectic type with ''retrograde solidus'' and ''retrograde solubility curve'' which must be considered as diagrams with degenerate monotectic transformation. The solidus and the solubility curves form a retrograde curve with a common retrograde point representing the solubility maximum. The two branches of the Aetrograde curve can be described with the aid of two similar equations. Presented are corresponding equations for the Cd-Zn system and shown is the possibility of predicting the run of the solubility curve

  12. Solubility limits of importance to leaching

    International Nuclear Information System (INIS)

    Ogard, A.; Bentley, G.; Bryant, E.; Duffy, C.; Grisham, J.; Norris, E.; Orth, C.; Thomas, K.

    1981-01-01

    The solubilities of some radionuclides, especially rare earths and actinides, may be an important and controlling factor in leaching of waste forms. These solubilities should be measured accurately as a function of pH and not as a part of a multicomponent system. Individual solubilities should be measured as a function of temperature to determine if a kinetic effect is being observed in the data. A negative temperature coefficient of solubility for actinides and rare earths in water would have important consequences for nuclear reactor safety and for the management of nuclear wastes

  13. Continuous precipitation process of plutonium salts

    International Nuclear Information System (INIS)

    Richard, P.

    1967-03-01

    This work concerns the continuous precipitation process of plutonium oxalate. Investigations about the solubility of different valence states in nitric-oxalic and in nitric-sulfuric-oxalic medium lead to select the precipitation process of tetravalent plutonium oxalate. Settling velocity and granulometry of tetravalent oxalate plutonium have been studied with variation of several precipitation parameters such as: temperature, acidity, excess of oxalic acid and aging time. Then are given test results of some laboratory continuous apparatus. Conditions of operation with adopted tubular apparatus are defined in conclusion. A flow-sheet is given for a process at industrial scale. (author) [fr

  14. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    Science.gov (United States)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  15. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates.

    Directory of Open Access Journals (Sweden)

    Sukhdeep Kumar

    Full Text Available Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD varieties. We establish (a that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT, resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.

  16. Hydrogen terminal solubility in Zircaloy-4

    International Nuclear Information System (INIS)

    Vizcaino, Pablo; Banchik, Abrahan D.

    1999-01-01

    Terminal solubility temperature of hydrogen in zirconium and its alloys is an important parameter because hydrides precipitation embrittled these materials making them susceptible to the phenomenon known as retarded hydrogen cracking. This work continues the study presented in the 25 AATN Meeting. Within this framework, a study focused on determining these curves in recrystallized Zircaloy-4, using scanning differential calorimetric technique. Terminal solubility curves for Zircaloy-4 were constructed within a concentration range from 40 to 640 ppm in hydrogen weight and comparisons with results obtained by other authors were made. (author)

  17. Tetraphenylborate Solubility in High Ionic Strength Salt Solutions

    International Nuclear Information System (INIS)

    Serkiz, S.M.; Ginn, J.D.; Jurgensen, A.R.

    1998-04-01

    Solubility of sodium and potassium salts of the tetraphenylborate ion (TPB) in simulated Savannah River Site High Level Waste was investigated. Data generated from this study allow more accurate predictions of TPB solubility at the In-Tank Precipitation (ITP) facility. Because previous research showed large deviations in the observed solubility of TPB salts when compared with model predictions, additional data were generated to better understand the solubility of TPB in more complex systems of high ionic strength and those containing both potassium and sodium. These data allow evaluation of the ability of current models to accurately predict equilibrium TPB concentrations over the range of experimental conditions investigated in this study

  18. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  19. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  20. An Improved Process for Precipitating Cyanide Ions from the Barren Solution at Different pHs

    Science.gov (United States)

    Figueroa, Gabriela V.; Parga, José R.; Valenzuela, Jesus L.; Vázquez, Victor; Valenzuela, Alejandro; Rodriguez, Mario

    2016-02-01

    In recent decades, the use of metal sulfides instead of hydroxide precipitation in hydrometallurgical processes has gained prominence. Some arguments for its preferential use are as follows: a high degree of metal removal at relatively low pH values, the sparingly soluble nature of sulfide precipitates, favorable dewatering characteristics, and the stability of the formed metal sulfides. The Merrill-Crowe zinc-precipitation process has been applied worldwide in a large number of operations for the recovery of gold and silver from cyanide solutions. However, in some larger plants, the quality of this precious precipitate is low because copper, zinc and especially lead are precipitated along with gold and silver. This results in higher consumption of zinc dust and flux during the smelting of the precipitate, the formation of the matte, and a shorter crucible life. The results show that pH has a significant effect on the removal efficiency of zinc and copper cyanide ions. The optimal pH range was determined to be 3-4, and the removal efficiency of zinc and copper cyanide ions was up to 99%.

  1. GRAIN-BOUNDARY PRECIPITATION UNDER IRRADIATION IN DILUTE BINARY ALLOYS

    Institute of Scientific and Technical Information of China (English)

    S.H. Song; Z.X. Yuan; J. Liu; R.G.Faulkner

    2003-01-01

    Irradiation-induced grain boundary segregation of solute atoms frequently bring about grain boundary precipitation of a second phase because of its making the solubility limit of the solute surpassed at grain boundaries. Until now the kinetic models for irradiation-induced grain boundary precipitation have been sparse. For this reason, we have theoretically treated grain boundary precipitation under irradiation in dilute binary alloys. Predictions ofγ'-Ni3Si precipitation at grain boundaries ave made for a dilute Ni-Si alloy subjected to irradiation. It is demonstrated that grain boundary silicon segregation under irradiation may lead to grain boundaryγ'-Ni3 Si precipitation over a certain temperature range.

  2. Hydrothermal solubility of uraninite. Final technical report

    International Nuclear Information System (INIS)

    Parks, G.A.; Pohl, D.C.

    1985-01-01

    Experimental measurements of the solubility of UO 2 from 100 to 300 0 C under 500 bars H 2 , in NaCl solutions at pH from 1 to 8 do not agree with solubilities calculated using existing thermodynamic databases. For pH 2 (hyd) has precipitated and is controlling solubility. For pH > 8, solubilities at all temperatures are much lower than predicted, suggesting that the U(OH)/sub delta/ - complex is much weaker than predicted. Extrapolated to 25 0 C, high pH solubility agrees within experimental error with the upper limit suggested by Ryan and Rai (1983). In the pH range 2 to 6, solubilities are up to three orders of magnitude lower than predicted for temperatures exceeding 200 0 C and up to two orders higher than predicted at lower temperatures. pH dependence in this region is negligible suggesting that U(OH) 4 (aq) predominates, thus the stability of this species is higher than presently estimated at low temperatures, but the enthalpy of solution is smaller. A low maximum observed near pH approx. =3 is presently unexplained. 40 refs., 16 figs., 12 tabs

  3. Rheology of tetraphenylborate precipitate slurry

    International Nuclear Information System (INIS)

    Goren, I.D.; Martin, H.D.; McLain, M.A.

    1985-01-01

    The rheological properties of tetraphenylborate precipitate slurry were determined. This nonradioactive slurry simulates the radioactive tetraphenylborate precipitate generated at the Savannah River Plant by the In-Tank Precipitation Process. The data obtained in this study was applied in the design of slurry pumps, transfer pumps, transfer lines, and vessel agitation for the Defense Waste Processing Facility and other High Level Waste treatment projects. The precipitate slurry behaves as a Bingham plastic. The yield stress is directly proportional to the concentration of insoluble solids over the range of concentrations studied. The consistency is also a linear function of insoluble solids over the same concentration range. Neither the yield stress nor the consistency was observed to be affected by the presence of the soluble solids. Temperature effects on flow properties of the slurry were also examined: the yield stress is inversely proportional to temperature, but the consistency of the slurry is independent of temperature. No significant time-dependent effects were found. 4 refs., 4 figs., 3 tabs

  4. Cocrystal solubility-pH and drug solubilization capacity of sodium dodecyl sulfate – mass action model for data analysis and simulation to improve design of experiments

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2018-06-01

    Full Text Available This review discusses the disposition of the anionic surfactant, sodium dodecyl sulfate (SDS; i.e., sodium lauryl sulfate, to solubilize sparingly-soluble drugs above the surfactant critical micelle concentration (CMC, as quantitated by the solubilization capacity (k. A compilation of 101 published SDS k values of mostly poorly-soluble drug molecules was used to develop a prediction model as a function of the drug’s intrinsic solubility, S0, and its calculated H-bond acceptor/donor potential. In almost all cases, the surfactant was found to solubilize the neutral form of the drug. Using the mass action model, the k values were converted to drug-micelle stoichiometric binding constants, Kn, corresponding to drug-micelle equilibria in drug-saturated solutions. An in-depth case study (data from published sources considered the micellization reactions as a function of pH of a weak base, B, (pKa 3.58, S0 52 μg/mL, where at pH 1 the BH.SDS salt was predicted to precipitate both below and above the CMC. At low SDS concentrations, two drug salts were predicted to co-precipitate: BH.Cl and BH.SDS. Solubility products of both were determined from the analysis of the reported solubility-surfactant data. Above the CMC, in a rare example, the charged form of the drug (BH+ appeared to be strongly solubilized by the surfactant. The constant for that reaction was also determined. At pH 7, the reactions were simpler, as only the neutral form of the drug was solubilized, to a significantly lesser extent than at pH 1. Case studies also featured examples of solubilization of solids in the form of cocrystals. For many cocrystal systems studied in aqueous solution, the anticipated supersaturated state is not long-lasting, as the drug component precipitates to a thermodynamically stable form, thus lowering the amount of the active ingredient available for intestinal absorption. Use of surfactant can prevent this. A recently-described method for predicting the

  5. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways

    OpenAIRE

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-01-01

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann’s approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thu...

  6. Solubility limits on radionuclide dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  7. Solubility limited radionuclide transport through geologic media

    International Nuclear Information System (INIS)

    Muraoka, Susumu; Iwamoto, Fumio; Pigford, T.H.

    1980-11-01

    Prior analyses for the migration of radionuclides neglect solubility limits of resolved radionuclide in geologic media. But actually some of the actinides may appear in chemical forms of very low solubility. In the present report we have proposed the migration model with no decay parents in which concentration of radionuclide is limited in concentration of solubility in ground water. In addition, the analytical solutions of the space-time-dependent concentration are presented in the case of step release, band release and exponential release. (author)

  8. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  9. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  10. Optimization of the conditions for the precipitation of thorium oxalate. II. Minimization of the product losses

    International Nuclear Information System (INIS)

    Pazukhin, E.M.; Smirnova, E.A.; Krivokhatskii, A.S.; Pazukhina, Yu.L.; Kiselev, P.P.

    1987-01-01

    The precipitation of thorium as a poorly soluble oxalate was investigated. An equation relating the concentrations of the metal and nitric acid in the initial solution and the amount of precipitant required to minimize the product losses was derived. A graphical solution of the equation is presented for the case where the precipitant is oxalic acid at a concentration of 0.78 M

  11. Enhancement of solubility of albendazole by complexation with β-cyclodextrin

    International Nuclear Information System (INIS)

    Moriwaki, C.; Costa, G.L.; Ferracini, C.N.; Matioli, G.; Moraes, F.F. de; Zanin, G.M.; Pineda, E.A.G.

    2008-01-01

    A high dosage of albendazole (ABZ) is required for treating systemic helminth infections because of its low solubility. Aiming at increasing ABZ solubility, complexation with beta-cyclodextrin (β-CD) using aqueous and acetic acid solutions as ABZ solubiliser was studied. In aqueous β-CD, complexation increased solubility 53.4 times, giving a complex equilibrium constant of 1266 L mol -1 with a maximum ABZ concentration of 276 μmol L -1 for 16.3 mmol L -1 β-CD. For complexation in 1.05 mol L -1 acetic acid, UV absorbance spectra and 1 H-NMR analysis confirmed complex formation. The UV absorbance of ABZ/acid acetic/β-CD solutions was modeled by the formation of two complexes with molar ratios 1:1 and 1:2 ABZ:β-CD. When neutralized with NaOH these solutions did not form precipitates only for the ABZ:β-CD molar ratios of 1:8 and 1:10, showing that ABZ solubility could be increased 306 times. Results show that high β-CD molar ratios hold ABZ in solution by complexation enhanced by the acetate anion. (author)

  12. Enhancement of solubility of albendazole by complexation with {beta}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Moriwaki, C.; Costa, G.L.; Ferracini, C.N.; Matioli, G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Farmacia e Farmacologia]. E-mail: gmatioli@uem.br; Moraes, F.F. de; Zanin, G.M. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Pineda, E.A.G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica

    2008-04-15

    A high dosage of albendazole (ABZ) is required for treating systemic helminth infections because of its low solubility. Aiming at increasing ABZ solubility, complexation with beta-cyclodextrin ({beta}-CD) using aqueous and acetic acid solutions as ABZ solubiliser was studied. In aqueous {beta}-CD, complexation increased solubility 53.4 times, giving a complex equilibrium constant of 1266 L mol{sup -1} with a maximum ABZ concentration of 276 {mu}mol L{sup -1} for 16.3 mmol L{sup -1} {beta}-CD. For complexation in 1.05 mol L{sup -1} acetic acid, UV absorbance spectra and {sup 1}H-NMR analysis confirmed complex formation. The UV absorbance of ABZ/acid acetic/{beta}-CD solutions was modeled by the formation of two complexes with molar ratios 1:1 and 1:2 ABZ:{beta}-CD. When neutralized with NaOH these solutions did not form precipitates only for the ABZ:{beta}-CD molar ratios of 1:8 and 1:10, showing that ABZ solubility could be increased 306 times. Results show that high {beta}-CD molar ratios hold ABZ in solution by complexation enhanced by the acetate anion. (author)

  13. Respiratory carcinogenicity assessment of soluble nickel compounds.

    OpenAIRE

    Oller, Adriana R

    2002-01-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear...

  14. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  15. Experimental study of diffuse auroral precipitations

    International Nuclear Information System (INIS)

    Mouaia, K.

    1983-01-01

    First chapter is devoted to low energy electron precipitation in the evening sector of the auroral magnetosphere, during quiet and disturbed magnetic periods. Four subjects are studied in detail: the latitude distribution of the varied auroral forms and their relations to external magnetosphere; the time coefficients related to precipitations, the form and the dynamic of the diffuse precipitation equatorial frontier; the precipitation effect on the ionosphere concentration. The last part of the chapter shows that the plasma convection in the magnetosphere, associated to wave-particle interactions near the equatorial accounts for the principal characteristics of the evening sector diffuse electronic precipitations. The second chapter deals with subauroral precipitations of low energy ions, after the magnetospheric substorms, in the high latitude regions of the morning sector [fr

  16. Simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese from electrolytic manganese residue by air under calcium oxide assist.

    Science.gov (United States)

    Chen, Hongliang; Liu, Renlong; Shu, Jiancheng; Li, Wensheng

    2015-01-01

    Leaching tests of electrolytic manganese residue (EMR) indicated that high contents of soluble manganese and ammonia-nitrogen posed a high environmental risk. This work reports the results of simultaneous stripping recovery of ammonia-nitrogen and precipitation of manganese by air under calcium oxide assist. The ammonia-nitrogen stripping rate increased with the dosage of CaO, the air flow rate and the temperature of EMR slurry. Stripped ammonia-nitrogen was absorbed by a solution of sulfuric acid and formed soluble (NH4)2SO4 and (NH4)3H(SO4)3. The major parameters that effected soluble manganese precipitation were the dosage of added CaO and the slurry temperature. Considering these two aspects, the efficient operation conditions should be conducted with 8 wt.% added CaO, 60°C, 800 mL min(-1) air flow rate and 60-min reaction time. Under these conditions 99.99% of the soluble manganese was precipitated as Mn3O4, which was confirmed by XRD and SEM-EDS analyses. In addition, the stripping rate of ammonia-nitrogen was 99.73%. Leaching tests showed the leached toxic substances concentrations of the treated EMR met the integrated wastewater discharge standard of China (GB8978-1996).

  17. Ecohydrological responses of a model semiarid system to precipitation pulses after a global change type dry-down depend on growth-form, event size, and time since establishment

    Science.gov (United States)

    Barron-Gafford, G. A.; Minor, R. L.; Braun, Z.; Potts, D. L.

    2012-12-01

    Woody encroachment into grasslands alters ecosystem structure and function both above- and belowground. Aboveground, woody plant canopies increase leaf area index and alter patterns of interception, infiltration and runoff. Belowground, woody plants alter root distribution and increase maximum rooting depth with the effect of accessing deeper pools of soil moisture and shifting the timing and duration of evapotranspiration. In turn, these woody plants mediate hydrological changes that influence patterns of ecosystem CO2 exchange and productivity. Given projections of more variable precipitation and increased temperatures for many semiarid regions, differences in physiological performance are likely to drive changes in ecosystem-scale carbon and water flux depending on the degree of woody cover. Ultimately, as soil moisture declines with decreased precipitation, differential patterns of environmental sensitivity among growth-forms and their dependence on groundwater will only become more important in determining ecosystem resilience to future change. Here, we created a series of 1-meter deep mesocosms that housed either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Five replicates of each were maintained under current ambient air temperatures, and five replicates were maintained under projected (+4oC) air temperatures. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 exchange concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 exchange efflux in response to rainfall events of varying magnitude and intervening dry periods of varying duration. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall. During the first year, bunchgrasses photosynthetically outperformed mesquite saplings across a wider range of temperatures under dry conditions, regardless of growth temperature (ambient or +4o

  18. Study of solubility of some metal cyclohexane carbonates

    International Nuclear Information System (INIS)

    Niyazov, A.N.; Amanov, K.B.; Trapeznikova, V.F.; Kul'maksimov, A.; Kolosova, N.

    1978-01-01

    The solubility of calcium, magnesium, strontium, barium, cabalt, copper and aluminium cyclohexane, carbonates (CHC) in water has been studied at 25 deg C. The salt solubility has been calculated according to the metal ion concentration in saturated solutions. It has been established, that the cobalt and rare earth cyclohexane carbonates are relatively very soluble in water and have solubility products of SP > 1x10 -5 . The solubility of CHC of multivalent metals increases with the decrease of pH values. Each salt has some ''limiting'' pH value of a solution, below which it decomposes completely and can not exist in a solution in the form of solid phase

  19. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  20. A model for the biological precipitation of Precambrian iron-formation

    Science.gov (United States)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  1. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  2. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  4. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  5. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  6. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    International Nuclear Information System (INIS)

    Howe, Kerry J.; Mitchell, Lana; Kim, Seung-Jun; Blandford, Edward D.; Kee, Ernest J.

    2015-01-01

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH) 3 . • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known

  7. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    Science.gov (United States)

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  9. Precipitation of plutonium oxalate from homogeneous solutions

    International Nuclear Information System (INIS)

    Rao, V.K.; Pius, I.C.; Subbarao, M.; Chinnusamy, A.; Natarajan, P.R.

    1986-01-01

    A method for the precipitation of plutonium(IV) oxalate from homogeneous solutions using diethyl oxalate is reported. The precipitate obtained is crystalline and easily filterable with yields in the range of 92-98% for precipitations involving a few mg to g quantities of plutonium. Decontamination factors for common impurities such as U(VI), Am(III) and Fe(III) were determined. TGA and chemical analysis of the compound indicate its composition as Pu(Csub(2)Osub(4))sub(2).6Hsub(2)O. Data are obtained on the solubility of the oxalate in nitric acid and in mixtures of nitric acid and oxalic acid of varying concentrations. Green PuOsub(2) obtained by calcination of the oxalate has specifications within the recommended values for trace foreign substances such as chlorine, fluorine, carbon and nitrogen. (author)

  10. Diagnosing solubility limitations – the example of hydrate formation

    Directory of Open Access Journals (Sweden)

    Joerg Berghausen

    2014-07-01

    Full Text Available Solubility is regarded as one of the key challenges in many drug discovery projects. Thus, it’s essential to support the lead finding and optimization efforts by appropriate solubility data. In silico solubility prediction remains challenging and therefore a screening assay is used as a first filter, followed by selected follow-up assays to reveal what causes the low solubility of a specific compound or chemotype. Results from diagnosing the underlying reason for solubility limitation are discussed. As lipophilicity and crystal lattice forces are regarded as main contributors to limiting solubility, changes in solid state are important to be recognized. Solubility limitation by various factors will be presented and the impact of the solid-state is exemplified by compounds that are able to form hydrates.

  11. Solubility of plutonium and waste evaporation

    International Nuclear Information System (INIS)

    Karraker, D.G.

    1993-01-01

    Chemical processing of irradiated reactor elements at the Savannah River Site separates uranium, plutonium and fission products; fission products and process-added chemicals are mixed with an excess of NaOH and discharged as a basic slurry into large underground tanks for temporary storage. The slurry is composed of base-insoluble solids that settle to the bottom of the tank; the liquid supemate contains a mixture of base-soluble chemicals--nitrates, nitrites aluminate, sulfate, etc. To conserve space in the waste tanks, the supemate is concentrated by evaporation. As the evaporation proceeds, the solubilities of some components are exceeded, and these species crystallize from solution. Normally, these components are soluble in the hot solution discharged from the waste tank evaporator and do not crystallize until the solution cools. However, concern was aroused at West Valley over the possibility that plutonium would precipitate and accumulate in the evaporator, conceivably to the point that a nuclear accident was possible. There is also a concern at SRS from evaporation of sludge washes, which arise from washing the base-insoluble solids (open-quote sludge close-quote) with ca. 1M NaOH to reduce the Al and S0 4 -2 content. The sludge washes of necessity extract a low level of Pu from the sludge and are evaporated to reduce their volume, presenting the possibility of precipitating Pu. Measurements of the solubility of Pu in synthetic solutions of similar composition to waste supernate and sludge washes are described in this report

  12. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions.

  13. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    Science.gov (United States)

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  14. Liquid Salt as Green Solvent: A Novel Eco-Friendly Technique to Enhance Solubility and Stability of Poorly Soluble Drugs

    Science.gov (United States)

    Patel, Anant A.

