Sample records for soluble cu complexes

  1. Synthesis and characterization of water soluble O-carboxymethyl chitosan Schiff bases and Cu(II) complexes.

    Baran, Talat; Menteş, Ayfer; Arslan, Hülya


    In this study, mono-imine was synthesized (3a and 4a) via a condensation reaction between 2,4-pentadion and aminobenzoic acid (meta or para) in alcohol (1:1). The second-imine (CS-3a and CS-4a) was obtained as a result of the reaction of the free oxo groups of mono-imine (3a and 4a) with the amino groups on the chitosan (CS). Their structures were characterized with FTIR and (13)C CP-MAS. Then, the water soluble forms of CS-3a and CS-4a were obtained through oxidation of the hydroxide groups on the chitosan to carboxymethyl groups using monochloracetic acid ([O-CMCS-3a] · 2H2O and [O-CMCS-4a] · 2H2O). Thus, the solubility problem of chitosan in an aqueous media was overcome and Cu(II) complexes could be synthesized more easily. Characterization of the synthesized O-carboxymethyl chitosan Schiff base derivatives and their metal complexes, [O-CMCS-3a-Cu(OAc)2] · 2H2O and [O-CMCS-4a-Cu(OAc)2] · 2H2O, was conducted using FTIR, UV-Vis, TG/DTA, XRD, SEM, elemental analysis, conductivities and magnetic susceptibility measurements.

  2. Cu(II) and Pd(II) complexes of water soluble O-carboxymethyl chitosan Schiff bases: Synthesis, characterization.

    Baran, Talat; Menteş, Ayfer


    This study reports the synthesis of two new water soluble O-carboxymethyl chitosan Schiff bases (OCMCS-5 and OCMCS-6a) and their Cu(II) and Pd(II) complexes. Characterizations of these complexes were carried out with FTIR, elemental analysis, (13)C CPMAS, UV-vis, magnetic moment and molar conductivity techniques. The degrees of substitution (DS) for OCMCS-5a and OCMCS-6a were determined to be 0.48 and 0.44 in elemental analysis. The solubility test revealed that OCMCS-5a and OCMCS-6a dissolved thoroughly in water. The surface morphologies of chitosan (CS), OCMCS-5a, OCMCS-6a and their complexes were studied with SEM-EDAX. Thermal stability of the synthesized compounds was evaluated by TG/DTG and their crystallinity values were investigated with powder X-ray diffraction. Cu(II) and Pd(II) contents of the complexes were estimated with ICP-OES. The characterization studies demonstrated that the thermal stability and crystallinity values of the OCMCS-5a and OCMCS-6a were lower than those of CS.

  3. Synthesis, crystal structure, DNA interaction and antioxidant activities of two novel water-soluble Cu2+ complexes derivated from 2-oxo-quinoline-3-carbaldehyde Schiff-bases.

    Liu, Zeng-Chen; Wang, Bao-Dui; Yang, Zheng-Yin; Li, Yong; Qin, Dong-Dong; Li, Tian-Rong


    Two novel 2-oxo-quinoline-3-carbaldehyde (4'-hydroxybenzoyl) hydrazone, thiosemicarbazone ligands and its corresponding Cu(2+) complexes were synthesized, and the two complexes' structures were determined by X-ray single crystal diffraction. The interaction of the two Cu(2+) complexes with calf thymus DNA (CT-DNA) was investigated by electronic absorption spectroscopy, fluorescence spectroscopy and viscosity measurement. The experimental evidences indicated that the two water-soluble Cu(2+) complexes could strongly bind to CT-DNA via an intercalation mechanism. The intrinsic binding constants of complexes 1 and 2 with CT-DNA were 7.31 x 10(6) and 2.33 x 10(6)M(-1), respectively. Furthermore, the antioxidant activities (hydroxyl radical and superoxide) of the two water-soluble metal complexes were determined by hydroxyl radical and superoxide scavenging method in vitro.

  4. Alkane Soluble Transition Metal Complexes.


    and decomposition of any intermediate, complexes. Cloro - L~r. spectra were recorded in the range 4 000-200 cm𔃻 form solutions of the phosphine PAr5...netathesis quickly showed that the lo~o-complez Is less stable than its cloro -malogue. A detailed Investigatiom of the preparation, charecterlstion and...solvent extraction of products that are believed to be a mixture of several metals, as stationary phases in gas chromatography. isomers of the ortho


    Ie. P. Prekrasna


    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  6. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.


    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  7. Multi-frequency EPR evidence for a binuclear CuA center in cytochrome c oxidase: studies with a 63Cu- and 65Cu-enriched, soluble domain of the cytochrome ba3 subunit II from Thermus thermophilus.

    Fee, J A; Sanders, D; Slutter, C E; Doan, P E; Aasa, R; Karpefors, M; Vänngård, T


    We have recorded multi-frequency EPR spectra of 63Cu- and 65Cu-labeled, water-soluble CuA-protein from the cytochrome ba3 of T. thermophilus. The spectrum taken at the highest frequency (34.03 GHz) shows no hyperfine structure and is nominally axial with apparent gz approximately 2.18 and gxy approximately 2.00. The spectrum taken at the lowest frequency (3.93 GHz) shows a rich hyperfine structure. Analyses of the spectra show that the observed splitting arises from an interaction of the unpaired electron with two Cu nuclei and support the notion that CuA is a mixed-valent [Cu(II)/Cu(I)] complex in which the unpaired electronic spin is distributed evenly over the two Cu ions.


    V.B. Chaudhary * 1 and J. K. Patel 2


    Full Text Available Low solubility compounds show dissolution rate limited absorption and hence poor absorption, distribution and target organ delivery. Improvement of aqueous solubility in such a case is valuable goal to improve therapeutic efficacy. Complexation with CDs by different methods like physical mixing, melting, kneding, spray drying, freeze drying, co-evaporation has been reported to enhance the solubility, dissolution rate and bioavability of poorly water soluble drugs. The formation of inclusion complex can be confirmed by DSC, FTIR, XRD and SEM study. This review aims to assess the use of cyclodextrines as complexing agents to enhance the solubility of poorly soluble drugs and hence to resolve the many issues associated with developing and commercializing poorly water soluble drugs.

  9. Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions

    Riipinen, I.; Rastak, N.; Pandis, S. N.


    We present a theoretical study investigating the cloud activation of multicomponent organic particles. We modeled these complex mixtures using solubility distributions (analogous to volatility distributions in the VBS, i.e., volatility basis set, approach), describing the mixture as a set of surrogate compounds with varying water solubilities in a given range. We conducted Köhler theory calculations for 144 different mixtures with varying solubility range, number of components, assumption about the organic mixture thermodynamics and the shape of the solubility distribution, yielding approximately 6000 unique cloud condensation nucleus (CCN)-activation points. The results from these comprehensive calculations were compared to three simplifying assumptions about organic aerosol solubility: (1) complete dissolution at the point of activation; (2) combining the aerosol solubility with the molar mass and density into a single effective hygroscopicity parameter κ; and (3) assuming a fixed water-soluble fraction ϵeff. The complete dissolution was able to reproduce the activation points with a reasonable accuracy only when the majority (70-80%) of the material was dissolved at the point of activation. The single-parameter representations of complex mixture solubility were confirmed to be powerful semi-empirical tools for representing the CCN activation of organic aerosol, predicting the activation diameter within 10% in most of the studied supersaturations. Depending mostly on the condensed-phase interactions between the organic molecules, material with solubilities larger than about 0.1-100 g L-1 could be treated as soluble in the CCN activation process over atmospherically relevant particle dry diameters and supersaturations. Our results indicate that understanding the details of the solubility distribution in the range of 0.1-100 g L-1 is thus critical for capturing the CCN activation, while resolution outside this solubility range will probably not add

  10. Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method

    Payal H. Patil


    Full Text Available The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX, for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD, and in the second one drug was cogrinded with modified guar gum (MGG. The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility.

  11. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    Jennings, Joan K.; Leventhal, J.S.


    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  12. Copper stress-induced changes in leaf soluble proteome of Cu-sensitive and tolerant Agrostis capillaris L. populations.

    Hego, Elena; Vilain, Sébastien; Barré, Aurélien; Claverol, Stéphane; Dupuy, Jean-William; Lalanne, Céline; Bonneu, Marc; Plomion, Christophe; Mench, Michel


    Changes in leaf soluble proteome were explored in 3-month-old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1-50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked-nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2-DE (linear 4-7 pH gradient). Analysis of CCB-stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC-MS/MS. In both populations, Cu excess impacted both light-dependent (OEE, cytochrome b6-f complex, and chlorophyll a-b binding protein), and -independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin-NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S-containing amino-acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 (http// © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Delocalized mixed-valence bi- and trinuclear complexes with short Cu-Cu bonds.

    Yang, Lei; Powell, Douglas R; Klein, Eric L; Grohmann, Andreas; Houser, Robert P


    Two mixed-valence copper complexes were synthesized with ligands N-(2-pyridylmethyl)acetamide (Hpmac) and N,N'-(2-methyl-2-pyridylpropan-1,3-diyl)bis(acetamide) (H2pp(ac)2). Dimer [Cu2(pmac)2]OTf and trimer [Cu3(pp(ac)2)2].NaOTf both contain fully delocalized, mixed-valence Cu(1.5)Cu(1.5) moieties.

  14. A water soluble and fast response fluorescent turn-on copper complex probe for H2S detection in zebra fish.

    Palanisamy, Sathyadevi; Lee, Lu-Ying; Wang, Yu-Liang; Chen, Yu-Jen; Chen, Chiao-Yun; Wang, Yun-Ming


    According to the displacement method, herein we reported a water soluble copper complex [Cu(MaT-cyclen)2] as a fluorescent probe for the detection of H2S. For this, 1-((1-((10-methylanthracen-9-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (MaT-cyclen) was synthesized first. To improve its solubility in aqueous media, sodium acetate group was introduced into 8-hydroxy-2-quinoline successfully. MaT-cyclen was chelated with Cu(II) to form [Cu(MaT-cyclen)2] complex, which displayed high sensitivity and selectivity for H2S over the other possible competitive substances on the basis of forming CuS. Meanwhile, [Cu(MaT-cyclen)2] displayed rapid response (zebra fish.

  15. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía


    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites.

  16. Highly dynamic coordination behavior of Pn ligand complexes towards "naked" Cu(+) cations.

    Fleischmann, Martin; Welsch, Stefan; Peresypkina, Eugenia V; Virovets, Alexander V; Scheer, Manfred


    Reactions of Cu(+) containing the weakly coordinating anion [Al{OC(CF3 )3 }4 ](-) with the polyphosphorus complexes [{CpMo(CO)2 }2 (μ,η(2) :η(2) -P2 )] (A), [CpM(CO)2 (η(3) -P3 )] (M=Cr(B1), Mo (B2)), and [Cp*Fe(η(5) -P5 )] (C) are presented. The X-ray structures of the products revealed mononuclear (4) and dinuclear (1, 2, 3) Cu(I) complexes, as well as the one-dimensional coordination polymer (5 a) containing an unprecedented [Cu2 (C)3 ](2+) paddle-wheel building block. All products are readily soluble in CH2 Cl2 and exhibit fast dynamic coordination behavior in solution indicated by variable temperature (31) P{(1) H} NMR spectroscopy.

  17. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    HE; YuFeng


    The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.  ……

  18. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex


    @@ The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.

  19. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.

    Weng, Liping; Temminghoff, Erwin J M; Lofts, Stephen; Tipping, Edward; Van Riemsdijk, Willem H


    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.

  20. Combined modality treatment with ternary Cu(II) complexes and X rays.

    O'Hara, J A; Douple, E B; Abrams, M J; Giandomenico, C M; Bradley, F C; McElligott, M A; Caruso, F S


    Ternary Cu(II) complexes with bidentate malonato- and heterocyclic amine ligands were tested with regard to cytotoxicity and potentiation of x-ray induced cell killing in V79 cells. Two lead complexes were also tested in a tumor assay using the MTG-B murine adenocarcinoma model growing in the flanks of female C3H/HeJ mice. One complex, [2,2'-bipyridyl malonatoCu(II)] (RL-5077), produced sensitizer enhancement ratios (SER's) of 1.8 (hypoxic conditions) and 1.0 (oxic conditions) in vitro when irradiation followed 1 hr exposure to the drug at 100 microM. When RL-5077 was administered at doses of 1/2 (11.65 mg/kg) or 1/4 (5.25 mg/kg) the maximum tolerated dose (MTD), 15 min prior to a locally delivered dose of 20 Gy, enhancement ratios (ER's) of 1.6 and 2, respectively, resulted. The second lead complex, [1,10 phenanthroline (malonato)Cu(II)hydrate] (RL-5027), produced SER's of 1.8 and 1.2 under hypoxic and oxic conditions, respectively, at a concentration of 25 microM. Injection of RL-5027 (5 mg/kg) resulted in toxicity without enhancement in combination with radiation. Analogues of these two complexes have been synthesized in an effort to optimize the potentiation of radiation effects while minimizing toxicity to drug alone and increasing water solubility of the drug. Further studies of the structure-activity relationship of Cu(II) ternary complexes using in vitro radiosensitization as the endpoint have identified four classes of ligands with varying biological activity and have supplied information about the effects of group substitution on solubility, toxicity, and radiation potentiation. This group of complexes represents a new class of radiopotentiators that deserves further investigation into its potential for clinical use.

  1. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs

    Janisse Crestani de Miranda


    Full Text Available Cyclodextrins (CDs are cyclic oligosaccharides composed of D-glucopyranoside units linked by glycosidic bonds. Their main property is the ability to modify the physicochemical and biological characteristics of low-soluble drugs through the formation of drug:CD inclusion complexes. Inclusion complexation requires that host molecules fit completely or partially within the CD cavity. This adjustment is directly related to the physicochemical properties of the guest and host molecules, easy accommodation of guest molecules within the CD cavity, stoichiometry, therapeutic dose, and toxicity. However, dosage forms may achieve a high volume, depending on the amount of CD required. Thus, it is necessary to increase solubilization efficiency in order to use smaller amounts of CD. This can be achieved by adding small amounts of water-soluble polymers to the system. This review addresses aspects related to drug complexation with CDs using water-soluble polymers to optimize the amount of CD used in the formulation in order to increase drug solubility and reduce dosage form volume.Ciclodextrinas (CDs são oligossacarídeos cíclicos, compostos por unidades D-glicopiranosídicas ligadas entre si por meio de ligações glicosídicas e sua principal propriedade está na capacidade de alterar as características físico-químicas e biológicas de fármacos com baixa solubilidade por meio da formação de complexos de inclusão fármaco:CD. Para a formação dos complexos de inclusão a molécula hospedeira necessita ajustar-se total ou parcialmente no interior da cavidade da CD, onde este ajuste está diretamente ligado a propriedades físico-químicas da molécula hóspede e hospedeira, facilidade de alojamento da molécula hóspede no interior da cavidade da CD, estequiometria, dose terapêutica e toxicidade. No entanto, as formas farmacêuticas podem atingir um elevado volume, em função da quantidade de CD requerida, sendo necessário aumentar sua efici

  2. Thermodynamic evaluation of Cu-H-O-S-P system - Phase stabilities and solubilities for OFP-copper

    Magnusson, Hans; Frisk, Karin [Swerea KIMAB, Kista (Sweden)


    A thermodynamic evaluation for Cu-H-O-S-P has been made, with special focus on the phase stabilities and solubilities for OFP-copper. All binary systems including copper have been reviewed. Gaseous species and stoichiometric crystalline phases have been included for higher systems. Sulphur in OFP-copper will be found in sulphides. The sulphide can take different morphologies but constant stoichiometry Cu{sub 2}S. The solubility of sulphur in FCC-copper reaches ppm levels already at 550 deg C and decreases with lower temperature. No phosphorus-sulphide will be stable, although the copper sulphide can be replaced by copper sulphates at high partial pressure oxygen like in the oxide scale. Phosphorus has a high affinity to oxygen, and phosphorus oxide P{sub 4}O{sub 10} and copper phosphates (Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(PO{sub 4}){sub 2}) are all more stable than copper oxide Cu{sub 2}O. With hydrogen present at atmospheric pressure, copper phosphates Cu{sub 2}P{sub 2}O{sub 7} and Cu{sub 3}(P{sub 2}O{sub 6}OH){sub 2} are both more stable than water vapour or aqueous water at temperatures below 400 deg C. At high pressure conditions, the copper phosphates can be reduced giving water. However, the phosphates are still more stable than water vapour. The solubility limit of phosphorus in FCC-copper at 25 deg C is 510 ppm, in equilibrium with copper phosphide Cu{sub 3}P. The major part of phosphorus in OFP-copper will be in solid solution. Oxygen in FCC-copper has a very low solubility. In the presence of a strong oxide forming element such as phosphorus in OFP-copper, the solubility decreases even more. Copper oxides will become stable first when all phosphorus has been consumed, which takes place at twice the phosphorus content, calculated in weight. Hydrogen has a low solubility in copper, calculated as 0.1 ppm at 675 deg C. No crystalline hydrogen phase has been found stable at atmospheric pressures and above 400 deg C. At lower temperatures the hydrogen

  3. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader


    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  4. 21 CFR 73.3110 - Chlorophyllin-copper complex, oil soluble.


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chlorophyllin-copper complex, oil soluble. 73.3110... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3110 Chlorophyllin-copper complex, oil soluble. (a) Identity. The color additve is chlorophyllin-copper complex, oil...

  5. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata


    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  6. Synthesis, characterization and the interaction of some new water-soluble metal Schiff base complexes with human serum albumin.

    Asadi, Mozaffar; Asadi, Zahra; Sadi, Somaye Barzegar; Zarei, Leila; Baigi, Fatemeh Moosavi; Amirghofran, Zahra


    Some new water-soluble Schiff base complexes of Na2[M(L)(H2O)n]; (M=Zn, Cu, Ni, Mn) with a new water-soluble Schiff base ligand where L denotes an asymmetric N2O2 Schiff base ligands; N,N'-bis(5-sulfosalicyliden)-3,4-diaminobenzophenone (5-SO3-3,4-salbenz) were synthesized and characterized. The formation constants of the water soluble Schiff base complexes were calculated by Ketelaar's equation. The theoretical molecular structure for the complexes was computed by using the HF method and the 6-311G basis set. The mechanism of binding of Na2[M(L)(H2O)n] with human serum albumin (HSA) was studied by fluorescence spectroscopic technique. The results of fluorescence titration showed that the intrinsic fluorescence of HSA was quenched by the complexes; which was rationalized in terms of the dynamic quenching mechanism. The values of Stern-Volmer constants, quenching rate constants, binding constants, binding sites and average aggregation number of HSA have been determined. The thermodynamic parameters, were calculated by van't Hoff equation, indicate that the binding is entropy driven and enthalpically disfavored. Based on the Förster theory of non-radiation energy transfer, the efficiency of energy transfer and the distance between the donor (Trp residues) and the acceptor (complex) were obtained. Finally, the growth inhibitory effects of the complexes toward the K562 cancer cell line were measured.

  7. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Rajković Miloš B.


    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  8. Carboxylate-bridged Cu(II) coordination polymeric complex: synthesis, crystal structure, magnetic properties, DNA binding and electrochemical studies



    A novel water-soluble carboxylate-bridged copper(II) coordination polymer,Cu-BIG was formed by the reaction of Cu(ClO₄)₂ ·6H₂O and tridentate benzimidazole-glycine conjugate ligand, 2-((1H-benzimidazol- 2-yl)methylamino) acetic acid, BIGH and its structure has been determined by IR, UV, powder XRD, VSM, CV, TGA, DTA, EPR and single crystal X-ray diffraction. Crystallographic studies indicate it to be a coordination polymer with P¯ı Space group. The asymmetric unit of complex contains two Cu(II) ions with elongated square pyramid geometry.The axial positions of theCu(II) atoms are occupied by the carbonyl oxygen of the carboxylate group with the bond distances Cu(1)–O(5)axial , 2.28Å, and Cu(2)–O(2)axial , 2.26Å. The two Cu(II) are connected through the carboxylic group present in BIGH, which provides electron mobilisation in the molecule and hence results in the soft ferromagnetic polymer. An in vitro antibacterial activity study of BIGH and Cu-BIG showed moderate activity against Bacillus subtilis. The DNA binding studies showed the interaction of Cu-BIG with CT-DNA.

  9. Coordination equilibria in the complex formation of guanylurea with CuII: Formation and stability of binary CuII-guanylurea and ternary CuII-guanylurea-glycinate complexes

    Tannistha Roy Barman; G N Mukherjee


    Combined pH-metric and spectrophotometric investigations on the complex formation equilibria of CuII with guanylurea (H$_{2}^{1}$NC(=O) 2NH.C(=3NH) 4NH2), hereafter, GuH, in the absence and in the presence of glycine (GlyH), in aqueous solution indicates variety of binary and mixed-ligand complexes: Cu(Gu)+, Cu(Gu)(OH); Cu(Gu)2, Cu(Gu-H)(Gu)-, Cu(Gu-H)$_{2}^{2-}$, Cu(Gu-H)(Gu-2H)3-; Cu(Gly)+, Cu(Gly) (OH); Cu(Gly)(Gu); Cu(Gly)(Gu-H)-, Cu(Gly)(Gu-2H)2-; (Gly)Cu(Gu)Cu(Gly)+, (Gly)Cu(Gu-H)Cu(Gly) and (Gly)Cu(Gu-2H)Cu(Gly)-. At pH < 6, guanylurea anion (Gu-) acts as a [(C=O), 3N-] or [=1NH, 3N-] bidentate ligand and above pH 7 it is transformed through a coordination equilibrium into a (=1N-, =3N-) bidentate ligand, similar to biguanide dianion. Occurrence of dinuclear complex species, (Gly) Cu(Gu)Cu(Gly)+, in the complexation equilibria, indicates bridging double bidentate [(1NH2, 3N-), (C=O, 4NH2)] and/or [(1NH2, 4NH2), (C=O, 3N-)] chelation by Gu- ion in an isomeric equilibrium. Above pH 6.5, the dinuclear complex decomposes mostly to the mononuclear species, Cu(Gly)(OH) and Cu(Gu)(OH) and only partly deprotonates to (Gly)Cu(Gu-H)Cu(Gly) and (Gly)Cu(Gu-2H)Cu(Gly)-. Electronic spectral shifts, with change of pH have been correlated with the possible modes of coordination of guanylurea species.

  10. Synthesis, spectroscopic characterization and electronic structure of some new Cu(I) carbene complexes

    Chinnappan Sivasankar; Christina Baskaran; Ashoka G Samuelson


    Reaction of oligomeric Cu(I) complexes [Cu{-S-C(=NR)(O-Ar-CH3)}] with Lewis acids gave Cu(I) carbene complexes, which were characterized by 1H and 13C NMR spectroscopy. Cu(I) carbene complexes could be directly generated from RNCS, Cu(I)-OAr and Lewis acids; this method can be used to prepare Cu(I) carbene complexes with different substitutents on the carbene carbon. The complexes were unreactive towards olefins and do not undergo cyclopropanation. Electronic structure calculations (DFT) show that the charge on the carbene carbon plays an important role in controlling the reactivity of the carbene complex.

  11. Efficient, inkjet-printed TADF-OLEDs with an ultra-soluble NHetPHOS complex

    Verma, Anand; Zink, Daniel M.; Fléchon, Charlotte; Leganés Carballo, Jaime; Flügge, Harald; Navarro, José M.; Baumann, Thomas; Volz, Daniel


    Using printed organic light-emitting diodes (OLEDs) for lighting, smart-packaging and other mass-market applications has remained a dream since the first working OLED devices were demonstrated in the late 1980s. The realization of this long-term goal is hindered by the very low abundance of iridium and problems when using low-cost wet chemical production processes. Abundant, solution-processable Cu(I) complexes promise to lower the cost of OLEDs. A new copper iodide NHetPHOS emitter was prepared and characterized in solid state with photoluminescence spectroscopy and UV photoelectron spectroscopy under ambient conditions. The photoluminescence quantum efficiency was determined as 92 ± 5 % in a thin film with yellowish-green emission centered around 550 nm. This puts the material on par with the most efficient copper complexes known so far. The new compound showed superior solubility in non-polar solvents, which allowed for the fabrication of an inkjet-printed OLED device from a decalin-based ink formulation. The emission layer could be processed under ambient conditions and was annealed under air. In a very simple stack architecture, efficiency values up to 45 cd A-1 corresponding to 13.9 ± 1.9 % EQE were achieved. These promising results open the door to printed, large-scale OLED devices with abundant copper emitters.

  12. Response of the Cu(II) ion selective electrode to Cu titration in artificial and natural shore seawater and in the measurement of the Cu complexation capacity.

    Rivera-Duarte, Ignacio; Zirino, Alberto


    The Orion 94-29 Cu(II) jalpaite ion selective electrode (Cu-ISE) was used to measure both the concentration of the aqueous free Cu(II) ion ([Cu(II)aq]) and its changes due to additions of Cu, in artificial seawater (ASW) and in seawater from San Diego Bay, CA. The range of free copper ion (i.e., pCu, -log [Cu(II)aq]) determined in seawater samples from the San Diego Bay area (11.3-12.6, 11.9 +/- 0.4, average +/- SD) is consistent with that previously reported for estuarine and coastal areas (10.9-14.1). The changes in [Cu(II)aq] as a result of the additions of Cu were used to determine the Cu complexation capacity (Cu-CC), which has a measured range (2.7 x 10(-8)-2.0 x 10(-7) M; 7.6 x 10(-8) +/- 4.8 x 10(-8) M) comparable to the range of values previously reported for estuarine and coastal zones (i.e., L1+L2, 1.1 x 10(-8)-2.0 x 10(-7) M). The narrow range of pCu at the Cu-CC (pCuCu-CC, 11.1-11.9, 11.5 +/- 0.2) indicates the predominant role of the Cu-CC in regulating the concentration of ambient Cu(II)aq to a level < or =1 x 10(-11) M Cu(II)aq. These results attest to the capability of the Cu-ISE to measure pCu and Cu-CC in aquatic coastal environments with relatively high total Cu concentrations and organic loads, such as those from heavily used coasts and bays.

  13. Cu(II) complex formation with xylitol in alkaline solutions.

    Norkus, Eugenijus; Vaiciūniene, Jūrate; Vuorinen, Tapani; Gaidamauskas, Ernestas; Reklaitis, Jonas; Jääskeläinen, Anna-Stiina; Crans, Debbie C


    The formation of four Cu(II)-xylitol complexes was observed in aqueous alkaline solutions (11.0 or =10), whereas dinuclear complex Cu2Xyl (log beta=29.2 +/- 0.3) is the predominant species at low ligand-to-metal ratio (L:M=0.5). Diffusion coefficients and molar absorptivities of the complex species were determined. pH variable 13C NMR suggested that pKa values of xylitol are rather similar and equal to 13.8 +/- 0.2, 13.9 +/- 0.1 and 13.9 +/- 0.2 for OH-groups adjacent to (C-1,C-5), (C-3) and (C-2,C-4) carbon atoms, respectively.

  14. Spectroscopic characterization of some Cu(II) complexes

    Singh, Puja; Sharma, S.


    3-hydroxy-4-methoxy benzaldehyde semicarbazone (HMBS) is a biologically active compound which has several potential donor sites. This compound has been used for complexation with Cu(II) ions to synthesize complexes of general formula [Cu(HMBS)2X2] where X is Cl-, NO3- and CH3COO-. Cu(II) is a d9 system for which 2D term is generated. Under Oh symmetry, this term splits into 2Eg and 2T2g. the ground term 2Eg is doubly degenerate and hence suffers strong Jahn-Teller effect and accordingly the further splitting of terms occur to lower the symmetry from perfect Oh. Here, the ligand occupies four planar positions while the two axial positions have been varied by using different ions like Cl-, NO3- and CH3COO-. These variations on the axial positions also add to the distortion in Oh symmetry. Under strong distortion, the electronic spectral band splits into multiplets exhibiting tetragonal distortion in complexes. The extent of distortion has been derived by the derivation of the two radial parameters Ds and Dt from electronic spectral bands. The ESR spectra of complexes reveal the real position of the only unpaired electron of the d9 system in complexes.

  15. Solubility enhancement of steviol glycosides and characterization of their inclusion complexes with gamma-cyclodextrin.

    Upreti, Mani; Strassburger, Ken; Chen, You L; Wu, Shaoxiong; Prakash, Indra


    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state (13)C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes.

  16. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    Indra Prakash


    Full Text Available Steviol glycosidesrebaudioside (reb A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as well as in solid state 13C CP/MAS NMR experiments. These results indicated that the steviol glycosides were clearly in inclusion complex formation with the gamma cyclodextrin which also results in solubility enhancement of these steviol glycosides. Phase solubility studies showed that amounts of soluble reb A, C and D increased with increasing amounts of gamma cyclodextrin indicating formation of 1:1 stoichiometric and higher order inclusion complexes.

  17. Modeling Cu2+-Aβ complexes from computational approaches

    Alí-Torres, Jorge; Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona


    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu2+ metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu2+-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu2+-Aβ coordination and build plausible Cu2+-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  18. Modeling Cu2+-Aβ complexes from computational approaches

    Jorge Alí-Torres


    Full Text Available Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD, in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu2+ metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS. A detailed knowledge of the electronic and molecular structure of Cu2+-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu2+-Aβ coordination and build plausible Cu2+-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  19. Modeling Cu{sup 2+}-Aβ complexes from computational approaches

    Alí-Torres, Jorge [Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, 111321 (Colombia); Mirats, Andrea; Maréchal, Jean-Didier; Rodríguez-Santiago, Luis; Sodupe, Mariona, E-mail: [Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)


    Amyloid plaques formation and oxidative stress are two key events in the pathology of the Alzheimer disease (AD), in which metal cations have been shown to play an important role. In particular, the interaction of the redox active Cu{sup 2+} metal cation with Aβ has been found to interfere in amyloid aggregation and to lead to reactive oxygen species (ROS). A detailed knowledge of the electronic and molecular structure of Cu{sup 2+}-Aβ complexes is thus important to get a better understanding of the role of these complexes in the development and progression of the AD disease. The computational treatment of these systems requires a combination of several available computational methodologies, because two fundamental aspects have to be addressed: the metal coordination sphere and the conformation adopted by the peptide upon copper binding. In this paper we review the main computational strategies used to deal with the Cu{sup 2+}-Aβ coordination and build plausible Cu{sup 2+}-Aβ models that will afterwards allow determining physicochemical properties of interest, such as their redox potential.

  20. Complex formation and solubility of Pu(IV) with malonic and succinic acids

    Sasaki, T.; Kobayashi, T.; Takagi, I.; Moriyama, H. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Fujiwara, A. [Radioactive Waste Management Funding and Research Center, Tokyo (Japan); Kulyako, Y.M.; Perevalov, S.A.; Myasoedov, B.F. [Russian Academy of Sciences (RAS), Moscow (RU). V.I. Vernadsky Inst. of Geochemistry and Analytical Chemistry (GEOKHI)


    The complex formation constants of tetravalent plutonium ion with malonic and succinic acids in aqueous solution were determined by the solvent-extraction method. Also, by taking the known values of the solubility products, the hydrolysis constants and the formation constants, the experimental solubility data of plutonium in the presence of carboxylates were analyzed. (orig.)

  1. Modulation of solubility and dissolution of furosemide by preparation of phospholipid complex

    Mona Semalty


    Full Text Available Aim: The aim of this study is to improve the solubility and dissolution of furosemide (a potent high ceiling diuretic used for the treatment of hypertension and a Class IV drug that is low solubility and low permeability drug as per the Biopharmaceutical Classification System by preparing its phospholipid complexes or pharmacosomes. Materials and Methods: Furosemide was complexed with phosphatidylcholine in four different molar ratios (1:1, 1:2, 1:3 and 1:4 by conventional solvent-evaporation technique. The pharmacosomes prepared were evaluated for drug content, solubility, X-ray powder diffraction (XRPD and in-vitro dissolution study. Results: Pharmacosomes of furosemide showed high drug content ranging from 88.30% to 100%. XRPD studies confirmed the formation of phospholipid complex and the amorphization of drug in the complex. The water solubility was found to be increased up to six-fold in the complexes. The octanol solubility also increased in the complexes indicating the probable increase in permeability. The in-vitro dissolution profile of the prepared complexes was found to be much better than furosemide. Conclusion: It was concluded that the phospholipid complexes can be effectively used for improving the solubility, dissolution, permeability and hence the bioavailability of furosemide like Class IV drugs.

  2. Aspartic acid functionalized water-soluble perylene diimide as “Off-On” fluorescent sensor for selective detection Cu2+ and ATP

    Zhong, Lina; Xing, Feifei; Bai, Yueling; Zhao, Yongmei; Zhu, Shourong


    Aspartic functionalized water-soluble perylene diimide, N,N‧-di(2-succinic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP) has two absorbance maximums at 527 and 498 nm (ε ≈ 1.7 × 104 L cm-1 mol-1) and two emission peaks at 547 and 587 nm respectively. Emission intensities decrease with the increase of PASP concentrations in 20-100 μM ranges. Spectral titrations demonstrate that each PASP can coordinate to two Cu2+ ions in the absence of HEPES buffer. Its stability constant is estimated to be about 1.0 × 1012 L2 mol-2 at pH 7.20 and its coordinate stoichiometry increased to 7.5 in the same pH in the presence of HEPES buffer. The emission of PASP will be completely quenched upon formation of Cu2+ complex. The lowest "turn-off" fluorescence detection limit was calculated to be 0.3 μM Cu2+. PASP-Cu solution was used as a "turn-on" fluorescence biosensor to detect ATP. The sensitivity towards ATP is 0.3 μM in 50 mM HEPES buffer at pH 7.20, which is one of the most sensitive fluorescence sensors.

  3. Hydroaminomethylation of 1-Dodecene Catalyzed by Water-soluble Rhodium Complex

    Ying Yong WANG; Mei Ming LUO; Yao Zhong LI; Hua CHEN; Xian Jun LI


    The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.

  4. Mixed-ligand complex formation equilibria of CuII with biguanide in presence of glycine as the auxiliary ligand

    Tannistha Roy Barman; G N Mukherjee


    Equilibrium study on the mixed ligand complex formation of CuII with biguanide(Bg) and glycine (HG), indicated the formation of the complexes: Cu(Bg)2+, Cu(Bg)$_{2}^{2+}$, Cu(Bg-H)(Bg)+, Cu(Bg-H)2, Cu(Bg)(OH)+, Cu(Bg-H)(OH); Cu(G)+, Cu(G)(OH), Cu(G)2; Cu(G)(Bg)+, Cu(G)(Bg-H); (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, and (G)Cu(Bg-2H)Cu(G). From the deprotonation constants of coordinated biguanide (Bg) in the complexes Cu(Bg)(OH)+, Cu(Bg-H)(Bg)+ and Cu(G)(Bg)+, the Lewis basicities of the coordinated ligand species (Bg-H)-, OH- and glycinate (G-) were found to be of the order: (Bg-H)- >> OH- > G-. Bridging (N1-N4, N2-N5) tetradentate mode of coordination by biguanide species Bg, (Bg-H)- and (Bg-2H)2- was indicated from the occurrence of biguanide-bridged dinuclear mixed ligand complexes (G)Cu(Bg)Cu(G)2+, (G)Cu(Bg-H)Cu(G)+, (G)Cu(Bg-2H)Cu(G) in the complexation equilibria.

  5. Voltammetric and spectroscopic studies on binding of antitumor Morin, Morin-Cu complex and Morin-β-cyclodextrin with DNA

    Temerk, Y. M.; Ibrahim, M. S.; Kotb, M.


    A systematic comparative study of the binding of antitumor Morin and its complexes with DNA has been investigated in the Britton-Robison (BR) buffer solutions using voltammetric and spectroscopic methods. The results show that Morin molecule, acting as an intercalator, is inserted into the cavity of the β-cyclodextrin (β-CD) as well as into the base stacking domain of the DNA double helix. The interaction of Morin-Cu complex or the inclusion complex of Morin-β-CD with ds-DNA causes hypochromism in the absorption spectra, along with pronounced changes in the electrochemical behavior of the Morin complexes. An isobestic point and a new spectrum band appeared indicating the formation of the new system of Morin-Cu-DNA at λm = 391 nm and Morin-β-CD-DNA at λm = 375 nm. The intercalation of Morin-Cu and Morin-β-CD complexes with DNA produces an electrochemically inactive supramolecular complex. The binding constants were calculated from the increase of the solubility, the strong hypochromism, and the decrease in peak current of Morin and its complexes upon the addition of the host molecules. Calculation of the thermodynamic parameters of the interaction of the inclusion complex of Morin-β-CD with DNA, including Gibbs free energy change, Helmholz free energy and entropy change shows that the complexation is a spontaneous process of association.

  6. Spectroscopic characterization of some Cu(II) complexes

    Singh, Puja, E-mail:; Sharma, S., E-mail: [University Department of Chemistry, Magadh University, Bodh-Gaya, 824234, Bihar (India)


    3-hydroxy-4-methoxy benzaldehyde semicarbazone (HMBS) is a biologically active compound which has several potential donor sites. This compound has been used for complexation with Cu(II) ions to synthesize complexes of general formula [Cu(HMBS){sub 2}X{sub 2}] where X is Cl{sup −}, NO{sub 3}{sup −} and CH{sub 3}COO{sup −}. Cu(II) is a d{sup 9} system for which {sup 2}D term is generated. Under O{sub h} symmetry, this term splits into {sup 2}E{sub g} and {sup 2}T{sub 2g}. the ground term {sup 2}Eg is doubly degenerate and hence suffers strong Jahn-Teller effect and accordingly the further splitting of terms occur to lower the symmetry from perfect O{sub h}. Here, the ligand occupies four planar positions while the two axial positions have been varied by using different ions like Cl{sup −}, NO{sub 3}{sup −} and CH{sub 3}COO{sup −}. These variations on the axial positions also add to the distortion in O{sub h} symmetry. Under strong distortion, the electronic spectral band splits into multiplets exhibiting tetragonal distortion in complexes. The extent of distortion has been derived by the derivation of the two radial parameters D{sub s} and D{sub t} from electronic spectral bands. The ESR spectra of complexes reveal the real position of the only unpaired electron of the d{sup 9} system in complexes.

  7. Affinity to bovine serum albumin and anticancer activity of some new water-soluble metal Schiff base complexes.

    Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra


    Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N'-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M=Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.

  8. Inclusion complexes of pyrimethamine in 2-hydroxypropyl-beta-cyclodextrin: characterization, phase solubility and molecular modelling.

    de Araújo, Márcia Valéria Gaspar; Vieira, Elze Kelly Barbosa; Lázaro, Gilderman Silva; de Souza Conegero, Leila; Ferreira, Odair Pastor; Almeida, Lui S Eduardo; Barreto, Ledjane Silva; da Costa, Nivan Bezerra; Gimenez, Iara F


    The inclusion complexation of pyrimethamine in 2-hydroxypropyl-beta-cyclodextrin has been investigated by 2D (1)H NMR, FTIR and UV/visible spectroscopy and also by molecular modelling methods (AM1, PM3, MM3). From the phase-solubility diagram a linear increase was observed in pyrimethamine aqueous solubility in the presence of 2-hydroxypropyl-beta-cyclodextrin, evidencing the formation of a soluble inclusion complex. According to the continuous variation method (Job's plot) applied to fluorescence measurements, a 1:1 stoichiometry has been proposed for the complex. Concerning the structure of the complex, a Cl-in orientation of pyrimethamine in the 2-hydroxypropyl-beta-cyclodextrin cavity has been proposed from the theoretical calculations, being confirmed by two-dimensional (1)H NMR spectroscopy (ROESY). The thermal behaviour has also been studied, providing complementary evidences of complex formation.

  9. Electron paramagnetic resonance studies of the soluble CuA protein from the cytochrome ba3 of Thermus thermophilus.

    Karpefors, M; Slutter, C E; Fee, J A; Aasa, R; Källebring, B; Larsson, S; Vänngård, T


    The electron paramagnetic resonance (EPR) spectrum of the binuclear CuA center in the water-soluble subunit II fragment from cytochrome ba3 of Thermus thermophilus was recorded at 3.93, 9.45, and 34.03 GHz, and the EPR parameters were determined by computer simulations. The frequency and M1 dependence of the linewidth was discussed in terms of g strain superimposed on a correlation between the A and g values. The g values were found to be gx = 1.996, gy = 2.011, gz = 2.187, and the two Cu ions contribute nearly equally to the hyperfine structure, with magnitude of Ax magnitude of approximately 15 G, magnitude of Ay magnitude = 29 G, and magnitude of Az magnitude of = 28.5 G (65Cu). Theoretical CNDO/S calculations, based on the x-ray structure of the Paracoccus denitrificans enzyme, yield a singly occupied antibonding orbital in which each Cu is pi*-bonded to one S and sigma*-bonded to the other. In contrast to the equal spin distribution suggested by the EPR simulations, the calculated contributions from the Cu ions differ by a factor of 2. However, only small changes in the ligand geometry are needed to reproduce the experimental results.

  10. Fabrication of 10 μm-scale conductive Cu patterns by selective laser sintering of Cu complex ink

    Min, Hyungsuk; Lee, Byoungyoon; Jeong, Sooncheol; Lee, Myeongkyu


    A Cu complex ink was synthesized using copper formate as a precursor and its potential for laser patterning was investigated. The Cu ink was spin-coated onto a substrate and the coated film was space-selectively sintered using a nanosecond-pulsed ultraviolet laser. The unexposed Cu ink could be removed from the film by rinsing it with the dispersing agent used to synthesize the ink, disclosing a conductive Cu pattern. A minimum resistivity of 8.46×10-5 Ω cm was obtained for the Cu lines with 10-20 μm widths. The feasibility of this method for metallization was demonstrated by fabricating a complex Cu electric circuit on an indium tin oxide-coated glass substrate. The selective laser sintering approach provides a simple, cost-effective alternative to conventional lithography for the production of electrode or metallization patterns.

  11. Permeability of Plant Young Root Endodermis to Cu Ions and Cu-Citrate Complexes in Corn and Soybean.

    Fu, Yanzhao; Lei, Wenrui; Shen, Zhenguo; Luo, Chunling


    The non-selective apoplastic passage of Cu and Cu-citrate complexes into the root stele of monocotyledonous corn and dicotyledonous soybean was investigated using an inorganic-salt-precipitation technique. Either Cu ions or Cu-citrate complexes were drawn into root through the apoplast from the root growth medium, and K4[Fe(CN)6] was subsequently perfused through xylem vessels or the entire root cross section. Based on microscopic identification of the reddish-brown precipitates of copper ferrocyanide in the cell walls of the xylem of corn and soybean roots, Cu(2+) passed through the endodermal barrier into the xylem of both species. When the solution containing 200 μM CuSO4 and 400 μM sodium citrate (containing 199.98 μM Cu-citrate, 0.02 μM Cu(2+)) was drawn via differential pressure gradients into the root xylem while being perfused with K4[Fe(CN)6] through the entire root cross-section, reddish-brown precipitates were observed in the walls of the stele of soybean, but not corn root. However, when a CuSO4 solution containing 0.02 or 0.2 μM free Cu(2+) was used, no reddish-brown precipitates were detected in the stele of either of the two plants. Results indicated that endodermis was permeable to Cu-citrate complexes in primary roots of soybean, but not corn. The permeability of the endodermal barrier to the Cu-citrate complex may vary between dicotyledonous and monocotyledonous plants, which has considerable implications for chelant-enhanced phytoextraction.

  12. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs.

    Cho, Eunae; Jung, Seunho


    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  13. Solubility Enhancement of Steviol Glycosides and Characterization of Their Inclusion Complexes with Gamma-Cyclodextrin

    Indra Prakash; Mani Upreti; Shaoxiong Wu; Chen, You L.; Ken Strassburger


    Steviol glycosidesrebaudioside (reb) A, C and D have low aqueous solubilities. To improve their aqueous solubilities, inclusion complex of steviol glycosides, reb A, C and D and gamma cyclodextrin were prepared by freeze drying method and further characterized by means of differential scanning calorimetry, Fourier transform infrared spectroscopy and Raman spectroscopy. The effect of gamma cyclodextrin on chemical shifts of the steviol glycosides was also studied in proton NMR experiments as w...

  14. Enhancement of solubility of albendazole by complexation with {beta}-cyclodextrin

    Moriwaki, C.; Costa, G.L.; Ferracini, C.N.; Matioli, G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Farmacia e Farmacologia]. E-mail:; Moraes, F.F. de; Zanin, G.M. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Pineda, E.A.G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica


    A high dosage of albendazole (ABZ) is required for treating systemic helminth infections because of its low solubility. Aiming at increasing ABZ solubility, complexation with beta-cyclodextrin ({beta}-CD) using aqueous and acetic acid solutions as ABZ solubiliser was studied. In aqueous {beta}-CD, complexation increased solubility 53.4 times, giving a complex equilibrium constant of 1266 L mol{sup -1} with a maximum ABZ concentration of 276 {mu}mol L{sup -1} for 16.3 mmol L{sup -1} {beta}-CD. For complexation in 1.05 mol L{sup -1} acetic acid, UV absorbance spectra and {sup 1}H-NMR analysis confirmed complex formation. The UV absorbance of ABZ/acid acetic/{beta}-CD solutions was modeled by the formation of two complexes with molar ratios 1:1 and 1:2 ABZ:{beta}-CD. When neutralized with NaOH these solutions did not form precipitates only for the ABZ:{beta}-CD molar ratios of 1:8 and 1:10, showing that ABZ solubility could be increased 306 times. Results show that high {beta}-CD molar ratios hold ABZ in solution by complexation enhanced by the acetate anion. (author)

  15. EXAFS spectra using synchrotron radiation of Cu (II) complexes

    Ninama, Samrath; Mishra, A.


    EXAFS analysis of Cu (II) complex as a ligand of 2-methyl-3-[(bis-aniline(R) phenyl]- 3H-1, 5 benzodiazepine. Extended X-ray absorption fine structure (EXAFS) spectra have been recorded at the K-edge of Cu (II) using the energy dispersive EXAFS beam line at 2.5GeV Indus - 2 synchrotron source at RRCAT, Indore, India. A theoretical EXAFS data analysis is also carried out by Fourier analysis of experimental EXAFS data of the copper (II) complexes. This analysis includes details of the Fourier transform of the data and the extraction of metal-ligand bond length. Bond lengths determined from data analysis methods are compared with the bond lengths obtained from several other known techniques, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. These data have also been calibrated by derivative method and bond lengths have also been obtained from Fourier transformation method and the results have been compared with the each other. The EXAFS data have been analyzed using the computer software Athena.

  16. A Cu-amyloid β complex activating Fenton chemistry in Alzheimer's disease: Learning with multiple first-principles simulations

    La Penna, Giovanni; Hureau, Christelle; Faller, Peter


    Amyloid β peptides form complexes with copper, both in vitro and in vivo, relatively soluble in water as oligomers and active as catalysts for oxidation of organic substrates by hydrogen peroxide, a species always present in cells and in their aerobic environment. All these species are present in the synapse, thus making a connection between the amyloid cascade hypothesis and the oxidative damages by reactive oxygen species in neurons, when pathological dishomeostasis of amyloid peptides and metal ions occur. In order to understand the structural features of these toxic complexes, we built several models of Cu-Aβ peptides in monomeric and dimeric forms and we found, performing multiple first-principles molecular dynamics simulations, that Cu-induced dimers are more active than monomers in converting hydrogen peroxide into aggressive hydroxyl radicals.

  17. Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability.

    Jeong, Daham; Choi, Jae Min; Choi, Youngjin; Jeong, Karpjoo; Cho, Eunae; Jung, Seunho


    Rhizobium species produce cyclosophoraose (Cys), which is an unbranched cyclic β-(1,2)-glucan. We synthesized novel cationic cyclosophoraose dimer (Cys dimer) and its structure was confirmed via NMR spectroscopy and MALDI-TOF mass spectrometry analysis. In this study, we investigated the complexation of hardly soluble drug fisetin (3,3',4',7-tetrahydroxyflavone) with Cys dimer to improve the solubility of fisetin, and its solubility was increased up to 6.5-fold. The solubility of fisetin with Cys dimer showed 2.4-fold better than with β-cyclodextrin. The fisetin-Cys dimer complex was characterized by using, phase solubility diagram, 2D NMR, FT-IR spectroscopy, SEM, DSC analysis and molecular modeling. Through the molecular docking simulations, complexation ability of fisetin with host molecules were in the following order: Cys dimer>Cys monomer>β-CD. The fisetin-Cys dimer complex showed also higher cytotoxicity to HeLa cells than free fisetin, indicating that the Cys dimer to improve bioavailability of fisetin. Copyright © 2013 Elsevier Ltd. All rights reserved.


    Kumar Vijay


    Full Text Available Fenbendazole is an Antihelmintic drug (BCS class 2 and poorly soluble in water. Fenbendazole is used as a model drug. This study was conducted to enhance the bioavailability by increasing the aqueous solubility of Fenbendazole. The solid dispersions were prepared with polyvinylpyrrolidone K-25 (PVP K25 and Urea, Inclusion complexes with beta-cyclodextrin (BCD. Solid dispersions and inclusion complexes are prepared by Kneading and Solvent evaporation methods using different drug-polymer ratio like 1:2, 1:4and 1:6. The prepared formulations were characterized for FTIR, drug content, Phase solubility, percent yield and in vitro release studies followed by various release kinetics. The drug content uniformity was found to be good in all formulations. Kinetic profile showed good linearity with first order i.e. exhibiting concentration dependent release of drug. The result indicated that the solubility and dissolution rates of all formulation were significantly increased by solid dispersions and cyclodextrin complexes when compare to pure drug. Dissolution of the pure drug more with beta cyclodextrin complexes than solid dispersion (PVPK25 and Urea. Among all the formulations, VA3 drug-beta-cyclodextrin ratio was found to be better. The result confirmed that beta-cyclodextrin (BCD showed better solubility and dissolution characteristics when compared to polyvinylpyrrolidone K-25 (PVP K25 and Urea.

  19. Cu(Ⅰ) and Cu(Ⅱ) helical complexes formed with oligobipyridine ligand

    舒谋海; 付有君; 孙为银; 唐雯霞; 张文剑; 段春迎


    A new asymmetric oligobipyridine ligand, 1-(5’-methyl-2, 2’-bipyridin-5-yl)-2-(6’-methyl-2, 2’-bipyridin-6-yl)ethane (L), in which the bipyridine units are bridged by CH2CH2 at 5, 6’-position has been synthesized. The ligand L reacts with Cu(Ⅰ) and Cu(Ⅱ) ions giving double-stranded helical complexes [Cu2ⅠL2] (ClO4)2·Et2O (1) and [Cu2ⅡL2 (OH) (H2O)][ClO4]3(2), respectively. Complexes 1 and 2 were characterized by X-ray diffraction analyses, ES-MS, ESR and cyclic voltammetry, etc. Differing from the oligobipyridine ligands bridged by CH2CH2 at 6,6’-or 5,5’-position, the ligand L not only forms a double-stranded helicate with Cu(Ⅰ) ion, but also gives a double-stranded helicate with Cu(Ⅱ) ion. The results show that the linkage mode of the spacer group to the bipyridine units exerts a great impact on the formation of helix.

  20. Uptake of dissolved organic carbon-complexed ⁶⁵Cu by the green mussel Perna viridis.

    Zhong, Huan; Evans, Douglas; Wang, Wen-Xiong


    Stable Cu isotope ((65)Cu) was complexed with various representative dissolved organic carbon (DOC) types, including coastal seawater DOC, fulvic acid (FA), cyanobacteria spirulina (SP) DOC, histidine (His), cysteine (Cys), and lipophilic diethyl dithiocarbamate (DDC) at different concentrations. The uptake of these dissolved Cu species by the coastal green mussel Perna viridis was quantified for the first time. Copper complexed with different DOC types were taken up in some measure by mussels, depending on the DOC types. However, complexation generally reduced Cu uptake as compared to that of inorganic Cu species, and DOC type-specific negative relationships were found between DOC levels and Cu uptake. Strong Cu binding sites (including His and organic sulfur functional groups) within DOC appeared to control the inhibitory effects of DOC on Cu uptake, possibly due to the competitive binding of Cu between the dissolved phase and biological membranes. Therefore, differences in strong Cu binding site levels may explain the differences in bioavailability of Cu complexed with different types of DOC. At the same time, the variations in Cu-DOC uptake may also be partly attributed to the absorption of Cu-DOC complexes, especially for the small Cu-DOC complexes (e.g., Cu-Cys, Cu-His, or Cu-DDC). Our study highlights the importance of considering the specificity of Cu-DOC complexes when assessing biological exposure to dissolved Cu in natural waters, especially during events, such as phytoplankton bloom periods, that could modify DOC composition and concentrations.

  1. Ab initio contribution to the study of complexes formed during dilute FeCu alloys radiation

    Becquart, C S


    Cu plays an important role in the embrittlement of pressure vessel steels under radiation and entities containing both Cu atoms and vacancies seem to appear as a consequence of displacement cascades. The characterisation of the stability as well as the migration of small Cu-vacancy complexes is thus necessary to understand and simulate the formation of these entities. For instance, cascade ageing studied by kinetic Monte Carlo or by rate theory models requires a good characterisation of such complexes which are parameters for these methods. We have investigated, by ab initio calculations based on the density functional theory, point defects and small defects in dilute FeCu alloys. The structure of small Cu clusters and Cu-vacancy complexes has been determined, as well as their formation and binding energies. Their relative stability is discussed. Vacancy migration energies in the presence of Cu atoms have been calculated and analysed. All the results are compared to the figures obtained with empirical interat...

  2. Preparation and characterization of complexes of RE3+ with furfural modified water-soluble chitosan

    WANG Maoyuan; QIU Ligan; MA Guilin


    Degraded chitosan, with highly water-solubility, was obtained by the oxidation of chitosan with H2O2, and then reacted with furfural The final product coordinated with the rare earth ions (RE3+ = Sm3+,Eu3+), which led to the formation of the complexes. The prepared complexes were characterized with Inflated Spectroscopy (IR), Ultra Violet (UV), fluorescence, X-Ray Diffraction (XRD), and Thermogravimetric-Differential Scanning Calorimetry (TG-DSC) measurements.

  3. Water-soluble, recombinant CuA-domain of the cytochrome ba3 subunit II from Thermus thermophilus.

    Slutter, C E; Sanders, D; Wittung, P; Malmström, B G; Aasa, R; Richards, J H; Gray, H B; Fee, J A


    Recently, the genes of cytochrome ba3 from thermus thermophilus [Keightley, J.A., et al. (1995) J. Biol. Chem. 270, 20345-20358], a homolog of the heme-copper oxidase family, have been cloned. We report here expression of a truncated gene, encoding the copper A (CuA) domain of cytochrome ba3, that is regulated by a T7 RNA polymerase promoter in Escherichia coli. The CuA-containing domain is purified in high yields as a water-soluble, thermostable, purple-colored protein. Copper analysis by chemical assay, mass spectrometry, X-ray fluorescence, and EPR spin quantification show that this protein contains two copper ions bound in a mixed-valence state, indicating that the CuA site in cytochrome ba3, is a binuclear center. The absorption spectrum of the CuA site, free of the heme interference in cytochrome ba3, is similar to the spectra of other soluble fragments from the aa3-type oxidase of Parachccus denitrificans [Lappalainen, P., et al. (1993) J. Biol Chem. 268, 26416-26421] and the caa3-type oxidase of Bacillus subtilis [von Wachenfeldt, C. et al. (1994) FEBS Lett. 340, 109-113]. There are intense bands at 480 nm (3100 M(-1) cm(-1)) and 530 nm (3200 M(-1) cm(-1)), a band in the near -IR centered at 790 nm (1900 M(-1) cn(-1)), and a weaker band at 363 nm (1300M(-1) cm(-1)). The visible CD spectrum shows a positive-going band at 460 nm and a negative-going band at 527 nm, the opposite signs of which may result from the binuclear nature of the site. The secondary structure prediction from the far-UV CD spectrum indicates that this domain is predominantly beta-sheet, in agreement with the recent X-ray structure reported for the complete P. denitrificans cytochrome aa3 molecule [Iwata, S., et al. (1995) Nature 376, 660-669] and the engineered, purple CyoA protein [Wilmanns, M., et al. (1996) Proc. Natl Acad. Sci. U.S.A. 92, 11955-11959]. However, the thermostability of the fragment described here (Tm approximately 80 degrees C) and the stable binding of copper over a

  4. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing


    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  5. Solution growth of metal-organic complex CuTCNQ in small dimension interconnect structures

    Demolliens, A.; Muller, Ch.; Müller, R.; Turquat, Ch.; Goux, L.; Deleruyelle, D.; Wouters, D. J.


    In this paper, we report two different elaboration routes to grow metal-organic complex CuTCNQ in liquid phase within small interconnect structures (i.e. via holes opened in SiO 2/SiC stack). The basic common idea relies on the formation of CuTCNQ material from the partial corrosion of a Cu bottom electrode by a TCNQ-based solution. The two solution growth methods are compared in terms of (i) via holes filling; (ii) local microstructure of CuTCNQ complex and (iii) quality of interface between CuTCNQ and copper metallic electrode. In the first route, in the reaction of the substrate with a TCNQ/copper salt solution in acetonitrile/toluene, a rapid formation of porous CuTCNQ complex is observed with an over-growth outside interconnect structures and many voids within via holes and at the interface with Cu layer. In contrast to this "mushroom-like" growth, the reaction of the substrate with a TCNQ solution in acetonitrile/2-butanone results in a "crystal-like" dense CuTCNQ complex within via holes and a CuTCNQ/Cu interface free of voids. In the latter case, satisfactory electrical performances are expected for future resistive switching memory devices.

  6. XAFS study of bioactive Cu(II) complexes of 7-hydroxycoumarin derivatives in organic solvents

    Klepka, M. T.; Wolska, A.; Drzewiecka-Antonik, A.; Rejmak, P.; Hatada, K.; Aquilanti, G.


    We characterize the structure of two Cu(II) complexes of 7-hydroxycoumarins in organic solvents. The solvents are, dimethyl sulfoxide and dimethylformamide. X-ray absorption spectroscopy together with density functional theory calculations are employed to identify the structural changes induced by the two solvents in comparison to the solid form of complexes. We show that the structure of the Cu(II) complexes is modified depending on the solvent and we propose the geometry of the complexes molecule.

  7. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime.

    Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael


    Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ(65)Cu and δ(66)Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ(65)Cu and δ(66)Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ(65)Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ(65)Cu value of pollution sources (-1.17‰). The variability in δ(65)Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ(66)Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ(66)Zn value of pollution sources (-0.23‰). The variability in δ(66)Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Synthesis, characterization and xanthine oxidase inhibition of Cu(II)-chrysin complex.

    Lin, Suyun; Zeng, Li; Zhang, Guowen; Liao, Yijing; Gong, Deming


    Xanthine oxidase (XO) is a key enzyme catalyzing hypoxanthine to xanthine and then uric acid causing hyperuricemia. A Cu(II) complex of chrysin was synthesized and characterized by UV-vis absorption, Fourier transform infrared, nuclear magnetic resonance ((1)H NMR) and mass spectroscopy studies. The interaction of Cu(II)-complex with XO was investigated by spectroscopic methods and molecular simulation. The Cu(II)-chrysin complex exhibited a better inhibitory ability (IC50=0.82±0.034μM) against XO than its corresponding ligands chrysin and Cu(2+) in a mix-competitive manner. The binding affinity of Cu(II)-chrysin complex with XO was much higher than that of chrysin. The hydrogen bonds and van der Waals forces played main roles in the binding. Analysis of circular dichroism spectra indicated that the complex induced the conformational change of XO. The molecular simulation found that the Cu(II)-chrysin complex inserted into the active cavity of XO with Cu acting as a bridge, occupying the catalytic center of the enzyme to avoid entry of the substrate xanthine, leading to the inhibition of XO. This study may provide new insights into the inhibition mechanism of the Cu(II)-chrysin complex as a promising XO inhibitor and its potential application for the treatment of hyperuricemia.

  9. Characterization of mitotane (o,p'-DDD)--cyclodextrin inclusion complexes: phase-solubility method and NMR.

    Alfonsi, R; Attivi, D; Astier, A; Socha, M; Morice, S; Gibaud, S


    Mitotane (o,p'-dichlorodimethyl dichloroethane [o,p'-DDD]) is used for the treatment of adrenocortical cancer and occasionally Cushing's syndrome. This drug is very poorly soluble in water, and following oral administration, approximately 60% of the dose is recovered in the feces unaltered. The preparation of a soluble formulation (i.e. by complexation with cyclodextrins) with improved bioavailability is the aim of this work. The inclusion of mitotane in methyl-ß-cyclodextrins was studied using both phase-solubility methods and NMR experiments. To elucidate the inclusion mechanism, o,p'-DDD was compared to its regioisomer (i.e. p,p'-DDD). It was demonstrated that two dimethyl-ß-cyclodextrins (DMßCD) can complex with the aromatic rings. From the phase-solubility diagrams, we observe that both cases are very different: K(1:1) is between 37 000 and 85 000 mol.l(-1), whereas K(1:2) is between 5.3 and 32 mol.l(-1). The NMR experiments confirmed the inclusion but it also gave an insight into the kinetics of the dissociation: the ortho-chloro moiety is in slow exchange on the NMR time scale, whereas the para-chloro moiety is in fast exchange rate.

  10. Improving the aqueous solubility of triclosan by solubilization, complexation, and in situ salt formation.

    Grove, Christine; Liebenberg, Wilna; du Preez, Jan L; Yang, Wenzhan; de Villiers, Melgardt M


    Triclosan, an antimicrobial, although widely incorporated into many skin care products, toothpastes, and liquid soaps, presents formulation difficulties because it is practically insoluble in water. The objective of this study was to improve the aqueous solubility of triclosan through solubilization, complexation, and salt formation. The solubility of triclosan in distilled water and in phosphate buffers (pH 7.4) was determined at 30 degrees C. The order of solubilizing performance of the solubilizers was: N-methylglucamine> or =L-arginine>sodium lauryl sulfate>beta-cyclodextrin> or =hydroxypropyl-beta-cyclodextrin>ethanolamine>sodium benzoate>sodium methyl 4-hydroxybenzoate>triethanolamine> or =diethanolamine. These solubilizers increased the solubility of triclosan from 80- to 6000-fold. Micellar solubilization and the formation of either salts or complexes are postulated as possible mechanisms for the increase in the solubility of triclosan by the surfactant sodium lauryl sulphate, the cyclic sugar derivatives beta-cyclodextrin and 2-hydropropyl-beta-cyclodextrin, the amino acid L-arginine, and the amino sugar alcohol N-methylglucamine. Furthermore, although the bacteriostatic efficacy of triclosan was significantly increased when solubilized with N-methylglucamine, L-arginine, and ethanolamine, increased solubilization did not increase the effectiveness of triclosan for all solubilizers tested.

  11. Effect of atmospheric organic complexation on iron-bearing dust solubility

    R. Paris


    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  12. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B


    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.

  13. Vibrational spectroscopy and solubility study of the mineral stringhamite CaCuSiO₄·H₂O.

    Frost, Ray L; Xi, Yunfei


    Stringhamite CaCuSiO(4)·H(2)O is a hydrated calcium copper silicate and is commonly known as a significant 'healing' mineral and is potentially a semi-precious jewel. Stringhamite is a neosilicate with Cu(2+) in square planar coordination. Vibrational spectroscopy has been used to characterise the molecular structure of stringhamite. The intense sharp Raman band at 956 cm(-1) is assigned to the ν(1) (A(1g)) symmetric stretching vibration. Raman bands at 980, 997, 1061 cm(-1) are assigned to the ν(3) (A(2u), B(1g)) antisymmetric stretching vibrations. Splitting of the ν(3) vibrational mode supports the concept that the stringhamite SiO(4) tetrahedron is strongly distorted. The intense bands at 505 and 519 cm(-1) and at 570 cm(-1) are assigned to the ν(2) and ν(4) vibrational modes. The question arises as to whether the mineral stringhamite can actually function as a healing mineral. An estimation of the solubility product at pHcopper ion is a very powerful antibiological agent and thus the mineral stringhamite may well function as a healing mineral.

  14. Inclusion complex of butachlor with beta-cyclodextrin: characterization, solubility, and speciation-dependent adsorption.

    Bian, Haitao; Chen, Jingwen; Cai, Xiyun; Liu, Ping; Liu, Huihui; Qiao, Xianliang; Huang, Liping


    Due to soil adsorption, higher amounts of the herbicide butachlor are necessary to achieve its herbicidal activity, hence increasing its environmental risks. In this study, the effects of beta-cyclodextrin (beta-CD) on solubility and soil adsorption of butachlor were investigated. Formation of a 1:1 stoichiometric inclusion complex between them with an apparent stability constant of 443 L mol(-1) was confirmed in the solution. Fourier transform infrared spectroscopy showed that the (N-CO) amide bond and alkyl ether moiety of butachlor molecule could enter into the cavity of beta-CD, but the double-substituted aromatic ring was excluded because it was larger size than the cavity. Significant enhancing dissolution of butachlor in the inclusion complex occurred in comparison to the free herbicide. The adsorption of butachlor on soil was reduced with an increase of beta-CD concentration because of the formation of the inclusion complex with low adsorption potency. Although the sorption distribution coefficient of complexed butachlor (i.e., butachlor/beta-cyclodextrin inclusion complex) (K(d,c) = 6.14) was about 14% of that of the free herbicide (K(d,f) = 44.54), the proportion of the adsorbed amount of complexed butachlor to the total adsorbed amount rose with the increase of beta-CD concentration. Thus, the adsorption of inclusion complex cannot be neglected in the presence of high concentrations cyclodextrins, although its water solubility was much higher than that of the free herbicide. These results indicate that beta-CD may be used as a formation additive to improve the solubility of butachlor, reduce its adsorption on soil, and increase the availability of butachlor for weeds.

  15. Improvement of solubility and dissolution properties of clotrimazole by solid dispersions and inclusion complexes

    Gehan Balata


    Full Text Available Solid dispersions of a slightly water-soluble drug, clotrimazole, were prepared in different weight ratios using polyethyleneglycol 4000 and different molecular weight polyvinyl pyrrolidones as carriers. Moreover, binary and ternary β-cyclodextrin complexes were prepared in different molar ratios. Both solid dispersions and β-cyclodextrin complexes were prepared by solvent evaporation technique. A phase solubility method was used to evaluate the effect of the tested carriers on the aqueous solubility of clotrimazole. The dissolution of all the preparations was tested using the USP paddle method. The selected solid dispersions and inclusion complexes were characterized by differential scanning calorimetry and X-ray powder diffractometry studies, and results clarified the role of the tested carriers in decreasing the crystallinity of clotrimazole and complexing abilities. Based on physical characters and in vitro drug release pattern, polyvinylpyrrolidone solid dispersions (1:1 weight ratio and ternary cyclodextrin complexes (clotrimazole-β-cyclodextrin complexes with either polymer, 1:1 molar ratio were selected as ideal batches for suppositories. Suppocire AM/50 mg carbopol 940, was chosen as a suppository base and the suppositories were prepared by molding technique. The prepared suppositories were characterized for weight variation, softening time and drug content. All these properties were found to be ideal. The in vitro drug release pattern was determined in citrate buffer (pH 4.5 containing 1% sodium lauryl sulfate. The in vitro release of clotrimazole from its solid dispersions and inclusion complexes incorporated suppositories was markedly improved when compared to the intact drug incorporated suppositories. Polyvinyl pyrrolidone solid dispersions incorporated suppositories were found to possess excellent antifungal activity.

