WorldWideScience

Sample records for soluble acid invertase

  1. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis.

    Science.gov (United States)

    Pek, Han Bin; Lim, Pei Yu; Liu, Chengcheng; Lee, Dong-Yup; Bi, Xuezhi; Wong, Fong Tian; Ow, Dave Siak-Wei

    2017-05-01

    To evaluate the secretory and cytoplasmic expression of a thermostable Thermogata maritima invertase in Lactococcus lactis. The thermostable invertase from T. maritima was cloned with and without the USP45 secretory peptide into the pNZ8148 vector for nisin-inducible expression in L. lactis. The introduction of an USP45 secretion peptide at the N-terminal of the enzyme led to a loss of protein solubility. Computational homology modeling and hydrophobicity studies indicated that the USP45 peptide exposes a stretch of hydrophobic amino acids on the protein surface resulting in lower solubility. Removal of the USP45 secretion peptide allowed a soluble and functional invertase to be expressed intracellularly in L. lactis. Immobilized metal affinity chromatography purification of the cell lysate with nickel-NTA gave a single protein band on SDS-PAGE, while E. coli-expressed invertase consistently co-purified with an additional band. The yields of the purified invertase from E. coli and L. lactis were 14.1 and 6.3 mg/l respectively. Invertase can be expressed in L. lactis and purified in a functional form. L. lactis is a suitable host for the production of food-grade invertase for use in the food and biotechnology industries.

  2. Cloning and characterization of acid invertase genes in the roots of the metallophyte Kummerowia stipulacea (Maxim.) Makino from two populations: Differential expression under copper stress.

    Science.gov (United States)

    Zhang, Luan; Xiong, Zhi-ting; Xu, Zhong-rui; Liu, Chen; Cai, Shen-wen

    2014-06-01

    The roots of metallophytes serve as the key interface between plants and heavy metal-contaminated underground environments. It is known that the roots of metallicolous plants show a higher activity of acid invertase enzymes than those of non-metallicolous plants when under copper stress. To test whether the higher activity of acid invertases is the result of increased expression of acid invertase genes or variations in the amino acid sequences between the two population types, we isolated full cDNAs for acid invertases from two populations of Kummerowia stipulacea (from metalliferous and non-metalliferous soils), determined their nucleotide sequences, expressed them in Pichia pastoris, and conducted real-time PCR to determine differences in transcript levels during Cu stress. Heterologous expression of acid invertase cDNAs in P. pastoris indicated that variations in the amino acid sequences of acid invertases between the two populations played no significant role in determining enzyme characteristics. Seedlings of K. stipulacea were exposed to 0.3µM Cu(2+) (control) and 10µM Cu(2+) for 7 days under hydroponics׳ conditions. The transcript levels of acid invertases in metallicolous plants were significantly higher than in non-metallicolous plants when under copper stress. The results suggest that the expression of acid invertase genes in metallicolous plants of K. stipulacea differed from those in non-metallicolous plants under such conditions. In addition, the sugars may play an important role in regulating the transcript level of acid invertase genes and acid invertase genes may also be involved in root/shoot biomass allocation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... intron. It had a high homology to previously cloned cell wall acid invertase genes in other plants by sequence .... Japan) in a final volume of 50 µl. The programs for ... The first strand of cDNA was synthesized by using SYBR ...

  4. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    A fragment of invertase gene containing catalytic sites of cysteine was cloned from poinsettia (Euphorbia pulcherrima wild.) by using the polymerase chain reaction (PCR) method. The length of the fragment was 521 bp, encoding 173 amino acids and containing a part of open reading frames, but no intron. It had a high ...

  5. CHANGES OF SUCROSE CONTENT AND INVERTASE ACTIVITY DURING SUGARCANE STEM STORAGE

    Directory of Open Access Journals (Sweden)

    Tri Agus Siswoyo

    2016-10-01

    Full Text Available Invertases (beta-D-fructofuranosidase, E.C. 3.2.1.26 are the key enzymes involved in sucrose metabolism in sugarcane plants. They are highly correlated with sucrose and reducing sugar contents during plant growth. The sugarcane plants have two kinds of invertases, namely neutral invertase (NI and acid invertase (AI. They have different function in sucrose accumulation. The research aimed to study the role of AI and NI in accumulation of reducing sugar during storage of sugarcane stems. Plant materials of 18-month-old field grown sugarcane of the commercial variety R-579 (wet-land and M 442-51 (dry-land were used. Three internodes were sampled to represent immature (internode 1-8/F1, maturing (internode 9-16/F2, and mature (internode 17-24/F3 stem tissues. All tissues were stored for 0-9 days at room temperature (28-32oC and each day, the samplewas extracted to determine invertase activity, total soluble protein, and sugar contents. This observation was valid for invertase activity expressed on a protein basis. At the initiateharvested (0-3 days, NI had a higher specific activity than AI in the sucrose-accumulating region of the sugarcane stems. Negative significant correlation was found between NI specific activity and sucrose accumulation (r2 = 0.41, P < 0.05. AI showed a higher specific activity after 4 days harvested and had negative correlation with sucrose accumulation (r2 = 0.40, P < 0.05. These results showed that NI could be more  responsible in sucrose hydrolisis than AI at early storage of sugarcane stems.

  6. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  7. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  8. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  9. Invertase and sucrose synthase activities in coffee plants sprayed with sucrose solution Atividade de invertases e sacarose sintase em plantas de cafeeiro pulverizadas com solução de sacarose

    Directory of Open Access Journals (Sweden)

    José Carlos da Silva

    2003-01-01

    Full Text Available One management practice of which the efficiency has not yet been scientifically tested is spraying coffee plants with diluted sucrose solutions as a source of carbon for the plant. This paper evaluates the effect of foliar spraying with sugar on the endogenous level of carbohydrates and on the activities of invertase and sucrose synthase in coffee (Coffea arabica L. seedlings with reduced (low and high (normal levels of carbon reserve. The concentrations used were 0.5 and 1.0% sucrose, and water as a control. The use of sucrose at 1.0% caused an increase in the concentration of total soluble sugars in depauperate plants, as well as increased the activity of the following enzymes: cell wall and vacuole acid invertase, neutral cytosol invertase and sucrose synthase. In plants with high level of carbon reserve, no increments in total soluble sugar levels or in enzymatic activity were observed. Regardless of treatments or plants physiological state, no differences in transpiration or stomatal conductance were observed, demonstrating the stomatal control of transpiration. Photosynthesis was stimulated with the use of 0.5 and 1.0 % sucrose only in depauperate plants. Coffee seedling spraying with sucrose is only efficient for depauperate plants, at the concentration of 1.0%.Uma prática cuja eficiência não foi ainda comprovada cientificamente, é a pulverização dos cafeeiros com solução diluída de sacarose, como fonte de carbono para as plantas. Este trabalho visou estudar o efeito da pulverização de açúcar via folha nos teores endógenos de carboidratos e na atividade das enzimas invertases e sacarose sintase em mudas de cafeeiros (Coffea arabica L. com baixo (baixo e alto (normal nível de reservas de carbono. As pulverizações ocorreram nas concentrações de 0,5 e 1% de sacarose utilizando-se água como testemunha. A aplicação de sacarose a 1% aumentou a concentração de açúcares solúveis totais (AST em plantas depauperadas, como

  10. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    Directory of Open Access Journals (Sweden)

    Celso Cortés-Romero

    Full Text Available Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  11. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    Science.gov (United States)

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  12. Foliar carbohydrates content and invertase activity in vines at São Francisco River Valley - Brazil Teores foliares de carboidratos e atividade de invertases em videiras no Vale do Rio São Francisco- Brasil

    Directory of Open Access Journals (Sweden)

    Barbara França Dantas

    2005-08-01

    Full Text Available The irrigated agriculture at the São Francisco River Valley, Northeast Brazil, shows an increasing production of grapes for winery. Among the wines produced there the one obtained from Vitis vinifera L., cultivar Syrah, stands out due to its adaptation to the climatic conditions of the region. However, little is known about carbohydrates metabolism of vines cultivated in this region. The objective of this work was to evaluate sugar and starch contents and the invertase activity in vines leaves during two consecutive growing seasons. The experiment was carried out at Embrapa Semi-Árido and at Santa Maria Winery, respectively located in Petrolina and Lagoa Grande, Pernambuco-Brazil. Leaves were collected weekly from January to December of 2003 and assessed for reducing sugars, total soluble sugars and starch contents, as well as for acid (AI and neutral invertases (NI. The results showed that reducing sugars, total soluble sugars and starch contents increased during fruit maturation and are influenced by temperature, radiation and insolation variations. The second growing season showed higher reducing sugars and total soluble sugars content and lower starch content in the leaves than the first one. AI activity was higher than NI activity and these also varied according to weather conditions. During berries ripening, leaves showed higher sugar content and invertase activity, suggesting a higher sugar metabolism and transport during this phase.O pólo de agricultura irrigada do Vale do Rio São Francisco apresenta um crescente aumento na produção de uvas para vinificação. Entre os vinhos finos produzidos na região, destaca-se aquele obtido da cultivar Syrah, que se adaptou bem às condições climáticas da região. Pouco se conhece, no entanto, sobre o metabolismo de carboidratos das videiras nessa região. O objetivo deste trabalho foi avaliar os teores de açúcares e de amido, bem como a atividade de invertases durante dois ciclos de

  13. INVERTASE FROM A CANDIDA STELLATA STRAIN ISOLATED FROM GRAPE: PRODUCTION AND PHYSICO-CHEMICAL CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Cristiane Abe Gargel

    2014-08-01

    Full Text Available Invertases are enzymes which hydrolyze the sucrose and are widely employed in food and pharmaceutical industries. In this work, the screening of autochthonous grape yeasts from Brazil was carried out in order to investigate their invertase production potential. Yeasts belonging to Saccharomyces, Hanseniaspora, Sporidiobolus, Issatchenkia, Candida, Cryptococcus and Pichia genera were analyzed by submerged fermentation (SbmF using sucrose as substrate. Among them, Candida stellata strain (N5 strain was selected as the best producer (10.6 U/ml after 48 hours of SbmF. This invertase showed optimal activity at pH 3.0 and 55°C, demonstrating appropriate characters for application in several industrial processes, which includes high temperatures and acid pHs. In addition, this invertase extract presented tolerance to low concentrations of ethanol, suggesting that it could also be suitable for application at the beginning of alcoholic fermentation. These data provide promising prospects of the use of this new invertase in food and ethanol industry.

  14. Vacuolar invertase gene silencing in potato (Solanum tuberosum L. improves processing quality by decreasing the frequency of sugar-end defects.

    Directory of Open Access Journals (Sweden)

    Xiaobiao Zhu

    Full Text Available Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form dark-colored Maillard reaction products during frying. Acrylamide is another Maillard reaction product formed from reducing sugars and acrylamide consumption has raised health concerns worldwide. Vacuolar invertase gene (VInv expression was suppressed in cultivars Russet Burbank and Ranger Russet using RNA interference to determine if this approach could control sugar-end defect formation. Acid invertase activity and reducing sugar content decreased at both ends of tubers. Sugar-end defects and acrylamide in fried potato strips were strongly reduced in multiple transgenic potato lines. Thus vacuolar invertase silencing can minimize a long-standing French fry quality problem while providing consumers with attractive products that reduce health concerns related to dietary acrylamide.

  15. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Directory of Open Access Journals (Sweden)

    F. Veana

    2014-06-01

    Full Text Available Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents; the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid. Results indicated that, the enzymatic yield (5231 U/L is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse.

  16. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1

    Science.gov (United States)

    Veana, F.; Martínez-Hernández, J.L.; Aguilar, C.N.; Rodríguez-Herrera, R.; Michelena, G.

    2014-01-01

    Agro-industrial wastes have been used as substrate-support in solid state fermentation for enzyme production. Molasses and sugarcane bagasse are by-products of sugar industry and can be employed as substrates for invertase production. Invertase is an important enzyme for sweeteners development. In this study, a xerophilic fungus Aspergillus niger GH1 isolated of the Mexican semi-desert, previously reported as an invertase over-producer strain was used. Molasses from Mexico and Cuba were chemically analyzed (total and reducer sugars, nitrogen and phosphorous contents); the last one was selected based on chemical composition. Fermentations were performed using virgin and hydrolyzate bagasse (treatment with concentrated sulfuric acid). Results indicated that, the enzymatic yield (5231 U/L) is higher than those reported by other A. niger strains under solid state fermentation, using hydrolyzate bagasse. The acid hydrolysis promotes availability of fermentable sugars. In addition, maximum invertase activity was detected at 24 h using low substrate concentration, which may reduce production costs. This study presents an alternative method for invertase production using a xerophilic fungus isolated from Mexican semi-desert and inexpensive substrates (molasses and sugarcane bagasse). PMID:25242918

  17. Gibberellin (GA3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots

    Science.gov (United States)

    Wu, L. L.; Mitchell, J. P.; Cohn, N. S.; Kaufman, P. B.

    1993-01-01

    The invertase (EC 3.2.1.26) purified from cell walls of dwarf pea stems to homogeneity has a molecular mass of 64 kilodaltons (kD). Poly(A)+RNA was isolated from shoots of dwarf pea plants, and a cDNA library was constructed using lambda gt11 as an expression vector. The expression cDNA library was screened with polyclonal antibodies against pea cell wall invertase. One invertase cDNA clone was characterized as a full-length cDNA with 1,863 base pairs. Compared with other known invertases, one homologous region in the amino acid sequence was found. The conserved motif, Asn-Asp-Pro-Asn-Gly, is located near the N-terminal end of invertase. Northern blot analysis showed that the amount of invertase mRNA (1.86 kb) was rapidly induced to a maximal level 4 h after GA3 treatment, then gradually decreased to the control level. The mRNA level at 4 h in GA3-treated peas was fivefold higher than that of the control group. The maximal increase in activity of pea cell wall invertase elicited by GA3 occcured at 8 h after GA3 treatment. This invertase isoform was shown immunocytochemically to be localized in the cell walls, where a 10-fold higher accumulation occurred in GA3-treated tissue compared with control tissue. This study indicates that the expression of the pea shoot cell-wall invertase gene could be regulated by GA3 at transcriptional and/or translational levels.

  18. Solubility of xenon in amino-acid solutions. II. Nine less-soluble amino acids

    Science.gov (United States)

    Kennan, Richard P.; Himm, Jeffrey F.; Pollack, Gerald L.

    1988-05-01

    Ostwald solubility (L) of xenon gas, as the radioisotope 133Xe, has been measured as a function of solute concentration, at 25.0 °C, in aqueous solutions of nine amino acids. The amino-acid concentrations investigated covered much of their solubility ranges in water, viz., asparagine monohydrate (0-0.19 M), cysteine (0-1.16 M), glutamine (0-0.22 M), histidine (0-0.26 M), isoleucine (0-0.19 M), methionine (0-0.22 M), serine (0-0.38 M), threonine (0-1.4 M), and valine (0-0.34 M). We have previously reported solubility results for aqueous solutions of six other, generally more soluble, amino acids (alanine, arginine, glycine, hydroxyproline, lysine, and proline), of sucrose and sodium chloride. In general, L decreases approximately linearly with increasing solute concentration in these solutions. If we postulate that the observed decreases in gas solubility are due to hydration, the results under some assumptions can be used to calculate hydration numbers (H), i.e., the number of H2O molecules associated with each amino-acid solute molecule. The average values of hydration number (H¯) obtained at 25.0 °C are 15.3±1.5 for asparagine, 6.8±0.3 for cysteine, 11.5±1.1 for glutamine, 7.3±0.7 for histidine, 5.9±0.4 for isoleucine, 10.6±0.8 for methionine, 11.2±1.3 for serine, 7.7± 1.0 for threonine, and 6.6±0.6 for valine. We have also measured the temperature dependence of solubility L(T) from 5-40 °C for arginine, glycine, and proline, and obtained hydration numbers H¯(T) in this range. Between 25-40 °C, arginine has an H¯ near zero. This may be evidence for an attractive interaction between xenon and arginine molecules in aqueous solution.

  19. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  20. Immobilization of periodate oxidized invertase by adsorption on sepiolite

    Directory of Open Access Journals (Sweden)

    RADIVOJE M. PRODANOVIC

    2003-11-01

    Full Text Available Periodate oxidized invertase was immobilized by adsorption on sepiolite. The obtained immobilized enzyme was more resistant to washing out by concentrated salt solution, and had an eight times higher half-life at 60ºC than adsorbed native invertase. In packed bed reactor 50 % conversion of 500 g/dm3 sucrose at 40ºC and a flow rate of 1 bv/h was achieved. The specific productivity of the immobilized invertase was 0.187 kg/dm3/h.

  1. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  2. Solubility of sparingly soluble drug derivatives of anthranilic acid.

    Science.gov (United States)

    Domańska, Urszula; Pobudkowska, Aneta; Pelczarska, Aleksandra

    2011-03-24

    This work is a continuation of our systematic study of the solubility of pharmaceuticals (Pharms). All substances here are derivatives of anthranilic acid, and have an anti-inflammatory direction of action (niflumic acid, flufenamic acid, and diclofenac sodium). The basic thermal properties of pure Pharms, i.e., melting and glass-transition temperatures as well as the enthalpy of melting, have been measured with the differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The equilibrium mole fraction solubilities of three pharmaceuticals were measured in a range of temperatures from 285 to 355 K in three important solvents for Pharm investigations: water, ethanol, and 1-octanol using a dynamic method and spectroscopic UV-vis method. The experimental solubility data have been correlated by means of the commonly known G(E) equation: the NRTL, with the assumption that the systems studied here have revealed simple eutectic mixtures. pK(a) precise measurement values have been investigated with the Bates-Schwarzenbach spectrophotometric method. © 2011 American Chemical Society

  3. Hyperproduction and Thermal Characterization of a Novel Invertase from a Double Mutant Derivative of Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Muhammad Ibrahim Rajoka

    2011-01-01

    Full Text Available Kinetics of intracellular invertase production employing a double mutant derivative of Kluyveromyces marxianus was optimized by varying different process variables in a 23-litre fermentor. The maximum volumetric rate (QP and invertase yield (YP/S by M15 mutant were 1222 U/(L·h and 160 U/g of substrate utilized, respectively (2-fold more than those of parental strain at 50 °C on the molasses (150 g/L of total fermentable sugars at pH=5.5. Glucose or sucrose (100, 150 or 170 g/L did not repress invertase catabolically under the optimized fermentation conditions, contrary to the previous reports on other yeasts and filamentous fungi, where catabolite repression of sugars was predominant. Invertases derived by the wild (IW and mutant (IM strains were purified employing ammonium sulphate precipitation, and then characterized by column chromatographic techniques both kinetically and thermodynamically. The acidic limb of invertases was missing and collation of pKa and the heat of ionization values indicated that carboxyl groups were involved in proton transfer during active catalysis. Ratios of Kcat/Km and vmax/Km indicated that IM was significantly more specific for sucrose hydrolysis. The IM exhibited stability in different buffers at pH=3.0–10.0 and temperature of 50–70 °C, as reflected by long half-lives. IM showed significantly lower values of enthalpy of activation (ΔH* and entropy of activation (ΔS*, while Gibbs free energy (ΔG* was significantly increased at higher temperatures, making the IM thermodynamically more thermostable. Thus IM could be used as a catabolite-resistant invertase for the production of fructose syrup or high gravity ethanol.

  4. Metabolic control of tobacco pollination by sugars and invertases

    DEFF Research Database (Denmark)

    Goetz, Marc; Guivarc'h, Anne; Hirsche, Jörg

    2017-01-01

    that the functional coupling of sucrose cleavage by invertases and uptake of the released hexoses by monosaccharide transporters are critical for pollination in tobacco. Transcript profiling, in situ hybridization and immunolocalization of extracellular invertases and two monosaccharide transporters in vitro...

  5. Invertase proteinaceous inhibitor of Cyphomandra betacea Sendt fruits.

    Science.gov (United States)

    Ordóñez, R M; Isla, M I; Vattuone, M A; Sampietro, A R

    2000-01-01

    This work describes a new invertase proteinaceous inhibitor from Cyphomandra betacea Sendt. (tomate de arbol) fruits. The proteinaceous inhibitor was isolated and purified from a cell wall preparation. The pH stability, kinetics of the inhibition of the C. betacea invertase, inhibition of several higher plant invertases and lectin nature of the inhibitor were studied. The inhibitor structure involves a single polypeptide (Mr = 19000), as shown by gel filtration and SDS-PAGE determinations. N-terminal aminoacid sequence was determined. The properties and some structural features of the inhibitor are compared with the proteinaceous inhibitors from several plant species (Beta vulgaris L., Ipomoea batatas L. and Lycopersicon esculentum Mill.). All these inhibitors share lectinic properties, some common epitopes, some aminoacid sequences and a certain lack of specificity towards invertases of different species, genera and even plant family. In consequence, the inhibitors appear to belong to the same lectin family. It is now known that some lectins are part of the defence mechanism of higher plants against fungi and bacteria and this is a probable role of the proteinaceous inhibitors.

  6. Auxin and Cell Wall Invertase Related Signaling during Rice Grain Development

    Directory of Open Access Journals (Sweden)

    Sarah Russell French

    2014-02-01

    Full Text Available Indole-3-acetic acid (IAA synthesis is required for grain-fill in maize and appears to be regulated by cell-wall invertase (CWIN activity. OsYUC12 is one of three IAA biosynthesis genes we previously reported as expressed during early rice grain development, correlating with a large increase in IAA content of the grain. This work aimed to investigate further the role of OsYUC12 and its relationship to CWIN activity and invertase inhibitors (INVINH. The analysis shows a brief peak of OsYUC12 expression early in endosperm development. Meta-analysis of microarray data, confirmed by quantitative expression analysis, revealed that OsYUC12 is coexpressed with OsIAA29, which encodes an unusual AUX/IAA transcription factor previously reported as poorly expressed. Maximum expression of OsYUC12 and OsIAA29 coincided with maximum CWIN activity, but also with a peak in INVINH expression. Unlike ZmYUC1, OsYUC12 expression is not reduced in the rice CWIN mutant, gif1. Several reports have investigated CWIN expression in rice grains but none has reported on expression of INVINH in this species. We show that rice has 54 genes encoding putative invertase/pectin methylesterase inhibitors, seven of which are expressed exclusively during grain development. Our results suggest a more complex relationship between IAA, CWIN, and INVINH than previously proposed.

  7. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

    Science.gov (United States)

    Lin, Yuan; Liu, Jun; Liu, Xun; Ou, Yongbin; Li, Meng; Zhang, Huiling; Song, Botao; Xie, Conghua

    2013-12-01

    The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  9. Fungal Invertase Expression in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Cuitlahuac Aranda

    2006-01-01

    Full Text Available In this study invertase activity expression in Aspergillus niger Aa-20 was evaluated under different concentrations of two substrates using solid-state fermentation (SSF on polyurethane foam. Glucose was used as repressor and sucrose was the inducer. Invertase production increased when glucose was present in the medium (up to 100 g/L; however, higher concentration than this reduced the enzyme production. Induction-repression ratio obtained using any glucose concentration was at least 2.5 times higher than that under basal conditions (without inducer.

  10. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  11. COVALENT IMMOBILIZATION OF INVERTASE ON EPOXY-ACTIVATED POLYANILINE FILMS

    Directory of Open Access Journals (Sweden)

    Loredana Vacareanu

    2013-08-01

    Full Text Available The growing interest in manufacturing and use of biosensors is their rapid and selective detection of the target analyte. The immobilization of the enzymes, onto the appropriate matrix is the key-step in the construction of biosensing devices, considerably affecting its performance. In this study, new polyaniline bearing epoxy groups was synthesized by electrochemical polymerization reactions, as adherent, green film deposited on electrode surface, and was further used as immobilization matrix for invertase enzyme. The immobilization was carried out by condensation reactions between the amino groups of the enzyme molecules and the epoxy groups of polyaniline film. The covalent attachment was achieved by simple immersing the epoxy-activated polyaniline in acetate buffer solution (10 mM, pH 6.0 containing 2mg/mL invertase, for 24 h at 4 ºC, by continuous stirring. The polyaniline films thus obtained were analyzed before and after the invertase attachment, by using FT-IR spectroscopy and SEM microscopy. The presence of the invertase was evaluated by measuring their activity, using UV-Vis spectroscopy, in the presence of a known amount of sucrose as a substrate. These tests, performed for three times under the same conditions, revealed that even after five washes of the polyaniline /invertase electrode to remove the unbounded enzyme, the enzyme remain attached on the polyaniline film, being able to hydrolyze the sucrose presented in the assay solutions.

  12. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  13. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    Science.gov (United States)

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-05-06

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale.

  14. A unique, highly conserved secretory invertase is differentially expressed by promastigote developmental forms of all species of the human pathogen, Leishmania

    Science.gov (United States)

    Lyda, Todd A.; Joshi, Manju B.; Andersen, John F.; Kelada, Andrew Y.; Owings, Joshua P.; Bates, Paul A.; Dwyer, Dennis M.

    2015-01-01

    Leishmania are protozoan pathogens of humans that exist as extracellular promastigotes in the gut of their sand fly vectors and as obligate intracellular amastigotes within phagolysosomes of infected macrophages. Between infectious blood meal feeds, sand flies take plant juice meals that contain sucrose and store these sugars in their crop. Such sugars are regurgitated into the sand fly anterior midgut where they impact the developing promastigote parasite population. In this report we showed that promastigotes of all Leishmania species secreted an invertase/sucrase enzyme during their growth in vitro. In contrast, neither L. donovani nor L. mexicana amastigotes possessed any detectable invertase activity. Importantly, no released/secreted invertase activity was detected in culture supernatants from either Trypanosoma brucei or Trypanosoma cruzi. Using HPLC, the L. donovani secretory invertase was isolated and subjected to amino acid sequencing. Subsequently, we used a molecular approach to identify the LdINV and LmexINV genes encoding the ~72 kDa invertases produced by these organisms. Interestingly, we identified high fidelity LdINV-like homologs in the genomes of all Leishmania sp. but none were present in either T. brucei or T. cruzi. Northern blot and RT-PCR analyses showed that these genes were developmentally/differentially expressed in promastigotes but not amastigotes of these parasites. Homologous transfection studies demonstrated that these genes in fact encoded the functional secretory invertases produced by these parasites. Cumulatively, our results suggest that these secretory enzymes play critical roles in the survival/growth/development and transmission of all Leishmania parasites within their sand fly vector hosts. PMID:25763714

  15. Dynamic analysis of sugar metabolism in different harvest seasons ...

    African Journals Online (AJOL)

    In pineapple fruits, sugar accumulation plays an important role in flavor characteristics, which varies according to the stage of fruit development. Metabolic changes in the contents of fructose, sucrose and glucose and reducing sugar related to the activities of soluble acid invertase (AI), neutral invertase (NI), sucrose ...

  16. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon).

    Science.gov (United States)

    Slugina, M A; Shchennikova, A V; Kochieva, E Z

    2017-10-01

    Understanding the genetic mechanisms underlying carbohydrate metabolism can promote the development of biotechnological advances in fruit plants. The flesh tomato fruit represents an ideal system for examining the role of sucrose cleavage enzymes in fruit development, and wild tomato species differing in storage sugars serve as an excellent research material for this purpose. Plant vacuolar invertase is a key enzyme of sucrose metabolism in the sink organs. In the present study, we identified complete gene sequences encoding the TAI vacuolar invertase in 11 wild and one cultivated tomato accessions of the Solanum section Lycopersicon. The average level of interspecific polymorphism in TAI genes was 8.58%; however, in the green-fruited tomatoes, the TAI genes contained 100 times more SNPs than those in the red-fruited accessions. The TAI proteins demonstrated 8% variability, whereas the red-fruited species had none. A TAI-based phylogenetic tree revealed two main clusters containing self-compatible and self-incompatible species, which concurs with the previous crossability-based division and demonstrates that the TAI genes reflect the evolutionary relationships between the red- and green-fruited tomatoes. Furthermore, we detected differential expression patterns of the TAI genes in the fruits of wild and cultivated tomatoes, which corresponded to sugar composition. The polymorphism analysis of the TAI acid invertases of Solanum section Lycopersicon species will contribute to the understanding of the genetic potential of TAI genes to impact tomato breeding through genetic engineering of the carbohydrate composition in the fruit.

  17. Method for immobilizing invertase by adsorption on Dowex® anionic exchange resin Método para a imobilização da invertase por adsorção em resinas trocadoras de ânions (DOWEX

    Directory of Open Access Journals (Sweden)

    Ester Junko Tomotani

    2006-06-01

    Full Text Available This communication describes a method for adsorbing the invertase (EC.3.2.1.26 on DOWEX® anion exchange resin. Among the types of DOWEX® resins studied (1x8:50-400; 1x4:50-400 and 1x2:100-400, 1X4-200 was the most suitable, because it adsorbed the invertase molecules completely and the complex 1X4-200/invertase retained 100% of the catalytic activity. Moreover, no leakage of enzyme from the support was noted at the end of the sucrose hydrolysis.O presente trabalho descreve um método de adsorção da invertase (EC. 3.2.1.26 na resina de troca aniônica do tipo Dowex®. Entre os tipos de resinas Dowex® estudados (1x8:50-400; 1x4:50-400 e 1x2:100-400, 1x4-200 foi a mais apropriada devido à completa adsorção das moléculas de invertase e a sua retenção de atividade catalítica de 100% do complexo 1x4-200/invertase. Salienta-se ainda a ausência do desprendimento da enzima do suporte após o término da hidrólise da sacarose.

  18. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  19. Poly(aspartic acid) with adjustable pH-dependent solubility.

    Science.gov (United States)

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract

  20. Solubility of salicylic acid in pure alcohols at different temperatures

    International Nuclear Information System (INIS)

    Lim, Junhyuk; Jang, Sunghyun; Cho, Hye Kyoung; Shin, Moon Sam; Kim, Hwayong

    2013-01-01

    Highlights: ► Solubility data of salicylic acid in pure alkanols were measured. ► The experimental data were correlated with NRTL, UNIQUAC and Wilson models. ► The data are fit well with all three models for the six pure alcohols studied. ► Adjustable interaction parameters were suggested. - Abstract: This work focused on the experimental measurements and the numerical calculations of the solubility of salicylic acid in various alcohols. The solubility of salicylic acid in pure alcohols was determined using a (solid + liquid) equilibrium measurement apparatus at temperatures ranging from (278.15 to 318.15) K. Also, the melting temperature and fusion enthalpy of salicylic acid were determined by a differential scanning calorimeter (TA instrument Q100). The experimental results were correlated with the equation for solubility of a solid in a liquid with the nonrandom two liquid (NRTL), universal quasi-chemical (UNIQUAC) and Wilson models for liquid phase activity coefficients to validate the quality of the data taken. Adjustable interaction parameters were also provided. The experimental data fit appropriately with all three models for the pure alcohols studied.

  1. Structure-property relationships in halogenbenzoic acids: Thermodynamics of sublimation, fusion, vaporization and solubility.

    Science.gov (United States)

    Zherikova, Kseniya V; Svetlov, Aleksey A; Kuratieva, Natalia V; Verevkin, Sergey P

    2016-10-01

    Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    International Nuclear Information System (INIS)

    Aronu, Ugochukwu E.; Hartono, Ardi; Svendsen, Hallvard F.

    2012-01-01

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N 2 O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N 2 O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N 2 O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N 2 O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N 2 O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  3. Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity

    NARCIS (Netherlands)

    Goosen, C.; Yuan, X.L.; Munster, J.M. van; Ram, A.F.J.; Maarel, M.J.E.C. van der; Dijkhuizen, L.

    2007-01-01

    A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger.

  4. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find...

  5. Drug Solubility in Fatty Acids as a Formulation Design Approach for Lipid-Based Formulations: A Technical Note.

    Science.gov (United States)

    Lee, Yung-Chi; Dalton, Chad; Regler, Brian; Harris, David

    2018-06-06

    Lipid-based drug delivery systems have been intensively investigated as a means of delivering poorly water-soluble drugs. Upon ingestion, the lipases in the gastrointestinal tract digest lipid ingredients, mainly triglycerides, within the formulation into monoglycerides and fatty acids. While numerous studies have addressed the solubility of drugs in triglycerides, comparatively few publications have addressed the solubility of drugs in fatty acids, which are the end product of digestion and responsible for the solubility of drug within mixed micelles. The objective of this investigation was to explore the solubility of a poorly water-soluble drug in fatty acids and raise the awareness of the importance of drug solubility in fatty acids. The model API (active pharmaceutical ingredient), a weak acid, is considered a BCS II compound with an aqueous solubility of 0.02 μg/mL and predicted partition coefficient >7. The solubility of API ranged from 120 mg/mL to over 1 g/mL in fatty acids with chain lengths across the range C18 to C6. Hydrogen bonding was found to be the main driver of the solubilization of API in fatty acids. The solubility of API was significantly reduced by water uptake in caprylic acid but not in oleic acid. This report demonstrates that solubility data generated in fatty acids can provide an indication of the solubility of the drug after lipid digestion. This report also highlights the importance of measuring the solubility of drugs in fatty acids in the course of lipid formulation development.