    As a result of tremendous efforts in past few decades, various techniques have been developed in order to resolve solubility issues associated with class II and IV drugs, However, majority of these techniques offer benefits associated with certain drawbacks; majorly including low drug loading, physical instability on storage and excessive use of environmentally challenging organic solvents. Hence, current effort was to develop an eco-friendly technique using liquid salt as green solvent, which can offer improvement in dissolution while maintaining long term stability. The liquid salt formulations (LSF) of poorly soluble model drugs ibuprofen, gemfibrozil and indomethacin were developed using 1-Ethyl-3-methylimidazolium ethyl sulfate (EMIM ES) as a non-toxic and environmentally friendly alternate to organic solvents. Liquid medications containing clear solutions of drug, EMIM ES and polysorbate 20, were adsorbed onto porous carrier Neusilin US2 to form free flowing powder. The LSF demonstrated greater rate and extent of dissolution compared to crystalline drugs. The dissolution data revealed that more than 80% drug release from LSF within 20 mins compared to less than 18% release from pure drugs. As high as 70% w/w liquid loading was achieved while maintaining good flowability and compressibility. In addition, the LSF samples exposed to high temperature and high humidity i.e. 40°C/80% RH for 8 weeks, demonstrated excellent physical stability without any signs of precipitation or crystallization. As most desirable form of administration is tablet, the developed liquid salt formulations were transformed into tablets using design of experiment approach by Design Expert Software. The tablet formulation composition and critical parameter were optimized using Box-Behnken Design. This innovative liquid salt formulation technique offered improvement in dissolution rate and extent as well as contributed to excellent physical stability on storage. Moreover, this formulation

  15. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  16. Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Sump strainer head loss testing to evaluate chemical effects. → Aluminum hydroxide precipitates by in situ Al alloy corrosion caused head loss. → Intermetallic particles released from Al alloy can also cause significant head loss. → When evaluating Al effect on head loss, intermetallics should be considered. - Abstract: Vertical loop head loss tests were performed with 6061 and 1100 aluminum (Al) alloy plates immersed in borated solution at pH = 9.3 at room temperature and 60 o C. The results suggest that the potential for corrosion of an Al alloy to result in increased head loss across a glass fiber bed may depend on its microstructure, i.e., the size distribution and number density of intermetallic particles that are present in Al matrix and FeSiAl ternary compounds, as well as its Al release rate. Per unit mass of Al removed from solution, the WCAP-16530 aluminum hydroxide (Al(OH) 3 ) surrogate was more effective in increasing head loss than the Al(OH) 3 precipitates formed in situ by corrosion of Al alloy. However, in choosing a representative amount of surrogate for plant specific testing, consideration should be given to the potential for additional head losses due to intermetallic particles and the apparent reduction in the effective solubility of Al(OH) 3 when intermetallic particles are present.

  17. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  18. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  19. Use of seeds to control precipitation of calcium carbonate and determination of seed nature.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Jongen, Nathalie; Lemaître, Jacques; Hofmann, Heinrich

    2005-01-04

    Understanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relatively concentrated solutions (0.01 mol/L), involves the formation of an initial gel phase which later transforms into calcite, vaterite, or a mixture of both phases. Our work aimed at controlling this first step. Nanosized seeds (8 nm), formed in situ, were used in order to control the often chaotic nucleation step which normally leads to poor phase selection and broad particle size distributions. Seeding has often been used to avoid spontaneous nucleation in metastable solutions for growth mechanism investigations of single-crystal calcium carbonate. Here the ability of a seeding method to control the precipitation reaction evolution even in the case of high supersaturation is demonstrated. The seeds and the presence of a polymeric additive (poly(acrylic acid)) allow the control of the precipitated polymorph and the specific surface area, while maintaining a narrow particle size distribution in the submicron range. Direct characterization methods did not succeed in identifying these nanoseeds; indirect methods using solubility calculations are used to demonstrate their existence and quantify size and number density of the nanosized seeds.

  20. Investigation of Neptunium Precipitator Cleanout Options

    International Nuclear Information System (INIS)

    Hill, B.C.

    2003-01-01

    Oxalate precipitation followed by filtration is used to prepare plutonium oxalate. Historically, plutonium oxalate has tended to accumulate in the precipitation tanks. These solids are periodically removed by flushing with concentrated (64 percent) nitric acid. The same precipitation tanks will now be used in the processing of neptunium. Literature values indicate that neptunium oxalate may not be as soluble as plutonium oxalate in nitric acid. Although a wide variety of options is available to improve neptunium oxalate solubility for precipitator flushing, most of these options are not practical for use. Many of these options require the use of incompatible or difficult to handle chemicals. Other options would require expensive equipment modifications or are likely to lead to product contamination. Based on review of literature and experimental results, the two best options for flushing the precipitator are (1) 64 percent nitric acid and (2) addition of sodium permanganate follow ed by sodium nitrite. Nitric acid is the easiest option to implement. It is already used in the facility and will not lead to product contamination. Experimental results indicate that neptunium oxalate can be dissolved in concentrated nitric acid (64 percent) at 60 degree C to a concentration of 2.6 to 5.6 grams of Np/liter after at least three hours of heating. A lower concentration (1.1 grams of Np/liter) was measured at 60 degree C after less than two hours of heating. These concentrations are acceptable for flushing if precipitator holdup is low (approximately 100-250 grams), but a second method is required for effective flushing if precipitator holdup is high (approximately 2 kilograms). The most effective method for obtaining higher neptunium concentrations is the use of sodium permanganate followed by the addition of sodium nitrite. There is concern that residual manganese from these flushes could impact product purity. Gas generation during permanganate addition is also a concern

  1. Soluble CD163

    DEFF Research Database (Denmark)

    Møller, Holger J

    2012-01-01

    CD163 is an endocytic receptor for haptoglobin-hemoglobin complexes and is expressed solely on macrophages and monocytes. As a result of ectodomain shedding, the extracellular portion of CD163 circulates in blood as a soluble protein (sCD163) at 0.7-3.9 mg/l in healthy individuals. The function o...

  2. Solubility Part 1

    NARCIS (Netherlands)

    Tantra, Ratna; Bolea, Eduardo; Bouwmeester, H.; Rey-Castro, Carlos; David, C.A.A.; Dogné, Jean Michel; Laborda, Francisco; Laloy, Julie; Robinson, Kenneth N.; Undas, A.K.; Zande, van der M.

    2016-01-01

    This chapter gives an overview of different methods that can potentially be used to determine the solubility of nanomaterials. In general, the methods presented can be broadly divided into four categories: separation methods, methods to quantify free ions, methods to quantify total dissolved

  3. Effect of Zr Additions on Thermal Stability of Al-Cu Precipitates in As-Cast and Cold Worked Samples

    Directory of Open Access Journals (Sweden)

    Kyle Deane

    2018-05-01

    Full Text Available While Zr is frequently added to Al alloys to control grain size with the formation of large (>1 μm primary precipitates, little research has been conducted on the effect of nanoscale Al3Zr precipitates on Al alloys. By comparing the precipitation and corresponding strength evolution between Al-Cu-Zr alloys with different Zr concentrations, the effects of Zr on Al-Cu precipitation with and without primary Al3Zr precipitates can be observed. In the absence of these large precipitates, all Al3Zr phases can be formed, through high temperature aging treatments, as a dispersion of nanoprecipaites inside the Al grains. In this study, Al-Cu-Zr ternary alloys were produced and heat treated to determine whether an increase in the coarsening resistance of Al-Cu precipitate phases would be observed with a distribution of the more thermally stable Al3Zr nanoprecipitates. Generally, properly aged Al-Cu alloys will coarsen when encountering elevated temperatures higher than ~473 K (~200 °C. Diluted Al-Zr alloys (<0.07 at % Zr resist coarsening behavior until the significantly higher temperatures of ~673 K (~400 °C, but are comparatively limited in strength because of a limited solubility of Zr in the Al matrix. Hardness testing and transmission electron microscope (TEM results are discussed, in which it is found that even very small additions of Zr, when properly accounted for during heat treating, produce a finer microstructure and higher strength than in similar Al-Cu binary alloys. No significant change in the thermal stability of strengthening was observed, indicating that the finer precipitate microstructure is resultant from a higher nucleation density, as opposed to a decrease in coarsening behavior.

  4. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Felipe-Sotelo, M., E-mail: m.felipe-sotelo@lboro.ac.uk [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Edgar, M. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Beattie, T. [MCM Consulting. Täfernstrasse 11, CH 5405 Baden-Dättwil (Switzerland); Warwick, P. [Enviras Ltd., LE11 3TU Loughborough, Leicestershire (United Kingdom); Evans, N.D.M.; Read, D. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom)

    2015-12-30

    Highlights: • Citrate increases the solubility of Ni, Th and U between 3 and 4 orders of magnitude. • Theophrastite is the solubility controlling phase of Ni in 95%-saturated Ca(OH){sub 2}. • U(VI) and Ni may form Metal-citrate-OH complexes stabilised by the presence of Ca{sup 2+}. - Abstract: The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1 M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH){sub 2} solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2–4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH){sub 2} (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca{sup 2+}. Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes.

  5. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  6. Radiochemical investigations on the solubility of molybdatophosphate in phosphate determination

    International Nuclear Information System (INIS)

    Noack, S.

    1975-01-01

    The solubility of various molybdatophosphates was determined under the conditions of a gravimetric phosphate determination by radiochemical means by labelling PO 4 3- with P-32. Starting with various conditions for phosphate determination via the molybdatophosphate of quinoline, 8-hydroxyquinoline, dimorpholino ethane, N,N,N',N'-tetrakis-β-hydroxypropyl ethylene diamine and N,N,N',N'-tetrakis-β-hydroxybutyl ethylene diamine, a general working rule was developed to determine the solubility. Taking the example of quinoline molybdatophosphates, a series of influencing factors - work, concentration and measuring parameters - were investigated in order to be able to limit the reliability region of the gravimetric phosphate determination. Depending on the conditions, the measured solubilities were between 10 -10 and 10 -6 Mol/l, the corresponding degrees of precipitation between 99.0 and 99.9999%. Apparent solubility products were calculated for the different molybdatophosphates using computer programmes especially developed for this purpose. (orig./RB) [de

  7. Waste and Simulant Precipitation Issues

    International Nuclear Information System (INIS)

    Steele, W.V.

    2000-01-01

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams

  8. Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin.

    Science.gov (United States)

    Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand

    2016-01-20

    Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Solubility data for cement hydrate phases (25oC)

    International Nuclear Information System (INIS)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  10. Nitrogen solubility in nickel base multicomponent melts

    International Nuclear Information System (INIS)

    Bol'shov, L.A.; Stomakhin, A.Ya.; Sokolov, V.M.; Teterin, V.G.

    1984-01-01

    Applicability of various methods for calculation of nitrogen solubility in high-alloyed nickel base alloys, containing Cr, Fe, W, Mo, Ti, Nb, has been estimated. A possibility is shown to use the formUla, derived for the calculation of nitrogen solubility in iron on the basis of statistical theory for a grid model of solution which does not require limitations for the content of a solvent component. The calculation method has been used for nickel alloys, with the concentration of solvent, iron, being accepted equal to zero, and employing parameters of nitrogen interaction as determined for iron-base alloys

  11. Modeling of Salt Solubilities in Mixed Solvents

    DEFF Research Database (Denmark)

    Chiavone-Filho, O.; Rasmussen, Peter

    2000-01-01

    A method to correlate and predict salt solubilities in mixed solvents using a UNIQUAC+Debye-Huckel model is developed. The UNIQUAC equation is applied in a form with temperature-dependent parameters. The Debye-Huckel model is extended to mixed solvents by properly evaluating the dielectric...... constants and the liquid densities of the solvent media. To normalize the activity coefficients, the symmetric convention is adopted. Thermochemical properties of the salt are used to estimate the solubility product. It is shown that the proposed procedure can describe with good accuracy a series of salt...

  12. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  14. Ikaite precipitation by mixing of shoreline springs and lake water, Mono Lake, California, USA

    Science.gov (United States)

    Bischoff, James L.; Stine, Scott; Rosenbauer, Robert J.; Fitzpatrick, John A.; Stafford, Thomas W., Jr.

    1993-08-01

    Metastable ikaite (CaCO 3·6H 2O) forms abundantly during winter months along the south shoreline of Mono Lake where shoreline springs mix with lake water. Ikaite precipitates because of its decreased solubility at low temperature and because of orthophosphate-ion inhibition of calcite and aragonite. During the spring some of the ikaite is transformed to anhydrous CaCO 3 and is incorporated into tufa, but most is dispersed by wave action into the lake where it reacts to form gaylussite (Na 2Ca(CO 3) 2· 5H 2O). Spring waters have low pH values, are dominantly Ca-Na-HCO 3, have low radiocarbon activities, and are mixtures of deep-seated geothermal and cold groundwaters. Chemical modeling reveals that precipitation of CaCO 3 can occur over a broad range of mixtures of spring and lake water with a maximum production occurring at 96% spring water and 4% lake water. Under these conditions all the Ca and a significant fraction of the CO 3 of the precipitate is spring supplied. A radiocarbon age of 19,580 years obtained on a natural ikaite sample supports this conclusion. With the springs supplying a large and probably variable portion of the carbonate, and with apparent 14C age of the carbonate varying from spring to spring, tufa of similar actual antiquity may yield significantly different 14C dates, making tufa at this location unsuitable for absolute age dating by the radiocarbon method.

  15. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas A [Los Alamos National Laboratory

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  16. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    International Nuclear Information System (INIS)

    Richmond, S; Bridgewater, J S; Ward, J W; Allen, T H

    2010-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH 2 ). The heats of solution for PuH S and PuD S are determined from PCT data in the ranges 350-625 deg. C for gallium alloyed Pu and 400-575 deg. C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  17. PRECIPITATION OF PROTACTINIUM

    Science.gov (United States)

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  18. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  19. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  20. Aluminum Solubility in Complex Electrolytes - 13011

    Energy Technology Data Exchange (ETDEWEB)

    Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2013-07-01

    Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

  1. Laboratory and in-situ reductions of soluble phosphorus in swine waste slurries.

    Science.gov (United States)

    Burns, R T; Moody, L B; Walker, F R; Raman

    2001-11-01

    Laboratory and field experiments were conducted using magnesium chloride (MgCl2) to force the precipitation of struvite (MgNH4PO4 x 6H2O) and reduce the concentration of soluble phosphorus (SP) in swine waste. In laboratory experiments, reductions of SP of 76% (572 to 135 mg P l(-1)) were observed in raw swine manure after addition of magnesium chloride (MgCl2) at a rate calculated to provide a 1.6:1 molar ratio of magnesium (Mg) to total phosphorus. Adjusting the pH of the treated manure to pH 9.0 with sodium hydroxide (NaOH) increased SP reduction to 91% (572 to 50 mg P l(-1)). X-ray diffraction of the precipitate recovered from swine waste slurry treated only with MgCl2 confirmed the presence ofstruvite. The molar N:P:Mg ratio of the recovered precipitate was 1:1.95:0.24, suggesting that compounds in addition to struvite were formed. In a field experiment conducted in a swine manure holding pond, a 90% reduction in SP concentration was observed in approximately 140,000 l of swine manure slurry treated before land application with 2,000 l MgCl2 (64% solution) at ambient slurry temperatures ranging from 5 to 10 degrees C.

  2. Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2016-10-01

    Full Text Available The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.

  3. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  4. Argon solubility in liquid steel

    NARCIS (Netherlands)

    Boom, R; Dankert, O; Van Veen, A; Kamperman, AA

    2000-01-01

    Experiments have been performed to establish the solubility of argon in liquid interstitial-free steel. The solubility appears to be lower than 0.1 at ppb, The results are in line with argon solubilities reported in the literature on liquid iron. Semiempirical theories and calculations based on the

  5. Radionuclide co-precipitation

    International Nuclear Information System (INIS)

    Bruno, J.; Sandino, A.

    1987-12-01

    The thermodynamic and kinetic behaviour of the minor components of the spent fuel matrix has been theoretically and experimentally investigated. Two different situations have been studied: Part I, the near field scenario, where the release and migration of the minor components is dependent on the solubility behaviour of UO 2 (s); Part II, the far field, where the solubility and transport of the radionuclides is related to the major geochemical processes occurring. (orig.)

  6. Radionuclide Retention in Concrete Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.; Wood, Marcus I.

    2010-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. The information presented in the report provides data that 1) quantify radionuclide retention within concrete waste form materials similar to those used to encapsulate waste in the Low-Level Waste Burial Grounds (LLBG); 2) measure the effect of concrete waste form properties likely to influence radionuclide migration; and 3) quantify the stability of uranium-bearing solid phases of limited solubility in concrete.

  7. The effect of precipitation on contaminant dissolution and transport: Analytic solutions

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1988-09-01

    We analysed the effect of precipitation on the dissolution and transport rates of a nondecaying contaminant. Precipitation near the waste surface can have a profound effect on dissolution and transport rates. The mass-transfer rate at the waste surface is controlled by the solid-liquid reaction rate to an extent determined by the modified reaction-rate modulus, α. At later times extending to steady state, the mass-transfer rate depends on the location of the precipitation front r/sub p/ and on the solubility ratio C/sub o//C/sub p/. A precipitation front very near the waste surface can change the dissolution mechanism from solubility-diffusion-controlled to chemical-reaction-rate controlled. Precipitation limits the concentration of the contaminant at r > r/sub p/ to C/sub p/, steepening the concentration gradient for dissolution on the waste package side of the front and flattening the gradient for transport in the region outside the front. This increases the rate of contaminant transport from the waste to the front while decreasing the rate of transport away from the front, when compared to the situation without precipitation. The difference in the transport rates at the front is the rate of precipitation. For large changes in solubility, most of the contaminant is immobilized by precipitation, as was observed in a parallel study. The effect of a precipitation front located nearby in surrounding rock is to increase the release rate at the waste surface/rock interface. The increase in release rate at the waste surface is greater the closer the precipitation and the larger the ratio C/sub o//C/sub p/, also observed by others. The release rates of other waste constituents that dissolve congruently with the solubility-controlling matrix can be increased by a local high-solubility region between the waste surface and the precipitation front. 10 refs., 5 figs

  8. Modeling of asphaltene and wax precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.; Sarathi, P.; Jones, R.

    1991-01-01

    This research project was designed to focus on the development of a predictive technique for organic deposition during gas injection for petroleum EOR. A thermodynamic model has been developed to describe the effects of temperature, pressure, and composition on asphaltene precipitation. The proposed model combines regular solution theory with Flory-Huggins polymer solutions theory to predict maximum volume fractions of asphaltene dissolved in oil. The model requires evaluation of vapor-liquid equilibria, first using an equation of state followed by calculations of asphaltene solubility in the liquid-phase. A state-of-the-art technique for C{sub 7+} fraction characterization was employed in developing this model. The preliminary model developed in this work was able to predict qualitatively the trends of the effects of temperature, pressure, and composition. Since the mechanism of paraffinic wax deposition is different from that of asphaltene deposition, another thermodynamic model based on the solid-liquid solution theory was developed to predict the wax formation. This model is simple and can predict the wax appearance temperature with reasonable accuracy. Accompanying the modeling work, experimental studies were conducted to investigate the solubility of asphaltene in oil land solvents and to examine the effects of oil composition, CO{sub 2}, and solvent on asphaltene precipitation and its properties. This research focused on the solubility reversibility of asphaltene in oil and the precipitation caused by CO{sub 2} injection at simulated reservoir temperature and pressure conditions. These experiments have provided many observations about the properties of asphaltenes for further improvement of the model, but more detailed information about the properties of asphaltenes in solution is needed for the development of more reliable asphaltene characterization techniques. 50 refs., 8 figs., 7 tabs.

  9. Anthropogenic atmospheric precipitation and quality of environment in Ivano-Frankivsk oblast

    OpenAIRE

    Ганжа, Дмитро Дмитрович; Ганжа, Дмитро Дмитрович

    2016-01-01

    It is studied anthropogenic atmospheric precipitation by the content of soluble salts, macroelements and dust in snow water. Total air pollution index was calculated by the measured parameters of precipitation. It was established statistical connections between total pollution index, on the one hand, and the population growth, mortality from tumors and vascular lesions at diseases of the circulatory system, on the other hand

  10. Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690

    International Nuclear Information System (INIS)

    Sarver, J.M.; Crum, J.R.; Mankins, W.L.

    1987-01-01

    Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance

  11. Formation of crystalline Zn-Al layered double hydroxide precipitates on γ-alumina: the role of mineral dissolution.

    Science.gov (United States)

    Li, Wei; Livi, Kenneth J T; Xu, Wenqian; Siebecker, Matthew G; Wang, Yujun; Phillips, Brian L; Sparks, Donald L

    2012-11-06

    To better understand the sequestration of toxic metals such as nickel (Ni), zinc (Zn), and cobalt (Co) as layered double hydroxide (LDH) phases in soils, we systematically examined the presence of Al and the role of mineral dissolution during Zn sorption/precipitation on γ-Al(2)O(3) (γ-alumina) at pH 7.5 using extended X-ray absorption fine structure spectroscopy (EXAFS), high-resolution transmission electron microscopy (HR-TEM), synchrotron-radiation powder X-ray diffraction (SR-XRD), and (27)Al solid-state NMR. The EXAFS analysis indicates the formation of Zn-Al LDH precipitates at Zn concentration ≥0.4 mM, and both HR-TEM and SR-XRD reveal that these precipitates are crystalline. These precipitates yield a small shoulder at δ(Al-27) = +12.5 ppm in the (27)Al solid-state NMR spectra, consistent with the mixed octahedral Al/Zn chemical environment in typical Zn-Al LDHs. The NMR analysis provides direct evidence for the existence of Al in the precipitates and the migration from the dissolution of γ-alumina substrate. To further address this issue, we compared the Zn sorption mechanism on a series of Al (hydr)oxides with similar chemical composition but differing dissolubility using EXAFS and TEM. These results suggest that, under the same experimental conditions, Zn-Al LDH precipitates formed on γ-alumina and corundum but not on less soluble minerals such as bayerite, boehmite, and gibbsite, which point outs that substrate mineral surface dissolution plays an important role in the formation of Zn-Al LDH precipitates.

  12. Solubility study of Tc(IV) oxides

    International Nuclear Information System (INIS)

    Liu, D.J.; Fan, X.H.

    2005-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safer disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 ·nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium oxide was prepared by reduction of a technetate solution with Sn 2 + . The solubility of Tc(IV) oxide has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) oxide were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49-1.86) x 10 -9 mol/(L·d) under aerobic conditions, but Tc(IV) in simulated groundwater and redistilled water is not oxidized under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) oxide in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  13. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  14. Analysis of precipitation in a Cu-Cr-Zr alloy

    Institute of Scientific and Technical Information of China (English)

    Zhao Mei; Lin Guobiao; Wang Zidong; Zhang Maokui

    2008-01-01

    Precipites in Cu-0.42%Cr-0.21%Zr alloy were analyzed by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDXS) and transmission electron microscope (TEM). After the solid solution was performed at 980℃ for 2 h, water-quenched and aged at 450℃ for 20 h, the precipite had a bimodal distribution of precipitate size. The coarse precipitates are pure Cr and Cu5Zr, the dispersed fine precipitate is CrCu2(Zr, Mg) and pure Cr ranging from 1 to 50 nm. The coarse phases formed during solidification and were left undissolved during solid solution. The fine precipitates are the hardening precipitates that form due to decomposition of the supersaturated solid solution during aging.

  15. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives.