  16. The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters

    Nimmo, Malcolm; Fones, Gary R.

    The detection of dissolved ACSV (adsorptive cathodic stripping voltammetry) Co, Ni, Cu, Cd and Pb in rain waters collected from an urban and a coastal site in the northwest of England is described. The presence of metal complexing organic ligands in rain waters is indicated with an overall percentage of ACSV non - labile dissolved metal of the total dissolved metal fraction ( = %ACSV nl/t) being 33 (33); 28 (35); 26 (32); 33 (25); 27 (34): for Co, Ni, Cu, Cd and Pb, respectively, for the urban site (and coastal site). ACSV metal lability is theoretically defined and is dependent upon the a-coefficient ( β' MAL [AL]) of the added ACSV ligand (AL). No major differences were observed between %ACSV nl/t metal fractions in rain waters collected at the two contrasting sites for all the metals considered. As Cu, Pb, Cd and Ni had values greater than 10 for their Ef crust (crustal enrichment factor), rain water collected from both sites had predominantly anthropic chemical characteristics. The commonality of the aerosol chemical characteristics at the two sites may account for the observed similar (relative to total metal concentrations) proportions of metal organic complexation at the two different sites. The general order of increasing organic associations was Cu = Pb = Ni < Co < Cd, although the analytical log α-coefficients ( β' MAL [AL]) for each metal were different (9.62—Ni; 9.27—Cu; 5.29—Co; 2.15—Pb; 1.13—Cd). Significant correlations were encountered between ACSV non - labile and total dissolved trace metal concentrations of the pooled data from both sites, again an indication of the similarity of the chemical characteristics of the scavenged soluble organic ligands associated with background aerosol material.

  17. Effect of processing variables on dissolution and solubility of piroxicam: Hydroxypropyl-β -cyclodextrin inclusion complexes

    Doijad R


    Full Text Available Influence of processing variables on the solid-state of a model drug, piroxicam in cyclodextrin-based system and its effect on dissolution behavior of the drug was investigated in the present study. Binary systems containing piroxicam and hydroxypropyl-β -cyclodextrin prepared by various processes, were characterized by FTIR, thermal stability, photo stability and dissolution studies. Hydroxypropyl-β -cyclodextrin enhanced the solubility of piroxicam and increased dissolution rates from the binary systems. The complex prepared by co-evaporation method was found to yield better dissolution rate and stability as characterized in present study over those of the complex prepared by other methods.

  18. Hydrogen motion in the Cu-H complex in ZnO

    Boerrnert, Felix; Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden (Germany)


    The Cu-H complex in ZnO consists of Cu on Zn site and a hydrogen atom bound to a nearby O atom with the O-H bond oriented in the basal plane of the hexagonal lattice to the c axis. The motion of hydrogen in the Cu-H complex is studied by the stress-induced dichroism. Stress applied at room temperature along [10 anti 10] results in an alignment of the Cu-H bond. The reorientation process was found to be thermally activated with the activation energy of 0.52{+-}0.04 eV. The connection of the hydrogen movement in the Cu-H complex with the hydrogen diffusion in ZnO is discussed and consequences for the existence of interstitial hydrogen in ZnO at room temperature are presented.

  19. Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions.

    Bai, Shi-Qiang; Jiang, Lu; Zuo, Jing-Lin; Hor, T S Andy


    Three copper complexes of nitrogen-sulfur donor ligands, [CuBr₂(L1)] (1), [CuCl₂(L2)₂] (2) and [Cu₂I₂(L3)]n (3) (L1 = bis(2-cyclohexylsulfanylethyl)amine, L2 = 2-(benzylsulfanylmethyl)pyridine and L3 = 2-(4-pyridylsulfanylmethyl)pyridine), have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD and TGA analysis. Complexes 1 and 2 are mononuclear Cu(II) complexes and are EPR active with distorted square-pyramidal and octahedral geometry, respectively. Complex 3 is a two-dimensional tetrahedral Cu(I) coordination polymer with 16- and 20-membered metallocycles. These complexes show good catalytic activities for one-pot azide-alkyne cycloaddition reactions in CH₃OH-H₂O.

  20. pyridine Zn(II) and Cu(II) Complexes



    Sep 3, 2014 ... The kinetics, mechanism and polymer microstructure studies of ring-opening polymerization (ROP) of lactides (LA) by Zn(II) and Cu(II) ... transparency, ease of processing and ease of microbial decompo- sition or degradation.

  1. Magnetic interactions in CuII-LnIII cyclic tetranuclear complexes: is it possible to explain the occurrence of SMM behavior in CuII-TbIII and CuII-DyIII complexes?

    Hamamatsu, Takefumi; Yabe, Kazuya; Towatari, Masaaki; Osa, Shutaro; Matsumoto, Naohide; Re, Nazzareno; Pochaba, Andrzej; Mrozinski, Jerzy; Gallani, Jean-Louis; Barla, Alessandro; Imperia, Paolo; Paulsen, Carley; Kappler, Jean-Paul


    An extensive series of tetranuclear CuII2LnIII2 complexes [CuIILLnIII(hfac)2]2 (with LnIII being all lanthanide(III) ions except for the radioactive PmIII) has been prepared in order to investigate the nature of the CuII-LnIII magnetic interactions and to try to answer the following question: What makes the CuII2TbIII2 and CuII2DyIII2 complexes single molecule magnets while the other complexes are not? All the complexes within this series possess a similar cyclic tetranuclear structure, in which the CuII and LnIII ions are arrayed alternately via bridges of ligand complex (CuIIL). Regular SQUID magnetometry measurements have been performed on the series. The temperature-dependent magnetic susceptibilities from 2 to 300 K and the field-dependent magnetizations from 0 to 5 T at 2 K have been measured for the CuII2LnIII2 and NiII2LnIII2 complexes, with the NiII2LnIII2 complex containing diamagnetic NiII ions being used as a reference for the evaluation of the CuII-LnIII magnetic interactions. These measurements have revealed that the interactions between CuII and LnIII ions are very weakly antiferromagnetic if Ln=Ce, Nd, Sm, Yb, ferromagnetic if Ln=Gd, Tb, Dy, Ho, Er, Tm, and negligible if Ln=La, Eu, Pr, Lu. With the same goal of better understanding the evolution of the intramolecular magnetic interactions, X-ray magnetic circular dichroism (XMCD) has also been measured on CuII2TbIII2, CuII2DyIII2, and NiII2TbIII2 complexes, either at the L- and M-edges of the metal ions or at the K-edge of the N and O atoms. Last, the CuII2TbIII2 complex exhibiting SMM behavior has received a closer examination of its low temperature magnetic properties down to 0.1 K. These particular measurements have revealed the unusual very slow setting-up of a 3D order below 0.6 K.

  2. Phase solubility, 1H NMR and molecular modelling studies of bupivacaine hydrochloride complexation with different cyclodextrin derivates

    Jug, Mario; Mennini, Natascia; Melani, Fabrizio; Maestrelli, Francesca; Mura, Paola


    A novel method, which simultaneously exploits experimental (NMR) and theoretically calculated data obtained by a molecular modelling technique, was proposed, to obtain deeper insight into inclusion geometry and possible stereoselective binding of bupivacaine hydrochloride with selected cyclodextrin derivatives. Sulphobuthylether-β-cyclodextrin and water soluble polymeric β-cyclodextrin demonstrated to be the best complexing agents for the drug, resulting in formation of the most stable inclusion complexes with the highest increase in aqueous drug solubility. The drug-carrier binding modes with these cyclodextrins and phenomena which may be directly related to the higher stability and better aqueous solubility of complexes formed were discussed in details.

  3. Soluble interleukin-15 complexes are generated in vivo by type I interferon dependent and independent pathways.

    Scott M Anthony

    Full Text Available Interleukin (IL-15 associates with IL-15Rα on the cell surface where it can be cleaved into soluble cytokine/receptor complexes that have the potential to stimulate CD8 T cells and NK cells. Unfortunately, little is known about the in vivo production of soluble IL-15Rα/IL-15 complexes (sIL-15 complexes, particularly regarding the circumstances that induce them and the mechanisms responsible. The main objective of this study was to elucidate the signals leading to the generation of sIL-15 complexes. In this study, we show that sIL-15 complexes are increased in the serum of mice in response to Interferon (IFN-α. In bone marrow derived dendritic cells (BMDC, IFN-α increased the activity of ADAM17, a metalloproteinase implicated in cleaving IL-15 complexes from the cell surface. Moreover, knocking out ADAM17 in BMDCs prevented the ability of IFN-α to induce sIL-15 complexes demonstrating ADAM17 as a critical protease mediating cleavage of IL-15 complexes in response to type I IFNs. Type I IFN signaling was required for generating sIL-15 complexes as in vivo induction of sIL-15 complexes by Poly I:C stimulation or total body irradiation (TBI was impaired in IFNAR-/- mice. Interestingly, serum sIL-15 complexes were also induced in mice infected with Vesicular stomatitis virus (VSV or mice treated with agonistic CD40 antibodies; however, sIL-15 complexes were still induced in IFNAR-/- mice after VSV infection or CD40 stimulation indicating pathways other than type I IFNs induce sIL-15 complexes. Overall, this study has shown that type I IFNs, VSV infection, and CD40 stimulation induce sIL-15 complexes suggesting the generation of sIL-15 complexes is a common event associated with immune activation. These findings reveal an unrealized mechanism for enhanced immune responses occurring during infection, vaccination, inflammation, and autoimmunity.

  4. Analysis of the phase solubility diagram of a phenacetin/competitor/beta-cyclodextrin ternary system, involving competitive inclusion complexation.

    Ono, N; Hirayama, F; Arima, H; Uekama, K


    The competitive inclusion complexations in the ternary phenacetin/competitors/beta-cyclodextrin (beta-CyD) systems were investigated by the solubility method, where m-bromobenzoic acid (m-BBA) and o-toluic acid (o-TA) were used as competitors. The solubility changes of the drug and competitors as a function of beta-CyD concentration in the ternary systems were formulated using their stability constants and intrinsic solubilities. The decrease in solubility of phenacetin by the addition of competitors could be quantitatively simulated by the formulation, when both drug and competitor give A(L) type solubility diagrams. On the other hand, when one of the guests gives a B(S) type solubility diagram, its solubility change was clearly reflected in that of the another guest, i.e., phenacetin gave an A(L) type solubility diagram in the binary phenacetin/beta-CyD system and o-TA gave a B(S) type diagram in the binary o-TA/beta-CyD system, but in the ternary phenacetin/o-TA/beta-CyD system, a new plateau region appeared in the original A(L) type diagram of phenacetin. This was explained by the solubilization theory of Higuchi and Connors. The solubility analysis of the ternary drug/competitor/CyD systems may be particularly useful for determination of the stability constant of a drug whose physicochemical and spectroscopic analyses are difficult, because they can be calculated by monitoring the solubility change of a competitor, without monitoring that of a drug. Furthermore, the present results suggest that attention should be paid to the type of the phase solubility diagram, as well as the magnitude of the stability constant and the solubility of the complex, for a rational formulation design of CyD complexes.

  5. Complex-Shaped Porous Cu Bodies Fabricated by Freeze-Casting and Vacuum Sintering

    Huashen Ran


    Full Text Available Porous Cu bodies with complex shapes were fabricated by freeze-casting and vacuum sintering water-based CuO slurry. The sintered bodies showed no noticeable macroscopic defects and good shape tolerance. The interconnected pore tunnels were observed by electronic microscopy. The pore size became smaller and the porosity and volume shrinkage of sintered porous bodies decreased with the increase of solid content in the slurry. XRD results showed the CuO was fully decomposed by vacuum sintering into Cu without any second phases. This new fabrication method may be especially economical when small quantities of porous parts are required.

  6. A novel Cu(I) complex based organic ultraviolet optical sensor

    车广波; 刘春波; 徐占林; 李文连; 孔治国; 王庆伟


    A novel Cu(I) complex with the formula of [Cu(DPEphos)(Dicnq)]BF4(CuDD) was synthesized and characterized by X-ray single crystal diffraction method,in which DPEphos and Dicnq denote bis[2-(diphenylphosphino)phenyl]ether and 6,7-Dicyanodipyrido[2,2-d:2',3'-f] quinoxaline,respectively.Organic ultraviolet optical sensor based on photovoltaic diode is fabricated by using CuDD as an electron acceptor and 4,4′,4″-tris-(2-methylphenyl phenylamino) triphenylamine(m-MTDATA) as an electron donor.The sensor is sensit...

  7. Rational serendipity: "undirected" synthesis of a large {MnCu} complex from pre-formed Mn(II) building blocks.

    Frost, Jamie M; Kettles, Fraser J; Wilson, Claire; Murrie, Mark


    Use of an aminopolyalcohol-based Mn(II) complex in solvothermal Cu(II) chemistry leads to a rare example of a high nuclearity heterometallic {MnCu} system, in which four Cu(II)(H1Edte) units trap an inner {MnCu(II)} oxide core.

  8. Synthesis of bis(indolyl) methanes catalyzed by Schiffbase-Cu(Ⅱ) complex

    Yong Lei Yang; Ning Ning Wan; Wen Ping Wang; Zheng Feng Xie; Ji De Wang


    Schiff base-Cu(Ⅱ) complex is found to be an effective catalyst for the condensation reaction of indole with aldehydes using ethanol as the solvent. The characterization of the catalysts was carried out using XRD and FT-IR.

  9. New Cu(I)-ethylene complexes based on tridentate imine ligands: synthesis and structure.

    Ebrahimpour, Parisa; Haddow, Mairi F; Wass, Duncan F


    A new bulky facially coordinating N3-donor tach-based ligand (tach: cis,cis-1,3,5-triaminocyclohexane) [1: cis,cis-1,3,5-tris(2-fluoro-6-(trifluoromethyl)benzylideneamino)cyclohexane] has been obtained from the condensation of tach with 3 equiv of the appropriate benzaldehyde. Reaction of 1 with [Cu(NCMe)4][PF6] gave the complex [(1)Cu(NCMe)][PF6]. Displacement of the acetonitrile ligand is possible with CO and C2H4 (3-5 bar). Cu(I)-ethylene complexes of ligands 1 and 2 [2: cis,cis-1,3,5-(mesitylideneamino)cyclohexane] were prepared successfully by treatment of the ligands with CuBr and AgSbF6 in the presence of ethylene. These complexes display reversible complexation of the ethylene molecule under mild changes to pressure, suggesting possible application in olefin separation and extraction.

  10. Correlation between UV-VIS spectra and the structure of Cu(II) complexes with hydrogenated dextran in alkaline solutions

    Nikolić Goran S.; Cakić Milorad D.; Mitić Žarko J.; Nikolić Ružica S.; Ilić Ljubomir A.


    UV-VIS spectrophotometric investigations of Cu(II) complexes with hydroge-nated dextran showed that the complexation of Cu(II)-ions began at pH > 7. The formation of Cu(II) complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II)-dextran complex decomposed to Cu(OH)42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift) compare...

  11. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Hiroki Oshio


    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  12. A new member of the oxygen-photosensitizers family: a water-soluble polymer binding a platinum complex.

    Ricciardi, Loredana; Puoci, Francesco; Cirillo, Giuseppe; La Deda, Massimo


    The grafting of a 2-picolylamine Pt(II) complex into polymethacrylic acid has been successfully performed. The obtained polymer is water soluble, and it represents the first example of a platinum-containing polymer able to photogenerate singlet oxygen.

  13. Generating CuII-Oxyl/CuIII-Oxo Species from CuI- α-Ketocarboxylate Complexes and O2: In silico studies on ligand effects and C-H-activation reactivity

    Huber, Stefan M.; Ertem, Mehmed Z.; Aquilante, Francesco; Gagliardi, Laura; Tolman, William B.; Cramer, Christopher J.


    The mechanistic details associated with the generation and reaction of [CuO]+ species from CuI-[alpha]-ketocarboxylate complexes, especially with respect to modifications of the ligand supporting the copper center, were investigated (see scheme). Theoretical models were used to characterize the electronic structures of different [CuO]+ species and their reactivity in C—H activation and O-atom transfer reactions.A mechanism for the oxygenation of CuI complexes with -ketocarboxylate ligands tha...

  14. Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes.

    Kemper, Benedict; von Gröning, Maximilian; Lewe, Vanessa; Spitzer, Daniel; Otremba, Tobias; Stergiou, Natascha; Schollmeyer, Dieter; Schmitt, Edgar; Ravoo, Bart Jan; Besenius, Pol


    The ligation of gold(I) metalloamphiphiles with biomolecules is reported, using water-soluble Au(I) -N-alkynyl substituted maleimide complexes. For this purpose, two different polar ligands were applied: 1) a neutral, dendritic tetraethylene glycol-functionalized phosphane and 2) a charged, sulfonated N-heterocyclic carbene (NHC). The retro Diels-Alder reaction of a furan-protected maleimide gold(I) complex, followed by cycloaddition with a diene-functionalized biotin under mild conditions leads to a novel gold(I) metalloamphiphile. The strong streptavidin-biotin binding affinity in buffered aqueous solution of the resulting biotin alkynyl gold(I) phosphane conjugate remains intact. The cytotoxicity of the biotinylated gold(I) complex against a T47D human breast cancer cell line is higher than for cisplatin.

  15. Mixed micelles loaded with silybin-polyene phosphatidylcholine complex improve drug solubility

    Rui-ling DUAN; Xun SUN; Jie LIU; Tao GONG; Zhi-rong ZHANG


    Aim: To prepare a novel formulation of phosphatidylcholine(PC)-bile salts(BS)-mixed micelles(MMs)loaded with silybin(SLB)-PC complex for parenteral applications.Methods: SLB-PC-BS-MMs were prepared using the co-precipitation method.Differential scanning calorimetry(DSC)analysis was used to confirm the formation of the complex and several parameters were optimized to obtain a high quality formulation.The water-solubility,drug loading,particle siz,zeta potential,morphology and in vivo properties of the SLB-PC-BS-MMs were determined.Results: The solubility of SLB in water was increased from 40.83±1.18 μg/mL to 10.14±0.36 mg/mL with a high drug loading(DL)of 14.43%±0.44% under optimized conditions.The SLB-PC-BS-MMs were observed by transmission electron microscopy(TEM)and scanning electron microscopy(SEM)and showed spherical shapes.The particle size and zeta potential,as measured by photon correlation spectroscopy(PCS),were about 30±4.8 nm and-39±5.0 mV,respectively.In vivo studies showed that incorporation of the SLB-PC complex into PC-BS-MMs led to a prolonged circulation time of the drug.Conclusion: This novel formulation appears to be a good candidate for drug substances that exhibit poor solubility for parenteral administration.

  16. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)-irbesartan complex: structure-antihypertensive activity relationships in Cu(II)-sartan complexes.

    Islas, María S; Luengo, Alicia; Franca, Carlos A; Merino, Mercedes Griera; Calleros, Laura; Rodriguez-Puyol, Manuel; Lezama, Luis; Ferrer, Evelina G; Williams, Patricia A M


    The coordination compound of the antihypertensive ligand irbesartan (irb) with copper(II) (CuIrb) was synthesized and characterized by FTIR, FT-Raman, UV-visible, reflectance and EPR spectroscopies. Experimental evidence allowed the implementation of structural and vibrational studies by theoretical calculations made in the light of the density functional theory (DFT). This compound was designed to induce structural modifications on the ligand. No antioxidant effects were displayed by both compounds, though CuIrb behaved as a weak 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(·)) scavenger (IC50 = 425 μM). The measurements of the contractile capacity on human mesangial cell lines showed that CuIrb improved the antihypertensive effects of the parent medication. In vitro cell growth inhibition against prostate cancer cell lines (LNCaP and DU 145) was measured for CuIrb, irbesartan and copper(II). These cell lines have been selected since the angiotensin II type 1 (AT1) receptor (that was blocked by the angiotensin receptor blockers, ARB) has been identified in them. The complex exerted anticancer behavior (at 100 μM) improving the activity of the ligand. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. Experimental and DFT characterization of an irbesartan copper(II) complex has been performed. The complex exhibits low scavenging activity against DPPH(·) and significant growth inhibition of LNCaP and DU 145 prostate cancer cell lines. Flow cytometry determinations were used to determine late apoptotic mechanisms of cell death. This compound improved the antihypertensive effect of irbesartan. This effect was observed earlier for the mononuclear Cu-candesartan complex, but not in structurally modified sartans forming dinuclear or octanuclear Cu-sartan compounds.

  17. Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes

    Swati Changdeo Jagdale


    Full Text Available The main objective of the study was to enhance the dissolution of nifedipine, a poorly water soluble drug by betacyclodextrin complexation and to study the effect of the preparation method on the in vitro dissolution profile. The stoichiometric ratio determined by phase solubility analysis for inclusion complexation of nifedipine with β-cyclodextrin was 1:1. Binary complex was prepared by different methods and was further characterized using XRD, DSC and FT-IR. A saturation solubility study was carried out to evaluate the increase in solubility of nifedipine. The optimized complex was formulated into fast-dissolving tablets by using the superdisintegrants Doshion P544, pregelatinized starch, crospovidone, sodium starch glycolate and croscarmellose sodium by direct compression. Tablets were evaluated for friability, hardness, weight variation, disintegration and in vitro dissolution. Tablets showed an enhanced dissolution rate compared to pure nifedipine.Este estudo teve por objetivo principal incrementar a dissolução do nifedipino, fármaco pouco solúvel em água, por meio de sua complexação com β-ciclodextrina e estudar o efeito do método de preparação sobre o perfil de dissolução in vitro. A razão estequiométrica, determinada por ensaio de solubilidade de fase, para a complexação de nifedipino por inclusão em β-ciclodextrina foi 1:1. O complexo binário foi preparado por diferentes métodos, sendo caracterizado utilizando-se difratometria de raios X (XRD, calorimetria diferencial de varredura (DSC e espectroscopia no infravermelho com transformada de Fourier (FT-IR. Realizou-se estudo de solubilidade de saturação para avaliar o incremento da solubilidade do nifedipino. O complexo otimizado foi formulado em comprimidos de dissolução rápida preparados por compressão direta, nos quais se utilizaram os superdesintegrantes Doshion P544, amido pré-gelatinizado, crospovidona, amidoglicolato de sódio e croscarmelose s

  18. Divacancy complexes induced by Cu diffusion in Zn-doped GaAs

    Elsayed, M.; Krause-Rehberg, R.; Korff, B.; Ratschinski, I.; Leipner, H. S.


    Positron annihilation spectroscopy was applied to investigate the nature and thermal behavior of defects induced by Cu diffusion in Zn-doped p-type GaAs crystals. Cu atoms were intentionally introduced in the GaAs lattice through thermally activated diffusion from a thin Cu capping layer at 1100 °C under defined arsenic vapor pressure. During isochronal annealing of the obtained Cu-diffused GaAs in the temperature range of 450-850 K, vacancy clusters were found to form, grow and finally disappear. We found that annealing at 650 K triggers the formation of divacancies, whereas further increasing in the annealing temperature up to 750 K leads to the formation of divacancy-copper complexes. The observations suggest that the formation of these vacancy-like defects in GaAs is related to the out-diffusion of Cu. Two kinds of acceptors are detected with a concentration of about 1016 - 1017 cm-3, negative ions and arsenic vacancy copper complexes. Transmission electron microscopy showed the presence of voids and Cu precipitates which are not observed by positron measurements. The positron binding energy to shallow traps is estimated using the positron trapping model. Coincidence Doppler broadening spectroscopy showed the presence of Cu in the immediate vicinity of the detected vacancies. Theoretical calculations suggested that the detected defect is VGaVAs-2CuGa.

  19. Cyclo- and carbophosphazene-supported ligands for the assembly of heterometallic (Cu2+/Ca2+, Cu2+/Dy3+, Cu2+/Tb3+) complexes: synthesis, structure, and magnetism.

    Chandrasekhar, Vadapalli; Senapati, Tapas; Dey, Atanu; Das, Sourav; Kalisz, Marguerite; Clérac, Rodolphe


    The carbophosphazene and cyclophosphazene hydrazides, [{NC(N(CH(3))(2))}(2){NP{N(CH(3))NH(2)}(2)}] (1) and [N(3)P(3)(O(2)C(12)H(8))(2){N(CH(3))NH(2)}(2)] were condensed with o-vanillin to afford the multisite coordination ligands [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-OH)(m-OCH(3))}(2)}] (2) and [{N(2)P(2)(O(2)C(12)H(8))(2)}{NP{N(CH(3))N═CH-C (6)H(3)-(o-OH)(m-OCH(3))}(2)}] (3), respectively. These ligands were used for the preparation of heterometallic complexes [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuCa(NO(3))(2)}] (4), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{Cu(2)Ca(2)(NO(3))(4)}]·4H(2)O (5), [{NC(N(CH(3))(2))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(4)}]·CH(3)COCH(3) (6), [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuDy(NO(3))(3)}] (7), and [{NP(O(2)C(12)H(8))}(2){NP{N(CH(3))N═CH-C(6)H(3)-(o-O)(m-OCH(3))}(2)}{CuTb(NO(3))(3)}] (8). The molecular structures of these compounds reveals that the ligands 2 and 3 possess dual coordination pockets which are used to specifically bind the transition metal ion and the alkaline earth/lanthanide metal ion; the Cu(2+)/Ca(2+), Cu(2+)/Tb(3+), and Cu(2+)/Dy(3+) pairs in these compounds are brought together by phenoxide and methoxy oxygen atoms. While 4, 6, 7, and 8 are dinuclear complexes, 5 is a tetranuclear complex. Detailed magnetic properties on 6-8 reveal that these compounds show weak couplings between the magnetic centers and magnetic anisotropy. However, the ac susceptibility experiments did not reveal any out of phase signal suggesting that in these compounds slow relaxation of magnetization is absent above 1.8 K.

  20. Synthesis and photophysical properties of water-soluble sulfonato-Salen-type Schiff bases and their applications of fluorescence sensors for Cu2+ in water and living cells.

    Zhou, Li; Cai, Peiying; Feng, Yan; Cheng, Jinghui; Xiang, Haifeng; Liu, Jin; Wu, Di; Zhou, Xiangge


    A series of water-soluble sulfonato-Salen-type ligands derived from different diamines including 1,2-ethylenediamine (Et-1-Et-4), 1,2-cyclohexanediamine (Cy-1 and Cy-2), 1,2-phenylenediamine (Ph-1-Ph-3 and PhMe-1-PhMe-4), and dicyano-1,2-ethenediamine (CN-1) has been designed and prepared. Sulfonate groups of ligands ensure good stability and solubility in water without affecting their excited state properties. These ligands exhibit strong UV/Vis-absorption and blue, green, or orange fluorescence. Time-dependent-density functional theory calculations have been undertaken to reveal the influence of ligand nature, especially sulfonate groups, on the frontier molecular orbitals. Since their fluorescence is selectively quenched by Cu(2+), the sulfonato-Salen-type ligands can be used as highly selective and sensitive turn-off fluorescence sensors for the detection of Cu(2+) in water and fluorescence imaging in living cells.

  1. Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

    Iolanda Francolini


    Full Text Available Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples.

  2. Cu(I)-N heterocyclic carbene complexes: Synthesis, catalysis and DFT studies

    Dinda, Joydev; Roymahapatra, Gourisankar; Sarkar, Deblina; Mondal, Tapan K.; Al-Deyab, Salem S.; Sinha, Chittaranjan; Hwang, Wen-Shu


    The structural, spectroscopic and catalytic properties of the two Cu(I) complexes [Cu2(L1)2](PF6)2;(1) and [Cu2(L2)2](PF6)2; (2), bearing proligands 2,6-bis-(N-methylimidazolium)pyrazine hexafluorophosphate (L1) and 2,6-bis-(N-methylbenzimidazolium)pyrazine hexafluorophosphate (L2), have been investigated. The solid state structure of 1 has been determined by X-ray diffraction studies, while DFT computation technique has been used to optimize structure 2. From molecular orbital calculations using TD-DFT, the absorption bands are assigned to metal to ligand charge transfer(MLCT) along with some inter ligand charge transfer (ILCT) transitions. Complexes 1 and 2 possess very weak Cu(I)sbnd Cu(I) interactions within the reported distance 2.947-3.020 Å. They are expected to have luminescent properties due to Cu(I)sbnd Cu(I) interactions. Preliminary studies revealed both complexes to possess catalytic efficiency in general hydrosilylation reactions.

  3. Nano-structured CuO-Cu2O Complex Thin Film for Application in CH3NH3PbI3 Perovskite Solar Cells

    Chen, Lung-Chieh; Chen, Cheng-Chiang; Liang, Kai-Chieh; Chang, Sheng Hsiung; Tseng, Zhong-Liang; Yeh, Shih-Chieh; Chen, Chin-Ti; Wu, Wen-Ti; Wu, Chun-Guey


    Nano-structured CuO-Cu2O complex thin film-based perovskite solar cells were fabricated on an indium tin oxide (ITO)-coated glass and studied. Copper (Cu) thin films with a purity of 99.995 % were deposited on an ITO-coated glass by magnetron reactive sputtering. To optimize the properties of the nano-structured CuO-Cu2O complex thin films, the deposited Cu thin films were thermally oxidized at various temperatures from 300 to 400 °C. A CH3NH3PbI3 perovskite absorber was fabricated on top of CuO-Cu2O complex thin film by a one-step spin-coating process with a toluene washing treatment. Following optimization, the maximum power conversion efficiency (PCE) exceeded 8.1 %. Therefore, the low-cost, solution-processed, stable nano-structured CuO-Cu2O complex thin film can be used as an alternative hole transport layer (HTL) in industrially produced perovskite solar cells.

  4. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E


    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  5. Soluble/insoluble (dilute-HCl-extractable fractionation of Cd, Pb and Cu in Antarctic snow and its relationship with metal fractionations in the aerosol

    Annibaldi A.


    Full Text Available A chemical fractionation methodology for determination of the (water soluble and the insoluble (dilute-HCl-extractable fractions of Cd, Pb and Cu in Antarctic snow was set-up and verified for the additivity of the two fractions detected. Molten samples were filtrated and the water-insoluble fraction was extracted by dilute ultrapure HCl (pH ~1.5. Metal determinations were carried out in the two fractions by square wave anodic stripping voltammetry. The total metal concentrations in samples collected in the 2000–2001 austral summer in a clean area (Faraglione Camp in the neighbourhood of the Mario Zucchelli Italian Station were of the order of Cd 10-20 pg g−1, Pb 20–40 pg g−1, Cu 60–120 pg g−1 with an approximate equidistribution between soluble and insoluble fractions. These fractionations compare well (and show a quite consistent temporal trend with those observed in the aerosol samples collected in the same area/period and confirm the close relationship between metal distributions in snow/ice and in the aerosol. At the station metal concentrations increase due to anthropic contribution and the distribution changes with Cd predominantly present in the soluble fraction (~80%, while Pb and Cu are more concentrated in the insoluble fraction, 70–80% and ~70%, respectively.

  6. A Coumarin-Based Luminescent Chemosensor for Recognition of Cu(2+) and its In-Situ Complex for CN(-) Sensing via Cu(2+) Displacement Approach.

    Mukherjee, Soma; Talukder, Shrabani


    A new coumarin based chemosensor has been developed for selective fluorescent recognition of Cu(2+) in MeOH/H2O (4:1, v/v at pH = 7.2 aqueous solution) medium with 1:1 binding stoichiometry. The in-situ prepared Cu(2+) complex displays high selectivity towards CN(-) via Cu(2+) displacement approach with detection limit in the micro molar range. Moreover, in presence of Cu(2+), the receptor exhibits reversible emission change with EDTA and thus offers an interesting property of molecular 'IMPLICATION' logic gate with Cu(2+) and EDTA as chemical inputs.

  7. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.


    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  8. Electrospinning fabrication and oxygen sensing properties of Cu(I) complex-polystyrene composite microfibrous membranes

    Wang Liyan, E-mail: [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Xu Yun [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China); Lin Zhu [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, XiAn (China); Zhao Ning [Department of Orthodontics, School of Stomatology, West China College, SiChuan University, ChengDu (China); Xu Yanhua [Department of Orthodontics, School of Stomatology, KunMing Medical College, Kunming (China)


    In this paper, a phosphorescent Cu(I) complex of [Cu(POP)(ECI-Phen)]BF{sub 4}, where POP=bis[2-(diphenylphosphino)phenyl]ether, and ECI-Phen=1-ethyl-2-(N-ethyl-carbazole-yl-4-)imidazo[4,5-f]1,10-phenanthroline, is incorporated into a polystyrene matrix of polystyrene (PS) to form microfibers membranes. The possibility of using the resulted composite microfibrous membranes as an optical oxygen sensor is explored. Good linearity and short response time are obtained with a sensitivity of 9.8. These results suggest that phosphorescent [Cu(POP)(ECI-Phen)]BF{sub 4} is a promising candidate for oxygen-sensors and PS is an excellent matrix for oxygen sensing material because it owns a large surface-area-to-volume ratio and can supply a homogeneous matrix for probe molecules. Further analysis suggests that the molecular structure of diamine ligand in Cu(I) complexes is critical for sensitivity due to the characteristic electronic structure of excited state Cu(I) complexes. - Highlights: {yields} Cu(I) complex is incorporated into polystyrene matrix to form nanofibers. {yields} Resulted sample exhibit good linearity and short response time. {yields} PS is an excellent matrix for oxygen sensing material for probe molecules. {yields} Molecular structure of diamine ligand is critical for sensitivity.

  9. Recovery of EDTA from complex solution using Cu(II) as precipitant and Cu(II) subsequent removal by electrolysis.

    Gyliene, O; Aikaite, J; Nivinskiene, O


    Ethylendiaminetetraacetate (EDTA) is a chelating agent widely used in industry and agriculture. Resistant to chemical and biological degradation EDTA represents a serious ecological problem. In order to avoid the outlet into the environment a new method of EDTA recycling has been proposed. The method involves substituting of the metal ions in EDTA complexes by Cu(II) and formation of an insoluble Cu2EDTA.4H2O compound at the excess of Cu(II) ions in weakly acidic solutions. Cu(II) ions substitute such metal ions as Ni(II), Zn(II), Co(II), Cd(II), Ca(II) and Mg(II). After treatment of the precipitate with water only, acidic or alkaline solutions the copper from the suspension formed can be removed by electrolysis. The highest current efficiency under galvanostatic conditions is in alkaline solutions, however, the highest yield of EDTA recovery is in acidic solutions. FT-IR investigations and chemical analysis of the precipitate formed have shown that in acidic and in alkaline solutions, H4EDTA and Na2H2EDTA.2H2O were formed, respectively. Electrolysis in acidic solutions gives the best results, i.e. the formed H4EDTA contains the highest amount of EDTA (95%) and the lowest amount of copper (0.01%).

  10. Chemical behavior of Cu, Zn, Cd, and Pb in a eutrophic reservoir: speciation and complexation capacity.

    Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques


    This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the

  11. Thermal Study of a Newly Synthesized Cu(II Complex Binding to Bovine β-Lactoglobulin

    Adeleh Divsalar


    Full Text Available We have investigated the interactions between β-lactoglobulin, BLG, and new synthesized Cu(II complex (2,2′-dibipyridine Cu(II chloride using isothermal titration calorimetry (ITC methods at different temperatures of 298 and 310 K. The heats of BLG + Cu(II interactions are reported and analyzed in terms of the extended solvation theory for calculation of binding and thermodynamic parameters of the interaction. The results suggested that binding of Cu(II complex on BLG resulted in significant changes on the tertiary structure and conformation of protein via increasing of hydrophobicity and inducing partially unfolded structure in BLG which has a good agreement with the solvation parameters recovered by the extended solvation model suggesting destabilization of the protein.

  12. Photovoltaic Properties of Film Composites of Polyvinyl Butyral and a CU/CA Heterometallic Complex

    Davidenko, N. A.; Davidenko, I. I.; Kokozay, V. N.; Studzinsky, S. L.; Petrusenko, S. R.; Plyuta, N. I.


    Photosensitive polymer fi lm composites based on non-photoconductive polyvinyl butyral with an added heterometallic Cu/Ca complex were prepared and investigated. It was found that such composites had photovoltaic properties and exhibited a photodielectric effect when irradiated in the complex absorption band. The mechanism and characteristics of the photovoltaic and photodielectric effects in the studied fi lm composites were discussed.

  13. Photoconductivity of Polymer Composite Films Containing an Mn(III)/Cu(II) Complex

    Davidenko, N. A.; Kokozay, V. N.; Petrusenko, S. R.; Stetsyuk, O. N.; Studzinsky, S. L.; Davidenko, I. I.


    We have studied the optical, photoelectric and dielectric properties of polymer composite films based on polyvinyl butyral with additives of a mixed-metal Mn(III)/Cu(II) complex. We observed high photoconductivity of the films obtained in the region of absorption by the complex. The slow photocurrent rise and relaxation kinetics are connected with the low mobility of the photogenerated charge carriers.

  14. CuI complexes with a noninnocent PNP Ligand: selective dearomatization and electrophilic addition reactivity

    van der Vlugt, J.I.; Pidko, E.A.; Vogt, D.; Lutz, M.; Spek, A.L.


    The neutral, T-shaped complex CuI(PN−PtBu) (2), featuring a dearomatized 2,6-bis(diphosphino)pyridine (PNP)-pincer ligand, is shown to interact rapidly with electrophiles. This has enabled the synthesis of acetato complex 3. Furthermore, C−C bond formation onto the deprotonated methylene-bridgehead

  15. Cu-I complexes with a noninnocent PNP ligand: Selective dearomatization and electrophilic addition reactivity

    van der Vlugt, J.I.; Pidko, E.A.; Vogt, D.; Lutz, M.; Spek, A.L.


    The neutral, T-shaped complex Cu-I((PN-PtBu)) (2), featuring a dearomatized 2,6-bis(diphosphino)pyridine (PNP)-pincer ligand, is shown to interact rapidly with electrophiles. This has enabled the synthesis of acetato complex 3. Furthermore, C-C bond formation onto the deprotonated methylene-bridgehe

  16. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin

    Gabriel Onn Kit Loh


    Full Text Available The objectives of the study were to investigate the effects of β-cyclodextrin (βCD and hydroxypropyl-β-cyclodextrin (HPβCD on the solubility and dissolution rate of norfloxacin prepared using three different methods, at drug to cyclodextrin weight ratios of 1:1, 1:2, 1:4 and 1:8. All the methods increased the solubility and dissolution rate of norfloxacin via inclusion complexation with βCD and HPβCD. Norfloxacin was converted from crystalline to amorphous form through inclusion complexation. Solvent evaporation method was the most effective method in terms of norfloxacin solubilisation, while inclusion complex of HPβCD has higher solubility than βCD complex when prepared using the same procedure.

  17. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son


    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  18. Complexes of arabinogalactan of Pereskia aculeata and Co2+, Cu2+, Mn2+, and Ni2+.

    Merce, A L; Landaluze, J S; Mangrich, A S; Szpoganicz, B; Sierakowski, M R


    The main interest in the biopolymer arabinogalactan is that it is edible. Complementing its high protein percentage, when complexed to essential metal ions, widens the use in food and pharmacology industries and technologies. The binding constants of Co2+, Cu2+, Mn2+ and Ni2+ with arabinogalactan, extracted from the leaves of Pereskia aculeata from Brazil were determined by potentiometric titrations and also the speciation according to pH values. The complexed species proposed by potentiometric titrations and the unique complexing ability of galacturonic acid groups towards Cu2+ and Ni2+ in the tridimensional web structure of arabinogalactan were confirmed by IR and EPR spectroscopies. The thermal stability of the complexed species also varied with the metal ion employed in the complexation when compared to the biopolymer alone. These complexes are new sources of additives for the food and pharmacology industries and carriers of essential metal ions to animal and vegetal biochemistry.

  19. Photophysical performance comparison between bulk Cu(I) complex and its electrospinning fibers: Synthesis and characterization

    Pu, Wan; Yuqing, Zhao; Lisha, Wang


    In this report, a diamine ligand having an electron-pulling group in its conjugation plane was designed. A methyl group was connected with this diamine ligand, hoping to further increase its steric hindrance. Its Cu(I) complex was synthesized and characterized by NMR, single crystal analysis and photophysical analysis. There was a distorted tetrahedral coordination field in this Cu(I) complex. Its onset electronic transition owned a mixed character of metal-to-ligand-charge-transfer which suffered from bad geometric relaxation. To limit this geometric relaxation and improve emissive performance, this Cu(I) complex was doped into a polymer host through electrospinning technique. Photophysical comparison between solid state sample, solution sample and composite samples indicated that excited state geometric relaxation was effectively limited by polymer immobilization effect, resulting in improved emissive performance, such as emission blue shift, long emission decay lifetime and better photostability.

  20. Effect of Complexation with Hydroxylpropyl-β-Cyclodextrin on Solubility, Dissolution Rate and Chemical Stability of Prostaglandin E1

    GUFu-gen; CUIFu-de; GAOYong-liang


    Aim To study the effect of complexation with hydroxylpmpyl-β-cycledextrin (HP-β-CD) on the solubility, dissolution rate and chemical stability of pmstaglandin E1 (PGE1), thereby providing a basis for preparing a stable solid or aqueous preparation of PGF1 formulated with HP-β-CD. Methods The effect of HP-β-CD on the solubility of PGF1 was studied by phase solubility method. The formation of inclusion complexes of PGE1 with HP-β-CD in the aqueous solution was confirmed by UV spectra, circular dichroism spectroscopy, and that in the solid state by IR spectra and X-ray diffractometry. An solid inclusion complex of PGF1 with HP-β-CD was prepared by lyophilization. The dissolution rate and stability of the inclusion complex were determined and compared with those of PGE1 alone. Meanwhile, the stability of PGF1 aqueous solutions in the presence of HP-β-CD was studied under different pH conditions. Results The solubility of PGF1 increased linearly with increasing HP-β-CD concentration in various pH buffered solutions, showing typical AL-type phase solubility diagrams. The stability and dissolution rate of the solid inclusion complex of PGE1 were significantly increased, compared with those of pure PGE1 . The stability of PGEI in HP-β-CD solutions was also obviously improved under acidic and basic conditions, but the stabilizing effect was absent under neutral conditions. Conclulsions The solubility, dissolution rate and chemical stability of PGE1 are markedly improved by complexation with HP-β-CD. It is quite possible to prepare a stable PGE1 inclusion complex-containing solid dosage forms, but almost impossible to obtain a stable aqueous preparation of PGE1 formulated with HP-β-CD.

  1. Proteomic analyses reveal distinct chromatin-associated and soluble transcription factor complexes.

    Li, Xu; Wang, Wenqi; Wang, Jiadong; Malovannaya, Anna; Xi, Yuanxin; Li, Wei; Guerra, Rudy; Hawke, David H; Qin, Jun; Chen, Junjie


    The current knowledge on how transcription factors (TFs), the ultimate targets and executors of cellular signalling pathways, are regulated by protein-protein interactions remains limited. Here, we performed proteomics analyses of soluble and chromatin-associated complexes of 56 TFs, including the targets of many signalling pathways involved in development and cancer, and 37 members of the Forkhead box (FOX) TF family. Using tandem affinity purification followed by mass spectrometry (TAP/MS), we performed 214 purifications and identified 2,156 high-confident protein-protein interactions. We found that most TFs form very distinct protein complexes on and off chromatin. Using this data set, we categorized the transcription-related or unrelated regulators for general or specific TFs. Our study offers a valuable resource of protein-protein interaction networks for a large number of TFs and underscores the general principle that TFs form distinct location-specific protein complexes that are associated with the different regulation and diverse functions of these TFs.

  2. New water soluble phosphonate and polycarboxylate complexants for enhanced f element separations

    Nash, K.L.; Rickert, P.G.; Lessmann, E.P.; Mendoza, M.D.; Feil, J.F.; Sullivan, J.C.


    While lipophilic extractant molecules and ion exchange polymeric materials are clearly essential to efficient separation of metal ions by solvent extraction or ion exchange, the most difficult separations often could not be accomplished without the use of water soluble complexants. This report focuses on recent developments in design, synthesis and characterization of phosphonic acid and polycarboxylic acid ligands for enhanced f element separations. Emphasis is on the basic solution chemistry and crystal structures of complexes of the f elements with selected amino-derivatives of methanediphosphonic acid and with tetrahydrofuran-2,3,4,5-tetracarboxylic acid. The former series of compounds exhibit high affinity for lanthanides and actinides in acidic solutions. The latter ligand exhibits an unusual (and very useful) ``anti-selectivity`` for uranyl ion in a solvent extraction process, which permits efficient separation of uranyl from more radioactive components of nuclear wastes. Most of the observed effects can be explained through examination of the structure of the ligand, and comparison of the spectroscopic and thermodynamic parameters for complexation of various metal ions.

  3. Copper ligation to soluble oligomers of the English mutant of the amyloid-β peptide yields a linear Cu(I) site that is resistant to O2 oxidation.

    Peck, Kristy L; Clewett, Heather S; Schmitt, Jennifer C; Shearer, Jason


    Copper coordination to soluble oligomers of the English (AβH(6)R) mutant of the amyloid-β peptide is probed. Cu(II) coordination yields a square planar (N/O)4 coordination environment, while reduction yields an O2 inert linear bis-His Cu(I) centre.

  4. New water-soluble copper (II) complexes including 4,7-dimethyl-1,10-phenanthroline and L-tyrosine: synthesis, characterization, DNA interactions and cytotoxicities.

    İnci, Duygu; Aydın, Rahmiye; Yılmaz, Dilek; Gençkal, Hasene Mutlu; Vatan, Özgür; Çinkılıç, Nilüfer; Zorlu, Yunus


    Two new water-soluble copper(II) complexes, [Cu(dmphen)2(NO3)]NO3 (1), [Cu(dmphen)(tyr)(H2O)]NO3·H2O (2) and the diquarternary salt of dmphen (dmphen = 4,7-dimethyl-1,10-phenanthroline and tyr = L-tyrosine), have been synthesized and characterized by elemental analysis, (1)H NMR, (13)C NMR and IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The CT-DNA binding properties of these compounds have been investigated by absorption, emission spectroscopy and thermal denaturation measurements. The supercoiled pBR322 plasmid DNA cleavage activity of these compounds has been explored by agarose gel electrophoresis. The cytotoxicity of these compounds against MCF-7, Caco-2, A549 cancer cells and BEAS-2B healthy cells was also studied by the XTT method. Complexes 1 and 2 exhibit significant cytotoxicity, with lower IC50 values than those of cisplatin.

  5. Correlation between UV-VIS spectra and the structure of Cu(II complexes with hydrogenated dextran in alkaline solutions

    Nikolić Goran S.


    Full Text Available UV-VIS spectrophotometric investigations of Cu(II complexes with hydroge-nated dextran showed that the complexation of Cu(II-ions began at pH > 7. The formation of Cu(II complexes with dextran monomer units was observed at pH 7-12. With further increase in solution pH > 12, the Cu(II-dextran complex decomposed to Cu(OH42~-ions and dextran. With increasing solution pH the absorption maximum of complex solutions increased and shifted to shorter wavelength (hypsochromic shift compared with uncomplexed Cu(II. The UV spectra displayed bathochromic shifts. The changes of UV-VIS spectra with increasing in solution pH confirmed the formation of different kinds of complex species. The correlation between the results of UV-VIS spectrophotometry and the central metal ionligand coordination predicted that the copper binding within the complex depended on the pH and participation H2O molecules. Dextran complexes with Cu(II were formed by the displacement of water molecules from the coordination sphere of copper by OH groups. The analysis indicated that the Cu(II center was coordinated to two glucopyranose units of dextran. The spectrophotometric parameters of the investigated complexes were characteristic of a Cu(II-ion in a square-planar or tetragon ally distorted octahedral coordination.

  6. Effect of formaldehyde on Cu(II) removal from synthetic complexed solutions by ion exchange.

    Juang, Ruey-Shin; Lin, Su-Hsia; Kao, Hsiang-Chien; Theng, Ming-Huei


    The effect of formaldehyde (HCHO) on the ion exchange of Cu(II) from an equimolar EDTA (ethylenediaminetetraacetic acid, H(4)L) solution with a strong-base Amberlite IRA-400 resin was studied. Experiments were conducted as a function of the initial concentration of Cu(II) (0.5-10 mM), solution pH (1.0-6.0), HCHO concentration (0-6 vol%), and temperature (15-35 degrees C). It was shown that the amount of exchange of Cu(II), which exists in the form of complexed anions CuL(2-), increased with increasing solution pH and reached a plateau at an equilibrium pH (pH(e)) of 3.5. However, the amount of exchange decreased with increasing HCHO concentration up to 3 vol% but then slightly decreased with a further increase in HCHO concentration. Such effect of added HCHO was determined by the following two factors: the competitive exchange of HCOO(-) anions and the enhanced exchange of Cu(I) in the form of complexed anions CuL(3-). The exchange isotherm obtained at a fixed pH(e) could be well described by the Langmuir equation. The isosteric enthalpy change for the present ion exchange process was also evaluated and discussed.

  7. Theoretical and Experimental Study of Complex Ions from Reactions of Al+ (Cu+) with Amine Molecules

    HU,Zheng-Fa; LUO,Li; HU,Yi-Hua


    The gas phase reactions of metal ions (Al+,Cu+) with amine molecules [CH3NH2=MA,(CH3)2NH=DMA]were investigated using a laser ablation-molecular beam method.The directly associated product complex ions,Al+-MA and Al+-DMA,and the dehydrogenation product ions,Cu+(CH2NH) and Cu+(C2H5N),as well as hydrated ion Cu+(NC2H5·H2O),have been obtained and recorded from the reactions of the metal ions and organic amine molecules,and density functional theory (B3LYP) calculations have been performed to reveal the optimized geometry,energefics,and reaction mechanism of the title reactions with basis set 6-311+G(d,p) adopted.

  8. CPMD simulation of Cu2+ -- phenylalanine complex under micro-solvated environment

    Ganesan, Aravindhan; Wang, Feng; Akola, Jaakko; Larrucea, Julen


    The study combines DFT calculations and CPMD simulations to investigate the structures of phenylalanine-copper (II) ([Phe-Cu]2+) complexes and the micro-solvation processes. ....It is found that the phenylalanine moiety appears to be in the neutral form in isolated and mono-hydrated complexes, but in the zwitterionic form in other hydrated complexes (with n no less than 2). .... The present CPMD simulations reveal that the maximum coordination of Cu2+ in the presence of the Phe ligand does not exceed four: the oxygen atoms from three water molecules and one carboxyl oxygen atom of Phe. Any excess water molecules will migrate to the second solvation shell. Moreover a unique structural motif is present in the lowest energy complexes, which is recognized to be significant in stabilizing the structures of the complexes. .....

  9. Cu(II)-disulfide complexes display simultaneous superoxide dismutase- and catalase-like activities.

    Aliaga, Margarita E; Andrade-Acuña, Daniela; López-Alarcón, Camilo; Sandoval-Acuña, Cristián; Speisky, Hernán


    Superoxide is a potentially toxic by-product of cellular metabolism. We have addressed here the in vitro ability of complexes formed between copper(II) ions and various biologically-occurring disulfides (RSSR: oxidized glutathione, cystine, homocystine and α-lipoic acid) to react with superoxide. The studied complexes were found to react with superoxide (generated by a xanthine/xanthine oxidase system) at rate constants (kCu(II)-RSSR) close to 10(6)M(-1)s(-1), which are three orders of magnitude lower than that reported for superoxide dismutase (SOD) but comparable to that of several other copper-containing complexes reported as SOD mimetics. The interaction between the tested Cu(II)-RSSR and superoxide, led to the generation and recovery of concentrations of hydrogen peroxide and oxygen that were, respectively, below and above those theoretically-expected from a sole SOD mimetic action. Interestingly, oxygen was generated when the Cu(II)-RSSR complexes were directly incubated with hydrogen peroxide. Taken together, these results reveal that the Cu(II)-RSSR complexes not only have the capacity to dismutate superoxide but also to simultaneously act like catalase mimetic molecules. When added to superoxide-overproducing mitochondria (condition attained by its exposure to diclofenac), three of the tested complexes were able (2-4μM), not only to totally restore, but also to lower below the basal level the mitochondrial production of superoxide. The present study is first in reporting on the potential of Cu(II)-disulfide complexes to act as SOD and catalase like molecules, suggesting a potential for these types of molecules to act as such under physiological and/or oxidative-stress conditions.

  10. Discrete and polymeric Cu(II) complexes featuring substituted indazole ligands: their synthesis and structural chemistry.

    Hawes, Chris S; Kruger, Paul E


    Reported here are the syntheses of four indazole-based ligands and the structural characterisation of four Cu(II) complexes derived from them. The ligands 1-(2-pyridyl)-1H-indazole, L1, and 2-(2-pyridyl)-2H-indazole, L2, have been characterised by single crystal X-ray diffraction methods for the first time. The intramolecular structural changes within L1 and L2 that result from the transition from the 1H to the 2H electronic configuration have been delineated. The synthesis of 1H-indazole-6-carboxylic acid, H2L3, and 1H-indazole-7-carboxylic acid, H2L4, is fully described and the structure of H2L4·H2O determined. The structures of two discrete mononuclear complexes {[Cu(L1)2(NO3)]·NO3·1.5H2O}, 1, and {[Cu(L2)2(NO3)]·NO3}, 2, have been determined and their molecular compositions corroborated by solution-based methods. Reaction of Cu(II) with H2L3 generates a 2D coordination polymer, [Cu3(HL3)4(NO3)2(EtOH)2]·3(C6H6)·2(H2O), 3, that features the archetypal [Cu2(OAc)4] paddlewheel motif and 1D channels; whereas reaction with H2L4 gives a discrete complex [Cu(HL4)2]·H2O·MeOH, 4, in which hydrogen bonding interactions link indazole dimers via a water molecule to yield a 1D network.

  11. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    Bergin, David A


    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  12. Spectral characterization and in vitro microbiological activity of new bis-1,8-naphthalimides and their Cu(II) complexes

    Ottaviani, Maria Francesca; Yordanova, Stanislava; Cangiotti, Michela; Vasileva-Tonkova, Evgenia; Coppola, Concetta; Stoyanov, Stanimir; Grabchev, Ivo


    Two novel bis-1,8-naphthalimide derivatives with different substituents at C-4 position, termed L1 and L2, were synthesized and their photophysical properties in organic solvents with different polarity were investigated. Their Cu(II) complexes were also synthesized to be used as antimicrobial agents. The structural properties of [Cu(L1) (NO3)2] and [Cu(L2) (NO3)2] complexes were studied by nuclear magnetic resonance (NMR) and Fourier transform - infrared (FT-IR) spectroscopies. Cu(II) - ligands complexation at different Cu(II)/ligand molar ratios was studied by means of UV-Vis, fluorescence and electron paramagnetic resonance (EPR) spectroscopies. The results indicate the formation of Cu-N4 and Cu-N2O2 coordinations with different structure and stability conditions for the L1 and L2 derivatives. A different solvent at different polarity also affects the structural properties and the range of stability. L1 provided more stable Cu-N4 complexes than L2. [Cu(L1) (NO3)2] also showed stronger antibacterial and antifungal abilities than those of [Cu(L2) (NO3)2]. These results indicate that [Cu(L1) (NO3)2] works as antimicrobial agent to be used in biomedical and agrochemical applications.

  13. Preparation, characterization, and in vitro anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex

    Raza, Aun; Sun, Huifang; Bano, Shumaila; Zhao, Yingying; Xu, Xiuquan; Tang, Jian


    To enhance the aqueous solubility of kamebakaurin (KA), it was complexed with hydroxypropyl-β-cyclodextrin (HP-β-CD). In this study, the interaction KA with HP-β-CD and their inclusion complex behavior were determined by different characterization techniques such as UV-vis, 1H NMR, FT-IR, PXRD and SEM. All the characterization information proved the development of inclusion complex KA/HP-β-CD, and this inclusion complex demonstrated discriminable spectroscopic characteristics and properties from free compound KA. The results demonstrated that the water solubility of KA was remarkably increased in the presence of HP-β-CD. Furthermore, in vitro anti-inflammatory study showed that inclusion complex KA/HP-β-CD maintained the anti-inflammatory effect of KA. These results demonstrate that HP-β-CD will be promisingly employed in the application of water-insoluble anti-inflammatory phytochemicals such as KA.

  14. Dimensionality Variation in Dinuclear Cu(II Complexes of a Heterotritopic Pyrazolate Ligand

    Chris S. Hawes


    Full Text Available Two new Cu(II complexes of the ligand 3-carboxy-5-(2-pyridyl-1H-pyrazole, H2L1, have been prepared and structurally characterized and found to be comprised of a similar [M2L2] dimer motif. Subtle variation in the synthetic conditions allowed isolation of two metal complexes: [Cu2L12(MeOH2], 1, a discrete dimer linked by hydrogen bonding interactions in the solid state, and poly-[Cu2L12], 2, a polymeric material where the dimer motif is linked by carboxylate bridges to give an extended two-dimensional sheet. The selective isolation of each phase by careful synthetic control highlights the subtlety and importance of the underlying synthetic conditions.

  15. Surface complexation modeling of Cu(II adsorption on mixtures of hydrous ferric oxide and kaolinite

    Schaller Melinda S


    Full Text Available Abstract Background The application of surface complexation models (SCMs to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO, pure kaolinite (from two sources and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples.

  16. Chemodynamics of metal complexation by natural soft colloids: Cu(II) binding by humic acid

    Town, R.M.; Duval, J.F.L.; Buffle, J.; Leeuwen, van H.P.


    The chemodynamics of Cu(II) complexation by humic acid is interpreted in terms of recently developed theory for permeable charged nanoparticles. Two opposing electric effects are operational with respect to the overall rate of association, namely, (i) the conductive enhancement of the diffusion of

  17. Effect of formaldehyde on Cu(II) removal from synthetic complexed solutions by solvent extraction.

    Lin, Su-Hsia; Kao, Hsiang-Chien; Su, Hsiu-Ning; Juang, Ruey-Shin


    The effect of formaldehyde (HCHO) on the extraction of Cu(II) from an equimolar EDTA (ethylenediaminetetraacetic acid, H4L) solution with Aliquat 336 in kerosene (a quaternary amine) was examined. Experiments were carried out at different initial concentrations of Cu(II) (1.57-5 mol/m3), solution pH (3.0-8.0), HCHO concentrations (0-3 vol.%), Aliquat 336 concentrations (80-400 mol/m3), and temperatures (15-35 degrees C). It was shown that the distribution ratios (D) of Cu(II), which exists in the form of complexed anions CuL2-, increased with increasing equilibrium pH (pHeq), but reached a plateau at pHeq>4 for the system without HCHO and at pHeq>4.5 for the system with 1 vol.% HCHO. The D values increased with increasing HCHO concentration, likely due to the reduction of Cu(II) to Cu(I) by HCHO in solution. A semi-empirical two-parameter model was proposed to describe the extraction equilibrium, in which the non-ideality in organic phases was considered. The thermodynamic parameters were also evaluated and discussed.

  18. Critical assessment of electron spin resonance studies on Cu(I)-NO complexes in Cu-ZSM-5 zeolites prepared by solid- and liquid-state ion exchange.

    Umamaheswari, V; Hartmann, Martin; Pöppl, Andreas


    Cu(I)-NO adsorption complexes were formed over Cu-ZSM-5 zeolites prepared by (i) solid-state ion exchange of NH(4)-ZSM-5 with CuCl and (ii) liquid-state ion exchange of ZSM-5 with Cu(CH(3)COO)(2). Electron spin resonance spectroscopy revealed the formation of two different Cu(I)-NO species A and B in both systems, whose spin Hamiltonian parameters are comparable with those already reported for the Cu(I)-NO species formed over 66% Cu(II) liquid-state ion-exchanged Cu-ZSM-5 materials. The population of the species A and B differs for the two systems studied. Formation of species B is more favored in the solid-state ion-exchanged Cu-ZSM-5 when compared to the liquid-state exchanged zeolite. The X-, Q- and W-band electron spin resonance spectra recorded at 6 and 77 K reveal the presence of a rigid geometry of the adsorption complexes at 6 K and a dynamic complex structure at higher temperatures such as 77 K. This is indicated by the change in the spin Hamiltonian parameters of the formed Cu(I)-NO species in both the liquid- and solid-state ion-exchanged Cu-ZSM-5 zeolites from 6 to 77 K. Possible models for the motional effects found at elevated temperatures are discussed. The temperature dependence of the electron spin phase memory time measured by two-pulse electron spin-echo experiments indicates, likewise, the onset of a motional process of the adsorbed NO molecules at temperatures above 10 K. The studies support previous assignments where the NO complexes are formed at two different Cu(I) cationic sites in the ZSM-5 framework and highlight that multifrequency electron spin resonance experiments at low temperatures are essential for reliable determination of the spin Hamiltonian parameters of the formed adsorption complexes for further comparison with Cu(I)-NO complex structures predicted by quantum chemical calculations.

  19. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea

    Moffett, James W.; Dupont, Christopher


    Cu speciation was characterized at three stations in the sub arctic NW Pacific and Bering Sea using cathodic stripping voltammetry with the competing ligands benzoylacetone and salicylaldoxime. A single ligand model was fit to the titration data, yielding concentrations throughout the water column of ˜3-4 nM, and conditional stability constants ranging from 10 12.7 to 10 14.1, this range being partly due to the choice of competing ligand. Free Cu 2+ in surface waters was 2-4×10 -14 M, in close agreement with values reported by previous workers in the NE Pacific using anodic stripping voltammetry (ASV). However, those results showed that complexation by strong organic ligands becomes unimportant below 200-300 m, while our data indicated Cu is strongly complexed to depths as great as 3000 m. Free Cu 2+ concentrations in surface waters reported here and in previous work are close to the threshold value where Cu can limit the acquisition of Fe by phytoplankton.

  20. Photoconducting Properties of Film Composites Based on Polyvinyl Butyral and Heterometallic Cu/Mo Complexes

    Davidenko, N. A.; Kokozay, V. N.; Davidenko, I. I.; Buvailo, H. I.; Makhankova, V. G.; Studzinsky, S. L.


    We have synthesized and studied novel photosensitive polymer film composites based on non-photoconducting polyvinyl butyral doped with heterometallic Cu/Mo complexes. We have established that these composites have photoconducting and photovoltaic properties and are characterized by hole-type photoconductivity. The photocurrent and the photo-EMF are higher for composites in which complexes are used that have a shorter distance between nearest-neighbor metallic copper centers, which is explained by better conditions for transport of nonequilibrium holes.

  1. In silico properties characterization of water-soluble γ-cyclodextrin bi-capped C60 complex

    Cao, Ruyin; Wu, Shanshan


    Cyclodextrin-related host-guest encapsulation is pivotal to modulate the solubility of C60, thereby promoting its potential therapeutic applications. Here we present a computational study on γ-cyclodextrin bi-capped C60 complex, probing characteristics for all the possible stoichiometry in aqueous...

  2. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Hiroki Iwanaga


    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  3. Fac-mer equilibria of coordinated iminodiacetate (ida2-) in ternary CuII(ida)(H-1B)- complex formation (B = imidazole, benzimidazole) in aqueous solution

    Susmita Bandyopadhyay; G N Mukherjee


    pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2-) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes of the types, Cu(ida), Cu(ida)(OH)-, (ida)Cu(OH)Cu(ida)-, Cu(B)2+, Cu(H-1B)+, Cu(ida)(H-1B)-, (ida)Cu(B)Cu(ida) and (ida)Cu(H-1B)Cu(ida)-. Formation constants of the complexes at 25 ± 1° at a fixed ionic strength, = 0.1 mol dm-3 (NaNO3) in aqueous solution were evaluated and the complex formation equilibria were elucidated with the aid of speciation curves. Departure of the experimental values of the reproportionation constants (log Cu) of ternary Cu(ida)(H-1B)- complexes from the statistically expected values, despite their formation in appreciable amounts at equilibrium, were assigned to fac(f)-mer(m) equilibria of the ida2- ligand coordinated to CuII, as the N-heterocyclic donors, (H-1B)-, coordinate trans- to the N-(ida2-) atom in the binary Cu(ida) complex to form the ternary Cu(ida) (H-1B)- complexes.

  4. Polymeric material prepared from Schiff base based on O-carboxymethyl chitosan and its Cu(II) and Pd(II) complexes

    Baran, Talat; Menteş, Ayfer


    In this study, a new eco-friendly Schiff base based on O-carboxymethyl chitosan ([OCMCS-7a]) and its copper(II) and palladium(II) complexes were synthesized. Characterizations of [OCMCS-7a] and its metal complexes were conducted using FTIR, 1H NMR, 13C NMR, TG/DTG, XRD, SEM-EDAX, ICP, UV-VIS, GC-MS, elemental analysis, magnetic moment and molar conductivity measurements. The degree of substitution (DS) of [OCMCS-7a] was determined by elemental analysis to be 0.44. It was shown by the solubility test that [OCMCS-7a] was completely soluble in water. Surface images of chitosan, [OCMCS-7a] and its Cu(II) and Pd(II) complexes were investigated using the SEM-EDAX technique. Their thermal behaviors and crystallinities of the synthesized complexes were determined by TG/DTG and X-ray powder diffraction techniques, respectively. The metal contents of the obtained complexes were determined using an ICP-OES instrument. From the analyses, it was noted that the thermal stabilities and crystallinities of [OCMCS-7a] and its complexes decreased compared to chitosan. As a consequence of surface screening, it was also noted that the surface structure of the chitosan was smoother than that of the obtained compounds.

  5. In silico properties characterization of water-soluble γ-cyclodextrin bi-capped C60 complex: free energy and geometrical insights for stability and solubility.

    Cao, Ruyin; Wu, Shanshan


    Cyclodextrin-related host-guest encapsulation is pivotal to modulate the solubility of C60, thereby promoting its potential therapeutic applications. Here we present a computational study on γ-cyclodextrin bi-capped C60 complex, probing characteristics for all the possible stoichiometry in aqueous solution. The potential of mean force (PMF) delineating the association process was computed, while the geometrical features of corresponding thermodynamically-favored stoichiometry are captured by molecular dynamics simulations, which provides insightful explanations to previous experimental and computational results. PMF partitioning indicates that intermolecular van der Waals dispersion forces are essential for molecular recognition and self-assembly, and the hydrogen-bonding interactions play a key role in dissolving the complex in water.