  6. An odd–even effect on solubility of dicarboxylic acids in organic solvents

    International Nuclear Information System (INIS)

    Zhang, Hui; Yin, Qiuxiang; Liu, Zengkun; Gong, Junbo; Bao, Ying; Zhang, Meijing; Hao, Hongxun; Hou, Baohong; Xie, Chuang

    2014-01-01

    Highlights: • The solubilities of the homologous series of C2–C10 dicarboxylic acids were determined in four selected solvents. • The experimental data were well correlated with the modified Apelblat equation. • The odd–even effect of solubility was found and explained. • The enthalpy, entropy and the molar Gibbs free energy of solution were predicted. - Abstract: The solubility of the homologous series of dicarboxylic acids, HOOC-(CH 2 ) n−2 -COOH (n = 2 to 10), in ethanol, acetic acid, acetone and ethyl acetate was measured at temperatures ranging from (278.15 to 323.15) K by a static analytic method at atmospheric pressure. Dicarboxylic acids with even number of carbon atoms exhibit lower values of solubility than adjacent homologues with odd carbon numbers. This odd–even effect of solubility is attributed to the twist of molecules and interlayer packing in solid state as explained in our previous work. The alternation varies in different solvents, which is believed to be associated with the properties of solvents. Finally, the dissolution enthalpy, dissolution entropy and the molar Gibbs free energy were calculated using the fitting parameters of the modified Apelblat equation. The molar Gibbs free energy also showed apparent odd–even alternation in keeping with the alternation of solubility

  7. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    Science.gov (United States)

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo)

    International Nuclear Information System (INIS)

    Gomez, M.L.P.A.; Lajolo, F.M.; Cordenunsi, B.R.

    1999-01-01

    Food irradiation is one of the most promising treatments that can be utilized for fruits disinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo) fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS), sucrose-phosphate synthase, acid and neutral invertases activities, during ripening. The results demonstrated that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity. (author)

  9. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo); Metabolismo de carboidratos durante o amadurecimento do mamao (Carica papaya L. Cv. Solo): influencia da radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.L.P.A. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas; Lajolo, F.M.; Cordenunsi, B.R. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental

    1999-05-15

    Food irradiation is one of the most promising treatments that can be utilized for fruits disinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo) fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS), sucrose-phosphate synthase, acid and neutral invertases activities, during ripening. The results demonstrated that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity. (author)

  10. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  11. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae.

    OpenAIRE

    Solimene, R; Guerrini, A M; Donini, P

    1980-01-01

    Short-chain acid-soluble polyphosphates were extracted from growing cultures of Saccharomyces cerevisiae, and the changes in the levels of these compounds were determined. The production of acid-soluble polyphosphates correlated with the mitochondrial activities since it occurred in two bursts in respiration-competent yeast cells and in only one burst in respiration-deficient yeast cells. The possible role of these compounds is discussed.

  13. Molecular cloning and expression in Saccharomyces cerevisiae and Neurospora crassa of the invertase gene from Neurospora crassa.

    Science.gov (United States)

    Carú, M; Cifuentes, V; Pincheira, G; Jiménez, A

    1989-10-01

    A plasmid (named pCN2) carrying a 7.6 kb BamHI DNA insert was isolated from a Neurospora crassa genomic library raised in the yeast vector YRp7. Saccharomyces cerevisiae suco and N. crassa inv strains transformed with pNC2 were able to grow on sucrose-based media and expressed invertase activity. Saccharomyces cerevisiae suco (pNC2) expressed a product which immunoreacted with antibody raised against purified invertase from wild type N. crassa, although S. cerevisiae suc+ did not. The cloned DNA hybridized with a 7.6 kb DNA fragment from BamHI-restricted wild type N. crassa DNA. Plasmid pNC2 transformed N. crassa Inv- to Inv+ by integration either near to the endogenous inv locus (40% events) or at other genomic sites (60% events). It appears therefore that the cloned DNA piece encodes the N. crassa invertase enzyme. A 3.8 kb XhoI DNA fragment, derived from pNC2, inserted in YRp7, in both orientation, was able to express invertase activity in yeast, suggesting that it contains an intact invertase gene which is not expressed from a vector promoter.

  14. Hydrolysis of galacto-oligosaccharides in soy molasses by α -galactosidases and invertase from Aspergillus terreus

    Directory of Open Access Journals (Sweden)

    Angélica Pataro Reis

    2010-06-01

    Full Text Available Two α -galactosidase (P1 and P2 and one invertase present in the culture of Aspergillus terreus grown on wheat straw for 168 h at 28ºC were partially purified by gel filtration and hydrophobic interaction chromatographies. Optimum pH and temperatures for P1, P2 and invertase preparations were 4.5-5.0, 5.5 and 4.0 and 60, 55 and 65ºC, respectively. The K M app for Ï� -nitrophenyl-α -D-galactopyranoside were 1.32 mM and 0.72 mM for P1 and P2, respectively, while the K M app value for invertase, using sacarose as a substrate was 15.66 mM. Enzyme preparations P1 and P2 maintained their activities after pre-incubation for 3 h at 50ºC and invertase maintained about 90% after 6 h at 55 ºC. P1 and P2 presented different inhibition sensitivities by Ag+, D-galactose, and SDS. All enzyme preparations hydrolyzed galacto-ologosaccharides present in soymolasses.Duas α-galactosidases (P1 e P2 e uma invertase produzidas no sobrenadante da cultura do fungo Aspergillus terreus quando crescido por 168 h a 28ºC com farelo de trigo como fonte de carbono foram parcialmente purificadas por cromatografias de gel filtração e interação hidrofóbica. O pH e temperatura ótimos para as preparações P1, P2 e invertase foram entre 4,5-5,0, 5,5 e 4,0 e 60, 55 e 65ºC, respectivamente. O K M app para Ï�-nitrofenil-α-D-galactopiranosideo foi 1.32 mM e 0.72 mM para P1 e P2, respectivamente. O valor de K M app para invertase usando sacarose como substrato foi de 15,66 mM. As preparações enzimáticas P1 e P2 mantiveram suas atividades após 3 h de pré-incubação a 50 ºC e a invertase manteve cerca de 90% após 6 h a 55 ºC. P1 e P2 foram diferentemente sensíveis à inibição por Ag+, D-galactose e SDS. As preparações enzimáticas hidrolisaram os galactooligossacarídeos presentes em melaço de soja.

  15. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    Science.gov (United States)

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  16. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery

    International Nuclear Information System (INIS)

    Zhang, C.P.; Sharkh, S.M.; Li, X.; Walsh, F.C.; Zhang, C.N.; Jiang, J.C.

    2011-01-01

    Highlights: → We compared the electrochemical characteristics of two types of the batteries. → SLAFB shows as good performance as SLAB under the same current density. → The cycle life of two batteries is strongly influenced by the depth of discharge. → The cycle life of SLAFB can be extended by treatment with hydrogen peroxide. - Abstract: The electrochemistry of static lead-acid and soluble lead-acid flow batteries is summarised and the differences between the two batteries are highlighted. A general comparison of the performance of an unoptimised soluble lead-acid flow laboratory cell and a commercial lead-acid battery during charge and discharge is reported. The influence of the depth of discharge on cycle life for both batteries is also considered. The flow battery was found to have a better charge efficiency than the static one, but the cells were found to have comparable energy efficiencies. The self-discharge characteristics of the soluble lead-acid battery were also measured and compared to reported values for a commercial static battery. Some self-discharge of the soluble lead-acid flow battery is observed during prolonged periods on open-circuit but the battery could recover its normal performance after a single charge-discharge cycle.

  17. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  18. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Uzun, K.; Cevik, E.; Senel, M.; Soezeri, H.; Baykal, A.; Abasiyanik, M. F.; Toprak, M. S.

    2010-01-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate (V max ) and Michaelis-Menten constant (K m ) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  19. Characteristics of the Inhibition of Potato (Solanum tuberosum) Invertase by an Endogenous Proteinaceous Inhibitor in Potatoes

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Effect of several parameters on inhibition of potato (Solanum tuberosum) invertase by its endogenous proteinaceous inhibitor was determined using homogeneous preparations of both proteins. The inhibitor and invertase formed an inactive complex with an observed association rate constant at pH 4.70 and 37°C of 8.82 × 102 per molar per second and a dissociation rate constant of 3.3 × 10−3 per minute. The inhibitor appeared to bind to invertase in more than one step. Initial interaction (measured by loss of invertase activity) was rapid, relatively weak, readily reversible (Ki of 2 × 10−6 molar) and noncompetitive with substrate at pH 4.70. Initial interaction was probably followed by isomerization to a tighter (Ki of 6.23 × 10−8 molar) complex, which dissociated slowly with a half-time of 3.5 hour. Interaction between enzyme and inhibitor appeared to be of ionic character and essentially pH independent between pH 3.5 and 7.4. PMID:16667286

  20. Rapid stalk elongation in tulip (Tulipa gesneriana L. cv. Apeldoorn) and the combined action of cold-induced invertase and the water-channel protein gammaTIP.

    Science.gov (United States)

    Balk, P A; de Boer, A D

    1999-09-01

    Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells.

  1. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    Science.gov (United States)

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  2. The acid solubility test of clay mineral under microwave

    International Nuclear Information System (INIS)

    Zheng Ying; Niu Yuqing; Wu Peisheng; Niu Xuejun

    2001-01-01

    The acid solubility test of Al 3+ in clay from some uranium ores under microwave is introduced. The result shows that the concentration of Al 3+ in solution and the acid consumption increase rapidly under microwave comparing with normal leaching condition. It is infeasible to adopt microwave slacking method for intensively leaching uranium from uranium ore containing more clay

  3. CO2 Solubilities in Amide-based Brφnsted Acidic Ionic Liquids

    International Nuclear Information System (INIS)

    Palgunadi, Jelliarko; Im, Jin Kyu; Kang, Je Eun; Kim, Hoon Sik; Cheong, Min Serk

    2010-01-01

    A distinguished class of hydrophobic ionic liquids bearing a Brφnsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and ε-caprolactam with trifluoroacetic acid and physical absorptions of CO 2 in these ionic liquids were demonstrated and evaluated. CO 2 solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that CO 2 solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility

  4. Chasing equilibrium: measuring the intrinsic solubility of weak acids and bases.

    Science.gov (United States)

    Stuart, Martin; Box, Karl

    2005-02-15

    A novel procedure is described for rapid (20-80 min) measurement of intrinsic solubility values of organic acids, bases, and ampholytes. In this procedure, a quantity of substance was first dissolved at a pH where it exists predominantly in its ionized form, and then a precipitate of the neutral (un-ionized) species was formed by changing the pH. Subsequently, the rate of change of pH due to precipitation or dissolution was monitored and strong acid and base titrant were added to adjust the pH to discover its equilibrium conditions, and the intrinsic solubility of the neutral form of the compound could then be determined. The procedure was applied to a variety of monoprotic and diprotic pharmaceutical compounds. The results were highly repeatable and had a good correlation to available published values. Data collected during the procedure provided good diagnostic information. Kinetic solubility data were also collected but provided a poor guide to the intrinsic solubility.

  5. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  7. Ionic liquid-assisted solublization for improved enzymatic esterification of phenolic acids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    2012-01-01

    in a binary system, which is composed of ionic liquid tOMA•TFA (trioctylmethylammonium Trifluoroacetate) and octanol. Ionic liquid tOMA•TFA has great solubility towards most of phenolic acid. The strategy of increasing the solubility of phenolic in ionic liquid tOMA•TFA was proved to be an efficient way...... for increasing conversion of phenolic acids. The mixture ratio between tOMA•TFA and octanol was varied from 1:4 to 1:16 (v/v), it was found that the highest conversion of dihydrocaffeic acid (DHCA) was achieved when tOMA•TFA and octanol was mixed as 1:12 (v/v). It was also found that conversion of DHCA at 70 o...

  8. Anomalous Solubility Behavior of Several Acidic Drugs

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2014-04-01

    Full Text Available The “anomalous solubility behavior at higher pH values” of several acidic drugs originally studied by Higuchi et al. in 1953 [1], but hitherto not fully rationalized, has been re-analyzed using a novel solubility-pH analysis computer program, pDISOL-XTM. The program internally derives implicit solubility equations, given a set of proposed equilibria and constants (iteratively refined by weighted nonlinear regression, and does not require explicit Henderson-Hasselbalch equations. The re-analyzed original barbital, phenobarbital, oxytetracycline, and sulfathiazole solubility-pH data of Higuchi et al. is consistent with the presence of dimers in saturated solutions. In the case of barbital, phenobarbital and sulfathiazole, anionic dimers, reaching peak concentrations near pH 8. However, oxytetracycline indicated a pronounced tendency to form a cationic dimer, peaking near pH 2. Under the conditions of the original study, only barbital indicated a slight tendency to form a salt precipitate at pH > 6.8, with a highly unusual stoichiometry (consistent with a slope of 0.55 in the log S – pH plot: K+ + A2H- + 3HA D KA5H4(s. Thus the “anomaly” in the Higuchi data can be rationalized by invoking specific aggregated species.

  9. A higher sink competitiveness of the rooting zone and invertases are involved in dark stimulation of adventitious root formation in Petunia hybrida cuttings.

    Science.gov (United States)

    Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe

    2016-02-01

    The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Purification and Partial Characterization of Potato (Solanum tuberosum) Invertase and Its Endogenous Proteinaceous Inhibitor

    Science.gov (United States)

    Bracho, Geracimo E.; Whitaker, John R.

    1990-01-01

    Invertase plays an important role in the hydrolysis of sucrose in higher plants, especially in the storage organs. In potato (Solanum tuberosum) tubers, and in some other plant tissues, the enzyme seems to be controlled by interaction with an endogenous proteinaceous inhibitor. An acid invertase from potato tubers (variety russet) was purified 1560-fold to electrophoretic homogeneity by consecutive use of concanvalin A-Sepharose 4B affinity chromatography, DEAE-Sephadex A-50-120 chromatography, Sephadex G-150 chromatography, and DEAE-Sephadex A-50-120 chromatography. The enzyme contained 10.9% carbohydrate, had an apparent molecular weight of 60,000 by gel filtration, and was composed of two identical molecular weight subunits (Mr 30,000). The enzyme had a Km for sucrose of 16 millimolar at pH 4.70 and was most stable and had maximum activity around pH 5. The endogenous inhibitor was purified 610-fold to homogeneity by consecutive treatment at pH 1 to 1.5 at 37°C for 1 hour, (NH4)2SO4 fractionation, Sephadex G-100 chromatography, DEAE-Sephadex G-50-120 chromatography, and hydroxylapatite chromatography. The inhibitor appears to be a single polypeptide (Mr 17,000) without glyco groups. The purified inhibitor was stable over the pH range of 2 to 7 when incubated at 37°C for 1 hour. Images Figure 2 PMID:16667287

  11. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  12. Identification and Functional Characterization of Sugarcane Invertase Inhibitor (ShINH1: A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarcane

    Directory of Open Access Journals (Sweden)

    Suresha G. Shivalingamurthy

    2018-05-01

    Full Text Available In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1–GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM, making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement

  13. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  14. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  15. How cocrystals of weakly basic drugs and acidic coformers might modulate solubility and stability.

    Science.gov (United States)

    Kuminek, G; Rodríguez-Hornedo, N; Siedler, S; Rocha, H V A; Cuffini, S L; Cardoso, S G

    2016-04-30

    Cocrystals of a weakly basic drug (nevirapine) with acidic coformers are shown to alter the solubility dependence on pH, and to exhibit a pHmax above which a less soluble cocrystal becomes more soluble than the drug. The cocrystal solubility advantage can be dialed up or down by solution pH.

  16. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  17. A Soluble, Folded Protein without Charged Amino Acid Residues

    DEFF Research Database (Denmark)

    Højgaard, Casper; Kofoed, Christian; Espersen, Roall

    2016-01-01

    side chains can maintain solubility, stability, and function. As a model, we used a cellulose-binding domain from Cellulomonas fimi, which, among proteins of more than 100 amino acids, presently is the least charged in the Protein Data Bank, with a total of only four titratable residues. We find......Charges are considered an integral part of protein structure and function, enhancing solubility and providing specificity in molecular interactions. We wished to investigate whether charged amino acids are indeed required for protein biogenesis and whether a protein completely free of titratable...... that the protein shows a surprising resilience toward extremes of pH, demonstrating stability and function (cellulose binding) in the pH range from 2 to 11. To ask whether the four charged residues present were required for these properties of this protein, we altered them to nontitratable ones. Remarkably...

  18. Boric acid solubility in the presence of alkali metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Tsekhanskij, R S; Molodkin, A K; Sadetdinov, Sh V [Chuvashskij Gosudarstvennyj Univ., Cheboksary (USSR); Universitet Druzhby Narodov, Moscow (USSR))

    1983-01-01

    Methods of solubility and refractometry at 25 deg C have been applied to state that systems boric acid-lithium (sodium, potassium) nitrite-water are simple eutonic type systems. Nitrites salt in the acid and their lyotropic effect increases from lithium salt to potassium salt. The disclosed succession in change of the effect is determined by the character of cation hydration in the medium the acidic reaction of which is conditioned by boric acid polymerization and partial oxidation of nitrite ion into nitrate ion. Boric acid is salted out from solutions containing lithium and sodium cations with increase of nitrate ion.

  19. Boric acid solubility in the presence of alkali metal nitrides

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Tsekhanskij, R.S.; Molodkin, A.K.; Sadetdinov, Sh.V.

    1983-01-01

    Methods of solubility and refractometry at 25 deg C have been applied to state that systems boric acid-lithium (sodiUm, potassium) nitrite-water are simple eutonic type systems. Nitrites salt in the acid and their lyotropic effect increases from lithium salt to potassium salt. The disclosed succession in change of the effect is determined by the character of cation hydration in the medium the acidic reaction of which is conditioned by boric acid polymerization and partial oxidation of nitrite ion into nitrate ion Boric acid is salted out form solutions containing lithium and sodium cations with increase of nitrate ion

  20. Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the solubility of nicotinic acid in six solvents by the gravimetric method. ► We found that, regardless of the solvent, the same monoclinic solid phase was in equilibrium with the solution. ► We determined the activity coefficients of nicotinic acid in the six solvents. ► We found that the solubility trends seem to be determined by the polarity and polarizability of the solvent. - Abstract: The mole fraction equilibrium solubility of nicotinic acid in six solvents (water, ethanol, dimethyl sulfoxide, acetone, acetonitrile and diethyl ether) differing in polarity, polarizability, and hydrogen-bonding ability, was determined over the temperature range (283 to 333) K, using the gravimetric method. The results obtained led to the solubility order dimethyl sulfoxide (DMSO) ≫ ethanol > water > acetone > diethyl ether > acetonitrile. An analysis based on various solvent descriptors, indicated that this trend seems to be mainly determined by the polarity and polarizability of the solvent. The activity coefficients of nicotinic acid in the different solvents, under saturation conditions, were determined as a function of the temperature and it was found that DMSO exhibits enhanced solubility relative to an ideal solution while the opposite is observed for all other solvents. Both the solvent and the fact that nicotinic acid is primarily zwitterionic in aqueous solution and non-zwitterionic in non-aqueous media, did not affect the nature of the solid phases in equilibrium with the different solutions. Indeed, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry analysis indicated that, despite some differences in particle size and morphology, the starting material and the solid products obtained at the end of the solubility studies in the six solvents used in this work were all crystalline and corresponded to the same monoclinic phase.

  1. The "high solubility" definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs.

    Science.gov (United States)

    Yazdanian, Mehran; Briggs, Katherine; Jankovsky, Corinne; Hawi, Amale

    2004-02-01

    The purpose of this study was to assess if the definition of high solubility as proposed in the FDA Guidance on Biopharmaceutical Classification System (BCS) is too strict for highly permeable acidic drugs. The solubility and permeability values of 20 (18 acidic and 2 non-acidic) nonsteroidal anti-inflammatory drugs (NSAID) were determined. The NSAIDs were grouped into three different sets having acetic acid, propionic acid, or other acidic moieties such as fenamate, oxicam, and salicylate. Two nonacidic NSAIDs (celecoxib and rofecoxib) were also included for comparison purposes. Equilibrium solubility values were determined at pH 1.2, 5.0, 7.4, and in biorelevant media simulating fed intestinal fluid at pH 5.0. For a select number of acids, we also measured solubility values in media simulating gastric and fasted intestinal fluids. Permeability classification was established relative to that of reference drugs in the Caco-2 cell permeability model. Permeability coefficients for all drugs were measured at concentrations corresponding to the lowest and highest marketed dose strengths dissolved in 250 ml volume, and their potential interaction with cellular efflux pumps was investigated. All NSAIDs with different acidic functional groups were classified as highly permeable based on their Caco-2 cell permeability. Only ketorolac appeared to have a potential for interaction with cellular efflux pumps. Solubility classification was based on comparison of equilibrium solubility at pH 1.2, 5.0. and 7.4 relative to marketed dose strengths in 250 ml. The pKa values for the acidic NSAIDs studied were between 3.5 and 5.1. and, as expected, their solubility increased dramatically at pH 7.4 compared to pH 1.2. Only three NSAIDs, ketorolac, ketoprofen. and acetyl salicylic acid, meet the current criteria for high solubility over the entire pH range. However, with the exception of ibuprofen, oxaprozin, and mefenamic acid, the remaining compounds can be classified as Class I drugs

  2. CCN activation experiments with adipic acid: effect of particle phase and adipic acid coatings on soluble and insoluble particles

    Directory of Open Access Journals (Sweden)

    S. S. Hings

    2008-07-01

    Full Text Available Slightly soluble atmospherically relevant organic compounds may influence particle CCN activity and therefore cloud formation. Adipic acid is a frequently employed surrogate for such slightly soluble organic materials. The 11 published experimental studies on the CCN activity of adipic acid particles are not consistent with each other nor do they, in most cases, agree with the Köhler theory. The CCN activity of adipic acid aerosol particles was studied over a significantly wider range of conditions than in any previous single study. The work spans the conditions of the previous studies and also provides alternate methods for producing "wet" (deliquesced solution droplets and dry adipic acid particles without the need to produce them by atomization of aqueous solutions. The experiments suggest that the scatter in the previously published CCN measurements is most likely due to the difficulty of producing uncontaminated adipic acid particles by atomization of solutions and possibly also due to uncertainties in the calibration of the instruments. The CCN activation of the small (dm<150 nm initially dry particles is subject to a deliquescence barrier, while for the larger particles the activation follows the Köhler curve. Wet adipic acid particles follow the Köhler curve over the full range of particle diameters studied. In addition, the effect of adipic acid coatings on the CCN activity of both soluble and insoluble particles has also been studied. When a water-soluble core is coated by adipic acid, the CCN-hindering effect of particle phase is eliminated. An adipic acid coating on hydrophobic soot yields a CCN active particle. If the soot particle is relatively small (dcore≤102 nm, the CCN activity of the coated particles approaches the deliquescence line of adipic acid, suggesting that the total size of the particle determines CCN activation and the soot core acts as a scaffold.

  3. Intrinsic solubility estimation and pH-solubility behavior of cosalane (NSC 658586), an extremely hydrophobic diprotic acid.

    Science.gov (United States)

    Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D

    1996-10-01

    The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.

  4. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  5. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    Science.gov (United States)

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants.

  6. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  7. Influence of biopolymers on the solubility of branched-chain amino acids and stability of their solutions.

    Science.gov (United States)

    Hong, Chi Rac; Lee, Gyu Whan; Paik, Hyun-Dong; Chang, Pahn-Shick; Choi, Seung Jun

    2018-01-15

    This study confirmed the possibility of biopolymer-type stabilizers to increase the saturation concentration of branched-chain amino acids by preventing their crystallization/precipitation. Although microfluidization increased the initial solubility, it failed to increase the saturation concentration of the branched-chain amino acids. The saturation concentration of the branched-chain amino acids increased from 3.81% to 4.42% and 4.85% after the incorporation of food hydrocolloids and proteins, respectively. However, the branched-chain amino acids:stabilizer ratio did not affect the solubility. In the case of food hydrocolloid-based solutions, crystal formation and growth of branched-chain amino acids occurred during storage, resulting in the precipitation of branched-chain amino acid crystals. However, food proteins effectively increased the stability of the solubilized branched-chain amino acids. The improved solubility and stability of the solubilized branched-chain amino acids could be attributed to interactions between the functional groups (carboxyl, amine, sulfate, aliphatic, aromatic, etc.) of the stabilizer and the branched-chain amino acid molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    Science.gov (United States)

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics.

  9. Recent Progress in the Development of Supercritical Carbon Dioxide-Soluble Metal Ion Extractants: Aggregation, Extraction, and Solubility Properties of Silicon-Substituted Alkylenediphosphonic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Mark L.; McAlister, Daniel R.; Stepinski, Dominique C.; Zalupski, Peter R.; Dzilawa, Julie A.; Barrans, Richard E.; Hess, J.N.; Rubas, Audris V.; Chiarizia, Renato; Lubbers, Christopher M.; Scurto, Aaron M.; Brennecke, Joan F.; Herlinger, Albert W.

    2003-09-11

    Partially esterified alkylenediphosphonic acids (DPAs) have been shown to be effective reagents for the extraction of actinide ions from acidic aqueous solution into conventional organic solvents. Efforts to employ these compounds in supercritical fluid extraction have been hampered by their modest solubility in unmodified supercritical carbon dioxide (SC-CO2). In an effort to design DPAs that are soluble in SC-CO2, a variety of silicon-substituted alkylenediphosphonic acids have been prepared and characterized, and their behavior compared with that of conventional alkyl-substituted reagents. Silicon substitution is shown to enhance the CO2-philicity of the reagents, while other structural features, in particular, the number of methylene groups bridging the phosphorus atoms of the extractant, are shown to exert a significant influence on their aggregation and extraction properties. The identification of DPAs combining desirable extraction properties with adequate solubility in SC-CO2 is shown to be facilitated by the application of molecular connectivity indices.

  10. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  11. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.

    Science.gov (United States)

    Samac, Deborah A; Bucciarelli, Bruna; Miller, Susan S; Yang, S Samuel; O'Rourke, Jamie A; Shin, Sanghyun; Vance, Carroll P

    2015-12-01

    Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.

  12. Investigations on uranyl nitrate solubility in nitric acid in different concentrations at temperatures of 50C

    International Nuclear Information System (INIS)

    Deigele, E.

    1983-01-01

    The solubility of uranyl nitrate was studied in nitric acid solutions of different concentrations at a temperature of 5 0 C. This temperature was chosen with a view to using water as coolant and to facilitate the handling of the strong acid solutions. Accurate curves were established by a multitude of accurate measurements in the high concentration range. Further solubility curves can be derived from this basic curve. Some of the precipitates in the interesting regions of the solubility curve were analyzed. (orig./EF) [de

  13. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  14. PRODUCTION AND OPTIMIZATION OF GROWTH CONDITIONS FOR INVERTASE ENZYME BY ASPERGILLUS SP., IN SOLID STATE FERMENTATION (SSF USING PAPAYA PEEL AS SUBSTRATE

    Directory of Open Access Journals (Sweden)

    Brindha Chelliappan

    2013-12-01

    Full Text Available Invertase enzymes are produced mainly by plants, some filamentous fungi, yeast and many other microorganisms which finds applications in food industries, confectionaries, pharmaceuticals, etc., The present work deals with the production of Invertase by Aspergillus sp., isolated from various soil samples in solid state fermentation using papaya peel waste as substrate. Enzyme activity was checked using Fehling’s reagent and assay was carried out by DNSA method. The results of optimized conditions showed that the invertase activity was high in the SSF using papaya peel as substrate, incubated for 6 days at temperature of 35°C, pH 7, with 2.25gms/100ml of Ammonium nitrate as nitrogen source and 10gms/100ml of sucrose as carbon source. Hence the agro wastes from industries can be recycled by using it as substrate in SSF for high invertase enzyme production which finds applications in many fields.

  15. Efficient Enzymatic Synthesis of Phenolic Ester by Increasing Solubility of Phenolic Acids in Ionic Liquids

    DEFF Research Database (Denmark)

    Yang, Zhiyong; Guo, Zheng; Xu, Xuebing

    Compounds from phenolic acid family are well known natural antioxidants, but the application of phenolic acids as antioxidants in industry is limited due to the relatively low solubility in oil-based media. The properties of phenolic acids can be modified through enzymatic lipophilization...... and modified phenolic acids will have amphiphilic property, therefore they can be localized at oil-water or water-oil phase where oxidation is considered to occur frequently. It had been reported that immobilized Candida Antarctica lipase B was the most effective biocatalyst for the various esterification...... reactions, and it had been widely used for esterification of various phenolic acids with fatty alcohol or triglycerides. However, the conversion of phenolic acids is low due to low solubility in hydrophobic solvents and hindrance effect of unsaturated side chain towards the enzyme. Our studies show...

  16. Akttvitas Selulase, Amilase Dan Invertase Pada Tanah Kebun Biologi Wamena*[cellulase, Amylase and Invertase Activities Achieved From Soil of Wamena Biological Research Station

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    Enzymatic activities in soil as due to microbes action in organic matter degradation, lead to propose as indicators for determining soil degree enrichment.In this work, the enzymatic activities of cellulase, invertase and amylase were determined in tropical soil collected from Biological Research Station in Wamena. Result of measurement on five soil samples showed that cellulase activity occurred between 0.10 - 0.31 mg reducing sugar/g soil/hour in 2% Carboxymethylcellulose (CMC) substrate, a...

  17. On solubility of perchloric (periodic) acid and α-cyanacetanmide in aqueous solutions at 25 deg C

    International Nuclear Information System (INIS)

    Omarova, R.A.; Balysbekov, S.M.; Erkasov, R.Sh.; Nikolenko, O.N.

    1996-01-01

    Acid-base interaction within perchloric (periodic) acid-α-cyanacetamide-water systems in studied by method of solubility under isothermal conditions at 25 deg C. Solubility regularities of crystalline α-cyanacetamide in perchloric and periodic acid solutions are determined, the concentration limits of formation of a new solid phase-tris(α-cyanacetamide) perchlorate within perchloric acid-α-cyanacetamide-water system are determined. The compound is identified by means of chemical and X-ray phase analyses, its density and melting temperature are determined. Iodic acid and α-cyanacetamide water solution base system is shown to belong to a simple eutonic type. 2 refs., 3 figs., 2 tabs

  18. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemical or combination of chemical and enzymatic processes. Extraction of collagen chemically can do with the acid process that produces acid soluble collagen (ASC. This study aimed to determine the optimum concentration and time of pretreatment and extraction, also to determine the characteristics of the acid soluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH at the concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and 0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combination for eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 M for 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47% (wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine (13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γ protein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and melting temperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM has fibers on the surface.

  19. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  20. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-01-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  1. Solubility Testing of Sucrose Esters of Fatty Acids in International Food Additive Specifications.

    Science.gov (United States)

    Nagai, Yukino; Kawano, Satoko; Motoda, Kenichiro; Tomida, Masaaki; Tatebe, Chiye; Sato, Kyoko; Akiyama, Hiroshi

    2017-03-01

    We investigated the solubility of 10 samples of sucrose esters of fatty acids (SEFA) products that are commercially available worldwide as food additives (emulsifiers). Although one sample dissolved transparently in both water and ethanol, other samples produced white turbidity and/or precipitates and did not meet the solubility criterion established by the Joint Food and Agriculture Organization of the United Nations (FAO)/WHO Expert Committee on Food Additives (JECFA). When the sample solutions were heated, the solubility in both water and ethanol increased. All of the samples dissolved transparently in ethanol, and dispersed and became white without producing precipitates in water. The present study suggests that the current solubility criterion of the JECFA SEFA specifications needs to be revised.

  2. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  3. Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K

    Science.gov (United States)

    Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.

    2017-12-01

    Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.

  4. Neptunium (IV) oxalate solubility

    International Nuclear Information System (INIS)

    Luerkens, D.W.

    1983-07-01

    The equilibrium solubility of neptunium (IV) oxalate in nitric/oxalic acid solutions was determined at 22 0 C, 45 0 C, and 60 0 C. The concentrations of nitric/oxalic acid solutions represented a wide range of free oxalate ion concentration. A mathematical solubility model was developed which is based on the formation of the known complexes of neptunium (IV) oxalate. the solubility model uses a simplified concentration parameter which is proportional to the free oxalate ion concentration. The solubility model can be used to estimate the equilibrium solubility of neptunium (IV) oxalate over a wide range of oxalic and nitric acid concentrations at each temperature

  5. Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein

    International Nuclear Information System (INIS)

    Hackett, R.H.; Setlow, P.

    1988-01-01

    Bacillus subtilis strains containing a deletion in the gene coding for the major small, acid-soluble, spore protein (SASP-gamma) grew and sporulated, and their spores initiated germination normally, but outgrowth of SASP-gamma- spores was significantly slower than that of wild-type spores. The absence of SASP-gamma had no effect on spore protoplast density or spore resistance to heat or radiation. Consequently, SASP-gamma has a different function in spores than do the other major small, acid-soluble proteins

  6. Dynamics of sugar-metabolic enzymes and sugars accumulation during watermelon (citrullus lanatus) fruit development

    International Nuclear Information System (INIS)

    Zhang, H.

    2016-01-01

    We analyzed sugar accumulation and the activities of sugar-metabolic enzymes in ripening fruits of three cultivars of watermelon; a high-sugar type w2, a low-sugar type (w1), and their hybrid. In w2, the glucose and fructose contents were higher than the sucrose content in the earlier stage of fruit development, and fruit growth was accompanied by increases in glucose, fructose, and sucrose contents. The sucrose content increased substantially after 20 days after anthesis (DAA) and it was the main soluble sugar in mature fruit (sucrose: hexoses ratio, 0.71). In W, the fructose and glucose contents were significantly higher than the sucrose content in mature fruit (sucrose: hexoses ratio, 0.25). Comparing the two parent cultivars, sucrose was the most important factor affecting the total sugar content in mature fruit, although glucose and fructose also contributed to total sugar contents. The fructose and glucose contents in the fruit of F1 were mid-way between those of their parents, while the sucrose content was closer to that of W (sucrose:hexoses ratio in F1, 0.26). In the early stage of fruit development of W2, the activities of acid invertase and neutral invertase were higher than those of sucrose synthase and sucrose phosphate synthase. After 20 DAA, the acid invertase and neutral invertase activities decreased and those of sucrose synthase and sucrose phosphate synthase increased, leading to increased sucrose content. In W1, the activities of acid invertase and neutral invertase were higher than those of sucrose synthase and sucrose phosphate synthase at the early stage. The sucrose synthase and sucrose phosphate synthase activities were lower in W1 than in W2 at the later stages of fruit development. The patterns of sugar accumulation and sugar-metabolic enzyme activities during fruit development in F1 were similar to those in W1. (author)

  7. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation. [Torula utilis

    Energy Technology Data Exchange (ETDEWEB)

    Shige, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of industrial acetone-butanol fermentation of blackstrap molasses; one of them, called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  8. On the americium oxalate solubility

    International Nuclear Information System (INIS)

    Zakolupin, S.A.; Korablin, Eh.V.