    Science.gov (United States)

    Breda, Susana A; Jimenez-Kairuz, Alvaro F; Manzo, Ruben H; Olivera, María E

    2009-04-17

    The hydrochlorides of the 1:3 aluminum:norfloxacin and aluminum:ciprofloxacin complexes were characterized according to the Biopharmaceutics Classification System (BCS) premises in comparison with their parent compounds. The pH-solubility profiles of the complexes were experimentally determined at 25 and 37 degrees C in the range of pH 1-8 and compared to that of uncomplexed norfloxacin and ciprofloxacin. Both complexes are clearly more soluble than the antibiotics themselves, even at the lowest solubility pHs. The increase in solubility was ascribed to the species controlling solubility, which were analyzed in the solid phases at equilibrium at selected pHs. Additionally, permeability was set as low, based on data reported in the scientific literature regarding oral bioavailability, intestinal and cell cultures permeabilities and also considering the influence of stoichiometric amounts of aluminum. The complexes fulfill the BCS criterion to be classified as class 3 compounds (high solubility/low permeability). Instead, the active pharmaceutical ingredients (APIs) currently used in solid dosage forms, norfloxacin and ciprofloxacin hydrochloride, proved to be BCS class 4 (low solubility/low permeability). The solubility improvement turns the complexes as potential biowaiver candidates from the scientific point of view and may be a good way for developing more dose-efficient formulations. An immediate release tablet showing very rapid dissolution was obtained. Its dissolution profile was compared to that of the commercial ciprofloxacin hydrochloride tablets allowing to dissolution of the complete dose at a critical pH such as 6.8.

  16. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.

    Science.gov (United States)

    Aditya, N P; Yang, Hanjoo; Kim, Saehoon; Ko, Sanghoon

    2015-03-01

    Curcumin has low aqueous stability and solubility in its native form. It also has a low bioavailability which presents a major barrier to its use in fortifying food products. The aim of this work was to reduce the size of curcumin crystals to the nanoscale and subsequently stabilize them in an amorphous form. To this end, amorphous curcumin nanosuspensions were fabricated using the antisolvent precipitation method with β-lactoglobulin (β-lg) as a stabilizer. The resulting amorphous curcumin nanosuspensions were in the size range of 150-175 nm with unimodal size distribution. The curcumin particles were amorphous and were molecularly dispersed within the β-lg as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) studies. The solubility of the amorphous curcumin nanosuspension was enhanced ∼35-fold due to the reduced size and lower crystallinity. Among the formulations, the amorphous curcumin nanosuspensions stabilized with β-lg and prepared at pH 3.4 (β-lg-cur 3.4), showed maximum aqueous stability which was >90% after 30 days. An in vitro study using Caco-2 cell lines showed a significant increase in curcumin bioavailability after stabilization with β-lg. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Precipitates in irradiated Zircaloy

    International Nuclear Information System (INIS)

    Chung, H.M.

    1985-10-01

    Precipitates in high-burnup (>20 MWd/kg U) Zircaloy spent-fuel cladding discharged from commercial boiling- and pressurized-water reactors have been characterized by TEM-HVEM. Three classes of primary precipitates were observed in the irradiated Zircaloys: Zr 3 O (2 to 6 nm), cubic-ZrO 2 (greater than or equal to 10 nm), and delta-hydride (35 to 100 nm). The former two precipitations appears to be irradiation induced in nature. Zr(Fe/sub x/Cr/sub 1-x/) 2 and Zr 2 (Fe/sub x/Ni/sub 1-x/) intermetallics, which are the primary precipitates in unirradiated Zircaloys, were largely dissolved after the high burnup. It seems, therefore, that the influence of the size and distribution of the intermetallics on the corrosion behavior may be quite different for the irradiated Zircaloys

  18. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  19. Precipitation Kinetics in a Nb-stabilized Ferritic Stainless Steel

    Science.gov (United States)

    Labonne, M.; Graux, A.; Cazottes, S.; Danoix, F.; Cuvilly, F.; Chassagne, F.; Perez, M.; Massardier, V.

    2017-08-01

    The precipitation occurring in a Nb-stabilized ferritic stainless steel, containing initially Nb(C, N) carbonitrides and Fe3Nb3X precipitates, was investigated during aging treatments performed between 923 K and 1163 K (650 °C and 890 °C) by combining different techniques, (thermoelectric power (TEP), scanning/transmission electron microscopy (SEM/TEM), and atom probe tomography (APT)), in order to determine the precipitation kinetics, the nature and morphology of the newly formed precipitates as well as the chemistry of the initial Fe3Nb3X precipitates, where X stands for C or N. The following composition was proposed for these precipitates: (Fe0.81 Cr0.19)3 (Nb0.85 Si0.08 Mo0.07)3 (N0.8 C0.2), highlighting the simultaneous presence of N and C in the precipitates. With regard to the precipitation in the investigated temperature range, two main phenomena, associated with a hardness decrease, were clearly identified: (i) the precipitation of Fe2Nb precipitates from the niobium initially present in solution or coming from the progressive dissolution of the Fe3Nb3X precipitates and (ii) the precipitation of the χ-phase at grain boundaries for longer aging times. From the TEP kinetics, a time-temperature-precipitation diagram has been proposed.

  20. Synthesis and purification of oxide nanoparticle dispersions by modified emulsion precipitation.

    Science.gov (United States)

    Shi, Jingyu; Verweij, Henk

    2005-06-07

    ZrO2 and Fe2O3 precursor nanoparticles are synthesized, well-dispersed in decane, via a modified emulsion precipitation (MEP) method. This method starts with preparing two thermostable water-in-oil (w/o) emulsions with nonylphenol tetra(ethylene glycol) ether (Arkopal-40) as the main surfactant, didodecyldimethylammonium bromide (DiDAB) as the cosurfactant, decane as the continuous oil phase, and either a metal salt solution or a hexamethylenetetramine (HMTA) precipitation agent solution as the dispersed water phase. After mixing of the two emulsions, individual precursor particles are formed by precipitation in the confinement of the aqueous solution droplets. Excess water is removed by azeotropic distillation, and steric stabilization of the particles in the remaining oil medium is achieved with poly(octadecyl methacrylate) (PODMA), initially present dissolved in the oil phase. A purification process is conducted to remove the precipitation reaction byproduct and excess surfactants from the nanoparticle dispersions. Transmission electron microscopy (TEM) characterization shows that the ZrO2 and Fe2O3 precursor nanoparticles are both non-agglomerated, spherical, and have a narrow particle size distribution, centered at 4 nm in diameter. The precipitation from the dispersion of byproduct NH4Cl after water removal, and insoluble surfactant DiDAB after dilution with pure decane, is confirmed by X-ray diffraction (XRD). NMR results show that most of the oil-soluble surfactant Arkopal-40 can be removed from the dispersion by a 3x repeated dead-end pressure filtration process. It is shown that, after purification, the nanoparticle dispersions can be used for the preparation of homogeneous nanostructured coatings. The purification procedure as discussed provides guidelines for up-scaling the process and reuse of emulsifiers.

  1. Respiratory carcinogenicity assessment of soluble nickel compounds.

    Science.gov (United States)

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided.

  2. A thermodynamic solution model for calcium carbonate: Towards an understanding of multi-equilibria precipitation pathways.

    Science.gov (United States)

    Donnet, Marcel; Bowen, Paul; Lemaître, Jacques

    2009-12-15

    Thermodynamic solubility calculations are normally only related to thermodynamic equilibria in solution. In this paper, we extend the use of such solubility calculations to help elucidate possible precipitation reaction pathways during the entire reaction. We also estimate the interfacial energy of particles using only solubility data by a modification of Mersmann's approach. We have carried this out by considering precipitation reactions as a succession of small quasi-equilibrium states. Thus possible equilibrium precipitation pathways can be evaluated by calculating the evolution of surface charge, particle size and/or interfacial energy during the ongoing reaction. The approach includes the use of the Kelvin's law to express the influence of particle size on the solubility constant of precipitates, the use of Nernst's law to calculate surface potentials from solubility calculations and relate this to experimentally measured zeta potentials. Calcium carbonate precipitation and zeta potential measurements of well characterised high purity calcite have been used as a model system to validate the calculated values. The clarification of the change in zeta potential on titration illustrates the power of this approach as a tool for reaction pathway prediction and hence knowledge based tailoring of precipitation reactions.

  3. Sensitivity analysis of uranium solubility under strongly oxidizing conditions

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    1999-01-01

    To evaluate the effect of geochemical conditions in the repository on the solubility of uranium under strongly oxidizing conditions, a mathematical model has been developed to determine the solubility, by utilizing a set of nonlinear algebraic equations to describe the chemical equilibria in the groundwater environment. The model takes into account the predominant precipitation-dissolution reactions, hydrolysis reactions and complexation reactions that may occur under strongly oxidizing conditions. The model also includes the solubility-limiting solids induced by the presence of carbonate, phosphate, silicate, calcium, and sodium in the groundwater. The thermodynamic equilibrium constants used in the solubility calculations are essentially taken from the NEA Thermochemical Data Base of Uranium, with some modification and some uranium minerals added, such as soddyite, rutherfordite, uranophane, uranyl orthophosphate, and becquerelite. By applying this model, the sensitivities of uranium solubility to variations in the concentrations of various groundwater component species are systematically investigated. The results show that the total analytical concentrations of carbonate, phosphate, silicate, and calcium in deep groundwater play the most important role in determining the solubility of uranium under strongly oxidizing conditions

  4. Radiation Induced Precipitation in Iron

    Energy Technology Data Exchange (ETDEWEB)

    Solly, B

    1964-02-15

    Foils of iron have been neutron-irradiated in the Swedish re- search reactor R2 to integrated doses in the range 10{sup 17} - 10{sup 19} nvt (> 1 MeV) and examined by transmission electron microscopy. Features have been observed having diffraction contrast similar to that of the prismatic dislocation loops formed in f.c.c. metals by the collapse of point-defect clusters. The features have been shown to be due to precipitation of impurities at radiation damage centres in the iron matrix.

  5. Radiation Induced Precipitation in Iron

    International Nuclear Information System (INIS)

    Solly, B.

    1964-02-01

    Foils of iron have been neutron-irradiated in the Swedish re- search reactor R2 to integrated doses in the range 10 17 - 10 19 nvt (> 1 MeV) and examined by transmission electron microscopy. Features have been observed having diffraction contrast similar to that of the prismatic dislocation loops formed in f.c.c. metals by the collapse of point-defect clusters. The features have been shown to be due to precipitation of impurities at radiation damage centres in the iron matrix

  6. Precipitation of ammonium diuranate : a study

    International Nuclear Information System (INIS)

    Krishnamoorthy, T.S.; Mahadevan, N.; Sankar Das, M.

    1991-01-01

    The precipitation of ammonium diuranate (ADU) forms the first step in the production of UO 2 fuel for reactors, and hence the quality and consistency of the ADU precipitate is very important in industrial operations. An investigation, on the precipitation of ADU, was carried out under conditions similar to those in industrial production, to evaluate the effect of various variables on the consistency and the quality of ADU. The variables studied were concentration of uranium and ammonia, pH, temperature and form of ammonia (gas or solution). The properties studied were the settling rate of the precipitates, surface area of the ADUs and calcined oxides and compositional characteristics of the ADUs. Multifactorial experiments and ruggedness tests were applied to identify the parameters to which the precipitation process is most vulnerable, so that such parameters may be controlled effectively. Besides, the effect and the importance of equilibrium conditions during the precipitation process, on the quality of the final ADU, was also established. The paper presents the results of these studies. (author). 6 refs., 3 figs., 7 tabs

  7. Arsenic immobilization by calcium-arsenic precipitates in lime treated soils

    International Nuclear Information System (INIS)

    Moon, Deok Hyun; Dermatas, Dimitris; Menounou, Nektaria

    2004-01-01

    Lime-based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established. Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As and lime-As-kaolinite were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-Ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca 4 (OH) 2 (AsO 4 ) 2 ·4H 2 O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5:1. This observation was also confirmed by XRD. Lime-As-kaolinite slurries were also prepared at different Ca/As molar ratios. These slurries were used to specifically investigate the possibility of forming pozzolanic reaction products. Such products would immobilize As by sorption and/or inclusion along with the formations of different As precipitates. Toxicity Characteristic Leaching Procedure (TCLP) tests were used to evaluate As leachability in these slurries. XRD analyses revealed no pozzolanic reaction product formation. Instead, As immobilization was found to be precipitation controlled. The same Ca-As precipitate, Ca

  8. Sulfide precipitation method of separating uranium from Group II and Group III metal ions

    International Nuclear Information System (INIS)

    Sundar, P.S.

    1977-01-01

    Uranium is separated from analytical Group II and Group III metal ions in an aqueous liquor containing uranyl ions. The liquor is extracted with a non-interfering, water-immiscible, organic solvent containing a reagent which will react with the uranyl ions to form a complex soluble in the solvent. If the liquor is acidic, the solvent is washed with water. Then to the solvent is added an aqueous solution containing about 0.5 to 1.0 mole per liter of (NH 4 ) 2 CO 3 or NH 4 HCO 3 ions and sufficient sulfide ions to precipitate the metal ions as sulfides. The solvent and the aqueous solution are separated and the sulfides filtered from the aqueous solution. The ammonium-uranyl-tricarbonate in the aqueous solution can then be precipitated by increasing the concentration of (NH 4 ) 2 CO 3 or NH 4 HCO 3 ions to about 1.5 to 2.5 moles per liter. The precipitate is filtered and calcined to obtain U 3 O 8 or UO 2 . 21 claims, 1 figure

  9. Testing of compact electrostatic precipitator for removal of hygroscopic ammonium salts from flue gases

    International Nuclear Information System (INIS)

    Iller, E.; Chmielewska, D.K.; Koczy, B.; Rygula, Cz.

    2002-01-01

    Among many new technologies for purification of flue gases the process using electron beam for simultaneous removal of SO 2 and NO x is developing successfully and is entering to industrial applications. The product being the mixture of ammonium sulfate and nitrate is formed during the process of pollution reduction. Solid particles of this product are hydroscopic aerosol with submicron size. Results of investigation of ammonium aerosol salts removal by electrostatic precipitator of special construction co-operating with irradiation purification of the flue gas installation placed in EC 'Kaweczyn' area have been presented in the report. Influence of different parameters on the efficiency is discussed as well. Maximum removal efficiency was equal to 99.7%. Particulate emission and aerosol particle sizes distribution in the electrostatic precipitator inlet and outlet were measured using universal cascade impactor Andersen Mark III. Chemical composition of the soluble part of the by-product collected in electrostatic precipitator was examined with ion chromatography. The insoluble part and water content of the samples was measured as well. (author)

  10. Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl, and sufentanil.

    Science.gov (United States)

    Roy, S D; Flynn, G L

    1989-02-01

    The pH dependence of the aqueous solubility of morphine, fentanyl, and sufentanil was investigated at 35 degrees C. Dissociation constants and corresponding pKa' values of the drugs were obtained from measured free-base solubilities (determined at high pH's) and the concentrations of saturated solutions at intermediate pH's. Morphine, fentanyl, and sufentanil exhibited pKa' values of 8.08, 8.99, and 8.51, respectively. Over the pH range of 5 to 12.5 the apparent solubilities are determined by the intrinsic solubility of the free base plus the concentration of ionized drug necessary to satisfy the dissociation equilibrium at a given pH. Consequently, the drug concentrations of saturated aqueous solutions fall off precipitously as the pH is raised and ionization is suppressed. Further, at low pH's the aqueous solubility of morphine increased in a linear fashion with increases in the molar strength of citric acid which was added to acidify the medium, suggesting the formation of a soluble morphine-citrate complex.

  11. Controlling the size and morphology of precipitated calcite particles by the selection of solvent composition

    Science.gov (United States)

    Konopacka-Łyskawa, Donata; Kościelska, Barbara; Karczewski, Jakub

    2017-11-01

    Precipitated calcium carbonate is used as an additive in the manufacture of many products. Particles with specific characteristics can be obtained by the selection of precipitation conditions, including temperature and the composition of solvent. In this work, calcium carbonate particles were obtained in the reaction of calcium hydroxide with carbon dioxide at 65 °C. Initial Ca(OH)2 suspensions were prepared in pure water and aqueous solutions of ethylene glycol or glycerol of the concentration range up to 20% (vol.). The course of reaction was monitored by conductivity measurements. Precipitated solids were analyzed by FTIR, XRD, SEM and the particles size distribution was determined by a laser diffraction method. The adsorption of ethylene glycol or glycerol on the surface of scalenohedral and rhombohedral calcite was testes by a normal-phase high-performance liquid chromatography. The addition of organic solvents changed the viscosity of reaction mixtures, the rate of carbon dioxide absorption and the solubility of inorganic components and therefore influence calcium carbonate precipitation conditions. All synthesized calcium carbonate products were in a calcite form. Scalenohedral calcite crystals were produced when water was a liquid phase, whereas addition of organic solvents resulted in the formation of rhombo-scalenohedral particles. The increase in organic compounds concentration resulted in the decrease of mean particles size from 2.4 μm to 1.7 μm in ethylene glycol solutions and to 1.4 μm in glycerol solutions. On the basis of adsorption tests, it was confirm that calcite surface interact stronger with glycerol than ethylene glycol. The interaction between scalenohedral calcite and used organic additives was higher in comparison to the pure rhombohedral form applied as a stationary phase.

  12. Teaching Form as Form

    DEFF Research Database (Denmark)

    Keiding, Tina Bering

    2012-01-01

    understanding of form per se, or, to use an expression from this text, of form as form. This challenge can be reduced to one question: how can design teaching support students in achieving not only the ability to recognize and describe different form-related concepts in existing design (i.e. analytical...

  13. Atmospheric Processing of Volcanic Glass: Effects on Iron Solubility and Redox Speciation.

    Science.gov (United States)

    Maters, Elena C; Delmelle, Pierre; Bonneville, Steeve

    2016-05-17

    Volcanic ash from explosive eruptions can provide iron (Fe) to oceanic regions where this micronutrient limits primary production. Controls on the soluble Fe fraction in ash remain poorly understood but Fe solubility is likely influenced during atmospheric transport by condensation-evaporation cycles which induce large pH fluctuations. Using glass powder as surrogate for ash, we experimentally simulate its atmospheric processing via cycles of pH 2 and 5 exposure. Glass fractional Fe solubility (maximum 0.4%) is governed by the pH 2 exposure duration rather than by the pH fluctuations, however; pH 5 exposure induces precipitation of Fe-bearing nanoparticles which (re)dissolve at pH 2. Glass leaching/dissolution release Fe(II) and Fe(III) which are differentially affected by changes in pH; the average dissolved Fe(II)/Fetot ratio is ∼0.09 at pH 2 versus ∼0.18 at pH 5. Iron release at pH 2 from glass with a relatively high bulk Fe(II)/Fetot ratio (0.5), limited aqueous Fe(II) oxidation at pH 5, and possibly glass-mediated aqueous Fe(III) reduction may render atmospherically processed ash a significant source of Fe(II) for phytoplankton. By providing new insight into the form(s) of Fe associated with ash as wet aerosol versus cloud droplet, we improve knowledge of atmospheric controls on volcanogenic Fe delivery to the ocean.

  14. Thermodynamic data development using the solubility method (Joint research)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Yui, Mikazu

    2013-05-01

    The solubility method is one of the most powerful tools to obtain reliable thermodynamic data for 1) solubility products of discrete solids and double salts, 2) complexation constants for various ligands, 3) development of data in a wide range of pH values, 4) evaluation of data for metals that form very insoluble solids (e.g. tetravalent actinides), 5) determining solubility-controlling solids in different types of wastes and 6) elevated temperatures for redox sensitive systems. This document is focused on describing various aspects of obtaining thermodynamic data using the solubility method. This manuscript deals with various aspects of conducting solubility studies, including selecting the study topic, modeling to define important variables, selecting the range of variables and experimental parameters, anticipating results, general equipment requirements, conducting experiments, and interpreting experimental data. (author)

  15. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    International Nuclear Information System (INIS)

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  16. Polymerized soluble venom--human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-03-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. /sup 125/I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom.

  17. Polymerized soluble venom--human serum albumin

    International Nuclear Information System (INIS)

    Patterson, R.; Suszko, I.M.; Grammer, L.C.

    1985-01-01

    Extensive previous studies have demonstrated that attempts to produce polymers of Hymenoptera venoms for human immunotherapy resulted in insoluble precipitates that could be injected with safety but with very limited immunogenicity in allergic patients. We now report soluble polymers prepared by conjugating bee venom with human serum albumin with glutaraldehyde. The bee venom-albumin polymer (BVAP) preparation was fractionated on Sephacryl S-300 to have a molecular weight range higher than catalase. 125 I-labeled bee venom phospholipase A was almost completely incorporated into BVAP. Rabbit antibody responses to bee venom and bee venom phospholipase A were induced by BVAP. Human antisera against bee venom were absorbed by BVAP. No new antigenic determinants on BVAP were present as evidenced by absorption of antisera against BVAP by bee venom and albumin. BVAP has potential immunotherapeutic value in patients with anaphylactic sensitivity to bee venom

  18. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Influence of formulation and processing variables on properties of itraconazole nanoparticles made by advanced evaporative precipitation into aqueous solution.

    Science.gov (United States)

    Bosselmann, Stephanie; Nagao, Masao; Chow, Keat T; Williams, Robert O

    2012-09-01

    Nanoparticles, of the poorly water-soluble drug, itraconazole (ITZ), were produced by the Advanced Evaporative Precipitation into Aqueous Solution process (Advanced EPAS). This process combines emulsion templating and EPAS processing to provide improved control over the size distribution of precipitated particles. Specifically, oil-in-water emulsions containing the drug and suitable stabilizers are sprayed into a heated aqueous solution to induce precipitation of the drug in form of nanoparticles. The influence of processing parameters (temperature and volume of the heated aqueous solution; type of nozzle) and formulation aspects (stabilizer concentrations; total solid concentrations) on the size of suspended ITZ particles, as determined by laser diffraction, was investigated. Furthermore, freeze-dried ITZ nanoparticles were evaluated regarding their morphology, crystallinity, redispersibility, and dissolution behavior. Results indicate that a robust precipitation process was developed such that size distribution of dispersed nanoparticles was shown to be largely independent across the different processing and formulation parameters. Freeze-drying of colloidal dispersions resulted in micron-sized agglomerates composed of spherical, sub-300-nm particles characterized by reduced crystallinity and high ITZ potencies of up to 94% (w/w). The use of sucrose prevented particle agglomeration and resulted in powders that were readily reconstituted and reached high and sustained supersaturation levels upon dissolution in aqueous media.