  6. Electron Transfer Mediators for Photoelectrochemical Cells Based on Cu(I Metal Complexes

    Michele Brugnati


    Full Text Available The preparation and the photoelectrochemical characterization of a series of bipyridine and pyridyl-quinoline Cu(I complexes, used as electron transfer mediators in regenerative photoelectrochemical cells, are reported. The best performing mediators produced maximum IPCEs of the order of 35–40%. The J-V curves recorded under monochromatic light showed that the selected Cu(I/(II couples generated higher Vocs and fill factors compared to an equivalent I-/I3- cell, due to a decreased dark current.

  7. Synthesis, characterization and phosphotriesterase mimetic activity of some Zn(II) and Cu(II) complexes

    Mamata Singh; Ray J Butcher; Jerry P Jasinski; James A Golen; Govindasamy Mugesh


    We report here the synthesis and characterization of a few phenolate-based ligands bearing tertamino substituent and their Zn(II) and Cu(II) metal complexes. Three mono/binuclear Zn(II) and Cu(II) complexes [Zn(L1)(H2O)].CH3OH.H2O (1) (H2 L1 = 6,6′-(((2-dimethylamino)ethylazanediyl)bis(methylene))bis(2, 4-dimethylphenol), [Zn2(L2)2] (2) (H2L2 = 2,2′-(((2-dimethylamino)ethyl)azanediyl)bis(methylene)bis(4-methylphenol) and [Cu2(L3)2.CH2 Cl2] (3) (H2L3 = (6,6′-(((2-(diethylamino)ethyl)azanediyl)bis(methylene)) bis(methylene))bis(2,4-dimethylphenol) were synthesized by using three symmetrical tetradendate ligands containing N2O2 donor sites. These complexes are characterized by a variety of techniques including; elemental analysis, mass spectrometry, 1H, 13C NMR spectroscopic and single crystal X-ray analysis. The new complexes have been tested for the phosphotriesterase (PTE) activity with the help of 31P NMR spectroscopy. The 31P NMR studies show that mononuclear complex [Zn(L1)(H2O)].CH3OH.H2O (1) can hydrolyse the phosphotriester i.e., p-nitrophenyl diphenylphosphate (PNPDPP), more efficiently than the binuclear complexes [Zn2(L2)2] (2) and [Cu2(L3)2.CH2Cl2] (3). The mononuclear Zn(II) complex (1) having one coordinated water molecule exhibits significant PTE activity which may be due to the generation of a Zn(II)-bound hydroxide ion during the hydrolysis reactions in CHES buffer at pH 9.0.

  8. Dielectric functionalities of anatase phase titanium dioxide nanocrystals synthesized using water-soluble complexes

    Kalaiarasi, S.; Jose, M.


    TiO2 nanostructures were successfully prepared via hydrothermal technique using water-soluble complexes. The phase, functional groups, and morphological analysis of the synthesized nanostructures were characterized using powdered X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analyses, respectively. Impedance spectroscopy was applied to investigate the dielectric behavior of nanostructured TiO2 at anatase phase. The average grain size of polymorphic anatase phase TiO2 NPs was found to be 18 nm using Debye-Scherrer equation. More significantly, synthesized nanostructures ensure predominant dielectric constant at Curie temperature, with less dielectric loss 0.026 (1 kHz) and constant chemical capacitance (67 pF). In addition, it was inferred that maximum activation energy (0.5 eV) was encountered at mid frequency region and subsequently, the dielectric relaxation behavior was investigated through dielectric modulus formulation. These results indicate that the synthesized nanoparticles can be an efficient candidate for applications in microelectronics when operated at mid frequency region at 100 °C.

  9. Spectroscopic, thermal, catalytic and biological studies of Cu(II) azo dye complexes

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Shoair, A. F.; Hussein, M. A.; El-Boz, R. A.


    New complexes of copper(II) with azo compounds of 5-amino-2-(aryl diazenyl)phenol (HLn) are prepared and investigated by elemental analyses, molar conductance, IR, 1H NMR, UV-Visible, mass, ESR spectra, magnetic susceptibility measurements and thermal analyses. The complexes have a square planar structure and general formula [Cu(Ln)(OAc)]H2O. Study the catalytic activities of Cu(II) complexes toward oxidation of benzyl alcohol derivatives to carbonyl compounds were tested using H2O2 as the oxidant. The intrinsic binding constants (Kb) of the ligands (HLn) and Cu(II) complexes (1-4) with CT-DNA are determined. The formed compounds have been tested for biological activity of antioxidants, antibacterial against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and yeast Candida albicans. Antibiotic (Ampicillin) and antifungal against (Colitrimazole) and cytotoxic compounds HL1, HL2, HL3 and complex (1) showed moderate to good activity against S. aureus, E. coli and Candida albicans, and also to be moderate on antioxidants and toxic substances. Molecular docking is used to predict the binding between the ligands with the receptor of breast cancer (2a91).

  10. Models of Al-, Fe-, Cu- and Zr-alloys corrosion based on thermodynamic estimates of corrosion product solubilities in water coolants of nuclear power units

    Kritskij, V.G. [VNIPIET, S.-Petersburg (Russian Federation)


    In this report an effort is made to provide thermodynamic explanation of the data on the corrosion of Fe-, Cu-, Zr- and Al-based construction materials in water-cooled circuits of NPPs at concrete water chemistry conditions. Physicochemical models of corrosion in chemically desalinized water are also presented using a complete set of equilibrium conditions in the system CPs - water coolant. At the 1st stage of the problem solution the solubility was defined for the system `corrosion products (Me{sub n}O{sub m}; Me(OH){sub k})) - water (H{sub 2}O) - gas (H{sub 2}, O{sub 2}) - additives (HCl, KOH) for pH correction` in the range of 25-350degC. The 2nd stage of our work includes the formation of the database on the kinetics and rate of metal corrosion in water - parabolic uniform process for Fe-, Cu- and Al-alloys; linear `post-transitional` process for Zr-alloys. The results obtained allow to establish a correlation between the corrosion parameters and the equilibrium solubility of that phase of CPs which remains stable during corrosion tests. (author)

  11. Analysis of the [CuL n ]2+ and [CuG n ]2+ ( n = 2-4) complex structures: Comparison with CID experiment and DFT calculation

    Zhang, Shuqin; Liu, Hai; Cheng, Ping; Ren, Dajun; Gong, Xiangyi


    The collision-induced dissociation (CID) of the copper-cytidine complex [CuL n ]2+ (L is cytidine, n = 2-4) shows that the inter-ligand proton transfer (PT) is the dominating process. This is quite different from the CID of copper-guanosine complex [CuG n ]2+ (G is guanosine, n = 2-4), in which the inter-electron transfer (ET) dominates. The possible structures and zero-point energies for the majority of these structures were calculated using density functional theory (DFT) methods, and the Δ G Gibbs energy analysis of the CID processes also demonstrated the difference between the two complex structures. The results show that the steric hindrance effects and the intermolecular hydrogen bonds are the main reasons that cause the coordination between Cu(II) and the ligands of the cytidine and guanosine molecule. Cu(II) coordinates 4 ligands for [CuL n ]2+, forming the primary order sphere and presenting non-covalent bonding of the ligands. A greater steric effect was observed in the purine ring, which could be unstable if the guanosine molecules distributed around the copper ions to form coordination compounds. The [CuG n ]2+ complex tends to form intermolecular hydrogen bonds to enhance its structural stability by amino N and carbonyl O of purine ring.

  12. Cu(II) complexation by "non-coordinating" N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES buffer).

    Sokołowska, Magdalena; Bal, Wojciech


    The combined potentiometric and spectroscopic studies of interactions of N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) with Cu(II) demonstrated that this popular buffer, commonly labelled as "non-coordinating" forms a CuL+ complex, with the logbeta(CuL) value of 3.22. This complex undergoes alkaline hydrolysis above pH 6, resulting in Cu(OH)2 precipitation. However, the presence of HEPES at a typical concentration of 100 mM at pH 7.4 elevates the apparent binding constant, being determined for a complex of another ligand, by a factor of 80. HEPES does not form ternary complexes with aminoacids Ala, Trp, and His, but may do so with other bioligands, such as nucleotides. Therefore, HEPES can still be recommended for Cu(II) studies in place of other common buffers, such as Tris and phosphate, but appropriate corrections and precautions should be applied in quantitative experiments.

  13. Speciation of organic-soluble europium(III) α1-Wells-Dawson complexes.

    Burton-Pye, Benjamin P; Francesconi, Lynn C


    In this contribution, we provide a comprehensive understanding of the speciation of the Eu(III) complex of the lacunary Wells-Dawson isomer, α1-[P(2)W(17)O(61)](10-) in organic media. The Wells-Dawson polyoxometalate, α1-[P(2)W(17)O(61)](10-) (abbreviated as α1) forms well-defined complexes with europium(III) (and other lanthanide(III)) ions in aqueous solution of predominantly 1 : 1 stoichiometries. The 8-coordinate Eu(III) ion is bound to 4 basic terminal oxygens (O(α1)) and four water molecules (O(H(2)O)) that complete the coordination sphere. Tetra-n-butylammonium (TBA) cations are employed to render the [(H(2)O)(4)Eu(α1-P(2)W(17)O(61))](7-) (Eu-α1) complex soluble in acetonitrile. Europium(III) provides the unique opportunity to employ luminescence spectroscopy and multinuclear NMR to probe the coordination environment. We interrogate the innermost coordination sphere of the Eu(III) ion in acetonitrile solution and in MeCN/H(2)O mixtures. We provide evidence toward the fractional displacement and coordination of acetonitrile within the TBA salts, that is consistent with recent EXAFS data. (31)P NMR and Stern-Volmer quenching studies suggest that dimerization to the 2 : 2 species is negligible in acetonitrile and MeCN-H(2)O mixtures. The decreasing transition energy in the excitation spectroscopy of the TBA-Eu-α1 analog upon dilution is consistent with a nephelauxetic effect, which is attributed to a slight increase in covalency upon replacement of water with acetonitrile. Determination of the number of bound waters (q) is also consistent with acetonitrile-water exchange. The reactivity of the 1 : 1 TBA-Eu-α1 with heterocyclic aromatic amines (1,10-phenanthroline, phen, and 2,2' bipyridine, bipy) in MeCN was probed by titrations monitoring the Eu(III) emission upon sensitization by the "antenna ligands". Binding constants for the products 1 : 1 TBA(x-y)H(y)[(Phen)(H(2)O)(2)Eu(α1-P(2)W(17)O(61))] and 1 : 2 TBA(x-y)H(y)[(Phen)(2)Eu(α1-P(2)W(17)O(61

  14. A computational study of structural and magnetic properties of bi- and trinuclear Cu(II) complexes with extremely long Cu-Cu distances

    Baryshnikov, Gleb V.; Minaev, Boris F.; Baryshnikova, Alina T.; Ågren, Hans


    Three recently synthesized copper(II) complexes with aroylhydrazones of trifluoroacetic and benzenecarboxylic acids (Dalton Trans., 2013, 42, 16878) have been computationally investigated by density functional theory within the broken symmetry approximation accounting for empirical dispersion corrections. A topological analysis of electron density distributions has been carried out using Bader's ;quantum theory of atoms in molecules; formalism. The calculated values of spin-spin exchange for the studied dinuclear complexes indicate a very weak ferromagnetic coupling of the unpaired electrons in good agreement with experimental data. At the same time, the trinuclear copper(II) complex possesses a low-spin doublet ground state with one ferromagnetic and two antiferromagnetic spin projections between the triangular-positioned Cu2+ ions. The estimated values of the coupling constants for the spin-spin exchange in this trinuclear complex are in a good agreement with experimental observations. The calculations support a mechanism of exchange coupling through the aromatic links in these strongly spin-separated systems.

  15. Properties of complexes of galactomannan of Leucaena leucocephala and Al3+, Cu2+ and Pb2+.

    Lombardi, Simone Cristina; Mercê, Ana Lucia Ramalho


    The use of biopolymers in many industrial processes is on the increase. The different interactions of biopolymers and electrolytes either in aqueous solutions or in solid state provide different physico-chemical properties and a simple correlation cannot be established. In this study, in order to determine the properties of the complexes of galactomannan of Leucaena leucocephala (gal) with the metal ions Al3+ and Pb2+, toxic elements and Cu2+, essential, the logs of the binding constants of the complexes formed in the aqueous solutions were calculated. Their rheological properties, their thermal behavior, the infrared characteristics and shape and form of the films formed by those complexes in solid state were also determined. The aqueous solutions properties have shown a better complexation between gal and Al3+. The species distribution diagrams have shown an existence of complex species going from acidic to basic pH values. Infrared spectra have proved the complexations as well as the viscosity studies. Thermal stabilities in general were smaller in the complexed species than in the native biopolymers and the films obtained from aqueous solutions showed for Cu2+ the most different morphology compared to the biopolymer itself. A use can be suggested of this biopolymer in environmental remediations besides its already established industrial uses.

  16. High-order Cu(II) chloro-complexes in LiCl brines: Insights from density function theory and molecular dynamics

    Li, Hui-Ji; Yi, Hai-Bo; Xu, Jia-Jia


    Cu(II) complexation by chloride is relevant to the transport of copper in near-surface geologic environments, yet the existence of high-order Cu(II) chloro-complexes still remains in dispute. In this study, the structure characteristics and stabilities of [CuClx]2-xaq (x = 3, 4, 5) complexes have been investigated using density functional theory (DFT) methods and molecular dynamics (MD) simulations. [CuCl3]- and [CuCl4]2- species can both be tracked, while the [CuCl5]3-aq complex cannot be recorded during MD simulations of trace Cu2+ in chloride-rich brines. DFT calculations indicate that contact ion pair (CIP) conformers of [CuCl3]- species are less stable than its solvent separated ion pair (SSIP) conformers, in which one Cl- stays in the second coordination sphere of the centered Cu2+. MD simulations also reveal that the SSIP conformer is apt to appear in the aqueous solution than its CIP conformer. It seems that the third Cl- is more likely in the second coordination shell of center Cu2+ in [CuCl3]-. Meanwhile, the characteristic peak around 385 nm resolved in UV-Vis spectra experiments, which was attributed to the [CuCl3]- complex, could also be resulted from some SSIP structures of the [CuCl3]- complex. In MD simulations, the complex [CuCl4]2-aq is found more stable than [CuCl3]-aq. The surrounding water molecules around [CuClx]2-xaq (x = 3, 4) enhance their stabilities in Cl- brines, especially for [CuCl4]2-aq. The hydration shell of [CuCl4]2-aq species is more intact than that of [CuCl3]2-aq, and the residence time of a water molecule in the second coordination sphere of Cu ion in the [CuCl4]2-aq complex is also obviously longer than that of [CuCl3]-aq. The [CuCl4]2-aq complex can even be recorded in the less concentrated (6.33 m) Cl- solution, while the [CuCl3]-aq complex is tracked only in the 16.32 m Cl- brine. Meanwhile, the possibilities of [CuCl3]-aq and [CuCl4]2-aq complexes found in 16.32 m Cl- solutions both decrease with increasing temperature

  17. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI)

    Felipe-Sotelo, M., E-mail: [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Edgar, M. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom); Beattie, T. [MCM Consulting. Täfernstrasse 11, CH 5405 Baden-Dättwil (Switzerland); Warwick, P. [Enviras Ltd., LE11 3TU Loughborough, Leicestershire (United Kingdom); Evans, N.D.M.; Read, D. [Department of Chemistry, Loughborough University, LE11 3TU Loughborough, Leicestershire (United Kingdom)


    Highlights: • Citrate increases the solubility of Ni, Th and U between 3 and 4 orders of magnitude. • Theophrastite is the solubility controlling phase of Ni in 95%-saturated Ca(OH){sub 2}. • U(VI) and Ni may form Metal-citrate-OH complexes stabilised by the presence of Ca{sup 2+}. - Abstract: The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1 M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH){sub 2} solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2–4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH){sub 2} (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca{sup 2+}. Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes.

  18. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with {beta}-cyclodextrin polymer

    Zhang Wang; Chen Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Diao Guowang, E-mail: [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)


    Highlights: > Water-soluble Fc-{beta}-CD polymer inclusion complex is prepared with a supermolecular method. > Fc-{beta}-CDP shows better aqueous solubility remarkably than Fc and Fc-{beta}-CD. > It also reserves the electrochemical properties of Fc-{beta}-CDP in aqueous solution. > It is determined the electrochemical constants and dissociated constant. > The method opens up aqueous applications of insoluble organic compounds in electrochemistry. - Abstract: A new water-soluble inclusion complex of ferrocene (Fc) with {beta}-cyclodextrin polymer ({beta}-CDP) was prepared by a facile strategy and characterized by {sup 1}H NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV-vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with {beta}-cyclodextrin (Fc-{beta}-CD), the solubility of ferrocene-{beta}-cyclodextrin polymer (Fc-{beta}-CDP) was greatly enhanced due to the water-soluble {beta}-CDP host. The ratio of {beta}-cyclodextrin ({beta}-CD) unit in {beta}-CDP to Fc was determined as 1:1. At 25 deg. C, the dissociated constant of Fc-{beta}-CDP was measured as 3.65 mM by UV-vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-{beta}-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as 3.52 x 10{sup -7} cm{sup 2} s{sup -1} and 3.93 x 10{sup -7} cm{sup 2} s{sup -1}. The resulting value of standard rate constant was measured as 1.95 x 10{sup -3} cm s{sup -1}. The diffusion activation energy was calculated as 21.8 kJ mol{sup -1}.

  19. Syntheses and Characterizations of Cu-Ln Heterobinuclear Complexes with Schiff Base from 3-Formylsalicylic Acid and Ethylene Diamine


    Seven heterobinuclear complexes of Cu-Ln with N,N'-bis(3-carboxylsali cylidene) ethylenediamine(ES) were synthesized and characterized by elemental analysis, molar conductivity, thermogravimetry, IR and electronic spectra. The room tempeature magnetic moments show that there are basically no spin exchange interactions between the ions of Cu2+ and Ln3+ in the CuLnESCl·nH2O compounds.

  20. Electronic structure of the [MNH2]+ (M = Sc-Cu) complexes.

    Hendrickx, Marc F A; Clima, Sergiu


    B3LYP geometry optimizations for the [MNH2]+ complexes of the first-row transition metal cations (Sc+-Cu+) were performed. Without any exception the ground states of these unsaturated amide complexes were calculated to possess planar geometries. CASPT2 binding energies that were corrected for zero-point energies and including relativistic effects show a qualitative trend across the series that closely resembles the experimental observations. The electronic structures for the complexes of the early and middle transition metal cations (Sc+-Co+) differ from the electronic structures derived for the complexes of the late transition metal cations (Ni+ and Cu+). For the former complexes the relative higher position of the 3d orbitals above the singly occupied 2p(pi) HOMO of the uncoordinated NH2 induces an electron transfer from the 3d shell to 2p(pi). The stabilization of the 3d orbitals from the left to the right along the first-row transition metal series causes these orbitals to become situated below the HOMO of the NH2 ligand for Ni+ and Cu+, preventing a transfer from occurring in the [MNH2]+ complexes of these metal cations. Analysis of the low-lying states of the amide complexes revealed a rather unique characteristic of their electronic structures that was found across the entire series. Rather exceptionally for the whole of chemistry, pi-type interactions were calculated to be stronger than the corresponding sigma-type interactions. The origin of this extraordinary behavior can be ascribed to the low-lying sp2 lone pair orbital of the NH2 ligand with respect to the 3d level.

  1. Insulin-sensitizing and beneficial lipid-metabolic effects of the water-soluble melanin complex extracted from Inonotus obliquus.

    Lee, Jung-Han; Hyun, Chang-Kee


    Inonotus obliquus has been traditionally used for treatment of metabolic diseases; however, the mechanism remains to be elucidated. In this study, we found that the water-soluble melanin complex extracted from I. obliquus improved insulin sensitivity and reduced adiposity in high fat (HF)-fed obese mice. When the melanin complex was treated to 3T3-L1 adipocytes, insulin-stimulated glucose uptake was increased significantly, and its phosphoinositide 3-kinase-dependent action was proven with wortmannin treatment. Additionally, dose-dependent increases in Akt phosphorylation and glucose transporter 4 translocation into the plasma membrane were observed in melanin complex-treated cells. Adiponectin gene expression in 3T3-L1 cells incubated with melanin complex increased which was corroborated by increased AMP-activated protein kinase phosphorylation in HepG2 and C2C12 cells treated with conditioned media from the 3T3-L1 culture. Melanin complex-treated 3T3-L1 cells showed no significant change in expression of several lipogenic genes, whereas enhanced expressions of fatty acid oxidative genes were observed. Similarly, the epididymal adipose tissue of melanin complex-treated HF-fed mice had higher expression of fatty acid oxidative genes without significant change in lipogenic gene expression. Together, these results suggest that the water-soluble melanin complex of I. obliquus exerts antihyperglycemic and beneficial lipid-metabolic effects, making it a candidate for promising antidiabetic agent.

  2. An experimental study on the solubility of copper bichloride in water vapor

    SHANG LinBo; BI XianWu; HU RuiZhong; FAN WenLing


    Using the solubility method, the solubility of CuCl2 in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 330-370℃ and pressures of 4.2-10 MPa. The results have shown that hydration could significantly enhance copper solubility and the concentrations of copper were positively correlated with PH2O. The solubility of copper in vapor phase increased with increasing PH2O at the constant temperature. CuCl2 was transported as hydrated species CuCl2(H2O)ngas in water vapor. The formation of complexes is proposed to be the result of the following reaction:CuCl2solid + nH2Ogas = CuCl2 (H2O)ngas The hydration number n decreased slightly with increasing temperature. Statistical hydration numbers are 4.0, 3.6 and 3.3 at 330, 350 and 370℃, respectively.

  3. ESR spectra studies of Cu(Ⅱ) 2,4-dihydroxybenzaldehyde tyrosine complex

    陈德余; 史卫良


    A novel Schiff base derived from 2,4-dihydroxybenzaldehyde and tyrosine and its copper(Ⅱ) complex have been synthesized and charcterized. The composition of the complex is K[CuL] ·H2O, where L= H11C16NO5. ESR spectra of the coper(H) complex were investigated at different temperatures and in various solvents. The second order effect and the relaxation effect were observed in the solution spectrum at room temperature, which was satisfactorily explained by spin Hamiltonial. The bonding parameters of coper(Ⅱ) complex were calculated using spectral parameters from ESR spectra at low temperature. Its bonding characterization and stability were disscussed. The result shows that the in-plane σ-bond and the in-plane π-bond in the complex all play an important role.

  4. Enhancement of Solubility and Antioxidant Activity of Some Flavonoids Based on the Inclusion Complexation with Sulfobutylether β-Cyclodextrin

    Kwon, Yong Eun; Kim, Hyun Myung; Jung, Seun Ho [Konkuk University, Seoul (Korea, Republic of); Park, Se Yeon [Dongduk Women' s University, Seoul (Korea, Republic of)


    β-CD and SBE-β-CD functioned as a solubilizing agent against three flavonoids. SBE-β-CD is more efficient than native β-CD in solubility enhancement of tested flavonoids. All three tested flavonoids have antioxidant ability. Flavonoid-CD complex positively affected the antioxidant activity comparing with free flavonoids. Throughout this research, SBE-β-CD showed better complexation capacity for the solubility enhancement and bioavailability of tested flavonoids comparing with native β-CD. Flavonoids are polyphenolic photochemicals generally found in plants, foods, and beverages. They contribute to plant colors in fruit, leaves providing a wide spectrum of color from red to blue in flowers. Flavonoids have many good physiological activities such as the antioxidant, antitumor, and antibacterial activities which have been a focus of the attention of many researchers. There are four subgroups of flavonoids, flavone, flavonol, flavanone, and isoflavone, according to their chemical structure.

  5. Synthesis, structures, and magnetic properties of tetranuclear CuII-LnIII complexes.

    Costes, Jean-Pierre; Auchel, Magali; Dahan, Françoise; Peyrou, Viviane; Shova, Sergiu; Wernsdorfer, Wolfgang


    The copper(II)-gadolinium(III) and copper(II)-terbium(III) complexes studied in this report derive from disymmetric trianionic ligands abbreviated H3Li (i = 4-6). These ligands are obtained through reaction of different aldehydes with "half-units" having an amide function, the latter resulting from the monocondensation of different diamines with phenyl 2-hydroxy-3-methoxybenzoate. Upon deprotonation, the Li ligands (i = 4-10) possess an inner N2O2 coordination site with one amido, one imine, and two phenoxo functions, an outer O2O2 or O2O coordination site, and an amido oxygen atom positioned out of these two sites. The trianionic character of such ligands yields original anionic complexes in the presence of copper(II) or nickel(II) ions, with a 1/1 L/M stoichiometry. The crystal and molecular structures of four complexes, two 3d (1, 5) and two 3d-4f (12, 13) complexes, have been determined. Complex 1 crystallizes in the monoclinic space group C2/c: a = 27.528(2) A, b = 7.0944(7) A, c = 22.914(2) A, beta = 92.130(6) degrees , V = 4471.9(7) A(3), Z = 8 for C(21.5)H(27)CuKN(2)O(6.5). Complex 5 crystallizes in the monoclinic space group P2(1)/n (No. 14): a = 11.0760(9) A, b = 21.454(2) A, c = 15.336(1) A, beta = 101.474(1) degrees , V = 3571.5(5) A(3), Z = 4. Complex 12 crystallizes in the triclinic space group P (No. 2): a = 8.682(2) A, b = 11.848(2) A, c = 11.928(2) A, alpha = 81.77(3) degrees , beta = 89.17(3) degrees , gamma = 85.49(3) degrees , V = 1210.6(4) A(3), Z = 2 for C20H22CuN5O11Tb. Complex 13 belongs to the monoclinic space group C2/c: a = 25.475(5)A, b = 12.934(3)A, c = 15.023(3) A, beta = 91.06(3) degrees , V = 4949.02A3, Z = 8 for C21H25CuN4O12Tb. The structural determinations confirm that the dinuclear entities involved in 12 and 13 are disposed in a head-to-tail arrangement to give tetranuclear complexes in which the copper and lanthanide ions are positioned at the vertexes of a rectangle. In the [Cu-Gd]2 species, there are two different

  6. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes.

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan


    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of K(b), 5.21×10(4)M(-1) that are higher than that obtained for 2 (red-shift, 2 nm; K(b), 1.73×10(4)M(-1)) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the E(pc) and E(0)' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HO()) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  7. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh


    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®

  8. Structure, properties and application to water-soluble coatings of complex antimicrobial agent Ag-carboxymethyl chitosan-thiabendazole

    XIA Jin-lan; WANG Chun; NIE Zhen-yuan; Peng An-an; Guan Xin


    The structure, properties and application to water-soluble coatings of a new complex antimicrobial agent Ag-carboxylmethyl citosan-thiabendazole (Ag-CMCTS-TBZ) prepared from different materiel ratios were reported. The silver ions were preferably coordinated with the free -NH2 groups and the -OH groups of secondary alcohol and carboxyl in CMCTS. TBZ preferably bonded to carboxyl group in CMCTS by electrostatic force and hydrogen bonding. Increase in silver ions content in the complex agent improved to some limited extent the antibacterial activity, but enhanced coloring and cost of the complex agent. Increase in TBZ content resulted in increase of antifungal activity, but decrease of water solubility of the complex agent. The antimicrobial MICs of the complex agent to Esherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus niger, Mucor sp. were 20-80, 15-60, 20-55, 40-250, and 400-1 700 mg/kg, respectively. Addition of 0.1% of this complex agent to acrylic emulsion paint made the paint without substantial change in color, luster, viscosity, odor or pH value, but with an excellent and chronically persisting broad-spectra antimicrobial activity.

  9. Heavy metal (Zn and Cu) complexation and molecular size distribution in wastewater treatment plant effluent.

    Chaminda, G G T; Nakajima, F; Furumai, H


    The size distributions of zinc and copper species in the effluent of a wastewater treatment plant were determined by a combination of ultrafiltration and chelating disk cartridge fractionation. The results showed that 75-87% of total Zn and 84-86% of total Cu were strongly complexed or particle-bound in the final effluents. It was also found that the major part of Cu was bound to ligands in the < 500 Da fraction while the trend for Zn was not so clear and exhibited significant seasonal variability. Labile Cu and Zn were detected not only in the smallest fraction (< 500 Da) but also in the larger fractions. It meant that the labile species in the effluent were not equivalent to free metal ions. Conditional stability constants and ligand concentrations were also determined from the measured metal concentrations by square wave anodic stripping voltammetry. Existence of two types of ligand for each metal was inferred from the experimental data. Conditional stability constant obtained for the stronger type Ligand of Zn was higher than that of Cu, although the estimated Ligand concentrations were almost similar.

  10. Complexation of ibuprofen with water soluble p-sulfonatocalix [4]arene: A potential candidate for drug delivery applicatio.

    Khokhar, Tahira S; Memon, Shahabuddin; Panhwar, Qadeer K; Memon, Fakhar N; Memon, Ayaz A; Samejo, Muhammad Qasim; Muneer, Saba; Tulu, Metin


    Complexation of ibuprofen with water soluble p-sulfonatocalix[4]arene (3) was evaluated. Both molecules exhibit a host and guest type complexation. pH, complex stoichiometry and binding constant were determined by UV-Vis and FT-IR spectroscopy. The maximum complexation of 3 with ibuprofen occurs at pH 2. Stability constant values (9.897) show that there is favorable complex formed due to vital role of p-sulfonatocalix[4]arene, while the thermodynamic parameters, i.e. δG, ΔH and δS have been found as -24.09 KJ/mol, 0.012 KJ/mol and 0.12 KJ/mol. K, respectively. The results show that 3 has efficiency to carry the drug at particular conditions and can be used for drug delivery as a carrier.

  11. Synthesis, Structure and Characterization of Two-dimensional Network Copper Complex [ Cu3 (nta) 2(azpy) 2(H2O)2]· 6H2O

    LI,Bao-Long(李宝龙); XU,Yan(徐艳); LIU,Qi(刘琦); WANG,Hua-Qin(王化勤); XU,Zheng(徐正)


    The copper(Ⅱ) complex [Cu3(nta)2(azpy)2(H2O)2] @6H2O(nta= nitrilotriacetate, azpy= 4,4'-azobispyridine) has been synthesized and characterized. The X-ray analysis reveals that there are two kinds of copper(Ⅱ) coordination environments.Cu(1) has a distorted square plane symmetry and Cu(2) has a distorted octahedral symmetry. Cu(1)is linked to Cu(2)through nta and bound to Cu(1C) by azpy, and Cu(2) islinked to Cu(2A) through azpy, which extends to two-dimensional network with large rhombus 1.2 nm× 1.7 nm.

  12. Active-site structure of the soluble quinoprotein glucose dehydrogenase complexed with methylhydrazine : A covalent cofactor-inhibitor complex

    Oubrie, Arthur; Rozeboom, Henriëtte J.; Dijkstra, Bauke W.


    Soluble glucose dehydrogenase (s-GDH) from the bacterium Acinetobacter calcoaceticus is a classical quinoprotein. It requires the cofactor pyrroloquinoline quinone (PQQ) to catalyze the oxidation of glucose to gluconolactone, The precise catalytic role of PQQ in s-GDH and several other PQQ-dependent

  13. Synthesis, structure, photophysical and catalytic properties of CuI-Iodide complexes of di-imine ligands

    Mondal, Jahangir; Ghorai, Anupam; Singh, Sunil K.; Saha, Rajat; Patra, Goutam K.


    Two new multifunctional CuII based complexes [CuI(L1)] (1) and [Cu2(μ-I)2(L2)] (2) with bidentate N-N donor ligands L1 and imino-pyridyl ligand L2 have been synthesized and characterized by elemental analysis, IR, UV-Vis, NMR and single crystal X-ray crystallography. The bidentate di-imine ligand (L1) forms monomeric CuI complex (1) whereas the bis-bidentate di-imine ligand (L2) favours the formation of dimeric CuI complex (2) in association with two bridging iodides. Structural analysis reveals that in complex 1 each monomeric units are connected by π⋯π and C-H⋯π interactions to form 3D supramolecular structure whereas in complex 2 each molecules are connected by only π⋯π interactions to form 3D supramolecular structure. The photoluminescence properties of the complexes have been studied at room temperature. Theoretical analysis shows that HOMO is focused on the Cu and iodides while LUMO is focused on di-imine ligands and the luminescence behaviour arises due to metal to ligand charge transfer (MLCT) and halide to ligand charge transfer (XLCT). The complexes 1 and 2 are effective catalysts for the synthesis of 2-substituted benzoxazoles.

  14. Synthesis and Spectroscopic Characterization of New Ligand and Its Pd(II, Cu(II Metal Complexes

    Isam Hussain Al-Karkhi


    Full Text Available A novel Schiff base ligand containing nitrogen and sulfur donor atoms was synthesized by condensing thioamide (TA with imidothioic acid (IT to form 1, 4 dithiane-2, 3-diamine (TAIT. Metal complexes of this ligand were prepared using Cu (II chloride dihydrates and Pd (III chloride. These complexes have been characterized using various physico-chemical and spectroscopic techniques. Based on physico-chemical and spectroscopic analyses, the structure of Cu (II complex is expected to be octahedral, while Pd (II complex is proposed to be square planner geometry. Schiff base and its metal complexes were expected to show strong bioactivity against microbes and cancer cells.

  15. Gas phase UV spectrum of a Cu(II)-bis(benzene) sandwich complex: experiment and theory.

    Ma, Lifu; Koka, Joseph; Stace, Anthony J; Cox, Hazel


    Photofragmentation with tunable UV radiation has been used to generate a spectrum for the copper-bis(benzene) complex, [Cu(C6H6)2](2+), in the gas phase. The ions were held in an ion trap where their temperature was reduced to ∼150 K, whereby the spectrum revealed two broad features at ∼38,200 and ∼45,700 cm(-1). Detailed calculations using density functional theory (DFT) show the complex can occupy three minimum energy structures with C2v and C2 (staggered and eclipsed) symmetries. Adiabatic time-dependent DFT (TDDFT) has been used to identify electronic transitions in [Cu(benzene)2](2+), and the calculations show these to fall into two groups that are in excellent agreement with the experimental data. However, the open-shell electronic configuration of Cu(2+) (d(9)) may give rise to excited states with double-excitation character, and the single-excitation adiabatic TDDFT treatment leads to extensive spin contamination. By quantifying the extent of spin contamination and allowing for the inclusion of a small percentage (∼10%), the theory can provide quantitative agreement with the experimental data.

  16. Direct Control of Spin Distribution and Anisotropy in Cu-Dithiolene Complex Anions by Light

    Hiroki Noma


    Full Text Available Electrical and magnetic properties are dominated by the (delocalization and the anisotropy in the distribution of unpaired electrons in solids. In molecular materials, these properties have been indirectly controlled through crystal structures using various chemical modifications to affect molecular structures and arrangements. In the molecular crystals, since the energy band structures can be semi-quantitatively known using band calculations and solid state spectra, one can anticipate the (delocalization of unpaired electrons in particular bands/levels, as well as interactions with other electrons. Thus, direct control of anisotropy and localization of unpaired electrons by locating them in selected energy bands/levels would realize more efficient control of electrical and magnetic properties. In this work, it has been found that the unpaired electrons on Cu(II-complex anions can be optically controlled to behave as anisotropically-delocalized electrons (under dark or isotropically-localized electrons like free electrons (under UV, the latter of which has hardly been observed in the ground states of Cu(II-complexes by any chemical modifications. Although the compounds examined in this work did not switch between conductors and magnets, these findings indicate that optical excitation in the [Cu(dmit2]2− salts should be an effective method to control spin distribution and anisotropy.

  17. Aroylhydrazone Cu(II Complexes in keto Form: Structural Characterization and Catalytic Activity towards Cyclohexane Oxidation

    Manas Sutradhar


    Full Text Available The reaction of the Schiff base (3,5-di-tert-butyl-2-hydroxybenzylidene-2-hydroxybenzohydrazide (H3L with a copper(II salt of a base of a strong acid, i.e., nitrate, chloride or sulphate, yielded the mononuclear complexes [Cu(H2L(NO3(H2O] (1, [Cu(H2LCl]·2MeOH (2 and the binuclear complex [{Cu(H2L}2(µ-SO4]·2MeOH (3, respectively, with H2L− in the keto form. Compounds 1–3 were characterized by elemental analysis, Infrared (IR spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI-MS and single crystal X-ray crystallography. All compounds act as efficient catalysts towards the peroxidative oxidation of cyclohexane to cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone, under mild conditions. In the presence of an acid promoter, overall yields (based on the alkane up to 25% and a turnover number (TON of 250 (TOF of 42 h−1 after 6 h, were achieved.

  18. Tailor-made release triggering from hot-melt extruded complexes of basic polyelectrolyte and poorly water-soluble drugs.

    Kindermann, Christoph; Matthée, Karin; Strohmeyer, Jutta; Sievert, Frank; Breitkreutz, Jörg


    The aim of the study was the formulation of polyelectrolyte complexes composed of poorly water-soluble acid drugs and basic polymethacrylates by hot-melt extrusion enabling a tailor-made release pattern by the addition of inorganic salts. The influence of different electrolytes was analyzed at varying conditions in order to control drug delivery from the complexes. Poorly water-soluble model drugs naproxen and furosemide were applied in their non-ionic form. After hot-melt extrusion of the naproxen-polymethacrylate powder blend, XRPD and DSC measurements indicated the formation of a single-phase amorphous system. Milled extrudates were stable under storage at long-term and intermediate conditions. Polyelectrolyte complex formation by an acid-base reaction during hot-melt extrusion could be proven by the lack of vibrations of dimethylamino and carboxylic groups by FT-IR and Raman spectroscopy. The complexes did not dissolve in demineralized water. Drug release could be immediately induced by addition of neutral electrolytes. Tailor-made dissolution profiles were realized by controlled electrolyte triggering. Maximal effects were achieved by concentrations of 0.05-0.15 M NaCl. Different anions of alkali halogenides revealed variant magnitudes of the effect depending on the anion radius. Polyelectrolyte complex formation and dissolution principles were also confirmed for furosemide.

  19. Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine

    Borkowski, Marian [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Yongliang, Xiong [SNL


    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

  20. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine

    Borkowski, M.; Richmann, M.; Reed, D.T. [Earth and Environmental Sciences Div., Los Alamos National Lab., Carlsbad Operations, NM (United States); Xiong, Y. [Sandia National Labs., Carlsbad Program Group, Carlsbad, NM (United States)


    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported. (orig.)

  1. Blue-light emission of Cu(I) complexes and singlet harvesting.

    Czerwieniec, Rafał; Yu, Jiangbo; Yersin, Hartmut


    Strongly luminescent neutral copper(I) complexes of the type Cu(pop)(NN), with pop = bis(2-(diphenylphosphanyl)phenyl)ether and NN = bis(pyrazol-1-yl)borohydrate (pz(2)BH(2)), tetrakis(pyrazol-1-yl)borate (pz(4)B), or bis(pyrazol-1-yl)-biphenyl-borate (pz(2)Bph(2)), are readily accessible in reactions of Cu(acetonitrile)(4)(+) with equimolar amounts of the pop and NN ligands at ambient temperature. All products were characterized by means of single crystal X-ray diffractometry. The compounds exhibit very strong blue/white luminescence with emission quantum yields of up to 90%. Investigations of spectroscopic properties and the emission decay behavior in the temperature range between 1.6 K and ambient temperature allow us to assign the emitting electronic states. Below 100 K, the emission decay times are in the order of many hundreds of microseconds. Therefore, it is concluded that the emission stems from the lowest triplet state. This state is assigned to a metal-to-ligand charge-transfer state (3MLCT) involving Cu-3dand pop-π* orbitals. With temperature increase, the emission decay time is drastically reduced, e.g. to 13 μs [corrected] (Cu(pop)-(pz(2)Bph(2))), at ambient temperature. At this temperature, the complexes exhibit high emission quantum yields, as neat material or doped into poly(methyl methacrylate) (PMMA). This behavior is assigned to an efficient thermal population of a singlet state (being classified as (1)MLCT), which lies only 800 to 1300 cm(-1) above the triplet state, depending on the individual complex. Thus, the resulting emission at ambient temperature largely represents a fluorescence. For applications in OLEDs and LEECs, for example, this type of thermally activated delayed fluorescence (TADF) creates a new mechanism that allows to harvest both singlet and triplet excitons (excitations) in the lowest singlet state. This effect of singlet harvesting leads to drastically higher radiative rates than obtainable for emissions from triplet

  2. DNA Cleavage Promoted by Cu2+ Complex of N,N'-Bis(2-aminoethyl)-2,6-pyridinedicarboxamide

    LI, Ying; SHENG, Xin; SHAO, Ying; LU, Guo-Yuan


    The interaction of Cu2+ complex of N,N'-bis(2-aminoethyl)-2,6-pyridinedicarboxamide (BAP) with DNA was studied by agarose gel electrophoresis analysis. The results indicate that the BAP-Cu2+ complex can promote the cleavage of phosphodiester bond of supercoiled DNA at physiological condition, which is 3.2×106 times higher than DNA natural degradation. A hydrolytic cleaving mechanism through the cooperation of copper ions and functional amino groups was proposed.

  3. Influence of ligand substitution on excited state structural dynamics in Cu(I) bis-phenanthroline complexes.

    Lockard, J. V.; Kabehie, S.; Zink, J. I.; Smolentsev, G.; Soldatov, A.; Chen, L. X. (Chemical Sciences and Engineering Division); (Northwestern Univ.); (Univ. of California at Los Angeles); (Southern Federal Univ.); (Lund Univ.)


    This study explores the influences of steric hindrance and excited state solvent ligation on the excited state dynamics of Cu{sup I} diimine complexes. Ultrafast excited state dynamics of Cu(I)bis(3,8-di(ethynyltrityl)-1,10-phenanthroline) [Cu{sup I}(detp){sub 2}]{sup +} are measured using femtosecond transient absorption spectroscopy. The steady state electronic absorption spectra and measured lifetimes are compared to those of Cu(I)bis(1,10-phenanthroline), [Cu{sup I}(phen){sub 2}]{sup +}, and Cu(I)bis(2-9-dimethyl-1,10-phenanthroline), [Cu{sup I}(dmp){sub 2}]{sup +}, model complexes to determine the influence of different substitution patterns of the phenanthroline ligand on the structural dynamics associated with the metal to ligand charge transfer excited states. Similarities between the [Cu{sup I}(detp){sub 2}]{sup +} and [Cu{sup I}(phen){sub 2}]{sup +} excited state lifetimes were observed in both coordinating and noncoordinating solvents and attributed to the lack of steric hindrance from substitution at the 2- and 9-positions. The solution-phase X-ray absorption spectra of [Cu{sup I}(detp){sub 2}]{sup +}, [Cu{sup I}(phen){sub 2}]{sup +}, and [Cu{sup I}(dmp){sub 2}]{sup +} are reported along with finite difference method calculations that are used to determine the degree of ground state dihedral angle distortion in solution and to account for the pre-edge features observed in the XANES region.

  4. Uniaxial stress study of the Cu-H complex in ZnO

    Lavrov, E.V.; Weber, J. [Technische Universitaet Dresden, 01062 Dresden (Germany)


    The influence of uniaxial stress on the vibrational mode of the Cu-H complex at 3192 cm{sup -1} in ZnO is studied. It is shown that the split patterns are consistent with the stretching mode of a bond-centered hydrogen located in the basal plane between substitutional Cu and O. Quantitative analysis of the stress effects reveals two low energy modes with frequencies of 25 and 49 cm{sup -1}. Upon substituting deuterium for hydrogen they shift to 22 and 36 cm{sup -1}, respectively. The origin of the low energy modes is discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Synthesis, Physico-Chemical and Antimicrobial Properties of Co(II, Ni(II, and Cu(II Mixed-Ligand Complexes of Dimethylglyoxime

    A.A. Osunlaja


    Full Text Available The synthesis of non-electrolyte mixed-ligand complexes of the general formula [M(HdmgB], where M = Co(II, Ni(II or Cu(II Hdmg = dimethylglyoximato monoanion, B = 2- aminophenol(2-aph, diethylamine (dea or malonic acid (MOH are described. Metal analysis, melting points, solubility, conductivity, IR and UV/Visible electronic spectra were used in determining their physico-chemical properties. The antimicrobial activities of the complexes were tested against Esherichia coli, Staphylococcus aureus, Aspergillus niger and Aspergillus flavus. The complexes melted/decomposed at 120-306ºC and, most of them dissolved only in polar solvents. The colours of the complexes are mostly dark - brown or red. The spectral results suggest the binding of Hdmg, 2-amino phenol or malonic acid through the N atom and O atoms respectively to the metal ion In the electronic spectra of the complexes, the absorption bands observed in the UV/Visible region are presumed to be either due to charge transfer or intra-ligand transitions from the ligands or d-d transitions from the metal ions. The complexes showed marked antimicrobial activity against the tested microbes at 10 mg/mL. The possible use of the complexes as chemotherapeutic agents is hereby suggested.

  6. Synthesis, Structure, and Photophysical Properties of Two Four-Coordinate Cu(I)-NHC Complexes with Efficient Delayed Fluorescence.

    Wang, Zhiqiang; Zheng, Caijun; Wang, Weizhou; Xu, Chen; Ji, Baoming; Zhang, Xiaohong


    Two luminescent cationic heteroleptic four-coordinate Cu(I) complexes supported by N-heterocyclic carbene ligand and diphosphine ligand were successfully prepared and characterized. These complexes adopt typical distorted tetrahedral configuration and have high stability in solid state. Quantum chemical calculations show carbene units have contributions to both highest occupied molecular orbitals and lowest unoccupied molecular orbitals of these Cu(I)-NHC complexes, the lowest-lying singlet and triplet excitations (S0 → S1 and S0 → T1) of [Cu(Pyim)(POP)](PF6) are dominated by metal-to-ligand charge transfer (MLCT) transition, while the S0 → S1 and S0 → T1 excitations of [Cu(Qbim)(POP)](PF6) are mainly MLCT and ligand-centered transitions, respectively. These Cu(I)-NHC complexes show efficient long-lifetime emissions (λem = 520 nm, τ = 79.8 μs, Φ = 0.56 for [Cu(Pyim)(POP)](PF6), λem = 570 nm, τ = 31.97 μs (78.99%) and 252.2 μs (21.01%), Φ = 0.35 for [Cu(Qbim)(POP)](PF6)) in solid state at room temperature, which are confirmed as delayed fluorescence by investigating the emissions at 77 K.

  7. Thermodynamic method for obtaining the solubilities of complex medium-sized chemicals in pure and mixed solvents

    Abildskov, Jens; O'Connell, J.P.


    This paper extends our previous simplified approach to using group contribution methods and limited data to determine differences in solubility of sparingly soluble complex chemicals as the solvent is changed. New applications include estimating temperature dependence and the effect of adding...... cosolvents forming strongly nonideal aqueous mixtures and including immiscibility. The method optimally selects a 'reference solvent' from limited data, which effectively eliminates the need for pure-solute properties and minimizes the impact of their uncertainties. The technique also decreases the number...... of adjustable parameters to be determined by data reduction, by using an efficient experimental and mathematical regularization strategy to find their values. The approach has been established for pure and mixed solvent systems, and the resulting models have been employed in some cosolvent design problems...

  8. New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage.

    Peralta, Rosely A; Neves, Ademir; Bortoluzzi, Adailton J; Dos Anjos, Ademir; Xavier, Fernando R; Szpoganicz, Bruno; Terenzi, Hernán; de Oliveira, Mauricio C B; Castellano, Eduardo; Friedermann, Geraldo R; Mangrich, Antonio S; Novak, Miguel A


    The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography. In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit. Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit. Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand). On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical

  9. Potentiometric and solubility studies of association quotients of aluminum malonate complexation in NaCl media to 75 C

    Ridley, M.K.; Kettler, R.M. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Geology; Palmer, D.A.; Wesolowski, D.J. [Oak Ridge National Lab., TN (United States). Chemical and Analytical Sciences Div.


    A potentiometric method was used to determine the formation quotients for aluminum-malonate (Al(Ma){sub y}{sup 3{minus}2y}, Ma = CH{sub 2}(CO{sub 2}){sub 2}{sup 2{minus}}) complexes from 5 to 75 C at four ionic strengths from 0.1 to 1.0 molal in aqueous NaCl media. Two mononuclear aluminum-malonate species, Al(Ma){sup +} and Al(Ma){sub 2}{sup {minus}}, were identified, and the formation quotients for these species were modeled by empirical equations to describe their temperature and ionic strength dependencies. Differentiation of the two empirical equations with respect to temperature provided thermodynamic quantities for the Al-malonate complexes. The thermodynamic quantities obtained for Al(Ma){sup +} and for Al(Ma){sub 2}{sup {minus}} indicate that Al(Ma){sup +}, a chelate complex, is much more stable than the equivalent monodentate Al-diacetate complex (Al(Ac){sub 2}{sup +}). A solubility study, which was undertaken to verify the 50 C potentiometric data, was performed by reacting powdered gibbsite (Al(OH){sub 3}) with malonic acid solutions at 0.1 molal ionic strength in aqueous NaCl media. The results of the solubility study are in excellent agreement with the potentiometric data.

  10. Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin

    Shityakov, Sergey; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Roewer, Norbert; Förster, Carola; Broscheit, Jens


    In this study, we investigated curcumin (CUR) solubility profiles and hydration/desolvation effects of this substance formulated with γ-cyclodextrin (γ-CD) and hydroxypropyl-γ-cyclodextrin (HP-γ-CD) excipients. The CUR/HP-γ-CD complex was found to be more stable in solution with the highest apparent stability constant for CUR/HP-γ-CD (Kc = 1.58*104 M-1) as the more soluble form in distilled water. The in silico calculations, including molecular docking, Monte Carlo (MC), and molecular dynamics (MD) simulations, indicated that water molecules play an important role in host-guest complexation mediating the CUR binding to cyclodextrins via hydrogen bond formations. The CUR hydration/desolvation effects contributed to the complex formation by elevating the CUR binding affinity to both CDs. The CUR/HP-γ-CD complex after the CUR hydration was determined with a minimal Gibbs free energy of binding (ΔGbind = -9.93 kcal*mol-1) due to the major hydrophobic (vdW) forces. Overall, the results of this study can aid a development of cyclodextrin-based drug delivery vectors, signifying the importance of water molecules during the formulation processes.

  11. Magnetic, electronic and electrochemical studies of mono and binuclear Cu(II) complexes using novel macrocyclic ligands.

    Gupta, Nidhi; Gupta, Rachna; Chandra, Sulekh; Bawa, S S


    A series of new mono and binuclear copper (II) complexes [Cul]X(2)and [Cu(2)lX(2)] where 1 = L(1), L(2) and L(3) are the macrocyclic ligands. In mononuclear complexes the geometry of Cu(II) ion is distorted squareplanar and in binuclear complexes the geometry of Cu(II) is tetragonal. The synthesized complexes were characterized by spectroscopic (IR,UV-vis and ESR) techniques. Electrochemical studies of the complexes reveals that all the mononuclear Cu(II) complexes show a single quasireversible one-electron transfer reduction wave (E(pc) = -0.76 to -0.84V) and the binuclear complexes show two quasireversible one electron transfer reduction waves (E(pc)(1) = -0.86 to -1.01V, E(pc)(2) = -1.11 to -1.43V) in cathodic region. The ESR spectra of mononuclear complexes show four lines with nuclear hyperfine splittings with the observed g(11) values in the ranges 2.20-2.28, g( perpendicular) = 2.01-2.06 and A(11) = 125-273. The binuclear complexes show a broad ESR spectra with g = 2.10-2.11. The room temperature magnetic moment values for the mononuclear complexes are in the range [mu(eff) = 1.70-1.72BM] and for the binuclear complexes the range is [mu(eff) = 1.46-1.59BM].

  12. Water Soluble Cationic Porphyrin Sensor for Detection of Hg2+, Pb2+, Cd2+, and Cu2+

    Matibur Zamadar


    Full Text Available Here we report the sensing properties of the aqueous solution of meso-tetra(N-methyl-4-pyridylporphine tetrachloride (1 for simultaneous detection of toxic metal ions by using UV-vis spectroscopy. Cationic porphyrin 1 displayed different electronic absorptions in UV-vis region upon interacting with Hg2+, Pb2+, Cd2+, and Cu2+ ions in neutral water solution at room temperature. Quite interestingly, the porphyrin 1 showed that it can function as a single optical chemical sensor and/or metal ion receptor capable of detecting two or more toxic metal ions, particularly Hg2+, Pb2+, and Cd2+ ions coexisting in a water sample. Porphyrin 1 in an aqueous solution provides a unique UV-vis sensing system for the determination of Cd2+ in the presence of larger metal ions such as Hg2+, or Pb2+. Finally, the examination of the sensing properties of 1 demonstrated that it can operate as a Cu2+ ion selective sensor via metal displacement from the 1-Hg2+, 1-Pb2+, and 1-Cd2+.

  13. Spectroscopic and computational characterization of CuII-OOR (R = H or cumyl) complexes bearing a Me6-tren ligand.

    Choi, Yu Jin; Cho, Kyung-Bin; Kubo, Minoru; Ogura, Takashi; Karlin, Kenneth D; Cho, Jaeheung; Nam, Wonwoo


    A copper(II)-hydroperoxo complex, [Cu(Me(6)-tren)(OOH)](+) (2), and a copper(ii)-cumylperoxo complex, [Cu(Me(6)-tren)(OOC(CH(3))(2)Ph)](+) (3), were synthesized by reacting [Cu(Me(6)-tren)(CH(3)CN)](2+) (1) with H(2)O(2) and cumyl-OOH, respectively, in the presence of triethylamine. These intermediates, 2 and 3, were successfully characterized by various physicochemical methods such as UV-vis, ESI-MS, resonance Raman and EPR spectroscopies, leading us to propose structures of the Cu(II)-OOR species with a trigonal-bipyramidal geometry. Density functional theory (DFT) calculations provided geometric and electronic configurations of 2 and 3, showing trigonal bipyramidal copper(II)-OOR geometries. These copper(II)-hydroperoxo and -cumylperoxo complexes were inactive in electrophilic and nucleophilic oxidation reactions.

  14. A Novel Cu (Ⅱ) Complex with 2,2'-Bipyridyl and L-Methioninate--Synthesis, Characterization, Molecular Structure and Stability

    LE,Xue-Yi; TONG,Ming-Liang; FU,Yin-Lian; JI,Liang-Nian


    The ternary Cu(Ⅱ) complex with 2,2'-bipyridyl (bipy) and L-methioninate (L-Met) has been synthesized and characterized by elemental analysis, molar conductivity, UV-Vis spectra, IR spectra aad pH-potentiometric titration methods. The structure of the comby the X-ray diffraction analysis. It crystallizes in the triclinic system, space group P1 with four molecules in a unit cell of dimensions, a = 0.7656(2) nm, b = 1.3142(3) nm, c = 2.0596(4) nm,α=97.70(3)°, β = 97.96(3)°, γ = 94.33(3)°, V= 2.0244(8)nm3, R1 = 0.0441 and wR2 = 0.0678. The crystal contains four crystallographically independent [ Cu(L-Met)(bipy)(H2O) ] +complexed (Cu1-Cu4), having a distorted square-pyramidal geometry with the same coordinated atoms around each copper center. The base plane is occupied by two nitrogen atoms of one bipy,the amino nitrogen atom and one carboxylate oxygen atom from each independent L-Met moiety, and one water oxygen at aa axial position. Cu1 and Cu3 are essentially enantiomers of Cu2 and Cu4.The four molecules are packed with each other by intermolecular hydrogen-bonding and aromatic-ring stacking interactions.

  15. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging.

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna


    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and (64)Cu isotope can serve as a positron emitter (t1/2=12.7h). The other advantage of (64)Cu is its decay characteristics that facilitates the use of (64)Cu-porphyrin complex as a therapeutic agent. Thus, (64)Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH9 with the addition of 10-fold molar excess, with respect to Cu(2+) ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  16. The fast method of Cu-porphyrin complex synthesis for potential use in positron emission tomography imaging

    Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna


    Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.

  17. Spectrophotometric study on the binding of two water soluble Schiff base complexes of Mn(III) with ct-DNA.

    Dehkordi, Maryam Nejat; Bordbar, Abdol-Khlegh; Mehrgardi, Masood Ayatolahi; Mirkhani, Valiolah


    In this work, binding of two water soluble Schiff base complexes: Bis sodium (5-sulfosalicylaldehyde) o-phenylendiiminato) Manganese (III) acetate (Salophen complex) and Bis sodium (5-sulfosalicylaldehyde) 1, 2 ethylendiiminato) Manganese (III) acetate (Salen complex) with calf thymus (ct) DNA were investigated by using different spectroscopic and electrometric techniques including UV-vis, Circular dichroism (CD) and fluorescence spectroscopy, viscommetry and cyclic voltammetry (CV). Both complexes have shown a hyperchromic and a small bathochromic shift in the visible region spectra. A competitive binding study showed that the enhanced emission intensity of ethidium bromide (EB) in the presence of DNA was quenched by the addition of the two Schiff base complexes indicating that they displace EB from its binding site in DNA. Moreover structural changes in the CD spectra and an increase in the CV spectra with addition of DNA were observed. The results show that both complexes bind to DNA. The binding constants have been calculated using fluorescence data for two complexes also K(b) was calculated with fluorescence Scatchard plot for Salophen. Ultimately, the experimental results show that the dominant interactions are electrostatic while binding mode is surface binding then followed by hydrophobic interactions in grooves in high concentration of complexes.

  18. Survey on synthesis and reaction of environmentally benign water-soluble metal complex catalysts; Kankyo chowagata suiyosei sakutai shokubai no gosei hanno no chosa



    This report describes the research trend survey results on the synthesis and reaction of water-soluble metal complexes which are regarded as environmentally benign catalysts. For the synthesis and catalysis of water-soluble complexes, synthetic methods of water-soluble phosphines, such as sulfonated TPPMS and TPPTS, are described in detail. Synthesis and reactivity of hydroxymethylphosphines are introduced, and the application of electrospray mass spectroscopy is elucidated as a tool for the analysis of them. Changes of the application of transition metal complexes with water-soluble phosphines to catalysis are described. Dual catalysts which have both functions of phase transfer catalysts and homogeneous catalysts are introduced. Concept of counter phase transfer catalysts is also introduced, and some catalytic reactions are described. In addition, this report introduces catalysis of water-soluble polymer-supported metal complexes, immobilization of metal colloids with water-soluble ligands and their analysis, and water-soluble complexes as hybrid catalysts. 144 refs., 94 figs., 10 tabs.

  19. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Zong-Cheng Chen


    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  20. EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor.

    Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B; Hung, Chen-Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio


    A new Cu(II) dinuclear complex, Cu2L2 (1) was afforded employing the potentially pentatentate Schiff base precursor H2L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV-Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H2L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H37Ra (ATCC 25177) and M. tuberculosis H37Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL(-1). A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.

  1. Superoxide radical anion scavenging and dismutation by some Cu2+ and Mn2+ complexes: A pulse radiolysis study

    Joshi, Ravi


    Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.

  2. Preparation and characterization of nanocrystalline CuO powders with the different surfactants and complexing agent mediated precipitation method

    Rajendran, V.; Gajendiran, J., E-mail:


    Highlights: • CuO nanostructures by surfactants mediated method. • Structural and optical properties of CuO nanostructures changes under the effect of surface modifier. • Citric acid assisted is the best, in terms of size, morphology and optical properties than that of CTAB, SDS and PEG-400. - Abstract: Nanostructures of copper oxide (CuO) was synthesized into crystallite sized ranging from 20 to 50 nm in the presence of different surfactants, and complex agent such as cityl tri methyl ammonium bromide (CTAB), sodium do decyl sulfate (SDS), poly ethylene glycol (PEG-400) and citric acid via a precipitation route. Variations in several parameters and their effects on the structural and optical properties of CuO nanostructures (crystallite size, morphology and band gap) were investigated by XRD, FTIR, SEM and UV analysis. The UV–visible absorption spectra of the different surfactants and complexing agent assisted CuO nanostructures indicates that the estimated optical band gap energy value (1.94–1.98 eV) is higher than that of the bulk CuO value (1.4 eV), which is attributed to the quantum confinement effect. The formation mechanism of different surfactants and complexing agent assisted CuO nanostructures is also proposed.

  3. Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu2+ ion in methanol +1,4-dioxane binary solutions

    Biswas Rashmidipta


    Full Text Available The complexation reaction between salicylaldehyde thiosemicarbazone, abbreviated as STSC, with Cu2+ ion was studied in the binary mixtures of methanol + 1,4-dioxane binary by using UV-Visible spectrophotometric and conductometric methods at different temperatures. The formation constants (Kf for the 1:1 complex, Cu2+-STSC, were calculated from computer fitting of the absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear correlation was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-STSC complex were also determined from the temperature dependence of the stability constants (Kf. The results showed that the complexation reaction is affected by the nature and composition of the mixed solvents.

  4. Tuning the spin coherence time of Cu(II−(bisoxamato and Cu(II−(bisoxamidato complexes by advanced ESR pulse protocols

    Ruslan Zaripov


    Full Text Available We have investigated with the pulsed ESR technique at X- and Q-band frequencies the coherence and relaxation of Cu spins S = 1/2 in single crystals of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opba] (1% in the host lattice of [n-Bu4N]2[Ni(opba] (99%, opba = o-phenylenebis(oxamato and of diamagnetically diluted mononuclear [n-Bu4N]2[Cu(opbon-Pr2] (1% in the host lattice of [n-Bu4N]2[Ni(opbon-Pr2] (99%, opbon-Pr2 = o-phenylenebis(N(propyloxamidato. For that we have measured the electron spin dephasing time Tm at different temperatures with the two-pulse primary echo and with the special Carr–Purcell–Meiboom–Gill (CPMG multiple microwave pulse sequence. Application of the CPMG protocol has led to a substantial increase of the spin coherence lifetime in both complexes as compared to the primary echo results. It shows the efficiency of the suppression of the electron spin decoherence channel in the studied complexes arising due to spectral diffusion induced by a random modulation of the hyperfine interaction with the nuclear spins. We argue that this method can be used as a test for the relevance of the spectral diffusion for the electron spin decoherence. Our results have revealed a prominent role of the opba4– and opbon-Pr24– ligands for the dephasing of the Cu spins. The presence of additional 14N nuclei and protons in [Cu(opbon-Pr2]2– as compared to [Cu(opba]2– yields significantly shorter Tm times. Such a detrimental effect of the opbon-Pr24− ligands has to be considered when discussing a potential application of the Cu(II−(bisoxamato and Cu(II−(bisoxamidato complexes as building blocks of more complex molecular structures in prototype spintronic devices. Furthermore, in our work we propose an improved CPMG pulse protocol that enables elimination of unwanted echoes that inevitably appear in the case of inhomogeneously broadened ESR spectra due to the selective excitation of electron spins.

  5. DNA interaction, antimicrobial, antioxidant and anticancer studies on Cu(II) complexes of Luotonin A.

    Kesavan, M P; Vinoth Kumar, G G; Dhaveethu Raja, J; Anitha, K; Karthikeyan, S; Rajesh, J


    Luotonin A (L), a novel natural cytotoxic and anti-inflammatory alkaloid, chelated with copper(II) to improve its cytotoxic effect against the cancer cells. The complexes [Cu(L)H2OCl]Cl (1) and [Cu(L)2]Cl2 (2) are prepared by using copper(II) chloride and L with ligand/metal molar ratio of 1:1 and 2:1 respectively. A solution of complexes 1 &2 are characterized by physical spectroscopic methods using Ultraviolet-visible (UV-Vis) spectrophotometer, Fourier Transform-Infra red (FT-IR) spectroscopy, Electron Para magnetic Resonance Spectroscopy (EPR) and by electrochemical methods. The interaction of these complexes 1 &2 with calf thymus (CT-DNA) have been investigated by physical methods to propose the modes of DNA binding with the complexes 1 &2. Absorption spectral titration studies of complex 1 with CT-DNA shows a red-shift of 5nm with the DNA binding affinity of Kb, 8.65×10(3)M(-1), but complex 2does not show any red-shift with binding constant Kb, 7.32×10(3)M(-1) reveals that the complex 1 binding with DNA strongly than complex 2 and the binding occurs in between the base pairs of DNA as intercalation. Strong interactions of the two complexes 1 & 2 with CT-DNA have also been confirmed by fluorescence spectral titration studies. The evaluated values of KSV and Kass shows that, the complexes 1 &2 interact with DNA through the intercalation, coincide with other partial intercalators strongly than the free ligand L. Complex 1 exhibits potent antioxidant activity with SC50 value of 23.9±0.69μM is evaluated by DPPH radical scavenging assay and which has potent antimicrobial activity against pathogens than 2 and L. The anticancer activity of L, complexes 1 &2 against human breast cancer cell line (MCF-7) and cervical cancer cell line (HeLa) has also been studied by using fluorescence staining method. The IC50 values of L, complexes 1&2 against MCF-7 and HeLa cell lines with the incubation time intervals of 24hrs are 1 (5.0±0.25, 12.0±0.30μM)<2 (6.5±0.27, 15.0

  6. Cu-pyruvaldehyde-bis(N{sup 4}-methylthiosemicarbazone)(Cu-PTSM), a metal complex with selective NADH-dependent reduction by complex I in brain mitochondria. A potential radiopharmaceutical for mitochondria-functional imaging with positron emission tomography

    Taniuchi, Hideyuki; Fujibayashi, Yasuhisa; Yokoyama, Akira [Kyoto Univ. (Japan). Faculty of Pharmaceutical Science; Okazawa, Hidehiko; Yonekura, Yoshiharu; Konishi, Junji


    The reductive retention mechanism of copper(II)-Pyruvaldehyde-bis (N{sup 4}-methylthiosemicarbazone) (Cu-PTSM), a generator-produced positron-emitting {sup 62}Cu-labeled radiopharmaceutical, was studied with non-radioactive and radioactive copper. Changes in the chemical form of Cu-PTSM were detected by electron spin resonance spectrometry (ESR) with cold copper. The effects of electron transport chain inhibitors on the reduction of Cu-PTSM were also examined. Rotenone and antimycin A activated the reduction of Cu-PTSM in the brain mitochondria by 1.6 and 1.4-fold, respectively, compared with untreated controls, while thenoyltrifluoroacetone (TTFA) had no effect on the reduction. These results were confirmed with radioactive copper. Furthermore, this reduction of Cu-PTSM was dependent on the protein concentration of mouse brain submitochondrial particle (SMP) with 1 mM NADH2.S%, 8mg-protein/ml: 69.0{+-}5.5%, each value was % of reduced Cu. Similarly, this reduction depended on NADH concentration at a fixed concentration of SMP (8mg-protein/ml). These results indicated that the electron transport chain, especially complex I, participate in the reduction mitochondria, and this suggested that Cu-PTSM has the potential to act as a functional imaging agent for diagnosis of the electron transport chain. (author).