    1977-01-01

    The americium oxalate solubility at different nitric (0.0-1 M) and oxalic (0.0-0.4 M) acid concentrations was investigated in the temperature range from 14 to 60 deg C. The dependence of americium oxalate solubility on the oxalic acid concentration was determined. Increasing oxalic acid concentration was found to reduce the americium oxalate solubility. The dependence of americium oxalate solubility on the oxalic acid concentration was noted to be a minimum at low acidity (0.1-0.3 M nitric acid). This is most likely due to Am(C 2 O 4 ) + , Am(C 2 O 4 ) 2 - and Am(C 2 O 4 ) 3 3- complex ion formation which have different unstability constants. On the basis of the data obtained, a preliminary estimate was carried out for the product of americium oxalate solubility in nitric acid medium (10 -29 -10 -31 ) and of the one in water (6.4x10 -20 )

  9. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs.

    Science.gov (United States)

    David, S E; Timmins, P; Conway, B R

    2012-01-01

    Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol and tris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility.

  10. Nectar Sugar Modulation and Cell Wall Invertases in the Nectaries of Day- and Night- Flowering Nicotiana.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2018-01-01

    Nectar composition varies between species, depending on flowering time and pollinator type, among others. Various models of the biochemical and molecular mechanisms underlying nectar production and secretion have been proposed. To gain insights into these mechanisms, day- and night-flowering tobacco ( Nicotiana ) species with high or low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were simultaneously collected, throughout the day and night. Soluble sugars and starch were determined and the activity and expression level of cell wall invertase (CW-INVs) were measured in nectaries. Nectaries and nectar of the five Nicotiana species contained different amounts of sucrose, glucose, and fructose. CW-INV activity was detected in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of sucrose in the nectary tissue and during nectar secretion. The larger differences in the sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to nocturnal species can be explained by higher sucrose cleavage within the nectaries in night-flowering species, and during secretion in day-flowering species. However, cell wall invertase alone cannot be responsible for the differences in sugar concentrations. Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored as starch. In general, night-flowering species showed higher starch contents in the nectaries compared to day-flowering species. Moreover, in night flowering species, the starch content decreased during the first half of the dark period, when nectar production peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated from nectary sucrose contents. In day-flowering species, the sucrose concentration in the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering species the situation was the opposite, which implies different secretion mechanisms. The secreted nectar

  11. Effects of roasting temperatures and gamma irradiation on the content of chlorogenic acid, caffeic acid and soluble carbohydrates of coffee

    International Nuclear Information System (INIS)

    Deshpande, S.N.; Aguilar, A.A.

    1975-01-01

    Two varieties of Puerto Rican coffee, Coffea canephora L. var. Robusta, and Coffea arabica L. var. Borbon, were subjected to four different doses of radiation and roasted at two different temperatures. Aqueous extracts of the ground coffee beans were analyzed for chlorogenic acid and caffeic acid at 324 nm and 360 nm wavelength settings, respectively. Samples subjected to the roasting treatments in conjuction with irradiation treatments were treated with basic lead acetate prior to the colorimetric analyses in order to eliminate interfering substances. The total carbohydrate content was also determined by colorimetric techniques with anthrone reagent. The total nitrogen content of the pulverized samples were determined by the micro-Kjeldahl method. While roasting treatments caused a reduction in the concentrations of the chlorogenic acid, caffeic acid, and the carbohydrates, the radiation treatments increased the concentrations of soluble carbohydrates without affecting the concentrations of chlorogenic acid or caffeic acid. It therefore appears that radiation treatments seem to cause degradation of the acid-polysaccharide complexes liberating soluble sugars. There were no noticable changes in the total content of nitrogen caused by roasting or the radiation treatments as indicated by the statistical analysis employing the split plot design. (author)

  12. Solubility of nickel-cadmium ferrite in acids

    International Nuclear Information System (INIS)

    Vol'ski, V.; Vol'ska, Eh.; Politan'ska, U.

    1977-01-01

    The solubility of a solid solution of nickel-cadmium ferrite containing an excess of ferric oxide, (CdO)sub(0.5), (NiO)sub(0.5) and (Fe 2 O 3 )sub(1.5), in hydrochloric and nitric acids at 20, 40 and 60 deg C, was determined colorimetrically and chelatometrically, as well as by studying the x-ray diffraction patterns of the preparations prior to dissolution and their residues after dissolution. It is shown that cadmium passes into the solution faster than iron and nickel; after 800 hours, the solution contains 40% of iron ions and more than 80% of cadmium ions. The kinetics of ferrite dissolution is studied

  13. Improving co-amorphous drug formulations by the addition of the highly water soluble amino acid proline

    DEFF Research Database (Denmark)

    Jensen, Katrine Birgitte Tarp; Löbmann, Korbinian; Rades, Thomas

    2014-01-01

    Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach...... by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared...... the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly...

  14. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Effect of para-chlorophenoxyacetic acid on acid invertase gene ...

    African Journals Online (AJOL)

    Tomato cv. Liaoyuanduoli (Solanum lycopersicum) plants were cultivated in a greenhouse to allow sampling of the second fruit in the first cluster and comparison with tomato fruit that developed following para-chlorophenoxyacetic acid (PCPA) treatment. Sugar content, activities of sugar related enzymes and the effects of ...

  16. PON-Sol: prediction of effects of amino acid substitutions on protein solubility.

    Science.gov (United States)

    Yang, Yang; Niroula, Abhishek; Shen, Bairong; Vihinen, Mauno

    2016-07-01

    Solubility is one of the fundamental protein properties. It is of great interest because of its relevance to protein expression. Reduced solubility and protein aggregation are also associated with many diseases. We collected from literature the largest experimentally verified solubility affecting amino acid substitution (AAS) dataset and used it to train a predictor called PON-Sol. The predictor can distinguish both solubility decreasing and increasing variants from those not affecting solubility. PON-Sol has normalized correct prediction ratio of 0.491 on cross-validation and 0.432 for independent test set. The performance of the method was compared both to solubility and aggregation predictors and found to be superior. PON-Sol can be used for the prediction of effects of disease-related substitutions, effects on heterologous recombinant protein expression and enhanced crystallizability. One application is to investigate effects of all possible AASs in a protein to aid protein engineering. PON-Sol is freely available at http://structure.bmc.lu.se/PON-Sol The training and test data are available at http://structure.bmc.lu.se/VariBench/ponsol.php mauno.vihinen@med.lu.se Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  18. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of abnormal fermentation in the industrial acetone-butanol fermentation of blackstrap molasses; one of them called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and thermolabile effective factor, and showed high invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  19. Improving the water solubility of Monascus pigments under acidic conditions with gum arabic.

    Science.gov (United States)

    Jian, Wenjie; Sun, Yuanming; Wu, Jian-Yong

    2017-07-01

    Monascus pigments (Mps) are natural food colorants and their stability in acidic solutions is important for application in the food industry. This study aimed to evaluate the use of gum arabic (GA) as a stabilizer for maintaining the solubility of Mps in an acidic aqueous solution exposed to a high temperature, and to analyze the molecular interactions between GA and Mps. Mps dispersed (0.2 g kg -1 ) in deionized water at pH 3.0-4.0 without GA formed precipitates but remained in a stable solution in the presence of GA (1 g kg -1 ). The significant improvement of Mps water solubility under acidic conditions was attributed to the formation of Mps-GA complexes, as indicated by a sharp increase in the fluorescence intensity. The results on particle size, zeta potential, and transmission electron microscopy further suggested that molecular binding of Mps to GA, electrostatic repulsion, and steric hindrance of GA were contributing factors to preventing the aggregation of Mps in acidic solutions. A mechanistic model was presented for GA-Mps interactions and complex structures. GA was proven to be an effective stabilizer of natural food colorants in acidic solutions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    OpenAIRE

    Leventhal, J M; Chambliss, G H

    1982-01-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phos...

  1. Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae

    OpenAIRE

    Wang, Shi-An; Li, Fu-Li

    2013-01-01

    Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.

  2. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit 1

    Science.gov (United States)

    Lowell, Cadance A.; Tomlinson, Patricia T.; Koch, Karen E.

    1989-01-01

    Juice tissues of citrus lack phloem; therefore, photosynthates enroute to juice sacs exit the vascular system on the surface of each segment. Areas of extensive phloem unloading and transport (vascular bundles + segment epidermis) can thus be separated from those of assimilate storage (juice sacs) and adjacent tissues where both processes occur (peel). Sugar composition, dry weight accumulation, and activities of four sucrose-metabolizing enzymes (soluble and cell-wall-bound acid invertase, alkaline invertase, sucrose synthase, and sucrose phosphate synthase) were measured in these transport and sink tissues of grapefruit (Citrus paradisi Macf.) to determine more clearly whether a given enzyme appeared to be more directly associated with assimilate transport versus deposition or utilization. Results were compared at three developmental stages. Activity of sucrose (per gram fresh weight and per milligram protein) extracted from zones of extensive phloem unloading and transport was significantly greater than from adjacent sink tissues during the stages (II and III) when juice sacs grow most rapidly. In stage II fruit, activity of sucrose synthase also significantly surpassed that of all other sucrose-metabolizing enzymes in extracts from the transport tissues (vascular bundles + segment epidermis). In contrast, sucrose phosphate synthase and alkaline invertase at this stage of growth were the most active enzymes from adjacent, rapidly growing, phloem-free sink tissues (juice sacs). Activity of these two enzymes in extracts from juice sacs was significantly greater than that form the transport tissues (vascular bundles + segment epidermis). Soluble acid invertase was the most active enzyme in extracts from all tissues of very young fruit (stage I), including nonvascular regions, but nearly disappeared prior to the onset of juice sac sugar accumulation. The physiological function of high sucrose synthase activity in the transport tissues during rapid sucrose import

  3. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  4. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  5. Redox potentials and kinetics of the Ce 3+/Ce 4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions

    Science.gov (United States)

    Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y.

    Experimental work was performed with the aim of evaluating the Ce 4+/Ce 3+ redox couple in sulfuric acid electrolyte for use in redox flow battery (RFB) technology. The solubility of cerium sulfates in 0.1-4.0 M sulfuric acid at 20-60 °C was studied. A synergistic effect of both sulfuric acid concentration and temperature on the solubility of cerous sulfate was observed. The solubility of cerous sulfate significantly decreased with rising concentration of sulfuric acid and rising temperature, while the solubility of ceric sulfate goes through a significant maximum at 40 °C. Redox potentials and the kinetics of the cerous/ceric redox reaction were also studied under the same temperature-concentration conditions. The redox potentials were measured using the combined redox electrode (Pt-Ag/AgCl) in equimolar Ce 4+/Ce 3+ solutions (i.e.[Ce 3+]=[Ce 4+]) in sulfuric acid electrolyte. The Ce 3+/Ce 4+ redox potentials significantly decrease (i.e. shift to more negative values) with rising sulfuric acid concentration; a small maximum is observed at 40 °C. Cyclic voltammetric experiments confirmed slow electrochemical kinetics of the Ce 3+/Ce 4+ redox reaction on carbon glassy electrodes (CGEs) in sulfuric acid solutions. The observed dependencies of solubilities, the redox potentials and the kinetics of Ce 3+/Ce 4+ redox reaction on sulfuric acid concentration are thought to be the result of inequivalent complexation of the two redox species by sulfate anions: the ceric ion is much more strongly bound to sulfate than is the cerous ion. The best temperature-concentration conditions for the RFB electrolytes appear to be 40 °C and 1 M sulfuric acid, where the relatively good solubility of both cerium species, the maximum of redox potentials, and the more or less satisfying stability of CGE s were found. Even so, the relatively low solubility of cerium salts in sulfuric acid media and slow redox kinetics of the Ce 3+/Ce 4+ redox reaction at carbon indicate that the Ce 3+/Ce

  6. pH-metric solubility. 2: correlation between the acid-base titration and the saturation shake-flask solubility-pH methods.

    Science.gov (United States)

    Avdeef, A; Berger, C M; Brownell, C

    2000-01-01

    The objective of this study was to compare the results of a normal saturation shake-flask method to a new potentiometric acid-base titration method for determining the intrinsic solubility and the solubility-pH profiles of ionizable molecules, and to report the solubility constants determined by the latter technique. The solubility-pH profiles of twelve generic drugs (atenolol, diclofenac.Na, famotidine, flurbiprofen, furosemide, hydrochlorothiazide, ibuprofen, ketoprofen, labetolol.HCl, naproxen, phenytoin, and propranolol.HCl), with solubilities spanning over six orders of magnitude, were determined both by the new pH-metric method and by a traditional approach (24 hr shaking of saturated solutions, followed by filtration, then HPLC assaying with UV detection). The 212 separate saturation shake-flask solubility measurements and those derived from 65 potentiometric titrations agreed well. The analysis produced the correlation equation: log(1/S)titration = -0.063(+/- 0.032) + 1.025(+/- 0.011) log(1/S)shake-flask, s = 0.20, r2 = 0.978. The potentiometrically-derived intrinsic solubilities of the drugs were: atenolol 13.5 mg/mL, diclofenac.Na 0.82 microg/mL, famotidine 1.1 mg/ mL, flurbiprofen 10.6 microg/mL, furosemide 5.9 microg/mL, hydrochlorothiazide 0.70 mg/mL, ibuprofen 49 microg/mL, ketoprofen 118 microg/mL, labetolol.HCl 128 microg/mL, naproxen 14 microg/mL, phenytoin 19 microg/mL, and propranolol.HCl 70 microg/mL. The new potentiometric method was shown to be reliable for determining the solubility-pH profiles of uncharged ionizable drug substances. Its speed compared to conventional equilibrium measurements, its sound theoretical basis, its ability to generate the full solubility-pH profile from a single titration, and its dynamic range (currently estimated to be seven orders of magnitude) make the new pH-metric method an attractive addition to traditional approaches used by preformulation and development scientists. It may be useful even to discovery

  7. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gubina, M.Yu.

    1988-01-01

    Stability concetration constants K and solubility of neptunium and plutonium complexes with di- and monobuthylphosphoric acids (APC) and with orthophosphoric and di-2-ethylhexyl-phosphoric acids in 30% TBP solution-n-dodecane system are determined by spectrophotometric titration and radiometry methods. Posibility of forecasting radiation-chemical behaviour of actinids according to data on K and APC radiation-chemical yield values is demonstrated

  8. Solubility-pH profiles of some acidic, basic and amphoteric drugs.

    Science.gov (United States)

    Shoghi, Elham; Fuguet, Elisabet; Bosch, Elisabeth; Ràfols, Clara

    2013-01-23

    The solubility vs. pH profiles of five ionizable drugs of different nature (a monoprotic acid, a monoprotic base, a diprotic base and two amphoteric compounds showing a zwitterionic species each one) have been determined through two different methodologies: the classical shake-flask (S-F) and the potentiometric Cheqsol methods using in both instances the appropriate Henderson-Hasselbalch (H-H) or derived relationships. The results obtained independently from both approaches are consistent. A critical revision about the influence of the electrolyte used as buffering agent in the S-F method on the obtained solubility values is also performed. Thus, some deviations of the experimental points with respect the H-H profiles can be attributed to specific interactions between the buffering electrolyte and the drug due to the hydrotrophic character of citric and lactic acids. In other cases, the observed deviations are independent of the buffers used since they are caused by the formation of new species such as drug aggregates (cefadroxil) or the precipitation of a salt from a cationic species of the analyzed compound (quetiapine). Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato

    Czech Academy of Sciences Publication Activity Database

    Albacete, A.; Cantero-Navarro, E.; Grosskinsky, D. K.; Arias, M.L.; Balibrea, M. E.; Bru, R.; Fragner, L.; Ghanem, M. E.; de la Cruz Gonzalez, M.; Hernández, J. A.; Martínez-Andújar, C.; van der Graaff, E.; Weckwerth, W.; Zellnig, G.; Pérez-Alfocea, F.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 3 (2015), s. 863-878 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Cell wall invertase * cytokinins * drought stress * ethylene * source–sink relationships * tomato Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  10. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...

  11. Effect of Difference in Fatty Acid Chain Lengths of Medium- Chain Lipids on Lipid/Surfactant/Water Phase Diagrams and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Hetal N. Prajapati

    2011-09-01

    Full Text Available Lipids consisting of medium chain fatty acids are commonly used in the development of lipid-based selfemulsifying and self-microemulsifying drug delivery systems. However, no systematic approach to selecting one lipid over another has been reported in the literature. In this study, propylene glycol (PG monoester (PG monocaprylate, Capmul PG-8® and PG diester (PG dicaprylocaprate, Captex 200P® of C8-fatty acids were compared with PG monoester (PG monolaurate, Capmul PG-12® and PG diester (PG dilaurate, Capmul PG-2L® of C12-fatty acids with respect to their phase diagrams, and especially for their ability to form microemulsions in the presence of a common surfactant, Cremophor EL®, and water. The solubility of two model drugs, danazol and probucol, in the lipids and lipid/surfactant mixtures were also compared. The effect of the chain length of medium-chain fatty acids (C8 versus C12 on the phase diagrams of the lipids was minimal. Both shorter and longer chain lipids formed essentially similar microemulsion and emulsion regions in the presence of Cremophor EL® and water, although the C12-fatty acid esters formed larger gel regions in the phase diagrams than the C8-fatty acid esters. When monoesters were mixed with their respective diesters at 1:1 ratios, larger microemulsion regions with lower lipid particle sizes were observed compared to those obtained with individual lipids alone. While the solubility of both danazol and probucol increased greatly in all lipids studied, compared to their aqueous solubility, the solubility in C12-fatty acid esters was found to be lower than in C8-fatty acid esters when the lipids were used alone. This difference in solubility due to the difference in fatty acid chain length, practically disappeared when the lipids were combined with the surfactant.

  12. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids.

    Science.gov (United States)

    Tang, A L; Shah, N P; Wilcox, G; Walker, K Z; Stojanovska, L

    2007-11-01

    The objective of this study was to enhance calcium solubility and bioavailability from calcium-fortified soymilk by fermentation with 7 strains of Lactobacillus, namely, L. acidophilus ATCC 4962, ATCC33200, ATCC 4356, ATCC 4461, L. casei ASCC 290, L. plantarum ASCC 276, and L. fermentum VRI-003. The parameters that were used are viability, pH, calcium solubility, organic acid, and biologically active isoflavone aglycone content. Calcium-fortified soymilk made from soy protein isolate was inoculated with these probiotic strains, incubated for 24 h at 37 degrees C, then stored for 14 d at 4 degrees C. Soluble calcium was measured using atomic absorption spectrophotometry (AA). Organic acids and bioactive isoflavone aglycones, including diadzein, genistein, and glycetein, were measured using HPLC. Viability of the strains in the fermented calcium-fortified soymilk was > 8.5 log(10) CFU/g after 24 h fermentation and this was maintained for 14-d storage at 4 degrees C. After 24 h, there was a significant increase (P casei ASCC 290 demonstrated the highest increase with 89.3% and 87.0% soluble calcium after 24 h, respectively. The increase in calcium solubility observed was related to lowered pH associated with production of lactic and acetic acids. Fermentation significantly increased (P < 0.05) the level of conversion of isoflavones into biologically active aglycones, including diadzein, genistein, and glycetein. Our results show that fermenting calcium-fortified soymilk with the selected probiotics can potentially enhance the calcium bioavailability of calcium-fortified soymilk due to increased calcium solubility and bioactive isoflavone aglycone enrichment.

  13. Cadmium induces changes in sucrose partitioning, invertase activities, and membrane functionality in roots of Rangpur lime (Citrus limonia L. Osbeck).

    Science.gov (United States)

    Podazza, G; Rosa, M; González, J A; Hilal, M; Prado, F E

    2006-09-01

    Cadmium (Cd) uptake effects on sucrose content, invertase activities, and plasma membrane functionality were investigated in Rangpur lime roots ( CITRUS LIMONIA L. Osbeck). Cadmium accumulation was significant in roots but not in shoots and leaves. Cadmium produced significant reduction in roots DW and increment in WC. Leaves and shoots did not show significant differences on both parameters. Sucrose content was higher in control roots than in Cd-exposed ones. Apoplastic sucrose content was much higher in Cd-exposed roots than in control ones. Cd-exposed roots showed a significant decrease in both cell wall-bound and cytoplasmic (neutral) invertase activities; while the vacuolar isoform did not show any change. Alterations in lipid composition and membrane fluidity of Cd-exposed roots were also observed. In Cd-exposed roots phospholipid and glycolipid contents decreased about 50 %, while sterols content was reduced about 22 %. Proton extrusion was inhibited by Cd. Lipid peroxidation and proton extrusion inhibition were also detected by histochemical analysis. This work's findings demonstrate that Cd affects sucrose partitioning and invertase activities in apoplastic and symplastic regions in Rangpur lime roots as well as the plasma membrane functionality and H (+)-ATPase activity.

  14. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  15. Effectiveness of anchovy substrate application on decreasing acid solubility of Sprague Dawley rats’ tooth enamel (in vivo)

    Science.gov (United States)

    Triputra, F.; Puspitawati, R.; Gunawan, H. A.

    2017-08-01

    Anchovies (Stolephorus insularis), a natural resource of Indonesia, contain fluoride in the form of CaF2 and can function as a fluoridation material to prevent dental caries. The aim of this study is to study the effectiveness of anchovy substrate, through food or topical application, in decreasing the acid solubility of tooth enamel. This research used 14 Sprague Dawley rats as subjects divided into the following 5 groups: baseline, experimental feeding, experimental smearing, and their negative controls. After 15 days of anchovy substrate application, lower incisors were extracted and the acid solubility of enamel was analyzed qualitatively and quantitatively using a stereo microscope and a Micro-Vickers Hardness Tester. Analysis of enamel surface destruction and enamel surface microscopic hardness shifting after a 60 sec application of H2PO4 (50% concentration) resulted in a decrease in acid solubility of enamel treated with anchovy substrate. This result can be seen with both the chewing and smearing method. S. insularis can be used as an alternative material for fluoridation.

  16. Estimation of solubility of organo-phosphorus extractants by P determination using molybdovanadophosphoric acid method

    International Nuclear Information System (INIS)

    Gill, J.S.; Kotekar, M.K.; Singh, H.

    2005-01-01

    Solvent extraction processes have been found to be suitable for uranium recovery from phosphoric acid. Various extractants like di-2-ethyl hexylphosphoric acid (D2EHPA), di-nonylphenyl phosphoric acid (DNPPA) and synergistic agents like tri-butyl phosphate (TBP), tri-octyl phosphine oxide (TOPO) have been used in liquid-liquid extraction of uranium from phosphoric acid. Contents of these organo-phosphorus compounds in aqueous raffinates need estimation for process requirements. Solubility of Tri-butyl phosphate (TBP) and Di-2-ethylhexyl phosphoric acid (D2EHPA) extractants have been determined in different media of water, oxalic acid (0.6M) and sulphuric acid (3.75M) solutions. These compounds were estimated by determining their phosphorus (P) contents employing molybdovanadophosphoric acid method, after digesting and solubalizing them in nitric and perchloric acid. (author)

  17. Enthalpy-entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide, and nalidixic acid in dioxane-water.

    Science.gov (United States)

    Bustamante, P; Romero, S; Pena, A; Escalera, B; Reillo, A

    1998-12-01

    In earlier work, a nonlinear enthalpy-entropy compensation was observed for the solubility of phenacetin in dioxane-water mixtures. This effect had not been earlier reported for the solubility of drugs in solvent mixtures. To gain insight into the compensation effect, the behavior of the apparent thermodynamic magnitudes for the solubility of paracetamol, acetanilide, and nalidixic acid is studied in this work. The solubility of these drugs was measured at several temperatures in dioxane-water mixtures. DSC analysis was performed on the original powders and on the solid phases after equilibration with the solvent mixture. The thermal properties of the solid phases did not show significant changes. The three drugs display a solubility maximum against the cosolvent ratio. The solubility peaks of acetanilide and nalidixic acid shift to a more polar region at the higher temperatures. Nonlinear van't Hoff plots were observed for nalidixic acid whereas acetanilide and paracetamol show linear behavior at the temperature range studied. The apparent enthalpies of solution are endothermic going through a maximum at 50% dioxane. Two different mechanisms, entropy and enthalpy, are suggested to be the driving forces that increase the solubility of the three drugs. Solubility is entropy controlled at the water-rich region (0-50% dioxane) and enthalpy controlled at the dioxane-rich region (50-100% dioxane). The enthalpy-entropy compensation analysis also suggests that two different mechanisms, dependent on cosolvent ratio, are involved in the solubility enhancement of the three drugs. The plots of deltaH versus deltaG are nonlinear, and the slope changes from positive to negative above 50% dioxane. The compensation effect for the thermodynamic magnitudes of transfer from water to the aqueous mixtures can be described by a common empirical nonlinear relationship, with the exception of paracetamol, which follows a separate linear relationship at dioxane ratios above 50%. The

  18. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin

    2010-05-01

    Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.

  19. Stability constants and solubility of neptunium and plutonium complexes with alkylphosphoric acids in TBP

    International Nuclear Information System (INIS)

    Fedoseev, D.A.; Romanovskaya, I.A.; Artemova, L.A.; Gibina, M.Yu.

    1989-01-01

    The concentration stability constants (K s ) and solubility of neptunium and plutonium complexes with di- and monobutylphosphoric acids (APA), as well as with orthophosphoric acid in the system composed of 30% TBP + n-dodecane, have been determined by spectrophotometric titration and radiometry. The feasibility of predicting the radiative chemical behavior of actinides based on their K s values and the radiative chemical yield of APA has been demonstrated

  20. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Mishelevich, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il

    2008-05-15

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution.

  1. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    International Nuclear Information System (INIS)

    Mishelevich, Alexander; Apelblat, Alexander

    2008-01-01

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution

  2. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  3. Incorporation of Mg and Ca into nanostructured Fe2O3 improves Fe solubility in dilute acid and sensory characteristics in foods.

    Science.gov (United States)

    Hilty, Florentine M; Knijnenburg, Jesper T N; Teleki, Alexandra; Krumeich, Frank; Hurrell, Richard F; Pratsinis, Sotiris E; Zimmermann, Michael B

    2011-01-01

    Iron deficiency is one of the most common micronutrient deficiencies worldwide. Food fortification can be an effective and sustainable strategy to reduce Fe deficiency but selection of iron fortificants remains a challenge. Water-soluble compounds, for example, FeSO(4), usually demonstrate high bioavailability but they often cause unacceptable sensory changes in foods. On the other hand, poorly acid-soluble Fe compounds, for example FePO(4), may cause fewer adverse sensory changes in foods but are usually not well bioavailable since they need to be dissolved in the stomach prior to absorption. The solubility and the bioavailability of poorly acid-soluble Fe compounds can be improved by decreasing their primary particle size and thereby increasing their specific surface area. Here, Fe oxide-based nanostructured compounds with added Mg or Ca were produced by scalable flame aerosol technology. The compounds were characterized by nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and Fe solubility in dilute acid. Sensory properties of the Fe-based compounds were tested in 2 highly reactive, polyphenol-rich food matrices: chocolate milk and fruit yoghurt. The Fe solubility of nanostructured Fe(2)O(3) doped with Mg or Ca was higher than that of pure Fe(2)O(3). Since good solubility in dilute acid was obtained despite the inhomogeneity of the powders, inexpensive precursors, for example Fe- and Ca-nitrates, can be used for their manufacture. Adding Mg or Ca lightened powder color, while sensory changes when added to foods were less pronounced than for FeSO(4). The combination of high Fe solubility and low reactivity in foods makes these flame-made nanostructured compounds promising for food fortification. Practical Application: The nanostructured iron-containing compounds presented here may prove useful for iron fortification of certain foods; they are highly soluble in dilute acid and likely to be well absorbed in the gut but cause less severe

  4. Thermodynamic approach to improving solubility prediction of co-crystals in comparison with individual poorly soluble components

    International Nuclear Information System (INIS)

    Perlovich, German L.

    2014-01-01

    Highlights: • Thermodynamic approach for solubility improvement of co-crystal was developed. • The graphical technique for estimation of co-crystal solubility was elaborated. • Hydration enthalpies of some drugs and amino acids were calculated. • Applicability/operability of the approach was exemplified by some drugs and amino acids. - Abstract: A novel thermodynamic approach to compare poorly soluble components (active pharmaceutical ingredient (API)) both in co-crystals and individual compounds was developed. An algorithm of choosing potential co-crystals with improved solubility characteristics on the basis of the known solvation/hydration API and co-former enthalpies is described. The applicability and operability of the algorithm were tested exemplified by some drugs and amino acids

  5. Hydroxylamine hydrochloride-acetic acid-soluble and -insoluble fractions of pelagic sediment: Readsorption revisited

    Science.gov (United States)

    Piper, D.Z.; Wandless, G.A.

    1992-01-01

    The extraction of the rare earth elements (REE) from deep-ocean pelagic sediment, using hydroxylamine hydrochloride-acetic acid, leads to the separation of approximately 70% of the bulk REE content into the soluble fraction and 30% into the insoluble fraction. The REE pattern of the soluble fraction, i.e., the content of REE normalized to average shale on an element-by-element basis and plotted against atomic number, resembles the pattern for seawater, whereas the pattern, as well as the absolute concentrations, in the insoluble fraction resembles the North American shale composite. These results preclude significant readsorption of the REE by the insoluble phases during the leaching procedure.

  6. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  7. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies.

    Science.gov (United States)

    Drozd, Ksenia V; Manin, Alex N; Churakov, Andrei V; Perlovich, German L

    2017-03-01

    Experimental multistage cocrystal screening of the antituberculous drug 4-aminosalicylic acid (PASA) has been conducted with a number of coformers (pyrazinamide (PYR), nicotinamide (NAM), isonicotinamide (iNAM), isoniazid (INH), caffeine (CAF) and theophylline (TPH)). The crystal structures of 4-aminosalicylic acid cocrystals with isonicotinamide ([PASA+iNAM] (2:1)) and methanol solvate with caffeine ([PASA+CAF+MeOH] (1:1:1)) have been determined by single X-ray diffraction experiments. For the first time for PASA cocrystals it has been found that the structural unit of the [PASA+iNAM] cocrystal (2:1) is formed by 2 types of heterosynthons: acid-pyridine and acid-amide. The desolvation study of the [PASA+CAF+MeOH] cocrystal solvate (1:1:1) has been conducted. The correlation models linking the melting points of the cocrystals with the melting points of the coformers used in this paper have been developed. The thermochemical and solubility properties for all the obtained cocrystals have been studied. Cocrystallization has been shown to lead not only to PASA solubility improving but also to its higher stability against the chemical decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regulation of maize kernel weight and carbohydrate metabolism by abscisic acid applied at the early and middle post-pollination stages in vitro.

    Science.gov (United States)

    Zhang, Li; Li, Xu-Hui; Gao, Zhen; Shen, Si; Liang, Xiao-Gui; Zhao, Xue; Lin, Shan; Zhou, Shun-Li

    2017-09-01

    Abscisic acid (ABA) accumulates in plants under drought stress, but views on the role of ABA in kernel formation and abortion are not unified. The response of the developing maize kernel to exogenous ABA was investigated by excising kernels from cob sections at four days after pollination and culturing in vitro with different concentrations of ABA (0, 5, 10, 100μM). When ABA was applied at the early post-pollination stage (EPPS), significant weight loss was observed at high ABA concentration (100μM), which could be attributed to jointly affected sink capacity and activity. Endosperm cells and starch granules were decreased significantly with high concentration, and ABA inhibited the activities of soluble acid invertase and acid cell wall invertase, together with earlier attainment of peak values. When ABA was applied at the middle post-pollination stage (MPPS), kernel weight was observably reduced with high concentration and mildly increased with low concentration, which was regulated due to sink activity. The inhibitory effect of high concentration and the mild stimulatory effect of low concentration on sucrose synthase and starch synthase activities were noted, but a peak level of ADP-glucose pyrophosphorylase (AGPase) was stimulated in all ABA treatments. Interestingly, AGPase peak values were advanced by low concentration and postponed by high concentration. In addition, compared with the control, the weight of low ABA concentration treatments were not statistically significant at the two stages, whereas weight loss from high concentration applied at EPPS was considerably obvious compared with that of the MPPS, but neither led to kernel abortion. The temporal- and dose-dependent impacts of ABA reveal a complex process of maize kernel growth and development. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    International Nuclear Information System (INIS)

    Hare, W.R.; Wahle, K.W.

    1991-01-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation

  10. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  11. Synthesis and Anchoring of Antineoplastic Ferrocene and Phthalocyanine Derivatives on Water-Soluble Polymeric Drug Carriers Derived from Lysine and Aspartic Acid

    OpenAIRE

    Maree, M. David; Neuse, Eberhard W.; Erasmus, Elizabeth; Swarts, Jannie C.