  20. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    Science.gov (United States)

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  1. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  2. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  3. Impact of Precipitation Fluctuation on Desert-Grassland ANPP

    Directory of Open Access Journals (Sweden)

    Liangxu Liu

    2016-11-01

    Full Text Available Precipitation change has significantly influenced annual net primary productivity (ANPP at either annual or seasonal scales in desert steppes in arid and semi-arid regions. In order to reveal the process of precipitation driving ANPP at different time scales, responses of different ANPP levels to the inter-annual and intra-annual precipitation fluctuations were analyzed. ANPP was reversed by building a ground reflectance spectrum model, from 2000 to 2015, using the normalized differential vegetation index of the Moderate-Resolution Imaging Spectroradiometer (MODIS-NDVI data at 250 m × 250 m spatial resolution. Since the description of the differently expressing forms of precipitation are not sufficient in former studies in order to overcome the deficiency of former studies, in this study, intra-annual precipitation fluctuations were analyzed not only with precipitation of May–August, June–August, July–August, and August, respectively, which have direct influence on vegetation productivity within the year, but quantitative description, vector precipitation (R, concentration ratio (Cd, and concentration period (D, were also used to describe the overall characteristics of intra-annual precipitation fluctuations. The concentration ratio and the maximum precipitation period of the intra-annual precipitation were represented by using monthly precipitation. The results showed that: (1 in the period from 1971 to 2015, the maximum annual precipitation is 3.76 times that of the minimum in the Urat desert steppe; (2 vector precipitation is more significantly related to ANPP (r = 0.7724, p = 0.000 compared to meteorological annual precipitation and real annual precipitation influence; and (3 annual precipitation is almost concentrated in 5–8 months and monthly precipitation accumulation has significantly effected ANPP, especially in the period of June–August, since the vegetation composition in the study area was mainly sub-shrubs and perennial

  4. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    International Nuclear Information System (INIS)

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate at concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO 3 and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO 3 be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears to be the largest portion

  5. Hydrochemical controls on aragonite versus calcite precipitation in cave dripwaters

    Science.gov (United States)

    Rossi, Carlos; Lozano, Rafael P.

    2016-11-01

    Despite the paleoclimatic relevance of primary calcite to aragonite transitions in stalagmites, the relative role of fluid Mg/Ca ratio, supersaturation and CO32- concentration in controlling such transitions is still incompletely understood. Accordingly, we have monitored the hydrochemistry of 50 drips and 8 pools that are currently precipitating calcite and/or aragonite in El Soplao and Torca Ancha Caves (N. Spain), investigating the mineralogy and geochemistry of the CaCO3 precipitates on the corresponding natural speleothem surfaces. The data reveal that, apart from possible substrate effects, dripwater Mg/Ca is the only obvious control on CaCO3 polymorphism in the studied stalagmites and pools, where calcite- and aragonite-precipitating dripwaters are separated by an initial (i.e. at stalactite tips) Mg/Ca threshold at ≈1.1 mol/mol. Within the analyzed ranges of pH (8.2-8.6), CO32- concentration (1-6 mg/L), supersaturation (SIaragonite: 0.08-1.08; SIcalcite: 0.23-1.24), drip rate (0.2-81 drops/min) and dissolved Zn (6-90 μg/L), we observe no unequivocal influence of these parameters on CaCO3 mineralogy. Despite the almost complete overlapping supersaturations of calcite- and aragonite-precipitating waters, the latter are on average less supersaturated because the waters having Mg/Ca above ∼1.1 have mostly achieved such high ratios by previously precipitating calcite. Both calcite and aragonite precipitated at or near oxygen isotopic equilibrium, and Mg incorporation into calcite was consistent with literature-based predictions, indicating that in the studied cases CaCO3 precipitation was not significantly influenced by strong kinetic effects. In the studied cases, the calcites that precipitate at ∼11 °C from dripwaters with initial Mg/Ca approaching ∼1.1 incorporate ∼5 mol% MgCO3, close to the published value above which calcite solubility exceeds aragonite solubility, suggesting that aragonite precipitation in high-relative-humidity caves is

  6. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  7. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  8. Influence of particulates on crossflow filter performance with tetraphenylborate precipitate

    International Nuclear Information System (INIS)

    Peterson, R.A.; Nash, C.A.; McCabe, D.J.

    1995-01-01

    The pretreatment of High Level Waste at the Savannah River Site, prior to vitrification, includes tetraphenylborate precipitation of cesium. Also, strontium and actinides are removed from solution by sorption on monosodium titanate. The resulting slurry is concentrated and washed using 0.4 micron stainless steel Mott filters in a crossflow assembly. The rate of filtrate production is governed by a number of parameters including the concentration of both soluble and insoluble solids present in the process stream. The major insoluble constituents in the process stream are tetraphenylborate solids. However, the presence of small quantities of monosodium titanate as well as sludge particulates, typically less than 10% of the total solids concentration, produces up to a 50% decline in the rate of filtrate production. The cake that develops during filtration is the primary resistance to flow of filtrate. In addition, experimental data indicate the filter cake is enriched in the insoluble solids relative to the bulk of the solution. The presence of these insoluble solids in the filter cake influences not only the overall filtrate flow rate, but also the mechanisms by which the filter cake is formed

  9. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  10. Soluble Aβ aggregates can inhibit prion propagation.

    Science.gov (United States)

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrP C ). Ligands that bind to PrP C can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrP C , and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrP C and emphasize the bidirectional nature of the interplay between Aβ and PrP C in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  11. Transient bedrock channel evolution across a precipitation gradient: A case study from Kohala, Hawaii.

    Science.gov (United States)

    Gasparini, N. M.; Han, J.; Johnson, J. P.; Menking, J. A.

    2011-12-01

    This study uses observations from the Kohala Peninsula, on the Big Island of Hawaii, and numerical modeling, to explore how precipitation gradients may affect fluvial bedrock incision and channel morphology. Orographic precipitation patterns result in over 4 m/yr of rainfall on the wet side of the peninsula and less than 0.5 m/yr on the dry side. These precipitation patterns likely strongly contribute to the observed channel morphology. Further, the region is subsiding, leading to prolonged transient channel evolution. We explore changes in a number of channel morphologic parameters with watershed averaged precipitation rate. We use PRISM precipitation data and data from isohyets developed from historic rain gauge data. Not surprisingly, valley depth, measured from a 10 meter DEM, increases with spatially averaged precipitation rate. We also find that channel profile form varies with precipitation rate, with drier channels exhibiting a straight to slightly concave channel form and wetter channels exhibiting a convex to concave channel form. The precipitation value at which this transition in channel profile form occurs depends on the precipitation data-set used, highlighting the need for more accurate measurements of precipitation in settings with extreme precipitation patterns similar to our study area. The downstream pattern in precipitation is likely significant in the development of the convex-concave profile form. Numerical modeling results support that precipitation patterns such as those observed on the wet-side of the Kohala Peninsula may contribute to the convex-concave profile form. However, we emphasize that while precipitation patterns may contribute to the channel form, these channel features are transient and not expected to be sustained in steady-state landscapes. We also emphasize that it is fluvial discharge, as driven by precipitation, rather than precipitation alone, that drives the processes shaping the channel form. Because fluvial discharge is

  12. Improving the Carprofen Solubility: Synthesis of the Zn2Al-LDH Hybrid Compound.

    Science.gov (United States)

    Capsoni, Doretta; Quinzeni, Irene; Bruni, Giovanna; Friuli, Valeria; Maggi, Lauretta; Bini, Marcella

    2018-01-01

    The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M 2+ 1-x M 3+ x (OH) 2 ](A n- ) x/n yH 2 O (M 2+  = Zn, Mg; M 3+  = Al; A n-  = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn 2 Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic.

    Science.gov (United States)

    Jian, Wenjie; Sun, Yuanming; Wu, Jian-Yong

    2017-07-01

    Monascus pigments (Mps) are natural food colorants and their stability in acidic solutions is important for application in the food industry. This study aimed to evaluate the use of gum arabic (GA) as a stabilizer for maintaining the solubility of Mps in an acidic aqueous solution exposed to a high temperature, and to analyze the molecular interactions between GA and Mps. Mps dispersed (0.2 g kg -1 ) in deionized water at pH 3.0-4.0 without GA formed precipitates but remained in a stable solution in the presence of GA (1 g kg -1 ). The significant improvement of Mps water solubility under acidic conditions was attributed to the formation of Mps-GA complexes, as indicated by a sharp increase in the fluorescence intensity. The results on particle size, zeta potential, and transmission electron microscopy further suggested that molecular binding of Mps to GA, electrostatic repulsion, and steric hindrance of GA were contributing factors to preventing the aggregation of Mps in acidic solutions. A mechanistic model was presented for GA-Mps interactions and complex structures. GA was proven to be an effective stabilizer of natural food colorants in acidic solutions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Fate of soluble uranium in the I{sub 2}/KI leaching process for mercury removal

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, W.D.; Davis, W.H.; Jarabek, R.J. [East Tennessee Technology Park, Oak Ridge, TN (United States). Materials and Chemistry Lab.

    1997-09-01

    General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of {approximately} 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake.

  15. Fate of soluble uranium in the I2/KI leaching process for mercury removal

    International Nuclear Information System (INIS)

    Bostick, W.D.; Davis, W.H.; Jarabek, R.J.

    1997-09-01

    General Electric Corporation has developed an extraction and recovery system for mercury, based upon the use of iodine (oxidant) and iodide ion (complexing agent). This system has been proposed for application to select mercury-contaminated mixed waste (i.e., waste containing radionuclides as well as other hazardous constituents), which have been generated by historic activities in support of US Department of Energy (DOE) missions. This system is compared to a system utilizing hypochlorite and chloride ions for removal of mercury and uranium from a sample of authentic mixed waste sludge. Relative to the hypochlorite (bleach) system, the iodine system mobilized more mercury and less uranium from the sludge. An engineering flowsheet has been developed to treat spent iodine-containing extraction medium, allowing the system to be recycled. The fate of soluble uranium in this series of treatment unit operations was monitored by tracing isotopically-enriched uranyl ion into simulated spent extraction medium. Treatment with use of elemental iron is shown to remove > 85% of the traced uranium while concurrently reducing excess iodine to the iodide ion. The next unit operation, adjustment of the solution pH to a value near 12 by the addition of lime slurry to form a metal-laden sludge phase (an operation referred to as lime-softening), removed an additional 57% of soluble uranium activity, for an over-all removal efficiency of ∼ 96%. However, the precipitated solids did not settle well, and some iodide reagent is held up in the wet filtercake

  16. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  17. MODELING OF STRAIN-INDUCED PRECIPITATION KINETICS IN Nb MICROALLOYED STEELS

    Institute of Scientific and Technical Information of China (English)

    X.G. Zhou; Z.Y. Liu; D. Wu; Z.Li; C.M. Li

    2006-01-01

    On the basis of the thermodynamic calculation of precipitation and considering the effect of strain on the precipitation behavior and chemical composition (Si and Mn), the kinetics of precipitation from austenite has been investigated for different temperatures and strains. Nucleation theory and the solubility product of niobium, carbon, and nitrogen in austenite have been used to derive equations for the start time of precipitation as a function of temperature and composition. The value of n in Avrami equation was determined using the available experimental data from the published reports, which indicated that n is a constant independent of temperature and the end time of precipitation is a function of n and the start time of precipitation. The values of the start time and end time of precipitation predicted by the new model are compared with the experimental values and a good agreement was obtained between both.

  18. Soluble and stable zethrenebis(dicarboximide) and its quinone

    KAUST Repository

    Sun, Zhe

    2010-10-15

    Soluble and stable zethrenebis(dicarboximide) (1) was synthesized by an in situ Stille cross coupling/transannular cyclization reaction. 1 showed largely improved photostability and solubility compared with the very unstable zethrene and it also exhibited far-red absorption and emission with high photoluminescence quantum yield. Bromination of 1 with NBS/DMF gave its quinone form 2 via an unusual pathway. © 2010 American Chemical Society.

  19. Calcite precipitates in Slovenian bottled waters.

    Science.gov (United States)

    Stanič, Tamara Ferjan; Miler, Miloš; Brenčič, Mihael; Gosar, Mateja

    2017-06-01

    Storage of bottled waters in varying ambient conditions affects its characteristics. Different storage conditions cause changes in the initial chemical composition of bottled water which lead to the occurrence of precipitates with various morphologies. In order to assess the relationship between water composition, storage conditions and precipitate morphology, a study of four brands of Slovenian bottled water stored in PET bottles was carried out. Chemical analyses of the main ions and measurements of the physical properties of water samples were performed before and after storage of water samples at different ambient conditions. SEM/EDS analysis of precipitates was performed after elapsed storage time. The results show that the presence of Mg 2+ , SO 4 2- , SiO 2 , Al, Mn and other impurities such as K + , Na + , Ba and Sr in the water controlled precipitate morphology by inhibiting crystal growth and leading to elongated rhombohedral calcite crystal forms which exhibit furrowed surfaces and calcite rosettes. Different storage conditions, however, affected the number of crystallization nuclei and size of calcite crystals. Hollow calcite spheres composed of cleavage rhombohedrons formed in the water with variable storage conditions by a combination of evaporation and precipitation of water droplets during high temperatures or by the bubble templating method.

  20. Experimental observations of boric acid precipitation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, R., E-mail: r.vaghetto@tamu.edu; Childs, M., E-mail: masonchilds@tamu.edu; Jones, P., E-mail: pgjones87@tamu.edu; Lee, S., E-mail: sayalee@tamu.edu; Kee, E., E-mail: erniekee@gmail.com; Hassan, Y.A., E-mail: y-hassan@tamu.edu

    2017-02-15

    During a Loss of Coolant Accident (LOCA) in Light Water Reactors (LWR), borated water is injected into the core through the safety injection system. The continuous vaporization of the water from the core may increase the concentration of boric acid in the core that, under certain conditions may reach the solubility limit and precipitate. This includes scenarios where the liquid water supply to the core is affected by possible blockages due to debris accumulation. Questions have been raised on the effects of the precipitate in the core on the flow behavior, including the possibility of additional blockages produced by precipitate accumulation. A simple experimental facility was constructed to perform experimental observations of the behavior of borated water under the combined effects of the boiling and the boric acid precipitation (BAP). The facility consists of a transparent polycarbonate vertical pipe where forty-five heated rods have been installed to supply the power to the water to reach the saturation temperature, and maintain a desired boil-off rate. The layout and geometry of the experimental apparatus were conceived to emulate a simplified core of a Pressurized Water Reactor (PWR). Experimental observations have been conducted under two different conditions. Preliminary tests were conducted to observe the behavior of the water and the boric acid precipitate during a boil-off scenario without borated water addition (decreasing water level). During the main test runs, borated water was constantly injected from the top of the test section to maintain a constant mixture level in the test section. Both tests assumed no flow from the bottom of the test section which may be the case of PWR LOCA scenarios in presence of debris-generated core blockage. The observations performed with a set of cameras installed around the test section showed interesting effects of the vapor bubbles on the boric acid precipitate migration and accumulation in the test section. The

  1. Modeling soluble salt assemblages on Mars: past aqueous history and present-day habitability

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-12-01

    Soluble salt assemblages formed through aqueous processes are widespread on Mars. These minerals are important for understanding the past aqueous history of Mars and indicate critical habitability parameters such as pH, temperature, water activity, and salinity. Equilibrium models have been used to determine solution chemistry and salt precipitation sequences from aqueous chemical data; however, current models are limited by a lack of experimental data for low-temperature perchlorates, and some model predictions are clearly anomalous. To address the need for accurate equilibrium models, we have developed a comprehensive model for low-temperature perchlorate-rich brines using (1) previously neglected literature data, (2) experimental solubilities determined in low-temperature perchlorate solutions, and (3) solubility and heat capacity results determined using Differential Scanning Calorimetry (DSC). Our resulting model is a significant improvement over existing models, such as FREZCHEM, particularly for perchlorate mixtures. We have applied our model to evaporation and freezing of a nominal Wet Chemistry Laboratory (WCL) solution measured at the Phoenix site. For a freezing WCL solution, our model indicates that ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O form at the eutectic (209 K); whereas, KClO4, hydromagnesite, kieserite (MgSO4·H2O), anhydrite (CaSO4), halite (NaCl), NaClO4·H2O, and Mg(ClO4)2·6H2O form upon complete evaporation at 298 K. In general, evaporation yields more dehydrated mineral assemblages than salts produced by freezing. Hydrated phases that form during evaporation contain 0.3 wt. % water, which compares with 1.2 wt. % during freezing. Given independent evidence for the presence of calcite and minimum water contents in Martian soils of ~1.5 wt. %, salts at the Phoenix site, and possibly elsewhere, appear more likely to have formed during

  2. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  3. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  4. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water-soluble

  5. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  6. Investigations on uranyl nitrate solubility in nitric acid in different concentrations at temperatures of 50C

    International Nuclear Information System (INIS)

    Deigele, E.

    1983-01-01

    The solubility of uranyl nitrate was studied in nitric acid solutions of different concentrations at a temperature of 5 0 C. This temperature was chosen with a view to using water as coolant and to facilitate the handling of the strong acid solutions. Accurate curves were established by a multitude of accurate measurements in the high concentration range. Further solubility curves can be derived from this basic curve. Some of the precipitates in the interesting regions of the solubility curve were analyzed. (orig./EF) [de

  7. Acidity of Scandinavian precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, E; Bordin, G

    1955-01-01

    Data on the pH of the total monthly precipitation at stations of a Swedish network for sampling and chemical analysis of precipitation and atmospheric aerosols during the year July 1953 to June 1954 are presented and discussed, together with the pH data from the first two months of operation of a large pan-Scandinavian net. It is found that well-defined regions of acidity and alkalinity relative to the pH of water in equilibrium with atmospheric carbon dioxide exist, and that these regions persist to such an extent that the monthly deviations from the pattern of the annual mean pH at stations unaffected by local pollution show persistently high acidity, while inland northern stations show equally persistent alkalinity. Some possible reasons for the observed distributions are considered.

  8. The effects of disordered structure on the solubility and dissolution rates of some hydrophilic, sparingly soluble drugs.

    Science.gov (United States)

    Mosharraf, M; Sebhatu, T; Nyström, C

    1999-01-15

    The effects of experimental design on the apparent solubility of two sparingly soluble hydrophilic compounds (barium sulphate and calcium carbonate) were studied in this paper. The apparent solubility appeared to be primarily dependent on the amount of solute added to the solvent in each experiment, increasing with increased amounts. This effect seems to be due to the existence of a peripheral disordered layer. However physico-chemical methods used in the present study were not able to unambiguously verify the existence of any disorder in the solid state structure of the drugs. At higher proportions of solute to solvent, the solubility reached a plateau corresponding to the solubility of the disordered or amorphous molecular form of the material. Milling the powders caused the plateau to be reached at lower proportions of solute to solvent, since this further disordered the surface of the drug particles. It was also found that the apparent solubility of the drugs tested decreased after storage at high relative humidities. A model for describing the effects of a disordered surface layer of varying thickness and continuity on the solubility of a substance is presented. This model may be used as a method for detection of minute amount of disorder, where no other technique is capable of detecting the disordered structure. It is suggested that recrystallisation of the material occurs via slow solid-state transition at the surface of the drug particle; this would slowly reduce the apparent solubility of the substance at the plateau level to the thermodynamically stable value. A biphasic dissolution rate profile was obtained. The solubility of the disordered surface of the particles appeared to be the rate-determining factor during the initial dissolution phase, while the solubility of the crystalline core was the rate-determining factor during the final slower phase.

  9. Magnetite precipitation and characterisation

    International Nuclear Information System (INIS)

    Joyce, A.; Garside, J.; Ivens, R.

    1988-06-01

    Magnetite (Fe 3 O 4 ) precipitation was investigated as a possible alternative treatment process to the conventional ferric hydroxide for removal of actinides from radioactive effluents. This offered the possibility of improved dewatering of filtered residues. Whilst a poor quality magnetite could be produced from deoxygenated ferrous/ferric solutions, all attempts to prepare magnetite from effluent simulates were unsuccessful. The failure was attributed to the presence of high nitrate and other interfering ions. (author)

  10. Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States

    Science.gov (United States)

    Igel, M.; Biello, J. A.

    2017-12-01

    Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.

  11. The effects of annealing temperature and cooling rate on carbide precipitation behavior in H13 hot-work tool steel

    International Nuclear Information System (INIS)

    Kang, Minwoo; Park, Gyujin; Jung, Jae-Gil; Kim, Byung-Hoon; Lee, Young-Kook

    2015-01-01

    Highlights: • Unexpected Mo carbides formed during slow cooling from low annealing temperatures. • Mo carbides formed during the migration of Mo for a transition of Cr-rich carbide. • Mo carbides were precipitated at the boundaries of M 7 C 3 carbides and ferrite grains. • Annealing conditions for the precipitation of Mo carbides were discussed. - Abstract: The precipitation behavior of H13 hot-work tool steel was investigated as a function of both annealing temperature and cooling rate through thermodynamic calculations and microstructural analyses using transmission and scanning electron microscope and a dilatometer. The V-rich MC carbide and Cr-rich M 7 C 3 and M 23 C 6 carbides were observed in all annealed specimens regardless of annealing and cooling conditions, as expected from an equilibrium phase diagram of the steel used. However, Mo-rich M 2 C and M 6 C carbides were unexpectedly precipitated at a temperature between 675 °C and 700 °C during slow cooling at a rate of below 0.01 °C/s from the annealing temperatures of 830 °C and below. The solubility of Mo in both M 7 C 3 and ferrite reduces with decreasing temperature during cooling. Mo atoms diffuse out of both M 7 C 3 and ferrite, and accumulate locally at the interface between M 7 C 3 and ferrite. Mo carbides were form at the interface of M 7 C 3 carbides during the transition of Cr-rich M 7 C 3 to stable M 23 C 6

  12. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  13. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  14. Microbially Induced Precipitation of Gold(0) Nanoparticles.

    Science.gov (United States)

    Roh, Yu; Kang, Serku; Park, Bitna; Kim, Yumi

    2015-01-01

    The objectives of this study were to synthesize gold nanoparticles by biomineralization using metal-reducing bacteria and to characterize their mineralogical properties. The metal-reducing bacteria were able to reduce Au(III) to Au(0) with organic fatty acids as electron donors, as indicated by the color change of the culture solution from colorless gold ions to black precipitates at 25 degrees C. XRD, SEM- and TEM-EDS analyses of the precipitates showed that Au(0) was precipitated and formed at either the cell membrane or extracellularly. The Au(0) nanoparticles were about 200 nm in size and ball-shaped. Biomineralization for elemental Au(0) nanoparticle synthesis may be useful for the recovery of natural gold in natural environments.

  15. Solubility of plutonium dioxide aerosols, in vitro

    International Nuclear Information System (INIS)

    Newton, G.J.; Kanapilly, G.M.