  7. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases.

    Kavitha, P; Saritha, M; Laxma Reddy, K


    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL(1)), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL(2)), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL(3)) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL(4)). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  8. Synthesis, structural characterization, fluorescence, antimicrobial, antioxidant and DNA cleavage studies of Cu(II) complexes of formyl chromone Schiff bases

    Kavitha, P.; Saritha, M.; Laxma Reddy, K.


    Cu(II) complexes have been synthesized from different Schiff bases, such as 3-((2-hydroxy phenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino) benzoicacid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3) and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). The complexes were characterized by analytical, molar conductance, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data reveal that metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the Cu(II) complexes are neutral. On the basis of magnetic and electronic spectral data, distorted octahedral geometry is proposed for all the Cu(II) complexes. Thermal behaviour of the synthesized complexes illustrates the presence of lattice water molecules in the complexes. X-ray diffraction studies reveal that all the ligands and their Cu(II) complexes have triclinic system with different unit cell parameters. Antimicrobial, antioxidant and DNA cleavage activities indicate that metal complexes exhibited greater activity as compared with ligands.

  9. Polarographic investigation of Cu(II) complexes with N,N,N',N'-tetrakis-(2-hydroxypropyl)-ethylenediamine.

    Norkus, E; Vaskelis, A; Zakaité, I; Reklaitis, J


    During investigation of the formation of Cu(2+) ion complexes with N,N,N',N'-tetrakis-(2-hydroxypropyl)-ethylenediamine (Quadrol-Q) by means of constant current polarography (20 degrees C, ionic strength J = 3 mol l(-1)), the possibility of the formation of two complex compounds; CuQ(2+) and CuQ(2+)(2), was shown within the pH range from 6 to 8. The logarithms of the stability constants for these compounds are 10.6 +/- 0.5 and 14.6 +/- 0.4 respectively. Cu(II) complexation increases sharply when the pH increases from 8 to 10. It was shown that the data at a pH of greater than 10 are in accordance with the existence of the hydroxy complexes CuQ(OH)(2) and CuQ(2)(OH)(2), the logarithms of the stability constants being 26.9 +/- 0.5 and 29.1 +/- 0.3.

  10. Three complexes of Cu(I) cluster with flexible and rigid ligands: Synthesis, characterization and photoluminescent properties

    Sun, Shu [College of Chemistry & Materials Science, Northwest University, Taibai Avenue 229, 710069 Xi’an (China); Department of Chemical Engineering, Ordos College of Inner Mongolia University, Inner Mongolia University, Ordos, Inner Mongolia 017000 (China); Liu, Li-Juan; Ma, Wang-Yang; Zhou, Wei-Xia [College of Chemistry & Materials Science, Northwest University, Taibai Avenue 229, 710069 Xi’an (China); Li, Jun, E-mail: [College of Chemistry & Materials Science, Northwest University, Taibai Avenue 229, 710069 Xi’an (China); Zhang, Feng-Xing [College of Chemistry & Materials Science, Northwest University, Taibai Avenue 229, 710069 Xi’an (China)


    Three new Cu(I) cluster complexes, viz. [(Cu{sub 4}I{sub 4})(Cu{sub 2}I{sub 2})(dimb){sub 3}]{sub n} (1; dimb=1,4-diimidazol-1-ylbutane), [(Cu{sub 3}I{sub 2})(dimb)(dmtz)]{sub n} (2; dmtz=3,5-dimethyl-1,2,4-triazole), and [Cu{sub 6}(mbt){sub 6}] (3; mbt=2-mercaptobenzothiazole), have been solvothermally synthesized and structurally characterized. In 1, a Cu{sub 4}I{sub 4} cubane core as a 4-connecting node, connects the neighboring nodes either through single dimb or μ{sub 2}-[(Cu{sub 2}I{sub 2})(dimb){sub 2}] linkers, affording an undulated 2D (4,4) net. Parallel interpenetration occurs between the adjacent nets and thus the overall 2D→3D network is formed. Complex 2 is constructed by 2D (4,4) topological plane grid layers of AB stacking. The core, a distorted triangular bipyramidal Cu{sub 3}I{sub 2} cluster, is acted as a 4-connecting node and connected with dimb and μ{sub 3}-dmtz to form the layer. Complex 3 contains a (Cu{sub 6}S{sub 6}) core in discrete paddle-wheel molecule, which serves as a 4-connecting node to link equivalent ones via π···π interaction, forming 2D (4,4) layers. Solid-state luminescence properties and thermogravimetric analyses of 1, 2 and 3 were investigated. - Graphical abstract: Complexes based on Cu(I) clusters possess two-fold 2D→3D parallel interpenetrating (1), triple emissions (2) and near-infrared emission (3). - Highlights: • Complex 1 represents two-fold 2D→3D parallel interpenetrating framework. • Complex 2 shows triple emissions. • Complex 3 displays a quite intense near-infrared (NIR) emission. • These complexes have good thermal stability.

  11. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property.

    Celebioglu, Asli; Kayaci-Senirmak, Fatma; İpek, Semran; Durgun, Engin; Uyar, Tamer


    Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced

  12. Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.

    Phillips, Jordan J; Peralta, Juan E


    To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.

  13. Preparation and Optoelectronic Characteristics of ZnO/CuO-Cu2O Complex Inverse Heterostructure with GaP Buffer for Solar Cell Applications

    Yi-Feng Lin


    Full Text Available This study reports the optoelectronic characteristics of ZnO/GaP buffer/CuO-Cu2O complex (COC inverse heterostructure for solar cell applications. The GaP and COC layers were used as buffer and absorber in the cell structure, respectively. An energy gap widening effect and CuO whiskers were observed as the copper (Cu layer was exerted under heat treatment for oxidation at 500 °C for 10 min, and arose from the center of the Cu2O rods. For preparation of the 30 nm-thick GaP buffer by sputtering from GaP target, as the nitrogen gas flow rate increased from 0 to 2 sccm, the transmittance edge of the spectra demonstrated a blueshift form 2.24 to 3.25 eV. Therefore, the layer can be either GaP, GaNP, or GaN by changing the flow rate of nitrogen gas.

  14. Biological Properties of Chloro-salicylidene Aniline and Its Complexes with Co(II) and Cu(II)

    IQBAL, Javed; TIRMIZI, Syed Ahmad; Wattoo,Feroza Hamid; Imran, Muhammad


    New complexes of chloro-salicylidene aniline with Co(II) and Cu(II) were synthesised and screened for antibacterial activity against several bacterial strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The metal complexes showed enhanced antibacterial activity compared to uncomplexed ligands.

  15. Biological Properties of Chloro-salicylidene Aniline and Its Complexes with Co(II) and Cu(II)

    IQBAL, Javed; TIRMIZI, Syed Ahmad; Wattoo,Feroza Hamid; Imran, Muhammad


    New complexes of chloro-salicylidene aniline with Co(II) and Cu(II) were synthesised and screened for antibacterial activity against several bacterial strains, namely Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The metal complexes showed enhanced antibacterial activity compared to uncomplexed ligands.

  16. Amino acid detection using fluoroquinolone–Cu{sup 2+} complex as a switch-on fluorescent probe by competitive complexation without derivatization

    Farokhcheh, Alireza; Alizadeh, Naader, E-mail:


    In this work, we describe the use of fluoroquinolone–Cu{sup 2+} complex as a competitive switch-on fluorescence probe for amino acid determination without derivatization. The fluorescence intensity of this probe, which has been reduced due to effective quenching by Cu{sup 2+} ion, increases drastically by an addition of amino acid (glycine, phenylalanine, sarcosine, aspargine, alanine, proline, arginine, aspartic acid, glutamic acid, lysine, leucine and isoleucine). The overall stability constants of Cu{sup 2+} ion complexes with amino acids were determined by fluorometric titration of fluoroquinolone-Cu{sup 2+} complex with the amino acid solution. Furthermore, the probe shows high calibration sensitivity toward aspartic acid. The fluorescence signal depends linearly on the amino acid concentration within the range of concentration from 1.2×10{sup −7} to 1.1×10{sup −5} mol L{sup −1} for aspartic acid. The detection limit was found 2.7×10{sup −8} mol L{sup −1} with the relative standard deviation (RSD%) about 2.1% (five replicate). -- Highlights: • Amino acids are detected by using fluoroquinolone–Cu{sup 2+} complex as fluorescent probe. • Amino acids were detected based on a competitive complexation reaction. • Probe has been able to recognize amino acids through switch-on fluorescence behavior. • Ultra-trace level of aspartic and glutamic acid is determined without derivatization.

  17. Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?

    Michel Ferreira


    Full Text Available The behaviour of platinum(II and palladium(0 complexes coordinated by various hydrosoluble monodentate phosphane ligands has been investigated by 31P{1H} NMR spectroscopy in the presence of randomly methylated β-cyclodextrin (RAME-β-CD. This molecular receptor can have no impact on the organometallic complexes, induce the formation of phosphane low-coordinated complexes or form coordination second sphere species. These three behaviours are under thermodynamic control and are governed not only by the affinity of RAME-β-CD for the phosphane but also by the phosphane stereoelectronic properties. When observed, the low-coordinated complexes may be formed either via a preliminary decoordination of the phosphane followed by a complexation of the free ligand by the CD or via the generation of organometallic species complexed by CD which then lead to expulsion of ligands to decrease their internal steric hindrance.

  18. Solid state luminescence of CuI and CuNCS complexes with phenanthrolines and a new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine

    Starosta, Radosław, E-mail:; Komarnicka, Urszula K.; Puchalska, Małgorzata


    A new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine P(CH{sub 2}N(CH{sub 3})CH{sub 2}CH{sub 2}Ph){sub 3} (1) has been synthesized and characterized by the NMR spectra. Also, three new copper(I) iodide or isothiocyanate complexes with 1 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmp) [CuI(phen)P(CH{sub 2}N(CH{sub 3})CH{sub 2}CH{sub 2}Ph){sub 3}] (1P) CuI(dmp)P(CH{sub 2}N(CH{sub 3})CH{sub 2}CH{sub 2}Ph){sub 3}] (1I) and [CuNCS(dmp)P(CH{sub 2}N(CH{sub 3})CH{sub 2}CH{sub 2}Ph){sub 3}] (1T), have been synthesized and characterized by elemental analysis as well as studied by NMR, UV–vis, IR and luminescence spectroscopies. An X-ray structure of 1P complex revealed that the geometry around Cu(I) center in this complex is distorted pseudo-tetrahedral. Investigated complexes exhibit orange, rather weak photoluminescence in the solid state. This relatively low intensity may be related to the high flattening deformations of the molecular geometries in the excited triplet states On the basis of TDDFT calculations we confirmed that the absorbance and luminescence bands of (MX,MPR{sub 3})LCT as well as of (MX)LCT types result mainly from the transitions from the copper–iodine (or isothiocyanate) bonds and a small admixture of copper–phosphine bonds to antibonding orbitals of phen or dmp diimines. -- Highlights: • A novel tris(aminomethyl)phosphine is obtained from N-methyl-2-phenylethanamine. • Three new CuI and CuNCS complexes with phen or dmp and a novel phosphine are presented. • The obtained complexes are luminescent in the solid state. • Main absorbance and luminescence bands are of (MX,MPR{sub 3})LCT as well as (MX)LCT types.

  19. Functionalisation of lanthanide complexes via microwave-enhanced Cu(I)-catalysed azide-alkyne cycloaddition.

    Szíjjártó, Csongor; Pershagen, Elias; Borbas, K Eszter


    Cu(I)-catalysed azide-alkyne cycloaddition reactions were used to functionalise lanthanide(III)-complexes (Ln; La, Eu and Tb) incorporating alkyne or azide reactive groups. Microwave irradiation significantly accelerated the reactions, enabling full conversion to the triazole products in some cases in 5 min. Alkyl and aryl azides and alkyl and aryl alkynes could all serve as coupling partners. These reaction conditions proved efficient for cyclen-tricarboxylates and previously unreactive cyclen-tris-primary amide chelates. The synthesis of heterobimetallic (Eu/Tb, EuTb17 and Eu/La, EuLa17) and heterotrimetallic (Eu/La/Eu) complexes was achieved in up to 60% isolated yield starting from coumarin 2-appended alkynyl complexes Tb16 or La16 and an azido-Eu complex Eu4, and bis-alkynyl La-complex La5 and Eu4, respectively. EuTb17 displayed dual Eu(III) and Tb(III)-emission upon antenna-centred excitation.

  20. Effects of Cu(II) complexes on photosynthesis in spinach chloroplasts. Aqua(aryloxyacetato)copper(II) complexes.

    Král'ová, K; Sersen, F; Blahová, M


    The inhibitory effect of 14 aqua(aryloxyacetato) copper(II) complexes on oxygen evolution rate in spinach chloroplasts has been investigated. The inhibitory effect of these effectors on photosynthesis was confirmed by Hill reaction as well as by EPR and fluorescence spectroscopies. The results of the EPR study showed that the sites of action of the studied effectors are Z+ and Y+ intermediates at the donor side of the photosystem (PS) 2. The EPR study also showed that another site of action is the oxygen evolving complex, namely its manganese cluster. The above suggestions were supported by the results of the fluorescence study as well. Based on the restoring of the photosynthetic electron transport to 2,6-dichlorophenol-indophenol in chloroplasts inhibited by the studied Cu(II) complexes using sym-diphenylcarbazide it can be assumed that the own core of PS2 (P680) and a part of the electron transport chain-at least up to plastoquinone-remain intact.

  1. Phosphorescent Chemosensor Based on Iridium(III) Complex for the Selective Detection of Cu(II) Ion in Aqueous Acetonitrile

    Kim, Hyebin; Li, Yinan; Hyun, Myungho [Pusan National Univ., Busan (Korea, Republic of)


    Iridium(III) complex 1 containing two cyclo-metalating 2-phenylpyridine (ppy) ligands and one 2,2'-bipyridine ligand tethered with two DPA moieties by a methylene linker was prepared. Iridium(III) complex 1 was found to form 1:2 complex selectively with Cu(II) ion with the Stern-Volmer constant of 5.8 Χ 10{sup 4} M{sup -1}. Cu(II) ion has two sides. In one side, Cu(II) ion is an important cofactor in nearly 20 metalloenzymes and an essential micronutrient for all living systems. But, in other side, Cu(II) ion is one of significant metal pollutants and toxic to living cells if present in slightly high concentrations, causing neurodegenerative diseases such as Menkes and Wilson's disease. In this instance, the selective detection of Cu(II) ion in environment and in living systems is very important. Consequently, various fluorescent chemosensors for the highly sensitive and selective detection of Cu (II) ion have been developed.

  2. Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: Synthesis, characterization, redox behavior and DNA binding studies

    Asatkar, Ashish K.; Tripathi, Mamta; Panda, Snigdha; Pande, Rama; Zade, Sanjio S.


    Mononuclear cuprous complexes 1 and 2, [{CH3E(o-C6H4)CH = NCH2}2Cu]ClO4; E = S/Se, have been synthesized by the reaction of bis(methyl)(thia/selena) salen ligands and [Cu(CH3CN)4]ClO4. Both the products were characterized by elemental analysis, ESI-MS, FT-IR, 1H/13C/77Se NMR, and cyclic voltammetry. The complexes possess tetrahedral geometry around metal center with the N2S2/N2Se2 coordination core. Cyclic voltammograms of complexes 1 and 2 displayed reversible anodic waves at E1/2 = + 0.08 V and + 0.10 V, respectively, corresponding to the Cu(I)/Cu(II) redox couple. DNA binding studies of both the complexes were performed applying absorbance, fluorescence and molecular docking techniques. Competitive binding experiment of complexes with ct-DNA against ethidium bromide is performed to predict the mode of binding. The results indicate the groove binding mode of complexes 1 and 2 to DNA. The binding constants revealed the strong binding affinity of complexes towards ct-DNA.


    Ticuţa Negreanu-Pîrjol


    Full Text Available In this paper we report the synthesis, physical-chemical characterization and antimicrobial activity of some new complex compounds of hetero-aromatic biguanides ligands, chlorhexidine base (CHX and chlorhexidine diacetate (CHXac2 with metallic ions Cu(II and Zn(II, in different molar ratio. The synthesized complexes were characterized by elemental chemical analysis and differential thermal analysis. The stereochemistry of the metallic ions was determined by infrared spectra, UV-Vis, EPR spectroscopy and magnetic susceptibility in the aim to establish the complexes structures. The biological activity of the new complex compounds was identified in solid technique by measuring minimum inhibition diameter of bacterial and fungal culture, against three standard pathogen strains, Escherichia coli ATCC 25922, Staphilococcus aureus ATCC 25923 and Candida albicans ATCC 10231. The results show an increased specific antimicrobial activity for the complexes chlorhexidine:Cu(II 1:1 and 1:2 compared with the one of the Zn(II complexes.

  4. Thermodynamics of the complex formation between Cu2+ and triglycine in water-ethanol solutions at 298 K

    Pham Thi, L.; Usacheva, T. R.; Khrenova, T. M.; Sharnin, V. A.


    Thermodynamic functions Δr H, Δr G, and TΔr S of the complex formation between Cu2+ and triglycine in water-ethanol solutions are calculated on the basis of calorimetric data. It is found that raising the concentration of EtOH results in a monotonic increase in the exothermic effect of [CuHL]2+ complex formation due to the weakening of triglycine solvation with the mutual compensation of ion solvation contributions. The enthalpy of [CuL]+ complex formation has an exothermic maximum at 0.1-0.3 molar fractions of EtOH due to competition between the solvation contributions from ions and ligands.

  5. Synthesis, X-ray characterization and computational studies of Cu(II) complexes of N-pyrazolyl pyrimidine.

    Cañellas, Pablo; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan J; Deyà, Pere M; Molins, Elies; Mata, Ignasi; Frontera, Antonio


    In this manuscript we report the synthesis and X-ray characterization of several complexes of Cu(II) with a 2-(1H-pyrazol-1-yl)-pyrimidine (L) ligand. Complexes CuLCl(2) (1), [CuL(2)(H(2)O)(2)](NO(3))(2) (2) and [CuL(2)H(2)O](NO(3))(2) (3) are mononuclear systems and [CuL(NO(3))(2)](n) (4) is polymeric. In the solid state, complexes 2 and 3 are characterized by the presence of anion-π interactions that are relevant for the final 3D architecture and packing. In complexes 1 and 4, where the counterion is directly bonded to the metal, anion-π interactions are not observed. High level ab initio calculations (RI-MP2/def2-TZVP) have been used to evaluate the noncovalent interactions observed in the solid state and the interplay between them. We also demonstrate that the presence of anions above the aromatic ligand is not due only to strong electrostatic interactions between the counterparts.

  6. Synthesis, characterization and biological activity of Cu(II), Ni(II) and Zn(II) complexes of biopolymeric Schiff bases of salicylaldehydes and chitosan.

    de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes


    Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by (1)H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm(-1) and νMetal-N and νMetal-O at Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity.



    The study of nanosecond dynamics of macromolecules with the luminescent methods make it possible to investigate the formation and functioning of polymeric complexes, polymeric conjugates and macromolecular metal complexes, which are widely used for solving many practical tasks. The nanosecond dynamics of macromolecules are a highly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solve the problems of studying IPC formation and stability and to investigate the interpolymer reactions of exchange and substitution. The investigation of changes in the rotational mobility of globular protein molecules as a whole makes it possible to determine the complex composition and its stability, and to control the course of polymer-protein conjugate formstion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determining the equilibrium constants of the S-polymer complex formation was developed on the basis of the study of polymer chains mobility. It is established that nanosecond dynamics influences the course of chemical reactions in polymer chains. Moreover, the marked effect of the nanosecond dynamics is also revealed in the study of photophysical processes (the formation of excimers and energy migration of electron excitation) in polymers with photoactive groups. It was found that the efficiency of both processes increases with increasing the mobility of side chains, the carriers of photoactive groups.

  8. Magneto-structural correlations in trinuclear Cu(II) complexes: a density functional study

    Rodríguez-Forteá, A; Alvarez, S; Centre-De Recera-En-Quimica-Teorica; Alemany, P A; Centre-De Recera-En-Quimica-Teorica


    Density functional theoretical methods have been used to study magneto-structural correlations for linear trinuclear hydroxo-bridged copper(II) complexes. The nearest-neighbor exchange coupling constant shows very similar trends to those found earlier for dinuclear compounds for which the Cu-O-Cu angle and the out of plane displacement of the hydrogen atoms at the bridge are the two key structural factors that determine the nature of their magnetic behavior. Changes in these two parameters can induce variations of over 1000 cm sup - sup 1 in the value of the nearest-neighbor coupling constant. On the contrary, coupling between next-nearest neighbors is found to be practically independent of structural changes with a value for the coupling constant of about -60 cm sup - sup 1. The magnitude calculated for this coupling constant indicates that considering its value to be negligible, as usually done in experimental studies, can lead to considerable errors, especially for compounds in which the nearest-neighbor c...

  9. Kinetics and mechanism of the stepwise complex formation of Cu(II) with tren-centered tris-macrocycles.

    Soibinet, Matthieu; Gusmeroli, Deborah; Siegfried, Liselotte; Kaden, Thomas A; Palivan, Cornelia; Schweiger, Arthur


    The stepwise complexation kinetics of Cu2+ with three tetratopic ligands L1, L2 and L3, tren-centred macrocycles with different bridges connecting the 14-membered macrocycles with the tren unit, have been measured by stopped-flow photodiode array techniques at 25 degrees C, I= 0.5 M (KNO3), and pH = 4.96. The reaction between the first Cu2+ and the ligand consists of several steps. In a rapid reaction Cu2+ first binds to the flexible and more reactive tren-unit. In this intermediate a translocation from the tren unit to the macrocyclic ring, which forms the thermodynamic more stable complex, takes place. This species can react further with a second Cu2+ to give a heterotopic dinuclear species with one Cu2+ bound by the tren-unit and the other coordinated by the macrocycle. A further translocation occurs to give the homoditopic species with two Cu2+ in the macrocycles. Finally a slow rearrangement of the dinuclear complex gives the final species. The rates of the translocation are dependent on the length and rigidity of the bridge, whereas the complexation rates with the tren unit are little affected by it. VIS spectra of the species obtained by fitting the kinetic results, EPR-spectra taken during the reaction, and ES mass spectra of the products confirm the proposed mechanism. The addition of a second, third and fourth equivalent of Cu2+ proceeds in an analogous way, but is complicated by the fact that we start and end with a mixture of species. These steps were evaluated in a qualitative way only.

  10. Xanthan Exopolysaccharide: Cu(2+) Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers.

    Causse, Benjamin; Spadini, Lorenzo; Sarret, Géraldine; Faure, Adeline; Travelet, Christophe; Madern, Dominique; Delolme, Cécile


    The conformational impact of environmental biopolymers on metal sorption was studied through Cu sorption on xanthan. The apparent Cu(2+) complexation constant (logK; Cu(2+) + L(-) ↔ CuL(+)) decreased from 2.9 ± 0.1 at pH 3.5 to 2.5 ± 0.1 at pH 5.5 (ionic strength I = 0.1). This behavior is in apparent contradiction with basic thermodynamics, as usually the higher the pH the more cations bind. Our combined titration, circular dichroism and dynamic light scattering study indicated that the change observed in Cu bond strength relates to a conformational change of the structure of xanthan, which generates more chelating sites at pH 3.5 than at pH 5.5. This hypothesis was validated by the fact that the Cu sorption constants on xanthan were always higher than those measured on a mixture of pyruvic and glucuronic acids (logK = 2.2), which are the two constitutive ligands present in the xanthan monomer. This study shows the role of the structural conformation of natural biopolymers in metal bond strength. This finding may help to better predict the fate of Cu and other metals in acidic environmental settings such as aquatic media affected by acid mine drainage, as well as peats and acidic soils, and to better define optimal conditions for bioremediation processes.

  11. Synthesis and Crystal Structure of a Novel Polymeric Complex [WS4Cu4(Py)4(μ-CN)2]∞

    焦昌梅; 乔善宝; 徐庆峰; 郎建平


    The reaction of [Et4N]2WS4 with 4 equiv of CuCN in pyridine produced a new polymeric complex [WS4Cu4(Py)4(μ-CN)2]∞ 1, whose crystal structure has been characterized by single-crystal X-ray analysis. 1 (C22H2oCu4N6S4W, Mr=934.71) crystallizes in monoclinic, space group P21/n with a ='8.994(2), b=16.038(3), c=12.026(3) A, β= 90.85(1)°, V= 1734.6(6) A3, Z=2, Dc=1.789 g/cm3, F(000)=896,t(MoKa)=59.8 cm-1 and T=193 K. The structure was refined to R=0.064 and Rw=0.080 for 2209 observed reflections (I > 3.0σ(I)). The X-ray analysis shows that the tetrahedral WS4 core is coordinated by four Cu atoms, forming a saddle-like WS4Cu4 unit. These repeating units are further interconnected by four Cu-μ-CN-Cu 2.726(2) and 2.723(2) A, respectively.

  12. Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: Fluorescence and circular dichroism studies

    Gharagozlou, Mehrnaz; Boghaei, Davar M.


    Fluorescence spectroscopy in combination with circular dichroism (CD) spectroscopy were used to investigate the interaction of water-soluble amino acid Schiff base complexes, [Zn(L 1,2)(phen)] where phen is 1,10-phenanthroline and H 2L 1,2 is amino acid Schiff base ligands, with bovine serum albumin (BSA) under the physiological conditions in phosphate buffer solution adjusted to pH 7.0. The quenching mechanism of fluorescence was suggested as static quenching according to the Stern-Volmer equation. Quenching constants were determined using the Stern-Volmer equation to provide a measure of the binding affinity between amino acid Schiff base complexes and BSA. The thermodynamic parameters Δ G, Δ H and Δ S at different temperatures (298, 310 and 318 K) were calculated. The results indicate that the hydrophobic and hydrogen bonding interactions play a major role in [Zn(L 1)(phen)]-BSA association, whereas hydrophobic and electrostatic interactions participate a main role in [Zn(L 2)(phen)]-BSA binding process. Binding studies concerning the number of binding sites and apparent binding constant Kb were performed by fluorescence quenching method. The distance R between the donor (BSA) and acceptor (amino acid Schiff base complexes) has been obtained utilizing fluorescence resonant energy transfer (FRET). Furthermore, CD spectra were used to investigate the structural changes of the BSA molecule with the addition of amino acid Schiff base complexes. The results indicate that the interaction of amino acid Schiff base complexes with BSA leads to changes in the secondary structure of the protein. Fractional contents of the secondary structure of BSA ( fα, fβ, fturn and frandom) were calculated with and without amino acid Schiff base complexes utilizing circular dichroism spectroscopy. Our results clarified that amino acid Schiff base complexes could bind to BSA and be effectively transported and eliminated in the body, which could be a useful guideline for further drug

  13. Novel copper(II)-dien-imidazole/imidazolate-bridged copper(II) complexes. Crystal structure of [Cu(dien)(Him)](ClO4)2 and of [(dien)Cu(mu-im)Cu(dien)](ClO4)3, a homobinuclear model for the copper(II) site of the CuZn-superoxide dismutase.

    Patel, R N; Singh, Nripendra; Shukla, K K; Chauhan, U K


    The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).

  14. An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II)

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Ghosh, Arup Kumar [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Dasgupta, Swagata, E-mail: [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)


    Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin-Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin-Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (K{sub b}) values are of the order of 10{sup 5} M{sup -1} which increased with rise in temperature in case of HSA and BSA interacting with the quercetin-Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both {Delta}H Degree-Sign and {Delta}S Degree-Sign were positive for the interaction of the quercetin-Cu(II) complex with both proteins but the value of {Delta}H Degree-Sign was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities. - Research Highlights: Black-Right-Pointing-Pointer Mode of binding of quercetin with SAs is altered after complexation with Cu(II). Black-Right-Pointing-Pointer Hydrophobic forces play a key role in the binding of the copper complex with SAs. Black-Right-Pointing-Pointer Negative {Delta}G Degree-Sign values indicate the spontaneity of the binding processes. Black-Right-Pointing-Pointer Quercetin and its copper complex bind at the same site of the SAs.

  15. PuPO4(cr, hyd.) Solubility Product and Pu3+ Complexes With Phosphate and Ethylenediaminetetraacetic Acid

    Rai, Dhanpat; Moore, Dean A.; Felmy, Andrew R.; Rosso, Kevin M.; Bolton, Harvey


    To determine the solubility product of PuPO4(cr, hyd.) and the complexation constants of Pu(III) with phosphate and EDTA, the solubility of PuPO4(cr, hyd.) was investigated as a function of: 1) time and pH varying from 1.0 to 12.0 and at a fixed 0.00032 M phosphate concentration; 2) NaH2PO4 concentrations varying from 0.0001 M to 1.0 M and at a fixed pH value of 2.5; 3) time and pH varying from 1.3 to 13.0 at fixed concentrations of 0.00032 M phosphate and 0.0004 M or 0.002 M Na2H2EDTA; and 4) Na2H2EDTA concentrations varying from 0.00005 M to 0.0256 M at a fixed 0.00032 M phosphate concentration and at pH values of approximately 3.5, 10.6, and 12.6. A combination of solvent extraction and spectrophotometric techniques confirmed that the use of hydroquinone and Na2S2O4 helped maintain Pu as Pu(III). The solubility data were interpreted using Pitzer and SIT models, and both provided similar values for the solubility product of PuPO4(cr, hyd.) and for the formation constant of PuEDTA-. The log10 of the solubility product of PuPO4(cr, hyd.) (PuPO4(cr, hyd.) = Pu3+ + PO4 ) was determined to be –(24.42 ± 0.38). Pitzer modeling showed that phosphate interactions with Pu3+ were extremely weak and did not require any phosphate complexes (e.g., PuPO4(aq), PuH2PO42+, Pu(H2PO4)2+, Pu(H2PO4)3(aq), and Pu(H2PO4)4-), as proposed in existing literature, to explain the experimental data. SIT modeling, however, required the inclusion of PuH2PO42+ to explain the data in high NaH2PO4 concentrations; this illustrates the differences one can expect when using these two chemical models to interpret the data. As the Pu(III)-EDTA species, only PuEDTA- was needed to interpret the experimental data in a large range in pH values (1.3–12.9) and EDTA concentrations (0.00005–0.256 M). Calculations based on density functional theory support the existence of PuEDTA- (with prospective stoichiometry as Pu(OH2)3EDTA-) as the chemically and structurally stable species. The log10 of the

  16. Highly water-soluble platinum(II) complexes as GLUT substrates for targeted therapy: improved anticancer efficacy and transporter-mediated cytotoxic properties.

    Liu, Pengxing; Lu, Yanhui; Gao, Xiangqian; Liu, Ran; Zhang-Negrerie, Daisy; Shi, Ying; Wang, Yiqiang; Wang, Songqing; Gao, Qingzhi


    Glucose-conjugated malonato-platinum(II) complexes are designed and synthesized to target tumor-specific active transporters, namely, glucose transporters (GLUTs); the complexes exhibit much higher aqueous solubility by 150 times, improved potency in cytotoxicities by 10 times, and increased therapeutic index by over 30 fold compared to the newest generation of clinical drugs oxaliplatin.

  17. Dynamic etching of soluble surface layers with on-line inductively coupled plasma mass spectrometry detection - a novel approach for determination of complex metal oxide surface cation stoichiometry

    Limbeck, A; Rupp, GM; M. Kubicek; Tellez, H.; Druce, J; Ishihara, T.; Kilner, JA; Fleig, J.


    In this work, an innovative approach for determining the surface stoichiometry of complex metal oxide (CMO) thin films is presented. The procedure is based on treatment of the sample surface with different etching solutions, followed by on-line analysis of the derived eluates using inductively coupled plasma ? mass spectrometry (ICP-MS). Via consecutive treatment of the sample surface with water and diluted HCl, a differentiation between water soluble and acid soluble parts of near surface re...

  18. Designing a heterotrinuclear Cu(II)-Ni(II)-Cu(II) complex from a mononuclear Cu(II) Schiff base precursor with dicyanamide as a coligand: synthesis, crystal structure, thermal and photoluminescence properties.

    Hopa, Cigdem; Cokay, Ismail


    Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido-1κN(1))bis(dimethyl sulfoxide)-2κO,3κO-bis{μ-2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ(6)O,O':O,N,N',O';1:3κ(6)O,O':O,N,N',O'-dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155-2269 cm(-1), which clearly proves the presence of terminal bonding dca groups. A single-crystal X-ray study revealed that two [CuL] units coordinate to an Ni(II) atom through the phenolate O atoms, with double phenolate bridges between Cu(II) and Ni(II) atoms. Two terminal dca groups complete the distorted octahedral geometry around the central Ni(II) atom. According to differential thermal analysis-thermogravimetric analysis (DTA-TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π-π*) transitions and fluorescence quenching is observed on complexation of H2L with Cu(II).

  19. Synthesis and characterization of new unsymmetrical 'side-off' tetra and hexa coordinate homobinuclear Cu(II) and heterobinuclear Cu(II)-Zn(II) complexes: Magnetic, electrochemical and kinetic studies

    Shanmuga Bharathi, K.; Sreedaran, S.; Kalilur Rahiman, A.; Narayanan, V.

    A new class of phenol based unsymmetrical side-off tetra and hexa coordinate homobinuclear Cu(II) and heterobinuclear Cu(II)-Zn(II) complexes have been synthesized and characterized by elemental and spectral analysis. The electronic spectra of all the complexes show "Red shift" in LMCT band, for the ligand H2L2 compared to that of the ligand H2L1 due to the relatively higher electron donating nature of their substitutents. The homobinuclear Cu(II) complexes (1 and 2) illustrate an antiferromagnetic interaction (μeff: 1.58 and 1.60 BM) at 298 K with a broad EPR signal. Variable temperature magnetic moment study of the binuclear copper (II) complexes shows that the extent of antiferromagnetic coupling is greater in the case of H2L2 complexes than H2L1 complexes (-2 J values: 192 cm-1 and 184 cm-1 respectively). The heterobinuclear Cu(II)-Zn(II) complexes (3 and 4) have a magnetic moment value close to the spin only value with four hyperfine EPR signals. Electrochemical studies of the complexes reveal that all the binuclear complexes show two irreversible one-electron transfer reduction waves in the cathodic region. There is an "anodic shift" in the first reduction potential of the complexes, of the ligand H2L1 when compared to that of the ligand H2L2 due to the presence of relatively higher electron donating N-substituents in the later case than in the former case. The catecholase activity of the complexes reveals that the homobinuclear Cu(II) complexes show higher catalytic activity than the corresponding heterobinuclear Cu(II)-Zn(II) complexes. In the hydrolysis of 4-nitrophenylphosphate, the heterobinuclear Cu(II)-Zn(II) complexes show better catalytic activity than the corresponding homobinuclear Cu(II) complexes.

  20. New water soluble heterometallic complex showing unpredicted coordination modes of EDTA

    Mudsainiyan, R.K., E-mail:; Jassal, A.K.; Chawla, S.K., E-mail:


    A mesoporous 3D polymeric complex (I) having formula ([Zr(IV)O-μ{sup 3}-(EDTA)Fe(III)OH]·H{sub 2}O){sub n} has been crystallized and characterized by various techniques. Single-crystal X-ray diffraction analysis revealed that complex (I) crystallized in chiral monoclinic space group Cc (space group no. 9) with unexpected coordination modes of EDTA and mixture of two transition metal ions. In this complex, the coordination number of Zr(IV) ion is seven where four carboxylate oxygen atoms, two nitrogen atoms, one oxide atom are coordinating with Zr(IV). Fe(III) is four coordinated and its coordination environment is composed of three different carboxylic oxygen atoms from three different EDTA and one oxygen atom of –OH group. The structure consists of 4-c and 16-c (2-nodal) net with new topology and point symbol for net is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern showed that the coordination polymer is quite stable even after losing water molecule and –OH ion. Quenching behavior in fluorescence of ligand is observed by complexation with transition metal ions is due to n–π⁎ transition. The SEM micrograph shows the morphology of complex (I) exhibits spherical shape with size ranging from 50 to 280 nm. The minimum N{sub 2} (S{sub BET}=8.7693 m{sup 2}/g) and a maximum amount of H{sub 2} (high surface area=1044.86 m{sup 2}/g (STP)) could be adsorbed at 77 K. From DLS study, zeta potential is calculated i.e. −7.94 shows the negative charges on the surface of complex. Hirshfeld surface analysis and fingerprint plots revealed influence of weak or non bonding interactions in crystal packing of complex. - Graphical abstract: The complex (I) crystallized with unexpected coordination modes of EDTA having 4-c, 16-c net with new topology and point symbol is (3{sup 36}·4{sup 54}·5{sup 30})·(3{sup 6}). TGA study and XRPD pattern proved its stability with high preference of H{sub 2} uptake by complex. - Highlights: • 3D complex

  1. Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato type complexes

    Mohammad A. Abdulmalic


    Full Text Available The reaction of one equivalent of [n-Bu4N]2[Ni(opboR2] with two equivalents of [Cu(pmdta(X2] afforded the heterotrinuclear CuIINiIICuII containing bis(oxamidato type complexes [Cu2Ni(opboR2(pmdta2]X2 (R = Me, X = NO3– (1; R = Et, X = ClO4– (2; R = n-Pr, X = NO3– (3; opboR2 = o-phenylenebis(NR-substituted oxamidato; pmdta = N,N,N’,N”,N”-pentamethyldiethylenetriamine. The identities of the heterotrinuclear complexes 1–3 were established by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction studies, which revealed the cationic complex fragments [Cu2Ni(opboR2(pmdta2]2+ as not involved in any further intermolecular interactions. As a consequence thereof, the complexes 1–3 possess terminal paramagnetic [Cu(pmdta]2+ fragments separated by [NiII(opboR2]2– bridging units representing diamagnetic SNi = 0 states. The magnetic field dependence of the magnetization M(H of 1–3 at T = 1.8 K has been determined and is shown to be highly reproducible with the Brillouin function for an ideal paramagnetic spin = 1/2 system, verifying experimentally that no magnetic superexchange couplings exists between the terminal paramagnetic [Cu(pmdta]2+ fragments. Susceptibility measurements versus temperature of 1–3 between 1.8–300 K were performed to reinforce the statement of the absence of magnetic superexchange couplings in these three heterotrinuclear complexes.

  2. Effect of the Keggin anions on assembly of Cu{sup I}-bis(tetrazole) thioether complexes containing multinuclear Cu{sup I}-cluster

    Wang Xiuli, E-mail: [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China); Gao Qiang; Tian Aixiang; Hu Hailiang; Liu Guocheng [Department of Chemistry, Bohai University, Liaoning Province Silicon Materials Engineering Technology Research Centre, Jinzhou 121000 (China)


    In order to investigate the effect of polyoxometalate (POM) on the assembly of transition metal-bis(tetrazole) thioether complexes, three new complexes based on different Keggin anions and multinuclear Cu{sup I}-cluster [Cu{sup I}{sub 12}(bmtr){sub 9}(HSiMo{sub 12}O{sub 40}){sub 4}] (1), [Cu{sup I}{sub 3}(bmtr){sub 3}(PM{sub 12}O{sub 40})] (M=W for 2; Mo for 3) (bmtr=1,3-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)propane), have been hydrothermally synthesized and characterized by routine physical methods and single crystal X-ray diffraction. In compound 1, two kinds of nanometer-scale tetranuclear subunits linked by [SiMo{sub 12}O{sub 40}]{sup 4-} polyanions assemble a (3, 4)-connected three-dimensional (3D) self-penetrating framework. Compounds 2 and 3 are isostructural, exhibiting a 1D chain with [PW{sub 12}O{sub 40}]{sup 3-}/[PMo{sub 12}O{sub 40}]{sup 3-} polyanions and trinuclear clusters arranging alternately. The distinct structural differences between these POM-based Cu{sup I}-bmtr complexes of 1 and 2/3 maybe rest on the contrast of Keggin-type polyoxometalate with different central heteroatoms, which have been discussed in detail. In addition, the electrochemical properties of the title complexes have been investigated. - Graphical abstract: Three new complexes based on different Keggin anions and multinuclear Cu{sup I}-cluster have been synthesized under hydrothermal conditions. The Keggin polyanions with different central heteroatoms play a key role. Highlights: Black-Right-Pointing-Pointer The flexible bis(tetrazole)-based thioether ligand with some advantages have been used. Black-Right-Pointing-Pointer The effect of Keggin anions with different central heteroatoms has been discussed in detail. Black-Right-Pointing-Pointer The electrochemical behaviors and electrocatalysis property have been investigated.

  3. Polymorph and isomer conversion of complexes based on CuI and PPh3 easily observed via luminescence.

    Maini, Lucia; Braga, Dario; Mazzeo, Paolo P; Ventura, Barbara


    Reactions between copper(I) iodide and triphenylphosphine have been explored in solution and in the solid state and six luminescent coordination complexes have been obtained and characterized by X-ray diffraction and UV-vis spectroscopy and photophysics. Solid-state reactions of CuI with PPh(3) in different conditions (kneading, vapour digestion) and stoichiometries resulted in the formation of high ratio ligand:metal compounds while tetrameric structures could be obtained only by solution reactions. Crystal structures were determined by single crystal X-ray diffraction while purity of the bulk product was checked by powder diffraction (XRPD). Three different tetrameric structures with 1:1 stoichiometry have been synthesized: two closed cubane-type polymorphs [CuI(PPh(3))](4) (form 1a) and [CuI(PPh(3))](4) (form 1b) and an open step-like isomer [CuI(PPh(3))](4) (form 2). The conversions between the polymorphs and isomers have been studied and characterized by XRPD. The most stable form [CuI(PPh(3))](4) (form 1b) can convert into the open step-like isomer [CuI(PPh(3))](4) (form 2) in a slurry experiment with EtOH or CH(2)Cl(2) or AcCN and converts back into [CuI(PPh(3))](4)1b when exposed to vapors of toluene. At room temperature all the tetrameric compounds exhibit luminescence in the solid state and, notably, the two polymorphs show a dissimilar dual emission at low temperature. The luminescence features in the solid state seem to be peculiarly related to the presence of the aromatic phosphine ligand and depend on the Cu-Cu distance in the cluster.


    The research summarized in this report focuses on the effects which organic cosolvents have on the sorption and mobility of organic contaminants. This work was initiated In an effort to improve our understanding of the environmental consequences associated with complex mixtur...

  5. Potentiometric and DFT studies of Cu(II) complexes with glycylglycine and methionine of interest for the brain chemistry

    Vilhena, Felipe S.; Felcman, Judith; Szpoganicz, Bruno; Miranda, Fabio S.


    A large number of copper (II) complexes have been used as mimetic models for metalloproteins and metalloenzymes. Due to the lack of structural information about copper (II) complexes in aqueous solution, the coordination environment of this metal is not well established. In this work, pKa values of the complexes in the Cu:GlyGly, Cu:Met and Cu:GlyGly:Met systems were calculated by potentiometric titration at 25 °C and ionic strength of 0.1 mol L-1. The coordination modes of the ligands were explored for the main hydrolytic species throught RI-PBE/def2-SVP/COSMO level. In the Cu:GlyGly system, DFT results indicated that the NamineNpept coordination of dipeptide is 2.1 kcal mol-1 more stable than the tridentate NamineNpeptOcarboxy coordination moiety. The deprotonation of the peptide nitrogen is 13.7 kcal mol-1 more favorable than the hydrolysis of the water molecule coordinated to the metal. In the Cu:GlyGly:Met system, the sulfur atom does not belong to the copper (II) coordination sphere. Once the copper ion is incorporated into peptides, another ligand as methionine could bind to this system and carry an antioxidant site to different brain regions.

  6. Aqueous Cu(II)-organic complexation studied in situ using soft X-ray and vibrational spectroscopies.

    Phillips, Courtney L; Regier, Tom Z; Peak, Derek


    In situ aqueous solutions containing copper-ligand mixtures were measured at the Cu L-edge using X-ray absorption near edge structure (XANES) and with attenuated total reflectance infrared (ATR-FTIR) spectroscopies. Copper complexation with environmentally relevant ligands such as EDTA, citrate, and malate provided a bridge between spectroscopic studies and general environmental behavior and will allow for future study of complex environmental samples. XANES results show that the lowest unoccupied molecular orbital (LUMO) energy is governed by the ligand field strength and is related to Lewis acid/base properties of the ligand functional groups. Complementary ATR-FTIR studies confirmed the importance of water molecules in the structure of these Cu-ligand complexes and provided in-depth structural analysis to support the XANES data. Copper-malate is shown to have a 5/6-O-ring structure, and Cu-ethylenediaminetetraacetate has pentadentate coordination. Cu L-edge XANES also revealed direct Cu-N coordination in these aqueous solutions with amide functional groups.

  7. Cu(Nor)2·5H2O, a complex of Cu(II) with Norfloxacin: theoretic approach and biological studies. Cytotoxicity and genotoxicity in cell cultures.

    Di Virgilio, A L; León, I E; Franca, C A; Henao, I; Tobón, G; Etcheverry, S B


    Norfloxacin is a fluoroquinolone antibiotic used in the treatment of bacterial infections. In this article, we studied the potential antitumoral action of a complex of Norfloxacin with Cu(II), Cu(Nor)(2)·5H(2)O on osteosarcoma cells (UMR106) and calvaria-derived cells (MC3T3-E1), evaluating its cytotoxicity and genitoxicity. We have also elucidated the more stable conformation of this complex under physiologic conditions by Molecular Dynamic simulations based on the model of the canonical ensemble and PM6 force field. When solvent effect was taken into account, the complex conformation with both carbonyl groups in opposite sides displayed lower energy. Cu(Nor)(2)·5H(2)O caused an inhibitory effect on the proliferation on both cell lines from 300 μM (P < 0.01). Nevertheless, the decline on cell proliferation of UMR106 cells was more pronounced (45 % vs basal) than in MC3T3-E1 cells (20 % vs basal) at 300 μM (P < 0.01). Cu(Nor)(2)·5H(2)O altered lysosomal metabolism (Neutral Red assay) in a dose-dependent manner from 300 μM (P < 0.001). Morphological studies showed important transformations that correlated with a decrease in the number of cells in a dose-dependent manner. Moreover, Cu(Nor)(2)·5H(2)O caused statistically significant genotoxic effects on both osteoblast cell lines in a lower range of concentrations (Micronucleus assay) (P < 0.05 at 10 μM, P < 0.001 from 25 to 50 μM). UMR106 cells displayed a dose-related genotoxic effect between 5 and 25 μM while the MC3T3-E1 cells showed a narrower concentration dependent range. Altogether, these results suggest that Cu(Nor)(2)·5H(2)O is a good candidate to be further evaluated for alternative therapeutics in cancer treatment.

  8. Synthesis, antibacterial, antifungal activity and interaction of CT-DNA with a new benzimidazole derived Cu(II) complex.

    Arjmand, Farukh; Mohani, Bhawana; Ahmad, Shamim


    The ligand [C(16)H(10)O(2)N(4)S(2)] L has been synthesized by the condensation reaction of 2-mercaptobenzimidazole and diethyloxalate. The ligand L was allowed to react with bis(ethylenediamine)Cu(II)/Ni(II) complexes to yield [C(20)H(22)N(8)S(2)Cu]Cl(2)1 and [C(20)H(22)N(8)S(2)Ni]Cl(2)2 complexes. The Ni(II) complex was synthesized only to elucidate the structure of the complex. The complexes 1 and 2 were characterized by elemental analyses, IR, NMR, EPR, UV-vis spectroscopy and molar conductance measurements. Both the complexes are ionic in nature and possess square-planar geometry. The binding of the complex 1 to calf thymus DNA was investigated spectrophotometrically. The absorption spectra of complex 1 exhibits a slight red shift with "hyperchromic effect" in presence of CTDNA. Electrochemical analysis and viscosity measurements were also carried out to ascertain the mode of binding. The complex 1 in the absence and in presence of CT DNA in aqueous solution exhibits one quasi-reversible redox wave corresponding to Cu(II)/Cu(I) redox couple at a scan rate of 0.2 V s(-1). The shift in DeltaE(p), E(1/2) and I(pa)/I(pc) values ascertain the interaction of calf thymus DNA with copper(II) complex. There is decrease in viscosity of CTDNA which indicates that the complex 1 binds to CTDNA through a partial intercalative mode. The antibacterial and antifungal studies of the [C(7)H(6)N(2)S], [C(4)H(16)N(4)Cu]Cl(2,) [C(16)H(10)N(4)S(2)O(2)] and [C(20)H(22)N(8)S(2)Cu]Cl(2) were carried out against S. aureus, E. coli and A. niger. All the results reveal that the complex 1 is highly active against the bacterial strains and also inhibits fungal growth.

  9. Mixed ligand Cu(II)N2O2 complexes: biomimetic synthesis, activities in vitro and biological models, theoretical calculations.

    Li, Chen; Yin, Bing; Kang, Yifan; Liu, Ping; Chen, Liang; Wang, Yaoyu; Li, Jianli


    Three new mixed ligand Cu(II)N2O2 complexes, namely, [Cu(II)(2-A-6-MBT)2(m-NB)2] (1), [Cu(II)(2-ABT)2(m-NB)2] (2), and [Cu(II)(2-ABT)2(o-NB)2] (3), (2-A-6-MBT = 2-amino-6-methoxybenzothiazole, m-NB = m-nitrobenzoate, 2-ABT = 2-aminobenzothiazole, and o-NB = o-nitrobenzoate), have been prepared by the biomimetic synthesis strategy, and their structures were determined by X-ray crystallography studies and spectral methods. These complexes exhibited the effective superoxide dismutase (SOD) activity and catecholase activity. On the basis of the experimental data and computational studies, the structure-activity relationship for these complexes was investigated. The results reveal that electron-accepting abilities of these complexes and coordination geometries have significant effects on the SOD activity and catecholase activity. Then, we found that 1 and 2 exerted potent intracellular antioxidant capacity in the model of H2O2-induced oxidative stress based on HeLa cervical cancer cells, which were screened out by the cytotoxicity assays of different kinds of cells. Furthermore, 1-3 showed the favorable biocompatibility in two different biological models: Saccharomyces cerevisiae and human vascular endothelial cells. These biological experimental data are indicative of the promising application potential of these complexes in biology and pharmacology.

  10. Preliminary Exploration of the Reactor Configuration for Hydroformylation of 1—Dodecene Catalyzed by Water Soluble Rhodium Complex

    MAOZaisha; BIXinyan; 等


    Hydroformylation of 1-dodecene was studied in a biphasic system using water-soluble rhodium complex [RhCl(CO)(TPPTS)2] as catalyst in the presence of cetyl trimethyl ammonium bromide as surfactant to enhance the reaction rate. Efforts were devoted to improve the performance of hydroformylation by exploring reactor the reaction configuration which enhanced the mixing, dispersion and interphase mass transfer. Experiments were carried out in a 0.5L autoclave at the total pressure of 1.1MPa and temperature from 363K to 373K. Several surface aeration configurations were tested, and higher hydroformylation rate with higher normal/branched aldehyde ratio produced were achieved. The experience suggest that improved reactor configuration by taking reaction engineering, measures is beneficial to better process economy in alkene hydroformylation.

  11. Synthesis of 3,5-diisopropyl(carboxy- sup 14 C)salicylic acid and its sup 67 Cu complex

    Chidambaram, M.V.; Epperson, C.E.; Williams, S.; Gray, R.A.; Sorenson, J.R.J. (Univ. of Arkansas for Medical Sciences, Little Rock (USA). College of Pharmacy)


    The synthesis of 3,5-diisopropyl(carboxy-{sup 14}C)salicylic acid was achieved via Kolbe-Schmitt carboxylation of potassium 2,4-di-isopropylphenolate. The yield of this acid was 81% based upon the weight of the product and 93% based upon radioactivity incorporated into the labeled acid which contains 98% {sup 14}C in the carboxyl group (specific activity = 5.1 {mu}Ci/mg). The labeled acid was characterized by ultraviolet spectrophotometry and purity established by thin-layer chromatography, autoradiography, and liquid scintillation counting. A 90% yield of the double labeled {sup 14}C, {sup 67}Cu-complex (specific activity = 4.6 {mu}Ci {sup 67}Cu/mg) was obtained using conditions developed with non-radioactive reactants. The presence of {sup 67}Cu in this complex was established using {gamma}-ray emission spectrophometry. (author).

  12. A Novel Self-Assembled Supramolecular Complex {[Cu(Ⅱ)(en)2·H2O] [Cu(Ⅰ)2(CN)4]}n with Honeycomb-like Structure and Its Adsorption Properties

    SHEN,Xiao-Ping(沈小平); ZOU,Jian-Zhong(邹建忠); LI,Bao-Long(李宝龙); HU,Huai-Ming(胡怀民); XU,Zheng(徐正)


    A novel supramolecular complex {[Cu(Ⅱ)(en)2@H2O]@[Cu(I)2(CN)4]n (en= ethylenediamine), in which the cyanide-bridged Cu(I) forms the honeycomb-like skeleton host and the Cu(Ⅱ) complex ion [Cu(en)2@H2O]2+ is encapsulated in the center of the channel cavity of the skeleton, was synthesized by two different methods. The complex was also characterized by elemental analysis, ICP analysis, IR spectra and thermal analysis. The adsorption and desorption studies of the complex indicate that H2O and NH3 can be desorbed and re-adsorbed without collapse of the channel structure of the supramolecule.

  13. Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms.

    Ferdani, Riccardo; Stigers, Dannon J; Fiamengo, Ashley L; Wei, Lihui; Li, Barbara T Y; Golen, James A; Rheingold, Arnold L; Weisman, Gary R; Wong, Edward H; Anderson, Carolyn J


    A new class of cross-bridged cyclam-based macrocycles featuring phosphonate pendant groups has been developed. 1,4,8,11-tetraazacyclotetradecane-1,8-di(methanephosphonic acid) (CB-TE2P, 1) and 1,4,8,11-tetraazacyclotetradecane-1-(methanephosphonic acid)-8-(methanecarboxylic acid) (CB-TE1A1P, 2) have been synthesized and have been shown to readily form neutral copper(II) complexes at room temperature as the corresponding dianions. Both complexes showed high kinetic inertness to demetallation and crystal structures confirmed complete encapsulation of copper(II) ion within each macrocycle's cleft-like structure. Unprecedented for cross-bridged cyclam derivatives, both CB-TE2P (1) and CB-TE1A1P (2) can be radiolabeled with (64)Cu at room temperature in less than 1 h with specific activities >1 mCi μg(-1). The in vivo behavior of both (64)Cu-CB-TE2P and (64)Cu-CB-TE1A1P were investigated through biodistribution studies using healthy male Lewis rats. Both new compounds showed rapid clearance with similar or lower accumulation in non-target organs/tissues when compared to other copper chelators including CB-TE2A, NOTA and Diamsar.

  14. A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids.

    Maeda, Kenji; Poletto, Mattia; Chiapparino, Antonella; Gavin, Anne-Claude


    Interactions between lipids and proteins in the aqueous phases of cells contribute to many aspects of cell physiology. Here we describe a detailed protocol to systematically characterize in vivo-assembled complexes of soluble proteins and lipids. Saccharomyces cerevisiae strains expressing physiological amounts of a protein of interest fused to the tandem-affinity purification (TAP) tag are first lysed in the absence of detergent to capture intact protein-lipid complexes. The affinity-purified complexes (typically 30-50 kDa) are subjected to analytical size-exclusion chromatography (SEC) to remove contaminating lipids that elute at the void volume (>600 kDa), in order to achieve sufficient signal-to-background lipid ratios. Proteins in the SEC fractions are then analyzed by denaturing gel electrophoresis. Lipidomics techniques such as high-performance thin-layer chromatography or gas or liquid chromatography-mass spectrometry can then be applied to measure the elution profiles of lipids and to pinpoint the true interactors co-eluting with the TAP fusions. The procedure (starting from cell lysis) requires 2 d, and it can easily be adapted to other organisms.

  15. Fluid evolution in H2O-CO2-NaCl system and metallogenic analysis of the Surian metamorphic complex, Bavanat Cu deposit, Southwest Iran

    Asadi, Sina; Moore, Farid


    The Bavanat Cu deposit occurs as veins controlled by a NE-trending structure within the Permo-Triassic Surian metamorphic complex (SMC), southwest of Iran. The SMC rocks exposed in the area have undergone greenschist-facies metamorphism. The ore-forming process can be divided into early, middle, and late stages, represented by, respectively, pyrite-quartz, polymetallic sulfide-quartz, and late-stage barren quartz veins. Systematic studies of fluid inclusions (FIs) in the quartz veins found four types: aqueous, mixed aqueous-carbonic, carbonic, and multiphase-bearing inclusions. The FIs of early, middle and late-stages are mainly homogenized at temperatures of 335-417 °C, 230-380 °C, and 190-227 °C, with salinities of 1.1-6.7, 2.9-36.6, and 0.8-2.6 wt.% NaCl equivalent, respectively. The main stage of Cu mineralization is related to the middle-stage, where FIs show evidence of fluid immiscibility. The metal precipitation resulted from a decrease in copper solubility during the fluid immiscibility, cooling, crystallization of multiphase-bearing inclusions, and a small increase in pH. Laser Raman spectroscopy and FIs evidences indicate that the metallogenic system evolved from metamorphic CO2 (+CH4)-rich, relatively high fO2 (10-25 to 10-29 bars) to CO2-poor and relatively low fO2 (10-31 to 10-34 bars). Muscovite from the middle-stage veins yields 40Ar/39Ar plateau age of 195.2 ± 1.0 Ma, suggesting that the Cu mineralization at Bavanat formed in the Early Jurassic coeval with the retrograde metamorphic events during the post-early Cimmerian orogeny.

  16. Fluid evolution in H2O-CO2-NaCl system and metallogenic analysis of the Surian metamorphic complex, Bavanat Cu deposit, Southwest Iran

    Asadi, Sina; Moore, Farid


    The Bavanat Cu deposit occurs as veins controlled by a NE-trending structure within the Permo-Triassic Surian metamorphic complex (SMC), southwest of Iran. The SMC rocks exposed in the area have undergone greenschist-facies metamorphism. The ore-forming process can be divided into early, middle, and late stages, represented by, respectively, pyrite-quartz, polymetallic sulfide-quartz, and late-stage barren quartz veins. Systematic studies of fluid inclusions (FIs) in the quartz veins found four types: aqueous, mixed aqueous-carbonic, carbonic, and multiphase-bearing inclusions. The FIs of early, middle and late-stages are mainly homogenized at temperatures of 335-417 °C, 230-380 °C, and 190-227 °C, with salinities of 1.1-6.7, 2.9-36.6, and 0.8-2.6 wt.% NaCl equivalent, respectively. The main stage of Cu mineralization is related to the middle-stage, where FIs show evidence of fluid immiscibility. The metal precipitation resulted from a decrease in copper solubility during the fluid immiscibility, cooling, crystallization of multiphase-bearing inclusions, and a small increase in pH. Laser Raman spectroscopy and FIs evidences indicate that the metallogenic system evolved from metamorphic CO2 (+CH4)-rich, relatively high fO2 (10-25 to 10-29 bars) to CO2-poor and relatively low fO2 (10-31 to 10-34 bars). Muscovite from the middle-stage veins yields 40Ar/39Ar plateau age of 195.2 ± 1.0 Ma, suggesting that the Cu mineralization at Bavanat formed in the Early Jurassic coeval with the retrograde metamorphic events during the post-early Cimmerian orogeny.

  17. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    Kumar, Rajeev Ananda


    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  18. DNA interaction studies of a novel Cu(II) complex as an intercalator containing curcumin and bathophenanthroline ligands.

    Shahabadi, Nahid; Falsafi, Monireh; Moghadam, Neda Hosseinpour


    A new copper(II) complex; [Cu(Cur)(DIP)](+2) in which Cur=curcumin and DIP=4,7-diphenyl-1,10-phenanthroline, was synthesized and characterized using different physico-chemical methods. Binding interaction of this complex with calf thymus (CT-DNA) has been investigated by emission, absorption, circular dichroism, viscosity, and differential pulse voltammetry and fluorescence techniques. The complex displays significant binding properties to the CT-DNA. In fluorimeteric studies, the binding mode of the complex with CT-DNA was investigated using methylene blue as a fluorescence probe. Fluorescence of methylene blue-DNA solution increased in the presence of increasing amounts of the complex. It was found that the complex is able to displace the methylene blue completely. This indicate intercalation of the complex between base pairs of DNA. The cleavage of plasmid DNA by the complex was also studied. We found that the copper(II) complex can cleave puC18 DNA. Furthermore, mentioned complex induces detectable changes in the CD spectrum of CT-DNA, a decrease in absorption spectrum, and an increase in its viscosity. All of the experimental results showed that the Cu(II) complex bound to DNA by an intercalative mode of binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Nitrite to nitric oxide interconversion by heme FeII complex assisted by [CuI(tmpa)]+

    Turias, Francesc


    The present computational study complements the recent experimental efforts by Karlin and coworkers to describe the interconversion of nitrite to nitric oxide by means of an iron porphyrin complex together with a Cu chemical system, i.e., the iron(II) complex (F8TPP)FeII [F8TPP = tetrakis(2,6-difluorophenyl)porphyrinate(2−)] and a preformed copper(II)–nitrito complex [(tmpa)CuII(NO2)][B(C6F5)4] [tmpa = tris(2-pyridylmethyl)amine], being the latter an oxidized species of [(tmpa)CuI(MeCN)]+. By DFT calculations, we unravel how the reduction of nitrite to nitric oxide takes place through a μ-oxo heme-FeIII–O–CuII complex, following a mimetic path as in the cytochrome c oxidase. Mayer bond order (MBO) and energy decomposition analyses are used to analyze the bonding strength of such nitro derivatives to either copper or iron. © 2015 Springer Science+Business Media New York

  20. The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA

    Hadadzadeh, Hassan; Salimi, Mona; Weil, Matthias; Jannesari, Zahra; Darabi, Farivash; Abdi, Khatereh; Khalaji, Aliakbar Dehno; Sardari, Soroush; Ahangari, Reza


    The mononuclear Cu(II) complex, trans-[Cu(Pir)2(THF)2], where Pir is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been prepared and characterized by elemental analysis, spectroscopic methods (UV-Vis, IR, and 1H NMR) and single crystal X-ray structure analysis. The molecular structure of the centrosymmetric complex is made up of two monoanionic bidentate Pir ligands coordinated to the Cu(II) atom through the pyridyl N atom and the carbonyl O atom of the amide group in equatorial positions. The elongated rhombic octahedral (ERO) coordination of the CuNONOO2″ chromophore is completed by the O atoms of two THF molecules in axial positions. A strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom confirms the ZZZ conformation of piroxicam. In addition, CD spectroscopy and gel electrophoresis assays have been used to investigate the interaction of the complex with DNA. The results revealed that the binding of the complex with DNA led to DNA backbone distortion.

  1. An Efficient (2-Aminoarenethiolato)copper(I) Complex for the Copper-Catalysed Huisgen Reaction (CuAAC)

    Fabbrizzi, Pierangelo; Cicchi, Stefano; Brandi, Alberto; Sperotto, E.; van Koten, G.


    A (2-aminoarenethiolato)copper(I) complex has been used as an efficient catalyst (1 mol-%) for the copper-catalysedHuisgen reaction (CuAAC) of azides and terminal alkynes in an organic solvent. The reaction was also extremely effective in CH2Cl2 allowing the complete decoration of dendrimeric scaffo

  2. Zn (II and Cu (II Halide Complexes of Poly(propylene amine Dendrimer Analysed by Infrared and Raman Spectroscopies

    Ivo Grabchev


    Full Text Available Two nondestructive and complementary spectral methods as infrared and Raman spectroscopies have been used for characterizations of poly(propylene amine dendrimers comprising 1,8-naphthalimide units in the dendrimer periphery and their metal complexes with Cu2+ at Zn2+ ions.

  3. 三核铜(Ⅰ/Ⅱ)配合物[Cu(en)_2]·[Cu(pht)_2]_2的合成、晶体结构及与DNA相互作用的研究%Synthesis, Crystal Structure and DNA-binding Studies of Cu(Ⅰ/Ⅱ) Complex [Cu(en)_2].[Cu(pht)_2]_2

    胡喜兰; 施鹏飞; 许兴友; 栾艳; 陈建平; 王大奇


    报道了多核铜配合物[Cu(en)_2]·[Cu(pht)_2]_2(Hpht:苯妥英,即5,5-二苯基-2,2-咪唑烷酮;en:乙二胺)的溶剂热合成、晶体结构及其与DNA的相互作用.该晶体属三斜晶系,P_1~-空间群,晶胞参数:a=0.8453(2)nm,b=1.1878(3)nm,c=1.5674(4)nm,a=101.197(3)°,β=97.690(3)°,γ=103.283(3)°,V=1.476(6)nm~3,D_c=1.480 g/cm~3,Z=1,F(000)=679,μ=1.139nm~(-1),R_1=0.0402,wR_2=0.0962[I>2σ(Ⅰ)],GOF=1.035.XPS和X射线单晶衍射数据显示该配合物分子由混价铜组成,包括两个一价铜和一个二价铜,其中每个Cu(Ⅰ)分别与两个苯妥英配体提供的氮原子配位,N-Cu(Ⅰ)-N的夹角为177°,一个Cu(Ⅱ)与六个配位原子配位(CuN_4O_2),形成一个稍变形八面体结构.配合物与DNA相互作用研究表明,该配合物主要是以插入方式与小牛胸腺DNA结合.%The title complex [Cu(en)_2]·[Cu(pht)_2]_2 (Hpht=5,5-diphenylhydantoin, i.e. phenytoin; en=ethylenediamine) was synthesized solvent-thermally and characterized by elemental analysis, IR, TG-DSC and single-crystal X-ray diffraction. The crystal of the complex belongs to triclinic system with space group P_1~-, a=0.8453(2) nm, b= 1.1878(3) nm, c= 1.5674(4) nm, α= 101.197(3)°,β=97.690(3)°, γ= 103.283(3)°,V= 1.476(6) nm~3, D_c= 1.480 g/cm~3, Z= 1, F(000)=679,μ= 1.139 mm~(-1), final R [I>2σ(I)]: R_1 = 0.0402, wR_2=0.0962 and GOF= 1.035. The XPS and single-crystal X-ray diffraction data demonstrated that the complex was mix-charged, including two Cu(Ⅰ) and one Cu(Ⅱ) metal centers. The Cu(Ⅰ) atom was coordi-nated by two nitrogen atoms from two phenytoin ligands, and the angle of N-Cu(Ⅰ)-N was 177°. The Cu(Ⅱ) atom adopted a distorted CuN_4O_2 octahedron configuration when coordinated with two en and two phenytoin ligands. The interaction between the complex and CT-DNA was studied by UV spectroscopy, fluorescence spectroscopy and viscosity measurements, which confirmed the intercalation effect of the com-plex into DNA double helix.