    2007-01-01

    The general synthetic strategy towards water-soluble biodegradable drug carriers and the properties that they must have are discussed. The syntheses of water-soluble biodegradable copolymers of lysine and aspartic acid as potential drug-delivering devices, having amine-functionalised side chains are then described. Covalent anchoring of carboxylic acid derivatives of the antineoplastic ferrocene and photodynamically active phthalocyanine moieties to the amine-containing drug carrier copolymer...

  12. Determination of solubility isotherms of barium and strontium nitrates in the system acetic acid-water at 250 C

    International Nuclear Information System (INIS)

    Hubicki, W.; Piskorek, M.

    1976-01-01

    Investigastions of the solubility of barium and strontium nitrates were carried out in the system: acetic acid - water at 25 0 C. When one compares the isotherms of solubility of barium and strontium nitrates, one can observe that it is possible to separate the admixtures of barium from strontium nitrates as a result of fractional crystallization of these nitrates from actic acid solution at the temperatures lower than 31.3 0 C, i.e. below the temperature of transformation: Sr(NO 3 ) 2 . 4H 2 O reversible to Sr(NO 3 ) 2 + 4H 2 O for aqueous solution. (author)

  13. Characterization of Acid Soluble Collagen from Redbelly Yellowtail Fusilier Fish Skin (Caesio cuning

    Directory of Open Access Journals (Sweden)

    Ika Astiana

    2016-04-01

    Full Text Available Fish skin can be used as raw material for producing collagen. The collagen can be extracted by chemicalor combination of chemical and enzymatic processes. Extraction of collagen chemically can do with theacid process that produces acid soluble collagen (ASC. This study aimed to determine the optimumconcentration and time of pretreatment and extraction, also to determine the characteristics of the acidsoluble collagen from the skin of yellow tail fish. Extraction of collagen done by pretreatment using NaOH atthe concentration of 0.05; 0.1; and 0.15 M and extraction using acetic acid at the concentration of 0.3; 0.5; and0.7 M. Pretreatment NaOH with concentration 0.05 M and soaking time of 8 hours is the best combinationfor eliminating non collagen protein. Combination treatment of acetic acid at the concentration of 0.3 Mfor 3 days obtained the best solubility. The yield of collagen ASC was 18.4±1.49% (db and 5.79±0.47%(wb. Amino acid composition that is dominant in the ASC collagen was glycine (25.09±0.003%, alanine(13.71±0.075%, and proline (12.15±0.132%. Collagen from yellow tail fish skin has α1, α2, β and γprotein structure with the molecular weight of 125, 113, 170-181, and 208 KDa. The transition and meltingtemperatures of collagen were 67.69oC and 144.4oC. The surface structure of collagen by analysis of SEM hasfibers on the surface.Keywords: cholesterol, fatty acids, meat tissue, proximate, red snapper (L. argentimaculatus

  14. A sensitive biosensor using double-layer capillary based immunomagnetic separation and invertase-nanocluster based signal amplification for rapid detection of foodborne pathogen.

    Science.gov (United States)

    Huang, Fengchun; Zhang, Huilin; Wang, Lei; Lai, Weihua; Lin, Jianhan

    2018-02-15

    Combining double-layer capillary based high gradient immunomagnetic separation, invertase-nanocluster based signal amplification and glucose meter based signal detection, a novel biosensor was developed for sensitive and rapid detection of E. coli O157:H7 in this study. The streptavidin modified magnetic nanobeads (MNBs) were conjugated with the biotinylated polyclonal antibodies against E. coli O157:H7 to form the immune MNBs, which were captured by the high gradient magnetic field in the double-layer capillary to specifically separate and efficiently concentrate the target bacteria. Calcium chloride was used with the monoclonal antibodies against E. coli O157:H7 and the invertase to form the immune invertase-nanoclusters (INCs), which were used to react with the target bacteria to form the MNB-bacteria-INC complexes in the capillary. The sucrose was then injected into the capillary and catalyzed by the invertase on the complexes into the glucose, which was detected using the glucose meter to obtain the concentration of the glucose for final determination of the E. coli O157:H7 cells in the sample. A linear relationship between the readout of the glucose meter and the concentration of the E. coli O157:H7 cells (from 10 2 to 10 7 CFU/mL) was found and the lower detection limit of this biosensor was 79 CFU/mL. This biosensor might be extended for the detection of other foodborne pathogens by changing the antibodies and has shown the potential for the detection of foodborne pathogens in a large volume of sample to further increase the sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Threshold value of enamel mineral solubility and dental erosion after consuming acidic soft drinks

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2011-09-01

    Full Text Available Background: Dental erosion is irreversible and can caused by acidic soft drink consumption. Dental erosion prevention had already been done, but it still has not been satisfying since the consumption of acidic soft drink is still high. There is still no explanation about the threshold value of enamel mineral solubility and the occurance of dental erosion after consuming acidic soft drink. Purpose: This research is aimed to find the threshold value of enamel mineral solubility and dental erosion before and after consuming acidic soft drinks. Methods: Subjects of the research are saliva and enamel of 12 rabbits, which have some criteria such as age > 70 days, body weight > 600 grams, and teeth considered to be healthy. The sample devided equally into 4 groups. Each of those marmooths was given a drink as much as 2.5 cc/consumption (there are 1, 2 and 3× per day by using syringe without injection needle. Salivary minerals then were examined by using atomic absorption spectrophotometric (ASS, while dental erosion was examined using scanning electron microscop (SEM. The data were analyzed by using Paired t-test. Results: It is known that the threshold value of enamel mineral solubility (K, Na, Fe, Mg, Cl, P, Ca, F, C has significant difference (p < 0.05 after being exposed to folic acid. Meanwhile, Fe did not have significant difference (p = 0.090 after being exposed to citric acid. Similarly, C did not have significant difference (p = 0.063 after being exposed to bicarbonate acid. Furthermore, it is also known that the threshold time value of dental erosion are on the 105th day for folic acid, on the 111th day for citric acid, and on the 117th day for bicarbonate acid. Conclusion: Threshold value of enamel mineral solubility before and after consuming soft drinks containing acid is different. Based on the threshold value of dental erosion, it is known that folic acid is the most erosive acid.Latar belakang: Erosi gigi bersifat irreversible

  16. Forensic Discrimination of Concrete Pieces by Elemental Analysis of Acid-soluble Component with Inductively Coupled Plasma-Mass Spectrometry.

    Science.gov (United States)

    Kasamatsu, Masaaki; Igawa, Takao; Suzuki, Shinichi; Suzuki, Yasuhiro

    2018-01-01

    Since fragments of concrete can be evidence of crime, a determination of whether or not they come from the same origin is required. The authors focused on nitric acid-soluble components in the fragments of concrete. As a result of qualitative analysis with ICP-MS, it was confirmed that elements such as Cu, Zn, Rb, Sr, Zr, Ba, La, Ce, Nd, and Pb were contained in the fragments. After the nitric acid-soluble components in the fragments of concrete were separated by dissolving them in nitric acid, the concentrations of these elements in the dissolved solution were quantitatively determined by ICP-MS. The concentration ratios of nine elements compared to La were used as indicators. By comparing these indicators, it was possible to discriminate between the fragments of concrete.

  17. pH-metric solubility. 3. Dissolution titration template method for solubility determination.

    Science.gov (United States)

    Avdeef, A; Berger, C M

    2001-12-01

    The main objective of this study was to develop an effective potentiometric saturation titration protocol for determining the aqueous intrinsic solubility and the solubility-pH profile of ionizable molecules, with the specific aim of overcoming incomplete dissolution conditions, while attempting to shorten the data collection time. A modern theory of dissolution kinetics (an extension of the Noyes-Whitney approach) was applied to acid-base titration experiments. A thermodynamic method was developed, based on a three-component model, to calculate interfacial, diffusion-layer, and bulk-water reactant concentrations in saturated solutions of ionizable compounds perturbed by additions of acid/base titrant, leading to partial dissolution of the solid material. Ten commercial drugs (cimetidine, diltiazem hydrochloride, enalapril maleate, metoprolol tartrate, nadolol, propoxyphene hydrochloride, quinine hydrochloride, terfenadine, trovafloxacin mesylate, and benzoic acid) were chosen to illustrate the new titration methodology. It was shown that the new method is about 10 times faster in determining equilibrium solubility constants, compared to the traditional saturation shake-flask methods.

  18. Influence of cold stress on contents of soluble sugars, vitamin C and free amino acids including gamma-aminobutyric acid (GABA) in spinach (Spinacia oleracea).

    Science.gov (United States)

    Yoon, Young-Eun; Kuppusamy, Saranya; Cho, Kye Man; Kim, Pil Joo; Kwack, Yong-Bum; Lee, Yong Bok

    2017-01-15

    The contents of soluble sugars (sucrose, fructose, glucose, maltose and raffinose), vitamin C and free amino acids (34 compounds, essential and non-essential) were quantified in open-field and greenhouse-grown spinaches in response to cold stress using liquid chromatography. In general, greenhouse cultivation produced nutritionally high value spinach in a shorter growing period, where the soluble sugars, vitamin C and total amino acids concentrations, including essential were in larger amounts compared to those grown in open-field scenarios. Further, low temperature exposure of spinach during a shorter growth period resulted in the production of spinach with high sucrose, ascorbate, proline, gamma-aminobutyric acid, valine and leucine content, and these constitute the most important energy/nutrient sources. In conclusion, cultivation of spinach in greenhouse at a low temperature (4-7°C) and exposure for a shorter period (7-21days) before harvest is recommended. This strategy will produce a high quality product that people can eat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions

    International Nuclear Information System (INIS)

    Li, Xinbao; Wang, Mingju; Du, Cunbin; Cong, Yang; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubilities of 3-nitro-o-toluic acid in nine organic solvents were determined. • The solubilities were correlated by using four thermodynamic models. • The mixing properties of solution were computed based on Wilson model. - Abstract: Separation of 3-nitro-o-toluic acid from its isomeric mixtures has essential significance in industry. In this work, by using isothermal saturation method, the solid-liquid equilibrium for 3-nitro-o-toluic acid in nine organic solvents (acetonitrile, methanol, ethanol, n-propanol, isopropanol, ethyl acetate, acetone, 1,4-dioxane and 2-butanone) were obtained experimentally within a temperature range from (283.15 to 318.15) K under atmosphere pressure of 101.2 kPa, and the solubility values of 3-nitro-o-toluic acid in these solvents were determined by a high-performance liquid chromatography. Within the studied temperature range, the mole fraction solubility of 3-nitro-o-toluic acid in selected organic solvents increased with increasing temperature. Except for ethyl acetate, the descending order of the mole fraction solubility values were as follow: 1,4-dioxane > acetone > 2-butanone > methanol > ethanol > isopropanol > n-propanol > acetonitrile. The solubility values determined for 3-nitro-o-toluic acid in the selected solvents were correlated and back calculated with the modified Apelblat equation, λh equation, Wilson model and NRTL model. The largest values of RAD and RMSD obtained with the four models were 0.67% and 4.02 × 10 −4 , respectively. In general, the four thermodynamic models were all acceptable for describing the solubility behaviour of 3-nitro-o-toluic acid in these solvents. In addition, the apparent mixing Gibbs energy, mixing enthalpy, mixing entropy, activity coefficient at infinitesimal concentration and reduced excess enthalpy were calculated. The acquired solubility data and thermodynamic studies would be very important in optimizing the separation process of 3-nitro-o-toluic acid from

  20. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    International Nuclear Information System (INIS)

    Khoza, Phindile; Antunes, Edith; Chen, Ji-Yao; Nyokong, Tebello

    2013-01-01

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by 1 H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: ► A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. ► The conjugate is water soluble even though the phthalocyanine alone is not. ► The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. ► Triplet quantum yields decreased for the conjugate

  1. Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM).

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Foroughi, Majid

    The aim of this study was obtain a model that maximizes growth and production of inulinase and invertase by Aspergillus niger ATCC 20611, employing response surface methodology (RSM). The RSM with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. Results showed that the experimental data could be appropriately fitted into a second-order polynomial model with a coefficient of determination (R 2 ) more than 0.90 for all responses. This model adequately explained the data variation and represented the actual relationships between the parameters and responses. The pH and temperature value of the cultivation medium were the most significant variables and the effects of inoculum size and agitation speed were slightly lower. The intra-extracellular inulinase, invertase production and biomass content increased 10-32 fold in the optimized medium condition (pH 6.5, temperature 30°C, 6% (v/v), inoculum size and 150rpm agitation speed) by RSM compared with medium optimized through the one-factor-at-a-time method. The process development and intensification for simultaneous production of intra-extracellular inulinase (exo and endo inulinase) and invertase from A. niger could be used for industrial applications. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Microwave-induced facile synthesis of water-soluble fluorogenic alginic acid derivatives.

    Science.gov (United States)

    Chhatbar, Mahesh U; Meena, Ramavatar; Prasad, Kamalesh; Chejara, Dharmesh R; Siddhanta, A K

    2011-04-01

    A facile microwave-induced method was developed for synthesizing water-soluble fluorescent derivatives of alginic acid (ALG) with four different diamines, hydrazine (HY), ethylenediamine (EDA), 1,6-hexanediamine (HDA), and 1,4-cyclohexanediamine (CHDA), followed by a cross-linking reaction with a natural cross linker genipin. The ethylenediamine derivative of alginic acid (ALG-EDA) exhibited good fluorescent activity, which upon cross linking was enhanced threefold. The other amide derivatives, for example, ALG-HY, ALG-HDA, and ALG-CHDA, were not fluorescent, but their respective crosslinked products exhibited excellent fluorescent activity. The fluorescence intensity had an inverse correlation with the number of carbon atoms present in the amine, which in turn was a function of degree of substitution (DS). These fluorescent polysaccharide derivatives are of potential utility in the domain of sensor applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    International Nuclear Information System (INIS)

    Makarska-Bialokoz, Magdalena; Borowski, Piotr

    2015-01-01

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H 2 TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10 5 mol −1 . The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H 2 TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated

  4. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  5. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase.

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-03-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3-7 μM; Vmax, 150-193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism.

  6. Transport and metabolism of a sucrose analog (1'-fluorosucrose) into Zea mays L. Endosperm without invertase hydrolysis

    International Nuclear Information System (INIS)

    Schmalstig, J.G.; Hitz, W.D.

    1987-01-01

    1'-fluorosucrose (FS), a sucrose analog resistant to hydrolysis by invertase, was transported from husk leaves into maize (Zea mays L.) kernels with the same magnitude and kinetics as sucrose. 14 C-Label from [ 14 C]FS and [ 14 C]sucrose in separate experiments was distributed similarly between the pedicel, endosperm, and embryo with time. FS passed through maternal tissue and was adsorbed intact into the endosperm where it was metabolized and used in synthesis of sucrose and methanol-chloroform-water insolubles. Accumulation of [ 14 C]sucrose from supplied [ 14 C]glucosyl-FS indicated that the glucose moiety from the breakdown of sucrose (here FS), which normally occurs in the process of starch synthesis in maize endosperm, was available to the pool of substrates for resynthesis of sucrose. Uptake of FS into maize endosperm without hydrolysis suggest that despite the presence of invertase in maternal tissues and the hydrolysis of a large percentage of sucrose unloaded form the phloem, hexoses are not specifically needed for uptake into maize endosperm

  7. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  8. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China

    NARCIS (Netherlands)

    Liang, J.; Han, B.Z.; Nout, M.J.R.; Hamer, R.J.

    2010-01-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and

  9. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress.

    Science.gov (United States)

    Palma, Francisco; Carvajal, Fátima; Lluch, Carmen; Jamilena, Manuel; Garrido, Dolores

    2014-03-01

    The postharvest handling of zucchini fruit includes low-temperature storage, making cold stress unavoidable. We have investigated the changes of soluble carbohydrates under this stress and its relation with weight loss and chilling injury in zucchini fruit during postharvest storage at 4 °C and 20 °C for up to 14 days. Two varieties with different degrees of chilling tolerance were compared: Natura, the more tolerant variety, and Sinatra, the variety that suffered more severe chilling-injury symptoms and weight loss. In both varieties, total soluble carbohydrates, reducing soluble carbohydrates and polyols content was generally higher during storage at 4 °C than at 20 °C, thus these parameters are related to the physiological response of zucchini fruit to cold stress. However, the raffinose content increased in Natura and Sinatra fruits during storage at 4 °C and 20 °C, although at 20 °C the increase in raffinose was more remarkable than at 4 °C in both varieties, so that the role of raffinose could be more likely related to dehydration than to chilling susceptibility of zucchini fruit. Glucose, fructose, pinitol, and acid invertase activity registered opposite trends in both varieties against chilling, increasing in Natura and decreasing in Sinatra. The increase in acid invertase activity in Natura fruit during cold storage could contribute in part to the increase of these reducing sugars, whose metabolism could be involved in the adaptation to postharvest cold storage. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Phindile; Antunes, Edith [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa); Chen, Ji-Yao [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2013-02-15

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by {sup 1}H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: Black-Right-Pointing-Pointer A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. Black-Right-Pointing-Pointer The conjugate is water soluble even though the phthalocyanine alone is not. Black-Right-Pointing-Pointer The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. Black-Right-Pointing-Pointer Triplet quantum yields decreased for the conjugate.

  11. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  12. Student Collaboration in a Series of Integrated Experiments to Study Enzyme Reactor Modeling with Immobilized Cell-Based Invertase

    Science.gov (United States)

    Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.

    2015-01-01

    An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…

  13. Determination of solubility isotherms of barium and strontium nitrates in the system acetic acid-water at 25/sup 0/ C

    Energy Technology Data Exchange (ETDEWEB)

    Hubicki, W.; Piskorek, M. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    1976-01-01

    Investigations of the solubility of barium and strontium nitrates were carried out in the system: acetic acid - water at 25/sup 0/ C. When one compares the isotherms of solubility of barium and strontium nitrates, one can observe that it is possible to separate the admixtures of barium from strontium nitrates as a result of fractional crystallization of these nitrates from actic acid solution at the temperatures lower than 31.3/sup 0/ C, i.e. below the temperature of transformation: Sr(NO/sub 3/)/sub 2/ . 4H/sub 2/O reversible to Sr(NO/sub 3/)/sub 2/ + 4H/sub 2/O for aqueous solution.

  14. SOLUBILITIES AND PHYSICAL PROPERTIES OF SATURATED SOLUTIONS IN THE COPPER SULFATE + SULFURIC ACID + SEAWATER SYSTEM AT DIFFERENT TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. J. Justel

    2015-09-01

    Full Text Available AbstractIn Chile, the most important economic activity is mining, concentrated in the north of the country. This is a desert region with limited water resources; therefore, the mining sector requires research and identification of alternative sources of water. One alternative is seawater, which can be a substitute of the limited fresh water resources in the region. This work determines the influence of seawater on the solid-liquid equilibrium for acid solutions of copper sulfate at different temperatures (293.15 to 318.15 K, and its effect on physical properties (density, viscosity, and solubility. Knowledge of these properties and solubility data are useful in the leaching process and in the design of copper sulfate pentahydrate crystallization plants from the leaching process using seawater by means of the addition of sulfuric acid.

  15. Soluble and cell wall-bound phenolic acids and ferulic acid dehydrodimers in rye flour and five bread model systems: insight into mechanisms of improved availability.

    Science.gov (United States)

    Dynkowska, Wioletta M; Cyran, Malgorzata R; Ceglińska, Alicja

    2015-03-30

    The bread-making process influences bread components, including phenolics that significantly contribute to its antioxidant properties. Five bread model systems made from different rye cultivars were investigated to compare their impact on concentration of ethanol-soluble (free and ester-bound) and insoluble phenolics. Breads produced by a straight dough method without acid addition (A) and three-stage sourdough method with 12 h native starter preparation (C) exhibited the highest, genotype-dependent concentrations of free phenolic acids. Dough acidification by direct acid addition (method B) or by gradual production during prolonged starter fermentation (24 and 48 h, for methods D and E) considerably decreased their level. However, breads B were enriched in soluble ester-bound fraction. Both direct methods, despite substantial differences in dough pH, caused a similar increase in the amount of insoluble ester-bound fraction. The contents of phenolic fractions in rye bread were positively related to activity level of feruloyl esterase and negatively to those of arabinoxylan-hydrolysing enzymes in wholemeal flour. The solubility of rye bread phenolics may be enhanced by application of a suitable bread-making procedure with respect to rye cultivar, as the mechanisms of this process are also governed by a response of an individual genotype with specific biochemical profile. © 2014 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  16. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  17. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  18. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    Science.gov (United States)

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  19. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Science.gov (United States)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  20. Acidity of cations and the solubility of oxides in the eutectic KCl-LiCl melt at 700 Deg C

    International Nuclear Information System (INIS)

    Cherginets, V.L.; Rebrova, T.P.

    1999-01-01

    Products of MgO, NiO and CoO solubility in KCl-LiCl melt at 700 Deg C were determined by the method of potentiometric titration using Pt(O 2 )IZrO 2 (Y 2 O 3 ) membrane oxygen electrode. It was ascertained that acid properties of Cd 2+ and Pb'2 + cations are levelled to Li + properties, a break in E-pO graduation dependence in KCl-LiCl melt was observed at pO ∼ 2. Increase in oxides solubility in the melt studied compared with KCl-NaCl and CsCl-KCl-NaCl melts stems from the presence of Li + cations in the melt studied, which possess stronger acid properties than those of Na + or K + [ru

  1. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry.

    Science.gov (United States)

    Qiu, Zhenli; Shu, Jian; Jin, Guixiao; Xu, Mingdi; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-03-15

    A simple, low-cost transducer with glucometer readout was designed for sensitive detection of mercury(II) (Hg(2+)), coupling with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and invertase-functionalized gold-dendrimer nanospheres for the signal amplification. Initially, nanogold-encapsulated poly(amidoamine) dendrimers (Au DENs) were synthesized by in-situ reduction of gold(III). Thereafter, the as-prepared Au DENs were utilized for the labeling of invertase and T-rich signal DNA probe. In the presence of target Hg(2+), the functionalized Au DENs were conjugated to capture DNA probe-modified electrode via T-Hg(2+)-T coordination chemistry. Accompanying the Au DENs, the labeled invertase could hydrolyze sucrose into glucose, which could be quantitatively monitored by an external personal glucometer (PGM). The PGM signal increased with the increasing target Hg(2+) in the sample. Under the optimal conditions, our designed sensing platform exhibited good PGM responses toward target Hg(2+), and allowed the detection of Hg(2+) at a concentration as low as 4.2 pM. This sensing system also displayed remarkable specificity relative to target Hg(2+) against other competing ions, and could be applied for reliable monitoring of spiked Hg(2+) into the environmental water samples with satisfactory results. With the advantages of cost-effectiveness, simplicity, portability, and convenience, our strategy provides a tremendous potential to be a promising candidate for point-of-use monitoring of non-glucose targets by the public. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. In vitro oxidation of indoleacetic acid by soluble auxin-oxidases and peroxidases from maize roots

    International Nuclear Information System (INIS)

    Beffa, R.; Martin, H.V.; Pilet, P.E.

    1990-01-01

    Soluble auxin-oxidases were extracted from Zea mays L. cv LG11 apical root segments and partially separated from peroxidases (EC 1.11.1.7) by size-exclusion chromatography. Auxin-oxidases were resolved into one main peak corresponding to a molecular mass of 32.5 kilodaltons and a minor peak at 54.5 kilodaltons. Peroxidases were separated into at least four peaks, with molecular masses from 32.5 to 78 kilodaltons. In vitro activity of indoleacetic acid-oxidases was dependent on the presence of MnCl 2 and p-coumaric acid. Compound(s) present in the crude extract and several synthetic auxin transport inhibitors (including 2,3,5-triiodobenzoic acid and N-1-naphthylphthalamic acid) inhibited auxin-oxidase activity, but had no effect on peroxidases. The products resulting from the in vitro enzymatic oxidation of [ 3 H]indoleacetic acid were separated by HPLC and the major metabolite was found to cochromatograph with indol-3yl-methanol

  3. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    Science.gov (United States)

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  4. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  5. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  6. Synthesis of acid-soluble spore proteins by Bacillus subtilis.

    Science.gov (United States)

    Leventhal, J M; Chambliss, G H

    1982-12-01

    The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.

  7. Piv site-specific invertase requires a DEDD motif analogous to the catalytic center of the RuvC Holliday junction resolvases.

    Science.gov (United States)

    Buchner, John M; Robertson, Anne E; Poynter, David J; Denniston, Shelby S; Karls, Anna C

    2005-05-01

    Piv, a unique prokaryotic site-specific DNA invertase, is related to transposases of the insertion elements from the IS110/IS492 family and shows no similarity to the site-specific recombinases of the tyrosine- or serine-recombinase families. Piv tertiary structure is predicted to include the RNase H-like fold that typically encompasses the catalytic site of the recombinases or nucleases of the retroviral integrase superfamily, including transposases and RuvC-like Holliday junction resolvases. Analogous to the DDE and DEDD catalytic motifs of transposases and RuvC, respectively, four Piv acidic residues D9, E59, D101, and D104 appear to be positioned appropriately within the RNase H fold to coordinate two divalent metal cations. This suggests mechanistic similarity between site-specific inversion mediated by Piv and transposition or endonucleolytic reactions catalyzed by enzymes of the retroviral integrase superfamily. The role of the DEDD motif in Piv catalytic activity was addressed using Piv variants that are substituted individually or multiply at these acidic residues and assaying for in vivo inversion, intermolecular recombination, and DNA binding activities. The results indicate that all four residues of the DEDD motif are required for Piv catalytic activity. The DEDD residues are not essential for inv recombination site recognition and binding, but this acidic tetrad does appear to contribute to the stability of Piv-inv interactions. On the basis of these results, a working model for Piv-mediated inversion that includes resolution of a Holliday junction is presented.

  8. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  9. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO2(cr)

    International Nuclear Information System (INIS)

    Rai, Dhanpat; Kitamura, Akira; Rosso, Kevin M.; Sasaki, Takayuki; Kobayashi, Taishi

    2016-01-01

    Solubility studies were conducted with HfO 2 (cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg -1 . These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO 2 (am) suspensions to 90 C to ascertain whether the HfO 2 (am) converts to HfO 2 (cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO 2 (cr) contains a small fraction of less crystalline, but not amorphous, material [HfO 2 (lcr)] and this, rather than the HfO 2 (cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log 10 K 0 values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO 2 (lcr)[HfO 2 (lcr) + 2H 2 O ↔ Hf 4+ + 4OH - ]. The log 10 of the solubility product of HfO 2 (cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  10. The water soluble composite poly(vinylpyrrolidone–methylaniline: A new class of corrosion inhibitors of mild steel in hydrochloric acid media

    Directory of Open Access Journals (Sweden)

    R. Karthikaiselvi

    2017-02-01

    Full Text Available In recent years poly methyl aniline has been reported as one of the efficient corrosion inhibitors of mild steel in acidic media. In view of the major limitation of the insolubility of polymethyl aniline PMA, we propose to convert PMA into a water soluble composite using supporting polymer polyvinylpyrrolidone to get higher solubility and corrosion inhibition efficiency. The water soluble composite poly(vinylpyrrolidone-methyl aniline was synthesized by chemical oxidative polymerization and its inhibitive effect on mild steel in 1 M HCl has been investigated using weight loss and electrochemical techniques (potentiodynamic polarization studies and impedance spectroscopy. SEM and EDX analyses are carried out to establish a protective film formation on the metal surface.

  11. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  12. The effect of ammonium sulfate on the solubility of amino acids in water at (298.15 and 323.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luisa A.; Macedo, Eugenia A. [Laboratory of Separation and Reaction Engineering, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Pinho, Simao P. [Laboratory of Separation and Reaction Engineering, Departamento de Tecnologia Quimica e Biologica, Instituto Politecnico de Braganca, Campus e Santa Apolonia, 5301-857 Braganca (Portugal)], E-mail: spinho@ipb.pt

    2009-02-15

    Using the analytical gravimetric method the solubility of glycine, DL-alanine, L-isoleucine, L-threonine, and L-serine in aqueous systems of (NH{sub 4}){sub 2}SO{sub 4}, at (298.15 and 323.15) K, were measured for salt concentrations ranging up to 2.0 molal. In the electrolyte molality range studied the experimental observations showed that ammonium sulfate is a salting-in agent for most of the amino acids studied. Furthermore, the change of the relative solubility with electrolyte concentration shows a maximum, which makes the representation of the data by a simple empirical correlation such as the Setschenow equation difficult. For the development and evaluation of a robust thermodynamic framework that makes it possible to more profoundly understand aqueous amino acid solutions with ammonium sulfate additional experimental information is needed.

  13. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  14. Changes in sugar content and related enzyme activities in table grape (Vitis vinifera L.) in response to foliar selenium fertilizer.

    Science.gov (United States)

    Zhu, Shuaimeng; Liang, Yinli; An, Xiaojuan; Kong, Fanchao; Gao, Dekai; Yin, Hongfei

    2017-09-01

    Spraying selenium (Se) fertilizer is an effective method for Se-enriched fruit production. Sugar content in fruit is the major factor determining berry quality. However, changes in sugar metabolism in response to Se fertilizer are unclear. Hence, this study was conducted to identify the effects of Se fertilizer on sugar metabolism and related enzyme activities of grape berries. Additionally, production of leaves with and without Se fertilizer was also investigated. Acid invertase (AI) activity, total soluble sugar and Se content in berries, and photosynthetic rate in leaves produced under Se fertilizer treatments were higher than that of control. Glucose and fructose were the primary sugars in berries, with a trace of sucrose. In both berries and leaves, neutral invertase activity was lower than AI, there was no significant difference in neutral invertase, sucrose synthase and sucrose phosphate synthase between Se fertilizer-treated and control. In berries, AI showed a significant positive correlation with glucose and fructose; also Se content was significantly correlated with sugar content. AI played an important role in the process of sugar accumulation in berries; high AI activity in berries and photosynthetic rate in leaves could explain the mechanism by which Se fertilizer affected sugar accumulation in berries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Long-term observation of water-soluble chemical components and acid-digested metals in the total suspended particles collected at Okinawa, Japan

    Science.gov (United States)

    Handa, D.; Okada, K.; Kuroki, Y.; Nakama, Y.; Nakajima, H.; Somada, Y.; Ijyu, M.; Azechi, S.; Oshiro, Y.; Nakaema, F.; Miyagi, Y.; Arakaki, T.; Tanahara, A.

    2011-12-01

    The economic growth and population increase in recent Asia have been increasing air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asia's air quality because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background clean air and can be compared with continental air masses which have been affected by anthropogenic activities. We collected total suspended particles (TSP) on quartz filters by using a high volume air sampler at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS), Okinawa, Japan during August 2005 and August 2010. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations, water-soluble organic carbon (WSOC) and acid-digested metals in TSP samples using ion chromatography, atomic absorption spectrometry, total organic carbon analyzer and Inductively Coupled Plasma Mass spectrometry (ICP-MS), respectively. Seasonal variation of water-soluble chemical components and acid-digested metals showed that the concentrations were the lowest in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian continent, the concentrations of water-soluble chemical components and acid-digested metals were much higher compared to the other directions, suggesting long-range transport of air pollutants from Asian continent. Also, when the air mass came from Asian continent (75-100% dominant), the mean concentrations of non-sea salt sulfate and nitrate increased ca. 1.8 times and ca. 3.7 times, respectively between 2005 and 2010, and the ratio of nitrate to

  16. Metabolismo de carboidratos durante o amadurecimento do mamão (Carica papaya L. Cv. Solo: influência da radiação gama Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo

    Directory of Open Access Journals (Sweden)

    M. L. P. A. GOMEZ

    1999-05-01

    Full Text Available A irradiação de alimentos é um tratamento pós-colheita bastante promissor, capaz de atuar tanto na desinfestação como no aumento da vida útil de frutos. O mamão é um fruto com curta vida pós-colheita, levando de 6 a 12 dias para atingir a senescência. Além disto, a infestação por larvas de mosca diminui sensivelmente o seu potencial de exportação. O objetivo deste trabalho foi verificar a ação de uma dose de 0,5 kGy de irradiação gama, normalmente utilizada para desinfestação e aumento de vida útil dos frutos, sobre o comportamento dos carboidratos solúveis durante o amadurecimento do mamão (Carica papaya L. cv. Solo, e sobre as enzimas relacionadas ao metabolismo da sacarose: sacarose sintase (SS, sacarose-fosfato sintase (SPS e invertases ácida e neutra. Os resultados demonstraram que a irradiação não exerce efeito sobre o teor de glicose e frutose, ou sobre a respiração e atividade da SS. Entretanto, a composição dos açúcares solúveis totais e da sacarose, e a atividade da SPS e das invertases foram afetados.Food irradiation is one of the most promising treatments that can be utilized for fruits desinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS, sucrose-phosphate synthase (SPS, acid and neutral invertases activities, during ripening. The results demonstred that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity.