    1976-01-01

    Solubility of plutonium aerosols is an important parameter in establishing risk estimates for industrial workers who might accidentally inhale these materials and in evaluating environmental health impacts associated with Pu. In vitro solubility of industrial plutonium aerosols in a simulated lung fluid is compared to similar studies with ultrafine aerosols from laser ignition of delta phase plutonium metal and laboratory-produced spherical particles of 238 PuO 2 and 239 PuO 2 . Although relatively insoluble, industrial plutonium-mixed oxide aerosols were much more soluble than laboratory-produced plutonium dioxide particles. Chain agglomerate aerosols from laser ignition of metallic Pu indicated in vitro dissolution half-times of 10 and 50 days for activity median aerodynamic diameter (AMAD) of 0.7 and 2.3 μm, respectively. Plutonium-containing mixed oxide aerosols indicated dissolution half-times of 40 to 500 days for particles formed by industrial powder comminution and blending. Centerless grinding of fuel pellets yielded plutonium-containing aerosols with dissolution half-times of 1200 to 8000 days. All mixed oxide particles were in the size range 1.0 μm to 2.5 μm AMAD

  16. Stability and precipitation of diverse nanoparticles

    Science.gov (United States)

    Desai, Chintal

    Nanotechnology is a rapidly growing industry that is exploiting the novel characteristics of materials manufactured at the nanoscale. Carbon based nanomaterials such as Carbon Nanotubes (CNTs) and Detonation Nanodiamond (DND) possess unique properties and find a wide range of industrial applications. With the advent of mass production of such materials, there is a possibility of contamination of water resources. Depending on the surface properties and structures, they might aggregate and settle down, or be dispersed and transported by the water. Therefore, there is a need to develop an understanding of the fate of such materials in aqueous media. The understanding and effect of solution chemistry is a key to predicting their deposition, transport, reactivity, and bioavailability in aquatic environments. The colloidal behavior of organic dispersed CNTs and water dispersed DNDs is investigated. The aggregation behavior of these two colloidal systems is quite different from that of hydrophilic, water soluble functionalized CNTs (F-CNTs). The values of the Fuchs stability ratio or the critical coagulant concentration are determined experimentally using time-resolved dynamic light scattering and are used to predict the stability of such systems. It is found that the aggregation behavior of the organic dispersed, antisolvent precipitated system does not follow the conventional Derjaguin--Landau--Verwey-- Overbeek (DLVO) theory. But they stabilize in the long term, which is attributed to the supersaturation generated by different solubility of a solute in the solvent/antisolvent. Based on particle size distribution, zeta potential as well as the aggregation kinetics, the water dispersed DNDs are found to be relatively stable in aqueous solutions, but aggregate rapidly in presence of mono and divalent salts. Also, the formation of carboxylic groups on the DND surface does not alter colloidal behavior as dramatically as it does for other nanocarbons especially carbon

  17. A study of precipitation from pure solutions of uranyl nitrate

    International Nuclear Information System (INIS)

    Decrop, J.; Holder, J.; Sauteron, J.

    1961-01-01

    After its purification by extraction of the uranyl nitrate from the organic solvent, uranium has to be converted into solid form again: uranium trioxide (UO 3 ). It can be done either by thermal decomposition of uranyl nitrate or by precipitation of uranium, followed by filtration and calcination. Only the second method has been studied for now at the Bouchet plant. This paper reports the bench-scale and pilot-scale experiments of the studies of the precipitation of pure solutions of uranyl nitrate using ammonia (gaseous or in solution) or ammonium carbonate. These have been carried out at the Bouchet plant. It investigates the chemical aspect (pH, precipitates chemical composition) and the technical aspect of the different ways of precipitation (conditions of precipitation, decantation and filtration of precipitates). (M.P.)

  18. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  19. Review on theoretical calculation of the magnetite solubility

    International Nuclear Information System (INIS)

    Kim, Myongjin; Kim, Hongpyo

    2013-01-01

    FAC is influenced by many factors such as water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from the damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of a change in the magnetite layer. In the present work, studies on the magnetite solubility were reviewed for the theoretical calculation of magnetite, and iron solubility data were compared to find the proper solubility values of each study

  20. Solubility of calcium in CaO-CaCl2

    International Nuclear Information System (INIS)

    Perry, G.S.; Shaw, S.J.

    1991-06-01

    The Direct Oxide Reduction (DOR) process is well established as a process to produce plutonium metal from plutonium dioxide by reaction with calcium. Calcium chloride is added to dissolve the calcium oxide produced, allowing the metal to coalesce into a button. Since calcium metal melts at 840 0 C and DOR can take place successfully below this temperature, it is likely calcium dissolved in calcium chloride reacts with the plutonium dioxide. The solubility of calcium in calcium chloride is reasonably well established but the effect of the CaO formed during the DOR process on the solubility of calcium has not been previously determined. For this reason the solubility of calcium in CaCl 2 -CaO melts at 800 o C has been studied. The solubility decreases from 2.7 mol % in CaCl 2 to 0.4 mol % in 9 mol % CaO-CaCl 2 . (author)

  1. Precipitation Indices Low Countries

    Science.gov (United States)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  2. An inert 3D emulsification device for individual precipitation and concentration of amorphous drug nanoparticles.

    Science.gov (United States)

    Lorenz, T; Bojko, S; Bunjes, H; Dietzel, A

    2018-02-13

    Nanosizing increases the specific surface of drug particles, leading to faster dissolution inside the organism and improving the bioavailability of poorly water-soluble drugs. A novel approach for the preparation of drug nanoparticles in water using chemically inert microfluidic emulsification devices is presented in this paper. A lithographic fabrication sequence was established, allowing fabrication of intersecting and coaxial channels of different depths in glass as is required for 3D flow-focusing. Fenofibrate was used as a model for active pharmaceutical ingredients with very low water solubility in the experiments. It was dissolved in ethyl acetate and emulsified in water, as allowed by the 3D flow-focusing geometry. In the thread formation regime, the drug solution turned into monodisperse droplets of sizes down to below 1 μm. Fast supersaturation occurs individually in each droplet, as the disperse phase solvent progressively diffuses into the surrounding water. Liquid antisolvent precipitation results in highly monodisperse and amorphous nanoparticles of sizes down to 128 nm which can be precisely controlled by the continuous and disperse phase pressure. By comparing optically measured droplet sizes with particle sizes by dynamic light scattering, we could confirm that exactly one particle forms in every droplet. Furthermore, a downstream on-chip concentration allowed withdrawal of major volumes of only the continuous phase fluid which enabled an increase of particle concentration by up to 250 times.

  3. Effect of temperature and pH on the solubility of caseins: environmental influences on the dissociation of α(S)- and β-casein.

    Science.gov (United States)

    Post, A E; Arnold, B; Weiss, J; Hinrichs, J

    2012-04-01

    Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Solubility of chromate in a hydrated OPC

    International Nuclear Information System (INIS)

    Leisinger, Sabine M.; Bhatnagar, Amit; Lothenbach, Barbara; Johnson, C. Annette

    2014-01-01

    Highlights: • Solid solutions exist between gypsum and calcium chromate. • The cementitious matrix can bind chromate concentrations up to 0.1 mol/kg. • The chromate binding phase in the cementitious matrix is CrO 4 -ettringite. - Abstract: The knowledge of the chromate binding mechanisms is essential for the prediction of the long-term leachability of cement-based solidified waste containing increased chromate concentrations because of its toxicity and high mobility. In this paper pore water concentrations from OPC doped with varying CaCrO 4 concentrations (0.01–0.8 mol/kg), equilibrated for 28 days were reported. It could be shown that the cementitious matrix can bind chromate concentrations up to 0.1 mol/kg and that the chromate solubility limiting phase was CrO 4 -ettringite, while chromate containing AFm (monochromate) was unstable. Comparison with thermodynamic modelling indicated that at lower chromate dosages chromate was mainly bound by CrO 4 -ettringite while at very high dosages also a mixed CaCrO 4 –CaSO 4 ·2H 2 O phase precipitated. Additional experiments indicated a solubility product of 10 −3.66 for CaCrO 4 and verified the solid solution formation with CaSO 4 ·2H 2 O. Leaching tests indicated a strong chromate binding mainly in the pH range 10.5–13.5, while at pH < 10 very little chromate was bound as ettringite, monocarbonate and C–S–H phases were destabilized. Generally the thermodynamic modeling underestimated chromate uptake indicating that an additional chromate binding possibly on C–S–H or on mixed chromate–carbonate–hydroxide AFm phases

  5. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  6. Calorimetric determination of the heat of precipitation of pseudoephedrine racemic compound--its agreement with the heat of solution.

    Science.gov (United States)

    Pudipeddi, M; Sokoloski, T D; Duddu, S P; Carstensen, J T

    1995-10-01

    The heat of precipitation of dl-pseudoephedrine was determined by direct calorimetry using a Tronac isoperibolic calorimeter. The precipitation of dl-pseudoephedrine was induced by mixing aqueous solutions of the two enantiomers, namely, d- and l-pseudoephedrine, directly in the calorimeter. The molar heat of precipitation of dl-pseudoephedrine was -2.7 and -3.0 kcal/mol at 25 and 30 degrees C, respectively. The aqueous solubility of dl-pseudoephedrine was determined over a temperature range of 20-40 degrees C. The van't Hoff solubility plot was nonlinear. The apparent heat of solution at saturation was obtained from the solubility data using a nonlinear regression model. A good agreement between the magnitude of the apparent heat of solution at saturation and the heat of precipitation was noticed at both 25 and 30 degrees C.

  7. Protamine precipitation of two reovirus particle types from polluted waters.

    OpenAIRE

    Adams, D J; Ridinger, D N; Spendlove, R S; Barnett, B B

    1982-01-01

    Two forms of virus particle are released from reovirus-infected cell cultures, infectious reovirus and potentially infectious reovirus (PIV). PIV particle forms have a complete outer coat and are not infectious until the outer coat is altered or removed. The PIV concentration in polluted waters, however, has not been determined. Protamine sulfate precipitation, using 0.25% fetal bovine serum and 0.005% protamine sulfate for the first precipitation of the sample and 0.0025% for the second, was...

  8. Planktic foraminifera form their shells via metastable carbonate phases.

    Science.gov (United States)

    Jacob, D E; Wirth, R; Agbaje, O B A; Branson, O; Eggins, S M

    2017-11-02

    The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO 2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

  9. Studies in the solubility of Pu(III) oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Hasilkar, S P; Khedekar, N B; Chander, K; Jadhav, V; Jain, H C [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Div.

    1994-11-01

    Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO[sub 3]/HCl (0.5-2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO[sub 3]/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO[sub 3] and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01-0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M-1M HNO[sub 3]/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant. (author) 6 refs.; 6 tabs.

  10. A novel electrostatic precipitator

    International Nuclear Information System (INIS)

    Tang, Minkang; Wang, Liqian; Lin, Zhigui

    2013-01-01

    ESP (Electrostatic Precipitation) has been widely used in the mining, building materials, metallurgy and power industries. Dust particles or other harmful particles from the airstream can be precipitated by ESP with great collecting efficiency. Because of its' large size, high cost and energy consumption, the scope of application of ESP has been limited to a certain extent. By means of the theory of electrostatics and fluid dynamics, a corona assembly with a self-cleaning function and a threshold voltage automatic tracking technology has been developed and used in ESP. It is indicated that compared with conventional ESP, the electric field length has been reduced to 1/10 of the original, the current density on the collecting electrode increased 3-5 times at the maximum, the approach speed of dust particles in the electric field towards the collecting electrode is 4 times that in conventional ESP and the electric field wind speed may be enhanced by 2-3 times the original. Under the premise of ESP having a high efficiency of dust removal, equipment volume may be actually reduced to 1/5 to 1/10 of the original volume and energy consumption may be reduced by more than 50%.

  11. Solubility behaviour of antimony(III) and antimony(V) solids in basic aqueous solutions at 300oC

    International Nuclear Information System (INIS)

    Lemire, R.J.; Tosello, N.B.; Halliday, J.D.

    1999-12-01

    The major contributions of the isotopes 122 Sb and 124 Sb to activity transport in a CANDU reactor primary heat transport system (HTS), have been associated with oxygen ingress during reactor shutdown. As part of a program to minimize the release and redeposition of these isotopes, the solubilities of antimony(III) and (V) oxides and salts have been measured in basic solutions at temperatures from 25 to 300 o C. The results provide information on the charge and the stability as a function of temperature of antimony solution species and, hence, a guide to the trends in the temperature dependence of the solubilities of antimony solids. In solutions in which oxidation of antimony(III) to antimony(V) is minimized, the solubility of Sb 2 O 3 increases by about two orders of magnitude between 25 and 200 o C, and then levels out or decreases slightly. At 250 o C, in oxidizing solutions, Sb 2 O 5 ·xH 2 O and simple sodium antimonate(V) were found to be unstable in sodium hydroxide solutions with respect to the solid, Na 2α [H(H 2 O)] 2-2α Sb 2 O 6 , which has a pyrochlore structure. The solubility of this partially protonated sodium antimonate increases from 25 to 200 o C and decreases at temperatures above 250 o C. These solubility changes for the antimony (V) solids reflect changes in the stability of the anionic antimony solution species (SbO 3 - or Sb(OH) 6 - ), even though the compositions of antimony-containing solids in basic oxidizing solutions are strongly dependent on the cations and their aqueous phase concentrations. All solids used in the present experiments would be expected to generate total solution antimony concentrations ≥ 0.00005 mol·dm -3 in any neutral or basic aqueous solutions (assuming no added sodium salts). Therefore, under HTS conditions, precipitation of any antimony oxides or mixed oxides is unlikely. It cannot be ruled out that hydrated Sb 2 O 5 (especially the pyrochlore form) might be less soluble in near-neutral, low

  12. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  13. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  14. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Kasza, Ken E.; Shack, William J.; Natesan, Ken; Klein, Paul

    2009-01-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  15. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  16. Solubility database for TILA-99

    Energy Technology Data Exchange (ETDEWEB)

    Vuorinen, U.; Carlsson, T. [VTT Chemical Technology, Espoo (Finland); Kulmala, S.; Hakanen, M. [Helsinki Univ. (Finland). Lab. of Radiochemistry; Ahonen, L. [Geological Survey of Finland, Espoo (Finland)

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water ({approx}70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites

  17. Solubility database for TILA-99

    International Nuclear Information System (INIS)

    Vuorinen, U.; Carlsson, T.; Kulmala, S.; Hakanen, M.

    1998-11-01

    The safety assessment of spent fuel disposal requires solubility values for several elements estimated in Finnish disposal conditions. In Finland four sites (Haestholmen, Kivetty, Olkiluoto and Romuvaara) are investigated for the disposal of spent fuel. Haestholmen and OLkiluoto are onshore sites, while Kivetty and Romuvaara are inland sites. Based on groundwater analysis and classification according to salinity at the planned disposal depth mainly fresh groundwater is encountered at Kivetty and Romuvaara, while brackish and saline water-types are met at Haestholmen and Olkiluoto. Very saline, almost brine-type water (∼70 g/l) has been found in the deepest parts of the investigated bedrock at one of the sites (Olkiluoto). The reference waters and conditions were chosen according to the water-types. The considered reference conditions incorporated both the near- and far-field, and both oxidizing and reducing conditions were considered. In the reference conditions, the changes in solubilities were also estimated as caused by possible variations in the pH, carbonate content and redox conditions. Uranium, which is the main component of spent fuel is dealt with in a separate report presenting the solubility of uranium and spent fuel dissolution. In this work the solubilities of all the other elements of concern (Am, Cu, Nb, Np, Pa, Pd, Pu, Ra, Se, Sn, Tc, Zr, Cm, Ni, Sr, Th, C, Cl, Cs, Fe, Ho, I, and Sm) in the safety assessment are considered. Some discussion on the corrosion of the spent fuel canister is also presented. For the estimation of solubilities of the elements in question, literature data was collected that mainly comprised experimentally measured concentrations. The sources used were spent fuel experiments, concentrations measured in solubility measurements, natural concentrations and concentrations from natural analogue sites (especially Palmottu and Hyrkkoelae in Finland) as well as the concentrations measured at the Finnish investigation sites. The

  18. Precipitate microstructure evolution in exposed IN738LC superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Strunz, Pavel, E-mail: strunz@ujf.cas.cz [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic); Petrenec, Martin [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Gasser, Urs [Laboratory for Neutron Scattering, PSI, CH-5232 Villigen (Switzerland); Tobiáš, Jiří; Polák, Jaroslav [Institute of Physics of Materials of the AS CR, Brno (Czech Republic); Šaroun, Jan [Nuclear Physics Institute ASCR, CZ-25068 Řež near Prague (Czech Republic)

    2014-03-15

    Highlights: • Evolution of γ′-phase morphology in IN738LC Ni-base superalloy was examined by SANS. • In situ tests at high temperatures revealed trimodal precipitate distribution. • Formation, dissolution and (slow) kinetics of small γ′ precipitates was determined. • Equilibrium volume fraction of γ′ phase is significantly higher than 45%. • The small γ′ precipitates arise regardless the application of the mechanical load. -- Abstract: Nickel base superalloy IN738LC has been studied after low-cycle fatigue by Small Angle Neutron Scattering (SANS). Samples subjected to high-temperature low-cycle fatigue were annealed at various temperatures to change the size and the distribution of precipitates. Ex and in situ SANS and TEM studies were performed. It was found that additional precipitates are formed either during slow cooling from high temperatures or after reheating above 570 °C. Their size and distribution were evaluated. The precipitates arise regardless the application of the mechanical load. Nevertheless, these small precipitates influence low-cycle fatigue resistance. From the SANS data, it can be also deduced that the equilibrium volume fraction of γ′-precipitates at temperatures from room temperature to 825 °C is significantly higher than 45%. The kinetics of formation of small and medium-size γ′ precipitates at 700 and 800 °C was determined as well.

  19. Modelling the operation of precipitator with vortex effect

    International Nuclear Information System (INIS)

    Eysseric-Emile, C.

    1994-01-01

    In the Purex process which is implemented for the processing of irradiated fuels to eliminate fission products and to recover and valorise uranium and plutonium under the form of end products, a precipitation operation occurs to prepare the plutonium oxalate. This research thesis aims at analysing hydrodynamic characteristics of a specific apparatus used for this precipitation, the precipitator with vortex effect. In a first part, the author presents the problems associated with precipitation operations, their implementation in the processing of irradiated fuels, and compares the considered precipitator with other devices used for the precipitation of radioactive compounds. He proposes a review of literature on the vortex effect in agitated vessel, highlights the key parameter (the forced vortex radius), and reports some preliminary measurements performed on the precipitator. The author then reports the study of liquid phase flows in the precipitator, measurements of rate of suspension, and the study of micro-mixing with reactants. He finally reports attempts to validate trends noticed during flow analysis and a first simple modelling of the precipitator [fr

  20. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  1. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  2. Acid precipitation literature review

    Energy Technology Data Exchange (ETDEWEB)

    Seip, H M; Andersen, B; Andersson, G; Hov, Oe; Kucera, V; Moseholm, L

    1986-01-01

    There is an increasing number of publications on acid deposition and related phenomena. Interest in these topics has also been reflected in a considerable number of meetings and conferences in this field. The largest of these in 1985 was the ''International Symposium on Acidic Precipitation'' (Muskoka, Ontario). Most work so far has been carried out in North America and Europe. There is, however, an increasing interest in obtaining a better picture of sensitive areas and possible acidification in other parts of the world. Anthropogenic SO/sub 2/ emissions have been estimated to be (in TgSyr/sup -1/): 2.4 (Africa), 4.1 (South America), 0.7 (Ocenia), and 18.3 (Asia). The largest increase during the last decade has been in Asia. Based on Studies of precipitation in remote areas it has been suggested that the natural background concentration for sulphate in many areas should be about 6 ..mu..eq 1/sup -1/. A new study of sulphate and nitrate in Greenland snow showed that both ions increased by a factor of about 2 from 1895 to 1978. The concentrations of SO/sub 2/ at Norwegian rural sites show a decreasing trend since late 1970s, while concentrations of sulphate in air show no clear trend. More reliable models for transformation, transport and deposition of chemicals are being developed, including three-dimensional grid models to describe episodes of elevated pollution levels lasting for a few days. Model calculations indicate that control of hydrocarbon (HC) emissions is much more efficient in reducing the ozone level in southern Scandinavia in episodes influenced by long-range transported pollutants than NO/sub x/ control of combined NO/sub x/ and HC control. 36 refs. (EG).

  3. Kinetics of niobium carbide precipitation in ferrite; Cinetiques de precipitation du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Gendt, D

    2001-07-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  4. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology.

    Science.gov (United States)

    Mohammed, Noorullah Naqvi; Majumdar, Soumyajit; Singh, Abhilasha; Deng, Weibin; Murthy, Narasimha S; Pinto, Elanor; Tewari, Divya; Durig, Thomas; Repka, Michael A

    2012-12-01

    The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.

  5. Terminal solid solubility of hydrogen in titanium

    International Nuclear Information System (INIS)

    Giroldi, J.P.; Vizcaino, Pablo; Banchik, Abraham David

    2003-01-01

    A Research and Development program to build a data base is currently under progress to support the local titanium fabrication. In the present work the temperature of the Terminal Solid Solubility on dissolution (TSSd) and precipitation (TSSp) of titanium hydrides in the Ti α-phase were both measured in the same thermal cycle with a Differential Scanning Calorimeter (DSC). The local titanium producer (FAESA) provided ASTM grade 1 pure Ti bars of about 2,5 cm in diameter. Samples weighting between 50 to 200 mg were cut with a diamond disc and the parallelepiped faces were all carefully ground with SiC papers, then picked in a HNO 3 plus HF aqueous solution and finally dried out with ethanol and hot air. Pairs of (TSSd, TSSp) values for α + δ → α and α → α + δ transformation temperatures in titanium were determined with the same calorimetric procedure already used to calculate the TSS values in zirconium. Data were taken from the same sample during the heating up and cooling down cycle of the second calorimeter run made with the same rate of 20 C degrees / minute. The Cathodic Charging technique was used to charge the samples at different hydrogen concentrations between the 'as fabricated' value and the concentration corresponding to the eutectoid temperature. A mixture of glycerin and phosphoric acid in a 2:1 ratio and a current density of 0,05 to 0,1 Amp/cm 2 were applied to different samples during 24 to 96 hours to get a wide range of hydrogen concentrations. A homogenization heat treatment at 400 C degrees for 45 minutes -made at open air in an electric furnace- was applied to each sample to dissolve the massive hydrides at the sample surfaces and diffuse them into the bulk of the sample. The hydrogen concentration of each sample was measured after the final calorimetric run using the Extraction Method in Liquid State under an inert atmosphere using a Leco RH-404 model Hydrogen Determinator. The experimental data follows a linear relationship -with a

  6. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  7. Two-stage precipitation of plutonium trifluoride

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1984-04-01

    Plutonium trifluoride was precipitated using a two-stage precipitation system. A series of precipitation experiments identified the significant process variables affecting precipitate characteristics. A mathematical precipitation model was developed which was based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter that can be used to control particle characteristics

  8. Soluble Collectin-12 (CL-12) Is a Pattern Recognition Molecule Initiating Complement Activation via the Alternative Pathway

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Hein, Estrid; Munthe-Fog, Lea

    2015-01-01

    and may recognize certain bacteria and fungi, leading to opsonophagocytosis. However, based on its structural and functional similarities with soluble collectins, we hypothesized the existence of a fluid-phase analog of CL-12 released from cells, which may function as a soluble pattern-recognition...... of the terminal complement complex. These results demonstrate the existence of CL-12 in a soluble form and indicate a novel mechanism by which the alternative pathway of complement may be triggered directly by a soluble pattern-recognition molecule....... nonreducing conditions it presented multimeric assembly forms. Immunoprecipitation and Western blot analysis of human umbilical cord plasma enabled identification of a natural soluble form of CL-12 having an electrophoretic mobility pattern close to that of shed soluble recombinant CL-12. Soluble CL-12 could...