  4. Underpotential Co-deposition of Au-Cu alloys: switching the underpotentially deposited element by selective complexation.

    Liang, Defu; Zangari, Giovanni


    Underpotential deposition and monolayer replacement processes are widely used for the synthesis of core/shell catalysts and heterointerfaces. Conventionally, only the more noble metal can be underpotentially deposited on or replace the less noble metal, limiting the number of accessible material configurations. We show here that the reverse process is possible, using the Au-Cu pair as a model system. By tuning the redox potentials of the two components via use of strong, selective metal ion complexes, Au-Cu alloys could be synthesized at will by (i) conventional underpotential co-deposition, whereby Cu is reduced at underpotential in parallel with the overpotential deposition of Au, or (ii) the reverse process, where Au is reduced at underpotential, while Cu is deposited at overpotential. Selective complexation also draws the redox potential of Au and Cu closer, resulting in co-deposition under activation control for the noble metal and precise alloy composition control by the applied potential, enabling in principle the formation of arbitrary metal or alloy interfaces. The alloys resulting from the two processes exhibit distinct enthalpy of mixing, suggesting different degrees of short-range order and dissimilar atomic configurations. These findings open new perspectives on underpotential deposition phenomena and possibly new synthetic opportunities in electrodeposition.

  5. Synthesis, crystal structure and characterization of new biologically active Cu(II) complexes with ligand derived from N-substituted sulfonamide



    A new N-sulfonamide ligand (HL1= N-(5-(4-methoxyphenyl)-[1,3,4]–thiadiazole–2-yl)-toluenesulfonamide)and two Cu(II) complexes, $[Cu(L1)­_{2}(py)_{2}]$ (C1) and $[Cu(L2)_{2}(py)_{2}(H_{2}O)]$ (C2) (HL2 = N-(5-(4-methylphenyl)-[1,3,4]–thiadiazole–2-yl)-benzenesulfonamide) were synthesized. The X-ray crystal structuresof the complexes were determined. In the complex C1, the Cu(II) ion is four-coordinated, forming a $CuN_{4}$ chromophore and in the complex C2, the Cu(II) ion is five-coordinated, forming a $CuN_{4}O$ chromophore. Theligand acts as monodentate, coordinating the Cu(II) ion through a single $N_{thiadiazole}$ atom. The molecules fromthe reaction medium (pyridine and water) are also involved in the coordination of the Cu(II) ion. The complexesC1 and C2 are square-planar and a slightly distorted square pyramidal, respectively. The compounds werecharacterized by FT-IR, electronic, EPR spectroscopic and magnetic methods. The nuclease binding activitystudies of the synthesized complexes confirm their capacity to cleave the DNA molecule. The cytotoxicitystudies were carried out on melanoma cell line WM35 which confirm that both compounds inhibit the growthof these cells. They have a higher activity compared to a platinum drug, carboplatin.

  6. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder


    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  7. Determination of water-soluble and insoluble (dilute-HCl-extractable) fractions of Cd, Pb and Cu in Antarctic aerosol by square wave anodic stripping voltammetry: distribution and summer seasonal evolution at Terra Nova Bay (Victoria Land)

    Annibaldi, A.; Truzzi, C.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche - Ancona, Department of Marine Science, Ancona (Italy)


    Eight PM10 aerosol samples were collected in the vicinity of the ''Mario Zucchelli'' Italian Antarctic Station (formerly Terra Nova Bay Station) during the 2000-2001 austral summer using a high-volume sampler and precleaned cellulose filters. The aerosol mass was determined by differential weighing of filters carried out in a clean chemistry laboratory under controlled temperature and humidity. A two-step sequential extraction procedure was used to separate the water-soluble and the insoluble (dilute-HCl-extractable) fractions. Cd, Pb and Cu were determined in the two fractions using an ultrasensitive square wave anodic stripping voltammetric (SWASV) procedure set up for and applied to aerosol samples for the first time. Total extractable metals showed maxima at midsummer for Cd and Pb and a less clear trend for Cu. In particular, particulate metal concentrations ranged as follows: Cd 0.84-9.2 {mu}g g{sup -1} (average 4.7 {mu}g g{sup -1}), Pb 13.2-81 {mu}g g{sup -1} (average 33 {mu}g g{sup -1}), Cu 126-628 {mu}g g{sup -1} (average 378 {mu}g g{sup -1}). In terms of atmospheric concentration, the values were: Cd 0.55-6.3 pg m{sup -3} (average 3.4 pg m{sup -3}), Pb 8.7-48 pg m{sup -3} (average 24 pg m{sup -3}), Cu 75-365 pg m{sup -3} (average 266 pg m{sup -3}). At the beginning of the season the three metals appear widely distributed in the insoluble (HCl-extractable) fraction (higher proportions for Cd and Pb, 90-100%, and lower for Cu, 70-90%) with maxima in the second half of December. The soluble fraction then increases, and at the end of the season Cd and Pb are approximately equidistributed between the two fractions, while for Cu the soluble fraction reaches its maximum level of 36%. Practically negligible contributions are estimated for crustal and sea-spray sources. Low but significant volcanic contributions are estimated for Cd and Pb ({proportional_to}10% and {proportional_to}5%, respectively), while there is an evident although not

  8. Constant Electric and Magnetic Fields Effect on the Structuring and Thermomechanical and Thermophysical Properties of Nanocomposites Formed from Pectin-Cu2+-Polyethyleneimine Interpolyelectrolyte-Metal Complexes

    Demchenko, V.; Shtompel', V.; Riabov, S.; Lysenkov, E.


    Applying wide-angle X-ray scattering method, thermomechanical analysis, and differential scanning calorimetry, the structural organization and properties of nanocomposites formed by chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex (pectin-Cu2+-polyethyleneimine) under the influence of a constant magnetic and electric fields have been studied. It has been found that the chemical reduction of Cu2+ cations in the interpolyelectrolyte-metal complex bulk under constant electric and magnetic fields leads to formation of nanocomposite consisting of interpolyelectrolyte complex, including pectin-polyethyleneimine and nanoparticles of the metal Cu phase, whereas nanocomposite with Cu/Cu2O nanoparticles is formed in original state (without any field). It was observed that, under constant field, nanocomposites obtained have higher structural glass-transition temperatures and thermal stability.

  9. Synthesis, structural studies and biological activity of new Cu(II) complexes with acetyl derivatives of 7-hydroxy-4-methylcoumarin.

    Klepka, Marcin T; Drzewiecka-Antonik, Aleksandra; Wolska, Anna; Rejmak, Paweł; Ostrowska, Kinga; Hejchman, Elżbieta; Kruszewska, Hanna; Czajkowska, Agnieszka; Młynarczuk-Biały, Izabela; Ferenc, Wiesława


    The new Cu(II) complexes with 6-acetyl-7-hydroxy-4-methylcoumarin (HL1) and 8-acetyl-7-hydroxy-4-methylcoumarin (HL2) have been obtained by the electrochemical method. The density functional theory calculations and X-ray absorption spectroscopy techniques have been used to geometrically describe a series of new compounds. The studies have been focused on the coordination mode of the hydroxy ligands to the metallic centre. The complexes, Cu(HL1)2 and Cu(HL2)2⋅0.5H2O, have flat square geometry with oxygen atoms in the first coordination sphere. Two bidentate anionic coumarins are bonded to the metal cation via the acetyl and deprotonated hydroxyl O atoms. Biological activity, including microbiological and cytotoxic, has been evaluated and found to be enhanced in comparison with the parent ligands. Moreover, the Cu(II) complex with 8-acetyl-7-hydroxy-4-methylcoumarin shows similar antifungal activity as commercially used fluconazole.

  10. Protective Effects of Vitamin E against Oxidative Damage Induced by Aβ1-40Cu(Ⅱ) Complexes

    Xueling DAI; Yaxuan SUN; Zhaofeng JIANG


    β-amyloid peptide (Aβ) is considered to be responsible for the formation of senile plaques,which is the hallmark of Alzheimer's disease (AD). Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of AD brain. A growing body of evidence has been presented in support of Aβ1-40 forming an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Aβ1-40Cu(Ⅱ) complexes generate neurotoxic hydrogen peroxide (H2O2) from O2 via Cu2+ reduction, though the precise reaction mechanism is unclear. Thc toxicity of Aβ1-40 or the Aβ1-40Cu(Ⅱ)complexes to cultured primary cortical neurons was partially attenuated when (+)-α-tocopherol (vitamin E)as free radical antioxidant was added at a concentration of 100 μM. The data derived from lactate dehydrogenase (LDH) release and the formation of H2O2 confirmed the results from the MTT assay. These findings indicate that copper binding to Aβ1-40 can give rise to greater production of H2O2, which leads to a breakdown in the integrity of the plasma membrane and subsequent neuronal death. Groups treated with vitamin E exhibited much slighter damage, suggesting that vitamin E plays a key role in protecting neuronal cells from dysfunction or death.

  11. Influence of synthesis conditions on complexation of Cu (II) with O,N,O tridentate hydrazone ligand. X-ray diffraction and spectroscopic investigations

    Repich, H. H.; Orysyk, S. I.; Orysyk, V. V.; Zborovskii, Yu. L.; Melnyk, A. K.; Trachevskyi, V. V.; Pekhnyo, V. I.; Vovk, M. V.


    Four novel Cu2+ coordination compounds with a (E)-N‧-(2-hydroxybenzylidene)-2-phenylacetohydrazide (HBPAH, H2L) have been synthesized and characterized by single crystal X-ray diffraction method, IR, UV-Vis and EPR spectroscopy. In all obtained compounds the ligand is coordinated in typical O,N,O-tridentate chelate manner. It has been shown that synthesis conditions have a great influence on a structure of resulting complex compounds. Depending on starting Cu2+ compounds, concentration of reagents, pH and the presence of secondary ligands the HBPAH coordinates as a neutral molecule, mono- or dianion with formation of four different complexes: [Cu(HL)(H2L)]NO3 (I), [Cu(HL)Cl] (II), [Cu2(HL)2Cl2] (III) and [Cu2(L)2Py2] (IV). Complex I is interesting by the presence of two differently coordinated ligand molecules. Mononuclear complex compound II and its dimeric analogue III were obtained from the same reagents: CuCl2 and HBPAH but in different reaction conditions. In dimeric complex IV the HBPAH molecules are coordinated as dianions in imidol tautomeric form, the pyridine molecules act as secondary ligands complementing the coordination polyhedra of Cu2+ ions. Study of UV-Vis and EPR spectra of complex compounds I-IV in solutions showed that all the complexes undergo partial solvolysis upon dissolution.

  12. Generating Cu(II)-Oxyl / Cu(III)-Oxo Species from Cu(I)-α-Ketocarboxylate Complexes and O2: In silico Studies on Ligand Effects and C-H-activation Reactivity

    Huber, Stefan M.; Ertem, M. Zahid; Aquilante, Francesco; Gagliardi, Laura; Tolman, William B.; Cramer, Christopher J.


    A mechanism for the oxygenation of Cu(I) complexes with α-ketocarboxylate ligands is elaborated that is based on a combination of density functional theory and multireference second-order perturbation theory (CASSCF/CASPT2) calculations. The reaction proceeds in a manner largely analogous to those of similar Fe(II) α-ketocarboxylate systems, i.e. by initial attack of a coordinated oxygen molecule on a ketocarboxylate ligand with concomitant decarboxylation. Subsequently, two reactive intermed...


    Yan-fei Peng; Li-na Zhang; Xiao-juan Xu; Li-guo Cheng


    Six water-soluble polysaccharide-protein complexes coded as GM1, GM2, GM3, GM4, GM5 and GM6 were isolated from the mycelium of Ganoderma tsugae by extracting with 0.2 mol/L phosphate buffer solution at 25, 40 and 80℃, water at 120℃, 0.5 mol/L aqueous NaOH solution at 25 and 65℃, consecutively. Their chemical components were analyzed by using IR, GC, HPLC and 13C-NMR, and some new results were obtained. The four samples GM1, GM2, GM3 and GM4 are heteropolysaccharide-protein complexes, in which, α-(1→3) linked D-glucose is the major monosaccharide while galactose, mannose and ribose are the secondary ones. GM5 and GM6 are β-(1→3)-D-glucan-protein complexes. The protein content increased from 32% to 69% with the progress of isolation. Weight-average molecular mass Mw and the intrinsic viscosity [rη] of the GM samples in 0.5 mol/L aqueous NaCl solution at 25℃ were measured systematically by laser light scattering (LLS), size exclusion chromatography (SEC) combined with LLS, and viscometry. The Mw of GM1 to GM6 are 35.5, 46.8, 58.9, 41.6, 3.3 and 22.0 x 104, respectively. The conformation and molecular mass of the two fractions of sample GM5 were characterized satisfactorily by SEC-LLS without further fractionation.

  14. Synthesis and Crystal Structure of N-Benzyl-N'-(2-pyridyl)urea and Its Mononuclear Cu(II) Complex

    HE Lei; LUO Xiao-Lan; ZHANG Wen-Qin


    A new ligand of N-benzyl-N'-(2-pyridyl)urea L and its self-assembly product with CuCl2, [Cu(II)LCl2]∞ 1, have been synthesized and structurally characterized by IR, 1H NMR and single-crystal X-ray diffraction analysis. In the structure of L, the urea groups adopt Z,E conformation to form dimers through intermolecular hydrogen bonds; while in complex 1, it assumes Z,Z conformation to fit for the coordination sphere of the Cu(II) ions. The coordinated units are connected through intermolecular N-H…Cl hydrogen bonds to form an extended 2D framework. Finally, a 3D structure is obtained via π-π stacking interactions between pyridyl rings.

  15. Electronic and Thermal Transport Properties of Complex Structured Cu-Bi-Se Thermoelectric Compound with Low Lattice Thermal Conductivity

    Jae-Yeol Hwang


    Full Text Available Monoclinic Cux+yBi5−ySe8 structure has multiple disorders, such as randomly distributed substitutional and interstitial disorders by Cu as well as asymmetrical disorders by Se. Herein, we report the correlation of electronic and thermal properties with the structural complexities of Cux+yBi5−ySe8. It is found that the interstitial Cu site plays an important role not only to increase the electrical conductivity due to the generation of electron carriers but also to reduce the thermal conductivity mainly due to the phonon scattering by mass fluctuation. With impurity doping at the interstitial Cu site, an extremely low lattice thermal conductivity of 0.32 W·m−1·K−1 was achieved at 560 K. These synergetic effects result in the enhanced dimensionless figure of merit (ZT.

  16. Mechanochemically assisted solid-state and citric acid complex syntheses of Cu-doped sodium cobaltite ceramics

    Pršić, S., E-mail: [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Savić, S.M., E-mail: [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Branković, Z., E-mail: [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia); Vrtnik, S., E-mail: [Institute Jožef Stefan, Condensed Matter Physics, Jamova cesta 39, 1000 Ljubljana (Slovenia); Dapčević, A., E-mail: [Department of General and Inorganic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Branković, G., E-mail: [Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade (Serbia)


    Highlights: • Sodium cobaltite was synthesized by mechanochemically assisted solid-state reaction and citric acid complex (CAC) method. • We investigated effect of Cu-doping in NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05). • ICP analysis showed that the controlling of the samples composition is easier by the CAC method. • The Seebeck coefficient in Cu-doped samples was higher compared to the undoped one. • The highest figure of merit was observed in the sample with the lowest Cu concentration. - Abstract: In the last decade, the sodium cobaltite ceramic became a promising candidate for potential thermoelectric applications, because of its large thermopower and low resistivity. In this work, polycrystalline samples of NaCo{sub 2−x}Cu{sub x}O{sub 4} (x = 0, 0.01, 0.03, 0.05) were prepared using mechanochemically assisted solid-state reaction method (MASSR) and the citric acid complex method (CAC). Bulk samples were prepared by pressing into disc-shaped pellets and subsequently subjected to a thermal treatment at 880 °C in inert argon atmosphere. Changes in structural and microstructural characteristics of the samples, caused by the substitution of Cu for Co, were characterized using X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), respectively. The results of inductively coupled plasma (ICP) analysis showed that the compositions of the final products correspond to γ-NaCo{sub 2}O{sub 4} and confirmed that desired compound was obtained in both syntheses procedures. The advantages and disadvantages of these two syntheses procedures have been observed and discussed: the CAC method enabled obtaining samples with higher density and fine microstructure compared to the MASSR method, thus better thermoelectric properties. The Cu{sup 2+} substitution led to the increase in Seebeck coefficient in both synthesis routes. The highest figure of merit of 0.022 at 300 K was observed for the sample doped with 1 mol% Cu, obtained by

  17. Crystal structures, DNA-binding and cytotoxic activities studies of Cu(II) complexes with 2-oxo-quinoline-3-carbaldehyde Schiff-bases.

    Liu, Zeng-Chen; Wang, Bao-Dui; Li, Bo; Wang, Qin; Yang, Zheng-Yin; Li, Tian-Rong; Li, Yong


    Three novel 2-oxo-quinoline-3-carbaldehyde Schiff-bases and their Cu(II) complexes were synthesized. The molecular structures of Cu(II) complexes were determined by X-ray crystal diffraction. The DNA-binding modes of the complexes were also investigated by UV-vis absorption spectrum, fluorescence spectrum, viscosity measurement and EB-DNA displacement experiment. The experimental evidences indicated that the ligands and Cu(II) complexes could interact with CT-DNA (calf-thymus DNA) through intercalation, respectively. Comparative cytotoxic activities of ligands and Cu(II) complexes were also determined by MTT [3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide] and SRB (sulforhodamine B) methods. The results showed that the three Cu(II) complexes exhibited more effective cytotoxic activity against HL60 cells and HeLa cells than corresponding ligands. Also, CuL(3) showed higher cytotoxic activity than CuL(1) and CuL(2).

  18. Soluble form of membrane attack complex independently predicts mortality and cardiovascular events in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention

    Lindberg, Søren; Pedersen, Sune H; Mogelvang, Rasmus


    The complement system is an important mediator of inflammation, which plays a pivotal role in atherosclerosis and acute myocardial infarction (AMI). Animal studies suggest that activation of the complement cascade resulting in the formation of soluble membrane attack complex (sMAC), contributes...

  19. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes

    Caffrey, Martin, E-mail: [Trinity College Dublin, Dublin (Ireland)


    A comprehensive and up-to-date review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes is reported. Recent applications of the method for in situ serial crystallography at X-ray free-electron lasers and synchrotrons are described. The lipid cubic phase or in meso method is a robust approach for crystallizing membrane proteins for structure determination. The uptake of the method is such that it is experiencing what can only be described as explosive growth. This timely, comprehensive and up-to-date review introduces the reader to the practice of in meso crystallogenesis, to the associated challenges and to their solutions. A model of how crystallization comes about mechanistically is presented for a more rational approach to crystallization. The possible involvement of the lamellar and inverted hexagonal phases in crystallogenesis and the application of the method to water-soluble, monotopic and lipid-anchored proteins are addressed. How to set up trials manually and automatically with a robot is introduced with reference to open-access online videos that provide a practical guide to all aspects of the method. These range from protein reconstitution to crystal harvesting from the hosting mesophase, which is noted for its viscosity and stickiness. The sponge phase, as an alternative medium in which to perform crystallization, is described. The compatibility of the method with additive lipids, detergents, precipitant-screen components and materials carried along with the protein such as denaturants and reducing agents is considered. The powerful host and additive lipid-screening strategies are described along with how samples that have low protein concentration and cell-free expressed protein can be used. Assaying the protein reconstituted in the bilayer of the cubic phase for function is an important element of quality control and is detailed. Host lipid design for crystallization at low temperatures and for

  20. Synthesis, in vitro and in vivo characterization of (64)Cu(I) complexes derived from hydrophilic tris(hydroxymethyl)phosphane and 1,3,5-triaza-7-phosphaadamantane ligands.

    Alidori, Simone; Gioia Lobbia, Giancarlo; Papini, Grazia; Pellei, Maura; Porchia, Marina; Refosco, Fiorenzo; Tisato, Francesco; Lewis, Jason S; Santini, Carlo


    Four novel (64)Cu complexes ([(64)Cu(thp)(4)](+) (1), [(64)Cu(TPA)(4)](+) (2), [HC(CO(2))(pz(Me2))(2) (64)Cu(thp)(2)] (3) and [HC(CO(2))(tz)(2) (64)Cu(thp)(2)] (4), [where thp is tris(hydroxymethyl)phosphine, TPA is 1,3,5-triaza-7-phosphaadamantane, pz(Me2) is 3,5-dimethylpyrazole and tz is 1,2,4-triazole] were successfully synthesized and characterized. The complexes were produced in high radiochemical purity and yield (more than 98%) without the need for further purification. Their logP values and serum stabilities were measured and in vitro behavior was observed in cultured EMT-6 cells. The logP values (+/- standard deviation) obtained were -2.26 +/- 0.04 (1), 0.01 +/- 0.01 (2), -1.24 +/- 0.03 (3) and -2.06 +/- 0.03 (4). Complex 3 demonstrated the highest serum stability, with approximately 33% of the complex still intact after 1-h incubation. Complex 2 showed a rapid cell-association with EMT-6 cells, with more than 8.5% association at 2 h. This association was significantly higher (P < 0.001) than for the other three compounds after a 2-h incubation (1, 1.21%; 3, 0.63%; 4, 2.75%). Biodistribution and small-animal positron emission tomography/computed tomography was undertaken with 1 in mice bearing EMT-6 tumors. EMT-6 tumor uptake was high at 1 h (7.71 +/- 2.17 %ID/g) and decreased slowly over 24 h (4 h, 4.90 +/- 0.78 %ID/g; 24 h, 3.74 +/- 0.73 %ID/g). The PET/CT images show that the EMT-6 tumors can be visualized at all time points. In this proof-of-concept study, we have successfully synthesized and characterized a novel series of versatile water-soluble Cu(I) complexes containing monophosphine ligands. We also report the use of 1 as a building block for new radiopharmaceuticals, perhaps the first time such a method has been used in the production of copper radiopharmaceuticals.

  1. Synthesis and Structure of the Copper(Ⅰ) Complex [Cu (PPh3) 2 (BH4) ]%Synthesis and Structure of the Copper(Ⅰ) Complex [Cu(PPh3)2(BH4)


    Mononuclear copper( Ⅰ ) complex [Cu(PPh3)2(BH4)] has been synthesized by ligand replacement reaction in methanol and characterized by elemental analyses, molecular weight determination, IR spectra and X-ray single crystal analysis,its conductivity has also been measured. The crystal is monoclinic, space group C2/c, a =24.776(4), b=9.173(7), c=15.564(2)A; β=116.10(1)°, V=3176.73 A3, Z =4, F(000)=1256, μ(MoKα)=8.11 cm-1, Dc=1. 26 g/cm3, M=602.79, R=0. 039, Rw= 0. 050. The results show that PPh3 coordinates as monodentate ligand to the Cu ( Ⅰ ) atoms, and BH4 behaves as a bidentate ligand in the prepared complex.The central copper atom belongs to tetrahedron coordination geometry.

  2. An effective method for enhancing metal-ions' selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent.

    Sun, Xiao Qi; Peng, Bo; Chen, Ji; Li, De Qian; Luo, Fang


    Selective extraction-separation of yttrium(III) from heavy lanthanides into 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim][PF(6)]) containing Cyanex 923 was achieved by adding a water-soluble complexing agent (EDTA) to aqueous phase. The simple and environmentally benign complexing method was proved to be an effective strategy for enhancing the selectivity of [C(n)mim][PF(6)]/[Tf(2)N]-based extraction system without increasing the loss of [C(n)mim](+).

  3. Multifunctional composites of chiral valine derivative Schiff base Cu(II) complexes and TiO2.

    Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro


    We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV-Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions.

  4. Multifunctional Composites of Chiral Valine Derivative Schiff Base Cu(II Complexes and TiO2

    Yuki Takeshita


    Full Text Available We have prepared four new Cu(II complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions of these systems, which resulted in the reduction of Cu(II species to Cu(I ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV on an rotating ring-disk electrode (RRDE suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT and time-dependent DFT (TD-DFT calculations were also performed to simulate the UV–Vis and circular dichroism (CD spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II complexes for their corresponding UV light-induced reactions.

  5. Synthesis and Crystal Structure of a Dinuclear Cu(II) Complex with Tridentate Schiff Base and Azido Bridge

    LIN Hong; FENG Yun Long; GAO Shan


    A new dinuclear copper(II) complex ([Cu(C12H17N2O)(N3)]2, C24H34Cu2N10O2) has been synthesized and characterized by X-ray structure determination. It crystallizes in the monoclinic system, space group P21/c with a = 18.529(4), b = 10.933(2), c = 14.534(3)(A),β = 111.07(3)(A), V = 2748(1)(A)3, Z = 4, Mr = 621.69, F(000) = 1288, Dc = 1.503 g/cm3 and μ(MoKα) = 1.590 mm(1. The structure was refined to R = 0.0647 and wR = 0.1846 for 4406 observed reflections (I > 2σ(I)). The asymmetric unit comprises two halfmolecules. The complex is a centrosymmetric dimmer in which the copper atoms are penta-coordinated by three coordination atoms from the corresponding tridentate Schiff base ligand and two bridging azide anions. The Cu(II)…Cu(II) average distance is 3.350(1)(A).

  6. Complexation of Cu(II) by original tartaric acid-based ligands in nonionic micellar media: thermodynamic study and applications.

    Dupont-Leclercq, Laurence; Giroux, Sébastien; Parant, Stéphane; Khoudour, Leïla; Henry, Bernard; Rubini, Patrice


    The complexation of Cu(II) with original alkylamidotartaric acids (C(x)T) is investigated in homogeneous aqueous medium and in the presence of nonionic micelles of Brij 58 (C16EO20), thanks to various analytical techniques such as NMR self-diffusion experiments, CD and UV-vis spectroscopy, ESI mass spectrometry, pHmetry and micellar-enhanced ultrafiltration (MEUF). First, a complete speciation study proves the formation of dimeric complexes in water and provides their formation constants. Second, a similar study is led in the presence of nonionic micelles. It underlines a modification of the apparent equilibrium constants in micellar medium and demonstrates that the structure of the complexes is slightly modified in the presence of micelles. This thermodynamic and structural study is applied to modelize the evolution of the extraction yields of Cu(II) by the micelles as a function of pH and to identify the complexes extracted in the micelles. The effects of the chain length of the ligand (C3T vs C8T) on the solubilization properties are put into relief and discussed. Anionic species are proved to be more incorporated in the nonionic micelles than the cationic species. The extracting system constituted of octylamidotartaric acid (CsT) solubilized in nonionic micelles of Brij 58 is demonstrated to be very efficient for the extraction of Cu(II) by MEUF, this technique being an interesting green alternative to traditional solvent extraction.

  7. Synthesis and Characterization of a Metal Complex Containing Naringin and Cu, and its Antioxidant, Antimicrobial, Antiinflammatory and Tumor Cell Cytotoxicity

    Sérgio Paulo Bydlowski


    Full Text Available The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS, elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin–Cu (II complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytoxicity activities than free naringin without reducing cell viability.

  8. Antiproliferative activity of mixed-ligand dien-Cu(II) complexes with thiazole, thiazoline and imidazole derivatives.

    Bolos, C A; Papazisis, K T; Kortsaris, A H; Voyatzi, S; Zambouli, D; Kyriakidis, D A


    The reaction of [Cu(dien)NO(3)]NO(3) with 2-amino-5-methylthiazole (2A5MT), 2-amino-2-thiazoline (2A-2Tzn), imidazole (im), N,N'-thiocarbonyldiimidazole (Tcdim), 2-aminothiazole (2AT) and 2-ethylimidazole (2Etim), gave a new series of mixed-ligand compounds of the general formula [Cu(dien)(B)NO(3))]NO(3); (dien, diethylenetriamine; B, 2A5MT, 2A-2Tzn, im, Tcdim, 2AT and 2Etim). The complexes have been characterised by elemental analysis, molar conductivity and magnetic measurements, as well as by electronic and IR spectral studies. According to the above measurements the possible structure of the compounds is the square pyramidal in the solid state and the square planar in aqueous solution. We tested all complexes for antiproliferative (cytostatic and cytotoxic) activity against a panel of cell lines (HeLa, L929, HT-29 and T47D). All [(dien)Cu(B)NO(3))](NO(3)) complexes had an activity against colon cancer cells (HT-29), inducing G2/M cell cycle arrest, an effect that for most of the complexes could be attributed to p34cdc2 inhibition by tyrosine-phosphorylation and/or to induction of (cyclin-dependent kinase inhibitor) p21(WAF1). Other cell lines were resistant to the majority of the complexes, except [Cu(dien)(2A5MT)NO(3))](NO(3)), that had showed the highest anti-proliferative activity against HT-29 cells also. The predilection for colon cancer cells and the relatively low toxicity against normal (L929) cells justify further investigation of this group of compounds.

  9. Cellular responses induced by Cu(II quinolinonato complexes in human tumor and hepatic cells

    Trávníček Zdeněk


    Full Text Available Abstract Background Inspired by the unprecedented historical success of cisplatin, one of the most important research directions in bioinorganic and medicinal chemistry is dedicated to the development of new anticancer compounds with the potential to surpass it in antitumor activity, while having lower unwanted side-effects. Therefore, a series of copper(II mixed-ligand complexes of the type [Cu(qui(L]Y · xH2O (1–6, where Hqui = 2-phenyl-3-hydroxy-4(1H-quinolinone, Y = NO3 (1, 3, 5 or BF4 (2, 4, 6, and L = 1,10-phenanthroline (phen (1, 2, 5-methyl-1,10-phenanthroline (mphen (3, 4 and bathophenanthroline (bphen (5, 6, was studied for their in vitro cytotoxicity against several human cancer cell lines (A549 lung carcinoma, HeLa cervix epitheloid carcinoma, G361 melanoma cells, A2780 ovarian carcinoma, A2780cis cisplatin-resistant ovarian carcinoma, LNCaP androgen-sensitive prostate adenocarcinoma and THP-1 monocytic leukemia. Results The tested complexes displayed a stronger cytotoxic effect against all the cancer cells as compared to cisplatin. The highest cytotoxicity was found for the complexes 4 (IC50 = 0.36 ± 0.05 μM and 0.56 ± 0.15 μM, 5 (IC50 = 0.66 ± 0.07 μM and 0.73 ± 0.08 μM and 6 (IC50 = 0.57 ± 0.11 μM and 0.70 ± 0.20 μM against A2780, and A2780cis respectively, as compared with the values of 12.0 ± 0.8 μM and 27.0 ± 4.6 μM determined for cisplatin. Moreover, the tested complexes were much less cytotoxic to primary human hepatocytes than to the cancer cells. The complexes 5 and 6 exhibited significantly high ability to modulate secretion of the pro-inflammatory cytokines TNF-α (2873 ± 238 pg/mL and 3284 ± 139 pg/mL for 5, and 6 respectively and IL-1β (1177 ± 128 pg/mL and 1087 ± 101 pg/mL for 5, and 6 respectively tested on the lipopolysaccharide (LPS-stimulated THP-1 cells as compared with the values of 1173

  10. Design of Cu-Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization

    Zhang, Piyong; Wang, Tingting; Zeng, Heping


    Cu-Cu2O nanoparticles (NPs) decorated porous graphitic carbon nitride (g-C3N4) (Cu-Cu2O/g-C3N4) photocatalysts were prepared. When investment of copper source materials in the experiment increased to 7 wt%, the highest H2 evolution rate (400 μmol g-1 h-1) was obtained under visible light irradiation in triethanolamine solution. This is about triple of pure g-C3N4 (140 μmol g-1 h-1). Moreover, various amount of Erythrosin B dye was added into Cu-Cu2O/g-C3N4 photoreaction solution and a significant enhancement of H2 production rate was achieved. The highest H2 production rate was 5000 μmol g-1 h-1 with 5 mg Erythrosin B in photoreaction system. Erythrosin B dye sensitized Cu-Cu2O/g-C3N4 presented stable photocatalytic H2 evolution ability and no noticeable degradation or change of photocatalyst were detected after six recycles. A possible photocatalytic mechanism of Erythrosin B dye sensitized Cu-Cu2O/g-C3N4 for the enhancement of photocatalytic H2 evolution is proposed.

  11. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation.

    Xu, Zhe; Gao, Guandao; Pan, Bingcai; Zhang, Weiming; Lv, Lu


    Efficient removal of heavy metals complexed with organic ligands from water is still an important but challenging task now. Herein, a novel combined process, i.e., Fe(III)-displacement/UV degradation/alkaline precipitation (abbreviated as Fe(III)/UV/OH) was developed to remove copper-organic complexes from synthetic solution and real electroplating effluent, and other processes including alkaline precipitation, Fe(III)/OH, UV/OH were employed for comparison. By using the Fe(III)/UV/OH process, some typical Cu(II) complexes, such as Cu(II)-ethylenediaminetetraacetic acid (EDTA), Cu(II)-nitrilotriacetic acid (NTA), Cu(II)-citrate, Cu(II)-tartrate, and Cu(II)-sorbate, each at 19.2 mg Cu/L initially, were efficiently removed from synthetic solution with the residual Cu below 1 mg/L. Simultaneously, 30-48% of total organic carbon was eliminated with exception of Cu(II)-sorbate. Comparatively, the efficiency of other processes was much lower than the Fe(III)/UV/OH process. With Cu(II)-citrate as the model complex, the optimal conditions for the combined process were obtained as: initial pH for Fe(III) displacement, 1.8-5.4; molar ratio of [Fe]/[Cu], 4:1; UV irradiation, 10 min; precipitation pH, 6.6-13. The mechanism responsible for the process involved the liberation of Cu(II) ions from organic complexes as a result of Fe(III) displacement, decarboxylation of Fe(III)-ligand complexes subjected to UV irradiation, and final coprecipitation of Cu(II) and Fe(II)/Fe(III) ions. Up to 338.1 mg/L of Cu(II) in the electroplating effluent could be efficiently removed by the process with the residual Cu(II) below 1 mg/L and the removal efficiency of ∼99.8%, whereas direct precipitation by using NaOH could only result in total Cu(II) removal of ∼8.6%. In addition, sunlight could take the place of UV to achieve similar removal efficiency with longer irradiation time (90 min).

  12. Theoretical models for a complex magnetic system: The case of CeNi{sub 1-x}Cu{sub x}

    Marcano, N [Departamento de Fisica de la Materia Condensada, ICMA, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Magalhaes, S G [Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil); Coqblin, B [L.P.S., CNRS UMR 8502, Universite Paris-Sud, 91405-Orsay (France); Sal, J C Gomez; Espeso, J I [Departamento CITIMAC, Universidad de Cantabria, 39005 Santander (Spain); Zimmer, F M [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, SC (Brazil); Iglesias, J R, E-mail: marcanon@unizar.e [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre (Brazil)


    Special features in the phase diagram and in the low temperature hysteresis cycles have been experimentally observed in the complex CeNi{sub 1-x}Cu{sub x} system. We present also here theoretical approaches, based firstly on a Kondo lattice model which describes the coexistence between a spin glass or a cluster glass state, the Kondo regime and the ferromagnetic ordering. The second model is a Monte Carlo simulation on a 3D lattice with clusters and random anisotropy and reproduces the existence of steps in the magnetizations cycles at very low temperatures. The theoretical results are compared with the experimental data of the very complex magnetic behaviour of CeNi{sub 1-x}Cu{sub x} alloys. In particular, we can account for the existence of a cluster spin glass state which changes continuously into an inhomogeneous ferromagnetic phase at very low temperatures.

  13. X-Ray Crystallographic Analysis, EPR Studies, and Computational Calculations of a Cu(II) Tetramic Acid Complex

    Matiadis, Dimitrios; Tsironis, Dimitrios; Stefanou, Valentina; Igglessi–Markopoulou, Olga; McKee, Vickie; Sanakis, Yiannis; Lazarou, Katerina N.


    In this work we present a structural and spectroscopic analysis of a copper(II) N-acetyl-5-arylidene tetramic acid by using both experimental and computational techniques. The crystal structure of the Cu(II) complex was determined by single crystal X-ray diffraction and shows that the copper ion lies on a centre of symmetry, with each ligand ion coordinated to two copper ions, forming a 2D sheet. Moreover, the EPR spectroscopic properties of the Cu(II) tetramic acid complex were also explored and discussed. Finally, a computational approach was performed in order to obtain a detailed and precise insight of product structures and properties. It is hoped that this study can enrich the field of functional supramolecular systems, giving place to the formation of coordination-driven self-assembly architectures. PMID:28316540

  14. Spacer-Controlled Supramolecular Assemblies of Cu(II with Bis(2-Hydroxyphenylimine Ligands. from Monoligand Complexes to Double-Stranded Helicates and Metallomacrocycles

    Norman Kelly


    Full Text Available Reaction of Cu(NO32·3H2O or Cu(CH3COO2·H2O with the bis(2-hydroxyphenylimine ligands H2L1-H2L4 gave four Cu(II complexes of composition [Cu2(L1(NO32(H2O]·MeOH, [Cu2(L22], [Cu2(L32] and [Cu2(L42]·2MeOH. Depending on the spacer unit, the structures are characterized by a dinuclear arrangement of Cu(II within one ligand (H2L1, by a double-stranded [2+2] helical binding mode (H2L2 and H2L3 and a [2 + 2] metallomacrocycle formation (H2L4. In these complexes, the Cu(II coordination geometries are quite different, varying between common square planar or square pyramidal arrangements, and rather rare pentagonal bipyramidal and tetrahedral geometries. In addition, solution studies of the complex formation using UV/Vis and ESI-MS as well as solvent extraction are reported.

  15. Insight to ternary complexes of co-adsorption of norfloxacin and Cu(II) onto montmorillonite at different pH using EXAFS.

    Pei, Zhi-Guo; Shan, Xiao-Quan; Zhang, Shu-Zhen; Kong, Jing-Jing; Wen, Bei; Zhang, Jing; Zheng, Li-Rong; Xie, Ya-Ning; Janssens, Koen


    Co-adsorption of norfloxacin (Nor) and Cu(II) on montmorillonite at pH 4.5, 7.0 and 9.0 was studied by integrated batch adsorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. Under such pH conditions the dominant species of Nor are cation (Nor(+)), zwitterion (Nor(±)), and anion (Nor(-)), respectively. Results indicated that Nor sorption decreased with an increase of solution pH. The presence of Cu(II) slightly suppressed the Nor(+) sorption at pH 4.5, while increased Nor(±) and Nor(-)sorption on montmorillonite at pH 7.0 and 9.0, respectively. In contrast, Nor increased Cu(II) adsorption at pH 4.5, but had little effect on the adsorption of Cu(II) on montmorillonite at pH 7.0 and 9.0. Spectroscopic results showed that, at pH 4.5, Nor(+) was sorbed on montmorillonite by the formation of outer-sphere montmorillonite-Nor-Cu(II) ternary surface complex. At pH 7.0, montmorillonite-Nor-Cu(II) and montmorillonite-Cu(II)-Nor ternary surface complexes co-exist. At pH 9.0, montmorillonite-Cu(II)-Nor ternary surface complex was likely formed, which was different to Cu(II)(Nor)(2) precipitate of the solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.


    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  17. Naked-eye detection and thermochromic properties of Cu(II)-3,3'-thiodipropionate complexes with benzimidazole.

    Arıcı, Mürsel; Yeşilel, Okan Zafer; Taş, Murat


    Two new coordination complexes, namely, [Cu(tdp)(H2O)(bim)3]·4H2O (1) and {[Cu(μ2-tdp)(bim)2]·4H2O}n (2) (tdp = 3,3'-thiodipropionate, bim = benzimidazole), having naked-eye sensor properties and thermochromic behaviors, were synthesized and structurally characterized using elemental analysis, IR and UV spectra, and single-crystal X-ray diffraction, powder X-ray diffraction (PXRD) and thermal analyses (TG, DTA and DTG) techniques. Complex 1 changed color from blue to dark and light green in methanol and DMF solvents, respectively, while complex 2 changed color from light blue to light green only in DMF solvent. Moreover, complex 1 can be used to detect as little as 10 percent methanol in ethanol by the naked eye. The thermochromic properties of the complexes showed that complexes 1 and 2 changed color from blue and light blue to light and dark green at 65 °C, respectively.

  18. Calculation of the properties of the S3- radical anion and its complexes with Cu+ in aqueous solution

    Tossell, J. A.


    energies for exchange reactions between S3- and SH- establish that S3- forms complexes with Cu+ which are similar in stability to its complexes with SH-. The S3Cu(OH2) complex shows two coordination at Cu and a nearly linear Cu-O while the (S3-)2Cu complex is planar and 4-coordinate at Cu.

  19. Synthesis, characterization, crystal structure and antimicrobial studies of a novel Cu(II) complex based on itaconic acid and nicotinamide

    Tella, Adedibu C.; Owalude, Samson O.; Ajibade, Peter A.; Simon, Nzikahyel; Olatunji, Sunday J.; Abdelbaky, Mohammed S. M.; Garcia-Granda, Santiago


    A novel complex was synthesized from Cu(II), nicotinamide and itaconic acid and is formulated as [Cu(C5H4O4)2(C6H6N2O)2(H2O)2·2(H2O)] (1). The compound was characterized by elemental analysis, FTIR spectroscopy, UV-Vis and single crystal X-ray diffraction. The complex crystallizes in the triclinic P-1 space group, with a = 7.5111(2) Å, b = 9.8529(3) Å, c = 10.5118(4) Å, α = 116.244(3)°, β = 90.291(3)°, γ = 103.335(3)°, V = 673.81(4) Å3, Z = 1.The octahedral geometry around the copper(II) ion is of the form CuN2O4 consisting of two molecules of nicotinamide acting as monodentate ligand through the nitrogen atoms, two molecules itaconate ligand and two coordinated water molecules each coordinating through the oxygen atoms. The structure of 1 showed infinite chains build up linking the molecules together via strong Osbnd H⋯O and Nsbnd H⋯O intermolecular hydrogen bonds generating a two dimensional network sheet along c axis. The antimicrobial study of the synthesized complex 1 was investigated and showed higher antibacterial activity against all the organisms comparing with Copper(II) nicotinamide 2 and Copper(II) itaconate 3.

  20. Pyrazole bridged dinuclear Cu(II) and Zn(II) complexes as phosphatase models: Synthesis and activity

    Naik, Krishna; Nevrekar, Anupama; Kokare, Dhoolesh Gangaram; Kotian, Avinash; Kamat, Vinayak; Revankar, Vidyanand K.


    Present work describes synthesis of dibridged dinuclear [Cu2L2(μ2-NN pyr)(NO3)2(H2O)2] and [Zn2L(μ-OH)(μ-NNpyr)(H2O)2] complexes derived from a pyrazole based ligand bis(2-hydroxy-3-methoxybenzylidene)-1H-pyrazole-3,5-dicarbohydrazide. The ligand shows dimeric chelate behaviour towards copper against monomeric for zinc counterpart. Spectroscopic evidences affirm octahedral environment around the metal ions in solution state and non-electrolytic nature of the complexes. Both the complexes are active catalysts towards phosphomonoester hydrolysis with first order kcat values in the range of 2 × 10-3s-1. Zinc complex exhibited promising catalytic efficiency for the hydrolysis. The dinuclear complexes hydrolyse via Lewis acid activation, whereby the phosphate esters are preferentially bound in a bidentate bridging fashion and subsequent nucleophilic attack to release phosphate group.

  1. Pb solubility of the high-temperature superconducting phase Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}

    Kaesche, S.; Majewski, P.; Aldinger, F. [Max-Planck-Institut fuer Metallforschung, Stuttgart (Germany)] [and others


    For the nominal composition of Bi{sub 2.27x}Pb{sub x}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d} the lead content was varied from x=0.05 to 0.45. The compositions were examined between 830{degrees}C and 890{degrees}C which is supposed to be the temperature range over which the so-called 2223 phase (Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+d}) is stable. Only compositions between x=0.18 to 0.36 could be synthesized in a single phase state. For x>0.36 a lead containing phase with a stoichiometry of Pb{sub 4}(Sr,Ca){sub 5}CuO{sub d} is formed, for x<0.18 mainly Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+d} and cuprates are the equilibrium phases. The temperature range for the 2223 phase was found to be 830{degrees}C to 890{degrees}C but the 2223 phase has extremely varying cation ratios over this temperature range. Former single phase 2223 samples turn to multi phase samples when annealed at slightly higher or lower temperatures. A decrease in the Pb solubility with increasing temperature was found for the 2223 phase.

  2. Synthesis and Crystal Structure of Complex {[Cu(N-men)2(cda)2]·[Cu(N-men)2]((ClO4)2}(N-men = N-Methylethylenediamine,cda = Carbamyldicyanomethanide Anion)


    Mononuclear complex {[Cu(N-men)2(cda)2]([Cu(N-men)2]((ClO4)2} was synthesized by sodium carbamyldicyanomethanide Na(cda), N-methylethylenediamine and hydrate copper perchlorate. The crystal belongs to the triclinic system, space group P ī with a = 7.229(2), b = 8.114(2), c = 15.936(4) (A), α = 80.511(4), β = 78.993(4), γ= 72.118(4)o, V = 867.6(3)(A)3, Z = 1, C20H44Cl2Cu2N14O10, Mr = 838.68, Dc = 1.605 g/cm3, F(000) = 434 and μ = 1.449 mm-1. The structure was refined to R = 0.0480 and wR = 0.1289 for 2503 observed reflections (I > 2σ(I)). In the complex there exist two kinds of coordination models for Cu (Ⅱ) ions. One is that the Cu (Ⅱ) ion is coordinated by four nitrogen atoms which are from two N-men molecules, and a slightly distorted square planar coordinate environment is formed around the Cu (Ⅱ) ion; the other is that the Cu (Ⅱ) ion is coordinated by six nitrogen atoms, of which four are from two N-men molecules and the left from nitrile groups, resulting in a distorted octahedron around the Cu (Ⅱ) ion. The deposition number of the crystal at CCDC is 161868.

  3. Charge density studies of 3 d metal (Ni/Cu) complexes with a non-innocent ligand

    Chuang, Yu-Chun; Sheu, Chou-Fu; Lee, Gene-Hsiang; Chen, Yu-Sheng; Wang, Yu (NTU); (UC)


    High-resolution X-ray diffraction experiments and atom-specific X-ray absorption experiments are applied to investigate a series of square planar complexes with the non-innocent ligand of maleonitriledithiolate (mnt), [S2C2(CN)2]z-, containingM—S bonds. Four complexes of (PyH)z[M(mnt)2]z-, whereM= Ni or Cu,z= 2 or 1 and PyH+= C5NH6+, were studied in order to clarify whether such one-electron oxidation–reduction, [M(mnt)2]2-/[M(mnt)2]1-, is taking place at the metal or the ligand site. Combining the techniques of metalK-,L-edge and SK-edge X-ray absorption spectroscopy with high-resolution X-ray charge density studies, it is unambiguously demonstrated that the electron redox reaction is ligand based and metal based for Ni and Cu pairs, respectively. The bonding characters in terms of topological properties associated with the bond critical points are compared between the oxidized form [ML]-and the reduced form [ML]2-. In the case of Ni complexes, the formal oxidation state of Ni remains as Ni2+and each mnt ligand carries a 2- charge in [Ni(mnt)2]2-, but only one of the ligands is formally oxidized in [Ni(mnt)2]1-. In contrast, in the case of Cu complexes, the mnt remains as 2- in both complexes, but the formal oxidation states of the metal are Cu2+and Cu3+. Bond characterizations andd-orbital populations will be presented. The complementary results of XAS, XRD and DFT calculations will be discussed. The conclusion on the redox reactions in these

  4. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction.

    Maji, Ram Chandra; Barman, Suman Kumar; Roy, Suprakash; Chatterjee, Sudip K; Bowles, Faye L; Olmstead, Marilyn M; Patra, Apurba K


    Copper complexes of the deprotonated tridentate ligand, N-2-methylthiophenyl-2'-pyridinecarboxamide (HL1), were synthesized and characterized as part of our investigation into the reduction of copper(II) o-nitrito complexes into the related copper nitric oxide complexes and subsequent evolution of NO(g) such as occurs in the enzyme copper nitrite reductase. Our studies afforded the complexes [(L1)Cu(II)Cl]n (1), [(L1)Cu(II)(ONO)] (2), [(L1)Cu(II)(H2O)](ClO4)·H2O (3·H2O), [(L1)Cu(II)(CH3OH)](ClO4) (4), [(L1)Cu(II)(CH3CO2)]·H2O (5·H2O), and [Co(Cp)2][(L1)Cu(I)(NO2)(CH3CN)] (6). X-ray crystal structure determinations revealed distorted square-pyramidal coordination geometry around Cu(II) ion in 1-5. Substitution of the H2O of 3 by nitrite quantitatively forms 2, featuring the κ(2)-O,O binding mode of NO2(-) to Cu(II). Reduction of 2 generates two Cu(I) species, one with κ(1)-O and other with the κ(1)-N bonded NO2(-) group. The Cu(I) analogue of 2, compound 6, was synthesized. The FTIR spectrum of 6 reveals the presence of κ(1)-N bonded NO2(-). Constant potential electrolysis corresponding to Cu(II) → Cu(I) reduction of a CH3CN solution of 2 followed by reaction with acids, CH3CO2H or HClO4 generates 5 or 3, and NO(g), identified electrochemically. The isolated Cu(I) complex 6 independently evolves one equivalent of NO(g) upon reaction with acids. Production of NO(g) was confirmed by forming [Co(TPP)NO] in CH2Cl2 (λ(max) in CH2Cl2: 414 and 536 nm, ν(NO) = 1693 cm(-1)).

  5. Cu(II) complexes of monobasic bi- or tridentate (NO, NNO) azo dye ligands: Synthesis, characterization, and interaction with Cu-nanoparticles

    Gaber, Mohamed; El-Sayed, Yusif S.; El-Baradie, Kamal; Fahmy, Rowaida M.


    A series of copper(II) azo complexes having the formula [CuL1-4(nH2O)]·OAc·xH2O where (n = 1-2) and (x = 0-1) have been synthesized using azo dyes containing the triazol and thiadiazole moieties. The azodyes and their metal complexes were characterized by elemental analysis, molar conductance, IR, electronic, mass, ESR spectra, magnetic moment measurements, and thermal analyses. IR spectra showed that the ligands having triazole moiety were coordinated with the copper(II) ion in a tridentate manner with ONN donor sites of the naphthyl OH, N-atoms of azo group, and triazole moiety while azodyes having thiadiazole moiety were coordinated with the copper(II) ion in a bidentate manner with ON donor sites of the naphthyl OH and the N-atom of the group. The thermodynamic activation parameters such as ΔE*, ΔH*, ΔS*, and ΔG* were calculated from the TG curves. Prepared spherical copper nanoparticles were characterized using UV-Vis spectroscopy and transition electron microscope (TEM). The spectral data showed the formation of surface complex between azo-dye ligands and colloidal copper nanoparticles through (sbnd OH) anchoring group. The stability constant of the prepared copper nanoparticles complexes is higher compared with the corresponding bulk ones due to the larger surface area of copper nanoparticles.

  6. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Aytac, Zeynep; Uyar, Tamer


    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs.

  7. Synthesis, spectral, and thermal characterizations of Ni(II) and Cu(II) β-diketone complexes with thenoyltrifluoroacetone ligand

    Chen, Zhimin; Wu, Yiqun; Huang, Fuxin; Gu, Donghong; Gan, Fuxi


    Two kinds of nickel(II) and copper(II) β-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.

  8. Synthesis, spectral, and thermal characterizations of Ni(II) and Cu(II) beta-diketone complexes with thenoyltrifluoroacetone ligand.

    Chen, Zhimin; Wu, Yiqun; Huang, Fuxin; Gu, Donghong; Gan, Fuxi


    Two kinds of nickel(II) and copper(II) beta-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.

  9. CuSbS2 -sensitized inorganic-organic heterojunction solar cells fabricated using a metal-thiourea complex solution.

    Choi, Yong Chan; Yeom, Eun Joo; Ahn, Tae Kyu; Seok, Sang Il


    The device performance of sensitizer-architecture solar cells based on a CuSbS2 light sensitizer is presented. The device consists of F-doped SnO2 substrate/TiO2 blocking layer/mesoporous TiO2 /CuSbS2 /hole-transporting material/Au electrode. The CuSbS2 was deposited by repeated cycles of spin coating of a Cu-Sb-thiourea complex solution and thermal decomposition, followed by annealing in Ar at 500 °C. Poly(2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7(2,1,3-benzothiadiazole)) (PCPDTBT) was used as the hole-transporting material. The best-performing cell exhibited a 3.1 % device efficiency, with a short-circuit current density of 21.5 mA cm(-2) , an open-circuit voltage of 304 mV, and a fill factor of 46.8 %.

  10. A water soluble electro-catalyst for generating hydrogen based on a cobalt(III) complex supported by 1,10-phenanthroline

    Peng, Qiu-Xia; Tang, Ling-Zhi; Ren, Shi-Tao; Ye, Li-Ping; Deng, Yuan-Fu; Zhan, Shu-Zhong


    As we know, coordinatively unsaturated complexes can catalyze hydrogen generation via an unstable hydride intermediate. In this paper, we report an electrocatalyst based on a water soluble coordinatively saturated complex, [(phen)2Co(CN)2]·NO31 that is formed by the reaction of 1,10-phenanthroline (phen), Co(NO3)2·6H2O and tetracyanoethylene (TCNE). Its structure has been characterized by physics-chemical and spectroscopic methods. Complex 1 can electrocatalyze hydrogen evolution both from acetic acid and aqueous buffer.

  11. Synthesis and Characterization of New Macrocyclic Cu(Ⅱ)Complexes from Various Diamines, Copper(Ⅱ) Nitrate and 1,4-Bis(2-formylphenoxy)butane

    ILHAN, Salih; TEMEL, Hamdi; KILIC, Ahmet


    Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR,UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1∶1. The Cu(Ⅱ) complexes are 1∶2 electrolytes as shown by their molar conductivities (Λm) in DMF at 10-3 mol·L-1. Due to the existence of free ions the Cu(Ⅱ)complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.

  12. Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho2Cu2O5 nanoplates prepared with a coordination-complex method

    Guo, Rui; You, Junhua; Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng; Liu, Xuanwen


    Ho2Cu2O5 nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc)2(OAc)(H2O)3]·8H2O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N2 environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho2Cu2O5 formed through the diffusion of CuO into Ho2O3 particles. Cu2+ diffused faster than Ho3+ during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N2 atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho2Cu2O5 particles. The final Ho2Cu2O5 particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N2 played important roles in determining the morphology of the resulting Ho2Cu2O5. The catalytic oxidation activity of Ho2Cu2O5 samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.

  13. Synthesis, structure and magnetism of homodinuclear complexes of Co, Ni and Cu supported by a novel bitriazine scaffold.

    Reid, Derek J; Cull, John E W; Chisholm, Kimberley D S; Langlois, Alexandre; Lin, Po-Heng; Long, Jérôme; Lebel, Olivier; Korobkov, Ilia; Wang, Ruiyao; Wuest, James D; Murugesu, Muralee; Scott, Jennifer


    Btzn (1), an amine-functionalized bi(1,3,5-triazine) 4,4'-(NH(2))(2)-6,6'-(NHC(6)H(5))(2)-2,2'-(1,3,5-C(3)N(3))(2), is reported, and its coordination with Co, Ni and Cu is explored. Reactions of metal salts (2 equiv) with Btzn (1 equiv) result in dimeric species [(Btzn)Co(2)(NCS)(4)(EtOH)(2)(DMF)(2)], (2), [(Btzn)Ni(2)(η(1)-ONO(2))(2)(MeOH)(4)(DMF)(2)]·2[NO(3)], (3), [(Btzn)Cu(2)Cl(4)(DMF)(2)], (4), and [(Btzn)Cu(2)(η(2)-O(2)NO)(2)(OH(2))(2)(DMF)(2)]·2[NO(3)], (5). These complexes are the first examples of the coordination of transition metals with bi(1,3,5-triazine) ligands. Their structures display a bridging bis-bidentate coordination mode for Btzn. Variable-temperature magnetic susceptibility of the complexes reveals antiferromagnetic exchange between the spin carriers, with calculated exchange coupling values (J) of -4.7 cm(-1) for 3, -18.2 cm(-1) for 4, and -5.5 cm(-1) for 5. An in-depth evaluation of the metal geometry highlights the inefficient overlap of the magnetic d-orbitals through the bridging ligand, most likely leading to reduced delocalization and coupling.

  14. How easy is CO2 fixation by M-C bond containing complexes (M = Cu, Ni, Co, Rh, Ir)?

    Nolan, Steve


    A comparison between different M–C bonds (M = Cu(I), Ni(II), Co(I), Rh(I) and Ir(I)) has been reported by using density functional theory (DFT) calculations to explore the role of the metal in the fixation or incorporation of CO2 into such complexes. The systems investigated are various metal based congeners of the Ir-complex 8 [(cod)(IiPr)Ir-CCPh], with a ligand scaffold based on cod and IiPr ligands (cod = 1,5-cyclooctadiene; IiPr = 1,3-bis(isopropyl)imidazol-2-ylidene). The results of this study show that the calculated CO2 insertion barriers follow the trend: Cu(I) (20.8 kcal mol−1) < Rh(I) (30.0 kcal mol−1) < Co(I) (31.3 kcal mol−1) < Ir(I) (37.5 kcal mol−1) < Ni(II) (45.4 kcal mol−1), indicating that the Cu(I) based analogue is the best CO2 fixer, while Ni(II) is the worst in the studied series.

  15. Open coordination sites-induced structural diversity of a new series of Cu(II) complexes with tridentate aroylhydrazone Schiff base

    Xu, Guohong; Tang, Beibei; Gu, Leilei; Zhou, Pei; Li, Hui


    Six Cu(II) complexes containing the NO2 donor tridentate asymmetrical aroylhydrazone ligand (E)-4-hydroxy-N‧-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide (HL), namely, [Cu(L)Cl]·2H2O (1), [Cu(L)(CH3OH)2]·NO3 (2), [Cu(L)(NO3)(H2O)]·H2O (3), [Cu(L)(CH3OH)Cl]·CH3OH (4), [Cu(L)(SCN)(DMF)]·DMF (5) and {[Cu(L)(4,4‧-bipy)]ClO4·4DMF}n (6) have been synthesized and analysized by X-ray singal crystal diffraction. The structures of 1-6 are varied from zero-dimensional (0D) mononuclear complex to one-dimensional (1D) polymer based on the control of solvents, anions or auxiliary ligands, which can occupy the open coordination sites of Cu(II). Different hydrogen bonding interactions can also be observed in these complexes.

  16. Recyclability of water-soluble ruthenium–phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide

    Fujita, Shin-ichiro; Akihara, Shuji; Arai, Masahiko


    The recyclability of water-soluble ruthenium–phosphine complex catalysts was investigated in water–toluene and in water–pressurized carbon dioxide systems for selective hydrogenation of trans-cinnamaldehyde (CAL). For the first hydrogenation run, the selectivity for cinnamyl alcohol (COL) is high for both toluene and dense CO2, because of interfacial catalysis in which the reaction mainly occurs at the interface between the aqueous phase and the other toluene or dense CO2 phase. The total CAL...

  17. Synthesis and characterization of a 1D chain-like Cu{sub 6} substituted sandwich-type phosphotungstate with pendant dinuclear Cu–azido complexes

    Li, Yan-Ying [MOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Jun-Wei, E-mail: [Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Wei, Qi [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Yang, Bai-Feng [MOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Yang, Guo-Yu, E-mail: [MOE Key Laboratory of Cluster Science, School of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)


    A novel Cu–azido complex modified hexa-Cu{sup II} substituted sandwich-type phosphotungstate [Cu(en){sub 2}]([Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}])·6H{sub 2}O (1) (en=ethylene-diamine) has been prepared under hydrothermal conditions and structurally characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. 1 displays a beautiful 1-D chain architecture constructed from sandwich-type [Cu{sub 2}(en){sub 2}(μ-1,1-N{sub 3}){sub 2}(H{sub 2}O)]{sub 2}[Cu{sub 6}(en){sub 2}(H{sub 2}O){sub 2}(B-α-PW{sub 9}O{sub 34}){sub 2}]{sup 2−} units and [Cu(en){sub 2}]{sup 2+} linkers. To our knowledge, 1 represents the first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes. - Graphical abstract: The first hexa-Cu{sup II} sandwiched phosphotungstate with supporting Cu–azido complexes has been prepared and characterized. Display Omitted - Highlights: • Hexa-copper-substituted phosphotungstate. • Cu–azido complexes modified hexa-Cu{sup II} substituted sandwich-type polyoxometalate. • 1-D chain architecture built by hexa-copper-substituted polyoxotungstate units.

  18. Interconnection of [V{sub 15}As{sub 6}O{sub 42}(H{sub 2}O)]{sup 6-}. Clusters by Cu{sup 2+}-centered complexes. Synthesis, crystal structure and selected properties

    Wutkowski, Adam; Naether, Christian; Bensch, Wolfgang [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Leusen, Jan van; Koegerler, Paul [RWTH Aachen Univ. (Germany). Inst. fuer Anorganische Chemie


    The compound {[Cu(C_5H_1_4N_2)_2]_3[V_1_5As_6O_4_2(H_2O)]} was synthesized under solvothermal conditions. During the reaction the V{sup V} species of NH{sub 4}VO{sub 3} are reduced to V{sup IV} providing the 15 reduced V{sup IV} centers in the anionic cluster. The compound crystallizes in the non-centrosymmetric orthorhombic space group P2{sub 1}2{sub 1}2{sub 1} with four formula units in the cell, V = 9464.8(4) A{sup 3}. The structure features [V{sub 15}As{sub 6}O{sub 42}(H{sub 2}O)]{sup 6-} anions which are joined by Cu{sup 2+}-centered complexes to form linear chains. If a long Cu-O bond is considered as weak intermolecular interaction a three-dimensional network is generated. The compound is partially soluble in water as evidenced by UV/Vis spectroscopy and mass spectra. The magnetic susceptibility of the compound is dominated by strong intra-cluster antiferromagnetic exchange interactions.

  19. Photoluminescent mixed ligand complexes of CuX (X = Cl, Br, I) with PPh3 and a polydentate imino-pyridyl ligand - Syntheses, structural variations and catalytic property

    Ghorai, Anupam; Mondal, Jahangir; Patra, Goutam K.


    Three ternary copper(I) complexes [CuI2Cl2(L1)(PPh3)4] (1), [CuI2Br2(L1) (PPh3)4] (2) and [CuI2(μ-I)2 (μ-L1) (PPh3)2]n (3) have been prepared by reactions of CuX (X = Cl, Br and I) with PPh3 and the polydentate imino-pyridyl ligand L1. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR and X-ray crystallography. From single crystal structural analysis it has been found that complexes 1 and 2 are homo-dinuclear having non-bridging halide ions whereas complex 3 is a 1-D zig-zag co-ordination polymer containing bridged iodide ions. Complexes 1, 2 and 3 are photoluminescent at room temperature in chloroform whereas ligand L1 is non-emissive. The E½ values of the CuIsbnd CuII couple of 1, 2 and 3 are 0.98 V, 0.92 V and 0.42 V respectively (vs Ag/AgCl in 1 M KCl, scan rate 100 mV s-1). All three complexes function as effective catalysts for the synthesis of 2-substituted benzoxazoles.

  20. Original research paper. A superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes with improved solubility and dissolution: Supercritical fluid process

    Pan Hao


    Full Text Available Advantages of the supercritical fluid (SCF process compared to the conventional solution stirring method (CSSM in the preparation of daidzein-hydroxypropyl-β-cyclodextrin (HPβCD complexes were investigated. Formation of daidzein/ HPβCD inclusion complexes was confirmed by Fourier transformed-infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. Particle size, inclusion yield, drug solubility and dissolution of daidzein/HPβCD complexes were evaluated. Compared to CSSM, the SCF process resulted in higher inclusion yield and higher solubility. Also, extended dissolution of daidzein from the SCF processed HPβCD inclusion complexes was observed, with only 22.94 % released in 45 min, compared to its rapid release from those prepared by CSSM, with 98.25 % drug release in 15 min. This extended release of daidzein from SCF prepared inclusion complexes was necessary to avoid drug precipitation and improve drug solubilisation in the gastrointestinal tract. The results showed that the SCF process is a superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes.

  1. Different molecular complexity of linear-isomaltomegalosaccharides and β-cyclodextrin on enhancing solubility of azo dye ethyl red: towards dye biodegradation.

    Lang, Weeranuch; Kumagai, Yuya; Sadahiro, Juri; Maneesan, Janjira; Okuyama, Masayuki; Mori, Haruhide; Sakairi, Nobuo; Kimura, Atsuo


    Intermolecular interaction of linear-type α-(1 → 6)-glucosyl megalosaccharide rich (L-IMS) and water-insoluble anionic ethyl red was firstly characterized in a comparison with inclusion complexation by cyclodextrins (CDs) to overcome the problem of poor solubility and bioavailability. Phase solubility studies indicated an enhancement of 3- and 9-fold over the solubility in water upon the presence of L-IMS and β-CD, respectively. (1)H NMR and circular dichrosim spectra revealed the dye forms consisted of 1:1 stoichiometric inclusion complex within the β-CD cavity, whereas they exhibited non-specific hydrophobic interaction, identified by solvent polarity changes, with L-IMS. The inclusion complex delivered by β-CD showed an uncompetitive inhibitory-type effect to azoreductase, particularly with high water content that did not promote dye liberation. Addition of the solid dye dispersed into coupled-enzyme reaction system supplied by L-IMS as the dye solubilizer provided usual degradation rate. The dye intermission in series exhibited successful removal with at least 5 cycles was economically feasible.