  17. Issues concerning the determination of solubility products of sparingly soluble crystalline solids. Solubility of HfO{sub 2}(cr)

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat [Rai Enviro-Chem, LLC, Yachats, OR (United States); Kitamura, Akira [Japan Atomic Energy Agency, Ibaraki (Japan); Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, WA (United States); Sasaki, Takayuki; Kobayashi, Taishi [Kyoto Univ. (Japan)

    2016-11-01

    Solubility studies were conducted with HfO{sub 2}(cr) solid as a function HCl and ionic strength ranging from 2.0 to 0.004 mol kg{sup -1}. These studies involved (1) using two different amounts of the solid phase, (2) acid washing the bulk solid phase, (3) preheating the solid phase to 1400 C, and (4) heating amorphous HfO{sub 2}(am) suspensions to 90 C to ascertain whether the HfO{sub 2}(am) converts to HfO{sub 2}(cr) and to determine the solubility from the oversaturation direction. Based on the results of these treatments it is concluded that the HfO{sub 2}(cr) contains a small fraction of less crystalline, but not amorphous, material [HfO{sub 2}(lcr)] and this, rather than the HfO{sub 2}(cr), is the solubility-controlling phase in the range of experimental variables investigated in this study. The solubility data are interpreted using both the Pitzer and SIT models and they provide log{sub 10} K{sup 0} values of -(59.75±0.35) and -(59.48±0.41), respectively, for the solubility product of HfO{sub 2}(lcr)[HfO{sub 2}(lcr) + 2H{sub 2}O ↔ Hf{sup 4+} + 4OH{sup -}]. The log{sub 10} of the solubility product of HfO{sub 2}(cr) is estimated to be < -63. The observation of a small fraction of less crystalline higher solubility material is consistent with the general picture that mineral surfaces are often structurally and/or compositionally imperfect leading to a higher solubility than the bulk crystalline solid. This study stresses the urgent need, during interpretation of solubility data, of taking precautions to make certain that the observed solubility behavior for sparingly-soluble solids is assigned to the proper solid phase.

  18. Combined Measurement of 6 Fat-Soluble Vitamins and 26 Water-Soluble Functional Vitamin Markers and Amino Acids in 50 μL of Serum or Plasma by High-Throughput Mass Spectrometry.

    Science.gov (United States)

    Midttun, Øivind; McCann, Adrian; Aarseth, Ove; Krokeide, Marit; Kvalheim, Gry; Meyer, Klaus; Ueland, Per M

    2016-11-01

    Targeted metabolic profiling characterized by complementary platforms, multiplexing and low volume consumption are increasingly used for studies using biobank material. Using liquid-liquid extraction, we developed a sample workup suitable for quantification of 6 fat- and 26 water-soluble biomarkers. 50 μL of serum/plasma was mixed with dithioerythritol, ethanol, and isooctane/chloroform. The organic layer was used for analysis of the fat-soluble vitamins all-trans retinol (A), 25-hydroxyvitamin D2, 25-hydroxyvitamin D3, α-tocopherol (E), γ-tocopherol (E), and phylloquinone (K1) by LC-MS/MS. The remaining aqueous fraction was mixed with ethanol, water, pyridine, and methylchloroformate (in toluene) to derivatize the water-soluble biomarkers. The resulting toluene layer was used for GC-MS/MS analysis of alanine, α-ketoglutarate, asparagine, aspartic acid, cystathionine, total cysteine, glutamic acid, glutamine, glycine, histidine, total homocysteine, isoleucine, kynurenine, leucine, lysine, methionine, methylmalonic acid, ornithine, phenylalanine, proline, sarcosine, serine, threonine, tryptophan, tyrosine, and valine. Isotope-labeled internal standards were used for all analytes. Chromatographic run times for the LC-MS/MS and GC-MS/MS were 4.5 and 11 min, respectively. The limits of detection (LOD) for the low-concentration analytes (25-hydroxyvitamin D2, 25-hydroxyvitamin D3, and phylloquinone) were 25, 17, and 0.33 nM, respectively, while all other analytes demonstrated sensitivity significantly lower than endogenous concentrations. Recoveries ranged from 85.5-109.9% and within- and between-day coefficients of variance (CVs) were 0.7-9.4% and 1.1-17.5%, respectively. This low-volume, high-throughput multianalyte assay is currently in use in our laboratory for quantification of 32 serum/plasma biomarkers in epidemiological studies.

  19. Optimization of invertase assay conditions in rubber tree plants (Hevea brasiliensis Muell. Arg. Otimização das condiçõess do ensaio da invertase em seringueira (Hevea brasiliensis Muell. Arg.

    Directory of Open Access Journals (Sweden)

    Daria Pimenta de Oliveira

    2006-10-01

    Full Text Available The objective of this work was to define the optimal conditions for invertase assay, seeking to determine the ideal parameters for the different isoenzymes of leaf and bark tissues in adult rubber trees. Assays of varying pH, sucrose concentration and temperature of the reaction medium were conducted for the two investigated isoenzymes. The results pointed out the existence of two different pH related isoforms for the two analyzed tissues, with an isoenzyme being more active at pH 5,5 and the other at neutral/alkaline pH. Leaf blade isoenzymes presented similar values for substrate concentration, whereas the bark isoenzyme presented maximum values below those previously reported. The assays at different temperatures presented similar values for leaf isoenzymes, though they have differed significantly among the obtained values.O objetivo deste trabalho foi definir as condições ótimas para a realização do ensaio enzimático da invertase, procurando-se determinar os parâmetros ideais para as diferentes isoenzimas de tecidos foliares e da casca de plantas adultas de seringueira. Foram realizados ensaios variando-se o pH, a concentração da sacarose e a temperatura do meio de reação para as duas isoenzimas estudadas. Os resultados indicaram a existência de duas isoformas diferentes em relação ao pH nos dois tecidos analisados, sendo uma isoenzima mais ativa a pH 5,5 e outra em pH neutro/alcalino. Com relação à concentração do substrato, as isoenzimas da lâmina foliar apresentaram valores semelhantes, enquanto a isoenzima da casca, valores máximos inferiores aos observados anteriormente. Os ensaios conduzidos em diferentes temperaturas tiveram valores semelhantes nas isoenzimas da folha, embora tenham diferido significativamente entre dos valores obtidos.

  20. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China.

    Science.gov (United States)

    Liang, Jianfen; Han, Bei-Zhong; Nout, M J Robert; Hamer, Robert J

    2010-02-01

    In vitro solubility of calcium, iron and zinc in relation to phytic acid (PA) levels in 30 commercial rice-based foods from China was studied. Solubility of minerals and molar ratios of PA to minerals varied with degrees of processing. In primary products, [PA]/[Ca] values were less than 5 and [PA]/[Fe] and [PA]/[Zn] similarly ranged between 5 and 74, with most values between 20 and 30. [PA]/[mineral] molar ratios in intensively processed products were lower. Solubility of calcium ranged from 0% to 87%, with the lowest in brown rice (12%) and the highest in infant foods (50%). Iron solubility in two-thirds of samples was lower than 30%, and that of zinc narrowly ranged from 6% to 30%. Solubility of minerals was not significantly affected by [PA]/[mineral]. At present, neither primary nor intensively processed rice-based products are good dietary sources of minerals. Improvements should be attempted by dephytinization, mineral fortification or, preferably, combination of both.

  1. Osmoregulation and nutritional relationships between Orobanche foetida and faba bean

    Science.gov (United States)

    Kharrat, Mohamed; Delavault, Philippe; Chaïbi, Wided; Simier, Philippe

    2009-01-01

    The present study aims at comparing the phloem composition of the tolerant XBJ90.03-16-1-1-1 and the susceptible Bachaar genotypes and the impact of the faba bean genotype on the levels of the major solutes and invertase activities in the parasite Orobanche foetida. In comparison to Bachaar, the XBJ90.03-161-1-1 genotype limited the growth of orobanche tubercles under in vitro conditions. The limited growth was due to low soluble invertase activity, low osmotic potential of the infected roots and the organic nitrogen deficiency of the host phloem sap. The faba bean genotype did not affect the osmoregulation process of O. foetida. Among the organic solutes, stachyose, hexoses, starch and free amino acids, mainly asparagine and aspartate were highly accumulated in orobanche. However, asparagine/aspartate, glutamine/glutamate, alanine, serine, gamma amino butyric acid, stachyose, sucrose were identified as the main organic components in the host phloem exudates. The key role of the enzymes α-galactosidase, asparagine synthetase and aspartate oxaloglutarate aminotransferase in the utilization of the host solutes is proposed in O. foetida parasitizing faba bean. PMID:19794856

  2. [Dynamics of aquic brown soil enzyme activities under no-tillage].

    Science.gov (United States)

    Liu, Xiumei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2006-12-01

    This paper studied the effects of no-tillage on the dynamics of invertase, urease and acid phosphatase activities in an aquic brown soil during maize growing season. The results showed that in 0 - 10 cm soil layer, the invertase activity at jointing, trumpet-shaped and ripening stages, urease activity at jointing and booting stages, and acid phosphatase activity at booting and ripening stages were significantly higher under no-tillage (NT) than under conventional tillage (CT). In 10 - 20 cm soil layer, the invertase activity at seedling, jointing and trumpet-shaped stages was significantly different between NT and CT, and the urease activity during whole growing season except at booting stage was significantly higher under NT than under CT. In 20 - 30 cm soil layer, the invertase activity during maize growing season was significantly lower under NT than under CT, and urease activity at seedling stage and acid phosphate activity at ripening stage were significantly different between these two treatments. Under NT, there was a decreasing trend of soil enzyme activities with increasing soil depth; while under CT, soil invertase and acid phosphatase activities increased, but urease activity decreased with increasing soil depth.

  3. INFLUENCE OF pH, TEMPERATURE AND DISSOLVED OXYGEN CONCENTRATION ON THE PRODUCTION OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE AND INVERTASE BY Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    J. Abrahão-Neto

    1997-03-01

    Full Text Available The effect of pH (from 4.0 to 5.0, temperature (T (from 30 oC to 40 oC and dissolved oxygen concentration (DO (from 0.2 to 6.0 mg O2/L on glucose 6-phosphate dehydrogenase (G6PDH (EC 1.1.1.49 and Invertase (EC 3.2.1.26 formation by S. cerevisiae were studied. The best culture conditions for G6PDH and Invertase formation were: 2.55 L culture medium (yeast extract, 3.0 g/L; 5peptone, 5.0 g/L; glucose, 2.0 g/L; sucrose, 15.0 g/L; Na2HPO4.12 H2O, 2.4 g/L; (NH42SO4, 5.1 g/L and MgSO4. 7H2O, 0.075 g/L; 0.45 L inoculum (0.70 g dry cell/L; pH = 4.5; T = 35 oC and DO = 4.0 mg/L. G6PDH was highly sensitive to pH, T and DO variation. The increase in G6PDH production was about three times when the DO ranged from 0.2 to 4.0 mg O2/L. Moreover, by shifting pH from 5.0 to 4.5 and temperature from 30 oC to 35 oC, G6PDH formation increased by 57% and 70%, respectively. Invertase activity (IA of whole cells decreased at least 50% at extremes values of DO (2.0 and 6.0 mg O2/L and pH (4.0 and 5.0. Furthermore, IA oscillated during the fermentation due to the glucose repression/derepression mechanism

  4. Genetic Engineering of Maize (Zea mays L.) with Improved Grain Nutrients.

    Science.gov (United States)

    Guo, Xiaotong; Duan, Xiaoguang; Wu, Yongzhen; Cheng, Jieshan; Zhang, Juan; Zhang, Hongxia; Li, Bei

    2018-02-21

    Cell-wall invertase plays important roles in the grain filling of crop plants. However, its functions in the improvement of grain nutrients have not been investigated. In this work, the stable expression of cell-wall-invertase-encoding genes from different plant species and the contents of total starch, protein, amino acid, nitrogen, lipid, and phosphorus were examined in transgenic maize plants. High expressions of the cell-wall-invertase gene conferred enhanced invertase activity and sugar content in transgenic plants, leading to increased grain yield and improved grain nutrients. Transgenic plants with high expressions of the transgene produced more total starch, protein, nitrogen, and essential amino acids in the seeds. Overall, the results indicate that the cell-wall-invertase gene can be used as a potential candidate for the genetic breeding of grain crops with both improved grain yield and quality.

  5. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  6. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Directory of Open Access Journals (Sweden)

    Rongning Liang

    2018-03-01

    Full Text Available Nowadays, it is still difficult for molecularly imprinted polymers (MIPs to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  7. Soluble Molecularly Imprinted Nanorods for Homogeneous Molecular Recognition

    Science.gov (United States)

    Liang, Rongning; Wang, Tiantian; Zhang, Huan; Yao, Ruiqing; Qin, Wei

    2018-03-01

    Nowadays, it is still difficult for molecularly imprinted polymer (MIPs) to achieve homogeneous recognition since they cannot be easily dissolved in organic or aqueous phase. To address this issue, soluble molecularly imprinted nanorods have been synthesized by using soluble polyaniline doped with a functionalized organic protonic acid as the polymer matrix. By employing 1-naphthoic acid as a model, the proposed imprinted nanorods exhibit an excellent solubility and good homogeneous recognition ability. The imprinting factor for the soluble imprinted nanoroads is 6.8. The equilibrium dissociation constant and the apparent maximum number of the proposed imprinted nanorods are 248.5 μM and 22.1 μmol/g, respectively. We believe that such imprinted nanorods may provide an appealing substitute for natural receptors in homogeneous recognition related fields.

  8. Molybdenum solubility in aluminium nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Heres, X.; Sans, D.; Bertrand, M.; Eysseric, C. [CEA, Centre de Marcoule, Nuclear Energy Division, DRCP, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Brackx, E.; Domenger, R.; Excoffier, E. [CEA, Centre de Marcoule, Nuclear Energy Division, DTEC, BP 17171, 30207 Bagnols-sur-Ceze Cedex (France); Valery, J.F. [AREVA-NC, DOR/RDP, Paris - La Defense (France)

    2016-07-01

    For over 60 years, research reactors (RR or RTR for research testing reactors) have been used as neutron sources for research, radioisotope production ({sup 99}Mo/{sup 99m}Tc), nuclear medicine, materials characterization, etc... Currently, over 240 of these reactors are in operation in 56 countries. They are simpler than power reactors and operate at lower temperature (cooled to below 100 C. degrees). The fuel assemblies are typically plates or cylinders of uranium alloy and aluminium (U-Al) coated with pure aluminium. These fuels can be processed in AREVA La Hague plant after batch dissolution in concentrated nitric acid and mixing with UOX fuel streams. The aim of this study is to accurately measure the solubility of molybdenum in nitric acid solution containing high concentrations of aluminium. The higher the molybdenum solubility is, the more flexible reprocessing operations are, especially when the spent fuels contain high amounts of molybdenum. To be most representative of the dissolution process, uranium-molybdenum alloy and molybdenum metal powder were dissolved in solutions of aluminium nitrate at the nominal dissolution temperature. The experiments showed complete dissolution of metallic elements after 30 minutes long stirring, even if molybdenum metal was added in excess. After an induction period, a slow precipitation of molybdic acid occurs for about 15 hours. The data obtained show the molybdenum solubility decreases with increasing aluminium concentration. The solubility law follows an exponential relation around 40 g/L of aluminium with a high determination coefficient. Molybdenum solubility is not impacted by the presence of gadolinium, or by an increasing concentration of uranium. (authors)

  9. Production of a water-soluble fertilizer containing amino acids by solid-state fermentation of soybean meal and evaluation of its efficacy on the rapeseed growth.

    Science.gov (United States)

    Wang, Jianlei; Liu, Zhemin; Wang, Yue; Cheng, Wen; Mou, Haijin

    2014-10-10

    Soybean meal is a by-product of soybean oil extraction and contains approximately 44% protein. We performed solid-state fermentation by using Bacillus subtilis strain N-2 to produce a water-soluble fertilizer containing amino acids. Strain N-2 produced a high yield of protease, which transformed the proteins in soybean meal into peptide and free amino acids that were dissolved in the fermentation products. Based on the Plackett-Burman design, the initial pH of the fermentation substrate, number of days of fermentation, and the ratio of liquid to soybean meal exhibited significant effects on the recovery of proteins in the resulting water-soluble solution. According to the predicted results of the central composite design, the highest recovery of soluble proteins (99.072%) was achieved at the optimum conditions. Under these conditions, the resulting solution contained 50.42% small peptides and 7.9% poly-γ-glutamic acid (γ-PGA). The water-soluble fertilizer robustly increased the activity of the rapeseed root system, chlorophyll content, leaf area, shoot dry weight, root length, and root weight at a concentration of 0.25% (w/v). This methodology offers a value-added use of soybean meal. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility

    OpenAIRE

    Ji-Hun An; Changjin Lim; Hyung Chul Ryu; Jae Sun Kim; Hyuk Min Kim; Alice Nguvoko Kiyonga; Minho Park; Young-Ger Suh; Gyu Hwan Park; Kiwon Jung

    2017-01-01

    Febuxostat (FB) is a poorly water-soluble drug that belongs to BCS class II. The drug is employed for the treatment of inflammatory disease arthritis urica (gout), and the free base, FB form-A, is most preferred for drug formulation. In order to achieve a goal of improving the water solubility of FB form-A, this study was carried out using the cocrystallization technique called the liquid-assisted grinding method to produce FB cocrystals. Here, five amino acids containing amine (NH), oxygen (...

  11. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  12. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan)

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and {sup 1}H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. - Highlights: • Development of a new synthetic methodology • Synthesis of organo-soluble chitosan (CS) derivatives • VERO cells proliferation • Nanofibrous membranes from the synthesized chitosan derivatives and polycaprolactone.

  13. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Soluble adenylyl cyclase is an acid-base sensor in epithelial base-secreting cells.

    Science.gov (United States)

    Roa, Jinae N; Tresguerres, Martin

    2016-08-01

    Blood acid-base regulation by specialized epithelia, such as gills and kidney, requires the ability to sense blood acid-base status. Here, we developed primary cultures of ray (Urolophus halleri) gill cells to study mechanisms for acid-base sensing without the interference of whole animal hormonal regulation. Ray gills have abundant base-secreting cells, identified by their noticeable expression of vacuolar-type H(+)-ATPase (VHA), and also express the evolutionarily conserved acid-base sensor soluble adenylyl cyclase (sAC). Exposure of cultured cells to extracellular alkalosis (pH 8.0, 40 mM HCO3 (-)) triggered VHA translocation to the cell membrane, similar to previous reports in live animals experiencing blood alkalosis. VHA translocation was dependent on sAC, as it was blocked by the sAC-specific inhibitor KH7. Ray gill base-secreting cells also express transmembrane adenylyl cyclases (tmACs); however, tmAC inhibition by 2',5'-dideoxyadenosine did not prevent alkalosis-dependent VHA translocation, and tmAC activation by forskolin reduced the abundance of VHA at the cell membrane. This study demonstrates that sAC is a necessary and sufficient sensor of extracellular alkalosis in ray gill base-secreting cells. In addition, this study indicates that different sources of cAMP differentially modulate cell biology. Copyright © 2016 the American Physiological Society.

  15. Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Science.gov (United States)

    Huang, Shuping; Jia, Xia; Zhao, Yonghua; Bai, Bo; Chang, Yafei

    2017-02-01

    Soil contamination by heavy metals in combination with elevated atmospheric CO 2 has important effects on the rhizosphere microenvironment by influencing plant growth. Here, we investigated the response of the R. pseudoacacia rhizosphere microenvironment to elevated CO 2 in combination with cadmium (Cd)- and lead (Pb)-contamination. Organic compounds (total soluble sugars, soluble phenolic acids, free amino acids, and organic acids), microbial abundance and activity, and enzyme activity (urease, dehydrogenase, invertase, and β-glucosidase) in rhizosphere soils increased significantly (p soil microbial community in the rhizosphere. Heavy metals alone resulted in an increase in total soluble sugars, free amino acids, and organic acids, a decrease in phenolic acids, microbial populations and biomass, and enzyme activity, and a change in microbial community in rhizosphere soils. Elevated CO 2 led to an increase in organic compounds, microbial populations, biomass, and activity, and enzyme activity (except for l-asparaginase), and changes in microbial community under Cd, Pb, or Cd + Pb treatments relative to ambient CO 2 . In addition, elevated CO 2 significantly (p soils. Overall, elevated CO 2 benefited the rhizosphere microenvironment of R. pseudoacacia seedlings under heavy metal stress, which suggests that increased atmospheric CO 2 concentrations could have positive effects on soil fertility and rhizosphere microenvironment under heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Studies in the solubility of Pu(III) oxalate

    Energy Technology Data Exchange (ETDEWEB)

    Hasilkar, S P; Khedekar, N B; Chander, K; Jadhav, V; Jain, H C [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Div.

    1994-11-01

    Studies have been carried out on the solubility of Pu(III) oxalate by precipitation of Pu(III) oxalate from varying concentrations of HNO[sub 3]/HCl (0.5-2.0M) solutions and also by equilibrating freshly prepared Pu(III) oxalate with solutions containing varying concentrations of HNO[sub 3]/HCl, oxalic acid and ascorbic acid. Pu(III) solutions in HNO[sub 3] and HCl media were prepared by reduction of Pu(IV) with ascorbic acid. 0.01-0.10M ascorbic acid concentration in the aqueous solution was maintained as holding reductant. The solubility of Pu(III) oxalate was found to be a minimum in 0.5M-1M HNO[sub 3]/HCl solutions containing 0.05M ascorbic acid and 0.2M excess oxalic acid in the supernatant. (author) 6 refs.; 6 tabs.

  17. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Science.gov (United States)

    Collins, John; Li, Xiaohong; Pletcher, Derek; Tangirala, Ravichandra; Stratton-Campbell, Duncan; Walsh, Frank C.; Zhang, Caiping

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm × 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%.

  18. A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part IX: Electrode and electrolyte conditioning with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Collins, John; Stratton-Campbell, Duncan [C-Tech Innovation Ltd., Capenhurst, Chester CH1 6EH (United Kingdom); Li, Xiaohong; Tangirala, Ravichandra; Walsh, Frank C.; Zhang, Caiping [Energy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, University Road, Southampton SO17 1BJ (United Kingdom); Pletcher, Derek [Electrochemistry and Surface Science Group, School of Chemistry, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-05-01

    Extended cycling of a soluble lead acid battery can lead to problems due to an imbalance in the coulombic efficiency leading to deposits of Pb and PbO2 on the electrodes. Periodic addition of hydrogen peroxide to the electrolyte of the soluble lead acid flow battery largely overcomes several operational problems seen during extended cycling, using a 10 cm x 10 cm parallel plate flow cell. It is shown that this treatment greatly extends the number of cycles that can be achieved with a reasonable energy-, voltage-, and charge efficiency of 54-66%, 71%, and 77-91%. (author)

  19. Effect of repeated applications of buprofezin and acephate on soil cellulases, amylase, and invertase.

    Science.gov (United States)

    Raju, M Naga; Venkateswarlu, K

    2014-10-01

    The impact of repeated applications of buprofezin and acephate, at concentrations ranging from 0.25 to 1.0 kg ha(-1), on activities of cellulases, amylase, and invertase in unamended and nitrogen, phosphorous, and potassium (NPK) fertilizer-amended soil planted with cotton was studied. The nontarget effect of selected insecticides, when applied once, twice, or thrice on soil enzyme activities, was dose-dependent; the activities decreased with increasing concentrations of insecticides. However, there was a rapid decline in activities of enzymes after three repeated applications of insecticides in unamended or NPK-amended soil. Our data clearly suggest that insecticides must be applied judiciously in pest management in order to protect the enzymes largely implicated in soil fertility.

  20. Multiple Roles of Soluble Sugars in the Establishment of Gunnera-Nostoc Endosymbiosis1[OA

    Science.gov (United States)

    Khamar, Hima J.; Breathwaite, Erick K.; Prasse, Christine E.; Fraley, Elizabeth R.; Secor, Craig R.; Chibane, Fairouz L.; Elhai, Jeff; Chiu, Wan-Ling

    2010-01-01

    Gunnera plants have the unique ability to form endosymbioses with N2-fixing cyanobacteria, primarily Nostoc. Cyanobacteria enter Gunnera through transiently active mucilage-secreting glands on stems. We took advantage of the nitrogen (N)-limitation-induced gland development in Gunnera manicata to identify factors that may enable plant tissue to attract and maintain cyanobacteria colonies. Cortical cells in stems of N-stressed Gunnera plants were found to accumulate a copious amount of starch, while starch in the neighboring mature glands was nearly undetectable. Instead, mature glands accumulated millimolar concentrations of glucose (Glc) and fructose (Fru). Successful colonization by Nostoc drastically reduced sugar accumulation in the surrounding tissue. Consistent with the abundance of Glc and Fru in the gland prior to Nostoc colonization, genes encoding key enzymes for sucrose and starch hydrolysis (e.g. cell wall invertase, α-amylase, and starch phosphorylase) were expressed at higher levels in stem segments with glands than those without. In contrast, soluble sugars were barely detectable in mucilage freshly secreted from glands. Different sugars affected Nostoc’s ability to differentiate motile hormogonia in a manner consistent with their locations. Galactose and arabinose, the predominant constituents of polysaccharides in the mucilage, had little or no inhibitory effect on hormogonia differentiation. On the other hand, soluble sugars that accumulated in gland tissue, namely sucrose, Glc, and Fru, inhibited hormogonia differentiation and enhanced vegetative growth. Results from this study suggest that, in an N-limited environment, mature Gunnera stem glands may employ different soluble sugars to attract Nostoc and, once the cyanobacteria are internalized, to maintain them in the N2-fixing vegetative state. PMID:20833727

  1. Ferulic Acid Dehydrodimer and –Dehydrotrimer Profiles of Distillers Dried Grains with Solubles from Different Cereal Species

    DEFF Research Database (Denmark)

    Pedersen, Mads Brøgger; Bunzel, Mirko; Schäfer, Judith

    2015-01-01

    Ferulic acid dehydrodimers- (DFA) and trimers (TriFA) ester-linked to plant cell wall polymers may not only cross-link cell wall polysaccharides, but also other cell wall components including proteins and lignin, thus, enhancing the rigidity and potentially affect the enzymatic degradation...... of the plant cell wall. Corn-, wheat-, and mixed cereal distillers dried grains with solubles (DDGS) were investigated for composition of DFAs and TriFAs by reversed phase high performance liquid chromatography with ultra violet detection. Corn DDGS contained 5.3 and 5.9 times higher contents of total DFAs...... acid cross-links in the corn cell wall are presumably not modified during fermentation and DDGS processing....

  2. Development of solid lipid nanoparticles for enhanced solubility of poorly soluble drugs

    DEFF Research Database (Denmark)

    Potta, Sriharsha Gupta; Minemi, Sriharsha; Nukala, Ravi Kumar

    2010-01-01

    Cyclosporine (CyA) solid lipid nanoparticles were prepared by using a solvent free high pressure homogenization process. CyA was incorporated into SLNs that consisted of stearic acid, trilaurin or tripalmitin lipid solid cores in order to enhance drug solubility. The process was conducted...

  3. [Effects of intensive management on soil C and N pools and soil enzyme activities in Moso bamboo plantations.

    Science.gov (United States)

    Yang, Meng; Li, Yong Fu; Li, Yong Chun; Xiao, Yong Heng; Yue, Tian; Jiang, Pei Kun; Zhou, Guo Mo; Liu, Juan

    2016-11-18

    In order to elucidate the effects of intensive management on soil carbon pool, nitrogen pool, enzyme activities in Moso bamboo (Phyllostachys pubescens) plantations, we collected soil samples from the soil surface (0-20 cm) and subsurface (20-40 cm) layers in the adjacent Moso bamboo plantations with extensive and intensive managements in Sankou Township, Lin'an City, Zhejiang Province. We determined different forms of C, N and soil invertase, urease, catalase and acid phosphatase activities. The results showed that long-term intensive management of Moso bamboo plantations significantly decreased the content and storage of soil organic carbon (SOC), with the SOC storage in the soil surface and subsurface layers decreased by 13.2% and 18.0%, respectively. After 15 years' intensive management of Masoo bamboo plantations, the contents of soil water soluble carbon (WSOC), hot water soluble carbon (HWSOC), microbial carbon (MBC) and readily oxidizable carbon (ROC) were significantly decreased in the soil surface and subsurface layers. The soil N storage in the soil surface and subsurface layers in intensively managed Moso bamboo plantations increased by 50.8% and 36.6%, respectively. Intensive management significantly increased the contents of nitrate-N (NO 3 - -N) and ammonium-N (NH 4 + -N), but decreased the contents of water-soluble nitrogen (WSON) and microbial biomass nitrogen (MBN). After 15 years' intensive management of Masoo bamboo plantations, the soil invertase, urease, catalase and acid phosphatase activities in the soil surface layer were significantly decreased, the soil acid phosphatase activity in the soil subsurface layer were significantly decreased, and other enzyme activities in the soil subsurface layer did not change. In conclusion, long-term intensive management led to a significant decline of soil organic carbon storage, soil labile carbon and microbial activity in Moso bamboo plantations. Therefore, we should consider the use of organic

  4. [Impacts of multicomponent environment on solubility of puerarin in biopharmaceutics classification system of Chinese materia medica].

    Science.gov (United States)

    Hou, Cheng-Bo; Wang, Guo-Peng; Zhang, Qiang; Yang, Wen-Ning; Lv, Bei-Ran; Wei, Li; Dong, Ling

    2014-12-01

    To illustrate the solubility involved in biopharmaceutics classification system of Chinese materia medica (CMMBCS) , the influences of artificial multicomponent environment on solubility were investigated in this study. Mathematical model was built to describe the variation trend of their influence on the solubility of puerarin. Carried out with progressive levels, single component environment: baicalin, berberine and glycyrrhizic acid; double-component environment: baicalin and glycyrrhizic acid, baicalin and berberine and glycyrrhizic acid and berberine; and treble-component environment: baicalin, berberin, glycyrrhizic acid were used to describe the variation tendency of their influences on the solubility of puerarin, respectively. And then, the mathematical regression equation model was established to characterize the solubility of puerarin under multicomponent environment.

  5. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    International Nuclear Information System (INIS)

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate at concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO 3 and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO 3 be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears to be the largest portion

  6. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  7. THE SOLUBILITY OF MILAS BAUXITE ORE IN SULPHURIC ACI

    Directory of Open Access Journals (Sweden)

    Mustafa GULFEN

    2001-06-01

    Full Text Available The effects of calcination conditions,sulphuric acid concentrations and dissolvingtemperature and period as parameters to thesolubility of the bauxite ore from Gobekdagı reservesin Mugla-Milas region were investigated. The bauxitesamples were calcined in different periods at differenttemperatures. Then the solubility of the calcinedbauxite samples in sulphuric acid solution wasexamined. Dissolving activation energy (Ea wascalculated using the optimum kinetics equation andthe results obtained from the solubility studiesexamined dissolving temperatures and periods

  8. Gallic acid/hydroxypropyl-β-cyclodextrin complex: Improving solubility for application on in vitro/ in vivo Candida albicans biofilms.

    Directory of Open Access Journals (Sweden)

    Guilherme Rodrigues Teodoro

    Full Text Available The aim of this study was to increase the solubility of gallic acid (GA for the treatment of Candida albicans biofilm, which is very difficult to treat and requires high drug concentrations. Cyclodextrins (CDs were used for this purpose. Complexes were evaluated by phase-solubility studies, prepared by spray drying and characterized by drug loading, scanning electron microscopy (SEM and differential scanning calorimetry (DSC. The complexes were tested on C. albicans biofilm using in vitro and in vivo models. HPβCD formed soluble inclusion complexes with GA. The percentage of GA in GA/HPβCD was 10.8 ± 0.01%. The SEM and DSC analyses confirmed the formation of inclusion complexes. GA/HPβCD maintained the antimicrobial activity of the pure GA. GA/HPβCD was effective on C. albicans biofilms of 24 and 48h. The in vivo results showed an anti-inflammatory activity of GA/HPβCD with no difference in invading hypha counting among the groups. This study encourages the development of new antifungal agents.

  9. Molecular Design of Soluble Biopolyimide with High Rigidity

    Directory of Open Access Journals (Sweden)

    Sumant Dwivedi

    2018-03-01

    Full Text Available New soluble biopolyimides were prepared from a diamine derived from an exotic amino acid (4-aminocinnamic acid with several kinds of tetracarboxylic dianhydride. The biopolyimide molecular structural flexibility was tailored by modifying the tetracarboxylic dianhydride moiety. The obtained polyimides were soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, dimethyl sulfoxide, and even tetrahydrofuran. It was observed that the biopolyimide solubility was greatly dependent upon the structural flexibility (torsion energy. Flexible structure facilitated greater solubility. The synthesized biopolyimides were largely amorphous and had number-average molecular weight (Mn in the range (5–8 × 105. The glass transition temperatures (Tg of the polymers ranged from 259–294 °C. These polymers exhibited good thermal stability without significant weight loss up to 410 °C. The temperatures at 10% weight loss (Td10 for synthesized biopolyimide ranged from 375–397 °C.

  10. Utilization of Condensed Distillers Solubles as Nutrient Supplement for Production of Nisin and Lactic Acid from Whey

    Science.gov (United States)

    Liu, Chuanbin; Hu, Bo; Chen, Shulin; Glass, Richard W.

    The major challenge associated with the rapid growth of the ethanol industry is the usage of the coproducts, i.e., condensed distillers solubles (CDS) and distillers dried grains, which are currently sold as animal feed supplements. As the growth of the livestock industries remains flat, alternative usage of these coproducts is urgently needed. CDS is obtained after the removal of ethanol by distillation from the yeast fermentation of a grain or a grain mixture by condensing the thin stillage fraction to semisolid. In this work, CDS was first characterized and yeast biomass was proven to be the major component of CDS. CDS contained 7.50% crude protein but with only 42% of that protein being water soluble. Then, CDS was applied as a nutrient supplement for simultaneous production of nisin and lactic acid by Lactococcus lactis subsp. lactis (ATCC 11454). Although CDS was able to support bacteria growth and nisin production, a strong inhibition was observed when CDS was overdosed. This may be caused by the existence of the major ethanol fermentation byproducts, especially lactate and acetate, in CDS. In the final step, the CDS based medium composition for nisin and lactic acid production was optimized using response surface methodology.

  11. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang

    2008-01-01

    Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules

  12. Short-term high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum

    Science.gov (United States)

    Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...

  13. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin.