  9. Sodium tetraphenylborate solubility and dissolution rates

    International Nuclear Information System (INIS)

    Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

    1995-01-01

    The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined

  10. Modeling of Precipitation Sequence and Ageing Kinetics in Al-Mg-Si Alloys

    NARCIS (Netherlands)

    Bahrami, A.

    2010-01-01

    Al-Mg-Si alloys are heat treatable alloys in which strength is obtained by precipitation hardening. Precipitates, formed from a supersaturated solid solution during ageing heat treatment, are GP-zones, B", B´ and B-Mg2Si. Precipitation kinetics and strength vary with alloy composition and process

  11. Solubility of Nd in brine

    International Nuclear Information System (INIS)

    Khalili, F.I.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1994-01-01

    The solubility of Nd(III) has been measured at 23±3 C in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl 2 with an ionic strength of 7.8 M (9.4 m) a solid compound of Nd(III) at each pcH was assigned from X-ray diffraction patterns. The log values of the experimental solubilities decrease fomr -3 at pcH 6.4 to -5.8 at pcH 8.4; at pcH 10.4 and 12.4 the solubility was below the detection limit of -7.5. The experimental solubility does not follow closely the variation with pcH estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. (orig.)

  12. Effective Assimilation of Global Precipitation

    Science.gov (United States)

    Lien, G.; Kalnay, E.; Miyoshi, T.; Huffman, G. J.

    2012-12-01

    Assimilating precipitation observations by modifying the moisture and sometimes temperature profiles has been shown successful in forcing the model precipitation to be close to the observed precipitation, but only while the assimilation is taking place. After the forecast start, the model tends to "forget" the assimilation changes and lose their extra skill after few forecast hours. This suggests that this approach is not an efficient way to modify the potential vorticity field, since this is the variable that the model would remember. In this study, the ensemble Kalman filter (EnKF) method is used to effectively change the potential vorticity field by allowing ensemble members with better precipitation to receive higher weights. In addition to using an EnKF, two other changes in the precipitation assimilation process are proposed to solve the problems related to the highly non-Gaussian nature of the precipitation variable: a) transform precipitation into a Gaussian distribution based on its climatological distribution, and b) only assimilate precipitation at the location where some ensemble members have positive precipitation. The idea is first tested by the observing system simulation experiments (OSSEs) using SPEEDY, a simplified but realistic general circulation model. When the global precipitation is assimilated in addition to conventional rawinsonde observations, both the analyses and the medium range forecasts are significantly improved as compared to only having rawinsonde observations. The improvement is much reduced when only modifying the moisture field with the same approach, which shows the importance of the error covariance between precipitation and all other model variables. The effect of precipitation assimilation is larger in the Southern Hemisphere than that in the Northern Hemisphere because the Northern Hemisphere analyses are already accurate as a result of denser rawinsonde stations. Assimilation of precipitation using a more comprehensive

  13. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  14. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Solid dispersions enhance solubility, dissolution, and permeability of thalidomide.

    Science.gov (United States)

    Barea, Silvana A; Mattos, Cristiane B; Cruz, Ariadne C C; Chaves, Vitor C; Pereira, Rafael N; Simões, Claudia M O; Kratz, Jadel M; Koester, Letícia S

    2017-03-01

    Thalidomide (THD) is a BCS class II drug with renewed and growing therapeutic applicability. Along with the low aqueous solubility, additional poor biopharmaceutical properties of the drug, i.e. chemical instability, high crystallinity, and polymorphism, lead to a slow and variable oral absorption. In this view, we developed solid dispersions (SDs) containing THD dispersed in different self-emulsifying carriers aiming at an enhanced absorption profile for the drug. THD was dispersed in lauroyl macrogol-32 glycerides (Gelucire ® 44/14) and α-tocopherol polyethylene glycol succinate (Kolliphor ® TPGS), in the presence or absence of the precipitation inhibitor polyvinylpyrrolidone K30 (PVP K30), by means of the solvent method. Physicochemical analysis revealed the formation of semicrystalline SDs. X-ray diffraction and infrared spectroscopy analyses suggest that the remaining crystalline fraction of the drug in the SDs did not undergo polymorphic transition. The impact of the solubility-enhancing formulations on the THD biopharmaceutical properties was evaluated by several in vitro techniques. The developed SDs were able to increase the apparent solubility of the drug (up to 2-3x the equilibrium solubility) for a least 4 h. Dissolution experiments (paddle method, 75 rpm) in different pHs showed that around 80% of drug dissolved after 120 min (versus 40% of pure crystalline drug). Additionally, we demonstrated the enhanced solubility obtained via SDs could be translated into increased flux in a parallel artificial membrane permeability assay (PAMPA). In summary, the results demonstrate that SDs could be considered an interesting and unexplored strategy to improve the biopharmaceutical properties of THD, since SDs of this important drug have yet to be reported.

  16. Soluble expression and purification of the recombinant bioactive peptide precursor BPP-1 in Escherichia coli using a cELP-SUMO dual fusion system.

    Science.gov (United States)

    Rao, Shengqi; Zang, Xiangyu; Yang, Zhenquan; Gao, Lu; Yin, Yongqi; Fang, Weiming

    2016-02-01

    A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20 °C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in E. coli using a cELP-SUMO tag. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Solubility and transport measurements as tools for the speciation of f-elements at tracer-scale amounts; application to Eu and Th in phosphate media

    International Nuclear Information System (INIS)

    Fourest, B.; David, F.; Lagarde, G.; Lindecker, C.; Du, J.F. Le; Tarapcik, P.; Trskova, R.

    1998-01-01

    The speciation of f-elements can be examined by methods which are based either on the distribution of the radionuclide of interest between two phases (solubility measurements) or on its moving in solution (capillary diffusion and migration). Predictive curves giving the variation of the mobility and the concentration of Europium as a function of pH and/or phosphate concentration can be proposed from selected literature data. Capillary electrophoresis experiments show that the mobility decrease due to hydrolysis occurs at a pH value lower than expected. The peak intensity is correspondingly smaller, but this observation cannot be simply related to a change in the charge of the migrating species because of sorption and precipitation phenomena on the capillary walls. Diffusion coefficient measurements by the 'open end capillary' method confirm the formation of larger and/or less charged species starting at a similar pH value. In the presence of phosphate anions, both transport methods should indicate the presence in solution of species having a larger size than expected, which could be polynuclear. Solubility measurements give more information but require the synthesis of a well-defined labelled phosphate compound. The total concentration of f-elements detected in the solutions equilibrated with such compounds allow to deduce, by varying only one parameter in the solution (pH or phosphate concentration), the form and the charge of the different species prevailing in the solution. The solubility method appears particularly interesting in the case of concentrated phosphate media

  18. Phosphate-induced metal stabilization: Use of apatite and bone char for the removal of soluble radionuclides in authentic and simulated DOE groundwater

    International Nuclear Information System (INIS)

    Bostick, W.D.; Jarabek, R.J.; Conca, J.L.

    1999-01-01

    The apatite group of minerals is a family of calcium phosphate phases. Apatite is the principal component of bone tissue, and it also occurs naturally as mineral deposits in the geosphere. Bone char is calcined (coked) animal bone, containing activated carbon as well as calcium phosphate mineral phases. Apatite IItrademark is a more reactive form of apatite, supplied by UFA Ventures, Inc., at a cost of approximately 1/4 that of commercial bone char. Apatite is shown to be effective for the removal of select heavy metal impurities in groundwater. Previous investigations have demonstrated that apatite is an effective medium for the stabilization of soluble lead, cadmium, and zinc from mine waste leachate by the formation of highly insoluble precipitate phases. The performance of bone char and apatite II are compared with other candidate sorption media (including granular activated carbon and anion exchange resin) for the removal of soluble uranyl ion in synthetic DOE Site groundwater supplemented with varying levels of interfering nitrate ion. Apatite II has a greater affinity for U(VI), especially in the presence of nitrate ion, as evidenced by a larger value for the conditional distribution coefficient (Kd) in batch test experiments. Contact of uranyl nitrate solution with apatite II is shown to produce highly insoluble mineral phases of the autunite group (calcium uranyl phosphate hydrates). Apatite II is also demonstrated to be moderately effective for the removal of soluble radioactive isotopes of strontium, but not cesium, when these ions are supplemented into authentic DOE Site groundwater

  19. Temporal variation of extreme precipitation events in Lithuania

    Directory of Open Access Journals (Sweden)

    Egidijus Rimkus

    2011-05-01

    Full Text Available Heavy precipitation events in Lithuania for the period 1961-2008 were analysed. The spatial distribution and dynamics of precipitation extremes were investigated. Positive tendencies and in some cases statistically significant trends were determined for the whole of Lithuania. Atmospheric circulation processes were derived using Hess & Brezowski's classification of macrocirculation forms. More than one third of heavy precipitation events (37% were observed when the atmospheric circulation was zonal. The location of the central part of a cyclone (WZ weather condition subtype over Lithuania is the most common synoptic situation (27% during heavy precipitation events. Climatic projections according to outputs of the CCLM model are also presented in this research. The analysis shows that the recurrence of heavy precipitation events in the 21st century will increase significantly (by up to 22% in Lithuania.

  20. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel

    International Nuclear Information System (INIS)

    Jin, Shuoxue; Guo, Liping; Luo, Fengfeng; Yao, Zhongwen; Ma, Shuli; Tang, Rui

    2013-01-01

    The irradiation-induced precipitates in argon ion-irradiated austenitic stainless steel at 550 °C were examined via transmission electron microscopy. The selected-area electron diffraction patterns of precipitates indicated unambiguously that the precipitates were Cr 23 C 6 carbides. It was observed directly for the first time that irradiation-induced Cr 23 C 6 precipitates formed at dislocation loops in austenitic stainless steel, and coarsened with increasing irradiation dose.

  1. The complex synthesis and solid state chemistry of ceria-lanthana solid solutions prepared via a hexamethylenetetramine precipitation

    International Nuclear Information System (INIS)

    Fleming, P.G.; Holmes, J.D.; Otway, D.J.; Morris, M.A.

    2011-01-01

    Mixed oxide solid solutions are becoming ever more commercially important across a range of applications. However, their synthesis can be problematical. Here, we show that ceria-lanthana solid solutions can be readily prepared via simple precipitation using hexamethylenetetramine. However, the solution chemistry can be complex, which results in the precipitated particles having a complex structure and morphology. Great care must be taken in both the synthesis and characterisation to quantify the complexity of the product. Even very high heat treatments were not able to produce highly homogeneous materials and X-ray diffractions reveals the non-equilibrium form of particles prepared in this way. Unexpected crystal structures are revealed including a new metastable cubic La 2 O 3 phase. - Graphical abstract: The suggested mechanism for the formation of dual fluorite phase particles, where Step 1 corresponds to room temperature aging, Step 2; heating the solution to 90 deg. C, Step 3; cooling of the solution to room temperature, Step 4; calcination to 500 deg. C, Step 5; calcination to 700 deg. C and Step 6; calcination to 1300 deg. C. The terminology of e.g. La 1-x Ce x (OH) 3 is used to indicate the formation of a mixed oxy-hydroxy participate rather than a definitive assignment of stoichiometry. Similarly, La 1-y Ce y O 2 only implies a mixed solid solution. Highlights: → Mol% of prepared Ce-La oxides did not follow that of reactant mol%. → Complex reaction pathway found to be dependent on metal solution concentrations. → At certain concentrations core shell particles were found to form. → A reaction model was produced based on cationic solubility. → Report lanthana solubility higher than previously reported in CeO 2 .

  2. Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility.

    Science.gov (United States)

    Reggane, Maude; Wiest, Johannes; Saedtler, Marco; Harlacher, Cornelius; Gutmann, Marcus; Zottnick, Sven H; Piechon, Philippe; Dix, Ina; Müller-Buschbaum, Klaus; Holzgrabe, Ulrike; Meinel, Lorenz; Galli, Bruno

    2018-05-04

    Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs. Copyright © 2018. Published by Elsevier B.V.

  3. Sc-45 nuclear magnetic resonance analysis of precipitation in dilute Al-Sc alloys

    NARCIS (Netherlands)

    Celotto, S; Bastow, TJ

    Nuclear magnetic resonance (NMR) with Sc-45 is used to determine the solid solubility of scandium in aluminium and to follow the precipitation of Al3Sc during the ageing of an Al-0.06 at.% Sc alloy via the two fully resolved peaks, corresponding to Sc in the solid solution Al matrix and to Sc in the

  4. Soluble human CD4 elicits an antibody response in rhesus monkeys that inhibits simian immunodeficiency virus replication

    International Nuclear Information System (INIS)

    Watanabe, Mamoru; Chen, Zheng W.; Tsubota, Hiroshi; Lord, C.I.; Levine, C.G.; Letvin, N.L.

    1991-01-01

    Rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIV mac ) demonstrate significant virologic and clinical improvement as a result of treatment with human recombinant soluble CD4 (rsCD4). The authors show that human rsCD4 does not efficiently inhibit SIV mac replication in bone marrow macrophages of rhesus monkeys and does not significantly augment bone marrow hematopoietic colony formation in vitro. However, plasma of human rsCD4-treated rhesus monkeys does exhibit significant anti-SIV mac activity in vitro. Plasma of these animals efficiently blocks SIV mac replicaton in peripheral blood lymphocytes and bone marrow macrophages. It also increases granulocyte/macrophage colony formation in vitro by bone marrow cells of SIV mac -infected monkeys. This plasma and the IgG fraction of plasma from a rhesus monkey immunized with human rsCD4 in adjuvant demonstrate reactivity with a soluble form of the rhesus monkey CD4 molecule, exhibit binding to CD4 + but not CD8 + concanavalin A-activated rhesus monkey peripheral blood lymphocytes, and precipitate the CD4 molecule from surface-labeled activated rhesus monkey peripheral blood lymphocytes. Moreover, anti-viral activity is demonstrable in the IgG fraction of plasma from a human rsCD4-immunized monkey. These studies raise the possibility that a modified human CD4 molecule serving as an immunogen might elicit an antibody response that could potentially induce a beneficial therapeutic response in human immunodeficiency virus-infected individuals

  5. Improving precipitation measurement

    Science.gov (United States)

    Strangeways, Ian

    2004-09-01

    Although rainfall has been measured for centuries scientifically and in isolated brief episodes over millennia for agriculture, it is still not measured adequately even today for climatology, water resources, and other precise applications. This paper outlines the history of raingauges, their errors, and describes the field testing over 3 years of a first guess design for an aerodynamic rain collector proposed by Folland in 1988. Although shown to have aerodynamic advantage over a standard 5 gauge, the new rain collector was found to suffer from outsplash in heavy rain. To study this problem, and to derive general basic design rules for aerodynamic gauges, its performance was investigated in turbulent, real-world conditions rather than in the controlled and simplified environment of a wind tunnel or mathematical model as in the past. To do this, video records were made using thread tracers to indicate the path of the wind, giving new insight into the complex flow of natural wind around and within raingauges. A new design resulted, and 2 years of field testing have shown that the new gauge has good aerodynamic and evaporative characteristics and minimal outsplash, offering the potential for improved precipitation measurement.

  6. CEOS precipitation constellation

    Science.gov (United States)

    Neeck, Steven P.; Oki, Riko

    2007-10-01

    The outcomes of the 19th Committee on Earth Observing Satellites (CEOS) Plenary held in London in November 2005, recognized that the CEOS Implementation Plan for Space-Based Observations for Global Earth Observation System of Systems (GEOSS) should: - identify the supply of space-based observations required to satisfy the requirements expressed by the 10-year implementation plan for GEOSS; and - propose an innovative process whereby the many disparate types of Earth observing programs funded by CEOS Member agencies might contribute to the supply of the required observations. The CEOS Task Force charged with drafting the CEOS Implementation Plan for Space-Based Observations for GEOSS focused its early efforts on the creation of a 'new planning process' which would satisfy the various criteria demanded by member space agencies, and which would hopefully encourage a new phase of specificity and focus in the multi-lateral co-operation efforts undertaken by space agencies under the CEOS umbrella - resulting in improved engagement of all CEOS Members and real implementation results. The CEOS Constellations is the title given to this new process, and four pilot studies have been initiated in order to pioneer and test the concept. The Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) were selected as the lead agencies for the study of the development of a CEOS Precipitation Constellation with the support of other CEOS space agency and user community participants. The goals, approach, and anticipated outcomes for the study will be discussed.

  7. A study of electrochemical precipitation as a possible method of removing radium from uranium industry liquid wastes

    International Nuclear Information System (INIS)

    Paiva, M.I.F. de

    1996-09-01

    Of the various dissolved species contained in the effluents from the mining and milling of uranium ores, the one which is of particular concern for environmental protection is Radium-226. The literature shows that, in recent years, considerable efforts have been made to develop treatment systems that can achieve the stricter effluent discharge standards imposed by the regulatory bodies. There has also been a concern to treat the already existent sludges from previous treatments. The main priority is to limit, as much as possible, the arising of sludge from future treatment systems. The most common treatment used is the addition of lime and limestone to raise the pH followed by barium chloride to form a very finely divided Ba(Ra)SO 4 precipitate which is then settled in large ponds or basins. In spite of the high decontamination factors obtained with this technique, these may not be satisfactory in terms of environmental protection. In addition, the industry is increasingly aware of the economical benefits resulting from treatment processes that allow water reuse to the process. The main objectives of this work were to carry out a fundamental study of a new technique, Electrochemical Precipitation, and assess its viability to remove undesirable ions from liquid solutions, in this particular case, radium from liquid wastes resulting from the milling of uranium ores. To achieve the proposed objectives, research was carried out using strontium sulphate precipitative membranes combined with an electrical field. Barium was used as a target ion due to its similarity to radium and no radioactive characteristics. The process studied, combines electrical ionic transport and selective precipitation, which relies on a solubility difference between the inorganic membrane and the ions to be separated. This study investigated different parameters involved in the process such as flowrate, current density, different cell geometries and the gap between half cells (internal volume of

  8. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  9. Understanding dual precipitation strengthening in ultra-high strength low carbon steel containing nano-sized copper precipitates and carbides

    Science.gov (United States)

    Phaniraj, M. P.; Shin, Young-Min; Jung, Woo-Sang; Kim, Man-Ho; Choi, In-Suk

    2017-07-01

    Low carbon ferritic steel alloyed with Ti, Mo and Cu was hot rolled and interrupt cooled to produce nano-sized precipitates of copper and (Ti,Mo)C carbides. The steel had a tensile strength of 840 MPa, an increase in yield strength of 380 MPa over that of the plain carbon steel and reasonable ductility. Transmission electron microscopy and small angle neutron scattering were used to characterize size and volume fraction of the precipitates in the steels designed to form only copper precipitates and only (Ti,Mo)C carbides. The individual and combined precipitation strengthening contributions was calculated using the size and volume fraction of precipitates and compared with the measured values.

  10. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  11. Zinc-arsenic interactions in soil: Solubility, toxicity and uptake.

    Science.gov (United States)

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2017-11-01

    Arsenic (As) and zinc (Zn) are common co-contaminants in mining impacted soils. Their interaction on solubility and toxicity when present concurrently is not well understood in natural systems. The aim of this study was to observe their interaction in solubility (soil-solution), bioaccumulation (shoot uptake) and toxicity to cucumber (Cucumis sativa L) conducting 4 weeks pot study in 5 different soils spiked with As (0, 2, 4, 8 to 1024 mg kg -1 ) individually and with Zn at two phytotoxic doses. The As pore-water concentration was significantly reduced (df = 289, Adjusted R 2  = 0.84, p soils. This outcome may be due to adsorption/surface precipitation or tertiary bridging complexation. No homogenous precipitation of zinc arsenate could be established using electron microscopy, XRD or even equilibrium calculations. For bioaccumulation phase, no significant effect of Zn on As uptake was observed except acidic MG soil whereas, Zn uptake was significantly reduced (p soil. The synergistic response (more than additive) was predominant in this soil for a wide range of inhibition concentration (0-80%) at both Zn EC10 and EC50 levels. Since additive response is mostly considered in risk assessment for mixtures, precautions should be implemented for assessment of toxicity for As-Zn mixture in acidic soil due to their synergistic response in some soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ceria powders by homogeneous precipitation technique

    International Nuclear Information System (INIS)

    Ramanathan, S.; Roy, S.K.

    2003-01-01

    Formation of precursors for ceria by two homogeneous precipitation reactions - (cerium chloride + urea at 95 degC - called reaction A and cerium chloride + hexamethylenetetramine at 85 degC - called reaction B) - has been studied. The variation of size of the colloidal particles formed and the zeta potential of the suspensions with progress of reactions exhibited similar trends for both the precipitation processes. Particle size increased from 100 to 300 nm with increasing temperature and extent of reaction. The zeta potential was found to decrease with increasing extent of precipitation in the pH range of 5 to 7. Filtration and drying led to agglomeration of the fine particles in case of the precursor from reaction B. The as-formed precursors were crystalline - a basic carbonate in case of reaction A and hydrous oxide in case of reaction B. It was found that nano-crystalline ceria powders (average crystallite size -10 nm) formed above 400 degC from both these precursors. The agglomerate size (D50) of the precursors and ceria powders formed after calcination at 600 degC varied from 0.7 to 3 μm. Increasing calcination temperature up to 800 degC, increased the crystallite size (50 nm). The zeta potential variation with pH and concentration of an anionic dispersant (Calgon) for the ceria powders formed was studied to determine the ideal conditions for suspension stability. It was found to be maximum (i.e., the suspensions stable) in the pH range of 3 to 4 or Calgon concentration of 0.01 to 0.1 weight percent. (author)

  13. Sorption, Diffusion and Solubility Databases for Performance Assessment

    International Nuclear Information System (INIS)

    Garcia Gutierrez, M.

    2000-01-01

    This report presents a deterministic and probabilistic databases for application in Performance Assessment of a high-level radioactive waste disposal. This work includes a theoretical description of sorption, diffusion and solubility phenomena of radionuclides in geological media. The report presents and compares the databases of different nuclear wastes management agencies, describes the materials in the Spanish reference system, and the results of sorption diffusion and solubility in this system, with both the deterministic and probabilistic approximation. The probabilistic approximation is presented in the form of probability density functions (pdf). (Author) 52 refs

  14. Calculation of solubility of salts in binary aqueous solutions

    International Nuclear Information System (INIS)

    Kolker, A.R.