  2. Syntheses, crystal structures and DNA-binding studies of Cu(II) and Zn(II) complexes bearing asymmetrical aroylhydrazone ligand

    Li, Yueqin; Yang, Zhiwei; Zhou, Minya; He, Jing; Wang, Xuehong; Wu, Yanlong; Wang, Zhuye


    Zn(II) and Cu(II) complexes with benzophenone benzoyl hydrazone (HBBH) and benzophenone salicylylhydrazone (HBSH) have been synthesized and characterized by different physico-chemical and spectroscopic techniques (UV-vis, IR and NMR). The molecular structures of these complexes [Zn(BBH)2, Cu(BBH)2 and Cu(BSH)2Cl2H2O] have also been determined by single X-ray diffraction technique. In Zn(BBH)2 and Cu(BBH)2 complexes, each ligand coordinates to metal through enol tautomeric form by azomethine-N and carbonylate-O resulting a 4-coordinate distorted tetrahedral geometry. While in Cu(BSH)2Cl2H2O, each ligand coordinates to metal through keto tautomeric form resulting distorted octahedral geometry in which two chlorine atoms occupy the axial positions. The DNA interaction propensity of the complexes with Herring sperm DNA, studied at physiological pH by spectrophotometric, spectrofluorometric, viscometric techniques and cyclic voltammetry, revealed intercalation as the possible binding mode. Fascinatingly, Cu(BSH)2Cl2H2O was found to exhibit greater binding strength than the others. A strong hyperchromism effect and a slight red shift were exhibited by all complexes. The intrinsic binding constants are of moderate values and are about 3.28 × 104 M-1, 4.73 × 104 M-1 and 5.80 × 104 M-1, respectively. Cyclic voltammetry studies of the complexes binding with DNA indicate quasireversible oxidation and reduction potentials. The results suggest that the binding affinity of complexes lies in the order Cu(BSH)2Cl2H2O > Cu(BBH)2 > Zn(BBH)2.

  3. Bio-compatibility and cytotoxicity studies of water-soluble CuInS2-ZnS-AFP lfuorescence probe in liver cancer cells

    Ming-Ya Yang; Jian Hong; Yan Zhang; Zhen Gao; Tong-Tong Jiang; Jiang-Luqi Song; Xiao-Liang Xu; Li-Xin Zhu


    BACKGROUND: The oncogenesis of hepatocellular carcino-ma (HCC) is not clear. The current methods of the pertinent studies are not precise and sensitive. The present study was to use liver cancer cell line to explore the bio-compatibility and cytotoxicity of ternary quantum dots (QDs) probe and to evaluate the possible application of QDs in HCC. METHODS: CuInS2-ZnS-AFP lfuorescence probe was designed and synthesized to label the liver cancer cell HepG2. The cy-totoxicity of CuInS2-ZnS-AFP probe was evaluated by MTT experiments and lfow cytometry. RESULTS: The labeling experiments indicated that CuInS2-ZnS QDs conjugated with AFP antibody could enter HepG2 cells effectively and emit intensive yellow lfuorescence by ultraviolet excitation without changing cellular morphology. Toxicity tests suggested that the cytotoxicity of CuInS2-ZnS-AFP probe was signiifcantly lower than that of CdTe-ZnS-AFP probe (t test, F=0.8,T=-69.326,P20%) groups (P CONCLUSION: CuInS2-ZnS-AFP QDs probe had better bio-compatibility and lower cytotoxicity compared with CdTe-ZnS-AFP probe, and could be used for imaging the living cellsin vitro.

  4. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue


    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL1 (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL2 (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol-1) were 1.81 × 104 (1), 1.37 × 104 (2), 6.27 × 103 (HL1) and 3.14 × 103 (HL2) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL1 had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50 = 16.9 ± 1.5 μmol L-1) and against COLO205 lines (IC50 = 16.5 ± 3.4 μmol L-1) is much stronger than that of HL1, which had the potential to develop anti-cancer drug.

  5. Preparation and XPS studies of macromolecule mixed-valent Cu(I, II) and Fe(II, III) complexes

    Wang Bo [Institute of Energy Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China)]. E-mail:; Gao Fengqin [Institute of Energy Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China); Department of Chemistry, Xianyang Normal University, Xianyang (China); Ma Hongzhu [Institute of Energy Chemistry, College of Chemistry and Materials Science, Shaanxi Normal University, Xi' An 710062 (China)


    A new macromolecule ligand and its mixed-valent Cu(I, II) and Fe(II, III) complexes have been prepared by using ethylenediamine as core and maleic anhydride as branched units and characterized by UV-vis, FT-IR, thermal analysis and X-ray photoelectron spectroscopy (XPS). The data obtained from these studies suggested that the coordinate bonds of N {sup {yields}} M, Cl {sup {yields}} M, Ph-OH {sup {yields}} M and H{sub 2}O {sup {yields}} M have been formed and possible binding models are proposed for these complexes. The thermal analysis (TG-DTG) reveals that these complexes possess thermal stable property below 800 deg. C.

  6. Versatile coordination modes of bis[5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl]alkanes in Cu(II) complexes.

    Gusev, Alexey N; Nemec, Ivan; Herchel, Radovan; Bayjyyev, Eziz; Nyshchimenko, Galyna A; Alexandrov, Grigory G; Eremenko, Igor L; Trávníček, Zdeněk; Hasegawa, Miki; Linert, Wolfgang


    Nine new mononuclear and polynuclear Cu(II) complexes [Cu(H2L(2))Cl]Cl·3H2O (1), [Cu(H2L(3))Cl]Cl·H2O (2), [Cu(H2L(4))Cl]Cl·2.5H2O (3), [Cu3(μ(3)-L(1))2(H2O)3](ClO4)2·H2O (4), [Cu4(μ-HL(1))4](ClO4)8·CH3OH·5H2O (5), [Cu2(HL(3))2](ClO4)2·2H2O (6a), [Cu2(μ-HL(3))2](ClO4)2·H2O (6b), [Cu2(μ-HL(3))(L(3))Cu(teta)](ClO4)3·2H2O (7) and [Cu2(H2L(3))2(ox)](ClO4)2·2H2O·2MeOH (8) containing [5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl]alkanes (H2L(n), n = 1-4) in combination with other ligands, such as chlorido, aqua, triethylenetetramine (teta) and/or oxalato (ox(2-)), were synthesized and characterized by various techniques such as elemental analysis, FTIR, NMR and UV-Vis spectroscopy. X-ray structures of H2L(3) and H2L(4) as well as complexes 1-8 were determined. The X-ray structures revealed that relatively small composition and structural changes in the H2L(n) ligands have a substantial impact on the coordination geometries of the complexes themselves as well as on their resulting magnetic properties. It has been found that the geometries of the complexes vary from square-pyramidal to trigonal-bipyramidal (with τ ranging from 0.00 to 0.96) and, moreover, that the trigonal bipyramidal geometry becomes more preferable with the increase in the length of the polymethylene chain within the corresponding H2L(n) ligand. The magnetic properties of the polynuclear compounds 4, 5, 6, 7 and 8 were analysed using the spin Hamiltonian formalism, which revealed the presence of antiferromagnetic exchange in the polynuclear systems mediated by the title ligands. The significant effect of the geometric parameters on the Cu···Cu exchange interactions in the polynuclear complexes is discussed.

  7. Synthesis of PVP stabilized Cu/Pd nanoparticles with citrate complexing agent and its application as an activator for electroless copper deposition.

    Lo, Sylvia H Y; Wang, Yung-Yun; Wan, Chi-Chao


    A simple method has been developed to synthesize Cu/Pd nanoparticles in aqueous solution in ambient condition with the addition of complexing agent, trisodium citrate. UV-vis spectra confirmed the complexing behavior of trisodium citrate and metal ions. The particles synthesized with trisodium citrate were well dispersed with particle size ranging between 3-4 nm while the particles without trisodium citrate were larger and aggregated, as demonstrated by transmission electron microscopy (TEM). X-ray diffraction patterns (XRD) indicated the formation of bimetallic nanoparticles without impurities in the complexing agent-supplemented system. In contrast, large amounts of PdO and Cu(OH)(2) were precipitated along with the formation of particles in the complexing agent-free system. X-ray photoelectron spectroscopy (XPS) revealed small amounts of oxidized Pd on the surface of particles and the existence of zerovalent Cu and oxidized Cu in particles with trisodium citrate. With a simpler process for electroless copper deposition, the Cu/Pd nanoparticle activator with less Pd metal used exhibited comparable catalytic activity to conventional Pd/Sn colloidal activator. In summary, application of Cu/Pd nanoparticles synthesized with the complexing agent as an activator suggested a novel, simpler and inexpensive process in PCB industry.

  8. Structural, electronic and magnetic properties of Cu(II) complexes of 2-substituted tropones bearing a ferrocenyl group at 5-position.

    Nishinaga, Tohru; Aono, Tomoshi; Isomura, Eigo; Watanabe, Sayaka; Miyake, Yoshihiro; Miyazaki, Akira; Enoki, Toshiaki; Miyasaka, Hitoshi; Otani, Hiroyuki; Iyoda, Masahiko


    Heterotrinuclear Fe(II)-Cu(II)-Fe(II) complexes [Cu(FcTropOMe)(2)(H(2)O)(2)](OTf)(2) (FcTropOMe = 5-ferrocenyl-2-methoxytropone) (1), [Cu(FcTropNEt(2))(2)](OTf)(2) (FcTropNEt(2) = 2-(N,N-diethylamino)-5-ferrocenyltropone) (2) and [Cu(FcTropNEt)(2)] (FcTropNEt = 2-(N-ethylamino)-5-ferrocenyltroponate) (3) were synthesized. In addition, a hexafluorophosphate salt of heterotrinuclear Fe(III)-Cu(II)-Fe(III) complex [Cu(FcTropNEt)(2)](2+) (3(2+)) was successfully obtained as single crystals by electrochemical oxidation of 3. By comparing the X-ray structures and absorption spectra of dicationic complexes 1 and 2, the 2-(diethylamino)tropone ligand was found to induce a greater intramolecular charge transfer (CT) from ferrocenyl to tropone-Cu(II) moieties than the 2-methoxytropone ligand. On the other hand, 3(2+) showed a broad CT band in the near-infrared (NIR) region similar to 2, which can be assigned to a transition from troponato-Cu(II) to ferrocenium moieties. As for the magnetic properties of 3(2+)(PF(6)(-))(2), measurements of temperature dependence of magnetic susceptibility and ESR on the solid state and in solution revealed the presence of a strong ferromagnetic interaction (J(Fe-Cu) = +12.0 cm(-1)) between the low spin Fe(III) ion with S = 1/2 and Cu(II) ion with S = 1/2 despite a long distance pathway via the aminotroponato and cyclopentadienyl moieties. DFT calculations supported this intramolecular ferromagnetism, which is induced by a spin polarization mechanism through the pi-spacers.

  9. π-π Stacking, Hydrogen Bonding and Magnetic Coupling Mechanism on a Mono-nuclear Cu^Ⅱ Complex

    LI Hong; YU Li; ZHANG Shi-Guo; WANG Yu-Qing; SHI Jing-Min


    A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.

  10. Recent Advances in Medicinal Applications of Coinage-Metal (Cu and Ag) N-Heterocyclic Carbene Complexes.

    Marinelli, Marika; Santini, Carlo; Pellei, Maura


    The fascinating chemical properties of N-heterocyclic carbene (NHC) complexes showed them to be a suitable class of complexes to be investigated for their applications as drugs in the treatment of the infectious disease or cancer. In particular, the great structural versatility provided a library of compounds with a low cytotoxic profile, suitable candidates as new anticancer agents. Most of these complexes have shown higher cytotoxicity than cisplatin. In the present review, the medicinal applications of copper(I)- and silver(I)-NHC complexes are summarized. Specifically, azolium precursors and related Cu(I)- and Ag(I)-NHC complexes of functionalized and non-functionalized imidazole-, and benzimidazole-based NHC complexes studied as an alternative to cisplatin as chemotherapeutic agents are reviewed. An outline of the most significant chemical features is presented: copper(I)- and silver(I)-NHC complexes tested as anticancer drugs have been reported and a description of structure-activity relationships was made as far as possible.

  11. Binuclear Cu(II and Co(II Complexes of Tridentate Heterocyclic Shiff Base Derived from Salicylaldehyde with 4-Aminoantipyrine

    Omar Hamad Shihab Al-Obaidi


    Full Text Available New binuclear Co(II and Co(II complexes of ONO tridentate heterocyclic Schiff base derived from 4-aminoantipyrine with salicylaldehyde have been synthesized and characterized on the bases of elemental analysis, UV-Vis., FT-IR, and also by aid of molar conductivity measurements, magnetic measurements, and melting points. It has been found that the Schiff bases with Cu(II or Co(II ion forming binuclear complexes on (1 : 1 “metal : ligand” stoichiometry. The molar conductance measurements of the complexes in DMSO correspond to be nonelectrolytic nature for all prepared complexes. Distorted octahedral environment is suggested for metal complexes. A theoretical treatment of the formation of complexes in the gas phase was studied, and this was done by using the HyperChem-6 program for the molecular mechanics and semi-empirical calculations. The free ligand and its complexes have been tested for their antibacterial activities against two types of human pathogenic bacteria: the first type (Staphylococcus aureus is Gram positive and the second type (Escherichia coli is Gram negative (by using agar well diffusion method. Finally, it was found that compounds show different activity of inhibition on growth of the bacteria.

  12. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.


    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  13. Synthesis, DNA/HSA Interaction Spectroscopic Studies and In Vitro Cytotoxicity of a New Mixed Ligand Cu(II) Complex.

    Gan, Qian; Fu, Xiabing; Chen, Weijiang; Xiong, Yahong; Fu, Yinlian; Chen, Shi; Le, Xueyi


    A new mixed ligand copper(II)-dipeptide complex with 2-(2'-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 10(4) M(-1)), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by •OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM.

  14. Synthesis, spectral, antitumor and antimicrobial studies on Cu(II) complexes of purine and triazole Schiff base derivatives

    Amer, Said; El-Wakiel, Nadia; El-Ghamry, Hoda


    A series of copper (II) complexes of Schiff bases derived from 7H-2,6-diaminopurine and 4H-3,5-diamino-1,2,4-triazole with 2-pyridinecarbaldehyde, salicylaldehyde, 2,4-dihydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde have been prepared. The donor atoms and the possible geometry of the complexes were investigated by means of elemental and thermal analyses, molar conductance, magnetic moment, UV-Vis, IR, ESR and mass spectra. The ligands behaved as tetradentate, coordinating through the nitrogen atom of the azomethine group and the nearest nitrogen atom to it or oxygen atom of α-hydroxyl group. The results of simultaneous DTA & TGA analyses of the complexes showed the final degradation product for these complexes is CuO. The spectral studies confirmed a four coordinate environment around the metal ion. The obtained results were supported by 3D molecular modeling of complexes using molecular mechanics (MM+) and semiempirical molecular orbital calculations (PM3). These complexes were also tested for their in vitro antimicrobial activities against some bacterial and fungal strains. Complex 2 was investigated for its cyctotoxic effect against human breast cancer (MCF7), liver carcinoma (HEPG2) and colon carcinoma cell lines (HCT116). This compound exhibited a moderate activity against the tested cell lines with IC50 of 10.3, 9.8 and 8.7 μg/ml against MCF7, HCT116 and HEPG2, respectively.

  15. Spectrophotometric and conductometric study of the complexation of N-salicylidene-2-aminophenol with Cu2+ in methanol + 1,4-dioxane binary solutions

    Biswas Rashmidipta


    Full Text Available The complexation reaction between N-salicylidene-2-aminophenol, abbreviated as SAP, with Cu2+ ion was studied in binary mixtures of methanol and 1,4-dioxane by using conductometric and spectrophotometric method at different temperatures. The stability constants (Kf for the 1:1 complex, Cu2+-SAP, were calculated from computer fitting of absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear behaviour was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-SAP complex were determined from the temperature dependence of stability constants (Kf. The overall results showed that the complexation reaction is entropy driven and is affected by the nature and composition of the mixed solvents.

  16. Dinuclear Cu(II) complexes of compartmental Schiff base ligands formed from unsymmetrical tripodal amines of varying arm lengths: Crystal structure of [Cu2L1](ClO4)2 and theoretical studies

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Sayin, Koray


    Three new dinuclear copper complexes were synthesized via condensation reaction of three new unsymmetrical N-capped tripodal amines and 2,6-diformyl-4-methylphenol, in the presence of copper(II) perchlorate. The solid-state structure of the dinuclear complex, [Cu2L1](ClO4)2, has been determined by X-ray crystallography, showing that the CuII centers have distorted square-pyramidal geometry with N3O2 coordination. The copper (II) ions are bridged by phenolic and hydroxyalkyl groups when in both cases, deprotonation of the hydrogen atoms of the OH groups occurs. The distance between the copper atoms is 3.062 Å. This compound consists of the dication [Cu2L1]2+ and two ClO4- anions in which one of ClO4- groups has a week interaction with one of the Cu atoms. All complexes were characterized by a variety of physico-chemical techniques such as elemental analyses, IR, mass spectra, conductivity measurements and electronic spectral studies. Computational investigation of mentioned binuclear Cu(II) complexes was done by using M062X method with LANL2DZ basis set in vacuo.

  17. Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: A new route to CuO nanoparticles

    Aly, Hisham M.; Moustafa, Moustafa E.; Nassar, Moustafa Y.; Abdelrahman, Ehab A.


    Cu (II) complexes, were synthesized with newly derived biologically active 1,2,4-triazole Schiff bases. The Schiff bases were synthesized by condensation of 3-substituted-4-amino-5-mercapto-1,2,4-triazole with dibenzoylmethane. The synthesized compounds were characterized using elemental analysis, magnetic moment, thermal analysis and spectral tools (FT-IR, 1HNMR, ESR, and UV-Vis spectroscopy). All the synthesized complexes are nonelectrolytes in N,N-dimethylformamide. The synthesized Schiff bases and their Cu (II) complexes have been screened for antibacterial (Escherichia coli &Staphylococcus aureus) and antifungal (Aspergillus flavus &Candida albicans) activity using a modified Bauer-Kirby method. Interestingly, the synthesized Cu (II) complexes were used as precursors for CuO nanoparticles which were characterized using XRD, HR-TEM, FT-IR and UV-Vis spectroscopy. The photocatalytic activity of the prepared CuO nanoparticles was studied by performing the degradation of methylene blue dye under UV illumination in the presence of H2O2 and the results showed that the maximum percent of the degradation of methylene blue dye (MB) was found 96.18% after 360 min.

  18. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    QU Zhi-Rong; XIONG Ren-Gen


    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  19. Unsaturated b-ketoesters and their Ni(II, Cu(II and Zn(II complexes



    Full Text Available A new series of b-ketoesters in which the keto group is attached to the olefinic linkage were synthesized by the reaction of methyl acetoacetate and aromatic aldehydes under specified conditions. The existence of these compounds predominantly in the intramolecularly hydrogen bonded enol form was well demonstrated from their IR, 1H-NMR and mass spectral data. Details on the formation of their [ML2] complexes with Ni(II, Cu(II and Zn(II and the nature of the bonding are discussed on the basis of analytical and spectral data.

  20. New tetrazole-based Cu(I) homo- and heteroleptic complexes with various P^P ligands: synthesis, characterization, redox and photophysical properties.

    Femoni, Cristina; Muzzioli, Sara; Palazzi, Antonio; Stagni, Stefano; Zacchini, Stefano; Monti, Filippo; Accorsi, Gianluca; Bolognesi, Margherita; Armaroli, Nicola; Massi, Massimiliano; Valenti, Giovanni; Marcaccio, Massimo


    Four Cu(I) complexes with general formulas [Cu(N^N)(2)][BF(4)] and [(P^P)Cu(N^N)][BF(4)] were prepared, where N^N stands for 2-(2-tert-butyl-2H-tetrazol-5-yl)pyridine and P^P is a chelating diphosphine, namely bis-(diphenylphosphino)methane (dppm), bis-(diphenylphosphino)ethane (dppe) or bis[2-(diphenylphosphino)phenyl]ether (POP). In an acetonitrile medium, the Electro-Spray Ionization Mass Spectrometry (ESI-MS) determination provided the preliminary evidence for the occurrence of the dppm-containing complex as a mixture of a cationic mononuclear [Cu(N^N)(dppm)](+) species and a bis-cationic dinuclear [Cu(2)(N^N)(2)(dppm)(2)](2+)-type compound. Definitive evidence of peculiar structural features came from X-ray crystallography, which showed both the dppm- and, unexpectedly, the dppe-based heteroleptic compounds to crystallize as diphosphine-bridged Cu(I) dimers, unlike [Cu(N^N)(2)](+) and [(POP)Cu(N^N)](+) which are mononuclear species. In solutions of non-coordinating solvents, (31)P NMR studies at variable temperatures and dilution titrations confirmed that the dppm-based complex undergoes a monomer-dimer dynamic equilibrium, while the dppe-containing complex occurs as the bis-cationic dinuclear species, [Cu(2)(N^N)(2)(dppe)(2)](2+), within a concentration range comprised between 10(-2) and 10(-4) M. Differences among heteroleptic complexes might be related to the smaller natural bite angle displayed by dppm and dppe phosphine ligands (72° and 85°, respectively), with respect to that reported for POP (102°). The electrochemical features of the new species have been investigated by cyclic voltammetry. Despite the irreversible and complicated redox behaviour, which is typical for copper complexes, the reductions have been attributed to the tetrazole ligand whereas the oxidations are characterized as Cu(I/II) processes with a substantial contribution from the P^P-based ligands in the case of the heteroleptic species. All the four complexes are weakly or not

  1. 油溶性CuInS2/ZnS量子点的制备及其温敏性聚丙烯酰胺胶束介导的水相转移%Oil-Soluble CuInS2/ZnS Quantum Dots and Water Transfer Using Temperature-Sensitive Poly(N-isopropylacrylamide-co-Acrylamide-co-Octadecyl acrylate) Micelle

    瞿灵芝; 程志强; 邓大伟; 曹洁; 金靖; 顾月清


    High-quality oil-soluble CuInS2/ZnS core/shell quantum dots (QDs) have been synthesized successfully using a non-hot-injection method.The as-prepared QDs exhibits tunable photoluminescence (PL) emission (PL peak,550~800 nm) with a maximum PL quantum yield (QY) up to 80%.Furthermore,in this study,we explored further the water transfer of oil-soluble CuInS2/ZnS QDs by using temperature-sensitive poly(N-isopropylacrylamide-co-Acrylamide-co-Octadecylacrylate) (P(NIPA-co-AAm-co-ODA)) micelle.The QDs-loaded micelle not only shows favorable PL properties,but also maintains the initial sensitive thermal responsibility.These results confirm the promising potential of cadmium-free CuInS2/ZnS QDs as a fluorescent probe for the biological imaging of micelle.%采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点,量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm),且荧光量子产率最高达80%.本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂,成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相.水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质,而且胶束原有的灵敏的热响应性被保留.这些研究初步表明,无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针.

  2. Synthesis, structure, and magnetism of a family of heterometallic {Cu2Ln7} and {Cu4Ln12} (Ln = Gd, Tb, and Dy) complexes: the Gd analogues exhibiting a large magnetocaloric effect.

    Langley, Stuart K; Moubaraki, Boujemaa; Tomasi, Corrado; Evangelisti, Marco; Brechin, Euan K; Murray, Keith S


    The syntheses, structures, and magnetic properties of two heterometallic Cu(II)-Ln(III) (Ln(III) = Gd, Tb, and Dy) families, utilizing triethanolamine and carboxylate ligands, are reported. The first structural motif displays a nonanuclear {Cu(II)2Ln(III)7} metallic core, while the second reveals a hexadecanuclear {Cu(II)4Ln(III)12} core. The differing nuclearities of the two families stem from the choice of carboxylic acid used in the synthesis. Magnetic studies show that the most impressive features are displayed by the {Cu(II)2Gd(III)7} and {Cu(II)4Gd(III)12} complexes, which display a large magnetocaloric effect, with entropy changes -ΔSm = 34.6 and 33.0 J kg(-1) K(-1) at T = 2.7 and 2.9 K, respectively, for a 9 T applied field change. It is also found that the {Cu(II)4Dy(III)12} complex displays single-molecule magnet behavior, with an anisotropy barrier to magnetization reversal of 10.1 K.

  3. Spectroscopic investigation of new water soluble Mn(II)(2) and Mg(II)(2) complexes for the substrate binding models of xylose/glucose isomerases.

    Patra, Ayan; Bera, Manindranath


    In methanol, the reaction of stoichiometric amounts of Mn(OAc)(2)·4H(2)O and the ligand H(3)hpnbpda [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in the presence of NaOH, afforded a new water soluble dinuclear manganese(II) complex, [Mn2(hpnbpda)(μ-OAc)] (1). Similarly, the reaction of Mg(OAc)(2)·4H(2)O and the ligand H3hpnbpda in the presence of NaOH, in methanol, yielded a new water soluble dinuclear magnesium(II) complex, [Mg2(hpnbpda)(μ-OAc)(H2O)2] (2). DFT calculations have been performed for the structural optimization of complexes 1 and 2. The DFT optimized structure of complex 1 shows that two manganese(II) centers are in a distorted square pyramidal geometry, whereas the DFT optimized structure of complex 2 reveals that two magnesium(II) centers adopt a six-coordinate distorted octahedral geometry. To understand the mode of substrate binding and the mechanistic details of the active site metals in xylose/glucose isomerases (XGI), we have investigated the binding interactions of biologically important monosaccharides d-glucose and d-xylose with complexes 1 and 2, in aqueous alkaline solution by a combined approach of FTIR, UV-vis, fluorescence, and (13)C NMR spectroscopic techniques. Fluorescence spectra show the binding-induced gradual decrease in emission of complexes 1 and 2 accompanied by a significant blue shift upon increasing the concentration of sugar substrates. The binding modes of d-glucose and d-xylose with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for C1 and C2 carbon atoms.

  4. Microwave synthesis, spectral, thermal and antimicrobial studies of some Ni(II and Cu(II Schiff base complexes

    A P Mishra


    Full Text Available Bidentate and tridentate (NO, (ONO Schiff bases have been synthesized by condensing methyl isobutyl ketone with 2-amino-4-chlorophenol and 2-hydroxy acetophenone with isonicotinic acid hydrazide. The 1:1 or 1:2 metal complexes have been prepared by interacting these Schiff bases with metal ions viz. Ni(II, Cu(II. These compounds have been synthesized by conventional as well as microwave methods and characterized by elemental analysis, FT-IR, UV-Vis, ESR, molar conductance, thermal analysis and X-ray diffraction. The complexes are colored and stable in air at room temperature. The thermal behavior of metal complexes shows that the hydrated complexes loses water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. Crystal data of [Ni(HINH(H2O]Cl.3H2O complex a = b =13.9338Ǻ, c = 34.7975Ǻ, V = 6755.96Ǻ3, Z = 12, Dobs = 1.2421g/cm3, Dcal 1.2847g/cm3, reflect that this complex has crystallized in orthorhombic system. The solid state electrical conductivity of the metal complexes has also been measured. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  5. Heterospin systems constructed from [Cu2Ln]3+ and [Ni(mnt)2]1-,2- Tectons: First 3p-3d-4f complexes (mnt = maleonitriledithiolato).

    Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius


    New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a

  6. Amine nitrosation via NO reduction of the polyamine copper(II) complex Cu(DAC)2+.

    Khin, Chosu; Lim, Mark D; Tsuge, Kiyoshi; Iretskii, Alexei; Wu, Guang; Ford, Peter C


    The reaction of the fluorescent macrocyclic ligand 1,8-bis(anthracen-9-ylmethyl)-1,4,8,11-tetraazacyclotetradecane with copper(II) salts leads to formation of the Cu(DAC)2+ cation (I), which is not luminescent. However, when aqueous methanol solutions of I are allowed to react with NO, fluorescence again develops, owing to the formation of the strongly luminescent N-nitrosated ligand DAC-NO (II), which is released from the copper center. This reaction is relatively slow in neutral media, and kinetics studies show it to be first order in the concentrations of NO and base. In these contexts, it is proposed that the amine nitrosation occurs via NO attack at a coordinated amine that has been deprotonated and that this step occurs with concomitant reduction of the Cu(II) to Cu(I). DFT computations at the BP/LACVP* level support these mechanistic arguments. It is further proposed that such nitrosation of electron-rich ligands coordinated to redox-active metal centers is a mechanistic pathway that may find greater generality in the biochemical formation of nitrosothiols and nitrosoamines.

  7. Syntheses and characterization of three diphenyl phosphate based Cu(II) complexes and the effect of non-covalent interactions on their supramolecular framework



    Assembly of diphenylphosphate (dpp) with Cu(II) salts in combination with the different Ndonor linkers, e.g., pentamethyldiethylenetriamine (pmdeta), bis-(3-aminopropyl)amine (bapa) and 4-Picolene (4-pic), yielded three new metal-organic coordination complexes, namely {[Cu(dpp)(pmdeta)]·ClO₄.H₂O}₂ (1), {[{[Cu(dpp)(bapa)H₂O]·ClO₄} (2) and [Cu(dpp)2(4-pic)₂]₂ (3) by stirring the constituent reactants at room temperature. Complexes 1–3 were characterized by single crystal X-ray diffraction analysis and were further characterized by elemental analysis, infrared spectroscopy (IR) and powder X-ray diffraction (PXRD) studies. Compound 1 exhibits a dimeric Cu(II) complex which forms a 1D supramolecular chain along the crystallographic c-axis by means of intermolecular π .. .π interactions. Compounds 2 and 3 form a monomeric and dimeric complex of Cu(II) respectively, which are further extended into a supramolecular 2D structure viaC-H..π interactions for 2 and a 3D structure for 3 with the help of both intermolecular C-H..π and π . . . π interactions for 3. In addition, the solid state UV-Vis spectra of compounds 1-3 and free dpp ligand have beeninvestigated at room temperature.

  8. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids

    Town, R.M.; Leeuwen, van H.P.; Buffle, J.


    The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as "fulvic-like substance", FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published e

  9. Characterization and performance of Cu/ZnO/Al2O3 catalysts prepared via decomposition of M(Cu,Zn)-ammonia complexes under sub-atmospheric pressure for methanol synthesis from H2 and CO2

    Danjun Wang; Jun Zhao; Huanling Song; Lingjun Chou


    Methanol synthesis from hydrogenation of CO2 is investigated over Cu/ZnO/Al2O3 catalysts prepared by decomposition of M(Cu,Zn)-ammonia complexes (DMAC) at various temperatures.The catalysts were characterized in detail,including X-ray diffraction,N2 adsorption-desorption,N2O chemisorption,temperature-programmed reduction and evolved gas analyses.The influences of DMAC temperature,reaction temperature and specific Cu surface area on catalytic performance are investigated.It is considered that the aurichalcite phase in the precursor plays a key role in improving the physiochemical properties and activities of the final catalysts.The catalyst from rich-aurichalcite precursor exhibits large specific Cu surface area and high space time yield of methanol (212 g/(Lcat·h); T =513 K,p =3 MPa,S V =12000 h-1).

  10. Antibacterial Activities of Newly Synthesized Azo Anils And its Oxalato-Bridged Binuclear {Cu(II and Zn(II} Complexes

    M. Ameen


    Full Text Available Novel oxalato-bridged binuclear metal {Cu(II and Zn(II} complexes; [{(L1M(II}2OX] (L1= 2-({2-hydroxy-5-[(4-nitrophenyldiazenyl]benzylidene}aminobenzoic acid, OX = oxalate and [{(L2M(II}2OX], (L2 = 2-{[(2-hydroxyphenylimino]methyl}-4-[(4-nitrophenyldiazenyl] phenol, OX = oxalate were synthesized. Azo anils and corresponding Metal {Cu((II and Zn(II} complexes were characterised by Elemental Combustion System, Atomic Absorption Spectroscopy (AAS, Fourier Transform Infrared (FTIR spectroscopy, UV-Visible, Spectroscopy and 13C-1H-Nuclear Magnetic Resonance spectroscopy. Elemental Analyses, FTIR and UV-Vis were used for structural characterization of metal complexes and distorted octahedral geometry for M(II complexes came into being. The antibacterial activities of azo anils ligands, oxalate ion, CuCl2.2H2O, Zn(CH3COO2.2H2O and metal {Cu(II and Zn(II} complexes against gram-positive (Bacillis subtilis and gram-negative (Escherichia coli were evaluated. The antibacterial activities were performed to asses inhibition potential of ligand and their metal {Cu(II and Zn(II} complexes. The results revealed that antibacterial activities of azo anils become more pronounced when free ligands were coordinated to central metal atom.

  11. Syntheses, structures and properties of Zn(II) and Cu(II) complexes based on N2-2-methylenepyridinyl 1,2,3-triazole ligand

    Chen, Yunfeng; Wu, Jun; Ma, Shan; Zhou, Shilei; Meng, Xianggao; Jia, Lihui; Pan, Zhiquan


    Four new Zn(II) and Cu(II) coordinated polymers ([ZnL2N3]ClO4 (1), [Cu2L2(CH3CN)]Cl4 (2) [CuL](NO3)2 (3), [Cu(H2O)L](SO4) (4) L = 2-((4-phenyl-2H-1,2,3-triazol-2-yl)methyl) pyridine (ptmp)) have been reported. All the compounds have been characterized by IR spectrum, elemental analyses and X-ray crystallography diffraction. Single-crystal X-ray diffraction analyses show that one-dimensional polymers are formed in these four complexes. Chain-like structures are formed in complex 1, 2 and 3, which are connected by azide, chloride and nitrate anions, respectively. In complex 4, one-dimensional left-handed polymer is formed by a μ2-SO4 bridge. The fluorescent and electrochemical properties of these four complexes were investigated. It was found that these three Cu(II) complexes displayed a quenching of fluorescence, while Zn(II) complex exhibited a clear enhanced fluorescence.

  12. Cu(II) salen complex with propylene linkage: An efficient catalyst in the formation of Csbnd X bonds (X = N, O, S) and biological investigations

    Azam, Mohammad; Dwivedi, Sourabh; Al-Resayes, Saud I.; Adil, S. F.; Islam, Mohammad Shahidul; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal; Lee, Dong-Ung


    The catalytic property of a mononuclear Cu(II) salen complex in Chan-Lam coupling reaction with phenyl boronic acid at room temperature is reported. The studied complex is found to be potential catalyst in the preparation of carbon-heteroatom bonds with excellent yields. The studied Cu(II) salen complex is monoclinic with cell parameters, a = 9.6807(5) (α 90°), (b = 17.2504(8) (β 112.429 (2), c = 11.1403 (6) (γ = 90°), and has distorted square planar environment around Cu(II) ion. Furthermore, there is no π⋯π interactions in the reported complex due to large distance between the centroid of aromatic rings. In addition, DNA binding study of Cu(II) salen complex by fluorescence and absorption spectroscopy is also reported. Moreover, the reported Cu(II) salen complex exhibits significant anticancer activity against MCF-7 cancer cell lines, and displays potential antimicrobial biofilm activity against P. aeruginosa, suggesting antimicrobial biofilm an important tool for suppression of resistant infections caused by P. aeruginosa.

  13. Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands.

    Anupama, Berelli; Aruna, Airva; Manga, Vijjulatha; Sivan, Sreekanth; Sagar, Madamsetty Vijay; Chandrashekar, Ravula


    Ternary Cu(II) complexes [Cu(II)(L)(bpy)Cl] 1, [Cu(II)(L)(Phen)Cl] 2 [L = 2,3-dimethyl-1-phenyl-4(2 hydroxy-5-methyl benzylideneamino)-pyrazol-5-one, bpy = 2,2(') bipyridine, phen =1,10 phenanthroline) were synthesized and characterized by elemental analyses, UV-Visible, FT-IR, ESR, Mass, thermogravimetric and SEM EDAX techniques. The complexes exhibit octahedral geometry. The interaction of the Cu(II) with cailf thymus DNA (CT-DNA) was explored by using absorption and fluorescence spectroscopic methods. The results revealed that the complexes have an affinity constant for DNA in the order of 10(4) M(-1) and mode of interaction is intercalative mode. The DNA cleavage study showed that the complexes cleaved DNA without any external agent. The interaction of Cu(II) complexes with bovine serum albumin (BSA) was also studied using absorption and fluorescence techniques. The cytotoxic activity of the Cu(II) complexes was probed in HeLa (human breast adenocarcinoma cell line), B16F10 (Murine melanoma cell line) and HEPA1-6 celllines, complex 1 has good cytotoxic activity which is comparable with the doxarubicin drug, with IC50 values ranging from 3 to 12.6 μM. A further molecular docking technique was employed to understand the binding of the complexes towards the molecular target DNA. Investigation of the antioxidative properties showed that the metal complexes have significant radical scavenging activity potency against DPPH radical.

  14. New investigation of phase equilibria in the system Al-Cu-Si.

    Ponweiser, Norbert; Richter, Klaus W


    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  15. Migration of Cd, Cu, Ni and Pb in low-permeable clay-type solids in presence of acid complexants

    Sager, M. [Federal Office and Research Centre of Agriculture, Institute of Agro - Ecology Spargelfeldstrabe, Vienna (Austria)


    In order to predict vertical mobility of trace meta ions through low permeable subsurface layers below waste deposition sites, a series of experiments has been carried out; results show that the retardation behaviour of Cu/Cd/Pb/Ni simultaneously and continuously applied to water saturated soil columns together with dilute acids, depends on the the composition of the solid phase as well as the complexing capabilities of the liquid phase. Whereas acetic acid mainly releases Ca + Mg from the solid, oxalic acid can also dissolves large amounts of Fe + Al. The appearance of acid in the eluate is indicative for the penetration of added metals as well, but in some cases, the fastest (Ni) moves much faster than the acid itself. For weakly complexing acetic acid, buffer capacity and releasable Fe seem to be the main factors for the retardation of Cu/Cd/Pb/Ni. Addition of neutral salts (Na{sub 2} SO{sub 4}) lowers the water permeation velocity, and enlarges retardation of the tested cations

  16. Measurement of Labile Cu, Pb and Their Complexation Capa-city in Yueqing Bay in Zhejiang Province, China

    王正方; 吕海燕; 傅和芳


    The complexation capacity of Cu and Pb and their labile and organic contents were determined separately for surface seawater samples from Yueqing Bay. The samples were prepared using Nuclepore filtration method yielding <1.0μm, <0.4μm and <0.2μm particulate water samples. Our data indicated that the <0.2μm colloidal fraction is a major carrier for distribution of copper in seawater. Affinity of Cu to marine microparticles plays an important role in the process. Pb however, tends to be absorbed by >0.2μm particles. The complexation capacity of Pb with <0.2μm particulates was smaller than that with 0.2-1.0μm particulates, and averaged 11.5 and 23.0nmol/L respectively. The results suggested that colloidal particles were responsible for the distribution and concentration of Pb in seawater.

  17. Antiviral Activity of Substituted Chalcones and their Respective Cu(ii, Ni(ii and Zn(ii Complexes

    K. G. Mallikarjun


    Full Text Available Complexes of Cu(II, Ni(II and Zn(II with of 3-(phenyl-1-(2’-hydroxynaphthyl – 2 – propen – 1 – one (PHPO , 3 - (4-chlorophenyl - 1- (2’-hydroxynaphthyl–2–propen – 1 – one (CPHPO, 3 - (4 -methoxyphenyl -1-(2’-hydroxynapthyl-2-propen-1-one(MPHPO,3 - (3,4-dimethoxyphenyl –1-(2’-hydroxynaphthyl – 2 - propen– 1 – one (DMPHPO have been prepared and the purity of the samples were checked by elemental analysis. The ligands and their Cu(II, Ni(II and Zn(II complexes were tested on the infectivity of tobacco ring spot virus(TRSV using cowpea (Vigna Sinensis as a local lesions assay host. All the compounds were tested at different concentrations (250 ppm to 1500 ppmon the infectivity of the virus by applying them either with virus inoculum or 24 h before of after virus inoculation to the test plants. The compounds were found to have varied effects on virus infectivity depending on compounds concentration and method of application. The statistical significance of the data was determined by using analysis of variance.

  18. Investigation of the complex structure, comparative DNA-binding and DNA cleavage of two water-soluble mono-nuclear lanthanum(III) complexes and cytotoxic activity of chitosan-coated magnetic nanoparticles as drug delivery for the complexes

    Asadi, Zahra; Nasrollahi, Neda; Karbalaei-Heidari, Hamidreza; Eigner, Vaclav; Dusek, Michal; Mobaraki, Nabiallah; Pournejati, Roya


    Two water-soluble mono-nuclear macrocyclic lanthanum(III) complexes of 2,6-diformyl-4-methylphenol with 1,3-diamino-2-propanol (C1) or 1,3-propylenediamine (C2) were synthesized and characterized by UV-Vis, FT-IR, 13C and 1H NMR spectroscopy and elemental analysis. C1 complex was structurally characterized by single-crystal X-ray diffraction, which revealed that the complex was mononuclear and ten-coordinated. The coordination sites around lanthanum(III) were occupied with a five-dentate ligand, two bidentate nitrates, and one water molecule. The interaction of complexes with DNA was studied in buffered aqueous solution at pH 7.4. UV-Vis absorption spectroscopy, emission spectroscopy, circular dichroism (CD) and viscometric measurements provided clear evidence of the intercalation mechanism of binding. The obtained intrinsic binding constants (Kb) 9.3 × 103 and 1.2 × 103 M- 1 for C1 and C2, respectively confirmed that C1 is better intercalator than C2. The DNA docking studies suggested that the complexes bind with DNA in a groove binding mode with the binding affinity of C1 > C2. Moreover, agarose gel electrophoresis study of the DNA-complex for both compounds revealed that the C1 intercalation cause ethidium bromide replacement in a competitive manner which confirms the suggested mechanism of binding. Finally, the anticancer experiments for the treated cancerous cell lines with both synthesized compounds show that these hydrophilic molecules need a suitable carrier to pass through the hydrophobic nature of cell membrane efficiently.

  19. [Complex immunochemical analysis of the proteinogram and the system of soluble leukocytic antigens in children with chronic and recurrent infections].

    Petrunin, D D; Khakhalin, L N; Porkhovatyĭ, S Ia; Olefirenko, G A


    The immunochemical study of the blood sera of children with chronic and relapsing infections has shown an increase in the content of alpha 2-macroglobulin and alpha 1-antitrypsin in the absence of significant changes in the concentration of immunoglobulins and complement components. The immunochemical analysis of the system of soluble leukocytic antigens (SLA) has revealed a decrease in the level of SLA-1 simultaneously with the presence of redundant amounts of SLA-5 and SLA-8.

  20. Selective C–C Coupling Reaction of Dimethylphenol to Tetramethyldiphenoquinone Using Molecular Oxygen Catalyzed by Cu Complexes Immobilized in Nanospaces of Structurally-Ordered Materials

    Zen Maeno


    Full Text Available Two high-performance Cu catalysts were successfully developed by immobilization of Cu ions in the nanospaces of poly(propylene imine (PPI dendrimer and magadiite for the selective C–C coupling of 2,6-dimethylphenol (DMP to 3,3',5,5'-tetramethyldiphenoquinone (DPQ with O2 as a green oxidant. The PPI dendrimer encapsulated Cu ions in the internal nanovoids to form adjacent Cu species, which exhibited significantly high catalytic activity for the regioselective coupling reaction of DMP compared to previously reported enzyme and metal complex catalysts. The magadiite-immobilized Cu complex acted as a selective heterogeneous catalyst for the oxidative C–C coupling of DMP to DPQ. This heterogeneous catalyst was recoverable from the reaction mixture by simple filtration, reusable without loss of efficiency, and applicable to a continuous flow reactor system. Detailed characterization using ultraviolet-visible (UV-vis, Fourier transform infrared (FTIR, electronic spin resonance (ESR, and X-ray absorption fine structure (XAFS spectroscopies and the reaction mechanism investigation revealed that the high catalytic performances of these Cu catalysts were ascribed to the adjacent Cu species generated within the nanospaces of the PPI dendrimer and magadiite.

  1. A 3D complex containing novel 2D Cu{sup II}-azido layers: Structure, magnetic properties and effects of 'Non-innocent' reagent

    Gao, Xue-Miao; Guo, Qian [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Jiong-Peng, E-mail: [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Liu, Fu-Chen, E-mail: [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Lanzhou Petrochemical College of Vocational Technology, Lanzhou 730060 (China)


    A novel copper-azido coordination polymer, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (1, HL=pyrazine-2-carboxylic acid), has been synthesized by hydrothermal reaction with 'Non-innocent' reagent in the aqueous solution. In the reaction system, Cu{sup II} ions are avoided to reduce to Cu{sup I} ions due to the existence of Nd{sup III}. It is found that the complex is a 3D structure based on two double EO azido bridged trimmers and octahedron Cu{sup II} ions, in which the azide ligands take on EO and {mu}{sub 1,1,3} mode to form Cu{sup II}-azido 2D layers, furthermore L ligands pillar 2D layers into an infinite 3D framework with the Schlaefli symbol of {l_brace}4;6{sup 2}{r_brace}4{l_brace}4{sup 2};6{sup 12};8{sup 10};10{sup 4}{r_brace}{l_brace}4{sup 2};6{sup 4}{r_brace}. Magnetic studies revealed that the interactions between the Cu{sup II} ions in the trimmer are ferromagnetic for the Cu-N-Cu angle nearly 98 Degree-Sign , while the interactions between the trimmer and octahedron Cu{sup II} ion are antiferromgantic and result in an antiferromagnetic state. - Graphical abstract: A 3D complex containing novel 2D Cu{sup II}-azido layers, [Cu{sub 2}(N{sub 3}){sub 3}(L)]{sub n} (HL=pyrazine-2-carboxylic acid), was synthesized by hydrothermal reaction and exhibit interesting structure and magnetic properties. Highlights: Black-Right-Pointing-Pointer 'Non-innocent' reagents plays a key role in the process of formation of this complex. Black-Right-Pointing-Pointer 2D layer is formed only by Cu{sup II} ions and azido ligands. Black-Right-Pointing-Pointer Pyrazine-2-carboxylate ligands reinforce 2D layers and pillar them into an infinite 3D framework. Black-Right-Pointing-Pointer Magnetic study indicates that alternating FM-AF coupling exists in the complex.

  2. A monomeric complex of ammonia and cuprous chloride: H{sub 3}N⋯CuCl isolated and characterised by rotational spectroscopy and ab initio calculations

    Bittner, Dror M.; Zaleski, Daniel P.; Stephens, Susanna L.; Walker, Nicholas R., E-mail:, E-mail: [School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, Tyne and Wear NE1 7RU (United Kingdom); Tew, David P.; Legon, Anthony C., E-mail:, E-mail: [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)


    The H{sub 3}N⋯CuCl monomer has been generated and isolated in the gas phase through laser vaporisation of a copper sample in the presence of low concentrations of NH{sub 3} and CCl{sub 4} in argon. The resulting complex cools to a rotational temperature approaching 2 K during supersonic expansion of the gas sample and is characterised by broadband rotational spectroscopy between 7 and 18.5 GHz. The spectra of six isotopologues are measured and analysed to determine rotational, B{sub 0}; centrifugal distortion, D{sub J}, D{sub JK}; and nuclear quadrupole coupling constants of Cu, Cl, and {sup 14}N nuclei, χ{sub aa} (X). The geometry of the complex is C{sub 3v} with the N, Cu, and Cl atoms located on the a inertial axis. Bond distances and the ∠(H —N⋯Cu) bond angle within the complex are precisely evaluated through fitting of geometrical parameters to the experimentally determined moments of inertia and through ab initio calculations at the CCSD(T)(F12*)/AVQZ level. The r(Cu —Cl), r(Cu —N), and ∠(H —N⋯Cu) parameters are, respectively, evaluated to be 2.0614(7) Å, 1.9182(13) Å, and 111.40(6)° in the r{sub 0} geometry, in good agreement with the ab initio calculations. Geometrical parameters evaluated for the isolated complex are compared with those established crystallographically for a solid-state sample of [Cu(NH{sub 3})Cl].

  3. The guanidinium group as a key part of water-soluble polymer carriers for siRNA complexation and protection against degradation.

    Tabujew, Ilja; Freidel, Christoph; Krieg, Bettina; Helm, Mark; Koynov, Kaloian; Müllen, Klaus; Peneva, Kalina


    Here, the preparation of a novel block copolymer consisting of a statistical copolymer N-(2-hydroxypropyl) methacrylamide-s-N-(3-aminopropyl) methacrylamide and a short terminal 3-guanidinopropyl methacrylamide block is reported. This polymer structure forms neutral but water-soluble nanosized complexes with siRNA. The siRNA block copolymer complexes are first analyzed using agarose gel electrophoresis and their size is determined with fluorescence correlation spectroscopy. The protective properties of the polymer against RNA degradation are investigated by treating the siRNA block copolymer complexes with RNase V1. Heparin competition assays confirm the efficient release of the cargo in vitro. In addition, the utilization of microscale thermophoresis is demonstrated for the determination of the binding strength between a fluorescently labeled polyanion and a polymer molecule.

  4. Solution chemistry of a water-soluble eta2-H2 ruthenium complex: evidence for coordinated H2 acting as a hydrogen bond donor.

    Szymczak, Nathaniel K; Zakharov, Lev N; Tyler, David R


    The ability of an eta2-H2 ligand to participate in intermolecular hydrogen bonding in solution has long been an unresolved issue. Such species are proposed to be key intermediates in numerous important reactions such as the proton-transfer pathway of H2 production by hydrogenase enzymes. We present the synthesis of several new water-soluble ruthenium coordination complexes including an eta2-H2 complex that is surprisingly inert to substitution by water. The existence of dihydrogen hydrogen bonding (DHHB) was experimentally probed by monitoring the chemical shift of H-bonded Ru-(H2) complexes using NMR spectroscopy, by UV-visible spectroscopy, and by monitoring the rotational dynamics of a hydrogen-bonding probe molecule. The results provide strong evidence that coordinated H2 can indeed participate in intermolecular hydrogen bonding to bulk solvent and other H-bond acceptors.

  5. Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols

    Esparza, I. [Departamento de Quimica y Edafologia, Universidad de Navarra, c/ Irunlarrea s/n, 31080 Pamplona, Navarra (Spain); Salinas, I. [Departamento de Quimica y Edafologia, Universidad de Navarra, c/ Irunlarrea s/n, 31080 Pamplona, Navarra (Spain); Santamaria, C. [Departamento de Quimica y Edafologia, Universidad de Navarra, c/ Irunlarrea s/n, 31080 Pamplona, Navarra (Spain); Garcia-Mina, J.M. [INABONOS, Poligono Arazuri, 31160 Orcoyen, Navarra (Spain); Fernandez, J.M. [Departamento de Quimica y Edafologia, Universidad de Navarra, c/ Irunlarrea s/n, 31080 Pamplona, Navarra (Spain)]. E-mail:


    Zn and Cu interactions with three selected flavonoids (catechin, quercetin and rutin) have been electrochemically monitored. It has been shown that catechin takes one atom of metal per molecule; quercetin takes two atoms, and rutin is able to take up to three atoms. Not all ligands bind metals equally strong, and weakly bonded metals can be distinguished. Zn shows a sluggish kinetics and, at the same time, the highest conditional formation constants. The method could be applied to a real sample. Theoretical models are proposed for the most favourable compounds.

  6. Nanocrystalline Mixed Ligand Complexes of Cu (II, Ni (II, Co (II with N, O Donor Ligands: Synthesis, Characterization, and Antimicrobial Activity

    Kolhe Nitin H


    Full Text Available In present investigation nanocrystalline mixed ligand complexes were synthesized using 8-hydroxyquinoline, salicylaldoxime with metals like Cu (II, Ni (II and Co (II. The metal: ligand ratio was found to be 1:1:1. These complexes were characterized using electronic spectra, FTIR spectra, elemental analysis, magnetic susceptibility, thermogravimetric analysis, conductivity measurement, powder X-ray diffraction and Scanning Electron Microscopy with electron dispersive spectroscopic methods. The electronic spectra of complexes suggest that they have square planer geometries. In FTIR analysis characteristic bands of ν (M-N and ν (M-O.The Co (II and Cu (II complexes are paramagnetic in nature and these had square planer geometry. While Ni (II complexes are diamagnetic nature and having square planer geometry. The thermal analysis of complexes was studied in an attempt to assign intermediate compounds. Low molar conductance values indicate non – electrolytic nature of the complexes. The Powder X-ray diffraction study shows formation of nanocrystalline phase as well as the grain size of complexes is less than 10 nm. The EDS study is shows good agreement for formation of mixed ligand metal complexes . Complex: [C16H12CuN2O2], [C14H12N2NiO4 ], [C16H12NiN2O2] and [C16H12CoN2O2] had antimicrobial activity against four bacteria tested. Bacteria were resistant to other five complexes.

  7. Small heat shock protein Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin.

    Pivovarova, Anastasia V; Chebotareva, Natalia A; Chernik, Ivan S; Gusev, Nikolai B; Levitsky, Dmitrii I


    Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.

  8. Synthesis, characterization and Hydroformylation Catalytic Activity of 1-hexene of Water-soluble RuCl2(DMSO2(PySO3Na2 Complex

    Yuraima Fonseca


    Full Text Available In this work we describe the synthesis and characterization of a new water soluble ruthenium complex [Ru(Cl2(DMSO2(PySO3Na2] (complex 1; where [PySO3Na] is the sodium salt of p-sulphonated pyridine. Complex 1 was obtained by slow addition of ligand to a cis-[Ru(Cl2(DMSO4] complex solution under inert atmosphere, the mixture was refluxed for 1 hour. Complex 1 was characterized by FT-IR and 1H NMR techniques. Complex 1 was active in the catalytic 1-hexene hydroformylation and a preliminary test with real naphtha in a biphasic reaction mixture (water/toluene shows little activity. Temperature, pressure, and substrate/catalyst ratio were studied with 1-hexene substrate. Catalysis with metallic particles was tested with a mercury drop trial giving negative results. The reuse of the aqueous phase in several reactions under the same experimental conditions showed loss of catalytic activity after the second reuse. Complex 1 is active for hydroformylation reaction of 1-hexene even in the presence of thiophene compounds.

  9. Synthesis of a New Type of Amphilic and Water - soluble Tertiary Phosphine Ligands Substituted by an Ethoxylated Phosphonic Acid Chain and Their Palladium Complexes


    The highly water-soluble phosphine ligands Na2O3PCH2CH2NH(CH2CH2O)nCH2CH2N(CH2PPh2)2 (n=1,2,3) were prepared by a new and simple route under mild conditions in goodyield; the palladium (Ⅱ) complexes of the ligands 3a~c with 2:1 or 4:1 -PPh2 to Pd2+ molar ratiowere also prepared and characterized.

  10. Water soluble heptakis(6-deoxy-6-thio)cyclomaltoheptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties.

    Uccello-Barretta, Gloria; Evangelisti, Claudio; Balzano, Federica; Vanni, Letizia; Aiello, Federica; Jicsinszky, Laszlo


    The complexation of heptakis(6-deoxy-6-thio)cyclomaltoheptaose to gold nanoparticles prepared by using the Metal Vapour Synthesis (MVS) led to water soluble gold nanoaggregates, thermally stable at 25°C. The role of gold concentration in the MVS-derived starting solution as well as of the cyclodextrin to gold molar ratio on the size of cyclodextrin-capped gold nanoparticles were investigated. The ability of cyclodextrin bonded to gold nanoparticles to include deoxycytidine was also probed in comparison with that of 1-thio-β-D-glucose sodium salt.

  11. Water-Soluble Pd-Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling.

    Gayakhe, Vijay; Ardhapure, Ajaykumar; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; García, Luis; Pérez, Jose; García, Joaquím; Sánchez, Gregorio; Fischer, Christian; Schulzke, Carola


    A broadly applicable catalyst system consisting of water-soluble Pd--imidate complexes has been enployed for the Suzuki-Miyaura cross-coupling of four different nucleosides in water under mild conditions. The efficient nature of the catalyst system also allowed its application in developing a microwave-assisted protocol with the purpose of expediting the catalytic reaction. Preliminary mechanistic studies, assisted by catalyst poison tests and stoichiometric tests performed using an electrospray ionization spectrometer, revealed the possible presence of a homotopic catalyst system.

  12. DNA binding and biological activity of mixed ligand complexes of Cu(II, Ni(II and Co(II with quinolones and N donor ligand

    S.M M Akram


    Full Text Available  AbstractMixed ligand complexes of  Cu(II, Ni(II and Co(II have been synthesized by using levofloxacin and bipyridyl and characterized using spectral and analytical techniques. The binding behavior of the Ni(II and Cu(II complexes with herring sperm DNA(Hs-DNA were determined using electronic absorption titration, viscometric measurements and cyclic voltammetry measurements. The binding constant calculated  for Cu(II and Ni(II complexes are 2.0 x 104 and 4.0 x 104 M-1 respectively. Detailed analysis reveals that these metal complexes interact with DNA through intercalative binding mode. The nuclease activity of  Cu(II and Ni(II complexes with ct-DNA was carried out using agarose gel electrophoresis technique. The antioxidant activities for the synthesized complexes have been tested and the antibacterial activity for Ni(II complex was also checked.Key words: Intercalation, hypochromism, red shift and  peak potential.

  13. [{Cu(phen)2}(mu-malato){Cu(phen)(NO3)}](NO3).4H2O: malate acting as a tetradentate and dibridging ligand in a dinuclear copper complex.

    Zhang, Xiang Dong; Sun, Jin Yu; Zhao, Zhen; Ma, Yong Chao; Zhu, Miao Li


    The crystal structure of the title compound, mu-2-hydroxybutanedioato-1kappa2O4,O4':2kappa3O1,O2,O4-nitrato-2kappaO-tris(1,10-phenanthroline)-1kappa(4)N,N';2kappa(2)N,N'-dicopper(II) nitrate tetrahydrate, [Cu2(C4H3O5)(NO3)(C12H8N2)3](NO3).4H2O, contains an unsymmetrical dinuclear copper complex with Cu(phen)2 and Cu(phen)(NO3) moieties (phen is 1,10-phenanthroline) bridged by a malate (2-hydroxybutanedioate) ligand, which acts as a double-bridging and tetradentate ligand. As a result of this double-bridging action, especially the direct coordination of the O atom of one carboxylate group of malate to the two Cu atoms, the Cu...Cu distance is only 4.199 (1) Angstrom and the two phen planes are roughly parallel [the shortest interplanar distance is 3.28 (1) Angstrom], exhibiting an obvious intramolecular pi-pi stacking interaction.

  14. Hydrolytic activity of -alkoxide/acetato-bridged binuclear Cu(II) complexes towards carboxylic acid ester

    Weidong Jiang; Bin Xu; Zhen Xiang; Shengtian Huang; Fuan Liu; Ying Wang


    Two -alkoxide/acetate-bridged small molecule binuclear copper(II) complexes were synthesized, and used to promote the hydrolysis of a classic carboxylic acid ester, -nitrophenyl picolinate (PNPP). Both binuclear complexes exhibited good hydrolytic reactivity, giving rise to . 15547- and 17462-fold acceleration over background value for PNPP hydrolysis at neutral conditions, respectively. For comparing, activities of the other two mononuclear analogues were evaluated, revealing that binuclear complexes show approximately 150- and 171-fold kinetic advantage over their mononuclear analogues.

  15. A Study on Solubilization of Poorly Soluble Drugs by Cyclodextrins and Micelles: Complexation and Binding Characteristics of Sulfamethoxazole and Trimethoprim

    Sinem Göktürk


    > α-CD. With taking into consideration of solubilization capacity of SDS micelles, it has been found that the solubility enhancement of TMP is much higher than that of SMX in the presence of SDS micelles. The binding constants of SMX and TMP obtained from the Benesi-Hildebrand equation are also confirmed by the estimated surface properties of SDS, employing the surface tension measurements. In order to elucidate the solubilization characteristics the surface tension measurements were also performed for nonionic surfactant Triton X-100. Polarity of the microenvironment and probable location of SMX and TMP were also discussed in the presence of various organic solvents.

  16. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation

    C S Thatte; M V Rathnam; A C Pise


    A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff base metal complexes were used as heterogeneous catalysts for the air oxidation of -isophorone to ketoisophorone. The obtained complexes were characterized by means of FT-IR, 1HNMR spectroscopy, elemental analysis, powder X-ray diffraction, field emission gun scanning electron microscopy, electron spin resonance spectroscopy, ICP-AES and solubility tests. Thermal properties were also investigated using thermal gravimetric analysis. Data obtained by thermal analysis revealed that these complexes showed good thermal stability. The conversion and selectivity of -isophorone to ketoisophorone for each prepared catalyst was studied using a batch reactor and gas chromatography for product identification and quantification. The results were compared against the homogeneous bis-salicylaldehyde ethylenedi-imine-Mn catalyst. The use of methanol, acetone, methyl isobutyl ketone and -hexane as solvent and its effect on conversion and selectivity was also investigated. Acetone was found to be a promising solvent for the -isophorone oxidation. The role of triethyl amine and acetyl acetone in the oxidation reaction has also been investigated.

  17. A common intermediate for N2 formation in enzymes and zeolites: side-on Cu-nitrosyl complexes

    Kwak, Ja Hun; Lee, Jong H.; Burton, Sarah D.; Lipton, Andrew S.; Peden, Charles HF; Szanyi, Janos


    Understanding the mechanisms of catalytic processes requires the identification of reaction centers and key intermediates, both of which are often achieved by the use of spectroscopic characterization tools. Due to the heterogeneity of active centers in heterogeneous catalysts, it is frequently difficult to identify the specific sites that are responsible for the overall activity. Furthermore, the simultaneous presence of a large number of surface species on the catalyst surface often poses a great challenge for the unambiguous determination of the relevant species in the reaction mechanism. In contrast, enzymes possess catalytically active centers with precisely defined coordination environments that are only able to accommodate intermediates relevant to the specific catalytic process. Here we show that side-on Cu+-NO+ complexes characterized by high magnetic field solid state magic angle spinning nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopies are the key intermediates in the selective catalytic reduction of NO over Cu-SSZ-13 zeolite catalysts. Analogous intermediates have been observed and characterized in nitrite reductase enzymes, and shown to be the critical intermediates in the formation of N2 for anaerobic ammonium oxidation reactions.[1] The identification of this key reaction intermediate, combined with the results of our prior kinetic studies, allows us to propose a new reaction mechanism for the selective catalytic reduction of NO with NH3 under oxygen-rich environments over Cu-SSZ-13 zeolites, a key reaction in automotive emission control. The authors acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental

  18. Chiral discrimination asserted by enantiomers of Ni (II), Cu (II) and Zn (II) Schiff base complexes in DNA binding, antioxidant and antibacterial activities.

    Khan, Noor-ul Hasan; Pandya, Nirali; Prathap, K Jeya; Kureshy, Rukhsana Ilays; Abdi, Sayed Hasan Razi; Mishra, Sandhya; Bajaj, Hari Chandra


    Chiral Schiff base ligands (S)-H(2)L and (R)-H(2)L and their complexes (S-Ni-L, R-Ni-L, S-Cu-L, R-Cu-L, S-Zn-L and R-Zn-L) were synthesized, characterized and examined for their DNA binding, antioxidant and antibacterial activities. The complexes showed higher binding affinity to calf thymus DNA with binding constant ranging from 2.0×10(5) to 4.5×10(6) M(-1). All the complexes also exhibited remarkable superoxide (56-99%) and hydroxyl scavenging (45-89%) activities as well as antibacterial activities against gram (+) and gram (-) bacteria. However, none of the complexes showed antifungal activity. Conclusively, S enantiomers of the complexes were found to be relatively more efficient for DNA interaction, antioxidant and antibacterial activities than their R enantiomers. This study reveals the possible utilization of chiral Schiff base complexes for pharmaceutical applications.

  19. Characterization, Crystal Structure and Initial DNA Binding Interaction of Two Cu(Ⅱ) Complexes with 4,5-Diazafluoren-9-one

    SONG, Yan-Hong; ZHANG, Rong-Lan; SUN, Qing-Jin; XU, Zhan-Wei; GAO, Quan-Chang; LIU, Hua-Qiang; ZHAO, Jian-She


    Two new complexes [Cu(dafo)2(en)](ClO4)2·2H2O (en=NH2CH2CH2NH2) 1 and [Cu(dafo)2(dap)](ClO4)2·2H2O [dap=NH2CH2CH(CH3)NH2] 2 (dafo=4,5-diazafluoren-9-one) have been synthesized and characterized by elemental analysis, IR and UV spectra. Meanwhile, the complex 1 has been characterized by single crystal X-ray diffraction analysis. The initial DNA binding interactions of the complexes 1 and 2 have been investigated by UV spectra, emission spectra and cyclic voltammogram. Concluding the results of three methods used to measure the interaction of complexes 1 and 2 with DNA, the action mode of the two complexes with DNA is intercalation, and character of ligands and steric effect may affect the interaction of the complexes with DNA.

  20. Synthesis, characterization, photoluminescence, and electrochemical studies of novel mononuclear Cu(II) and Zn(II) complexes with the 1-benzylimidazolium ligand

    Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah


    Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.

  1. Exogenous bridging and nonbridging in Cu(II) complexes of Mannich base ligands: Synthesis and physical properties

    S Sujatha; T M Rajendiran; R Kannappan; R Venkatesan; P Sambasiva Rao


    Preparation of pentadentate ligands L1, L2, L3 and L4, where L1=4-chloro-3-methyl-2[(prolin-1-yl)methyl]-6-[N-phenyl piperazin-1-yl)methyl]phenol, L2= 4-ethyl-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol, L3 =4-chloro-3-methyl-2-[(prolin-1-yl)methyl]-6-[N-methyl piperazin-1-yl]methyl phenol, L4 = 4-methoxy-2-[(prolin-1-yl)methyl]-6-[(N-phenyl piperazin-1-yl)methyl]phenol is described together with that of the corresponding Cu(II) complexes with various bridging motifs like OH, OAc and NO2. The complexes are characterized by elemental analysis, electrochemical and electron paramagnetic spectral studies. Redox properties of the complexes in acetonitrile are highly quasireversible due to the chemical or/and stereochemical changes subsequent to electron transfer. The complexes show resolved copper hyperfine EPR at room temperature, indicating the presence of weak antiferromagnetic coupling between the copper atoms. Strengths of the antiferromagnetic interactions are in the order NO2 > OAc > OH.

  2. The Dispersion Characteristics of the Complex Permeability of NiZnCu Ferrite and its Composite Materials

    Rastislav Dosoudil


    Full Text Available The paper deals with the frequency dependence of complex permeability for the Ni0.27Zn0.63Cu0.1Fe2O4 sintered ferrite produced by conventional ceramic method and its composite materials made of this ferrite (in the form of powder and non-magnetic polymer matrix (polyvnyl chloride - PVC. The experimental and theoretical curves of the complex permeability were compared. The contribution of both domain wall motion and spin rotational mangetisation processes on th complex permeability in high-frequency region (up to 1 GHz is discussed. In the case of composite materials, the simple magnetic circuit approach is taken into account. In composites, the real part of the complex permeability in the frequency region above 100 MHz is larger than that of the prepared sintered ferrite. This is attibuted to the shift of the spin and domain wall resonance frequencies toward the higher frequency region by introducing demagnetising fields of magnetic particles in the composite.

  3. Antimony(III) complexing with O-bearing organic ligands in aqueous solution: An X-ray absorption fine structure spectroscopy and solubility study

    Tella, Marie; Pokrovski, Gleb S.