    Science.gov (United States)

    Aytac, Zeynep; Uyar, Tamer

    2017-02-25

    Core-shell nanofibers were designed via electrospinning using inclusion complex (IC) of model hydrophobic drug (curcumin, CUR) with cyclodextrin (CD) in the core and polymer (polylactic acid, PLA) in the shell (cCUR/HPβCD-IC-sPLA-NF). CD-IC of CUR and HPβCD was formed at 1:2 molar ratio. The successful formation of core-shell nanofibers was revealed by TEM and CLSM images. cCUR/HPβCD-IC-sPLA-NF released CUR slowly but much more in total than PLA-CUR-NF at pH 1 and pH 7.4 due to the restriction of CUR in the core of nanofibers and solubility improvement shown in phase solubility diagram, respectively. Improved antioxidant activity of cCUR/HPβCD-IC-sPLA-NF in methanol:water (1:1) is related with the solubility enhancement achieved in water based system. The slow reaction of cCUR/HPβCD-IC-sPLA-NF in methanol is associated with the shell inhibiting the quick release of CUR. On the other hand, cCUR/HPβCD-IC-sPLA-NF exhibited slightly higher rate of antioxidant activity than PLA-CUR-NF in methanol:water (1:1) owing to the enhanced solubility. To conclude, slow release of CUR was achieved by core-shell nanofiber structure and inclusion complexation of CUR with HPβCD provides high solubility. Briefly, electrospinning of core-shell nanofibers with CD-IC core could offer slow release of drugs as well as solubility enhancement for hydrophobic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Isolation and characterization of acid-soluble collagen from the scales of marine fishes from Japan and Vietnam.

    Science.gov (United States)

    Minh Thuy, Le Thi; Okazaki, Emiko; Osako, Kazufumi

    2014-04-15

    Acid-soluble collagen (ASC) was successfully extracted from the scales of lizard fish (Saurida spp.) and horse mackerel (Trachurus japonicus) from Japan and Vietnam and grey mullet (Mugil cephalis), flying fish (Cypselurus melanurus) and yellowback seabream (Dentex tumifrons) from Japan. ASC yields were about 0.43-1.5% (on a dry weight basis), depending on the species. The SDS-PAGE profile showed that the ASCs were type I collagens, and consisted of two different α chains, α1 and α2, as well as a β component. ASC of horse mackerel from Vietnam contained a higher imino acid level than that from Japan. ASC denaturation temperature (Td) ranged from 26 to 29 °C, depending on fish species and imino acid content (p0.4M, regardless of fish type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions

    OpenAIRE

    Wang, Ling-Ling; Chen, Jian-Tao; Wang, Long-Fei; Wu, Sha; Zhang, Guang-zhao; Yu, Han-Qing; Ye, Xiao-dong; Shi, Qing-Shan

    2017-01-01

    Soluble microbial products (SMPs) are of significant concern in the natural environment and in engineered systems. In this work, poly-γ-glutamic acid (γ-PGA), which is predominantly produced by Bacillus sp., was investigated in terms of pH-induced conformational changes and molecular interactions in aqueous solutions; accordingly, its sedimentation coefficient distribution and viscosity were also elucidated. Experimental results indicate that pH has a significant impact on the structure and m...

  16. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    Science.gov (United States)

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  17. The Changes in Color, Soluble Sugars, Organic Acids, Anthocyanins and Aroma Components in “Starkrimson” during the Ripening Period in China

    Directory of Open Access Journals (Sweden)

    Yulian Liu

    2016-06-01

    Full Text Available “Starkrimson” is a traditional apple cultivar that was developed a long time ago and was widely cultivated in the arid region of the northern Wei River of China. However, little information regarding the quality characteristics of “Starkrimson” fruit has been reported in this area. To elucidate these characteristics, the color, soluble sugars, organic acids, anthocyanins and aroma components were measured during the ripening period through the use of high performance liquid chromatography (HPLC and gas chromatography-mass spectrometry (GC-MS. The results indicated that the changes in anthocyanin contents took place later than the changes in the Commission International Eclairage (CIE parameters. Meanwhile, cyanidin 3-galactoside (cy3-gal, fructose, sucrose, glucose and malic acid were the primary organic compounds, and 1-butanol-2-methyl-acetate, 2-hexenal and 1-hexanol were the most abundant aroma components in the skin. Furthermore, rapidly changing soluble sugars and organic acid synchronization took place in the early ripening period, while rapidly changing aroma components occurred later, on the basis of fresh weight. This result suggested that the production of aroma components might be a useful index of apple maturity.

  18. Preparation of fulvic acid and low-molecular organic acids by oxidation of weathered coal humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, T.; Ito, A.; Sasaki, O.; Yazawa, Y.; Yamaguchi, T. [Chiba Institute of Technolgy, Chiba (Japan). Dept. of Industrial Chemistry

    2002-07-01

    Weathered coal contains much humic acid and a little fulvic acid. Therefore, the production of fulvic acid, the most valuable humic substance because of its water-solubility, was examined by ozone and hydrogen peroxide oxidation of humic acid extracted form Xinjiang (China) weathered coal. The resulting products of the oxidation were water soluble fulvic acid and organic acids, mainly formic acid and oxalic acid. The product yield of fulvic acid was 20 (C%) and that of organic acids were 39 (C%) for formic and acid 13 (C%) for oxalic acid. The formed fulvic acid showed a higher content of oxygen and carboxyl groups, than those of the extracted one from the original weathered coal.

  19. Phloem unloading follows an extensive apoplasmic pathway in cucumber (Cucumis sativus L.) fruit from anthesis to marketable maturing stage.

    Science.gov (United States)

    Hu, Liping; Sun, Huihui; Li, Ruifu; Zhang, Lingyun; Wang, Shaohui; Sui, Xiaolei; Zhang, Zhenxian

    2011-11-01

    The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed. © 2011 Blackwell Publishing Ltd.

  20. Sucrose accumulation in watermelon fruits: genetic variation and biochemical analysis.

    Science.gov (United States)

    Yativ, Merav; Harary, Idan; Wolf, Shmuel

    2010-05-15

    Sugar accumulation, the key process determining fruit quality, is controlled by both the translocation of sugars and their metabolism in developing fruits. Sugar composition in watermelon, as in all cucurbit fruits, includes sucrose, fructose and glucose. The proportions of these three sugars are determined primarily by three enzyme families: invertases, sucrose synthases (SuSys) and sucrose phosphate synthases (SPSs). The goal of the present research was to explore the process of sugar metabolism in watermelon fruits. Crosses between the domestic watermelon (Citrullus lanatus) and three wild species provided a wide germplasm to explore genetic variability in sugar composition and metabolism. This survey demonstrated great genetic variability in sugar content and in the proportions of sucrose, glucose and fructose in mature fruits. Genotypes accumulating high and low percentage of sucrose provided an experimental system to study sugar metabolism in developing fruits. Insoluble invertase activity was high and constant throughout fruit development in control lines and in genotypes accumulating low levels of sucrose, while in genotypes accumulating high levels of sucrose, activity declined sharply 4 weeks after pollination. Soluble acid invertase activity was significantly lower in genotypes accumulating high levels of sucrose than in low-sucrose-accumulating genotypes. Conversely, activities of SuSy and SPS were higher in the high-sucrose-accumulating genotypes. The present results establish that, within the genus Citrullus, there are genotypes that accumulate a high percentage of sucrose in the fruit, while others accumulate high percentages of glucose and fructose. The significant negative correlation between insoluble invertase activity and fruit sucrose level suggests that sucrose accumulation is affected by both phloem unloading and sugar metabolism. (c) 2009 Elsevier GmbH. All rights reserved.

  1. Enhancement of solubility of albendazole by complexation with β-cyclodextrin

    International Nuclear Information System (INIS)

    Moriwaki, C.; Costa, G.L.; Ferracini, C.N.; Matioli, G.; Moraes, F.F. de; Zanin, G.M.; Pineda, E.A.G.

    2008-01-01

    A high dosage of albendazole (ABZ) is required for treating systemic helminth infections because of its low solubility. Aiming at increasing ABZ solubility, complexation with beta-cyclodextrin (β-CD) using aqueous and acetic acid solutions as ABZ solubiliser was studied. In aqueous β-CD, complexation increased solubility 53.4 times, giving a complex equilibrium constant of 1266 L mol -1 with a maximum ABZ concentration of 276 μmol L -1 for 16.3 mmol L -1 β-CD. For complexation in 1.05 mol L -1 acetic acid, UV absorbance spectra and 1 H-NMR analysis confirmed complex formation. The UV absorbance of ABZ/acid acetic/β-CD solutions was modeled by the formation of two complexes with molar ratios 1:1 and 1:2 ABZ:β-CD. When neutralized with NaOH these solutions did not form precipitates only for the ABZ:β-CD molar ratios of 1:8 and 1:10, showing that ABZ solubility could be increased 306 times. Results show that high β-CD molar ratios hold ABZ in solution by complexation enhanced by the acetate anion. (author)

  2. The solubility of palladium(II) bis-dimethylglyoximate

    International Nuclear Information System (INIS)

    Maghzian, R.

    1978-01-01

    The solubility of palladium(II) bis-dimethylglyoximate in different solutions has been determined. Values obtained for the solubility of the palladium complex are tabulated. The solubility is the lowest in water, ammonium acetate and a 25% acetone-water mixture. It is highest in dilute HCl and acetone but precipitation from aqueous acetone should be satisfactory for most purposes if the acetone content of the solvent is roughly less than 50% by volume. The solubility in dilute HCl reflects the concern by previous workers for losses in precipitation from mineral acid. In general, however, the losses are unlikely to be significant unless the quantity of palladium to be precipitated and weighed is small. (T.G.)

  3. Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility.

    Science.gov (United States)

    Reggane, Maude; Wiest, Johannes; Saedtler, Marco; Harlacher, Cornelius; Gutmann, Marcus; Zottnick, Sven H; Piechon, Philippe; Dix, Ina; Müller-Buschbaum, Klaus; Holzgrabe, Ulrike; Meinel, Lorenz; Galli, Bruno

    2018-05-04

    Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs. Copyright © 2018. Published by Elsevier B.V.

  4. Senior high school students’ need analysis of Three-Tier Multiple Choice (3TMC) diagnostic test about acid-base and solubility equilibrium

    Science.gov (United States)

    Ardiansah; Masykuri, M.; Rahardjo, S. B.

    2018-05-01

    Students’ conceptual understanding is the most important comprehension to obtain related comprehension. However, they held their own conception. With this need analysis, we will elicit student need of 3TMC diagnostic test to measure students’ conception about acid-base and solubility equilibrium. The research done by a mixed method using questionnaire analysis based on descriptive of quantitative and qualitative. The research subject was 96 students from 4 senior high schools and 4 chemistry teachers chosen by random sampling technique. Data gathering used a questionnaire with 10 questions for student and 28 questions for teachers. The results showed that 97% of students stated that the development this instrument is needed. In addition, there were several problems obtained in this questionnaire include learning activity, teacher’s test and guessing. In conclusion, this is necessary to develop the 3TMC instrument that can diagnose and measure the student’s conception in acid-base and solubility equilibrium.

  5. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  6. Solubility behavior of narcotic analgesics in aqueous media: solubilities and dissociation constants of morphine, fentanyl, and sufentanil.

    Science.gov (United States)

    Roy, S D; Flynn, G L

    1989-02-01

    The pH dependence of the aqueous solubility of morphine, fentanyl, and sufentanil was investigated at 35 degrees C. Dissociation constants and corresponding pKa' values of the drugs were obtained from measured free-base solubilities (determined at high pH's) and the concentrations of saturated solutions at intermediate pH's. Morphine, fentanyl, and sufentanil exhibited pKa' values of 8.08, 8.99, and 8.51, respectively. Over the pH range of 5 to 12.5 the apparent solubilities are determined by the intrinsic solubility of the free base plus the concentration of ionized drug necessary to satisfy the dissociation equilibrium at a given pH. Consequently, the drug concentrations of saturated aqueous solutions fall off precipitously as the pH is raised and ionization is suppressed. Further, at low pH's the aqueous solubility of morphine increased in a linear fashion with increases in the molar strength of citric acid which was added to acidify the medium, suggesting the formation of a soluble morphine-citrate complex.

  7. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats.

    Science.gov (United States)

    Shibata, Katsumi; Takahashi, Chisato; Fukuwatari, Tsutomu; Sasaki, Ryuzo

    2005-12-01

    To acquire the data concerning the tolerable upper intake level which prevents health problems from an excessive intake of pantothenic acid, an animal experiment was done. Rats of the Wistar strain (male, 3 wk old) were fed on a diet which contains 0%, 0.0016% (control group), 1%, or 3% calcium pantothenate for 29 d. The amount of weight increase, the food intake, and the organ weights were measured, as well as the pantothenic acid contents in urine, the liver and blood. Moreover, to learn the influence of excessive pantothenic acid on other water-soluble vitamin metabolism, thiamin, riboflavin, a vitamin B6 catabolite, the niacin catabolites, and ascorbic acid in urine were measured. As for the 3% addition group, enlargement of the testis, diarrhea, and hair damage were observed, and the amount of weight increase and the food intake were less than those of the control group. However, abnormality was not seen in the 1% addition group. The amount of pantothenic acid in urine, the liver, and blood showed a high correlation with intake level of pantothenic acid. It was only for 4-pyridoxic acid, a vitamin B6 catabolite, in urine that a remarkable difference was observed against the control group. Moreover, the (2-Py+4-Py)/MNA excretion ratio for these metabolites of the nicotinamide also indicated a low value in the 3% pantothenic acid group. As for the calcium pantothenate, it was found that the 3% level in the diet was the lowest-observed-adverse-effect-level (LOAEL) and the 1% level was the no-observed-adverse-effect-level (NOAEL).

  8. Effect of enzymatic treatment of extracted sunflower proteins on solubility, amino acid composition, and surface activity.

    Science.gov (United States)

    Conde, José Miñones; Escobar, María del Mar Yust; Pedroche Jiménez, Justo J; Rodríguez, Francisco Millán; Rodríguez Patino, Juan M

    2005-10-05

    Industrial proteins from agriculture of either animal or vegetable origin, including their peptide derivatives, are of great importance, from the qualitative and quantitative point of view, in food formulations (emulsions and foams). A fundamental understanding of the physical, chemical, and functional properties of these proteins is essential if the performance of proteins in foods is to be improved and if underutilized proteins, such as plant proteins (and their hydrolysates and peptides derivatives), are to be increasingly used in traditional and new processed food products (safe, high-quality, health foods with good nutritional value). In this contribution we have determined the main physicochemical characteristics (solubility, composition, and analysis of amino acids) of a sunflower protein isolate (SPI) and its hydrolysates with low (5.62%), medium (23.5%), and high (46.3%) degrees of hydrolysis. The hydrolysates were obtained by enzymatic treatment with Alcalase 2.4 L for DH 5.62 and 23.5% and with Alcalase 2.4 L and Flavorzyme 1000 MG sequentially for DH 46.3%. The protein concentration dependence on surface pressure (surface pressure isotherm), a measure of the surface activity of the products (SPI and its hydrolysates), was obtained by tensiometry. We have observed that the degree of hydrolysis has an effect on solubility, composition, and content of the amino acids of the SPI and its hydrolysates. The superficial activity and the adsorption efficiency were also affected by the degree of hydrolysis.

  9. Effect of Acid Hydrolysis and Thermal Hydrolysis on Solubility and Properties of Oil Palm Empty Fruit Bunch Fiber Cellulose Hydrogel

    Directory of Open Access Journals (Sweden)

    Sinyee Gan

    2015-11-01

    Full Text Available Cellulose hydrogel was produced from pretreated oil palm empty fruit bunch fiber (EFB that went through acid hydrolysis and thermal hydrolysis. The pretreated EFB was dissolved in LiOH/urea aqueous solution using the rapid dissolution method and was subjected to a crosslinking process with the aid of epichlorohydrin to form hydrogel. The effects of both hydrolyses’ time on average molecular weight (Mŋ, solubility, and properties of EFB hydrogels were evaluated. Both hydrolyses led to lower Mŋ, lower crystallinity index (CrI and hence, resulted in higher cellulose solubility. X-ray diffraction (XRD characterization revealed the CrI and transition of crystalline structure of EFB from cellulose I to II. The effects of hydrolysis time on the transparency, degree of swelling (DS, and morphology of the regenerated cellulose hydrogel were also investigated using an ultraviolet-visible (UV-Vis spectrophotometer and a Field emission scanning electron microscope (FESEM, respectively. These findings provide an efficient method to improve the solubility and properties of regenerated cellulose products.

  10. Structural Characterization of Febuxostat/l-Pyroglutamic Acid Cocrystal Using Solid-State 13C-NMR and Investigational Study of Its Water Solubility

    Directory of Open Access Journals (Sweden)

    Ji-Hun An

    2017-12-01

    Full Text Available Febuxostat (FB is a poorly water-soluble drug that belongs to BCS class II. The drug is employed for the treatment of inflammatory disease arthritis urica (gout, and the free base, FB form-A, is most preferred for drug formulation. In order to achieve a goal of improving the water solubility of FB form-A, this study was carried out using the cocrystallization technique called the liquid-assisted grinding method to produce FB cocrystals. Here, five amino acids containing amine (NH, oxygen (O, and hydroxyl (OH functional groups, and possessing difference of pKa less than 3 with FB, were selected as coformers. Then, solvents including methanol, ethanol, isopropyl alcohol, n-hexane, dichloromethane, and acetone were used for the cocrystal screening. As a result, a cocrystal was obtained when acetone and l-pyroglutamic acid (PG of 0.5 eq. were employed as solvent and coformer, respectively. The ratio of 2:1, which is the ratio of FB to PG within FB-PG cocrystal, was predicted by means of solid-state CP/MAS 13C-NMR, solution-state NMR (1H, 13C, and 2D and FT-IR. Moreover, Powder X-ray Diffraction (PXRD, Differential Scanning Calorimetry (DSC, and Thermogravimetric Analysis (TGA were used to investigate the characteristics of FB-PG cocrystal. In addition, comparative solubility tests between FB-PG cocrystal and FB form-A were conducted in deionized water and under simulated gastrointestinal pH (1.2, 4, and 6.8 conditions. The result revealed that FB-PG cocrystal has a solubility of four-fold higher than FB form-A in deionized water and two-fold and five-fold greater than FB form-A at simulated gastrointestinal pH 1.2 and pH 4, respectively. Besides, solubilities of FB-PG cocrystal and FB form-A at pH 6.8 were similar to the results measured in deionized water. Therefore, it is postulated that FB-PG cocrystal has a potential overcoming the limitations related to the low aqueous solubility of FB form-A. Accordingly, FB-PG cocrystal is suggested as an

  11. Fermentable soluble fibres spare amino acids in healthy dogs fed a low-protein diet.

    Science.gov (United States)

    Wambacq, Wendy; Rybachuk, Galena; Jeusette, Isabelle; Rochus, Kristel; Wuyts, Brigitte; Fievez, Veerle; Nguyen, Patrick; Hesta, Myriam

    2016-06-28

    Research in cats has shown that increased fermentation-derived propionic acid and its metabolites can be used as alternative substrates for gluconeogenesis, thus sparing amino acids for other purposes. This amino acid sparing effect could be of particular interest in patients with kidney or liver disease, where this could reduce the kidneys'/liver's burden of N-waste removal. Since dogs are known to have a different metabolism than the obligatory carnivorous cat, the main objective of this study was to assess the possibility of altering amino acid metabolism through intestinal fermentation in healthy dogs. This was studied by supplementing a low-protein diet with fermentable fibres, hereby providing an initial model for future studies in dogs suffering from renal/liver disease. Eight healthy dogs were randomly assigned to one of two treatment groups: sugar beet pulp and guar gum mix (SF: soluble fibre, estimated to mainly stimulate propionic acid production) or cellulose (IF: insoluble fibre). Treatments were incorporated into a low-protein (17 %) extruded dry diet in amounts to obtain similar total dietary fibre (TDF) contents for both diets (9.4 % and 8.2 % for the SF and IF diet, respectively) and were tested in a 4-week crossover feeding trial. Apparent faecal nitrogen digestibility and post-prandial fermentation metabolites in faeces and plasma were evaluated. Dogs fed the SF diet showed significantly higher faecal excretion of acetic and propionic acid, resulting in a higher total SCFA excretion compared to IF. SF affected the three to six-hour postprandial plasma acylcarnitine profile by significantly increasing AUC of acetyl-, propionyl-, butyryl- + isobutyryl-, 3-OH-butyryl-, 3-OH-isovaleryl- and malonyl-L-carnitine. Moreover, the amino acid plasma profile at that time was modified as leucine + isoleucine concentrations were significantly increased by SF, and a similar trend for phenylalanine and tyrosine's AUC was found. These results indicate

  12. Phosphorus solubility in an acid forest soil as influenced by form of applied phosphorus and liming

    International Nuclear Information System (INIS)

    Fransson, Ann-Mari; Bergkvist, Bo; Tyler, Germund

    1999-01-01

    Sedimentary phosphorus, superphosphate, and wood-ash, as well as either sedimentary phosphorus. superphosphate or ash combined with lime, were distributed in selected plots in an 80-yr-old Norway spruce forest [Picea abies (L.) Karst]. After 2 yrs, the sedimentary phosphorus had increased the oxalate/oxalic acid-extractable P in the O-horizon, and the superphosphate had increased the oxalate/oxalic acid-extractable P in the E-horizon. At first, the percolation water from the superphosphate treatment showed high P concentrations. It soon returned to control levels, however. The percolation water from the sedimentary phosphorus treatment gradually showed increased phosphate concentrations. The wood-ash increased neither the amount of extractable P nor the P concentration in the percolation water. The oxalate/oxalic acid-extractable P from the sedimentary P treatment was reduced by liming. The P concentration in the percolation water also tended to be reduced. This was perhaps due to formation of Ca phosphates in the vicinity of the lime particles. In addition, if the solubility rate was similar to the uptake rate, it could account for the decreased P concentration

  13. Nutritional composition and solubility of edible bird nest (Aerodramus fuchiphagus)

    Science.gov (United States)

    Halimi, Nurfatin Mohd; Kasim, Zalifah Mohd; Babji, Abdul Salam

    2014-09-01

    Edible bird nest (EBN) produced by certain swiftlet species mainly, Aerodromus fuciphagus. The objectives of this study were to determine and compare the proximate and amino acid composition of EBN obtained from two regions in Peninsular Malaysia (Pahang-A & Terengganu-B). The solubility of edible bird nest with varying pH, temperature and time was also investigated in this study. The results showed that, the EBN contained crude protein accounted to 58.55% (A) and 55.48% (B), carbohydrate at22.28% (A) & 25.79% (B), moisture content 15.90% (A) & 15.87% (B), fat, 0.67% (A) & and 0.29% (B) and ash contents 2.60% (A) & 2.57% (B) respectively. The major amino acids found in edible bird nest EBN were Glutamic acid (9.61%), Aspartic acid (6.34%), Lysine (5.44 %) and also Leucine (5.30%). The total solubility of EBN was also found to be increased when the temperature was increased increase with distilled water yielding the highest total solubility of EBN compared to others buffer (different pH) solutions.

  14. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  15. Influence of water solubility, side chain degradability and side chain configuration on the degradation of phthalic acid esters under methanogenic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alnervik, M.

    1996-12-31

    Water solubility and degradability of side chains estrifying phthalic acid are factors possible to influence the degradation of phthalic acid esters (PAEs). To investigate the importance of these factors degradation of butyl 2-ethylhexyl phthalate (BEHP), bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), dihexyl phthalate (DHP), dioctyl phthalate (DOP) and didecyl phthalate (DDP) were examined under methanogenic conditions as well as was the degradability of the alcohols estrifying these PAEs. We also investigated if the degradation of resistant PAEs could be stimulated by the addition of a degradable PAE. Synthesis of degradation intermediates and two methods for PAE analyses are presented. The investigation showed that all alcohols were degraded to methane and carbon dioxide and that the degradation of PAE occurred in incubations amended with BBP, BEHP, DHP and DBP, whilst DEHP, DOP and DDP were unaffected throughout the experimental period. BBP added to incubations with DEHP, could not stimulate DEHP degradation. In conclusion, the degradability of alcohols estrifying phthalic acid in this study does not affect the anaerobic degradability of PAEs. Water solubility of a PAE can not be rejected as a factor limiting phthalate degradation under methanogenic conditions. Anaerobic degradation of persistent PAEs can not be stimulated by mixing it with a degradable phthalate. 23 refs, 11 figs, 2 tabs

  16. Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Zubeir, Lawien F.; Van Osch, Dannie J.G.P.; Rocha, Marisa A.A.; Banat, Fawzi; Kroon, Maaike C.

    2018-01-01

    The solubility of CO2 in hydrophobic deep eutectic solvents (DESs) has been measured for the first time. Six different hydrophobic DESs are studied in the temperature range from 298 to 323 K and at CO2 pressures up to 2 MPa. The results are evaluated by comparing the solubility data with existing

  17. Enhancement of solubility of albendazole by complexation with {beta}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Moriwaki, C.; Costa, G.L.; Ferracini, C.N.; Matioli, G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Farmacia e Farmacologia]. E-mail: gmatioli@uem.br; Moraes, F.F. de; Zanin, G.M. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Engenharia Quimica; Pineda, E.A.G. [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica

    2008-04-15

    A high dosage of albendazole (ABZ) is required for treating systemic helminth infections because of its low solubility. Aiming at increasing ABZ solubility, complexation with beta-cyclodextrin ({beta}-CD) using aqueous and acetic acid solutions as ABZ solubiliser was studied. In aqueous {beta}-CD, complexation increased solubility 53.4 times, giving a complex equilibrium constant of 1266 L mol{sup -1} with a maximum ABZ concentration of 276 {mu}mol L{sup -1} for 16.3 mmol L{sup -1} {beta}-CD. For complexation in 1.05 mol L{sup -1} acetic acid, UV absorbance spectra and {sup 1}H-NMR analysis confirmed complex formation. The UV absorbance of ABZ/acid acetic/{beta}-CD solutions was modeled by the formation of two complexes with molar ratios 1:1 and 1:2 ABZ:{beta}-CD. When neutralized with NaOH these solutions did not form precipitates only for the ABZ:{beta}-CD molar ratios of 1:8 and 1:10, showing that ABZ solubility could be increased 306 times. Results show that high {beta}-CD molar ratios hold ABZ in solution by complexation enhanced by the acetate anion. (author)

  18. Light exposure during storage preserving soluble sugar and l-ascorbic acid content of minimally processed romaine lettuce (Lactuca sativa L.var. longifolia).

    Science.gov (United States)

    Zhan, Lijuan; Hu, Jinqiang; Ai, Zhilu; Pang, Lingyun; Li, Yu; Zhu, Meiyun

    2013-01-01

    Minimally processed romaine lettuce (MPRL) leaves were stored in light condition (2500lux) or darkness at 4°C for 7d. Light exposure significantly delayed the degradation of chlorophyll and decrease of glucose, reducing sugar, and sucrose content, and thus preserved more total soluble solid (TSS) content at the end of storage in comparison with darkness. While, it did not influenced starch content that progressively decreased over time. The l-ascorbic acid (AA) accumulated in light-stored leaves, but deteriorated in dark-stored leaves during storage. The dehydroascorbic acid (DHA) increased in all leaves stored in both light and dark condition, of which light condition resulted in less DHA than darkness. In addition, the fresh weight loss and dry matter significantly increased and these increases were accelerated by light exposure. Conclusively, light exposure in applied intensity effectively alleviated MPRL quality deterioration by delaying the decreases of pigments, soluble sugar, TSS content and accumulating AA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Evaluation of the effect of temperature, concentration and volumetric flow in the hydrolysis of sucrose by an immobilized invertase in a spherical reactor

    International Nuclear Information System (INIS)

    Zamora Leiton, Maria Monserrath; Molina Cordoba, Manuel; Chacon Valle, Gerardo

    2011-01-01

    The effect of the volumetric flow, the temperature and the initial concentration of sucrose in the reaction of hydrolysis of sucrose by immobilized invertase were evaluated in the laboratory. Invertase was immobilized in 20 g of support of mesh size between 120 and 140. The maximum quantity of immobilized invertase obtained has been 0,130 mg/g of support at 220 min. The first experimental stage has consisted in the evaluation of the effect of the initial concentration of sucrose (1,0 and 1,5 mol/L), the volumetric flow (3,0 mL/min and 4,0 mL/min) and the temperature (45 degrees C and 50 degrees C). The effect of the above three variable has been statistically significant. The conversion has been favorable for a concentration of sucrose 1,0 mol/L, a volumetric flow of 3 mL/min and a temperature of 50 degrees C. The maximum conversion obtained has been 95,4 %. The second experimental stage has analyzed the effect of the initial concentration of sucrose (0,75 and 1,0 mol/L), the volumetric flow (2,5 mL/min and 3,0 mL/min) and the temperature (50 degrees C and 55 degrees C). The variable of volumetric flow and the interaction concentration of sucrose - temperature are found statistically significant. The conversion has been favorable for a volumetric flow of 2,5 mL/min, and it has been preferable to work at a temperature of 50 degrees C with an initial concentration of sucrose of 1,0 mol/L. The maximum conversion has been 94,8 %. The effect of the concentration was analyzed in the last experimental stage, it was found that the maximum conversion percentage was 95,0 % for a concentration of 1,1 mol/L, for a temperature of 50 degrees C and for a volumetric flow of 2,5 mL/min. (author) [es

  20. Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4-dioxane and ethanol solutions

    International Nuclear Information System (INIS)

    Taha, Mohamed; Lee, Ming-Jer

    2011-01-01

    Highlights: → Solubilities of MOPS and MOPSO buffers in aqueous 1,4-dioxane and ethanol solutions. → We found that MOPS-induced phase separation of aqueous solution of 1,4-dioxane. → The phase diagram of (MOPS + water + 1,4-dioxane) system at 298.15 K is documented. → The tie-lines within the two-liquid phase region were also determined at 298.15 K. → The effective excluded volume theory was applied to correlate the binodal LLE data. - Abstract: The buffers 4-morpholinepropanesulfonic acid (MOPS) and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) are useful biological zwitterionic buffers within the pH range of 6.5 to 7.9 and 6.2 to 7.6, respectively. The solubilities of these buffers were determined in binary mixtures (1,4-dioxane + water) and (ethanol + water) at T = 298.15 K by using the results of density measurements. It has been observed that MOPS induced liquid-liquid phase splitting for the mixtures of 40% to 90% (w/w) 1,4-dioxane in water. The two-liquid phase formation was visualized with disperse orange 25. The phase equilibrium boundaries, including the regions of one liquid, two liquids, (one liquid + one solid) and (two liquids + one solid), for the (MOPS + water + 1,4-dioxane) system have been determined experimentally at T = 298.15 K. The tie lines of the (liquid + liquid) equilibrium were also measured. The Othmer-Tobias and Bancroft equation were used to evaluate the reliability of the tie-line data. The binodal curve was fitted to an empirical equation and the effective excluded volume (EEV) model. The apparent free energies of transfer (ΔG tr ' ) of MOPS and MOPSO from water to 1,4-dioxane and ethanol solutions have been calculated from the solubility data. These ΔG tr ' values were compared with those of some related biological buffers (TRIS, TAPS, TAPSO, and TABS). Furthermore, we also calculated the contribution of transfer free energies (Δg tr ' ) of -OH group from water to 1,4-dioxane and ethanol solutions.

  1. PEPTIDE SOLUBILITY, STRUCTURE AND CHARGE POSITION EFFECT ON ADSORPTION BY ALUMINIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Mary Trujillo

    2008-04-01

    Full Text Available Solubility, structure and position of charges in a peptide antigen sequence can be mentioned as being amongst the basic features of adsorption. In order to study their effect on adsorption, seven analogue series were synthesized from a MSP-1 peptide sequence by systematically replacing each one of the positions in the peptide sequence by aspartic acid, glutamic acid, serine, alanine, asparagine, glutamine or lysine. Such modifications in analogue peptide sequences showed a non-regular tendency regarding solubility and adsorption data. Aspartic acid and Glutamic acid analogue series showed great improvements in adsorption, especially in peptides where Lysine in position 6 and Arginine in position 13 were replaced. Solubility of position 5 analogue was greater than the position 6 analogue in Aspartic acid series; however, the position 6 analogue showed best adsorption results whilst the Aspartic acid in position 5 analogue showed no adsorption in the same conditions. Nuclear Magnetic Resonance structural analysis revealed differences in the -helical structureextension between these analogues. The Aspartic acid in position 6, located in the polar side of the helix, may allow this analogueto fit better onto the adsorption regions suggesting that the local electrostatic charge is responsible for this behavior.

  2. Waste fatty acid addition to black liquor to decrease tall oil soap solubility and increase skimming efficiency in kraft mills pulping mountain pine beetle-infested wood

    Energy Technology Data Exchange (ETDEWEB)

    Uloth, V.; Guy, E. [FPInnovations, Prince George, BC (Canada). PAPRICAN Div.; Shewchuk, D. [Cariboo Pulp and Paper, Quesnel, BC (Canada); Van Heek, R. [Aker Kvaerner, Vancouver, BC (Canada)

    2009-07-01

    This paper presented the results of tests conducted to determine if the addition of waste fatty acids from vegetable oil processing might decrease tall oil soap solubility in pine-beetle impacted wood from British Columbia (BC). The soap recovery and tall oil production at BC mills has fallen by 30 to 40 percent in recent years due to the pulping of high proportions of grey-stage beetle-impacted wood. Full-scale mill tests were conducted over a 4-day period. The study showed that the addition of tall oil fatty acids or waste fatty acids from vegetable oil processing could decrease tall oil soap solubility and increase the soup skimming efficiency in mills pulping a large percentage of grey stage beetle-infested wood. The addition of fatty acids increased tall oil soap skimming efficiency from 50.2 percent in the baseline tests to 71.8 percent based on the total soap available, and from 76.7 percent in the baseline tests to 87.5 percent based on insoluble soap only. The economic analyses indicated that waste fatty acid addition could be economical when natural gas and oil prices are high. 4 tabs., 9 figs.