    1990-01-01

    The possibility of theoretical calculation of solubility of some salts of the MX-type, where M - Na, K, Cs; X - F-I, as well as CsNO 3 and others forming no crystal hydrates in the solid phase, and the azeotropic composition in the water-HNO 3 system is studied. The calculational results of solubility are shown to depend very much on the values accepted for the standard free energies of component formation, melting heats and crystallization and on the difference in heat capacity of the melt and the solid phase

  15. Precipitation Behavior of Magnesium Alloys Containing Neodymium and Yttrium

    Science.gov (United States)

    Solomon, Ellen L. S.

    Magnesium is the lightest of the structural metals and has great potential for reducing the weight of transportation systems, which in turn reduces harmful emissions and improves fuel economy. Due to the inherent softness of Mg, other elements are typically added in order to form a fine distribution of precipitates during aging, which improves the strength by acting as barriers to moving dislocations. Mg-RE alloys are unique among other Mg alloys because they form precipitates that lie parallel to the prismatic planes of the Mg matrix, which is an ideal orientation to hinder dislocation slip. However, RE elements are expensive and impractical for many commercial applications, motivating the rapid design of alternative alloy compositions with comparable mechanical properties. Yet in order to design new alloys reproducing some of the beneficial properties of Mg-RE alloys, we must first fully understand precipitation in these systems. Therefore, the main objectives of this thesis are to identify the roles of specific RE elements (Nd and Y) on precipitation and to relate the precipitate microstructure to the alloy strength. The alloys investigated in this thesis are the Mg-Nd, Mg-Y, and Mg-Y-Nd systems, which contain the main alloying elements of commercial WE series alloys (Y and Nd). In all three alloy systems, a sequence of metastable phases forms upon aging. Precipitate composition, atomic structure, morphology, and spatial distribution are strongly controlled by the elastic strain energy originating from the misfitting coherent precipitates. The dominating role that strain energy plays in these alloy systems gives rise to very unique microstructures. The evolution of the hardness and precipitate microstructure with aging revealed that metastable phases are the primary strengthening phases of these alloys, and interact with dislocations by shearing. Our understanding of precipitation mechanisms and commonalities among the Mg-RE alloys provide future avenues to

  16. Encoding information into precipitation structures

    International Nuclear Information System (INIS)

    Martens, Kirsten; Bena, Ioana; Droz, Michel; Rácz, Zoltan

    2008-01-01

    Material design at submicron scales would be profoundly affected if the formation of precipitation patterns could be easily controlled. It would allow the direct building of bulk structures, in contrast to traditional techniques which consist of removing material in order to create patterns. Here, we discuss an extension of our recent proposal of using electrical currents to control precipitation bands which emerge in the wake of reaction fronts in A + + B – → C reaction–diffusion processes. Our main result, based on simulating the reaction–diffusion–precipitation equations, is that the dynamics of the charged agents can be guided by an appropriately designed time-dependent electric current so that, in addition to the control of the band spacing, the width of the precipitation bands can also be tuned. This makes straightforward the encoding of information into precipitation patterns and, as an amusing example, we demonstrate the feasibility by showing how to encode a musical rhythm

  17. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    Science.gov (United States)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  18. Precipitation of Epsilon Copper in Ferrite Antibacterial Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Zhixia ZHANG; Gang LIN; Zhou XU

    2008-01-01

    The precipitation of epsilon copper at 1023 K ageing in ferrite antibacterial stainless steel was investigated by a combination of electron microscopy and micro-Vickers hardness measurement. The results show that epsilon copper precipitation occurs within 90 s. Complex rnultilayer structure confirmed as twins and stacking faults on {111}ε-Cu planes was observed in the precipitates. The precipitates grow by the lengthwise enlargement of a set of parallel layers, having [111]ε-Cu and [112]ε-Cu preferred growth orientations. The volume fraction of precipitates f formed within 120 min can be predicted by a modified Avrami equation (In 1/1-f= kt+b).Simultaneously, substituent atom clusters with a size of 5-10 nm was found to occur in the solution and cause matrix strain. The precipitate morphology and distribution on the surface of ferrite antibacterial stainlesss teel are associated with surface crystallographic orientation of the matrix. The precipitates are predominantly located within the ferrite grains of orientation. The precipitates located on {111}α-Fe surface planes have sphere or ellipse shape.

  19. Secondary precipitation in an Al-Mg-Si-Cu alloy

    International Nuclear Information System (INIS)

    Buha, J.; Lumley, R.N.; Crosky, A.G.; Hono, K.

    2007-01-01

    Interruption of a conventional T6 heat treatment at 177 deg. C for the Al-Mg-Si-Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 deg. C), promotes secondary precipitation of Guinier-Preston (GP) zones. As a consequence, a much greater number of precursors to the β'' precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg-Si(-Cu)-vacancy co-clusters formed during the initial ageing at 177 deg. C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry

  20. Near-field solubility studies

    International Nuclear Information System (INIS)

    Thomason, H.P.; Williams, S.J.

    1992-02-01

    Experimental determinations of the solubilities of americium, plutonium, neptunium, protactinium, thorium, radium, lead, tin, palladium and zirconium are reported. These elements have radioactive isotopes of concern in assessments of radioactive waste disposal. All measurements were made under the highly alkaline conditions typical of the near field of a radioactive waste repository which uses cementitious materials for many of the immobilisation matrices, the backfill and the engineered structures. Low redox potentials, typical of those resulting from the corrosion of iron and steel, were simulated for those elements having more than one accessible oxidation state. The dissolved concentrations of the elements were defined using ultrafiltration. In addition, the corrosion of iron and stainless steel was shown to generate low redox potentials in solution and the solubility of iron(II) at high pH was measured and found to be sufficient for it to act as a redox buffer with respect to neptunium and plutonium. (author)

  1. The impacts of changing transport and precipitation on pollutant distributions in a future climate

    Science.gov (United States)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram

    2011-09-01

    Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change

  2. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  3. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  4. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  5. Study of variables that affect hydrogen solubility in α + β Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, Santiago A. [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); Ponzoni, Lucio M.E.; De Las Heras, M. Evangelina [División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina); Mieza, J. Ignacio [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina); Domizzi, Gladys, E-mail: domizzi@cnea.gov.ar [Instituto Sabato, UNSAM–CNEA, Av. Gral. Paz 1499, San Martín B1650KNA, Buenos Aires (Argentina); División Hidrógeno en Materiales, Gerencia Materiales, GAEN, Centro Atómico Constituyentes, Av. Gral. Paz 1499, San Martín, B1650KNA, Buenos Aires (Argentina)

    2016-08-15

    Zr–2.5Nb and Excel pressure tubes, both containing α and β phases were submitted to different heat treatments. Then, hydrogen Terminal Solid Solubility for Dissolution (TSSD) and Precipitation (TSSP) curves were measured by Differential Scanning Calorimetry (DSC). The solvus of Excel heat treated at 380 °C–24 h or 750 °C–0.5 h exceeds the solvus of Zr–2.5Nb in standard conditions of CANDU pressure tubes. Aging at 500 °C–168 h decreases the limit of solubility. The lowest solubility was obtained in Excel aged at 500°C–168 h. In DSC measurements the effect of maximum temperature and hold time at such temperature on solubility curves were studied. The TSSD decreases when thermal cycle causes decomposition of the β phase, and is recuperated when α → α + β transformation temperature is exceeded. The TSSP is affected not only by βZr phase decomposition but also by the relief of defects produced during hydride precipitation. - Highlights: • We heat treated Zr-2.5Nb and Excel to change α and β-phase fraction and composition. • We measured Hydrogen solvus after each heat treatment with different thermal cycles. • We found that dissolution and precipitation solvus depend on the β phase state. • Precipitation is also affected by the relief of memory effect during the thermal cycle. • Excel treated at 750 °C 0.5 h or 380 °C 24 h showed highest solubility.

  6. Metastable equilibrium solubility behavior of carbonated apatite in the presence of solution strontium.

    Science.gov (United States)

    Heslop, D D; Bi, Y; Baig, A A; Higuchi, W I

    2004-01-01

    The purpose of this study was to use the concept of metastable equilibrium solubility (MES) to describe the anomalous solubility behavior of carbonated apatite (CAP) in the presence of solution strontium. A CAP sample (4.8 wt% CO(3), synthesized at 70 degrees C) was prepared by precipitation. Baseline MES distributions were determined in a series of 0.1 M acetate buffers containing only calcium and phosphate (no strontium) over a broad range of solution conditions. In order to assess the influence of strontium, MES profiles were then determined in a similar fashion with 20, 30, 40, 50, 60, 70, and 80% of the solution calcium being replaced on an equal molar basis by solution strontium. From the compositions of the equilibrating buffer solutions, ion activity products (IAPs) of the form Ca(10-n)Sr(n)(PO(4))(6)(OH)(2) (n = 0-10) were calculated in an attempt to determine the correct function governing the dissolution of the CAP preparation. The results demonstrate the following important findings: (a) at high solution strontium/calcium ratios (i.e., when 60% or more of the solution calcium was replaced by strontium), the MES profiles in all the experiments were found to be essentially superimposable when the solution IAPs were calculated using the stoichiometry of Ca(6)Sr(4)(PO(4))(6)(OH)(2), and (b), at low solution strontium/calcium ratios (i.e., when 40% or less of the solution calcium was replaced by strontium), the stoichiometry yielding MES data superpositioning was found to be that of hydroxyapatite. When other stoichiometries were assumed, good superpositioning of the data was not possible.

  7. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations

    International Nuclear Information System (INIS)

    Hin, C.

    2005-12-01

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in □-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  8. Primary investigation of the preparation of nanoparticles by precipitation.

    Science.gov (United States)

    Vaculikova, Eliska; Grunwaldova, Veronika; Kral, Vladimir; Dohnal, Jiri; Jampilek, Josef

    2012-09-13

    The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox). The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.

  9. Primary Investigation of the Preparation of Nanoparticles by Precipitation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-09-01

    Full Text Available The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox. The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.

  10. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  11. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  12. Solubility of Carbon in Nanocrystalline -Iron

    OpenAIRE

    Alexander Kirchner; Bernd Kieback

    2012-01-01

    A thermodynamic model for nanocrystalline interstitial alloys is presented. The equilibrium solid solubility of carbon in -iron is calculated for given grain size. Inside the strained nanograins local variation of the carbon content is predicted. Due to the nonlinear relation between strain and solubility, the averaged solubility in the grain interior increases with decreasing grain size. The majority of the global solubility enhancement is due to grain boundary enrichment however. Therefor...

  13. Precipitation of Np(VI) by urotropine from heated solutions

    International Nuclear Information System (INIS)

    Logvis, A.I.; Krot, N.N.

    1993-01-01

    The precipitate formed by heating HNO 3 solutions of Np(VI) and urotropine under various conditions is studied by x-ray phase analysis, gravimetry, and spectrophotometry. The precipitate is determined to be NpO 3 ·xH 2 O·yNH 3 , where x ≤ 2 and y ≤ 0.28. It is demonstrated that at least 12% of the starting Np remains in solution as Np(V)

  14. On the solubility of yttrium in RuO2

    International Nuclear Information System (INIS)

    Music, Denis; Zumdick, Naemi A.; Hallstedt, Bengt; Schneider, Jochen M.

    2011-01-01

    We have investigated the solubility of Y in rutile RuO 2 using experimental and theoretical methods. Nanostructured Ru-Y-O thin films were synthesized via combinatorial reactive sputtering with an O/metal ratio of 2.6 and a Y content of 0.3 to 12.6 at. %. A solubility limit of 1.7 at. % was identified using x-ray photoelectron spectroscopy and x-ray diffraction. Based on ab initio and thermodynamic modeling, the solubility of Y can be understood. Smaller Y amounts are incorporated into the lattice, forming a metastable film, with local structural deformations due to size effects. As the Y content is increased, extensive local structural deformations are observed, but phase separation does not occur due to kinetic limitations. Nanostructured RuO 2 alloyed with Y might lead to enhanced phonon scattering and quantum confinement effects, which in turn improve the thermoelectric efficiency.

  15. Influence of equal-channel angular pressing on precipitation in an Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, G.; Wang, Y.B.; Liao, X.Z.; Duan, Z.C.; Ringer, S.P.; Langdon, T.G.

    2009-01-01

    Processing by equal-channel angular pressing (ECAP) affects the morphology of η precipitates in an Al-Zn-Mg-Cu (Al-7136) alloy. It is shown by transmission electron microscopy that ECAP changes the orientation of precipitates and this influences the atomic configuration and the interfacial energy at the η/α-Al interfaces. Consequently, η precipitates adopt an isotropic growth mode and evolve into equiaxed particles. A three-dimensional atom probe analysis demonstrates that large η precipitates formed in different numbers of ECAP passes are of similar composition. The coalescence of smaller precipitates, rather than the fragmentation of larger precipitates, dominates the precipitate evolution.

  16. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. The effect of a stationary precipitation front on nuclide dissolution and transport

    International Nuclear Information System (INIS)

    Light, W.B.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1988-01-01

    Waste material in a geologic repository will dissolve and migrate away. For many waste components, this process will be limited by the solubility of the waste matrix and species involved. In this paper the authors deal with a single contaminant species and analyze the effect of a precipitation front caused by a discontinuity in the solubility of the contaminant at some distance from the waste package. The precipitation front may be due to local geochemical changes such as changes in temperature, pH or redox potential, caused by nearby geologic features or the waste itself. The authors provide analytic solutions to the problem of precipitation at a stationary front. Numerical illustrations of these solutions are also presented

  18. Solubility of hydrogen in metals and its effect of pore-formation and embrittlement. Ph.D. Thesis

    Science.gov (United States)

    Shahani, H. R.

    1984-01-01

    The effect of alloying elements on hydrogen solubility were determined by evaluating solubility equations and interaction coefficients. The solubility of dry hydrogen at one atmosphere was investigated in liquid aluminum, Al-Ti, Al-Si, Al-Fe, liquid gold, Au-Cu, and Au-Pd. The design of rapid heating and high pressure casting furnaces used in meta foam experiments is discussed as well as the mechanism of precipitation of pores in melts, and the effect of hydrogen on the shrinkage porosity of Al-Cu and Al-Si alloys. Hydrogen embrittlement in iron base alloys is also examined.

  19. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  20. Thermodynamic properties of soddyite from solubility and calorimetry measurements

    International Nuclear Information System (INIS)

    Gorman-Lewis, Drew; Mazeina, Lena; Fein, Jeremy B.; Szymanowski, Jennifer E.S.; Burns, Peter C.; Navrotsky, Alexandra

    2007-01-01

    The release of uranium from geologic nuclear waste repositories under oxidizing conditions can only be modeled if the thermodynamic properties of the secondary uranyl minerals that form in the repository setting are known. Toward this end, we synthesized soddyite ((UO 2 ) 2 (SiO 4 )(H 2 O) 2 ), and performed solubility measurements from both undersaturation and supersaturation. The solubility measurements rigorously constrain the value of the solubility product of synthetic soddyite, and consequently its standard-state Gibbs free energy of formation. The log solubility product (lg K sp ) with its error (1σ) is (6.43 + 0.20/-0.37), and the standard-state Gibbs free energy of formation is (-3652.2 ± 4.2 (2σ)) kJ mol -1 . High-temperature drop solution calorimetry was conducted, yielding a calculated standard-state enthalpy of formation of soddyite of (-4045.4 ± 4.9 (2σ)) kJ . mol -1 . The standard-state Gibbs free energy and enthalpy of formation yield a calculated standard-state entropy of formation of soddyite of (-1318.7 ± 21.7 (2σ)) J . mol -1 . K -1 . The measurements and associated thermodynamic calculations not only describe the T = 298 K stability and solubility of soddyite, but they also can be used in predictions of repository performance through extrapolation of these properties to repository temperatures

  1. Different nonideality relationships, different databases and their effects on modeling precipitation from concentrated solutions using numerical speciation codes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.; Ebinger, M.H.

    1996-08-01

    Four simple precipitation problems are solved to examine the use of numerical equilibrium codes. The study emphasizes concentrated solutions, assumes both ideal and nonideal solutions, and employs different databases and different activity-coefficient relationships. The study uses the EQ3/6 numerical speciation codes. The results show satisfactory material balances and agreement between solubility products calculated from free-energy relationships and those calculated from concentrations and activity coefficients. Precipitates show slightly higher solubilities when the solutions are regarded as nonideal than when considered ideal, agreeing with theory. When a substance may precipitate from a solution dilute in the precipitating substance, a code may or may not predict precipitation, depending on the database or activity-coefficient relationship used. In a problem involving a two-component precipitation, there are only small differences in the precipitate mass and composition between the ideal and nonideal solution calculations. Analysis of this result indicates that this may be a frequent occurrence. An analytical approach is derived for judging whether this phenomenon will occur in any real or postulated precipitation situation. The discussion looks at applications of this approach. In the solutes remaining after the precipitations, there seems to be little consistency in the calculated concentrations and activity coefficients. They do not appear to depend in any coherent manner on the database or activity-coefficient relationship used. These results reinforce warnings in the literature about perfunctory or mechanical use of numerical speciation codes.

  2. Precipitation of lamellar gold nanocrystals in molten polymers

    International Nuclear Information System (INIS)

    Palomba, M.; Carotenuto, G.

    2016-01-01

    Non-aggregated lamellar gold crystals with regular shape (triangles, squares, pentagons, etc.) have been produced by thermal decomposition of gold chloride (AuCl) molecules in molten amorphous polymers (polystyrene and poly(methyl methacrylate)). Such covalent inorganic gold salt is high soluble into non-polar polymers and it thermally decomposes at temperatures compatible with the polymer thermal stability, producing gold atoms and chlorine radicals. At the end of the gold precipitation process, the polymer matrix resulted chemically modified because of the partial cross-linking process due to the gold atom formation reaction.

  3. Transformation and precipitation in vanadium treated steels

    Science.gov (United States)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature

  4. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  5. Eh and fission product solubilities: two factors in the leaching of UO2

    International Nuclear Information System (INIS)

    Ogard, A.E.; Duffy, C.J.

    1981-01-01

    Eh was found to have a large effect on the dissolution of UO 2 in water at pH 4. As was estimated from thermodynamic data, the solubility was found to decrease as the oxygen fugacity, and therefore the Eh of the water, was decreased. Some of the rare earths and other actinides such as europium, cerium, americium, and plutonium released during the leaching of a spent fuel element behaved differently. These elements were not affected to any large extent by the variation in Eh of these experiments. It has been postulated that these elements reached their solubility limits and precipitated as the spent fuel was leached. 2 figures, 2 tables

  6. On the Precipitation and Precipitation Change in Alaska

    Directory of Open Access Journals (Sweden)

    Gerd Wendler

    2017-12-01

    Full Text Available Alaska observes very large differences in precipitation throughout the state; southeast Alaska experiences consistently wet conditions, while northern Arctic Alaska observes very dry conditions. The maximum mean annual precipitation of 5727 mm is observed in the southeastern panhandle at Little Port Arthur, while the minimum of 92 mm occurs on the North Slope at Kuparuk. Besides explaining these large differences due to geographic and orographic location, we discuss the changes in precipitation with time. Analyzing the 18 first-order National Weather Service stations, we found that the total average precipitation in the state increased by 17% over the last 67 years. The observed changes in precipitation are furthermore discussed as a function of the observed temperature increase of 2.1 °C, the mean temperature change of the 18 stations over the same period. This observed warming of Alaska is about three times the magnitude of the mean global warming and allows the air to hold more water vapor. Furthermore, we discuss the effect of the Pacific Decadal Oscillation (PDO, which has a strong influence on both the temperature and precipitation in Alaska.

  7. Acceleration and Precipitation of Electrons during Substorm Dipolarization Events

    Science.gov (United States)

    Ashour-Abdalla, Maha; Richard, Robert; Donovan, Eric; Zhou, Meng; Goldstein, Mevlyn; El-Alaoui, Mostafa; Schriver, David; Walker, Raymond

    Observations and modeling have established that during geomagnetically disturbed times the Earth’s magnetotail goes through large scale changes that result in enhanced electron precipitation into the ionosphere and earthward propagating dipolarization fronts that contain highly energized plasma. Such events originate near reconnection regions in the magnetotail at about 20-30 R_E down tail. As the dipolarization fronts propagate earthward, strong acceleration of both ions and electrons occurs due to a combination of non-adiabatic and adiabatic (betatron and Fermi) acceleration, with particle energies reaching up to 100 keV within the dipolarization front. One consequence of the plasma transport that occurs during these events is direct electron precipitation into the ionosphere, which form auroral precipitation. Using global kinetic simulations along with spacecraft and ground-based data, causes of electron precipitation are determined during well-documented, disturbed events. It is found that precipitation of keV electrons in the pre-midnight sector at latitudes around 70(°) occur due to two distinct physical processes: (1) higher latitude (≥72(°) ) precipitation due to electrons that undergo relatively rapid non-adiabatic pitch angle scattering into the loss cone just earthward of the reconnection region at around 20 R_E downtail, and (2) lower latitude (≤72(°) ) precipitation due to electrons that are more gradually accelerated primarily parallel to the geomagnetic field during its bounce motion by Fermi acceleration and enter the loss cone much closer to the Earth at 10-15 R_E, somewhat tailward of the dipolarization front. As the dipolarization fronts propagate earthward, the electron precipitation shifts to lower latitudes and occurs over a wider region in the auroral ionosphere. Our results show a direct connection between electron acceleration in the magnetotail and electron precipitation in the ionosphere during disturbed times. The electron

  8. THE EFFECT OF SALICYLATES ON THE PRECIPITATION OF ANTIGEN WITH ANTIBODY.

    Science.gov (United States)

    Coburn, A F; Kapp, E M

    1943-02-01

    1. Sodium salicylate modifies the precipitation of normal rabbit serum protein by sodium tungstate, and partially inhibits the precipitation of horse serum euglobulin by rabbit antiserum. Sodium salicylate added to a system containing crystalline egg albumin and its antibody partly prevents the formation of precipitate, the degree of inhibition being related to the concentration of salicylate. 2. Precipitation in the equivalence zone is more readily prevented by salicylate than precipitation in the region of antibody excess, the immune system becoming progressively less sensitive to the action of salicylate as the excess of antibody becomes larger. 3. Formed precipitates were partly dissolved following resuspension in the presence of salicylate. 4. The salicylate effect on immune precipitation is reversible, and appears to be due to inactivation of antibody. 5. Salicylate was more effective in preventing specific precipitation than other anions of a lyotropic series tested.

  9. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  10. Precipitation of plutonium (III) oxalate and calcination to plutonium oxide

    International Nuclear Information System (INIS)

    Esteban, A.; Orosco, E.H.; Cassaniti, P.; Greco, L.; Adelfang, P.