    The stability and structure of aqueous complexes formed by trivalent antimony (Sb III) with carboxylic acids (acetic, adipic, malonic, lactic, oxalic, tartaric, and citric acid), phenols (catechol), and amino acids (glycine) having O- and N-functional groups (carboxyl, alcoholic hydroxyl, phenolic hydroxyl and amine) typical of natural organic matter, were determined at 20 and 60 °C from solubility and X-ray absorption fine structure (XAFS) spectroscopy measurements. In organic-free aqueous solutions and in the presence of acetic, adipic, malonic acids and glycine, both spectroscopic and solubility data are consistent with the dominant formation of Sb III hydroxide species, Sb(OH)3-nn+,Sb(OH)30andSb(OH)4-, at strongly acid, acid-to-neutral and basic pH, respectively, demonstrating negligible complexing with mono-functional organic ligands (acetic) or those having non adjacent carboxylic groups (adipic, malonic). In contrast, in the presence of poly-functional carboxylic and hydroxy-carboxylic acids and catechol, Sb III forms stable 1:1 and 1:2 complexes with the studied organic ligands over a wide pH range typical of natural waters (3 cycle. Stability constants for these species, generated from Sb 2O 3 (rhomb.) solubility experiments, were used to model Sb complexing with natural humic acids possessing the same functional groups as those investigated in this study. Our predictions show that in an aqueous solution of pH between 2 and 10, containing 1 μg/L of Sb and 5 mg/L of dissolved organic carbon (DOC), up to 35% of total dissolved Sb binds to aqueous organic matter via carboxylic and hydroxy-carboxylic groups. This amount of complexed Sb for typical natural DOC concentrations is in agreement with that estimated from dialysis experiments performed with commercial humic acid in our work and those available in the literature for a range of standardized IHSS humic acids. Our results imply that a significant part of Sb is likely to be bound with humic acids via

  4. Influence of Chemical Effect on the Kβ/Kα Intensity Ratios and Kβ Energy Shift of Co, Ni, Cu, and Zn Complexes

    G. Apaydma, V. Ayhkg; Z. Biyiklioglu; E. Tirasoglu; H. Kantekin


    Chemical effects on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes were investigated. The samples were excited by 59.5 keV γ-rays from a 241 Am annular radioactive source. K X-rays emitted by samples were counted by an Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. We observed the effects of different ligands on the Kβ/Kα intensity ratios and ΔE energy differences for Co, Ni, Cu, and Zn complexes. We tried to investigate chemical effects on central atoms using the behaviors of different ligands in these complexes. The experimental values of Kβ/Kα were compared with the theoretical and other experimental values of pure Co, Ni, Cu, and Zn.

  5. X-ray absorption near-edge structure study on the configuration of Cu 2+ /histidine complexes at different pH values

    Mei-Juan, Yu; Yu, Wang; Wei, Xu


    The local configurations around metal ions in metalloproteins are of great significance for understanding their biological functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxyl, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5. Project supported by the National Natural Science Foundation of China (Grant No. 11205186).

  6. Spectroscopic evidence on improvement in complex formation of O2N2 aza-crown macrocyclic ligands with Cu(II) acetate upon incorporation with [60]Fullerene

    Ghanbari, Bahram; Gholamnezhad, Parisa


    The present paper reports the spectroscopic investigations on the complexation of Cu(II) with two macrocyclic ligands bonded to [60]Fullerene (L1 and L2) measured in N-methylpyrrolidone (NMP) as solvent. On the basis of UV-vis-NIR spectroscopy applying Jobs method of continuous variation, typical 1:1 stoichiometries were established for the complexes of Cu(II) with L1, and L2. DFT calculations suggested that superior HOMO distributions spread over the nitrogen-donor (as well as somehow oxygen- donor in L2) groups of L1 and L2 macrocycles were the key factor for the observed Kb value enhancement. Thermodynamic stabilities for these complexes have also been determined employing Benesi-Hildebrand equation and the results were compared in terms of their calculated binding constants (Kb). These measurements showed that L1 and L2 bound to these cations stronger than their parent free macrocyclic ligands 1 and 2, respectively. Furthermore, Kb values found for L2 complexes revealed that it could coordinate Cu(II) cation better than L1. Thermodynamic parameters (ΔG, ∆ H, and - ΔS) derived from Van't Hoff equation showed that L1 and L2 coordination of Cu(II) cation were occurred due to both enthalpic and entropic factors while the coordination of Cu(II) with their parent macrocyclic ligands 1 and 2 only enjoyed from only enthalpic advantages.

  7. 1D μ-glycine-briged copper (II) chain in complex [Cu(μ-Gly)Im(ClO4)]n and ferromagnetic interactions among copper (II)

    Pan, Lu; Lv, Xue-Chuan; Luo, Guan-Hua; Gao, Xiao-Han; Tan, Zhi-Cheng


    Complex [Cu(μ-Gly)Im(ClO4)]n(Im = imidazole, and Gly = glycine) with μ-glycine-briged copper (II) chain, containing six-coordination distorted elongated octahedron, was synthesized and characterized. The complex belongs to space group P 21/c measured by X-ray single crystal diffraction. In the cluster, each Cu2+ ion are six-coordination by one nitrogen atom and two oxygen atoms of glycine, one nitrogen atoms of imidazole, and two of oxygen atoms of two perchlorate. Each Cu2+ ion has an N2O4 donor set, which forms the distorted elongated octahedron due to the Jahn-Teller (JT) effect. The magnetic and thermodynamic properties were researched. Magnetic susceptibilities of the complex showed that ferromagnetic interactions occurred between the Cu (II) atoms. The Curie-Weiss constant C = 0.565 cm3 K·mol-1 and the Weiss constant θ = 1.0585 K were given by the Curie-Weiss law The ferromagnetic nature of the interaction could be deduced as the exchange pathway of Cusbnd Osbnd Csbnd Osbnd Cu, which involved an equatorial position at one copper (II) ion and an axial position of the nearest copper (II). The complex decomposed from 511 to 538 K as two steps.

  8. New water-soluble azido- and derived tetrazolato-platinum(II) complexes with PTA. Easy metal-mediated synthesis and isolation of 5-substituted tetrazoles.

    Smoleński, Piotr; Mukhopadhyay, Suman; Guedes da Silva, M Fátima C; Charmier, M Adília Januário; Pombeiro, Armando J L


    The water-soluble four- and five-coordinate diazido-platinum(II) complexes cis-[Pt(N3)2(PTA)2] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), cis-[Pt(N3)2(Me-PTA)2]I2 (2) (Me-PTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation) and [Pt(N3)2(PTA)3] (3) were obtained by reactions of cis-[Pt(N3)2(PPh3)2] with PTA or [Me-PTA]I in dichloromethane. [2 + 3] cycloadditions of with organonitriles NCR gave the bis(tetrazolato) complexes trans-[Pt(N4CR)2(PTA)2] (R = Ph (4), 4-ClC6H4 (5) or 3-NC5H4 (6)), the reactions being greatly accelerated by microwave irradiation. 5-R-1H-Tetrazoles N4CR (R = Ph, 4-ClC6H4 and 3-NC5H4) were easily liberated from the tetrazolato complexes and isolated in high yields, in a single-pot process, upon reaction with aqueous diluted HCl, with concomitant formation of the water soluble cis-[Pt(Cl)2(PTA-H)2] complex 7. Alternatively, in a less convenient method, the tetrazoles could be liberated on reaction of 4-6 with propionitrile which also leads to the dicyano trans-[Pt(CN)2(PTA)2] complex 8. The compounds were characterized by IR, 1H, 13C and 31P[1H] NMR spectroscopies, FAB+-MS or ESI-MS, elemental analyses and (for and 4) also by X-ray diffraction.

  9. Two Triazole-Based Phosphine Ligands Prepared via Temperature-Mediated Li/H Exchange: Cu(I) and Au(I) Complexes and Structural Studies.

    Choubey, Bimba; Radhakrishna, Latchupatula; Mague, Joel T; Balakrishna, Maravanji S


    The kinetically favored triazole-based phosphine 1-(2-(diphenylphosphino)phenyl)-4-phenyl-1H-1,2,3-triazole (2, L1) and its thermodynamically preferred isomer, 5-(diphenylphosphino)-1,4-diphenyl-1H-1,2,3-triazole (3, L2), were obtained by the temperature-controlled lithiation of 2-bromotriazole followed by the reaction with chlorodiphenylphosphine. The structures of phosphines 2 and 3 were determined by X-ray diffraction. Upon reaction with late transition-metal derivatives (Cu(I), Ag(I), and Au(I)), phosphines 2 and 3 form complexes with monodentate (Cu(I), Ag(I), and Au(I); κ(1)-P), chelate (Cu(I); κ(2)-P,N), bridged bidentate (Cu(I); μ(2)-P,N), and tridentate (Cu(I); μ(2),κ(2)-P,N,N) modes of coordination. Reactions with copper(I) halides produced mono-, di-, and tetranuclear complexes, whereas the reaction of 2 with [Cu(NCCH3)4]BF4 yielded the binuclear complex [Cu2(CH3CN)2{o-Ph2P(C6H4){1,2,3-N3C(Ph)C(H)}-μ-(κ-P,κ-N),κ-N}2](BF4)2 (10) with the ligand acting as a six-electron donor involving phosphorus and two triazole nitrogen atoms. The copper complexes of 2 and 3 containing rhomboid Cu2X2 units, [(Cu)2(μ-X)2{o-Ph2P(C6H4){1,2,3-N3C(Ph)C(H)}-κ-P}2] (4, X = Cl; 5, X = Br), on treatment with 1,10-phenanthroline and 2,2'-bipyridine gave mixed-ligand complexes of the type [(CuX)(N∩N-κ(2)-N,N){o-Ph2P(C6H4){1,2,3-N3C(Ph)C(H)}-κ-P}] (N∩N = 1,10-phen and 2,2'-bipy; X = Cl, Br, and I).

  10. Soluble Interleukin IL-15Ralpha is generated by alternative splicing or proteolytic cleavage and forms functional complexes with IL-15.

    Bulanova, Elena; Budagian, Vadim; Duitman, Erwin; Orinska, Zane; Krause, Hans; Rückert, Rene; Reiling, Norbert; Bulfone-Paus, Silvia


    Interleukin 15 (IL-15) is a pleiotropic cytokine that is hardly detectable in biological fluids. Here, we show that IL-15 forms functional heterocomplexes with soluble high affinity IL-15 receptor alpha (IL-15Ralpha) chain in mouse serum and cell-conditioned medium, which prevents IL-15 detection by ELISA. We also demonstrate that two soluble IL-15Ralpha (sIL-15Ralpha) sushi domain isoforms are generated through a novel alternative splicing mechanism within the IL-15Ralpha gene. These isoforms potentiate IL-15 action by promoting the IL-15-mediated proliferation of the CTLL cell line and interferon gamma production by murine NK cells, which suggests a role in IL-15 transpresentation. Conversely, a full-length sIL-15Ralpha ectodomain released by tumor necrosis factor-alpha-converting enzyme (TACE)-dependent proteolysis inhibits IL-15 activity. Thus, a dual mechanism of sIL-15Ralpha generation exists in mice, giving rise to polypeptides with distinct properties, which regulate IL-15 function.

  11. Synthesis, Characterization and Thermal Analysis of New Cu(II Complexes with Hydrazide Ligands

    Saber Rajaei


    Full Text Available A number of new complexes have been synthesized by reaction of novel ligands acetic acid(4-methyl-benzylidenehydrazide (L1 and acetic acid(naphthalen-1-ylmethylenehydrazide (L2 with copper(II nitrate. These new compounds were characterized by elemental analysis, TG, DTA, IR spectroscopy, UV spectral techniques. The changes observed between the FT-IR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. The results suggest that the Schiff bases L1 and L2 coordinate as univalent anions with their bidentate N,O donors derived from the carbonyl and azomethine nitrogen. Also the probing of thermal analysis complexes can detect which complex has excellent thermal stability.

  12. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette


    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance.

  13. Spectroscopic and structural characterizations of novel water-soluble tetraperoxo and diperoxo[polyaminocarboxylato bis(N-oxido)]tantalate(V) complexes.

    Bayot, Daisy; Tinant, Bernard; Devillers, Michel


    New water-soluble homoleptic peroxo complexes and heteroleptic peroxo-polyaminocarboxylato (PAC) complexes of tantalum(V) have been prepared. In the case of the peroxo-PAC complexes, the synthesis in the presence of excess H2O2 leads to the oxidation of the nitrogen atoms of the ligand into N-oxides. The compounds correspond to the general formula (gu)3[Ta(O2)2(LO2)] x xH2O (gu = guanidinium, L = edta or pdta) in which H4LO2 refers to the bis(N-oxide) derivative of the PAC ligand. The TaV complexes have been characterized on the basis of elemental and thermal analysis and by IR and 13C and 15N NMR spectroscopy. These last two spectroscopic methods have been used to suggest the coordination mode of the PAC ligand in the complexes. ESI mass spectrometry measurements have also been carried out for the peroxo-PAC compounds. The crystal structures of the homoleptic tetraperoxotantalate, (gu)3[Ta(O2)4] (1), and the heteroleptic complex, (gu)3[Ta(O2)2(edtaO2)] x 2.32H2O x 0.68H2O2 (2b), have been determined, showing, for both cases, an 8-fold-coordinated Ta atom surrounded either by four bidentate peroxides or by two peroxides and one tetradentate edtaO2 ligand. Copyright 2004 American Chemical Society

  14. Inorganic Sn–X complex ligands capped CuInS{sub 2} nanocrystals with high electron mobility

    Li, Jinjie; Shen, Huaibin, E-mail:; Zhou, Changhua; Li, Ning; Wang, Hongzhe; Li, Lin Song, E-mail: [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)


    We report a facile method for the synthesis of size-controlled triangular CuInS{sub 2} (CIS) semiconductor nanocrystals (NCs) in the organic phase, and then, molecular metal chalcogenide complexes capped CIS NCs can be synthesized by exchanging original organic compounds with (NH{sub 4}){sub 4}Sn{sub 2}S{sub 6} inorganic ligands in environmentally benign solvent. The properties of CIS NCs (coated by both organic and inorganic ligands) were characterized by UV–Vis spectroscopy, fourier transform infrared, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and dynamic light scattering. CuInS{sub 2} NCs (before and after ligand exchange) films were spin coated on cleaned ITO glass substrates, and the charge transport properties were detected by current-voltage characteristic. We observed that the ligands on the surface of CIS NCs have been exchanged successfully, and the electrical transparency of (NH{sub 4}){sub 4}Sn{sub 2}S{sub 6}-CIS NCs films was obviously increased than CIS NCs with organic capping ligands.

  15. Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC. Crystal structure of [Cu(PLITSC−HH2O]Br•H2O

    Leovac Vukadin M.


    Full Text Available The synthesis and structural characterization of a square-planar copper(II complex with pyridoxal S-methylisothiosemicarbazone (PLITSC of the formula [Cu(PLITSC−HH2O]Br•H2O (1 as the first Cu(II complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSCBr2] (2 and [Cu(PLITSCBr(MeOH]Br (3 were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry. [Projekat Pokrajisnkog sekretarijata za nauku i tehnoloski razvoj Vojvodine i Ministarstva nauke Republike Srbije, br. 172014

  16. Novel Isatin-Schiff Base Cu (H) and Ni(H) Complexes. X-ray Crystal Structure of Bis[3-(4-hexylphenylimino)-1H-indol-2(3H)-one]-dichlorocopper(H) Complex

    Ayse ERCAG; Sema Oztürk YILDIRIM; Mehmet AKKURT; Mahmure Ustün OZGUR; Frank W. HEINEMANN


    Schiff base ligand (HL) derived from 4-hexylaniline with isatin (1H-indole-2,3-dione)and its complexes with Cu(Ⅱ), Ni(Ⅱ) were prepared and characterized by analytical, spectroscopic (IR, UV-Vis, Mass) techniques, electrical conductivity, magnetic and thermal measurements. The crystal and molecular structure of [Cu(HL)2Cl2] was determined by a single-crystal X-ray diffraction study. The molecular structure of the title compound has an inversion center on the Cu atom.

  17. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II)

    Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.


    A chromone Schiff base complexes of Zn(II) (1), Cu(II) (2), Ni(II) (3) and Co(II) (4) were successfully prepared in nano domain with crystalline or amorphous structures. The spectroscopic data revealed that the Schiff base ligand behaves as a monoanionic tridentate ligand. The metal complexes exhibited octahedral geometry. Transmission electron microscope (TEM) analysis showed that Cu(II) complex have aggregated nanospheres morphology. The obtained nano-complexes were tested as antioxidant and antitumor agents. The H2L and its Cu(II) complex (2) were found to be more potent antioxidant (IC50(H2L) = 0.93 μM; IC50(Cu(II) complex) = 1.1 μM than standard ascorbic acid (IC50 = 2.1 μM) as evaluated by DPPH• method. The H2L and its complexes (1-4) were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (EAC). The Cu(II) nano-complex (2) effectively inhibited EAC growth with IC50 value of 47 μM in comparison with its parent compound and other prepared complexes. The high antioxidant activity and antitumor activity of Cu(II) nano-complex (2) were attributed to their chemical structure, Cu(II) reducing capacity, and nanosize property. The toxicity test on mice showed that Zn(II) (1) and Cu(II) (2) nano-complex have lower toxicity than the standard cis-platin.

  18. Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments.

    Martynenko, Irina V; Orlova, Anna O; Maslov, Vladimir G; Baranov, Alexander V; Fedorov, Anatoly V; Artemyev, Mikhail


    The photoexcitation energy transfer is found and investigated in complexes of CdSe/ZnS cationic quantum dots and chlorin e6 molecules formed by covalent bonding and electrostatic interaction in aqueous solution and in porous track membranes. The quantum dots and chlorin e6 molecules form stable complexes that exhibit Förster resonance energy transfer (FRET) from quantum dots to chlorin e6 regardless of complex formation conditions. Competitive channels of photoexcitation energy dissipation in the complexes, which hamper the FRET process, were found and discussed.

  19. Theoretical approach to the magnetic properties of Mn(II), Cr(III), and Cu(II) complexes in the newly reported 12- and 15-membered macrocyclic ligands

    Ali Bayri; Mustafa Karkaplan


    The magnetic properties of Cu2+, Cr3+, and Mn2+ ions in the newly reported 12- and 15-membered macrocyclic complexes are analysed by a theoretical approach. The calculated magnetic moment and magnetic anisotropy for various situations, especially for Cu(II) ion, suggest that the magnetic properties may lead to a better interpretation about the geometry. It is also suggested that the zero-field splitting Hamiltonian may be used for magnetic properties of some metal ions, which have orbital singlet ground term in these complexes.

  20. Synthesis, Crystal Structure, Properties and Thermoanalysis of Complexes of Cu(Ⅱ) and Ni(Ⅱ) with Taurine-5-chlorosalicylaldelyde Schiff Base

    ZHANG, Shu-Hua(张淑华); JIANG, Yi-Min(蒋毅民); ZHOU, Zhong-Yuan(周忠远)


    The reactions of transition metal salts with taurine 5-chlorosalicylaldelyde Schiff base gave two complexes [Ni(TCSSB)(H2O)3]·H2O (1) and [Cu(TCSSB)(H2O)2]2·[Cu(TCSSB)2]·6H2O(2)(TCSSB=taurine-5-chlorosali-cylaldelyde schiff base),which were characterized by elemental analysis and X-ray diffraction analysis. The complex 1 crystallized in monoclinic system with space group P2 1/c, and a= 1.4816(2) nm, b= 1.3953(2) nm, c=0.7466(1) nm, β= 100.499(3)℃, V= 1.5176(4) nm3, Z=4, and an infinite 3-D network structure was formed by hydrogen bonds among sulfo group, crystal water and coordinated water. Complex 2 crystallized in triclinic system with space group P1, with the cell parameters: a=0.6413(2) nm, b=1.4596(3) nm, c=1.6188(4) nm, α=102.473(5)℃, β=98.979(4)℃, γ= 101.739℃, V= 1.4165(6) nm3, Z= 1. The coordination environment between Cu(1)and Cu(2) is different. Cu(1) is slightly distorted square pyramidal while Cu(2) is distorted square-plane. The complex 1 is mononuclear while the complex 2 is made up of two coordinated subunits, namely [Cu(TCSSB)2] and [Cu(TCSSB)(H2O)2]2. Besides that the TG-DTG of the complex 1 was analyzed, the thermal decomposition reaction of the complex was studied under a non-isothermal condition by TG-DTG. The TG and DTG curves indicate that the complex was decomposed in three stages:[Ni(TCSSB)(H2O)3]·H2O 60-104℃/-H2O→Ni(TCSSB)(H2O3)110-155℃/-3H2O→Ni(TCSSB)425-610℃/-TCSSB→NiO

  1. Synthesis, Characterization and Thermal Analysis of New Cu(II) Complexes with Hydrazide Ligands

    Saber Rajaei; Shahriare Ghammamy; Kheyrollah Mehrani; Hajar Sahebalzamani


    A number of new complexes have been synthesized by reaction of novel ligands acetic acid(4-methyl-benzylidene)hydrazide (L1) and acetic acid(naphthalen-1-ylmethylene)hydrazide (L2) with copper(II) nitrate. These new compounds were characterized by elemental analysis, TG, DTA, IR spectroscopy, UV spectral techniques. The changes observed between the FT-IR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. The results ...

  2. Water Soluble Phosphane-Gold(I) Complexes. Applications as Recyclable Catalysts in a Three-component Coupling Reaction and as Antimicrobial and Anticancer Agents

    Elie, Benelita T.; Levine, Chaya; Ubarretxena-Belandia, Iban; Varela-Ramírez, Armando; Aguilera, Renato J.; Ovalle, Rafael; Contel, María


    Water-soluble compounds of the type [AuCl(PR3)] with alkyl-bis-(m-sulfonated-phenyl)-(mC6H4SO3Na)2 and dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) (R = nBu, Cp) phosphanes have been prepared. Dialkyl-phosphane compounds generate water-soluble nanoparticles of 10-15 nm radius when dissolved in water. These air-stable complexes have been evaluated as catalysts in the synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes in water. The antimicrobial activity of the new complexes against Gram-positive and Gram-negative bacteria and yeast has been evaluated. The new compounds display moderate to high antibacterial activity. The more lipophilic compounds are also potent against fungi. Their cytotoxic properties have been analyzed in vitro utilizing human Jurkat T-cell acute lymphoblastic leukemia cells. Compounds with dialkyl-(m-sulfonated-phenyl)-(mC6H4SO3Na) phosphanes displayed moderate to high cytotoxicity on this cell line. Death cell mechanism occurs mainly by early apoptosis. The catalytic/biological activity of the previously described compound with commercial m-trisulfonated-triphenylphosphine [AuCl(TPPTS)] (6) has been also evaluated to compare the effects of the higher basicity and lipophilicity of the alkyl- and di-alkyl-(m-sulfonated-phenyl) phosphanes on these new compounds. PMID:23524957

  3. Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes.

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Kalilur Rahiman, Aziz


    Eight water soluble mixed-ligand nickel(II) complexes of the type [NiL(1-4)(diimine)H2O]·(ClO4)2, (1-8) where L(1-4) = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) were synthesized and characterized by elemental analysis and spectroscopic methods. The uncoordinated perchlorate anions was ascertained form IR spectra of the complexes, and the absorption spectra reveal the octahedron geometry around nickel(II) ion with tridentate Schiff base ligand, diimine and a coordinated water molecule. Cyclic voltammograms of the complexes indicate the one-electron irreversible processes in the cathodic and anodic region. In vitro antioxidant activity proved the significant radical scavenging activity of the complexes against DPPH radical. The groove/electrostatic binding nature of complexes with CT-DNA (calf thymus deoxyribonucleic acid) were affirmed by absorption, hydrodynamic and voltammetric titration experiments and docking analysis. All the complexes exhibit significant cleavage activity on plasmid DNA via hydrolytic and oxidatively, in which the oxidative mechanism involves hydroxyl radicals and supports the possibility of minor-groove binding. The complex 4 shows significant topoisomerase I (Topo-I) inhibitory activity. The molecular modeling analysis of complexes with phosphatidylinositol-3-kinase (PI3K) receptor indicate the hydrogen bonding with Met1039, Asp837 and Leu1027, and hydrophobic interactions with Ser488, Asn498, Asp500, Gln662, Lys668, Ile844, Ile847, Ile850, Val941, Leu942, Leu1020, Met1034, Leu1035, Thr1037, Met1039, Gln1041 and Ile1051 of subdomain IIA of BSA. The complexes show σ-π interaction between diimines and amino groups of Leu1030 and Arg839.

  4. Studies on Mixed Monolayers and Langmuir-Blodgett Films of Schiff-Base Complex Cu(SBC(18))(2) and Calix

    Pang, Shufeng; Ye, Zhifeng; Li, Chun; Liang, Yingqiu


    Mixed monolayers of Schiff-base complex Cu(SBC(18))(2) with an octadecyl hydrocarbon chain and Calix[4]arene without a long alkyl chain at an air/water interface were studied in ultrapure water at different temperatures. Interface behavior and thermodynamic estimation of the mixed monolayer indicate that a strong intermolecular interaction exists between the mixed components (Cu(SBC(18))(2) and calix[4]arene) and the two-dimensional miscibility decreases with the molar fraction of Cu(SBC(18))(2). It is noticeable that the calix[4]arene monolayer can be transferred successfully onto solid substrates due to the introduction of Cu(SBC(18))(2). FTIR transmission and UV-Vis absorption spectra of mixed LB films provide further evidence of molecular interaction between the headgroups. Copyright 2001 Academic Press.

  5. Study of fungicidal and antibacterial effect of the Cu(II)-complexes of thiophene oligomers synthesized in ZSM-5 zeolite channels.

    Cík, G; Bujdáková, H; Sersen, F


    The influence of the Cu(II)-complexes of thiophene oligomers synthesized by oxidative polymerization of thiophene with Cu2+ ions in ZSM-5 zeolite channels on fungicidal and antimicrobial properties was studied. It has been found that the heterogeneous system culture medium-modified zeolite increases sporulation of the tested fungus (Aspergillus niger) and concurrently kills yeast (Candida albicans). These effects are attributed to a slow release of Cu2+ ions and thiophene oligomers into the culture medium. As for the tested bacteria (G+ Staphylococcus aureus, G- Escherichia coli), the percentage of the killed cells increases due to light activation of the system. The light effect is assigned to photogeneration of the reactive oxygen species (ROS), mainly *OH radicals, which were registered in the water solution by EPR spectroscopy. It has been confirmed that the thiophene oligomers present in the Cu-ZSM-5 microstructure slow down the release of copper into the medium.

  6. EPR and speciation simulation study of Cu2+ complexes in an amine-based aqueous precursor system used for preparation of superconducting YBCO coatings.

    Lommens, Petra; Feys, Jonas; Vrielinck, Henk; De Buysser, Klaartje; Herman, Gerrit; Callens, Freddy; Van Driessche, Isabel


    In this work, we investigate the chemistry for an aqueous acetate-triethanolamine-ammonia based YBa(2)Cu(3)O(7-δ) (YBCO) precursor system. These precursor solutions are suited for the chemical solution deposition of superconducting YBCO layers on top of single crystal SrTiO(3) or buffered NiW tapes. The development of this kind of precursor inks often involves trial-and-error experimenting and thus is very time-consuming. To reduce labwork to the minimum, the theoretical prediction of pH stability limits and the complexation behaviour of the different metal ions and complexants in the inks are very important. For this purpose, we simulated, based on literature values, the complexation behaviour of Cu(2+) in the aqueous precursor solutions as a function of pH. To validate the used model, we performed potentiometric pH titrations for solutions with similar composition and checked the correctness of fit between experiment and model. The generated complexometric results are coupled with X-band EPR spectra to further confirm the results. EPR spectra for fully prepared precursor solutions as well as for Cu(2+) reference solutions containing only one type of ligand (acetate, triethanolamine or ammonia) were investigated as a function of pH. We find that, in line with speciation simulation, only acetates are actively complexing the Cu(2+) ions at pH values below 7, while when reaching higher pH levels mainly triethanolamine complexes are formed. Over the entire pH range, no trace of free Cu(2+)or Cu(OH)(2), possibly creating precipitation during gelation and thus complicating further processing, could be found.

  7. Ultraviolet irradiation of DNA complexed with. alpha. /. beta. -type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers

    Nicholson, W.L.; Setlow, B.; Setlow, P. (Univ. of Connecticut Health Center, Farmington (United States))


    UV irradiation of complexes of DNA and an {alpha}/{beta}-type small, acid-soluble protein (SASP) from Bacillus subtilis spores gave decreasing amounts of pyrimidine dimers and increasing amounts of spore photoproduct as the SASP/DNA ratio was increased. The yields of pyrimidine dimers and spore photoproduct were < 0.2% and 8% of total thymine, respectively, when DNA saturated with SASP was irradiated at 254 nm with 30 kJ/m{sup 2}; in the absence of SASP the yields were reversed - 4.5% and 0.3%, respectively. Complexes of DNA with {alpha}/{beta}-type SASP from Bacillus cereus, Bacillus megaterium, or Clostridium bifermentans spores also gave spore photoproduct upon UV irradiation. However, incubation of these SASPs with DNA under conditions preventing complex formation or use of mutant SASPs that do not form complexes did not affect the photoproducts formed in vitro. These results suggest that the UV photochemistry of bacterial spore DNA in vivo is due to the binding of {alpha}/{beta}-type SASP, a binding that is known to cause a change in DNA conformation in vitro from the B form to the A form. The yields of spore photoproduct in vitro were significantly lower than in vivo, perhaps because of the presence of substances other than SASP in spores. It is suggested that as these factors diffuse out in the first minutes of spore germination, spore photoproduct yields become similar to those observed for irradiation of SASP/DNA complexes in vitro.

  8. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene

    Chandra, Sulekh; Vandana; Kumar, Suresh


    Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.

  9. Synthesis and catalytic property of Cu-Mn-Ce/ γ -Al2O3 complex oxide

    黄可龙; 王红霞; 刘素琴; 桂客


    A new type of catalytic material for purification of automobile exhaust,Cu-Mn-Ce-O/ γ -Al2O3,has been studied.The factors affecting its catalytic activity,such as calcination temperature and the period of calcinations and so on have been investigated.Its catalytic activity after SO2-poisoning was determined in a fixed-bed reactor by exposing the sample to the atmosphere of 160 mL/min SO2/air.The study reveals that the catalyst has shown high catalytic activities for the conversion of NH3 oxidation by NO after sulfate.The conversion of NO reduction over the sulfated catalyst is somewhat higher than that over the fresh catalyst except that the optimum temperature has increased about 100 ℃.Also at the optimum process for the experiment,the selective catalytic oxidation of CO by NO is over 76% and the conversion of NO reduction is over 80% by NH3.

  10. Spectroscopic studies of the binding of Cu(II) complexes of oxicam NSAIDs to alternating G-C and homopolymeric G-C sequences.

    Chakraborty, Sreeja; Bose, Madhuparna; Sarkar, Munna


    Drugs belonging to the Non-steroidal anti-inflammatory (NSAID) group are not only used as anti-inflammatory, analgesic and anti-pyretic agents, but also show anti-cancer effects. Complexing them with a bioactive metal like copper, show an enhancement in their anti-cancer effects compared to the bare drugs, whose exact mechanism of action is not yet fully understood. For the first time, it was shown by our group that Cu(II)-NSAIDs can directly bind to the DNA backbone. The ability of the copper complexes of NSAIDs namely meloxicam and piroxicam to bind to the DNA backbone could be a possible molecular mechanism behind their enhanced anticancer effects. Elucidating base sequence specific interaction of Cu(II)-NSAIDs to the DNA will provide information on their possible binding sites in the genome sequence. In this work, we present how these complexes respond to differences in structure and hydration pattern of GC rich sequences. For this, binding studies of Cu(II) complexes of piroxicam [Cu(II)-(Px)2 (L)2] and meloxicam [Cu(II)-(Mx)2 (L)] with alternating GC (polydG-dC) and homopolymeric GC (polydG-polydC) sequences were carried out using a combination of spectroscopic techniques that include UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopy. The Cu(II)-NSAIDs show strong binding affinity to both polydG-dC and polydG-polydC. The role reversal of Cu(II)-meloxicam from a strong binder of polydG-dC (Kb=11.5×10(3) M(-1)) to a weak binder of polydG-polydC (Kb=5.02×10(3) M(-1)), while Cu(II)-piroxicam changes from a strong binder of polydG-polydC (Kb=8.18×10(3) M(-1)) to a weak one of polydG-dC (Kb=2.18×10(3) M(-1)), point to the sensitivity of these complexes to changes in the backbone structures/hydration. Changes in the profiles of UV absorption band and CD difference spectra, upon complex binding to polynucleotides and the results of competitive binding assay using ethidium bromide (EtBr) fluorescence indicate different binding modes in each

  11. Spectroscopic studies of the binding of Cu(II) complexes of oxicam NSAIDs to alternating G-C and homopolymeric G-C sequences

    Chakraborty, Sreeja; Bose, Madhuparna; Sarkar, Munna


    Drugs belonging to the Non-steroidal anti-inflammatory (NSAID) group are not only used as anti-inflammatory, analgesic and anti-pyretic agents, but also show anti-cancer effects. Complexing them with a bioactive metal like copper, show an enhancement in their anti-cancer effects compared to the bare drugs, whose exact mechanism of action is not yet fully understood. For the first time, it was shown by our group that Cu(II)-NSAIDs can directly bind to the DNA backbone. The ability of the copper complexes of NSAIDs namely meloxicam and piroxicam to bind to the DNA backbone could be a possible molecular mechanism behind their enhanced anticancer effects. Elucidating base sequence specific interaction of Cu(II)-NSAIDs to the DNA will provide information on their possible binding sites in the genome sequence. In this work, we present how these complexes respond to differences in structure and hydration pattern of GC rich sequences. For this, binding studies of Cu(II) complexes of piroxicam [Cu(II)-(Px)2 (L)2] and meloxicam [Cu(II)-(Mx)2 (L)] with alternating GC (polydG-dC) and homopolymeric GC (polydG-polydC) sequences were carried out using a combination of spectroscopic techniques that include UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopy. The Cu(II)-NSAIDs show strong binding affinity to both polydG-dC and polydG-polydC. The role reversal of Cu(II)-meloxicam from a strong binder of polydG-dC (Kb = 11.5 × 103 M-1) to a weak binder of polydG-polydC (Kb = 5.02 × 103 M-1), while Cu(II)-piroxicam changes from a strong binder of polydG-polydC (Kb = 8.18 × 103 M-1) to a weak one of polydG-dC (Kb = 2.18 × 103 M-1), point to the sensitivity of these complexes to changes in the backbone structures/hydration. Changes in the profiles of UV absorption band and CD difference spectra, upon complex binding to polynucleotides and the results of competitive binding assay using ethidium bromide (EtBr) fluorescence indicate different binding modes in each

  12. Host-guest chemistry of Cu2+/Histidine complexes in molecular sieves

    Mesu, Jan Gijsbert


    The high activity and selectivity of enzymes have inspired many scientists to study the structure and working mechanism of bio-molecular complexes. Also in the catalysis community this subject is of topical interest, as it may provide inspiration for the development of a new generation of bio-inspir

  13. Conductometric Studies of Thermodynamics of Complexation of Co2+, Ni2+, Cu2+, and Zn2+ Cations with Aza-18-crown-6 in Binary Acetonitrile-Methanol Mixtures

    Mehdi Taghdiri


    Full Text Available The complexation reactions between aza-18-crown-6 (A18C6 and Co2+, Ni2+, Cu2+, and Zn2+ ions were studied conductometrically in different acetonitrile-methanol mixtures at various temperatures. The formation constants of the resulting 1 : 1 complexes were calculated from the computer fitting of the molar conductance-mole ratio data at different temperatures. Selectivity of A18C6 for Co2+, Ni2+, Cu2+, and Zn2+ cations is sensitive to the solvent composition. At 20°C and in acetonitrile solvent, the stability of the resulting complexes varied in the order but the order was reversed byadding 20% methanol. The enthalpy and entropy changes of the complexation reactions were evaluated from the temperature dependence of formation constants. It was found that the stability of the resulting complexes decreased with increasing methanol in the solvent mixture. The TΔS° versus ΔH° plot of thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy-entropy compensation in the complexation reactions. In addition, binding energies of Ni2+, Cu2+, and Zn2+ complexes with A18C6 were calculated at B3LYP/6-31G level of theory.

  14. Synthesis and Crystal Structure of a Dinuclear Cu(II) Complex [Cu(C12H17N2O)(NCS)]2 with Tridentate Schiff Base Ligand N(Salicylidene)-3-dimethylaminopropylamine

    LIN Hong; FENG Yun-Long


    A new dinuclear copper(II) complex (Cu(C12H17N2O)(NCS)2, C26H34Cu2N6O2S2) has been synthesized and characterized by X-ray structure determination. It crystallizes in the triclinic system, space group P with a = 11.289(2), b = 12.071(2), c = 12.113(2) (A), α = 72.90(3), β = 83.76(3), γ = 65.60(3)°, V = 1436.7(5) (A)3, Z = 2, Mr = 653.79, F(000) = 676, Dc = 1.511 g/cm3, μ(MoKα) = 1.660 mm(1, the final R = 0.0334 and wR = 0.0856 for 5047 observed reflections (I > 2σ(I)). The asymmetric unit comprises two half-molecules. The complex is a centrosymmetric dimmer in which each copper(II) is coordinated in the equatorial plane to the N-(salicylidene)-3dimethylaminopropylamine ligand through the deprotonated phenolic oxygen atom as well as the nitrogen atoms of imine and amine. The fourth coordination site is occupied by the nitrogen atom of NCSˉ, while the axial one by the symmetrically related phenoxy oxygen of the other monomeric unit. The Cu(II)...Cu(II) average distance is 3.110(1) (A).

  15. Synthesis and Crystal Structure of a Dinuclear Cu(Ⅱ) Complex [Cu(C13H9N2O)Cl]2·(CH3CN)2 with Ligand 2-Benzimidazol

    LI Qing-Xiang; YANG Xiang-Liang; XU Hui-Bi


    A new dinuclear copper complex, [Cu(C13H9N2O)Cl]2·(CH3CN)2 (C30H24Cl2Cu2N6O2),has been synthesized and characterized by X-ray structure determination. It crystallizes in the triclinic system, space group P1-, with a = 7.6677(14), b = 9.2375(17), c = 11.227(2) (A), α = 81.338(3),β= 88.173(4), γ = 66.199(3)°, V = 718.9(2) (A)3, Z = 1, Mr = 698.53, F(000) = 354, Dc = 1.613 g/cm3,μ(MoKα) = 1.705 mm-1, the final R = 0.0645 and wR = 0.1364 for 2474 unique reflections with 1809 observed ones (I> 2σ(Ⅰ)). In the title complex, each copper(Ⅱ) atom is located at the center of a distorted tetrahedron consisting of four coordinate atoms (one nitrogen atom, two oxygen anions,and one chlorine atom). Two copper(Ⅱ) atoms are bridged by two oxygen anions (O(1) and O(1a)) of two phenolates to form a Cu(Ⅱ)-Cu(Ⅱ) binuclear entity, and the distance between two copper(Ⅱ)atoms is 3.0144(15) (A).

  16. Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species.

    Hilton, Robert J; Seare, Matthew C; Andros, N David; Kenealey, Zachary; Orozco, Catalina Matias; Webb, Michael; Watt, Richard K


    In chronic kidney diseases, NTBI can occur even when total iron levels in serum are low and transferrin is not saturated. We postulated that elevated serum phosphate concentrations, present in CKD patients, might disrupt Fe(3+) loading into apo-transferrin by forming Fe(III)-phosphate species. We report that phosphate competes with apo-transferrin for Fe(3+) by forming a soluble Fe(III)-phosphate complex. Once formed, the Fe(III)-phosphate complex is not a substrate for donating Fe(3+) to apo-transferrin. Phosphate (1-10mM) does not chelate Fe(III) from diferric transferrin under the conditions examined. Complexed forms of Fe(3+), such as iron nitrilotriacetic acid (Fe(3+)-NTA), and Fe(III)-citrate are not susceptible to this phosphate complexation reaction and efficiently deliver Fe(3+) to apo-transferrin in the presence of phosphate. This reaction suggests that citrate might play an important role in protecting against Fe(III), phosphate interactions in vivo. In contrast to the reactions of Fe(3+) and phosphate, the addition of Fe(2+) to a solution of apo-transferrin and phosphate lead to rapid oxidation and deposition of Fe(3+) into apo-transferrin. These in vitro data suggest that, in principle, elevated phosphate concentrations can influence the ability of apo-transferrin to bind iron, depending on the oxidation state of the iron.

  17. Microscale Syntheses, Reactions, and 1H NMR Spectroscopic Investigations of Square Planar Macrocyclic Tetraamido-N Cu(III) Complexes Relevant to Green Chemistry

    Uffelman, Erich S.; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen R.; Watson, Tanya T.; Lee, Daniel W., III


    Microscale fusions, description, and spectroscopic analysis of the reactivity of a square planar Cu(III) complex significant to green chemistry, are presented. The experiment also includes nine focal points on which pre-lab and post-lab questions are based, and the final exams reflect the students' comprehension of these and other features of…

  18. Facile synthesis of Co(II) and Cu(II) complexes of 2-hydroxybenzophenone: An efficient catalyst for oxidation of olefins and DFT study

    Lashanizadegan, Maryam; Alavijeh, Roya Karimi; Anafcheh, Maryam


    Two diketone complexes of Cu(II) and Co(II) were easily synthesized in reaction of M(CH3COO)2 with 2-Hydroxybenzophenone (bpoH). The complexes of M(bpo)2 were characterized by UV-vis, IR spectroscopy, and elemental analysis. The complexes are active catalysts for the oxidation of styrene using TBHP as an oxidant. Under the optimized reaction conditions, 100% conversion of styrene with 63.5% selectivity for Benzaldehyde and 36.5% for Styrene oxide were obtained by Cu(bpo)2. Also, the effect of imidazole was investigated. Results confirmed that the addition of imidazole accelerates the oxidation of styrene. Our DFT results confirmed the necessity of diffuse functions in the basis set and including an accurate treatment of the dispersion energy for obtaining the most stable structure in these systems. Therefore, the geometry optimization and the vibrational frequencies were calculated at the M06-2X/6-311++G(d,p) level. The scaled theoretical frequencies and the structural parameters are in excellent agreement with the experimental data. The natural charge analysis indicated that an electron is transferred from Cu(bpo)2 back to the TBHP to break the Osbnd O bond and formation of tert-butoxyl radicals. Coordination of imidazole in the axial position of the Cu(bpo)2 significantly assists in moving back of electron and increases the activity of the complex in oxidation.

  19. Restricted ensemble-referenced Kohn-Sham versus broken symmetry approaches in density functional theory : Magnetic coupling in Cu binuclear complexes

    Moreira, Iberio de P. R.; Costa, Ramon; Filatov, Michael; Illas, Francesc


    The performance of density functional theory in estimating the magnetic coupling constant in a series of Cu(II) binuclear complexes is investigated by making use of two open shell formalisms: the broken symmetry and the spin-restricted ensemble-referenced Kohn-Sham methods. The strong dependence of

  20. Resolution of D- and L-glucoses by chiral N-octyl-beta-D-glycoside-Cu(II) complex adsorbed at the gas/liquid interface of small bubbles

    Sakai, M.; Miyazawa, K.; Jitsumatsu, H.; Kamio, K.; Mitsuiki, S.; Toh, N.; Sugihara, G.; Norde, W.


    A new technique of the jet drop method (JDM) was applied to a chiral molecular discrimination of optically active D- or L-glucose (guest) by chiral N-octyl-beta-D-glycoside (O beta DG)-Cu(II) complex (host) at the gas/liquid interface of small bubbles. The discrimination of glucoses as the guests is

  1. Grafting of [(64)Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent.

    Fazaeli, Yousef; Feizi, Shahzad; Jalilian, Amir R; Hejrani, Ali


    Mesoporous silica, MCM-41, functionalized with 3-aminopropyltriethoxysilane (APTES) was investigated as a potential drug delivery system, using [(64)Cu]-5, 10, 15, 20-tetrakis penta fluorophenyl porphyrin complex. [(64)Cu]-TPPF20 complex was grafted on functionalized MCM-41. The product was characterized by paper chromatography, FTIR spectroscopy, low angle X-ray diffraction, CHN and TGA/DTA analyses and atomic force microscopy. The biological evaluations of the grafted complex, [(64)Cu]-TPPF20@NH2-MCM-41, were done in Fibrosarcoma tumor-bearing Sprague-Dawley rats using scarification studies and Sopha DST-XL Dual-Head SPECT system. The actual loading amount of aminopropyl groups was found about 1.6mmol per gram of final silica. The specific activity of the final compound was found to be 3Ci/g. Amine functionalized MCM-41 was found to be a good platform for theranostic radiopharmaceuticals such as copper-64 complexes. Considering the accumulation of the tracer in tumor cells, fast wash-out from normal tissues, the short half-life copper-64 and less imposed radiation doses to patients, [(64)Cu]-TPPF20@NH2-MCM-41 can potentially be a suitable candidate for tumor imaging applications and future PET studies.

  2. Homo- and heteropolynuclear Ni2+ and Cu2+ complexes of polytopic ligands, consisting of a tren unit substituted with three 12-membered tetraazamacrocycles.

    Siegfried, Liselotte; McMahon, C Niamh; Baumeister, Jan; Neuburger, Markus; Kaden, Thomas A; Anandaram, Sreekanth; Palivan, Cornelia G


    Two new polytopic ligands L1 and L2 have been synthesized. They consist of a central tren unit to which three 1,4,7,10-tetraazacyclododecane rings are attached via an ethylene and a trimethylene bridge, respectively. The complexation properties of L1 and L2 towards Cu(2+) and Ni(2+) were studied by potentiometric pH titration, UV-Vis, EPR spectroscopy and kinetic techniques. As a comparison, the Cu(2+) and Ni(2+) complexes with L3 (1-(N-methyl-2-aminoethyl-1,4,7,10-tetraazacyclododecane)) were also investigated. The crystal structures of [CuL3H(H(2)O)](ClO(4))(3) and [NiL3Cl](ClO(4)) were solved and show that the side chain in its protonated form is not involved in coordination, whereas deprotonated it binds to the metal ion. The thermodynamically stable 3:1 complexes of L1 or L2 have a metal ion in the three macrocyclic units. However, when three equivalents of Cu(2+) are added to L1 or L2 the metal ion first binds to the tren unit and only then to the macrocycles. The kinetics of the different steps of complexation have been studied and a mechanism is proposed.

  3. Microwave Spectra and Structure of {H_2-CuF}: Overview of the Complexes of Hydrogen with Metal-Containing Diatomics

    Grubbs, G. S. Grubbs, Ii; Frohman, Daniel J.; Yu, Zhenhong; Novick, Stewart E.


    We present here the FTMW spectra of the various isotopologues of the intermediate strength bound complex of dihydrogen with copper fluoride. The bond between the two moieties is surprisingly strong, the H-H forming the cross of the T with the Cu closest to H_2 in the C_{{2v}} structure. Laser ablation was used to produce both copper isotopologues of p-H_2-CuF, o-D_2-CuF, and HD-CuF whose J = 1 - 0 transitions were observed. Significant changes in the nuclear quadrupole coupling constants for the copper nucleus in H_2-CuF compared to that in uncomplexed CuF suggests bonding greater than that typical of van der Waals interactions. This talk will serve as the introduction to presentations at this meeting of other H_2 metal containing diatomics. D. J. Frohman, {G. S. Grubbs II}, Z. Yu, S. E. Novick, Inorg. Chem., 52, 816-822 (2013).

  4. Role of the Copper(II) Complex Cu[15]pyN5 in Intracellular ROS and Breast Cancer Cell Motility and Invasion.

    Fernandes, Ana S; Flórido, Ana; Saraiva, Nuno; Cerqueira, Sara; Ramalhete, Sérgio; Cipriano, Madalena; Cabral, Maria Fátima; Miranda, Joana P; Castro, Matilde; Costa, Judite; Oliveira, Nuno G


    Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.

  5. Water-soluble tetrapodal N, O ligands incorporating soft N-heterocycles for the selective complexation of Am(III) over Ln(III)

    Heitzmann, M.; Gateau, Ch.; Delangle, P. [CEA Grenoble, Inac, Service de Chimie Inorganique et Biologique, UMR E 3 CEA UJF, FRE CNRS 3200, F-38054 Grenoble (France); Chareyre, L.; Miguirditchian, M.; Charbonnel, M.Ch. [CEA Marcoule, DEN, DRCP, SCPS, F-30207, Bagnols-sur-Ceze (France)


    A series of four water-soluble N, O-tetrapodal ligands derived from ethylenediamine, bearing hard acetate groups and soft N-heterocycles, either pyridine or pyrazine, was developed to study the impact of the softness of N-donors on the complexation properties with trivalent f ions. Two novel ligands of enhanced soft character, bearing three pyridines (L{sup 3py}) or three pyrazines (L{sup 3pz}), were synthesized and the related lanthanide complexes were studied in solution. The ligand containing three pyridyl-methyl moieties L{sup 3py} gives complexes with a coordination similar to EDTA, i.e. a hexa-dentate coordination mode as indicated by NMR and luminescence decays (q = 3) and stability constants in the range log {beta}{sub 110} = 6.99-9.3 (La-Lu). On the other hand, the softest molecule L{sup 3pz} forms much less stable complexes with log {beta}{sub 110} = 4.0-4.4 (La-Eu). The selective back-extraction of Am(III) from organic solutions containing 4f and 5f elements was tested with the four water-soluble complexing agents. The ligand L{sup 3pz} demonstrates poor stripping ability and selectivity. In contrast, the three ligands L{sup py}, L{sup pz} and L{sup 3py} give interesting back-extraction results with Eu/Am separation factors ranging from 36 to 46, which are significantly higher than with HEDTA. This exemplifies the role of the N-hetero-cycle softness in enhancing the separation between Am(III) and Eu(III). Interestingly, the pyrazine-based ligand, L{sup pz}, demonstrates the best stripping properties, with a distribution factor that approaches that of HEDTA in the same conditions (D{sub Am{approx}}0.3). This molecule is a good compromise between softness and hardness and forms complexes still stable at pH 3 due to its low basicity. (authors)

  6. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1.

    David C Gaston

    Full Text Available Oncolytic type-1 herpes simplex viruses (oHSVs lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15 holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK cell-mediated and CD8(+ T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (mIL-15 alone (J100 or with the mIL-15 receptor α (mIL-15Rα, J100D to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7 plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well

  7. To duckweeds (Landoltia punctata), nanoparticulate copper oxide is more inhibitory than the soluble copper in the bulk solution

    Shi Jiyan, E-mail: [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States); Department of Environmental Engineering, Zhejiang University, HangZhou 310029 (China); Abid, Aamir D., E-mail: [Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616 (United States); Kennedy, Ian M., E-mail: [Department of Mechanical and Aeronautical Engineering, University of California, Davis, CA 95616 (United States); Hristova, Krassimira R., E-mail: [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States); Department of Biological Sciences, Marquette University, Milwaukee, WI 53233 (United States); Silk, Wendy K., E-mail: [Department of Land, Air, and Water Resources, University of California, Davis, CA 95616 (United States)


    CuO nanoparticles (CuO-NP) were synthesized in a hydrogen diffusion flame. Particle size and morphology were characterized using scanning mobility particle sizing, Brunauer-Emmett-Teller analysis, dynamic light scattering, and transmission electron microscopy. The solubility of CuO-NP varied with both pH and presence of other ions. CuO-NP and comparable doses of soluble Cu were applied to duckweeds, Landoltia punctata. Growth was inhibited 50% by either 0.6 mg L{sup -1} soluble copper or by 1.0 mg L{sup -1} CuO-NP that released only 0.16 mg L{sup -1} soluble Cu into growth medium. A significant decrease of chlorophyll was observed in plants stressed by 1.0 mg L{sup -1} CuO-NP, but not in the comparable 0.2 mg L{sup -1} soluble Cu treatment. The Cu content of fronds exposed to CuO-NP is four times higher than in fronds exposed to an equivalent dose of soluble copper, and this is enough to explain the inhibitory effects on growth and chlorophyll content. - Highlights: > Lemna growth is reduced by either Cu ions or CuO-NP releasing much less soluble Cu. > Chlorophyll decreased in plants stressed by CuO-NP but not comparable soluble Cu. > CuO-NP exposure gives fronds four times more Cu than a similar soluble Cu dose. > Plant Cu uptake from CuO-NP can explain decreased growth and chlorophyll. - The large uptake of Cu from nanoparticulate CuO suspension into duckweed tissue causes the toxicity of CuO-NP to be equivalent to about four times the soluble Cu in the NP suspension.

  8. Solubility and transport of Cr(III) in a historically contaminated soil - Evidence of a rapidly reacting dimeric Cr(III) organic matter complex.

    Löv, Åsa; Sjöstedt, Carin; Larsbo, Mats; Persson, Ingmar; Gustafsson, Jon Petter; Cornelis, Geert; Kleja, Dan B


    Chromium is a common soil contaminant and, although it has been studied widely, questions about its speciation and dissolutions kinetics remain unanswered. We combined information from an irrigation experiment performed with intact soil columns with data from batch experiments to evaluate solubility and mobilization mechanisms of Cr(III) in a historically contaminated soil (>65 years). Particulate and colloidal Cr(III) forms dominated transport in this soil, but their concentrations were independent of irrigation intensity (2-20 mm h(-1)). Extended X-ray absorption fine structure (EXAFS) measurements indicated that Cr(III) associated with colloids and particles, and with the solid phase, mainly existed as dimeric hydrolyzed Cr(III) bound to natural organic matter. Dissolution kinetics of this species were fast (≤1 day) at low pH (<3) and slightly slower (≤5 days) at neutral pH. Furthermore, it proved possible to describe the solubility of the dimeric Cr(III) organic matter complex with a geochemical equilibrium model using only generic binding parameters, opening the way for use of geochemical models in risk assessments of Cr(III)-contaminated sites. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Theoretical studies on BTA-Metal (M=Ni, Cu) Complexes as High Energy Materials



    Metal complexes of Nickel and Copper with the dianion of bidentate chelating agent BTA [N,Nbis( 1(2)H-tetrazole-5-yl)-amine] along with NH₃ and NH₂NO₂ ligands were designed. A total of four metal complexes having the compositions such as M(BTA)(NH₃)(NH₂NO₂) and M(BTA)(NH2NO₂)₂whereMis the metal atom, were formulated and subjected to detailed theoretical study to explore their energetic properties. Density Functional Theory (DFT) was used to predict the optimized geometry of the complexes at TPSS/ 6-311G(d,p) level. The heats of formation of the metal complexes were determined using atomization method.Crystal densities of the salts were predicted using the data obtained at B3PW91/6-31G(d,p) level utilizing the wave function analysis (WFA) program. Results indicate that all the designed compounds possess density inthe range of 2.18–2.25 g cm⁻³. This is the remarkable feature of the title compounds because loading density is one of the desired properties for increasing the detonation performance of energetic materials. The calculatedimpact sensitivities (h₅₀, cm) show that the three of the designed compounds are comfortably insensitive towards impact (h₅₀,cm ∼42) in comparison to the experimentally determined values for the commercially used powerful explosives such as RDX (24–28 cm) and HMX (26–32 cm). Ni(BTA)(NH₂NO₂)₂, the fourth designed compound has a value almost similar to that of RDX and HMX. The calculated detonation parameters D (detonation velocity) and P (detonation pressure) are predicted to be in the range of 7.7–8.5 km s⁻¹ and 29.5–36.1 GPa, respectively. Results obtained in the present study predict that the designed compounds can be used as high energy density materials (HEDs).

  10. Cu-Ni-PGE mineralization at Rometölväs, Koillismaa layered igneous complex, Finland

    Piispanen, R.; Tarkian, M.


    Sulphides, tellurides and sulpharsenides, with special reference to the platinum-group minerals (PGM), have been studied from a subeconomic Cu-Ni-PGE mineralization encountered within the Syöte section of the Lower Proterozoic (2.44 Ga) Koillismaa layered igneous complex (KLIC) in northern Finland using electron microprobe and ore-microscopical methods. The ore minerals occur partly as strata-bound patches and spots associated with spots of light-coloured secondary low-temperature silicates in the gabbronorite IV of the general igneous stratigraphic column of the complex and partly as a fine-grained impregnation in the penecontemporaneous basic sills and dykes. Among the PGM sperrylite, michenerite and a palladian bismuthian melonite have been encountered. The chemical composition is reported for these minerals as well as for the rest of the ore minerals (chalcopyrite, pentlandite, pyrrhotite, pyrite, sphalerite, cobaltite and hessite). It is concluded that volatile components played a significant role in the solution, transport and the final deposition of the sulphides and the PGM.

  11. Demetalation of Fe, Mn, and Cu chelates and complexes: application to the NMR analysis of micronutrient fertilizers.

    López-Rayo, Sandra; Lucena, Juan J; Laghi, Luca; Cremonini, Mauro A


    The application of nuclear magnetic resonance (NMR) for the quality control of fertilizers based on Fe(3+), Mn(2+), and Cu(2+) chelates and complexes is precluded by the strong paramagnetism of metals. Recently, a method based on the use of ferrocyanide has been described to remove iron from commercial iron chelates based on the o,o-EDDHA [ethylenediamine-N,N'bis(2-hydroxyphenylacetic)acid] chelating agent for their analysis and quantification by NMR. The present work extended that procedure to other paramagnetic ions, manganese and copper, and other chelating, EDTA (ethylenediaminetetraacetic acid), IDHA [N-(1,2-dicarboxyethyl)-d,l-aspartic acid], and complexing agents, gluconate and heptagluconate. Results showed that the removal of the paramagnetic ions was complete, allowing us to obtain (1)H NMR spectra characterized by narrow peaks. The quantification of the ligands by NMR and high-performance liquid chromatography showed that their complete recovery was granted. The NMR analysis enabled detection and quantification of unknown impurities without the need of pure compounds as internal standards.

  12. Synthesis, Crystal Structure, Thermal Decomposition and Sensitive Properties of a New Complex [Cu(IMI)4](PA)2

    WANG Shi-wei; WU Bi-dong; YANG Li; ZHANG Tong-lai; ZHOU Zun-ning; ZHANG Jian-guo


    A new coordination complex [Cu(IMI)4](PA)2 had been synthesized with imidazole(IMI) as ligands and picrate(PA ) groups as outer anions,and characterized by Fourier transform infrared(FTIR) spectrum and elemental analysis.Its crystal structure was determined by single crystal X-ray diffraction(XRD) analysis.The crystallographic data show that the crystal belongs to monoclinic,C2/c space group,a=2.542(5) nm,b=0.91773(18) nm,c=1.3778(3)nm,β=107.854(3)° and Z=4.Furthermore,the central copper(Ⅱ) ion is coordinated by four N atoms from four imidazole ligands.All the molecular units are linked into a zigzag pattern along a-axis by the hydrogen bonds,and extended to the distance regularly.Thermal decomposition mechanisms were determined based on differential scanning calorimetry(DSC) and thermogravimetry-diff.erential thermogravimetry(TG-DTG) analysis,and kinetic parameters of the first exothermic process were studied using Kissinger's and Ozawa-Doyle's method,respectively.Sensitivity tests show that the title complex has low sensitivity to external stimulus,but it has a higher energy of combustion of 14.2kJ/g due to which it may be used as the additives of energetic materials to improve the explosive performance.

  13. Field dependence of the complex resistivity of YBa_2Cu_3O_7-δ thin films at high frequencies

    Wu, Dong Ho; Booth, James C.; Anlage, Steven M.


    We have measured the complex resistivity ρ_1(H,ω) + i ρ_2(H,ω) of YBa_2Cu_3O_7-δ thin films with field variation at various fixed frequencies from 45 MHz through 50 GHz.footnote[1]Dong Ho Wu, James C. Booth and Steven M. Anlage, Phys. Rev. Lett. 75 , 525 (1995) Experiments indicate that the real part of the resistivity follows a power law (ρ_1(H) ~ H^n with n>=4) field dependence at frequencies below a characteristic frequency. In contrast, ρ_1(H) follows a single particle model at frequencies above the characteristic frequency, exhibiting a magnetic field crossover at a characteristic field. For all frequencies, the imaginary part of the resistivity shows a peak at a field denoted as H_peak. Analysis suggests that the H_peak discretely decreases with increasing measurement frequency ω for T < T_c. Analysis and interpretation on these behaviors of the complex resistivity will be presented.

  14. A Hirshfeld surface analysis, supramolecular structure and magnetic properties of a new Cu(II) complex with the 4-amino-6-methoxypyrimidine ligand

    Nbili, W.; Kaabi, K.; Ferenc, W.; Cristovão, B.; Lefebvre, F.; Jelsch, Christian; Ben Nasr, Cherif


    A new Cu(II) complex with the bridge bidentate ligand 4-amino-6-methoxypyrimidine, [Cu(C5H7N3O)(H2O)(NO3)2], has been prepared at room temperature and characterized by single crystal X-ray diffraction and IR spectroscopy. The compound crystallizes in the monoclinic space group C2/c with lattice parameters a = 17.783 (4), b = 11.131 (3), c = 12.594 (3) Å, β = 117.616 (3)°, V = 2209.0 (9) Å3 and Z = 8. The Cu(II) cation is hexa-coordinated, in distorted octahedral fashion, by two nitrogen atoms of two 4-amino-6-methoxypyrimidine ligands, one water oxygen atom and three oxygen atoms of two nitrate anions. In the atomic arrangement, the organic ligands and the 6-connected Cu centers are linked with each other to give a 1-D corrugated chain running along the b-axis direction. The chains are interconnected via Osbnd H⋯O, Csbnd H⋯O, Nsbnd H⋯O hydrogen bonds to form a three dimensional network. The analysis of contacts on the Hirshfeld surface shows that the crystal packing is driven mainly by the electrostatic interactions: the coordination of Cu(II) by O and N as well as strong hydrogen bonds. The vibrational absorption bands were identified by infrared spectroscopy. Magnetic properties were also studied to characterize the complex.

  15. Tetrameric Self-Assembly of a Cu(II) Complex Containing Schiff-Base Ligand and Its Unusually High Catecholase-like Activity

    Sarkar, Shuranjan; Lee, Hongin [Kyungpook National Univ., Daegu (Korea, Republic of); Lee, Woo Ram; Hong, Chang Seop [Korea Univ., Seoul (Korea, Republic of)


    We report a new tetrameric supramolecular Cu(II) complex (Cu{sub 4}L{sub 4} = tetrakis(N,N'-bis(salicylidene)-2,2'-ethylenedianiline) Copper(II)) with a Schiff-base ligand (H{sub 2}L = N,N'-bis (salicylaldimine)-1,2-ethylenediamine) containing two N,O-bidentate chelate groups. Though the copper sites of Cu{sub 4}L{sub 4} are non-coupled, the complex exhibits a unusually high catecholase-like activity (k{sub cat} = 935 h{sup -1}) when the Cu{sub 4}L{sub 4} solution is treated with 3,5-di-tert-butylcatechol (3,5-DTBC) at basic condition in the presence of air. Combined information obtained from UV-VIS and EPR measurements could lead the suggestion of the reaction pathway in which the substrate may bind to Cu(II) ions by anti-anti didentate bridging mode.

  16. Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper.

    Walas, Stanisław; Tobiasz, Anna; Gawin, Marta; Trzewik, Bartosz; Strojny, Marcin; Mrowiec, Halina


    A new Cu(II)-imprinted polymer (Cu-IIP) for preconcentration of copper by liquid-solid extraction via flow injection technique has been proposed. Cu-IIP was obtained by copolymerization of salen-Cu(II) complex with styrene and divinylbenzene using suspension polymerization technique. Granules fraction of 60-80 microm in diameter was used as a microcolumn packing. Cu(II) sorption was proved to be the most effective from solutions of pH 7, whereas similar elution effectiveness was observed when applying as eluents hydrochloric or nitric acid in the concentration range of 0.5-10% (v/v). The system exhibited good long-term stability and acid resistance. Batch sorbent capacity was found to be 0.11 mmol g(-1) of a dry polymer. Enrichment factor (EF) for 30 s loading time was 16. Preconcentration of Cu(II) and potentially interfering metal ions is strongly pH dependent. Examination of Cu(II) sorption in the presence of Pb(II), Cd(II), Zn(II) and Ag(I) showed significant influence of cadmium and zinc ions only and that was for the interferent concentrations above 0.5 mg L(-1) (Cu-IIP mass of ca. 35 mg). The interference effect was reduced with the sorbent mass increase. Fe(III) and Mn(II) ions, present in treated tap water in relatively high concentrations, did not interfere. Effective pH adjusting of the loaded solution in on-line mode, when applying diluted Clark-Lubs buffering solution, allowed accurate copper determination in tap water (compared to graphite furnace atomic absorption spectrometry, GFAAS) using standard addition or combination calibration method.

  17. Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site

    Bagur-Gonzalez, Maria Gracia [Univ. of Granada, Faculty of Sciences, Dept. of Analytical Chemistry, Granada (Spain); Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Estepa-Molina, Carmen [Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain); Martin-Peinado, Francisco [Univ. of Granada, Faculty of Sciences, Dept. of Soil Science, Granada (Spain); Morales-Ruano, Salvador [Univ. of Granada-CSIC, Inst. Andaluz de Ciencias de la Tierra, Faculty of Sciences, Granada (Spain); Univ. of Granada, Faculty of Sciences, Dept. of Mineralogy and Petrology, Granada (Spain)


    We used the different soluble-in-water concentrations of As, Cu, Mn, Pb and Zn from contaminated soils in an abandoned mining area (anthropogenic origin) to assess the phytotoxicity of the abandoned site using the results obtained with a Lactuca sativa L. bioassay. Material and methods The study has been carried out on potentially polluted samples from the Rodalquilar mining district (southern Spain). The area was sampled according to the different metallurgical treatments for gold extraction used in each one: dynamic cyanidation and heap leaching. The saturation extracts were obtained by filtering each saturated paste with a vacuum-extraction pump, in which measurements of metal(loid) concentrations, pH and electrical conductivity were made. The variables evaluated in the bioassay, defined as toxicity indices ranging from -1 (maximum phytotoxicity) to >0 (hormesis), were seed germination (SG) and root elongation (RE) of lettuce seeds. Results and discussion In areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil toxicity. According to these results, samples from the western area showed moderate to low toxicity, which was closely related to water-soluble As concentrations. Samples from the eastern area had a high degree of toxicity in 40% of the soils. Conclusions The comparison of the two indices (SG and RE) defined using the L. sativa L. bioassay indicates that, for areas with a low degree of contamination, the most sensitive toxicity index is RE, whereas in highly contaminated areas, both RE and SG are good estimators of soil phytotoxicity. Unsupervised pattern recognition methods such as HCA and PCA enabled us to conclude that the low/moderate phytotoxicity of the soils is related to the extraction process used for the recovery of gold (mainly dynamic cyanidation in tanks located in the eastern area) and to the As and Pb contents. (orig.)