  3. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  4. Crescimento de plântulas do milho 'Saracura' e atividade de alfa-amilase e invertases associados ao aumento da tolerância ao alagamento exercido pelo cálcio exógeno Growth of maize 'Saracura' (BRS-4154 and alpha-amylase and invertases activity associated with the increase of flooding tolerance caused by exogenous calcium

    Directory of Open Access Journals (Sweden)

    Daniela Deitos Fries

    2007-01-01

    different ages. The experiment was conducted at Universidade Federal de Lavras, MG, in 2002. Maize caryopses (var.'Saracura' were germinated in water or CaCl2. After two and four days, the plantlets were submitted to flooding in PVC tubes with buffer (with or without CaCl2 during three days, being evaluated the survival, dry weight and biochemical characteristics. Calcium increased plantlet survival to flooding at four days, although there was no influence on two-day samples. Flooding reduced the plantlet dry weight without affect on the recovery after stress, therefore calcium influenced dry weight accumulation after hypoxia only in plantlets at four days, showing a faster recovery from damages caused during the flooding period, which also occurs in plantlets treated at two days of germination, but independently of this element. Younger plantlets also showed higher mobilization of the starch reserves, as well as higher translocation and utilization of these reserves. Flooding reduced drastically the vacuole acid invertase activity, independent of calcium presence, demonstrating that it has no participation in the processes coordinated by this enzyme. The reduction in the invertase activity favors a lower hexose concentration, decreasing anaerobic respiration and, consequently, the production of toxic substances, thereby increasing the survival of plantlets in hypoxia conditions.

  5. Soluble Non-ammonia Nitrogen in Ruminal and Omasal Digesta of Korean Native Steers Supplemented with Soluble Proteins

    Directory of Open Access Journals (Sweden)

    C. W. Choi

    2012-09-01

    Full Text Available An experiment was conducted to study the effect of soluble protein supplements on concentration of soluble non-ammonia nitrogen (SNAN in the liquid phase of ruminal (RD and omasal digesta (OD of Korean native steers, and to investigate diurnal pattern in SNAN concentration in RD and OD. Three ruminally cannulated Korean native steers in a 3×3 Latin square design consumed a basal diet of rice straw and corn-based concentrate (control, and that supplemented (kg/d DM basis with intact casein (0.24; IC or acid hydrolyzed casein (0.46; AHC. Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 2.0 h intervals after a morning feeding. The SNAN fractions (free amino acid (AA, peptide and soluble protein in RD and OD were assessed using the ninhydrin assay. Concentrations of free AA and total SNAN in RD were significantly (p<0.05 lower than those in OD. Although free AA concentration was relatively high, mean peptide was quantitatively the most important fraction of total SNAN in both RD and OD, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis of Korean native steers. Diurnal variation in peptide concentration in OD for the soluble protein supplemented diets during the feeding cycle peaked 2 h post-feeding and decreased thereafter whereas that for the control was relatively constant during the entire feeding cycle. Diurnal variation in peptide concentration was rather similar between RD and OD.

  6. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  7. Carbohydrate metabolism of vegetative and reproductive sinks in the late-maturing peach cultivar 'Encore'

    Science.gov (United States)

    Riccardo Lo Bianco; Mark Rieger; Shi-Jean S. Sung

    1999-01-01

    Activities of NAD+-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) in ?Encore? peach (Prunus persica L.) fruits and developing shoot tips were assayed during the growing season to determine whether carbohydrate metabolizing enzymes could...

  8. Measurement and modelling of urea solubility in aqueous propane-1,2,3-triol and prop-2-enoic acid solutions

    International Nuclear Information System (INIS)

    Santos, Jéssica dos J; Rocha, João A.A.B.; Costa, Glória M.N.; Cabral-Albuquerque, Elaine C.M.; Alves, Tito L.M.; Pinto, José C.; Fialho, Rosana L.

    2016-01-01

    Highlights: • Solubilities were shown to increase with temperature and to decrease with the increasing organic solvent content. • The UNIFAC method provided good fitting of the available data, after the estimation of a single model parameter. • The empirical method showed to be more efficient to describe several solution concentrations however, it is not predictive. - Abstract: The aim of the present study is to measure the solubility of urea in aqueous solutions of prop-2-enoic acid and propane-1,2,3-triol, as these compounds are used as co-monomers to produce urea base co-polymers. Experimental values have been obtained at several concentrations and temperatures. Solubility results were modelled with the help of an exponential empirical correlation, ideal solid-liquid equilibrium correlation and the Universal Functional Activity Coefficient (UNIFAC) method, used to describe the activity coefficient in the liquid phase. The empirical correlation requires two empirical parameters for each solvent and leads to the best fit for the available data. The UNIFAC method correlation also has a good numerical performance and is completely predictive, and it does not require the estimation of additional parameters.

  9. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    Science.gov (United States)

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  10. Decreased UV light resistance of spores of Bacillus subtilis strains deficient in pyrimidine dimer repair and small, acid-soluble spore proteins

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Loss of small, acid-soluble spore protein alpha reduced spore UV resistance 30- to 50-fold in Bacillus subtilis strains deficient in pyrimidine dimer repair, but gave only a 5- to 8-fold reduction in UV resistance in repair-proficient strains. However, both repair-proficient and -deficient spores lacking this protein had identical heat and gamma-radiation resistance

  11. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    International Nuclear Information System (INIS)

    Rudisill, T.S.

    1999-01-01

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitation process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec

  12. LITERATURE REVIEW OF BORIC ACID SOLUBILITY DATA

    Energy Technology Data Exchange (ETDEWEB)

    Crapse, K.; Kyser, E.

    2011-09-22

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system replaces the current dilute nitric acid strip solution with 0.01 M boric acid. This literature study is performed to determine if there is a potential for boric acid to crystallize in the lines with emphasis on the transfer lines to the Defense Waste Processing Facility. This report focuses on the aqueous phase chemistry of boric acid under conditions relevant to MCU and SWPF. Operating and transfer conditions examined for the purpose of this review include temperatures between 13 C (McLeskey, 2008) and 45 C (Fondeur, 2007) and concentrations from 0 to 3M in nitric acid as well as exposure of small amounts of entrained boric acid in the organic phase to the sodium hydroxide caustic wash stream. Experiments were also conducted to observe any chemical reactions and off-gas generation that could occur when 0.01 M boric acid solution mixes with 3 M nitric acid solution and vice versa. Based on the low concentration (0.01M) of boric acid in the MCU/SWPF strip acid and the moderate operating temperatures (13 C to 45 C), it is unlikely that crystallization of boric acid will occur in the acid strip solution under process or transfer conditions. Mixing experiments of boric and nitric acid show no measurable gas generation (< 1 cc of gas per liter of solution) under similar process conditions.

  13. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  14. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  15. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  16. Expression Patterns, Activities and Carbohydrate-Metabolizing Regulation of Sucrose Phosphate Synthase, Sucrose Synthase and Neutral Invertase in Pineapple Fruit during Development and Ripening

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion. PMID:22949808

  17. Electrospinning of calcium phosphate-poly(D,L-lactic acid nanofibers for sustained release of water-soluble drug and fast mineralization

    Directory of Open Access Journals (Sweden)

    Fu QW

    2016-10-01

    Full Text Available Qi-Wei Fu,1,* Yun-Peng Zi,1,* Wei Xu,1 Rong Zhou,1 Zhu-Yun Cai,1 Wei-Jie Zheng,1 Feng Chen,2 Qi-Rong Qian1 1Department of Orthopedics, Changzheng Hospital, Second Military Medical University, 2State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Calcium phosphate-based biomaterials have been well studied in biomedical fields due to their outstanding chemical and biological properties which are similar to the inorganic constituents in bone tissue. In this study, amorphous calcium phosphate (ACP nanoparticles were prepared by a precipitation method, and used for preparation of ACP-poly(D,L-lactic acid (ACP-PLA nanofibers and water-soluble drug-containing ACP-PLA nanofibers by electrospinning. Promoting the encapsulation efficiency of water-soluble drugs in electrospun hydrophobic polymer nanofibers is a common problem due to the incompatibility between the water-soluble drug molecules and hydrophobic polymers solution. Herein, we used a native biomolecule of lecithin as a biocompatible surfactant to overcome this problem, and successfully prepared water-soluble drug-containing ACP-PLA nanofibers. The lecithin and ACP nanoparticles played important roles in stabilizing water-soluble drug in the electrospinning composite solution. The electrospun drug-containing ACP-PLA nanofibers exhibited fast mineralization in simulated body fluid. The ACP nanoparticles played the key role of seeds in the process of mineralization. Furthermore, the drug-containing ACP-PLA nanofibers exhibited sustained drug release which simultaneously occurred with the in situ mineralization in simulated body fluid. The osteoblast-like (MG63 cells with spreading filopodia were well observed on the as-prepared nanofibrous mats after culturing for 24 hours, indicating a high cytocompatibility. Due

  18. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  19. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    Science.gov (United States)

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))

  20. Study of the solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium in sulfuric-phosphoric acid solutions at 20 deg C

    International Nuclear Information System (INIS)

    Lokshin, Eh.P.; Tareeva, O.A.; Kashulina, T.G.

    2007-01-01

    The solubility of yttrium, praseodymium, neodymium, and gadolinium sulfates in the presence of sodium and potassium ions and the composition of solid phases were studied at 20 deg C in relation to the concentration of acids in sulfuric acid, phosphoric acid, and sulfuric-phosphoric acid solutions containing up to 36 wt % H 2 SO 4 and 33.12 g 1 -1 H 3 PO 4 . The formation of double sulfates of praseodymium and neodymium with sodium and potassium ions, as well as of gadolinium sulfate with sodium ions of the composition 1 : 1 was revealed. In water at 20 deg C, the solubility products of PrNa(SO 4 ) 2 ·H 2 O, NdNa(SO 4 ) 2 ·H 2 O, GdNa(SO 4 ) 2 ·H 2 O, PrK(SO 4 ) 2 ·H 2 O, and NdK(SO 4 ) 2 ·H 2 O are found to be 7.28x10 -8 , 7.84x10 -8 , 3.09x10 -6 , 3.02x10 -6 , and 1.70x10 -6 , respectively [ru

  1. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  2. Increase on the initial soluble heme levels in acidic conditions is an important mechanism for spontaneous heme crystallization in vitro.

    Directory of Open Access Journals (Sweden)

    Renata Stiebler

    Full Text Available BACKGROUND: Hemozoin (Hz is a heme crystal that represents a vital pathway for heme disposal in several blood-feeding organisms. Recent evidence demonstrated that β-hematin (βH (the synthetic counterpart of Hz formation occurs under physiological conditions near synthetic or biological hydrophilic-hydrophobic interfaces. This seems to require a heme dimer acting as a precursor of Hz crystals that would be formed spontaneously in the absence of the competing water molecules bound to the heme iron. Here, we aimed to investigate the role of medium polarity on spontaneous βH formation in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the effect of water content on spontaneous βH formation by using the aprotic solvent dimethylsulfoxide (DMSO and a series of polyethyleneglycols (PEGs. We observed that both DMSO and PEGs (3.350, 6.000, 8.000, and 22.000 increased the levels of soluble heme under acidic conditions. These compounds were able to stimulate the production of βH crystals in the absence of any biological sample. Interestingly, the effects of DMSO and PEGs on βH formation were positively correlated with their capacity to promote previous heme solubilization in acidic conditions. Curiously, a short chain polyethyleneglycol (PEG 300 caused a significant reduction in both soluble heme levels and βH formation. Finally, both heme solubilization and βH formation strongly correlated with reduced medium water activity provided by increased DMSO concentrations. CONCLUSIONS: The data presented here support the notion that reduction of the water activity is an important mechanism to support spontaneous heme crystallization, which depends on the previous increase of soluble heme levels.

  3. Activity of enzymes that hydrolyze sucrose and raffinose in the first stages of germination of Lactuca sativa cv. Grand rapids. [Invertase, alpha-galactosidose, and sucrose synthetase were observed

    Energy Technology Data Exchange (ETDEWEB)

    Slabnik, E.; Calderon, P.; Diaz, H.

    1981-01-01

    The activities of enzymes capable of metabolizing raffinose and sucrose on achenes of lettuce were studied. During the first stages of germination, evidence was obtained for the occurrence of invertase in the endosperm and embryonic axis. Alpha-galactosidase was localized in the endosperm and cotyledons. Sucrose synthetase was present in the dry seed.

  4. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, M.N.H.; El-Far, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt); El-Shafei, A.A. [Department of Chemistry, Faculty of Science, Mansoura University, ET-35516 Mansoura (Egypt)], E-mail: ashafei@mans.edu.eg

    2007-09-15

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation.

  5. The use of water-soluble hydrazones as inhibitors for the corrosion of C-steel in acidic medium

    International Nuclear Information System (INIS)

    Moussa, M.N.H.; El-Far, A.A.; El-Shafei, A.A.

    2007-01-01

    Inhibition efficiency of some water-soluble hydrazones for C-steel corrosion in hydrochloric acid has been tested by weight loss, polarisation measurements and open circuit technique. The inhibition effect was attributed to the adsorption of the additives on the C-steel surface as supported by adsorption measurements at Pt electrode using cyclic voltammetry. Electrochemical measurements indicated that all the additives behave as cathodic-type inhibitors. The data obtained fit well to both the Temkin adsorption isotherm and the kinetic-thermodynamic model. The inhibition behaviour and its order were explained with the help of the proposed skeletal representation

  6. Changes of Soil Enzyme Activities in Different Restoration Ages of Spruce Forests on the Eastern Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-mei; BAO Wei-kai; PANG Xue-yong; WU Ning; ZHOU Guo-yi

    2005-01-01

    Six soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase ) were chosen for investigation under different spruce forests with restoration ages of 4,10,16 years and an old-growth spruce forest over 400 years old in the eastern Qinghai-Tibet Plateau, China. Results showed that the activities of invertase, phosphatase, proteinase, catalase and peroxidase decreased in newly restored forests except for pholyphenoloxidase. With the development of forests after restoration, the activities of invertase, acid phosphadase, proteinase increased gradually. Our study also indicated that the soil enzyme activities were associated with surface soils and decreased with depths. This result suggested that in the earlier restoration stage the application of organic fertilizer may be more effective by surface addition to soils than deep addition.

  7. Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid

    Directory of Open Access Journals (Sweden)

    M. Ehn

    2007-01-01

    Full Text Available The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.

  8. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.

    Science.gov (United States)

    Hüsch, Jan; Gerbeth, Kathleen; Fricker, Gert; Setzer, Constanze; Zirkel, Jürgen; Rebmann, Herbert; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2012-10-26

    Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration.

  9. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  10. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  11. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    Science.gov (United States)

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  12. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source Produção de invertases termoestáveis por Aspergillus caespitosus em fermentação submersa e em estado sólido usando resíduos agroindustriais como fonte de carbono

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Paiva Alegre

    2009-09-01

    Full Text Available The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF or solid-state fermentation (SSF, using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna medium with the same carbon source. However, the production of enzyme with wheat bran plus oat meal was 2.2-fold higher than wheat bran isolated. The enzymatic production was affected by supplementation with nitrogen and phosphate sources. The addition of glucose in SbmF and SSF promoted the decreasing of extracellular activity, but the intracellular form obtained in SbmF was enhanced 3-5-fold. The invertase produced in SSF exhibited optimum temperature at 50ºC while the extraand intracellular enzymes produced in SbmF exhibited maximal activities at 60ºC. All enzymatic forms exhibited maximal activities at pH 4.0-6.0 and were stable up to 1 hour at 50ºC.O fungo filamentoso Aspergillus caespitosus foi um bom produtor de invertases intracelular e extracelular em fermentação submersa (FSbm ou em estado sólido (FES, usando resíduos agroindustriais como fonte de carbono, sendo que para ambas as condições de cultivo, a maior produtividade foi obtida empregandose farelo de trigo. A produção da forma extracelular em FES mantido a 30ºC, por 72 horas, foi aumentada usandose solução de sais SR (1:1, m/v para umidificar o substrato, sendo aproximadamente 5,5 vezes maior se comparada a FSbm (Meio Khanna com a mesma fonte de carbono. Entretanto, a mistura de farelo de trigo e farinha de aveia em FES levou a um aumento de 2,2 vezes na produção enzimática se comparada ao uso isolado do farelo de trigo. A produção enzimática, em ambas as condições de

  13. Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling.

    Science.gov (United States)

    Tres, Alba; Heenan, Samuel P; van Ruth, Saskia

    2014-11-01

    Demand for ethanol substituted fuels from the utilisation of cereal based biofuel has resulted in an over production of dried distillers grains with solubles (DDGS) that are now readily available on the animal feed market. With this rapid emerging availability comes potential variability in the nutritional value of DDGS and possible risks of feed contaminants. Subsequently, the authentication and traceability of alternative animal feed sources is of high priority. In this study and as part of the EU research project "Quality and Safety of Feeds and Food for Europe (QSAFFE FP7-KBBE-2010-4) an attempt was made to classify the geographical origin of cereal grains used in the production of DDGS material. DDGS material of wheat and corn origin were obtained from Europe, China, and the USA. Fatty acid profiles and volatile fingerprints were assessed by gas chromatography flame ionisation (GC-FID) and rapid proton transfer reaction mass spectrometry (PTR-MS) respectively. Chemometric analysis of fatty acid profiles and volatile fingerprints allowed for promising classifications of cereals used in DDGS material by geographical and botanical origin and enabled visual representation of the data. This objective analytical approach could be adapted for routine verification of cereal grains used in the production of DDGS material.

  14. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  15. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    Science.gov (United States)

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  16. Solubilities of iron and nickel oxides under high temperature and high pressure conditions

    International Nuclear Information System (INIS)

    Choi, Ke-Chon; Jung, Yong-Ju; Yeon, Jei-Won; Jee, Kwang-Yong

    2007-01-01

    The purposes of primary coolant chemistry are to assure fuel and material integrity and to minimize out of core radiation fields. During the PWR operation, crud deposits are expected on the cladding, leading to cladding failure and raising the radioactivity. Such deposits come from the corrosion products of system surface. To achieve optimal conditions for primary coolant, basic researches on mass transfer, deposition and solubility of corrosion products are needed. The initial stage of crud formation could be the studies on the solubility of a structural material. It has been known that the solubility of metal oxides in boric acid under high temperature and high pressure condition depends on the pH and dissolved hydrogen. Thus, the effect of various pH on the solubility of metal oxide in boric acid solution was investigated in this work

  17. Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug-Coformer Interactions.

    Science.gov (United States)

    Sanphui, Palash; Devi, V Kusum; Clara, Deepa; Malviya, Nidhi; Ganguly, Somnath; Desiraju, Gautam R

    2015-05-04

    Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux. This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.

  18. Solubility and acid-base properties of concentrated phytate in self-medium and in NaCl{sub aq} at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Cigala, Rosalia Maria; Crea, Francesco; Lando, Gabriele; Milea, Demetrio [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Via Ferdinando Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy); Sammartano, Silvio, E-mail: ssammartano@unime.i [Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universita di Messina, Via Ferdinando Stagno d' Alcontres, 31, I-98166 Messina (Vill. S. Agata) (Italy)

    2010-11-15

    The acid-base properties of concentrated phytic acid were studied in self-medium and in NaCl{sub aq} (0.5 {<=} I/mol . L{sup -1} {<=} 4.0) by ISE-H{sup +} potentiometry and by direct calorimetry, at T = 298.15 K. At ligand concentrations c{sub (Phy)} > 0.012 mol . L{sup -1}, the formation of several binuclear H{sub i}(Phy){sub 2} (2 {<=} i {<=} 10) species was observed, in addition to the mononuclear H{sub i}Phy (1 {<=} i {<=} 7) ones. The solubility of phytate dodecasodium salt was studied in pure water and in NaCl{sub aq} at different ionic strengths; the total solubility in pure water is S{sub 0}{sup T}=(0.300{+-}0.004)mol.L{sup -1} and it decreases markedly with increasing ionic strength; for example the total solubility of Na{sub 12}Phy at I = 3.0 mol . L{sup -1} is 0.008 mol . L{sup -1}. By the dependence on ionic strength (salt concentration) of the solubility, it was possible to calculate the activity coefficients of phytate as a function of medium concentration. Direct calorimetric titrations were also carried out on Na{sub 12}Phy aqueous solutions at different phytate concentrations (0.025 {<=} c{sub (Phy)}/mol . L{sup -1} {<=} 0.100) and without addition of supporting electrolyte, in order to calculate the enthalpy changes for the protonation equilibria in self-medium of the binuclear H{sub i}(Phy){sub 2} species, at T = 298.15 K. It was observed that the {Delta}H/kJ . mol{sup -1} of the binuclear species are, within the experimental error, independent of the ionic strength; for example for the H{sub 2}(Phy){sub 2} species we obtained: {Delta}H{sub 22} = (-23.6 {+-} 0.6) kJ . mol{sup -1}, and (-23.7 {+-} 0.2) kJ . mol{sup -1} at I = 0.50 and 2.0 mol . L{sup -1}, respectively.

  19. Determination and modeling of binary and ternary solid-liquid phase equilibrium for the systems formed by 3,5-dinitrobenzoic acid, m-nitrobenzoic acid and acetone

    International Nuclear Information System (INIS)

    Li, Xinbao; Du, Cunbin; Zhao, Hongkun

    2017-01-01

    Highlights: • The solubility of 3,5-dinitrobenzoic acid in acetone was determined. • Solubility of m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone was determined. • Three ternary phase diagrams were constructed for the ternary system. • The ternary phase diagrams were calculated by Wilson model and NRTL model. - Abstract: The solubility of 3,5-dinitrobenzoic acid in acetone at the temperatures ranging from (283.15 to 318.15) K and the mutual solubility of the ternary m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone system at (283.15, 298.15 and 313.15) K were determined experimentally by using the isothermal saturation method under atmosphere pressure (101.2 kPa). Three isothermal ternary phase diagrams were constructed according to the measured mutual solubility data. In each ternary phase diagram, there was one co-saturated point, two boundary curves, and three crystalline regions. The modified Apelblat equation, λh equation, NRTL model and Wilson model were used to correlate the solubility of 3,5-dinitrobenzoic acid in acetone; and the NRTL and Wilson models, the mutual solubility for the ternary m-nitrobenzoic acid + 3,5-dinitrobenzoic acid + acetone system. The value of root-mean-square deviation (RMSD) was 8.53 × 10 −4 for the binary system of 3,5-dinitrobenzoic acid + acetone; and the largest value of RMSD was 81.08 × 10 −4 for the ternary system.

  20. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  1. Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress.

    Science.gov (United States)

    Xing, Wen-wen; Li, Lin; Gao, Pan; Li, He; Shao, Qiao-sai; Shu, Sheng; Sun, Jin; Guo, Shi-rong

    2015-02-01

    This study investigated the effects of grafting on the carbohydrate status and the enzymes of carbohydrate metabolism in self-grafted and grafted cucumber seedlings using the salt-tolerant pumpkin rootstock 'Qingzhen 1' (Cucurbita maxima × Cucurbita moschata) under 80 mM Ca(NO3)2 stress for 6 d. The growth of self-grafted seedlings was significantly inhibited after the treatment of Ca(NO3)2 stress, whereas the inhibition of growth was alleviated in pumpkin rootstock-grafted seedlings. Ca(NO3)2 stress increased the contents of the total soluble sugar, sucrose and fructose, but decreased the starch content in rootstock-grafted leaves. However, compared with self-grafted plants, rootstock-grafted seedlings were observed with a higher content of sucrose and total soluble sugar (TSS) under salt stress. Rootstock-grafted seedlings exhibited higher activities of acid invertase (AI), neutral invertase (NI) and phosphate sucrose synthase (SPS) of sucrose metabolism in leaves than that of self-grafted seedlings under salinity. Moreover, the activities of fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) of glycolysis were maintained at a higher level in leaves of rootstock-grafted seedlings after Ca(NO3)2 stress. Additionally, rootstock-grafting decrease the high percentage enhancement of key enzymes gene expression in glycolysis in the scion leaves of cucumber seedlings induced by salt stress. These results suggest that the rootstock-grafting improved salt tolerance, which might play a role in elevated sucrose metabolism and a glycolytic pathway regulated by the pumpkin rootstock. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. Linking expression of fructan active enzymes, cell wall invertases and sucrose transporters with fructan profiles in growing taproot of chicory (Cichorium intybus: Impact of hormonal and environmental cues

    Directory of Open Access Journals (Sweden)

    Hongbin Wei

    2016-12-01

    Full Text Available In chicory taproot, the inulin-type fructans serve as carbohydrate reserve. Inulin metabolism is mediated by fructan active enzymes (FAZYs: sucrose:sucrose 1-fructosyltransferase (1-SST; fructan synthesis, fructan:fructan-1-fructosyltransferase (1-FFT; fructan synthesis and degradation, and fructan 1-exohydrolases (1-FEH1/2a/2b; fructan degradation. In developing taproot, fructan synthesis is affected by source-to-sink sucrose transport and sink unloading. In the present study, expression of FAZYs, sucrose transporter and CWI isoforms, vacuolar invertase and sucrose synthase was determined in leaf blade, petiole and taproot of young chicory plants (taproot diameter: 2cm and compared with taproot fructan profiles for the following scenarios: i N-starvation, ii abscisic acid (ABA treatment, iii ethylene treatment (via 1-aminoyclopropane-1-carboxylic acid [ACC], and iv cold treatment. Both N-starvation and ABA treatment induced an increase in taproot oligofructans. However, while under N-starvation this increase reflected de novo synthesis, under ABA treatment gene expression profiles indicated a role for both de novo synthesis and degradation of long-chain fructans. Conversely, under ACC and cold treatment oligofructans slightly decreased, correlating with reduced expression of 1-SST and 1-FFT and increased expression of FEHs and VI. Distinct SUT and CWI expression profiles were observed, indicating a functional alignment of SUT and CWI expression with taproot fructan metabolism under different source-sink scenarios.

  3. Soluble mediators and the interaction of drugs in IBD

    DEFF Research Database (Denmark)

    Rask-Madsen, J

    1998-01-01

    and 5-aminosalicylic acid (5-ASA), inhibit raised concentrations of these interdependent soluble mediators of inflammation, which may amplify one another or have parallel effects. Future medical options for treatment of IBD aim at removing perpetuating antigens or inhibiting the entry of inflammatory......, which provides the clinical manifestations of IBD. Other important soluble mediators of inflammation include complement-derived and chemotactic peptides, specific adhesion molecules, neuropeptides and reactive metabolites of oxygen and nitrogen. Current established therapies, such as glucocorticoids...

  4. Vanadocene reactions with hydroxy acids

    International Nuclear Information System (INIS)

    Latyaeva, V.N.; Lineva, A.N.; Zimina, S.V.; Ehllert, O.G.; Arsen'eva, T.I.

    1984-01-01

    To prepare a series of vanadium cyclopentadienylcarboxylates soluble in water, the vanadocene reactions with lactic, γ-oxybutyric-, salicylic,- gallic-, orotic-, and acetylsalicylic acids have been studied. To determine the influence of cyclopentadienyl groups, bound with a vanadium atom, on the physiological activity of the complexes formed, vanadium halides are made to react with lactic acid. Only the vanadocene reaction with orotic acid was conducted in an aqueous medium, other interactions were realized in the diethyl ether, toluene, T, H, P medium. The interaction of vanadocene and vanadium halides with lactic-, salicylic-, acetylsalicylic- and gallic acids was found to lead to the formation of water-soluble vanadium complexes of Cp 2 , VOCOR or CpV (OCOR) 2 type. The data on the produced compounds yield, their IR spectra, decomposition temperatures, solubility, effective magnetic moments are presented

  5. Concomitant intake of alcohol may increase the absorption of poorly soluble drugs.

    Science.gov (United States)

    Fagerberg, Jonas H; Sjögren, Erik; Bergström, Christel A S

    2015-01-25

    Ethanol can increase the solubility of poorly soluble and hence present a higher drug concentration in the gastrointestinal tract. This may produce a faster and more effective absorption resulting in variable and/or high drug plasma concentrations, both of which can lead to adverse drug reactions. In this work we therefore studied the solubility and absorption effects of nine diverse compounds when ethanol was present. The apparent solubility was measured using the μDiss Profiler Plus (pION, MA) in four media representing gastric conditions with and without ethanol. The solubility results were combined with in-house data on solubility in intestinal fluids (with and without ethanol) and pharmacokinetic parameters extracted from the literature and used as input in compartmental absorption simulations using the software GI-Sim. Apparent solubility increased more than 7-fold for non-ionized compounds in simulated gastric fluid containing 20% ethanol. Compounds with weak base functions (cinnarizine, dipyridamole and terfenadine) were completely ionized at the studied gastric pH and their solubility was therefore unaffected by ethanol. Compounds with low solubility in intestinal media and a pronounced solubility increase due to ethanol in the upper gastric compartments showed an increased absorption in the simulations. The rate of absorption of the acidic compounds indomethacin and indoprofen was slightly increased but the extent of absorption was unaffected as the complete doses were readily absorbed even without ethanol. This was likely due to a high apparent solubility in the intestinal compartment where the weak acids are ionized. The absorption of the studied non-ionizable compounds increased when ethanol was present in the gastric and intestinal media. These results indicate that concomitant intake of alcohol may significantly increase the solubility and hence, the plasma concentration for non-ionizable, lipophilic compounds with the potential of adverse drug

  6. Enhanced Iron Solubility at Low pH in Global Aerosols

    Directory of Open Access Journals (Sweden)

    Ellery D. Ingall

    2018-05-01

    Full Text Available The composition and oxidation state of aerosol iron were examined using synchrotron-based iron near-edge X-ray absorption spectroscopy. By combining synchrotron-based techniques with water leachate analysis, impacts of oxidation state and mineralogy on aerosol iron solubility were assessed for samples taken from multiple locations in the Southern and the Atlantic Oceans; and also from Noida (India, Bermuda, and the Eastern Mediterranean (Crete. These sampling locations capture iron-containing aerosols from different source regions with varying marine, mineral dust, and anthropogenic influences. Across all locations, pH had the dominating influence on aerosol iron solubility. When aerosol samples were approximately neutral pH, iron solubility was on average 3.4%; when samples were below pH 4, the iron solubility increased to 35%. This observed aerosol iron solubility profile is consistent with thermodynamic predictions for the solubility of Fe(III oxides, the major iron containing phase in the aerosol samples. Source regions and transport paths were also important factors affecting iron solubility, as samples originating from or passing over populated regions tended to contain more soluble iron. Although the acidity appears to affect aerosol iron solubility globally, a direct relationship for all samples is confounded by factors such as anthropogenic influence, aerosol buffer capacity, mineralogy and physical processes.

  7. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  8. Solid–liquid equilibrium and thermodynamic research of 3-Thiophenecarboxylic acid in (water + acetic acid) binary solvent mixtures

    International Nuclear Information System (INIS)

    Liu, Xiang; Liang, Mengmeng; Hu, Yonghong; Yang, Wenge; Shi, Ying; Yin, Jingjing; Liu, Yan

    2014-01-01

    Highlights: • The solubility was measured in (water + acetic acid) from 283.15 to 338.15 K. • The solubility increased with increasing temperature and water contents. • The modified Apelblat equation was more accurate than the λh equation. - Abstract: In this study, the solubility of 3-thiophenecarboxylic acid was measured in (water + acetic acid) binary solvent mixtures in the temperature ranging from 283.15 to 338.15 K by the analytical stirred-flask method under atmospheric pressure. The experimental data were well-correlated with the modified Apelblat equation and the λh equation. In addition, the calculated solubilities showed good agreement with the experimental results. It was found that the modified Apelblat equation could obtain the better correlation results than the λh equation. The experiment results indicated that the solubility of 3-thiophenecarboxylic acid in the binary solvents increased with increasing temperature, increases with increasing water contents, but the increments with temperature differed from different water contents. In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis. The experimental data and model parameters would be useful for optimizing the process of purification of 3-thiophenecarboxylic acid in industry

  9. [Soil basal respiration and enzyme activities in the root-layer soil of tea bushes in a red soil].

    Science.gov (United States)

    Yu, Shen; He, Zhenli; Zhang, Rongguang; Chen, Guochao; Huang, Changyong

    2003-02-01

    Soil basal respiration potential, metabolic quotient (qCO2), and activities of urease, invertase and acid phosphomonoesterase were investigated in the root-layer of 10-, 40-, and 90-yr-old tea bushes grown on the same type of red soil. The soil daily basal respiration potential ranged from 36.23 to 58.52 mg.kg-1.d-1, and the potentials in the root-layer of 40- or 90-yr-old were greater than that of 10-yr old tea bushes. The daily qCO2, ranging from 0.30 to 0.68, was in the reverse trend. The activities of test three enzymes changed differently with tea bushes' age. Urease activity in the root-layer of all age tea bushes ranged from 41.48 to 47.72 mg.kg-1.h-1 and slightly decreased with tea bushes' age. Invertase activity was 189.29-363.40 mg.kg-1.h-1 and decreased with tea bushes' age, but its activity in the root-layer of 10-year old tea bushes was significantly greater than that in the root-layer soil of 40- or 90-year old tea bushes. Acid phosphomonoesterase activity (444.22-828.32 mg.kg-1.h-1) increased significantly with tea bushes' age. Soil basal respiration potential, qCO2 and activities of 3 soil enzymes were closely related to soil pH, soil organic carbon, total nitrogen and C/N ratio, total soluble phenol, and microbial biomass carbon, respectively.