    1989-01-01

    The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been studied in detail. In this procedure, plutonium (III) oxalate is precipitated, at room temperature, by the slow addition of 1M oxalic acid to the feed solution, containing from 5-100 g/l of plutonium in 1M nitric acid. Before precipitation, the plutonium is adjusted to trivalent state by addition of 1M ascorbic acid in the presence of an oxidation inhibitor such as hydrazine. Finally, the precipitate is calcinated at 700 deg C to obtain PuO2. A flowsheet is proposed in this paper including: a) A study about the conditions to adjust the plutonium valence. b) Solubility data of plutonium (III) oxalate and measurements of plutonium losses to the filtrate and wash solution. c) Characterization of the obtained products. Plutonium (III) oxalate has several potential advantages over similar conversion processes. These include: 1) Formation of small particle sizes powder with good pellets fabrication characteristics. 2) The process is rather insensitive to most process variables, except nitric acid concentration. 3) Ambient temperature operations. 4) The losses of plutonium to the filtrate are less than in other conversion processes. (Author) [es

  11. Precipitation of lithium in germanium

    International Nuclear Information System (INIS)

    Masaik, M.; Furgolle, B.

    1969-01-01

    The precipitation of Lithium in Germanium was studied. Taking account of the interactions Ga LI, LiO, we calculated the oxygen content in germanium samples from the resistivity measurements. (authors)

  12. Environmental Radioactivity, Temperature, and Precipitation.

    Science.gov (United States)

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  13. Aluminum precipitation from Hanford DSSF

    International Nuclear Information System (INIS)

    Borgen, D.; Frazier, P.; Staton, G.

    1994-01-01

    A series of pilot scale tests using simulated Double Shell Slurry Feed (DSSF) showed that well-settled aluminum precipitate can be produced in Hanford double shell tank (DST) high level waste by slow neutralization with carbon dioxide. This pretreatment could provide an early grout feed and free tank space, as well as facilitate downstream processes such as ion exchange by providing a less caustic feed. A total of eight test runs were completed using a 10-ft tall 3-in i.d. glass column. The 10-ft height corresponds to about one third of the vertical height of a DST, hence providing a reasonable basis for extrapolating the observed precipitate settling and compaction to the actual waste tank environment. Four runs (three with a simplified simulant and one with a chemically complete simulant) produced well settled precipitates averaging 1.5 to 2 feet high. Aluminum gel rather than settled precipitate resulted from one test where neutralization was too rapid

  14. Evaluation of Coupled Precipitator Two

    International Nuclear Information System (INIS)

    Stone, M.E.

    1999-01-01

    The offline testing of the Coupled Precipitator Two (CP-2) has been completed. The tests were conducted and are documented. The tests were conducted at an offline test rack near the Drain Tube Test Stand facility in 672-T

  15. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  16. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  17. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  18. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    Energy Technology Data Exchange (ETDEWEB)

    Fu Tingming, E-mail: futingming@gmail.com [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Guo Liwei; Le Kang; Wang Tianyao; Lu Jin [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China)

    2010-09-15

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO{sub 20}PO{sub 70}EO{sub 20}) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N{sub 2} adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  19. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    International Nuclear Information System (INIS)

    Fu Tingming; Guo Liwei; Le Kang; Wang Tianyao; Lu Jin

    2010-01-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20 PO 70 EO 20 ) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  20. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.

    Science.gov (United States)

    Morakul, Boontida; Suksiriworapong, Jiraphong; Leanpolchareanchai, Jiraporn; Junyaprasert, Varaporn Buraphacheep

    2013-11-30

    Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Development and demonstration of process and components for the control of aluminum-air-battery electrolyte composition through the precipitation of aluminum trihydroxide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swansiger, T. G.; Misra, C.

    1982-05-11

    Physical property data on density, viscosity, and electrical conductivity were developed and reduced to correlation form for synthetic electrolytes containing nominally 7 g/L Sn and 0.20 g/L Ga in 3,4,5,6 M NaOH. Concentrations of Al(OH)/sub 4/ were selected at six levels for each NaOH concentration and ranged from 0 to as high as 4 M Al(OH)/sub 4/ at 6 M NaOH. Measurements of each property were made at 25, 40, 60, and 80 C. The effect of the Sn and Ga impurities was to increase density by a relatively small percentage, increase viscosity by a significant percentage, and decrease electrical conductance by a significant percentage. Isothermal, batch precipitation experiments at 40, 60, and 80 C were utilized to develop data from which kinetic and solubility correlations were derived as functions of electrolyte and system parameters. Precipitation rate was negatively affected by tin in solution, with a 40% reduction in the rate constant being attributed to 0.06 M Sn. Both Sn and Ga co-precipitated with the Al(OH)/sub 3/ to an extent strongly dependent on temperature. Very high precipitation rates resulted in Na levels in product exceeding the target level of 0.24% Na on the hydrate basis. The incorporation of Na in product was also a strong function of temperature. A total of 108 computer simulations were performed and documented to delineate the region of feasible operation with respect to meeting the aluminate production specification. A full-scale precipitator was operated in a continuous mode to assess production rate, population changes with time, and hardware aspects. A digester was used to perform the function of an Al-Air battery, that is to drive Al(OH)/sub 4//sup -/ into solution. Results are presented in detail. (WHK)

  2. First estimates of the contribution of CaCO3 precipitation to the release of CO2 to the atmosphere during young sea ice growth

    Science.gov (United States)

    Geilfus, N.-X.; Carnat, G.; Dieckmann, G. S.; Halden, N.; Nehrke, G.; Papakyriakou, T.; Tison, J.-L.; Delille, B.

    2013-01-01

    report measurements of pH, total alkalinity, air-ice CO2 fluxes (chamber method), and CaCO3 content of frost flowers (FF) and thin landfast sea ice. As the temperature decreases, concentration of solutes in the brine skim increases. Along this gradual concentration process, some salts reach their solubility threshold and start precipitating. The precipitation of ikaite (CaCO3.6H2O) was confirmed in the FF and throughout the ice by Raman spectroscopy and X-ray analysis. The amount of ikaite precipitated was estimated to be 25 µmol kg-1 melted FF, in the FF and is shown to decrease from 19 to 15 µmol kg-1 melted ice in the upper part and at the bottom of the ice, respectively. CO2 release due to precipitation of CaCO3 is estimated to be 50 µmol kg-1 melted samples. The dissolved inorganic carbon (DIC) normalized to a salinity of 10 exhibits significant depletion in the upper layer of the ice and in the FF. This DIC loss is estimated to be 2069 µmol kg-1 melted sample and corresponds to a CO2 release from the ice to the atmosphere ranging from 20 to 40 mmol m-2 d-1. This estimate is consistent with flux measurements of air-ice CO2 exchange. Our measurements confirm previous laboratory findings that growing young sea ice acts as a source of CO2 to the atmosphere. CaCO3 precipitation during early ice growth appears to promote the release of CO2 to the atmosphere; however, its contribution to the overall release by newly formed ice is most likely minor.

  3. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  4. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  5. Influence of Subtropical Jetstream on Arabian Gulf Precipitation

    Science.gov (United States)

    Sandeep, S.; Pauluis, O.; Ravindran, A. M.; TP, S.

    2017-12-01

    The Arabian Gulf and surrounding regions are predominantly arid. However, this region hosts a large population due to the intense economic activity that is centered on the exploration of natural resources in and around the Arabian Gulf. Thus, few precipitation events that occur during boreal winter are important for society and ecology of this region. The mechanisms of winter precipitation over the Gulf are not well understood, partly due to a lack of long term meteorological observation. Here we explore the dynamics of Arabian Gulf winter precipitation events using available observations and a high resolution atmospheric model simulation. Our analyses show that the northern Gulf receives about six times more precipitation than the southern Gulf. Often, the southern Gulf precipitation forms as a result of downstream development of northern Gulf disturbance. The southward movement of northern Gulf disturbances is influenced by the location of subtropical jet. The probability of a northern Gulf precipitating weather system to move south is higher when the subtropical jet is located equatorward of 30°N. The equatorward position of jet favors the penetration of mid-latitude weather systems over the Arabian Peninsula, which in turn pushes the Arabian anticyclone eastward and triggers moisture transport from the Arabian Sea that is essential for southern Gulf precipitation events.

  6. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  7. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Prather, K. [Scripps Institution of Oceanography, La Jolla, CA (United States); Ralph, R. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Rosenfeld, D. [The Hebrew University of Jerusalem (Israel); Spackman, R. [Science and Technology Corporation (STC), Hampton, VA (United States); DeMott, P. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Fan, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hagos, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hughes, M. [National Oceanic and Atmospheric Administration, Washington, DC (United States); Long, C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rutledge, S. [Colorado State Univ., Fort Collins, CO (United States); Waliser, D. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wang, H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associated with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.

  8. Duodenal perforation precipitated by scrub typhus

    Directory of Open Access Journals (Sweden)

    Raghunath Rajat

    2015-01-01

    Full Text Available Scrub typhus is an acute febrile illness usually presenting with fever, myalgia, headache, and a pathognomonic eschar. Severe infection may lead to multiple organ failure and death. Gastrointestinal tract involvement in the form of gastric mucosal erosions and ulcerations owing to vasculitis resulting in gastrointestinal bleeding is common. This process may worsen a pre-existent asymptomatic peptic ulcer, causing duodenal perforation, and present as an acute abdomen requiring surgical exploration. We report the case of a patient with no previous symptoms or risk factors for a duodenal ulcer, who presented with an acute duodenal perforation, probably precipitated by scrub typhus infection.

  9. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip; McDonald, Armando G.; Helms, Gregory L.; Olarte, Mariefel V.; Garcia-Perez, Manuel

    2017-01-31

    This paper reports a study of the chemical composition of the water soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt. % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC/MS, hydrolysable sugars and total carbohydrates), it is possible to quantify only between 45 and 50 wt. % of it. Our results confirm that most of the total carbohydrates (hydrolysable sugars and non-hydrolysable) are soluble in water. The ion chromatography hydrolysis method showed that between 11.6 and 17.3 wt. % of these oils were hydrolysable sugars. A small quantity of phenols detectable by GC/MS (between 2.5 and 3.9 wt. %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt. %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl and phenolic compounds in the WS fraction were quantified by titration, Folin-Ciocalteu, 31P-NMR and 1H-NMR. The WS fraction contains between 5.5 and 6.2 mmol/g of carbonyl groups, between 0.4 and 1.0 mmol/g of carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water soluble phenols, carbonyl and carboxyl groups and we estimated the content of WS phenols (21-27 wt. %), carbonyl (5-14 wt.%), and carboxyl (0-4 wt.%). Together with the total carbohydrates (23-27 wt.%), this approach leads to > 90 wt. % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolysable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and

  10. Development of precipitator of fluid film type

    International Nuclear Information System (INIS)

    Liu Yupu

    1987-01-01

    The precipitator of fluid film type is developed for the determination of fuel element cladding failure of water-cooled reactor. It integrates the scrubber, precipitator and detector. The jet of element cooling water automatically circulates carrier gas and the flow water film transfers precipitates onto the surface of centre electrode. Three different types are designed. On the special test loop, the uranium sample pellets of simulating cladding failure is measured. The sensitivity of precipitators, saturated precipitation voltage, incremental speed of signal, speed of driving out precipitates and the contents of the precipitates are determined. The test shows that the precipitators are highly sensitive, reliable, cheap and easy to operate

  11. Amorphous drugs and dosage forms

    DEFF Research Database (Denmark)

    Grohganz, Holger; Löbmann, K.; Priemel, P.

    2013-01-01

    The transformation to an amorphous form is one of the most promising approaches to address the low solubility of drug compounds, the latter being an increasing challenge in the development of new drug candidates. However, amorphous forms are high energy solids and tend to recry stallize. New...... formulation principles are needed to ensure the stability of amorphous drug forms. The formation of solid dispersions is still the most investigated approach, but additional approaches are desirable to overcome the shortcomings of solid dispersions. Spatial separation by either coating or the use of micro-containers...... before single molecules are available for the formation of crystal nuclei, thus stabilizing the amorphous form....

  12. Determination of calcium salt solubility with changes in pH and P(CO(2)), simulating varying gastrointestinal environments.

    Science.gov (United States)

    Goss, Sandra L; Lemons, Karen A; Kerstetter, Jane E; Bogner, Robin H

    2007-11-01

    The amount of calcium available for absorption is dependent, in part, on its sustained solubility in the gastrointestinal (GI) tract. Many calcium salts, which are the calcium sources in supplements and food, have pH-dependent solubility and may have limited availability in the small intestine, the major site of absorption. The equilibrium solubility of four calcium salts (calcium oxalate hydrate, calcium citrate tetrahydrate, calcium phosphate, calcium glycerophosphate) were determined at controlled pH values (7.5, 6.0, 4.5 and solubility of calcium carbonate was also measured at pH 7.5, 6.0 and 4.5 with two CO(2) environments (0.3 and 152 mmHg) above the solution. The precipitation profile of CaCO(3) was calculated using in-vivo data for bicarbonate and pH from literature and equilibrium calculations. As pH increased, the solubility of each calcium salt increased. However, in distilled water each salt produced a different pH, affecting its solubility value. Although calcium citrate does have a higher solubility than CaCO(3) in water, there is little difference when the pH is controlled at pH 7.5. The partial pressure of CO(2) also played a role in calcium carbonate solubility, depressing the solubility at pH 7.5. The calculations of soluble calcium resulted in profiles of available calcium, which agreed with previously published in-vivo data on absorbed calcium. The experimental data illustrate the impact of pH and CO(2) on the solubility of many calcium salts in the presence of bicarbonate secretions in the intestine. Calculated profiles using in-vivo calcium and bicarbonate concentrations demonstrate that large calcium doses may not further increase intestinal calcium absorption once the calcium carbonate solubility product has been reached.

  13. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai, E-mail: wangyancai1999@163.com [Qilu University of Technology, School of Chemistry and Pharmaceutical Engineering (China)

    2016-09-15

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  14. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Varaporn Buraphacheep Junyaprasert

    2015-02-01

    Full Text Available Nanocrystals, a carrier-free colloidal delivery system in nano-sized range, is an interesting approach for poorly soluble drugs. Nanocrystals provide special features including enhancement of saturation solubility, dissolution velocity and adhesiveness to surface/cell membranes. Several strategies are applied for nanocrystals production including precipitation, milling, high pressure homogenization and combination methods such as NanoEdge™, SmartCrystal and Precipitation-lyophilization-homogenization (PLH technology. For oral administration, many publications reported useful advantages of nanocrystals to improve in vivo performances i.e. pharmacokinetics, pharmacodynamics, safety and targeted delivery which were discussed in this review. Additionally, transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.

  15. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  16. Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 °C: Effects of Mg and the Q-precipitate phase

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Pekguleryuz, M.

    2015-01-01

    Strategies to improve the strength of Al–Si alloys at elevated temperatures can follow two routes: (i) improving the age-hardening behavior and/or (ii) producing effective dispersoid strengthening. In this study, the influence of Mg (in the range of 0.3–0.7 wt%) on the precipitation characteristics and mechanical properties of the Al–7Si–0.5Cu–(Mg) alloy was investigated. Thermodynamic calculations were performed via the CALPHAD method which showed that Q-Al 5 Mg 8 Cu 2 Si 6 is the main thermodynamically stable precipitate at 300 °C. The calculations were validated by transmission electron microscopy and differential scanning calorimetry analyses. Increasing the Mg level from 0.3 wt% to the maximum solubility limit of ∼0.5 wt% increased the amount of the Q-Al 5 Mg 8 Cu 2 Si 6 precipitates at 300 °C by ∼60 wt% and significantly improved the tensile strength and creep resistance at the expense of some ductility. Mg in excess of the solubility limit was seen to remain within the microstructure in the form of the large π-Al 8 FeMg 3 Si 6 and β-Mg 2 Si intermetallics after solution treatment at 530 °C. Cracking of the brittle π-Al 8 FeMg 3 Si 6 intermetallics during deformation was accounted for the decreased ductility of the alloys at high Mg levels. It is concluded that the Mg level can be increased to 0.5 wt% in the A–7Si–0.5Cu alloys to improve strength. However, for elevated temperature applications in which both strength and ductility are required (e.g. Diesel engine), modification of the π-Al 8 FeMg 3 Si 6 intermetallics would be required to improve the ductility of the alloys with high Mg contents

  17. Removal of Sb(III and Sb(V by Ferric Chloride Coagulation: Implications of Fe Solubility

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Inam

    2018-04-01

    Full Text Available Coagulation and precipitation appear to be the most efficient and economical methods for the removal of antimony from aqueous solution. In this study, antimony removal from synthetic water and Fe solubility with ferric chloride (FC coagulation has been investigated. The effects of pH, FC dosage, initial antimony loading and mixed Sb(III, Sb(V proportions on Fe solubility and antimony removal were studied. The results showed that the Sb(III removal efficiency increased with the increase of solution pH particularly due to an increase in Fe precipitation. The Sb(V removal was influenced by the solution pH due to a change in Fe solubility. However, the Fe solubility was only impaired by the Sb(III species at optimum pH 7. The removal efficiencies of both Sb species were enhanced with an increase in FC dose. The quantitative analysis of the isotherm study revealed the strong adsorption potential of Sb(III on Fe precipitates as compared to Sb(V. Furthermore, the removal behavior of antimony was inhibited in mixed proportion with high Sb(V fraction. In conclusion, this study contributes to better understanding the fate of Sb species, their mobilities, and comparative removal behavior, with implications for Fe solubility using ferric chloride in different aqueous environments.

  18. Satellite-Based Precipitation Datasets

    Science.gov (United States)

    Munchak, S. J.; Huffman, G. J.

    2017-12-01

    Of the possible sources of precipitation data, those based on satellites provide the greatest spatial coverage. There is a wide selection of datasets, algorithms, and versions from which to choose, which can be confusing to non-specialists wishing to use the data. The International Precipitation Working Group (IPWG) maintains tables of the major publicly available, long-term, quasi-global precipitation data sets (http://www.isac.cnr.it/ ipwg/data/datasets.html), and this talk briefly reviews the various categories. As examples, NASA provides two sets of quasi-global precipitation data sets: the older Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and current Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG). Both provide near-real-time and post-real-time products that are uniformly gridded in space and time. The TMPA products are 3-hourly 0.25°x0.25° on the latitude band 50°N-S for about 16 years, while the IMERG products are half-hourly 0.1°x0.1° on 60°N-S for over 3 years (with plans to go to 16+ years in Spring 2018). In addition to the precipitation estimates, each data set provides fields of other variables, such as the satellite sensor providing estimates and estimated random error. The discussion concludes with advice about determining suitability for use, the necessity of being clear about product names and versions, and the need for continued support for satellite- and surface-based observation.

  19. Room temperature ductility of NiAl-strengthened ferritic steels: Effects of precipitate microstructure

    International Nuclear Information System (INIS)

    Teng, Z.K.; Liu, C.T.; Miller, M.K.; Ghosh, G.; Kenik, E.A.; Huang, S.; Liaw, P.K.

    2012-01-01

    Highlights: ► Effects of precipitate microstructure on the ductility were investigated. ► The NiAl precipitates can be systematically characterized by TEM, APT, and USAXS. ► Ductility is a function of the precipitate volume fraction. ► Ductility is closely related to the Al and Ni solubilities in the Fe matrix. ► Ductility is independent of precipitate size and inter-particle spacing. - Abstract: The effects of precipitate microstructure on the room temperature ductility of a series of carefully designed Fe–Al–Ni–Cr–Mo steels were investigated. Transmission electron microscopy (TEM), ultra small angle X-ray scattering (USAXS), and atom probe tomography (APT) were conducted to quantify the nano-scaled precipitates. The accuracy of the characterization results was verified by a numerical analysis. Three point bending tests results demonstrated that ductility was a function of the precipitate volume fraction and the Al and Ni concentrations in the Fe matrix, these relationships were discussed in terms of possible mechanisms. The ductility was also found to be independent of the precipitate size and inter-particle spacing in the studied range, which was validated by a theoretical model.

  20. Preparation, characterization and antitumor activity evaluation of apigenin nanoparticles by the liquid antisolvent precipitation technique.

    Science.gov (United States)

    Wu, Weiwei; Zu, Yuangang; Wang, Li; Wang, Lingling; Wang, Huimei; Li, Yuanyuan; Wu, Mingfang; Zhao, Xiuhua; Fu, Yujie

    2017-11-01

    The present work aimed to apply the liquid antisolvent precipitation (LAP) method for preparing the apigenin nanoparticles and thereby improving the solubility and bioavailability of apigenin. The different experimental parameters on particle size were optimized through central composite design (CCD) using the Design-Expert ® software. Under the optimum conditions, the particle size of the apigenin nanosuspension was about 159.2 nm. In order to get apigenin nanoparticles, the freeze-drying method was selected and the mannitol was used as a cryoprotectant. Then the solid state properties of the apigenin nanoparticles were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo gravimetric (TG), and X-ray diffraction (XRD). The results obtained displayed that the apigenin nanoparticles exhibited near-spherical shape and could be transformed into an amorphous form. In addition, the dissolving test, the bioavailability in rats, and the antitumor activity were also studied. The experimental results showed that the solubility of the apigenin nanoparticles were about 29.61 times and 64.81 times of raw apigenin in artificial gastric juice and in artificial intestinal juice, respectively, and the apigenin nanoparticles showed higher dissolution rates compared to raw apigenin, and was about 6.08 times and 6.14 times than that of raw apigenin in artificial gastric juice and in artificial intestinal juice. The oral bioavailability of apigenin nanoparticles was about 4.96 times higher than that of the raw apigenin, but the apigenin nanoparticles had no toxic effect on the organs of rats. In addition, the apigenin nanoparticles had a higher inhibition to HepG2 cells by lower IC50 than that of raw apigenin.

  1. Effects in the solubility of CaCO3: experimental study and model description.

    OpenAIRE

    Coto, Baudilio; Martos, M. Carmen; Peña, José L.; Rodríguez, Rosalía; Pastor, Gabriel

    2012-01-01

    Combustibles fósiles Crude oil is usually co-produced with reservoir water, with increasing content in the production fluid along field life. Changes in temperature, pressure, and/or chemical composition may cause significant precipitation of inorganic salts (¿scales¿) during production. Therefore, the knowledge of the influence that different variables may have on salt solubility is critical to anticipate or identify potential flow assurance problems related to scales. The pre...

  2. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  3. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  4. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2009-06-22

    Due to low aqueous solubility and slow dissolution rate, spironolactone, a synthetic steroid diuretic, has a low and variable oral bioavailability. Nanoparticles were thus prepared by antisolvent precipitation in this work for accelerating dissolution of this kind of poorly water-soluble drugs. Effects of surfactant type/concentration and feed drug concentration on the precipitated particle size were evaluated. It was found that introduction of spironolactone solution in N-methy