  18. Spectrophotometric Study of Stability Constants of Cr(III, Ni(II and Cu(II Complexes with a Schiff’s Base in Different Solvents

    Israel Leka Lere


    Full Text Available Complexation of Cr(III, Ni(II and Cu(II with para-dimethylaminoanil of ortho-hydroxyphenylglyoxal Schiff’s base in methanol, ethanol and acetone solvents has been studied spectrophotometrically at room temperature (298K. The stoichiometry and stability of the complexes were determined using mole-ratio method. Stability data shows solvent-wise stability order as methanol > ethanol > acetone.

  19. Microwave Synthesis, Spectral, Thermal and Antimicrobial Studies of Some Co(II), Ni(II) and Cu(II) Complexes Containing 2-Aminothiazole Moiety

    A. P. Mishra; H. Purwar; Rajendra K. Jain; S.K Gupta


    Some new Schiff base metal complexes of Co(II), Ni(II) and Cu(II) derived from 4-chlorobenzylidene-2-aminothiazole (CAT) and 2-nitrobenzylidene-2-aminothiazole (NAT) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analysis. The complexes are coloured and stable in air. Analytical data r...

  20. Reactions of Cu(I)Br with aziridine derivatives. Synthesis, characterization and crystal structures of monomeric, dimeric and hexameric aziridine (= az) complexes of the formal type [CuBr(az)2]n (n = 1, 2) and [CuBr(az)]6.

    Bobka, Roman; Roedel, J Nicolas; Wirth, Stefan; Lorenz, Ingo-Peter


    The first syntheses of monomeric and oligomeric aziridine complexes of copper(I) are described. Cu(I)Br (1) reacts with a series of different aziridine derivatives (C(2)H(3)PhNH (2), C(2)H(2)Me(2)NH (3), C(2)H(2)Me(2)NC(2)H(2)Me(2)NH(2) (4)) to give the neutral dimeric complex [CuBr(C(2)H(3)PhNH)(2)](2) (5) and the ionic hexameric complex [Cu(6)Br(5)(C(2)H(2)Me(2)NH)(6)]Br (6) with terminal bound aziridine ligands as well as the neutral monomeric complex [CuBr(C(2)H(2)Me(2)NC(2)H(2)Me(2)NH(2))] (7) where the dimerized aziridine acts as a N,N'-chelating ligand. After purification, all of the complexes were fully characterized and their IR, (1)H and (13)C NMR spectra are reported and discussed. The single crystal structure analysis revealed distorted tetrahedral geometry for the copper(I) centres in the complexes 5 and 6 and a trigonal planar structure for complex 7. In the oligomers the copper centres are bridged by two μ(2)- (5) or two μ(3)- and three μ(4)-bromido ligands (6), respectively.

  1. Water soluble (Eta sup (6) - arene) ruthenium (II) complexes incorporating marine derived bioligand: Synthesis, spectral and structural studies

    Singh, K.S.; Svitlyk, V.; PrabhaDevi; Mozharivskyj, Y.

    ) or L sub(2) in the presence of AgBF sub(4) (L sub(1) = PyCN, DMAP; L sub(2) = 4,4`-bipy, pyrazine). The complexes are characterized on the basis of spectroscopic data and molecular structures of three representative compounds have been determined...

  2. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi


    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  3. Fe- and Cu-complex formation with artificial ligands investigated by ultra-high resolution Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS: Implications for natural metal-organic complex studies

    Hannelore Waska


    Full Text Available In recent years, electrospray-ionization mass spectrometry (ESI-MS has been increasingly used to complement the bulk determination of metal-ligand equilibria, for example via competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV. However, ESI-MS speciation analyses may be impacted by instrumental artefacts such as reduction reactions, fragmentation, and adduct formation at the ESI source, changes in the ionization efficiencies of the detected species in relation to sample matrix, and peak overlaps in response to increasing sample complexity. In our study, equilibria of the known artificial ligands citrate, ethylenediaminetetraacetic acid (EDTA, 1-nitroso-2-naphthol (NN, and salicylaldoxime (SA with iron (Fe and copper (Cu were investigated by ultra-high resolution ESI-MS, Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, under a variety of sample matrix and ionization settings. The acquired mass spectra were compared with metal-ligand equilibrium data from the literature as well as an adapted speciation model. Overall, the mass spectra produced representative species mentioned in previous reports and predicted by the speciation calculations, such as Fe(Cit, Cu(Cit2, Fe(EDTA, Cu(EDTA, Fe(NN3, and Cu(SA2. The analyses furthermore revealed new species which had been hypothesized but not measured directly using other methods, for example ternary complexes of citrate with Fe and Cu, Cu(SA monomers, and the dimer Fe(SA2. Finally, parallel measurements of a Cu+SA calibration series and a Cu+SA+EDTA competition series indicated that FT-ICR-MS can produce linear responses and low detection limits analogous to those of ACSV. We propose that ultra-high resolution FT-ICR-MS can be used as a representative tool to study interactions of trace metals with artificial as well as natural, unknown ligands at the molecular level.

  4. Synthesis and characterization of Ni(II, Cu(II and Co(III complexes with polyamine-containing macrocycles bearing an aminoethyl pendant arm



    Full Text Available Reaction of [M(ppn2]X2 (where M = Cu(II, Ni(II, Co(II and ppn = 1,3-diaminopropane with formaldehyde and ethylenediamine in methanol results in the ready formation of a 16-membered macrocyclic complex. The complexes were characterized by elemental anlysis, IR, EPR, electronic spectral data, magnetic moments and conductance measurements. The Cu(II, Ni(II and Co(III complexes are coordinated axially with both pendant groups of the hexadentate macrocycle. These pendant donors are attached to the macrocycle by a carbon chain. The electrical conductivities of the Cu(II and Ni(II chelates indicated them to be 1:2 electrolytes whilst those of Co(III is a 1:3 electrolyte in DMSO. The EPR spectrum of the copper complex exhibited G at 3.66, which indicates a considerable exchange interaction in the complex. Spectroscopic evidence suggests that in all of the complexes the metal ion is in an octahedral environment.

  5. New insight into the structural, electrochemical and biological aspects of macroacyclic Cu(II) complexes derived from S-substituted dithiocarbazate schiff bases.

    Low, May Lee; Maigre, Laure; Tahir, Mohamed Ibrahim M; Tiekink, Edward R T; Dorlet, Pierre; Guillot, Régis; Ravoof, Thahira Begum; Rosli, Rozita; Pagès, Jean-Marie; Policar, Clotilde; Delsuc, Nicolas; Crouse, Karen A


    Copper (II) complexes synthesized from the products of condensation of S-methyl- and S-benzyldithiocarbazate with 2,5-hexanedione (SMHDH2 and SBHDH2 respectively) have been characterized using various physicochemical (elemental analysis, molar conductivity, magnetic susceptibility) and spectroscopic (infrared, electronic) methods. The structures of SMHDH2, its copper (II) complex, CuSMHD, and the related CuSBHD complex as well as a pyrrole byproduct, SBPY, have been determined by single crystal X-ray diffraction. In order to provide more insight into the behaviour of the complexes in solution, electron paramagnetic resonance (EPR) and electrochemical experiments were performed. Antibacterial activity and cytotoxicity were evaluated. The compounds, dissolved in 0.5% and 5% DMSO, showed a wide range of antibacterial activity against 10 strains of Gram-positive and Gram-negative bacteria. Investigations of the effects of efflux pumps and membrane penetration on antibacterial activity are reported herein. Antiproliferation activity was observed to be enhanced by complexation with copper. Preliminary screening showed Cu complexes are strongly active against human breast adenocarcinoma cancer cell lines MDA-MB-231 and MCF-7.

  6. Synthesis, molecular docking and evaluation of antifungal activity of Ni(II), Co(II) and Cu(II) complexes of porphyrin core macromolecular ligand.

    Singh, Urvashi; Malla, Ali Mohammad; Bhat, Imtiyaz Ahmad; Ahmad, Ajaz; Bukhari, Mohd Nadeem; Bhat, Sneha; Anayutullah, Syed; Hashmi, Athar Adil


    Porphyrin core dendrimeric ligand (L) was synthesized by Rothemund synthetic route in which p-hydroxy benzaldehyde and pyrrole were fused together. The prepared ligand was complexed with Ni(II), Cu(II) and Co(II) ions, separately. Both the ligand and its complexes were characterized by elemental analysis and spectroscopic studies (FT-IR, UV-Vis, (1)HNMR). Square planar geometries were proposed for Cu(II), Ni(II) and Co(II) ions in cobalt, Nickel and copper complexes, respectively on the basis of UV-Vis spectroscopic data. The ligand and its complex were screened on Candida albicans (ATCC 10231), Aspergillus fumigatus (ATCC 1022), Trichophyton mentagrophytes (ATCC 9533) and Pencillium marneffei by determining MICs and inhibition zones. The activity of the ligand and its complexes was found to be in the order: CuL ˃ CoL ≈ NiL ˃ L. Detection of DNA damage at the level of the individual eukaryotic cell was observed by commet assay. Molecular docking technique was used to understand the ligand-DNA interactions. From docking experiment, we conclude that copper complex interacts more strongly than rest two.

  7. A Soluble Dynamic Complex Strategy for the Solution-Processed Fabrication of Organic Thin-Film Transistors of a Boron-Containing Polycyclic Aromatic Hydrocarbon.

    Matsuo, Kyohei; Saito, Shohei; Yamaguchi, Shigehiro


    The solution-processed fabrication of thin films of organic semiconductors enables the production of cost-effective, large-area organic electronic devices under mild conditions. The formation/dissociation of a dynamic B-N coordination bond can be used for the solution-processed fabrication of semiconducting films of polycyclic aromatic hydrocarbon (PAH) materials. The poor solubility of a boron-containing PAH in chloroform, toluene, and chlorobenzene was significantly improved by addition of minor amounts (1 wt % of solvent) of pyridine derivatives, as their coordination to the boron atom suppresses the inherent propensity of the PAHs to form π-stacks. Spin-coating solutions of the thus formed Lewis acid-base complexes resulted in the formation of amorphous thin films, which could be converted into polycrystalline films of the boron-containing PAH upon thermal annealing. Organic thin-film transistors prepared by this solution process displayed typical p-type characteristics.

  8. Cu(I)/Cu(II) templated functional pseudorotaxanes and rotaxanes

    Subrata Saha; Pradyut Ghosh


    Threaded complexes like pseudorotaxanes, rotaxanes based on Cu(I)/Cu(II) ions have shown to be promising for the construction of mechanically interlocked molecular-level architectures. In this short review, we focus on the synthetic strategies developed to construct pseudorotaxanes and rotaxanes using Cu(I)/Cu(II) ions as template. Further, brief discussions on chemical and mechanical properties associated with some of the selected to Cu(I)/Cu(II) based pseudorotaxanes and rotaxanes are presented.

  9. Synthesis and Characterization of 2-imino-3–(2-Hydroxylphenyl-1-Thiazolidin-4-one Substituted Ammine Complexes of Cr(III, Co(III, Ni(II and Cu(II

    Abadi Hadush


    Full Text Available Mixed ligand complexes of Cr(III, Co(III, Ni(II and Cu(II synthesized by partial substitution of 2-imino-3–(2-hydroxylphenyl-1-thiazolidin-4-one in respective ammine complexes were characterized by elemental analysis, conductance and magnetic measurements, infrared and uv-visible spectroscopy. Cr(III, Co(III and Ni(II complexes were octahedral whereas Cu(II complex was square planar.

  10. Generation, Characterization, and Reactivity of a Cu(II)-Alkylperoxide/Anilino Radical Complex: Insight into the O-O Bond Cleavage Mechanism.

    Paria, Sayantan; Ohta, Takehiro; Morimoto, Yuma; Ogura, Takashi; Sugimoto, Hideki; Fujieda, Nobutaka; Goto, Kei; Asano, Kaori; Suzuki, Takeyuki; Itoh, Shinobu


    The reaction of [Cu(I)(TIPT3tren) (CH3CN)]ClO4 (1) and cumene hydroperoxide (C6H5C(CH3)2OOH, ROOH) at -60 °C in CH2Cl2 gave a Cu(II)-alkylperoxide/anilino radical complex 2, the formation of which was confirmed by UV-vis, resonance Raman, EPR, and CSI-mass spectroscopy. The mechanism of formation of 2, as well as its reactivity, has been explored.

  11. Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As-As)S56, and parasterryite, Ag4Pb20(Sb,As)24S58.

    Moëlo, Yves; Guillot-Deudon, Catherine; Evain, Michel; Orlandi, Paolo; Biagioni, Cristian


    The crystal structures of two very close, but distinct complex minerals of the lead sulfosalt group have been solved: sterryite, Cu(Ag,Cu)(3)Pb(19)(Sb,As)(22)(As-As)S(56), and parasterryite, Ag(4)Pb(20)(Sb,As)(24)S(58). They are analyzed and compared according to modular analysis. The fundamental building block is a complex column centred on a Pb(6)S(12) triangular prismatic core, with two additional long and short arms. The main chemical and topological differences relate to the short arm, which induces a relative a/4 shift (~2 Å along the elongation parameter) of the constitutive rod layers, as illustrated by distinct cell settings within the same space group (P2(1)/n and P2(1)/c, respectively). Selection of the shortest (i.e. strongest) (Sb,As)-S bonds permitted to enhance the polymeric organization of (Sb,As) atoms with triangular pyramidal coordination. These two quasi-homeotypic structures are expanded derivatives of owyheeite, Ag(3)Pb(10)Sb(11)S(28). The hierarchy of organization levels from zero- to three-dimensional entities is subordinated to building operators, which appear as the driving force for the construction of such complex structures. Minor cations (Ag, Cu) or the As-As pair in sterryite secure the final locking, which favours the formation of one or the other compound.

  12. Effect of inclusion complexation of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies.

    Shende, Pravin K; Gaud, R S; Bakal, Ravindra; Patil, Dipmala


    The objective of the present work was to develop inclusion complexes of meloxicam with β-cyclodextrin- and β-cyclodextrin-based nanosponges to enhance their solubility and stability and to prolong release using different methods that included physical mixing, kneading and sonication. Particle size, zeta potential, encapsulation efficiency, stability study results, in vitro and in vivo drug release study results, FTIR, DSC and XRPD were used as characterization parameters. SEM (Scanning Electron Microscope) studies revealed that the particle sizes of the inclusion complexes of meloxicam were within the range of 350 ± 5.69-765 ± 13.29 nm. The zeta potentials were sufficiently high to obtain stable formulations. In vitro and in vivo release studies revealed the controlled release of meloxicam from the nanosponges for 24h. The interaction of the meloxicam with the nanosponges was confirmed by FTIR and DSC. A XRPD study revealed that the crystalline nature of meloxicam was changed to an amorphous form due to the complexation with the nanosponges. A stability study revealed that the meloxicam nanosponges were stable. Therefore, β-cyclodextrin-based nanosponges represent a novel approach for the controlled release of meloxicam for anti-inflammatory and analgesic effects.

  13. Aqueous solubility of calcium citrate and interconversion between the tetrahydrate and the hexahydrate as a balance between endothermic dissolution and exothermic complex formation

    Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt


    Aqueous solubility of calcium citrate tetrahydrate was found to decrease with increasing temperature, while solubility of hexahydrate increased with a transition temperature at 51.6 °C. Excess citrate increased calcium citrate solubility but decreased the calcium ion activity of the saturated sol...

  14. Separation of americium by liquid-liquid extraction using diglycol-amides water-soluble complexing agents

    Chapron, S.; Marie, C.; Pacary, V.; Duchesne, M.T.; Miguirditchian, M. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processses Departement, 30207 Bagnols-sur-Ceze (France); Arrachart, G.; Pellet-Rostaing, S. [Institut de Chimie Separative de Marcoule, LTSM, Bat 426, F-30207 Bagnols-sur- Ceze (France)


    Recycling americium (Am) alone from spent nuclear fuels is an important option studied for the future nuclear cycle (Generation IV systems) since Am belongs to the main contributors of the long-term radiotoxicity and heat power of final waste. Since 2008, a liquid-liquid extraction process called EXAm has been developed by the CEA to allow the recovery of Am alone from a PUREX raffinate (a dissolution solution already cleared from U, Np and Pu). A mixture of DMDOHEMA (N,N'-dimethyl-N,N'-dioctyl-2-(2-(hexyloxy)ethyl)-malonamide) and HDEHP (di-2-ethylhexylphosphoric acid) in TPH is used as the solvent and the Am/Cm selectivity is improved using TEDGA (N,N,N',N'-tetraethyl-diglycolamide) as a selective complexing agent to maintain Cm and heavier lanthanides in the acidic aqueous phase (5 M HNO{sub 3}). Americium is then stripped selectively from light lanthanides at low acidity (pH=3) with a poly-aminocarboxylic acid. The feasibility of sole Am recovery was already demonstrated during hot tests in ATALANTE facility and the EXAm process was adapted to a concentrated raffinate to optimize the process compactness. The speciation of TEDGA complexes formed in the aqueous phase with Am, Cm and lanthanides was studied to better understand and model the behavior of TEDGA in the process. Some Ln-TEDGA species are extracted into the organic phase and this specific chemistry might play a role in the Am/Cm selectivity improvement. Hence the hydrophilicity-lipophilicity balance of the complexing agent is an important parameter. In this comprehensive study, new analogues of TEDGA were synthesized and tested in the EXAm process conditions to understand the relationship between their structure and selectivity. New derivatives of TEDGA with different N-alkyl chain lengths and ramifications were synthesized. The impact of lipophilicity on ligand partitioning and Am/Cm selectivity was investigated. (authors)

  15. Synthesis and crystal structure of Cu(II and Co(II complexes with 1,3-dimethyl-pyrazole-5-carboxylic acid ligand

    Jaćimović Željko K.


    Full Text Available In the reaction of 1,3-dimethyl-pyrazole-5-carboxylic acid (HL with M(OAc2•4H2O, (M = Cu, Co two novel complexes have been prepared, square-planar [CuL2(H2O2] and octahedral [CoL2(MeOH4]. The crystal structures have been determined by single-crystal X-ray diffraction. In both complexes the deprotonated acid displays monodentate coordination to the metal ions. According to the results of CSD survey this is the first structural report on the metal complexes with N1-substituted pyrazole-5-carboxylic ligand. [Projekat Ministarstva nauke Republike Srbije, br. 172014 i br. 172035

  16. Synthesis, Spectral and Antimicrobial Studies of Some Co(II, Ni(II and Cu(II Complexes Containing 2-Thiophenecarboxaldehyde Moiety

    A. P. Mishra


    Full Text Available Some new Schiff base metal complexes of Co(II, Ni(II and Cu(II derived from 3-chloro-4-fluoroaniline (HL1 and 4-fluoroaniline (HL2 with 2-thiophenecarboxaldehyde have been synthesized and characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, ESR and magnetic susceptibility. The complexes exhibit coordination number 4 or 6. The complexes are colored and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio. FAB-mass data show degradation pattern of the complexes. The Schiff base and metal complexes show a good activity against the bacteria; B. subtilis, E. coli and S. aureus and fungi A. niger, A. flavus and C. albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  17. Synthesis and Characterization of 2-(Hydroxyimino-1-(phenylpropylidenethiocarbonohydrazide and its Metal Complexes with Co(II, Ni(II and Cu(II Ions

    A. Venkatchallam


    Full Text Available Synthesis and characterization of 2-(hydroxyimino-1-(phenyl propylidene thiocarbonohydrazide (called ‘HPTCHOPD’ was studied. The synthesized compound having the molecular formula C10H13N5OS, where in isonitrosopropiophenone is reacted with thiocarbonohydrazide in presence of sodium acetate in ethanol-water mixture. The yield which is comprises effecting the reaction in the presence of sodium acetate. Also the present work report a process for producing metal complexes having the formula ML2 and (ML2 Cl, wherein M is the divalent metal cation, like cobalt (Co+2, nickel (Ni+2 and copper (Cu+2. The compound HPTCHOPD is admixed with a basic divalent compound that is halide, mainly chloride of Co+2, Ni+2 and Cu+2 in presence of methanol-water mixture. The metal complexes so produced are characterized on the basis of spectral, elemental and magnetic analysis; reveal interesting geometries and bonding features. The data suggested square planar geometry for Co+2 complex, a distorted tetrahedral/square planar-octahedral geometry for Ni+2 complex and a bridged structure for Cu+2 complex.

  18. Determination of solid solubility level of Ho nanoparticles in Y-123 superconducting matrix and strong Cu{sub 1} site preference of nanoparticles

    Sarıtekin, N.K. [Abant Izzet Baysal University, Department of Physics, Bolu 14280 (Turkey); Zalaoglu, Y., E-mail: [Abant Izzet Baysal University, Department of Physics, Bolu 14280 (Turkey); Osmaniye Korkut Ata University, Department of Physics, Osmaniye 80000 (Turkey); Yildirim, G. [Abant Izzet Baysal University, Department of Mechanical Engineering, Bolu 14280 (Turkey); Doğruer, M.; Terzioglu, C.; Varilci, A.; Gorur, O. [Abant Izzet Baysal University, Department of Physics, Bolu 14280 (Turkey)


    Graphical abstract: The excess Ho particles inserted in the Y-123 superconducting matrix not only damage the crystal plane alignments and crystallinity of poly-crystallized Y-123 bulk samples but also lead to the phase transition from optimally doped state to the underdoped position in the crystal structure. - Highlights: • Identification of Y-123 ceramics by ρ–T, J{sub c}, XRD, SEM, EDX, H{sub V} and density measurements. • Optimum dopant level of x = 0.100 for Ho concentration in the Y-123 crystal structure. • Phase transition from optimally doped to the underdoped position with excess Ho impurities (x > 0.100). • Improvement of mechanical behavior with increase in strength of interaction between grains. • Superiority of IIC model to HK approach for the description of the real microhardness values. - Abstract: This comprehensive study reports the effect of the Ho inclusions on the microstructural, electrical, mechanical and superconducting characteristics of YBa{sub 2}Cu{sub 3}O{sub 7−δ} ceramic superconductors with the aid of standard characterization methods including the bulk density, dc resistivity (ρ–T), transport critical current density (J{sub c}), X-ray diffraction (XRD), electron dispersive X-ray (EDX), scanning electron microscopy (SEM) and Vickers microhardness (H{sub V}) investigations. The experimental results such as the degree of granularity, hole (filling) localization effect, room temperature resistivity, onset–offset critical transition temperature, degree of the broadening, thermodynamic fluctuations (spin-gap opening temperature), crystallinity, crystal plane alignments (texturing), crystal structure, grain size, phase purity and lattice parameters, appearance of flux pinning centers, grain boundary weak-links (interaction between the superconducting grains), surface morphologies (grain size distribution), real (load independent) microhardness values, elemental compositions and distributions belonging to the pure and Y

  19. Geometries of H2S⋯MI (M = Cu, Ag, Au) complexes studied by rotational spectroscopy: The effect of the metal atom

    Medcraft, Chris; Bittner, Dror M.; Tew, David P.; Walker, Nicholas R.; Legon, Anthony C.


    Complexes formed between H2S and each of CuI, AgI, and AuI have been isolated and structurally characterised in the gas phase. The H2S⋯ MI complexes (where M is the metal atom) are generated through laser vaporisation of a metal rod in the presence of a low concentration of H2S and CF3I in a buffer gas of argon undergoing supersonic expansion. The microwave spectra of six isotopologues of each of H2S⋯ CuI , H2S⋯ AgI and three isotopologues of H2S⋯ AuI have been measured by chirped-pulse Fourier transform microwave spectroscopy. The spectra are interpreted to determine geometries for the complexes and to establish the values of structural parameters. The complexes have Cs symmetry at equilibrium and have a pyramidal configuration about the sulfur atom. The local C2 axis of the hydrogen sulfide molecule intersects the linear axis defined by the three heavy atoms at an angle, ϕ = 75.00(47)° for M = Cu, ϕ = 78.43(76)° for M = Ag, and ϕ = 71.587(13)° for M = Au. The trend in the molecular geometries is consistent with significant relativistic effects in the gold-containing complex. The force constant describing the interaction between the H2S and MI sub-units is determined from the measured centrifugal distortion constant, ΔJ, of each complex. Nuclear quadrupole coupling constants, χa a(M) and χa a(I) (where M denotes the metal atom), are determined for H2S⋯ CuI and H2S⋯ AuI for the first time.

  20. Oxidative DNA damage of mixed copper(II) complexes with sulfonamides and 1,10-phenanthroline. Crystal structure of [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)2(1,10-phenanthroline)].

    Macías, Benigno; García, Isabel; Villa, María V; Borrás, Joaquín; González-Alvarez, Marta; Castiñeiras, Alfonso


    Mixed coordination compounds of Cu(II) with sulfonamides and 1,10-phenanthroline as ligands have been prepared and characterised. Single crystal structural determination of the complex [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)(2)(phen)] shows Cu(II) ions are located in a highly distorted octahedral environment, probably as a consequence of the Jahn-Teller effect. The FT-IR and electronic paramagnetic resonance (EPR) spectra are also discussed. The mixed complexes prepared undergo an extensive DNA cleavage in the presence of ascorbate and hydrogen peroxide. Two of the complexes have higher nucleolytic efficiency than the bis(o-phenanthroline)copper(II) complex.

  1. Complex permeability spectra of PbO and Ta2O5 added nanocrystalline MgCuZn ferrites

    V, Seetha Rama Raju


    PbO and Ta2O5 added MgCuZn ferrites are prepared by the Microwave-Hydrothermal (M-H) processing. The nanocrystalline ferrites are sintered to a temperature of 900 °C/4 h. SEM pictures reveal that, the addition of PbO causes a small amount of grain growth, whereas the addition of Ta2O5 causes a fine-grained microstructure. The complex permeability spectra (μ*=μ‧-iμ″) of the prepared samples were measured in the frequency range from 1 MHz to 1.8 GHz, the μ* spectra are analyzed into two magnetization processes with focus on the particle size of ferrite samples. In addition to the spin rotation relaxation in 130-200 MHz, it is initially identified the contribution from reversible domain wall bowing rising at 6-40 MHz. The magnetic state of the ferrite is also influenced by the addition of PbO and Ta2O5. The spin rotation mechanism of the present ferrites is enhanced by the preparation of nanocrystalline samples.

  2. A sensor for acetaminophen in a blood medium using a Cu(II)-conducting polymer complex modified electrode

    Boopathi, Mannan; Won, Mi-Sook; Shim, Yoon-Bo


    Complexation of Cu ions in a terthiophene carboxylic acid (TTCA) polymer film resulted an enhanced anodic current for acetaminophen oxidation when compared to polymer coated and bare glassy carbon electrodes in human blood and buffer media. Scanning electron microscopy (SEM) and ESCA experiments indicate the involvement of copper in the electrocatalytic oxidation of acetaminophen. No interference was observed from other biologically important and phenolic compounds used with this modified electrode. Especially, the non-interference from N-acetylcysteine, an antidote for the treatment of acetaminophen poisoning, reveals the proposed method's superiority in medicinal applications. In addition, the present modified electrode avoids surface fouling at higher concentrations of acetaminophen. The calibration range obtained with CV was based between 2.0x10{sup -5} and 5.0x10{sup -3} M [r{sup 2}=0.997 (n=5, R.S.D.=2.5%); DL=5.0x10{sup -6} M (S/N=3)]. The analytical utility of the modified electrode was achieved by analyzing the content of acetaminophen in different drugs without pretreatment using CV and amperometric techniques.

  3. Structure and Metal Loading of a Soluble Periplasm Cuproprotein*

    Waldron, Kevin J.; Firbank, Susan J.; Dainty, Samantha J.; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J.


    A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  4. Structure and metal loading of a soluble periplasm cuproprotein.

    Waldron, Kevin J; Firbank, Susan J; Dainty, Samantha J; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J


    A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn→Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm.

  5. Synthesis, characterization, X-ray crystal structure, electrochemical evaluation and anti-cancer studies of a mixed ligand Cu(II) complex of (E)-N′-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide

    Iran Sheikhshoaie; S Yousef Ebrahimipour; Mahdieh Sheikhshoaie; Maryam Mohamadi; Mehdi Abbasnejad; Hadi Amiri Rudbari; Giuseppe Bruno


    A ternary mixed ligand Cu(II) complex, [Cu(L)(Phen)], was prepared from the reaction of (E)-N′-((2-hydroxynaphthalen-1-yl)methylene)acetohydrazide [HL], Cu(NO3)2.3H2O and 1,10-Phenanthroline in 1:1:1 molar ratio. This complex was fully characterized using spectroscopic and physicochemical methods. The structure of the complex was determined by single crystal X-ray diffraction. The Cu(II) center is coordinated by two oxygen and one nitrogen donors of L2− and nitrogen atoms of the heterocyclic group. Electrochemical studies of the Cu(II) complex showed shifts in the ligand peaks as well as the appearance of new peaks after complexation. The electrochemical behavior of the Cu(II) complex was also studied using cyclic voltammetry. According to biochemical investigation (MCF-7 cells viability), anticancer activity of [Cu(L)(Phen)] was higher than those of Cu(NO3)2.3H2O, HL and 1,10-Phenanthroline.

  6. Difference of Electron Capture and Transfer Dissociation Mass Spectrometry on Ni2+-, Cu2+-, and Zn2+-Polyhistidine Complexes in the Absence of Remote Protons

    Asakawa, Daiki; De Pauw, Edwin


    Electron capture dissociation (ECD) and electron transfer dissociation (ETD) in metal-peptide complexes are dependent on the metal cation in the complex. The divalent transition metals Ni2+, Cu2+, and Zn2+ were used as charge carriers to produce metal-polyhistidine complexes in the absence of remote protons, since these metal cations strongly bind to neutral histidine residues in peptides. In the case of the ECD and ETD of Cu2+-polyhistidine complexes, the metal cation in the complex was reduced and the recombination energy was redistributed throughout the peptide to lead a zwitterionic peptide form having a protonated histidine residue and a deprotonated amide nitrogen. The zwitterion then underwent peptide bond cleavage, producing a and b fragment ions. In contrast, ECD and ETD induced different fragmentation processes in Zn2+-polyhistidine complexes. Although the N-Cα bond in the Zn2+-polyhistidine complex was cleaved by ETD, ECD of Zn2+-polyhistidine induced peptide bond cleavage accompanied with hydrogen atom release. The different fragmentation modes by ECD and ETD originated from the different electronic states of the charge-reduced complexes resulting from these processes. The details of the fragmentation processes were investigated by density functional theory.

  7. Effect of ph on the Electrodeposition of Cu(In, Al)Se2 from Aqueous Solution in Presence of Citric Acid as Complexing Agent

    Ganjkhanlou, Yadolah; Ebadzadeh, Touradj; Kazemzad, Mahmood; Maghsoudipour, Amir; Kianpour-Rad, Mansoor


    Effect of pH on the one-step electrodeposition of Cu(In, Al)Se2 chalcopyrite layer in the presence of citric acid has been investigated by applying different electrochemical and characterization techniques. It has been observed that at pH of 1.5, nanocrystalline phase of chalcopyrite and small amount of binary phase of Cu2Se with overall composition of Cu0.91In0.32Al0.39Se2 have been deposited. On the other hand, at pH of 4, the film composition changed to Cu1.9In0.05Al0.21Se2 and an additional binary phase of copper selenide (CuSe) has also been formed. Morphological investigation illustrated that smooth and compact layer with fine spherical particles having the size of 20 nm has been obtained at pH of 1.5 whereas mixture of planar and spherical particles with size of 450-550 nm have been formed at pH of 4. In alkaline environment (pH 9), the deposition current has been noticeably decreased and no deposition occurred due to the formation of a stable complex of citric acid with metal ions. The mechanism of citric acid interaction with metal ions at different pH has also been studied by cyclic voltammetry measurement.

  8. Synthesis and Crystal Structure of a Copper(Ⅱ) Complex with a Tab-Tab Disulfide Ligand (Tab-Tab)[CuBr4] (Tab = Trimethylammoniumphenyl-4-thiolate)

    TANG Xiao-Yan; CHEN Jin-Xiang; LANG Jian-Ping


    Reaction of CuBr2 with TabHPF6/Et3N in methanol followed by dissolving the resulting precipitate in hydrobromic acid yielded purple blocks of the title complex [Tab-Tab][CuBr4] 1 (C18H26CuBr4N2S2). 1 crystallizes in the monoclinic system, space group P21/n with a = 9.686(3),b = 19.257(5), c = 13.399(4) (A), β= 93.610(9)°, V= 2494.2(13) (A)3, Z= 4, Dc = 1.911 g/cm3, T=193(2) K, Mr = 717.71, F(000) = 1396, μ = 74.58 cm-1, S = 1.126, R = 0.0748 and wR = 0.1736 for 2921 observed reflections with I > 2σ(Ⅰ). The structure of 1 contains a discrete [CuBr4]2- dianion and a [Tab-Tab]2+ dication. In the dianion, the Cu atom is coordinated to four Br atoms forming a distorted tetrahedral coordination geometry. The bromides of the dianion interact with the H atoms of the phenyl and methyl groups of the dications to form a 1D hydrogen-bonded chain.

  9. Synthesis and Crystal Structure of a [Cu(HTren)Cl2]ClO4·H2O Complex (Tren = Tris(2-aminoethyl)amine)

    NIU De-Zhong; MA Heng-Jun; GAO Feng; LU Zai-Sheng; CHEN Jiu-Tong


    The title complex [Cu(HTren)Cl2]ClO4·H2O (Tren = tris(2-aminoethyl)amine) was crystal (CuC6H21Cl3N4O5) is of triclinic, space group P-1, with a = 8.2689(2), b = 8.4503(3), c=11.6801(4)(A), a = 96.9350(10), β= 108.2440(10), γ = 90.7550(10)°, V= 768.32(4)(A)3, Z= 2, Mr=399.16, Dc= 1.725 g/cm3,μ= 1.962 mm-1, F(000) = 410, T= 293(2) K, the final R = 0.0479 and wR = 0.1339 for 2659 observed reflections with I > 2σ(I). X-ray single-crystal structure analysis reveals that the copper(Ⅱ) atom adopts a slightly distorted square-pyramidal geometry. The distances between Cu and N atoms (N(1), N(2), N(3)) range from 1.975(4) to 2.116(3)(A). The bond lengths of Cu-Cl(1) and Cu-Cl(2) are 2.309(10) and 2.591(10) (A), respectively. The whole crystal presents a three-dimensional network structure by hydrogen bonds.

  10. The first water-soluble hexarhenium cluster complexes with a heterocyclic ligand environment: synthesis, luminescence, and biological properties.

    Shestopalov, Michael A; Zubareva, Kristina E; Khripko, Olga P; Khripko, Yuri I; Solovieva, Anastasiya O; Kuratieva, Natalia V; Mironov, Yuri V; Kitamura, Noboru; Fedorov, Vladimir E; Brylev, Konstantin A


    The hexarhenium cluster complexes with benzotriazolate apical ligands [{Re6(μ3-Q)8}(BTA)6](4-) (Q = S, Se; BTA = benzotriazolate ion) were obtained by the reaction of [{Re6(μ3-Q)8}(OH)6](4-) with molten 1H-BTA (1H-benzotriazole). The clusters were crystallized as potassium salts and characterized by X-ray single-crystal diffraction, elemental analyses, and UV-vis and luminescence spectroscopy. In addition, their cellular uptake and toxicity were evaluated. It was found that both clusters exhibited luminescence with high lifetimes and quantum yield values; they were taken up by the cells illuminating them under UV irradiation and, at the same time, did not exhibit acute cytotoxic effects.

  11. Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide-protein complexes from Pleurotus geesteranus.

    Zhang, Mei; Zhu, Lin; Cui, Steve W; Wang, Qi; Zhou, Ting; Shen, Hengsheng


    Fractionation and purification of mushroom polysaccharides is a critical process for mushroom clinical application. After a hot-water treatment, the crude Pleurotus geesteranus (PG) was further fractionated into four fractions (PG-1, -2, -3, -4) using gradient precipitation with water and ammonia sulphate. By controlling the initial polymer concentration and ratio of solvents, this process produced PG fractions with high chemical uniformity and narrow Mw distribution without free proteins. Structurally, PG-1 and PG-2 are pure homopolysaccharide mainly composed of glucose; and PG-3 and PG-4 are heteropolysaccharide-protein complexes. PG-2, a high M(w) fraction mainly composed of glucose presented significant cytotoxicity at the concentration of 200 and 100 μg/ml to human breast cancer cells. Here, we report a new mushroom polysaccharides extraction and fractionation method, with which we produced four fractions of PG with PG-2 appearing effective anti-tumour activity.

  12. Schiff base ligand derived from (±trans-1,2-cyclohexanediamine and its Cu(II, Co(II, Zn(II and Mn(II complexes: Synthesis, characterization, styrene oxidation and hydrolysis study of the imine bond in Cu(II Schiff base complex

    Sarkheil Marzieh


    Full Text Available A Schiff base ligand (H2L derived from 2´-hydroxypropiophenone and (±trans-1,2-cyclohexanediamine was synthesized. The reactions of MCl2.xH2O (M =Cu(II, Co(II, Zn(II and Mn(IIwith the di-Schiff base ligand (H2L were studied. This ligand when stirred with 1 equivalent of CuCl2.2H2O in the solution of ethanol and chloroform undergoes partial hydrolysis of the imino bond and the resultant tridentate ligand (HL′immediately forms complex[CuL´Cl]∙3/2CHCl3(1with N2O coordination sphere. Under the same condition, the reaction of H2L with MCl2.xH2O (M = Co(II (3, Zn(II (4 and Mn(II (5 gave complexes[ML]•1/2CHCl3∙3/2H2O (3-5with N2O2 coordination sphere and no hydrolytic cleavage was occurred. Also, the reaction of H2L with CuCl2.2H2O in THF gave the complex CuL (2with N2O2 coordination sphere. The ligand and complexes were characterized by FTIR, UV-Vis, 1H NMRand elemental analysis. The homogeneous catalytic activity of the complexes1, 3 and 5wasevaluated for the oxidation of styrene using tert-butyl hydroperoxide (TBHP as oxidant. Finally, the copper(II complex(1encapsulated in the nanopores of zeolite-Y by flexible ligand method (CuL´-Yand its encapsulation was ensured by different studies. The catalytic performance of heterogeneous catalyst in the styrene oxidation with TBHP was investigated. The catalytic tests showed that the homogenous and heterogeneous catalysts were active in the oxidation of styrene.

  13. Synthesis, characterization, crystal structure determination and computational study of a new Cu(II) complex of bis [2-{(E)-[2-chloroethyl)imino]methyl}phenolato)] copper(II) Schiff base complex

    Grivani, Gholamhossein; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Bruno, Giuseppe; Rudbari, Hadi Amiri; Taghavi, Maedeh


    The copper (II) Schiff base complex of [CuL2] (1), HL = 2-{(E)-[2-chloroethyl) imino]methyl}phenol, has been synthesized and characterized by elemental (CHN) analysis, UV-Vis and FT-IR spectroscopy. The molecular structure of 1 was determined by single crystal X-ray diffraction technique. The conformational analysis and molecular structures of CuL2 were investigated by means of density functional theory (DFT) calculations at B3LYP/6-311G* level. An excellent agreement was observed between theoretical and experimental results. The Schiff base ligand of HL acts as a chelating ligand and coordinates via one nitrogen atom and one oxygen atom to the metal center. The copper (II) center is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. Thermogravimetric analysis of CuL2 showed that it was decomposed in five stages. In addition, the CuL2 complex thermally decomposed in air at 660 °C and the XRD pattern of the obtained solid showed the formation of CuO nanoparticles with an average size of 34 nm.

  14. Nutritive value of single-screw extruded and nonextruded triticale distillers dried grains with solubles, with and without an enzyme complex, for broilers.

    Oryschak, M; Korver, D; Zuidhof, M; Beltranena, E


    The nutritive value of triticale distillers dried grains with solubles (DDGS) for broilers was investigated in 2 experiments. In experiment 1, four hundred male broilers housed in battery cages were fed diets including 15 or 30% triticale DDGS (extruded or not) or a basal diet, supplemented with or without a multi-enzyme complex from d 21 to 28. Birds were killed and ileal digesta was collected on d 28 to establish the apparent ileal nutrient digestibility (AID) coefficients for both assay diets and DDGS as test ingredients based on 5 cages per diet. In experiment 2, a 42-d performance study compared growth phase-specific diets formulated to similar levels of AME, CP, and digestible lysine with graded levels (0, 5, or 10%) of triticale DDGS inclusion based on a minimum of 4 pens per diet x sex combination. Breast muscle weight and percentage yield were determined on d 37 by sampling 5 birds per pen. In experiment 1, there was a significant (P triticale DDGS increased (P triticale DDGS had no adverse effect on feed intake, weight gain, or feed efficiency of broilers compared with controls over the 42-d study. Feeding up to 10% triticale DDGS did not affect breast weight or yield on d 37. In conclusion, feed enzyme complex supplementation and extrusion both increased the nutritive value of triticale DDGS for broilers. Triticale DDGS can be fed at up to 10% of practical broiler diets without adverse effect on performance and breast muscle yield.

  15. Biological study of the effect of water soluble [N-(2-hydroxybenzyl)-L-aspartato] gallium complexes on breast carcinoma and fibrosarcoma cells.

    Mohsen, Ahmed; Saby, Charles; Collery, Philippe; Sabry, Gilane Mohamed; Hassan, Rasha Elsherif; Badawi, Abdelfattah; Jeannesson, Pierre; Desmaële, Didier; Morjani, Hamid


    Two water soluble gallium complexes described as [Ga(III)LCl], where L is the deprotonated form of N-2-hydroxybenzyl aspartic acid derivatives, were synthesized and characterized by (1)H NMR, (13)C NMR, FT-IR, mass spectrometry, and elemental analysis. The 2-(5-chloro-2-hydroxybenzylamino)succinic acid derivative (GS2) has been found to be a promising anticancer drug candidate. This compound was found to be more cytotoxic against human breast carcinoma MDA-MB231 and fibrosarcoma HT-1080 cell lines than the unsubstituted derivative and GaCl3. GS2 was able to induce apoptosis through downregulation of AKT phosphorylation, G2M arrest in cell cycle, and caspase 3/7 pathway. This gallium complex was found to induce an increase in mitochondrial ROS level in HT-1080 cells but not in MDA-MB231 cells. This suggests that the mechanism of action of GS2 would not be mediated by the drug-induced oxidative stress but probably by directly and indirectly inhibiting the AKT cell-signaling pathway.

  16. Effects of the Soluble Fiber Complex PolyGlycopleX on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats.

    Grover, Gary James; Koetzner, Lee; Wicks, Joan; Gahler, Roland J; Lyon, Michael R; Reimer, Raylene A; Wood, Simon


    Dietary fiber can reduce insulin resistance, body weight, and hyperlipidemia depending on fiber type, water solubility, and viscosity. PolyGlycopleX(®) (PGX(®)) is a natural, novel water soluble, non-starch polysaccharide complex that with water forms a highly viscous gel compared to other naturally occurring dietary fiber. We determined the effect of dietary PGX(®) vs. cellulose and inulin on the early development of insulin resistance, body weight, hyperlipidemia, and glycemia-induced tissue damage in young Zucker diabetic rats (ZDFs) in fasted and non-fasted states. ZDFs (5 weeks old) were fed a diet containing 5% (wgt/wgt) cellulose, inulin, or PGX(®) for 8 weeks. Body weight, lipids, insulin, and glucose levels were determined throughout the study and homeostasis model assessment (HOMA) was used to measure insulin sensitivity throughout the study in fasted animals. At study termination, insulin sensitivity (oral glucose tolerance test, OGTT) and kidney, liver, and pancreatic histopathology were determined. Body weight and food intake were significantly reduced by PGX(®) vs. inulin and cellulose. Serum insulin in fasted and non-fasted states was significantly reduced by PGX(®) as was non-fasted blood glucose. Insulin resistance, measured as a HOMA score, was significantly reduced by PGX(®) in weeks 5 through 8 as well as terminal OGTT scores in fed and fasted states. Serum total cholesterol was also significantly reduced by PGX(®). PGX(®) significantly reduced histological kidney and hepatic damage in addition to reduced hepatic steatosis and cholestasis. A greater mass of pancreatic β-cells was found in the PGX(®) group. PGX(®) therefore may be a useful dietary additive in the control of the development of the early development of the metabolic syndrome.

  17. Effects of the Soluble Fiber Complex PolyGlycopleX® on Glucose Homeostasis and Body Weight in Young Zucker Diabetic Rats

    Roland J. Gahler


    Full Text Available Dietary fiber can reduce insulin resistance, body weight and hyperlipidemia depending on fiber type, water solubility and viscosity. PolyGlycopleX® (PGX® is a natural, novel water soluble, non-starch polysaccharide complex that with water forms a highly viscous gel compared to other naturally-occurring dietary fiber. We determined the effect of dietary PGX® vs cellulose and inulin on the early development of insulin resistance, body weight, hyperlipidemia, and glycemia-induced tissue damage in young Zucker diabetic rats (ZDFs in fasted and nonfasted states. ZDFs (5 weeks old were fed a diet containing 5% (wt/wt cellulose, inulin, or PGX® for 8 weeks. Body weight, lipids, insulin and glucose levels were determined throughout the study and Homeostasis Model Assessment (HOMA was used to measure insulin sensitivity throughout the study in fasted animals. At study termination, insulin sensitivity (oral glucose tolerance test, OGTT and kidney, liver, and pancreatic histopathology were determined. Body weight and food intake were significantly reduced by PGX® vs inulin and cellulose. Serum insulin in fasted and non-fasted states was significantly reduced by PGX® as was non-fasted blood glucose. Insulin resistance, measured as a HOMA score, was significantly reduced by PGX® in weeks 5 through 8 as well as terminal OGTT scores in fed and fasted states. Serum total cholesterol was also significantly reduced by PGX®. PGX® significantly reduced histological kidney and hepatic damage in addition to reduced hepatic steatosis and cholestasis. A greater mass of pancreatic -cells was found in the PGX® group. PGX® therefore may be a useful dietary additive in the control of the development of the early development of the metabolic syndrome.

  18. Structural diversity of copper-CO2 complexes: infrared spectra and structures of [Cu(CO2)n]- clusters.

    Knurr, Benjamin J; Weber, J Mathias


    We  present infrared spectra of  [Cu(CO2)n](-) (n = 2-9) clusters in the wavenumber range 1600-2400 cm(-1). The CO stretching modes in this region encode the structural nature of the cluster core and are interpreted with the aid of density functional theory. We find a variety of core species in [Cu(CO2)n](-) clusters, but the dominant core structure is a [Cu(CO2)2](-) core where the two CO2 ligands are bound to the Cu atom in a bidentate fashion. We compare the results of [Cu(CO2)n](-) clusters to those of other [M(CO2)n](-) clusters (M = Au, Ag, Co, Ni) to establish trends of how the metal-CO2 interaction depends on the metal partner.

  19. Abnormalities in soluble CD147 / MMPs / TIMPs axis in Ankylosing Spondylitis patients with and without a history of Acute Anterior Uveitis / Anomalii ale axei CD147 solubil / MMPs / TIMPs la pacienții cu spondilită anchilozantă cu sau fără uveită acută anterioară

    Mitulescu Traian Costin


    Full Text Available Spondilita Anchilozantă (SA este prototipul formei axiale a spondiloartritelor. În pofida studiilor extinse, sunt încă incomplet înțelese mecansimele complexe legate de procesele celulare și moleculare anormale din SA. Printre mediatorii inflamației, cum ar fi citokinele proinflamatoare, NOS-2, chemokinele, care conduc la inflamație, metaloproteinazele de matrice (MMPs joacă un rol important în procesele inflamatoare care caracterizează SA. De aceea, ne-am propus să evaluăm dacă perturbări ale homeostaziei inductorului extracelular de MMPs (EMMPRIN/CD147, MMPs și inhibitorilor tisulari ai MMPs (TIMPs joacă un rol în evoluția SA în special la pacienții care au în istoricul lor Uveită Acută Anterioară (UAA. În acest scop seruri de la pacienți cu SA și de la donatori sănătoși (DS au fost analizate pentru nivelurile de CD147 solubil (sCD147, MMP-3 și TIMP-1 prin tehnica imunoenzimatica ELISA și pentru activitatea gelatinazelor MMP-2 si MMP-9 folosind gelatin zimografia. Rezultatele experimentale au arătat că nivelurile de sCD147, MMP-3 si TIMP-1 sunt semnificativ crescute la pacienții cu SA comparativ cu DS. sCD147 ca și raportul MMP-2/sCD147 a diferențiat pacienții cu UAA de cei fără UAA în istoricul lor. La pacienții cu SA rapoartele MMP-2/sCD147, MMP-3/sCD147 și MMP-3/TIMP-1 au sugerat dezechilibrul dintre MMPs și reglatorii lor. Aceste rezultate sugerează că rapoartele MMPs/sCD147 pot deveni biomarkeri potențiali pentru întărirea caracterizării pacienților cu SA și pentru a prognoza evoluția bolii. Corelațiile pozitive și negative dintre anumite caracteristici experimentale și/sau clinice ale pacienților cu SA și terapie subliniază de asemenea utilitatea evaluării acestor biomarkeri pentru a identifica o terapie individualizată și eficientă.

  20. Spectroscopic, thermodynamic, kinetic studies and oxidase/antioxidant biomimetic catalytic activities of tris(3,5-dimethylpyrazolyl)borate Cu(II) complexes.

    Shaban, Shaban Y; Ramadan, Abd El-Motaleb M; Ibrahim, Mohamed M; Mohamed, Mahmoud A; van Eldik, Rudi


    A series of copper(ii) complexes, viz. [Tp(MeMe)Cu(Cl)(H2O)] (), [Tp(MeMe)Cu(OAc)(H2O)] (), [Tp(MeMe)Cu(NO3)] () and [Tp(MeMe)Cu(ClO4)] () containing tris(3,5-dimethylpyrazolyl)borate (KTp(MeMe)), have been synthesized and fully characterized. The substitution reaction of with thiourea was studied under pseudo-first-order conditions as a function of concentration, temperature and pressure in methanol and acetonitrile as solvents. Two reaction steps that both depended on the nucleophile concentration were observed for both solvents. Substitution of coordinated methanol is about 40 times faster than the substitution of chloride. In acetonitrile, the rate constant for the displacement of coordinated acetonitrile was more than 20 times faster than the substitution of chloride. The reported activation parameters indicate that both reaction steps follow a dissociative mechanism in both solvents. On going from methanol to acetonitrile, the rate constant for the displacement of the solvent becomes more than 200 times faster due to the more labile acetonitrile, but the substitution mechanism remained to have a dissociative character. The antioxidant activities of were evaluated for superoxide dismutase (SOD), glutathione-s-transferase (GST0 and glutathione reduced (GSH-Rd) activity. and were found to show (p reaction rate depended linearly on the complex concentration, indicating a first-order dependence on the catalyst concentration.

  1. Synthesis and Structure of a New Copper(II)Complex Cu(C13H9N3O2Br)2·H2O

    张修堂; 詹晓平; 吴鼎铭; 杨文斌; 卢灿忠


    The new copper(II) complex Cu(C13H9N3O2Br)2@H2O (N-(2-hydroxy-5-bromo- benzoyl)-N?-(picolinylidene)hydrazine is abbreviated as HL ) was obtained from the refluxing solution of Cu(CH3COO)2H2O and HL in the ethanol-N, N-dimethylformamide mix solvent. Crystal data: triclinic, space group P ī, a = 10.8620(3), b = 11.7453 (3), c = 12.4417(2) ?, α = 62.255(0), β = 79.097(2), γ = 86.764(2)°, V = 1378.52(6) ?3, Z = 2, Mr = 719.835, Dc = 1.734 g/cm3, F(000) = 714, μ(MoKα) = 3.739 mm-1, T = 293(2) K, final R = 0.0594 and wR = 0.1416 for 2943 observed reflections with I > 2.0σ(I). The structure of Cu(C13H9N3O2Br)2@H2O has been determined by X-ray analysis and revealed that two L-1 ligands coordinate to the copper(Ⅱ) ion through two oxygen and two nitrogen atoms from the hydrazine groups and two pyridine nitrogen atoms to form an elongated and distorted square-bipyramidal environment for Cu(Ⅱ). The complex is also characterized by 1H NMR spectroscopies

  2. Synthesis and properties of one-dimensional Ni(Ⅱ) and Ni(Ⅱ)Cu(Ⅱ) complexes linked by hydrogen bond

    CUI; Jianzhong(崔建中); SHI; Wei(师唯); CHENG; Peng(程鹏); LIAO; Daizheng(廖代正); YAN; Shiping(阎世平); JIANG; Zonghui(姜宗慧); WANG; Genglin(王耕霖); YAO; Xinkan(姚心侃); WANG; Honggen(王宏根)


    Four dithiooxalato (Dto) bridged one-dimensional Ni(II) and Ni(II)Cu(II) complexes (Me6[14]dieneN4)Ni2(Dto)2) (1), (Me6[14]dieneN4)CuNi(Dto)2 (2), (Me6[14]aneN4)Ni2(Dto)2 (3), and (Me6[14]aneN4)CuNi(Dto)2 (4), were synthesized. These complexes have been characterized by elemental analysis, IR, UV and ESR spectra. The crystal structure of complex 3 was determined. It crystallizes in the monoclinic system, space group C2/c with a = 2.2425(4) nm, b = 1.0088(2) nm, c = 1.4665(3) nm, β = 125.32(3)° ; Z = 4; R = 0.076, Rw = 0.079. In the complex, Ni(1) coordinates four sulphur atoms of two Dto ligands in plane square environment. Ni(2) lies in the center of macrocyclic ligand. For Dto ligand, two sulphur atoms coordinate Ni(1), and O(1) coordinates Ni(2) and forms weak coordination bond. O(2) is linked to N(2) of macrocyclic ligand through hydrogen bond.

  3. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.


    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  4. Synthesis and physiochemical studies on binuclear Cu(II) complexes derived from 2,6-[(N-phenylpiperazin-1-yl)methyl]-4-substituted phenols

    S Karthikeyan; T M Rajendiran; R Kannappan; R Mahalakshmy; R Venkatesan; P Sambasiva Rao


    Preparation of the ligands HL1= 2,6-[(N-phenylpiperazin-1-yl)methyl]--ethylphenol; HL2 = 2,6-[(N-phenylpiperazin-1-yl)methyl]--methoxyphenol and HL3 = 2,6-[(N-phenylpiperazin-1-yl)methyl]--nitrophenol are described together with their Cu(II) complexes with different bridging units. The exogenous bridges incorporated into the complexes are: hydroxo [Cu2L(OH)(H2O)2](ClO4)2.H2O(L1 = 1a, L2 = 1b, L3 = 1c), acetato [Cu2L(OAc)2]ClO4.H2O (L1 = 2a, L2 = 2b, L3 = 2c) and nitrito [Cu2L1(NO2)2(H2O)2]ClO4.H2O (L1 = 3a, L2 = 3b, L3 = 3c). Complexes 1a, 1b, 1c and 2a, 2b, 2c contain bridging exogenous groups, while 3a, 3b, 3c possess only open -phenolate structures. Both the ligands and complexes were characterized by spectral studies. Cyclic voltammetric investigation of these complexes revealed that the reaction process involves two successive quasireversible one-electron steps at different potentials. The first reduction potential is sensitive to electronic effects of the substituents at the aromatic ring of the ligand system, shifting to positive potentials when the substituents are replaced by more electrophilic groups. EPR studies indicate very weak interaction between the two copper atoms. Various covalency parameters have been calculated.

  5. In vitro DNA binding profile of enantiomeric dinuclear Cu(II)/Ni(II) complexes derived from l-/d-histidine-terepthaldehyde reduced Schiff base as potential chemotherapeutic agents.

    Yousuf, Imtiyaz; Arjmand, Farukh


    New chiral reduced Schiff base ligands, L1 and L2 derived from l-/d-histidine and terepthaldehyde, and their Cu(II) and Ni(II) dinuclear complexes 1 &2 (a and b) were synthesized and thoroughly characterized by various spectroscopic techniques. Comparative binding profile of both l-/d-enantiomeric Cu(II) and Ni(II) complexes with ct-DNA was studied by employing optical and spectroscopic techniques to evaluate their enantiopreferential selectivity towards molecular target DNA and thereby explore their relative chemotherapeutic potential. Quantitative assessment of DNA binding propensity was ascertained by calculating Kb, K and Ksv values of 1 &2 (a and b) which demonstrated higher binding affinity of l-enantiomeric Cu(II) complex, 1a and followed the order as 1a>1b>2a>2b. Scanning electron microscopy (SEM) was used to analyze the morphological changes of the DNA condensate in presence of complexes 1 (a and b). The SEM micrographs condensates revealed morphological transitions and formation of different structural features implicating the condensation process between the complexes and biomolecule occurred to form compact massive structures. The gel electrophoretic assay of complex 1a was carried out with pBR322 plasmid DNA which revealed an efficient cleaving ability of the complex via oxidative pathway with the involvement of singlet oxygen ((1)O2) and the superoxide anion (O2(•-)) radicals as the ROS responsible the cleavage reactions. Molecular docking studies of 1 (a and b) with DNA revealed selective recognition of G-C residues of the narrow minor groove of the DNA duplex and complex 1a demonstrated binding affinity towards DNA ascertained from its higher binding energy values. Furthermore, the cytotoxic assessment of 1a was examined on a panel of cancer cell lines of different histological origin employing SRB assay which revealed remarkably good cytotoxic activity towards HL60, HeLa and MCF7 cancer cell lines.

  6. Development and molecular modeling of Co(II, Ni(II and Cu(II complexes as high acting anti breast cancer agents

    S.A. Deodware


    Full Text Available A series of cobalt, nickel and copper complexes of bidentate Schiff base derived from the condensation reaction of 4-amino-5-mercapto-3-methyl-1,2,4-triazole with 2-nitrobenzaldehyde had been synthesized. The synthesized Schiff base and their metal complexes have been characterized with the support of more than a few physicochemical techniques, elemental evaluation, magnetic moment measurements, spectroscopic, thermo gravimetric techniques and X-ray powder diffraction. Spectral analysis exhibits square planer geometry for Cu(II complex while octahedral geometry for Co(II and Ni(II complexes. The Schiff base and their complexes have been screened for their anticancer activity using MCF7 cell line. In molecular docking learn exhibits that Ni(II complex is more active confirmed quantity of interaction in particular hydrogen bond interaction with ASN142 and charge interactions with ASP97 and GLU99.

  7. Accomplishing simple, solubility-based separations of rare earth elements with complexes bearing size-sensitive molecular apertures.

    Bogart, Justin A; Cole, Bren E; Boreen, Michael A; Lippincott, Connor A; Manor, Brian C; Carroll, Patrick J; Schelter, Eric J


    Rare earth (RE) metals are critical components of electronic materials and permanent magnets. Recycling of consumer materials is a promising new source of rare REs. To incentivize recycling, there is a clear need for the development of simple methods for targeted separations of mixtures of RE metal salts. Metal complexes of a tripodal hydroxylaminato ligand, TriNOx(3-), featured a size-sensitive aperture formed of its three η(2)-(N,O) ligand arms. Exposure of cations in the aperture induced a self-associative equilibrium comprising RE(TriNOx)THF and [RE(TriNOx)]2 species. Differences in the equilibrium constants Kdimer for early and late metals enabled simple separations through leaching. Separations were performed on RE1/RE2 mixtures, where RE1 = La-Sm and RE2 = Gd-Lu, with emphasis on Eu/Y separations for potential applications in the recycling of phosphor waste from compact fluorescent light bulbs. Using the leaching method, separations factors approaching 2,000 were obtained for early-late RE combinations. Following solvent optimization, >95% pure samples of Eu were obtained with a 67% recovery for the technologically relevant Eu/Y separation.

  8. The Nokomis Cu-Ni-PGE Deposit, Duluth Complex: A sulfide-bearing, crystal-laden magmatic slurry

    Peterson, D. M.


    Duluth Metals Limited’s Nokomis deposit is the most recently discovered Cu-Ni-PGE deposit in the 1.1 Ga. Duluth Complex, Minnesota. The deposit was discovered utilizing a genetic ore deposit model that identified and back-tracked channelized magma flow within the basal zone of the South Kawishiwi intrusion (SKI). The model led to exploratory drilling in 2006, deposit discovery and initial resource estimation in 2007, and significant resource expansion in 2008, all in a period of 18 months. The deposit’s updated 2008 NI 43-101 compliant Resource Estimate, based on 108 holes drilled by Duluth Metals and 52 historic drill holes on and off the property, contains 449 million tonnes of Indicated Resources grading 0.624% copper, 0.199% nickel, and 0.600 grams per tonne of total precious metals (TPM = Platinum+Palladium+Gold), and an additional 284 million tonnes of Inferred Resources grading 0.627% copper, 0.194% nickel, and 0.718 grams per tonne of TPM. The combined Indicated and Inferred Resources contain approximately 10 billion lbs Cu, 3.1 billion lbs Ni, 165 million lbs Co, 4 million ounces Pt, 9 million ounces Pd, and 2 million ounces of Au. Within these NI 43-101 resources are large tonnages of higher grade material, and the company has commenced an internal research program to identify the geologic controls on the formation nickel-rich and PGE-rich mineralization in the SKI, as well as copper-PGE rich mineralization in the footwall Archean rocks. To date, Duluth Metals has drilled more than 500,000 Ft. (~155,000 m) of core in 155 holes into the deposit, and has only drilled about half of the property. The ore deposit model was developed in cooperation with researchers from the Natural Resources Research Institute of the University of Minnesota, Duluth. As well, research and collaboration with faculty and students at Johns Hopkins University on the Ferrar Dolerites of the Antarctic Dry Valleys has played a key role in developing the magmatic model for the

  9. Synthesis, characterization and anti-fungal evaluation of Ni(II and Cu(II complexes with a derivative of 4-aminoantipyrine

    Monika Tyagi


    Full Text Available Transition metal complexes of Ni(II and Cu(II metal ions with the general stoichiometry [M(LX]X and [M(LSO4], where M = Ni(II and Cu(II, L = (1E-N-((5-((E-(2,3-dimethyl-1-phenyl-4-pyrazolineiminomethylthiophen-2-ylmethylene-2,3-dimethyl-1-phenyl-4-pyrazolineamine and X = Cl−, NO3− and SO42−, have been synthesized and characterized. The synthesized ligand and metal complexes were characterized by 1H NMR, IR, mass spectrometry, UV–Vis spectra and EPR. In molecular modelling, the geometries of the Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31g(d,p basis set. The nickel(II complexes were found to have octahedral geometry, whereas the copper(II complexes were of tetragonal geometry. The covalency factor (β and orbital reduction factor (k suggest the covalent nature of the complexes. To develop broad spectrum new molecules against seed-borne fungi, the minimum inhibitory concentration (MIC of the ligand and its metal complexes was evaluated by the serial dilution method.

  10. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong


    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1 ~ 4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.

  11. Synthesis, characterization, DNA/protein interaction and cytotoxicity studies of Cu(II) and Co(II) complexes derived from dipyridyl triazole ligands.

    Zhang, Wei; Yao, Di; Wei, Yi; Tang, Jie; Bian, He-Dong; Huang, Fu-Ping; Liang, Hong


    Four different transition metal complexes containing dipyridyl triazole ligands, namely [Cu(abpt)2Cl2]·2H2O (1), [Cu(abpt)2(ClO4)2] (2), [Co2(abpt)2(H2O)2Cl2]·Cl2·4H2O (3) and [Co2(Hbpt)2(CH3OH)2(NO3)2] (4) have been designed, synthesized and further structurally characterized by X-ray crystallography, ESI-MS, elemental analysis, IR and Raman spectroscopy. In these complexes, the both ligands act as bidentate ligands with N, N donors. DNA binding interactions with calf thymus DNA (ct-DNA) of the ligand and its complexes 1~4 were investigated via electronic absorption, fluorescence quenching, circular dichroism and viscosity measurements as well as confocal Laser Raman spectroscopy. The results show these complexes are able to bind to DNA via the non-covalent mode i.e. intercalation and groove binding or electrostatic interactions. The interactions with bovine serum albumin (BSA) were also studied using UV-Vis and fluorescence spectroscopic methods which indicated that fluorescence quenching of BSA by these compounds was the presence of both static and dynamic quenching. Moreover, the in vitro cytotoxic effects of the complexes against four cell lines SK-OV-3, HL-7702, BEL7404 and NCI-H460 showed the necessity of the coordination action on the biological properties on the respective complex and that all four complexes exhibited substantial cytotoxic activity.

  12. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  13. Soluble NCAM

    Secher, Thomas


    The neural cell adhesion molecule (NCAM) is a membrane-bound glycoprotein involved in homophilic interactions that facilitate cell-cell adhesion. In addition to a number of membrane-bound isoforms, NCAM also exists in several soluble isoforms that have been identified in cerebrospinal fluid, bloo...

  14. Acute toxicity and mutagenicity of the copper complex of pyruvaldehyde-bis (N-4-methylthiosemicarbazone), Cu-PTSM.

    Kostyniak, P J; Nakeeb, S M; Schopp, E M; Maccubbin, A E; John, E K; Green, M A; Kung, H F


    Cu-PTSM is a potential imaging agent for the heart and brain when labeled with either 64Cu or 62Cu. Unlabeled Cu-PTSM was evaluated for its acute toxicity and mutagenicity. Cu-PTSM had an i.v. LD50 of 26 mg kg-1 in the rat and 2 mg kg-1 in the rabbit. At necropsy, rats exhibited severely hemorrhagic lungs, histological findings of acute pulmonary congestion, hemorrhage and edema, and mild congestion in kidney, liver and brain. The rabbit displayed marked polymorphonuclear infiltration in alveoli, peribronchial and periarterial areas with marked macrophage hyperplasia, congestion and mild hemorrhage into alveolar spaces. No effects were found in kidney, liver, testes or brain. Administration of 2.16 micrograms kg-1 day-1 for 5 days per week for 2 weeks resulted in no changes in histopathology, hematology or clinical chemistry parameters. This daily dose is at least 300 times the diagnostic dose intended for use in man. Cu-PTSM was not mutagenic when tested in the absence of S9 supernatant, but elicited a weakly mutagenic response in the presence of S9. Since acute effects in the lung occur at doses approaching 300,000 times the diagnostic dose, it is highly unlikely that the clinical use of Cu-PTSM would result in any acute adverse effects.

  15. Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity.

    Chantarojsiri, Teera; Sun, Yujie; Long, Jeffrey R; Chang, Christopher J


    We report the photochemical generation and study of a family of water-soluble iron(IV)-oxo co