  10. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

    Science.gov (United States)

    García-Casal, M N; Layrisse, M

    2001-03-01

    The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

  11. Selective fluorescent detection of aspartic acid and glutamic acid employing dansyl hydrazine dextran conjugate.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Tanapongpipat, Sutipa; Smanmoo, Srung

    2014-01-01

    Highly water soluble polymer (DD) was prepared and evaluated for its fluorescence response towards various amino acids. The polymer consists of dansyl hydrazine unit conjugated into dextran template. The conjugation enhances higher water solubility of dansyl hydrazine moiety. Of screened amino acids, DD exhibited selective fluorescence quenching in the presence of aspartic acid (Asp) and glutamic acid (Glu). A plot of fluorescence intensity change of DD against the concentration of corresponding amino acids gave a good linear relationship in the range of 1 × 10(-4) M to 25 × 10(-3) M. This establishes DD as a potential polymeric sensor for selective sensing of Asp and Glu.

  12. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  13. Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation

    Science.gov (United States)

    Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah

    2018-02-01

    Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.

  14. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  15. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.

    Science.gov (United States)

    Oliveira, Edna Maria Morais; Mansure, José João; Bon, Elba Pinto da Silva

    2005-04-01

    In Saccharomyces cerevisiae, sensing and signalling pathways regulate gene expression in response to quality of carbon and nitrogen sources. One such system, the target of rapamycin (Tor) proteins, senses nutrients and uses the GATA activators Gln3p and Nil1p to regulate translation in response to low-quality carbon and nitrogen. The signal transduction, triggered in response to nitrogen nutrition that is sensed by the Tor proteins, operates via a regulatory pathway involving the cytoplasmic factor Ure2p. When carbon and nitrogen are abundant, the phosphorylated Ure2p anchors the also phosphorylated Gln3p and Nil1p in the cytoplasm. Upon a shift from high- to low-quality nitrogen or treatment with rapamycin all three proteins are dephosphorylated, causing Gln3p and Nil1p to enter the nucleus and promote transcription. The genes that code for yeast periplasmic enzymes with nutritional roles would be obvious targets for regulation by the sensing and signalling pathways that respond to quality of carbon and nitrogen sources. Indeed, previous results from our laboratory had shown that the GATA factors Gln3p, Nil1p, Dal80p, Nil2p and also the protein Ure2 regulate the expression of asparaginase II, coded by ASP3. We also had observed that the activity levels of the also periplasmic invertase, coded by SUC2, were 6-fold lower in ure2 mutant cells in comparison to wild-type cells collected at stationary phase. These results suggested similarities between the signalling pathways regulating the expression of ASP3 and SUC2. In the present work we showed that invertase levels displayed by the single nil1 and gln3 and by the double gln3nil1 mutant cells, cultivated in a sucrose-ammonium medium and collected at the exponential phase, were 6-, 10- and 60-fold higher, respectively, in comparison to their wild-type counterparts. RT-PCR data of SUC2 expression in the double-mutant cells indicated a 10-fold increase in the mRNA(SUC2) levels.

  16. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator.

    Science.gov (United States)

    Richardson-Sanchez, Tomas; Tieu, William; Gotsbacher, Michael P; Telfer, Thomas J; Codd, Rachel

    2017-07-21

    The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O 3 ) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O 1 ), two (DFOB-O 2 ) or three (DFOB-O 3 ) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O 3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O 3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O 1 ) gave the water soluble tetrameric hydroxamic acid DFOB-O 3 -PBH-O 1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O 3 -PBH-O 1 and nat Zr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H] + , m/z obs = 855.2; m/z calc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O 3 -PBH-O 1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.

  18. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.

    Science.gov (United States)

    Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N

    2015-11-03

    Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.

  19. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  20. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  1. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    Science.gov (United States)

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  2. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.

    Science.gov (United States)

    Kim, Youngmi; Ximenes, Eduardo; Mosier, Nathan S; Ladisch, Michael R

    2011-04-07

    Liquid hot water, steam explosion, and dilute acid pretreatments of lignocellulose generate soluble inhibitors which hamper enzymatic hydrolysis as well as fermentation of sugars to ethanol. Toxic and inhibitory compounds will vary with pretreatment and include soluble sugars, furan derivatives (hydroxymethyl fulfural, furfural), organic acids (acetic, formic and, levulinic acid), and phenolic compounds. Their effect is seen when an increase in the concentration of pretreated biomass in a hydrolysis slurry results in decreased cellulose conversion, even though the ratio of enzyme to cellulose is kept constant. We used lignin-free cellulose, Solka Floc, combined with mixtures of soluble components released during pretreatment of wood, to prove that the decrease in the rate and extent of cellulose hydrolysis is due to a combination of enzyme inhibition and deactivation. The causative agents were extracted from wood pretreatment liquid using PEG surfactant, activated charcoal or ethyl acetate and then desorbed, recovered, and added back to a mixture of enzyme and cellulose. At enzyme loadings of either 1 or 25mg protein/g glucan, the most inhibitory components, later identified as phenolics, decreased the rate and extent of cellulose hydrolysis by half due to both inhibition and precipitation of the enzymes. Full enzyme activity occurred when the phenols were removed. Hence detoxification of pretreated woods through phenol removal is expected to reduce enzyme loadings, and therefore reduce enzyme costs, for a given level of cellulose conversion. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    International Nuclear Information System (INIS)

    Cang Long; Zhou Dongmei; Wang Quanying; Wu Danya

    2009-01-01

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm -1 of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  4. Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhou Dongmei, E-mail: dmzhou@issas.ac.cn [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang Quanying; Wu Danya [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China)

    2009-12-30

    There is a growing concern on the potential application of a direct current (DC) electric field to soil for removing contaminants, but little is known about its impact on soil enzyme activities. This study investigated the change of enzyme activities of a heavy metal contaminated soil before and after electrokinetic (EK) treatments at lab-scale and the mechanisms of EK treatment to affect soil enzyme activities were explored. After treatments with 1-3 V cm{sup -1} of voltage gradient for 420 h, soil pH, electrical conductivity (EC), soil organic carbon, dissolved organic carbon (DOC), soil heavy metal concentration and enzyme activities were analyzed. The results showed that the average removal efficiencies of soil copper were about 65% and 83% without and with pH control of catholyte, respectively, and all the removal efficiencies of cadmium were above 90%. The soil invertase and catalase activities increased and the highest invertase activity was as 170 times as the initial one. The activities of soil urease and acidic phosphatase were lower than the initial ones. Bivariate correlation analyses indicated that the soil invertase and acidic phosphatase activities were significantly correlated with soil pH, EC, and DOC at P < 0.05, but the soil urease activities had no correlation with the soil properties. On the other hand, the effects of DC electric current on solution invertase and catalase enzyme protein activities indicated that it had negative effect on solution catalase activity and little effect on solution invertase activity. From the change of invertase and catalase activities in soil and solution, the conclusion can be drawn that the dominant effect mechanism is the change of soil properties by EK treatments.

  5. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    International Nuclear Information System (INIS)

    Held, Christoph; Reschke, Thomas; Müller, Rainer; Kunz, Werner; Sadowski, Gabriele

    2014-01-01

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg [2+] or NO 3 [−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li + , Na + , K + , NH 4 + , Cl − , Br − , I − , NO 3 − , and SO 4 2− at salt molalities of 0.5, 1.0, and 3.0 mol · kg −1 , respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  6. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements.

    Science.gov (United States)

    Shadjou, Nasrin; Hasanzadeh, Mohammad; Omari, Ali

    2017-12-15

    Rapid analyses of some water soluble vitamins (Vitamin B2, B9, and C) in commercial multi vitamins could be routinely performed in analytical laboratories. This study reports on the electropolymerization of a low toxic and biocompatible polymer "poly aspartic acid-graphene quantum dots" as a novel strategy for surface modification of glassy carbon electrode and preparation a new interface for measurement of selected vitamins in commercial multi vitamins. Electrochemical deposition, as a well-controlled synthesis procedure, has been used for subsequently layer-by-layer preparation of graphene quantum dots nanostructures on a poly aspartic acid using cyclic voltammetry techniques in the regime of -1.5 to 2 V. The field emission scanning electron microscopy indicated immobilization of graphene quantum dots onto poly aspartic acid film. The modified electrode possessed as an effective electroactivity for detection of water soluble vitamins by using cyclic voltammetry, chronoamperometry and differential pulse voltammetry. Enhancement of peak currents is ascribed to the fast heterogeneous electron transfer kinetics that arise from the synergistic coupling between the excellent properties of poly aspartic acid as semiconducting polymer, graphene quantum dots as high density of edge plane sites and chemical modification. Under the optimized analysis conditions, the prepared sensor for detection of VB2, VB9, and VC showed a low limit of quantification 0.22, 0.1, 0.1 μM, respectively. Copyright © 2017. Published by Elsevier Inc.

  7. Prediction of Starch, Soluble Sugars and Amino Acids in Potatoes (Solanum tuberosum L.) Using Hyperspectral Imaging, Dielectric and LF-NMR Methodologies

    DEFF Research Database (Denmark)

    Kjær, Anders; Nielsen, Glenn; Stærke, Søren

    2016-01-01

    Handling and processing of potatoes is performed in increasingly large and more automated facilities, and the industry calls for more automated machinery for quality assessment and sorting by concentration of starch, soluble sugars, protein, amino acids etc. of the potato tubers. The present study...... cultivars were simultaneously sampled for analyses of content and scanned by the five different scanning methods. The resulting multivariate dataset was used to estimate the prediction ability of the individual scanning methods on starch-related parameters, selected simple sugars, selected amino acids......, conductivity of pressed cell sap and cell sizes. Results showed that most types of spectral analyses had relatively high potential for predicting the starch-related parameters and medium potential for predicting the concentration of the reducing sugars fructose and glucose. Most methods showed medium potential...

  8. delta 6 Hexadecenoic acid is synthesized by the activity of a soluble delta 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm.

    Science.gov (United States)

    Cahoon, E B; Cranmer, A M; Shanklin, J; Ohlrogge, J B

    1994-11-04

    delta 6 Hexadecenoic acid (16:1 delta 6) composes more than 80% of the seed oil of Thunbergia alata. Studies were conducted to determine the biosynthetic origin of the double bond of this unusual fatty acid. Assays of fractions of developing T. alata seed endosperm with [1-14C]palmitoyl (16:0)-acyl carrier protein (ACP) revealed the presence of a soluble delta 6 desaturase activity. This activity was greatest when 16:0-ACP was provided as a substrate, whereas no desaturation of the coenzyme A ester of this fatty acid was detected. In addition, delta 6 16:0-ACP desaturase activity in T. alata endosperm extracts was dependent on the presence of ferredoxin and molecular oxygen and was stimulated by catalase. To further characterize this enzyme, a cDNA encoding a diverged acyl-ACP desaturase was isolated from a T. alata endosperm cDNA library using polymerase chain reaction with degenerate oligonucleotides corresponding to conserved amino acid sequences in delta 9 stearoyl (18:0)- and delta 4 16:0-ACP desaturases. The primary structure of the mature peptide encoded by this cDNA shares 66% identity with the mature castor delta 9 18:0-ACP desaturase and 57% identity with the mature coriander delta 4 16:0-ACP desaturase. Extracts of Escherichia coli that express the T. alata cDNA catalyzed the delta 6 desaturation of 16:0-ACP. These results demonstrate that 16:1 delta 6 in T. alata endosperm is formed by the activity of a soluble delta 6 16:0-ACP desaturase that is structurally related to the delta 9 18:0- and delta 4 16:0-ACP desaturases. Implications of this work to an understanding of active site structures of acyl-ACP desaturases are discussed.

  9. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst.

    Science.gov (United States)

    Li, Huiling; Ren, Junli; Zhong, Linjie; Sun, Runcang; Liang, Lei

    2015-01-01

    The conversion of xylose, water-insoluble hemicelluloses (WIH) and water-soluble fraction (WSF) of corncob to furfural was performed using montmorillonite with tin ions (Sn-MMT) containing double acid sites as a solid acid catalyst. The co-existence of Lewis acids and Brønsted acids in Sn-MMT was shown to improve the furfural yield and selectivity. 76.79% furfural yield and 82.45% furfural selectivity were obtained from xylose using Sn-MMT as a catalyst in a biphasic system with 2-s-butylphenol (SBP) as the organic extracting layer and dimethyl sulfoxide (DMSO) as the co-solvent in contact with an aqueous phase saturated with NaCl (SBP/NaCl-DMSO) at 180°C for 30min. Furthermore, Sn-MMT also demonstrated the excellent catalytic performance in the conversion of pentose-rich materials of corncob and 39.56% and 54.15% furfural yields can be directly obtained from WIH and WSF in the SBP/NaCl-DMSO system, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Soluble protein isolated from low cost fish and fish wastes

    OpenAIRE

    Lekshmy Nair, A.; Gopakumar, K.

    1982-01-01

    The method of preparation, composition, amino acid content, protein efficiency ratio and areas of possible application of water soluble protein isolates from low cost fish and fish wastes are discussed in detail in this communication.

  11. Measurement and correlation of solubility of carbon dioxide in triglycerides

    International Nuclear Information System (INIS)

    Howlader, Md Shamim; French, William Todd; Toghiani, Hossein; Hartenbower, Ben; Pearson, Larry; DuBien, Janice; Rai, Neeraj

    2017-01-01

    Graphical abstract: Comparison of experimental results with correlation for solubility of CO 2 in triglycerides as a function pressure at two different temperatures of 289.15 and 303.15 K, respectively. - Highlights: • New pressure drop gas apparatus was developed to determine the solubility of gases in liquids. • Solubility of CO 2 in triglycerides was measured at different temperatures and pressures. • Experimental solubility data were correlated using three thermodynamic models. • Enthalpy, entropy and Gibbs energy of dissolution for CO 2 -triglyceride were determined. - Abstract: A new pressure drop solubility gas apparatus was developed to determine the solubility of carbon dioxide in canola oil, a triglyceride consisting primarily of oleic, linoleic, and alpha linoleic acid radicals. Solubility of CO 2 in triglycerides was determined at different temperatures (283.2–303.2 K) and pressures (600–2450 kPa). It was found that the solubility of CO 2 in triglycerides is higher than that of pure water because triglycerides lack strong hydrogen bond networks that exist in liquid water at the ambient conditions. The experimental solubility was correlated using Krichevsky–Kasarnovsky (KK), Mather-Jou (MJ), and Carvalho-Coutinho (CC) correlations. We find that KK and MJ equations can predict the solubility with higher accuracy. The enthalpy and entropy of absorption of CO 2 were calculated using the van’t Hoff plot and were found to be −7.165 kJ.mol −1 , and −28.791 J.mol −1 .K −1 , respectively.

  12. [Variation of polysaccharides and alcohol-soluble extracts content of Dendrobium officinale].

    Science.gov (United States)

    Yu, Qiao-xian; Guo, Ying-ying; Si, Jin-ping; Wu, Ling-shang; Wang, Lin-hua

    2014-12-01

    To reveal the variation of polysaccharides and alcohol-soluble extract contents of Dendrobium officinale, the polysaccharides and alcohol-soluble extracts contents of three D. officinale strains were determined by phenol-sulfuric acid method and hot-dip method, respectively. The results showed that the contents of polysaccharides and alcohol-soluble extracts and their total content were significantly different among D. officinale samples collected in different periods, and the variations were closely related to the phenology of D. officinale. Additionally, the quality variation of polysaccharides was closely related to the flowering of D. officinale, while the alcohol-soluble extracts was closely associated to the formation and germination of buds. According to the dynamic variation of these two compounds, it is more reasonable to harvest D. officinale at biennials pre-bloom than at specific harvesting month considering polysaccharides content. It is better to harvest before the germination of buds considering alcohol-soluble extracts. While with regards to both polysaccharides and alcohol-soluble extract, it is better to harvest this plant at the period from the sprouting to pre-bloom next year.

  13. Poster 34. Monitoring of soluble species in the NPTEC SCEPTRE loop

    International Nuclear Information System (INIS)

    Eley, C.D.; Thomas, D.M.; Libaert, D.F.; Cattell, R.A.; Garbett, K.; Woolsey, I.S.

    1992-01-01

    Soluble transition metal ion and other species were measured in the coolant of the SCEPTRE Loop under PWR primary circuit conditions typical of the hot functional test and normal load operation. Good consistency between lines was observed for stainless steel sample lines with relatively high linear flow rates, rapid cooling to near ambient temperature and PTFE lining downstream of the cooler. Phenomenological conditioning times of the order of 100 hours for soluble transition metal species were determined for this type of sampling system. The behaviour of soluble transition metal species in a static, aerated stainless steel tank containing boric acid solutions was also investigated. (author)

  14. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  15. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  16. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Science.gov (United States)

    Dinarvand, Mojdeh; Rezaee, Malahat; Masomian, Malihe; Jazayeri, Seyed Davoud; Zareian, Mohsen; Abbasi, Sahar; Ariff, Arbakariya B.

    2013-01-01

    The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R 2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry. PMID:24151605

  17. Effect of C/N Ratio and Media Optimization through Response Surface Methodology on Simultaneous Productions of Intra- and Extracellular Inulinase and Invertase from Aspergillus niger ATCC 20611

    Directory of Open Access Journals (Sweden)

    Mojdeh Dinarvand

    2013-01-01

    Full Text Available The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes from Aspergillus niger ATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM with a five-variable and three-level central composite design (CCD was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2 more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v sucrose, 2.5% (w/v yeast extract, 2% (w/v NaNO3, 1.5 mM (v/v Zn+2, and 1% (v/v Triton X-100 by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.

  18. A review of pH calculation and corrosion product solubilities under PWR primary coolant chemistry conditions

    International Nuclear Information System (INIS)

    Thornton, E.W.; Polley, M.V.

    1986-12-01

    The calculation of high temperature pH in boric acid solutions is discussed and various relationships for the ionisation constant Ksub(w) or ion product Qsub(w) for water are reviewed. It is shown that the boric acid equilibria of Mesmer, Baes and Sweeton remain virtually unaltered when Marshall and Franck's relationship for Ksub(w) is substituted in a re-analysis of Mesmer, Baes and Sweeton's original experimental data. Magnetite solubility data and Westinghouse's studies of iron, nickel and cobalt solubility from mixed ferrites are collated and consideration is given to experimental difficulties which could have contributed to the variability in the data. Thermodynamic model fits have been computerised and used to compare different studies and to determine pH values at which the temperature dependence of solubility is predicted to be zero. Consideration is given to the differing dependences of solubility on dissolved hydrogen concentration in the three model fits. Two models for predicting iron and nickel solubility with respect to non-stoichiometric nickel ferrites are briefly discussed showing that only one of these is likely to be credible. (author)

  19. Non-coding RNA/microRNA-modulatory dietary factors and natural products for improved cancer therapy and prevention: Alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Bernhard Biersack

    2016-10-01

    Full Text Available Non-coding small RNA molecules, the microRNAs (miRNAs, contribute decisively to the epigenetic regulation processes in cancer cells. Problematic pathogenic properties of cancer cells and the response of cancers towards anticancer drugs are highly influenced by miRNAs. Both increased drug activity and formation of tumor resistance are regulated by miRNAs. Further to this, the survival and proliferation of cancer cells and the formation of metastases is based on the modulated expression of certain miRNAs. In particular, drug-resistant cancer stem-like cells (CSCs depend on the presence and absence of specific miRNAs. Fortunately, several small molecule natural compounds were discovered that target miRNAs involved in the modulation of tumor aggressiveness and drug resistance. This review gives an overview of the effects of a selection of naturally occurring small molecules (alkaloids, organosulfur compounds, aliphatic carboxylic acids and water-soluble vitamins on miRNAs that are closely tangled with cancer diseases. Keywords: MiRNA, Alkaloids, Organosulfur compounds, Aliphatic carboxylic acids, Water-soluble vitamins, Anticancer drugs

  20. Eco-physiological studies on Indian arid zone plants. III. Effect of sodium chloride and gibberellin on the activity of the enzymes of carbohydrate metabolism in leaves of Pennisetum typhoides

    Energy Technology Data Exchange (ETDEWEB)

    Huber, W.; Rustagi, P.N.; Sankhla, N.

    1974-01-01

    Seedlings of Pennisetum typhoides were grown in sodium chloride (NaCl) and gibberellic acid (GA/sub 3/) separately and in combination, and the effects on the activity of amylase, phosphorylase, aldolase, invertase, hexose-phosphateisomerase, sucrose-synthetase and sucrose-6-phosphate-synthetase were studied. Treatment of the seedlings with NaCl caused an inhibition of the activity of amylase and invertase in the leaf homogenate, but enhanced that of phosphorylase, aldolase, sucrose-synthetase and sucrose-6-phosphate-synthetase. GA/sub 3/ alone, as observed earlier, promoted the activity of invertase but indicated no significant influence on the other enzymes tested. In combination with salt, however, GA/sub 3/ tended to counteract, partially or wholly, the effect of NaCl on the activity of severe enzymes tested. The possible significance of the similarities between the action of abscisic acid (ABA) and salinity in influencing growth and metabolism of plants during stress is discussed. 34 references, 3 figures.

  1. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  2. Preparation of free, soluble conjugate, and insoluble-bound phenolic compounds from peels of rambutan (Nephelium lappaceum) and evaluation of antioxidant activities in vitro.

    Science.gov (United States)

    Sun, Liping; Zhang, Huilin; Zhuang, Yongliang

    2012-02-01

    The soluble phenolic compounds of rambutan peels (RP) were extracted by microwave-assisted extraction (MAE) and the operating parameters were optimized. The optimal conditions obtained were ethanol concentration of 80.85%, extraction time of 58.39 s, and the ratio of liquid to solid of 24.51:1. The soluble phenolic content by MAE was 213.76 mg GAE/g DW. The free, soluble conjugate, and insoluble-boaund phenolic compounds were prepared by alkaline hydrolysis, and the contents of 3 fractions were 185.12, 27.98 and 9.37 mg GAE/g DW, respectively. The contents of syringic acid and p-coumaric acid were high in the free fraction, showing 16.86 and 19.44 mg/g DW, and the soluble conjugate and insoluble-bound phenolics were mainly composed of gallic acid and caffeic acid. Furthermore, the antioxidant activities of 3 fractions were evaluated in 5 model systems. Results indicated that the free fraction had high antioxidant activities, compared with the soluble conjugate and insoluble-bound fractions. © 2012 Institute of Food Technologists®

  3. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  4. Biochemical characterization of soluble proteins in pecan [Carya illinoinensis (Wangenh.) K. Koch].

    Science.gov (United States)

    Venkatachalam, Mahesh; Roux, Kenneth H; Sathe, Shridhar K

    2008-09-10

    Pecans (cv. Desirable) contained approximately 10% protein on a dry weight basis. The minimum nitrogen solubility (5.9-7.5%) at 0.25-0.75 M trichloroacetic acid represented the nonprotein nitrogen. Among the solvents assessed for protein solubilization, 0.1 M NaOH was the most effective, while borate saline buffer (pH 8.45) was judged to be optimal for protein solubilization. The protein solubility was minimal in the pH range of 3-7 and significantly increased on either side of this pH range. Increasing the NaCl concentration from 0 to 4 M significantly improved ( approximately 8-fold increase) protein solubilization. Following Osborne protein fractionation, the alkali-soluble glutelin fraction (60.1%) accounted for a major portion of pecan proteins followed by globulin (31.5%), prolamin (3.4%), and albumin (1.5%), respectively. The majority of pecan polypeptides were in the molecular mass range of 12-66 kDa and in the pI range of 4.0-8.3. The pecan globulin fraction was characterized by the presence of several glycoprotein polypeptides. Lysine was the first limiting essential amino acid in the defatted flour, globulin, prolamin, and alkaline glutelin fractions. Leucine and tryptophan were the first limiting essential amino acids in albumin and acid glutelin fractions, respectively. Rabbit polyclonal antibodies detected a range of pecan polypeptides in the 12-60 kDa range, of which the globulin fraction contained the most reactive polypeptides.

  5. Plutonium solubilities

    International Nuclear Information System (INIS)

    Puigdomnech, I.; Bruno, J.

    1991-02-01

    Thermochemical data has been selected for plutonium oxide, hydroxide, carbonate and phosphate equilibria. Equilibrium constants have been evaluated in the temperature range 0 to 300 degrees C at a pressure of 1 bar to T≤100 degrees C and at the steam saturated pressure at higher temperatures. Measured solubilities of plutonium that are reported in the literature for laboratory experiments have been collected. Solubility data on oxides, hydroxides, carbonates and phosphates have been selected. No solubility data were found at temperatures higher than 60 degrees C. The literature solubility data have been compared with plutonium solubilities calculated with the EQ3/6 geochemical modelling programs, using the selected thermodynamic data for plutonium. (authors)

  6. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  7. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  8. Nitrogen-corrected True Metabolizable Energy and Amino Acid Digestibility of Chinese Corn Distillers Dried Grains with Solubles in Adult Cecectomized Roosters

    Directory of Open Access Journals (Sweden)

    F. Li

    2013-06-01

    Full Text Available This study was conducted to evaluate chemical composition, nitrogen-corrected true metabolizable energy (TMEn and true amino acids digestibility of corn distillers dried grains with solubles (DDGS produced in China. Twenty five sources of corn DDGS was collected from 8 provinces of China. A precision-fed rooster assay was used to determine TMEn and amino acids digestibility with 35 adult cecectomized roosters, in which each DDGS sample was tube fed (30 g. The average content of ash, crude protein, total amino acid, ether extract, crude fiber and neutral detergent fiber were 4.81, 27.91, 22.51, 15.22, 6.35 and 37.58%, respectively. TMEn of DDGS ranged from 1,779 to 3,071 kcal/kg and averaged 2,517 kcal/kg. Coefficient of variation for non-amino acid crude protein, ether extract, crude fiber and TMEn were 55.0, 15.7, 15.9 and 17.1%, respectively. The average true amino acid digestibility was 77.32%. Stepwise regression analysis obtained the following equation: TMEn, kcal/kg = −2,995.6+0.88×gross energy+49.63×a* (BIC = 248.8; RMSE = 190.8; p0.05. These results suggest that corn DDGS produced in China has a large variation in chemical composition, and gross energy and a* value can be used to generate TMEn predict equation.

  9. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    Directory of Open Access Journals (Sweden)

    Cai LL

    2013-12-01

    Full Text Available Lulu Cai,1,* Neng Qiu,2,* Mingli Xiang,3,* Rongsheng Tong,1 Junfeng Yan,1 Lin He,1 Jianyou Shi,1 Tao Chen,4 Jiaolin Wen,3 Wenwen Wang,3 Lijuan Chen31Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, 2College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, 3State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China; 4Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada *These authors contributed equally to this paperAbstract: The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa methoxy poly(ethylene glycol methyl ether (mPEG to gambogic acid (GA-mPEG2000 through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazol-2-yl-2,5 diphenyl tetrazolium bromide tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy.Keywords: gambogic acid, poly(ethylene glycol-drug conjugate, micelle, antitumor, toxicity

  10. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  11. Solubility of fumaric acid and its monosodium salt

    NARCIS (Netherlands)

    Roa Engel, C.A.; Horst, J.H. ter; Pieterse, M.; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    Fumaric acid is a dicarboxylic acid applied in food industry and in some polymers. Currently, its fermentative production from renewable resources is receiving much attention, and crystallization is used to recover it. To determine the window of operation for crystallization from multicomponent

  12. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors.

    Science.gov (United States)

    Hassan, Refat M; Zaafarany, Ishaq A

    2013-06-17

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyeletrolyte pectates (PEC) as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  13. Soluble Sugars as the Carbohydrate Reserve for CAM in Pineapple Leaves 1

    Science.gov (United States)

    Carnal, Nancy Wieland; Black, Clanton C.

    1989-01-01

    Neutral ethanol-soluble sugar pools serve as carbohydrate reserves for Crassulacean acid metabolism (CAM) in pineapple (Ananas comosus (L.) Merr.) leaves. Levels of neutral soluble sugars and glucans fluctuated reciprocally with concentrations of malic acid. Hexose loss from neutral soluble-sugar pools was sufficient to account for malic acid accumulation with about 95% of the required hexose accounted for by turnover of fructose and glucose pools. Hexose loss from starch or starch plus lower molecular weight glucan pools was insufficient to account for nocturnal accumulation of malic acid. The apparent maximum catalytic capacity of pyrophosphate:6-phosphofructokinase (PPi-PFK) at 15°C was about 16 times higher than the mean maximum rate of glycolysis that occurred to support malic acid accumulation in pineapple leaves at night and 12 times higher than the mean maximum rate of hexose turnover from all carbohydrate pools. The apparent maximum catalytic capacity of ATP-PFK at 15°C was about 70% of the activity required to account for the mean maximal rate of hexose turnover from all carbohydrate pools if turnover were completely via glycolysis, and marginally sufficient to account for mean maximal rates of acidification. Therefore, at low night temperatures conducive to CAM and under subsaturating substrate concentrations, PPi-PFK activity, but not ATP-PFK activity, would be sufficient to support the rate of glycolytic carbohydrate processing required for acid accumulation. These data for pineapple establish that there are at least two types of CAM plants with respect to the nature of the carbohydrate reserve utilized to support nighttime CO2 accumulation. The data further indicate that the glycolytic carbohydrate processing that supports acidification proceeds in different subcellular compartments in plants utilizing different carbohydrate reserves. PMID:16666775

  14. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-08-01

    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C

  15. Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach

    Directory of Open Access Journals (Sweden)

    Elisabetta Pancani

    2018-05-01

    Full Text Available Nowadays, biodegradable polymers such as poly(lactic acid (PLA, poly(D,L-lactic-co-glycolic acid (PLGA and poly(ε-caprolactone (PCL remain the most common biomaterials to produce drug-loaded nanoparticles (NPs. Pipemidic acid (PIP is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL–PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL–PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL–PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (w/w. The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer–PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs. KEY WORDS: Pipemidic acid, Nanoparticle, Antibiotic, Nanoprecipitation, Crystalline drug, Drug-initiated   polymerization

  16. SYNTHESIS OF NOVEL SOLUBLE AROMATIC POLYPYROMELLITIMIDE CONTAINING ORDERED 1,2,4-TRIAZINE IN THE MAIN CHAIN

    Institute of Scientific and Technical Information of China (English)

    Xiao-bing Yi; Guo-shi Wu; Feng-cai Lu

    2002-01-01

    A new heat-resistant, soluble polymer, poly(phenyl-1,2,4-triazine imidc), has been prepared via a two-step method of polycondensation of N,N'-bis(4-benzil)pyromellitimide and terephthalamidrazone in cresol, followed by curing at higher temperature. The rigid 1,2,4-triazine group increases the solubility of the polyimide so that the polymer is soluble in cresol,N-methyl-2-pyrrolidone (NMP), trifluoroacetic acid and concentrated sulfuric acid, etc. Thermogravimetric analysis (TGA)indicates that this novel polyimide has good thermal stability with a high decomposition temperature of 447℃ in air and of 423 ℃ in N2. It has a tensile strength of 107.4 MPa with an elongation at break of around 7.6%.

  17. Soluble Fiber Dextrin and Soluble Corn Fiber Supplementation Modify Indices of Health in Cecum and Colon of Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Maria R. C. de Godoy

    2013-02-01

    Full Text Available The objective of this study was to evaluate health outcomes resulting from dietary supplementation of novel, low-digestible carbohydrates in the cecum and colon of Sprague-Dawley rats randomly assigned to one of four treatment groups for 21 days: 5% cellulose (Control, Pectin, soluble fiber dextrin (SFD, or soluble corn fiber (SCF. Rats fed Pectin had a higher average daily food intake, but no differences in final body weights or rates of weight gain among treatments were observed. No differences were observed in total short-chain fatty acid (SCFA or branched-chain fatty acid (BCFA concentrations in the cecum and colon of rats fed either SFD or SCF. The SFD and SCF treatments increased cecal propionate and decreased butyrate concentrations compared to Control or Pectin. Pectin resulted in increased BCFA in the cecum and colon. Supplementation of SFD and SCF had no effect on cecal microbial populations compared to Control. Consumption of SFD and SCF increased total and empty cecal weight but not colon weight. Gut histomorphology was positively affected by SFD and SCF. Increased crypt depth, goblet cell numbers, and acidic mucin were observed in both the cecum and colon of rats supplemented with SFD, SCF, and Pectin. These novel, low-digestible carbohydrates appear to be beneficial in modulating indices of hindgut morphology when supplemented in the diet of the rat.

  18. Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13.

    Science.gov (United States)

    Liu, Huan; Yue, Xuemin; Jin, Yuhan; Wang, Meng; Deng, Li; Wang, Fang; Tan, Tianwei

    2017-10-01

    Fumaric acid production from lignocellulosic materials is an alternative chemicals production system. This work investigated the suitable conditions for hydrolysis of dried distiller's grains with solubles (DDGS). The hydrolytic liquid was subsequently used for the production of fumaric acid. After optimizing the hydrolysis conditions, the most suitable concentration of H 2 SO 4 (2%), hydrolysis temperature (120 °C), hydrolysis time (100min) and solid/liquid ratio (1:10) were obtained. The yield of monosaccharides reached 258 mg/g DDGS and 15.88 g/L glucose, 7.53 g/L xylose and 2.35 g/L arabinose were obtained in unprocessed hydrolytic liquid. The furfural inhibitor in the hydrolytic liquid was also detected and the yield of it was reducing progressively in the pretreatment process. The ferment ability of the hydrolytic liquid from DDGS was tested through the process of fumaric acid production by Rhizopus arrhizus RH 7-13. The unprocessed hydrolytic liquid was not appropriate for the fermentation process. The yield of fumaric acid from the concentrated processed hydrolytic liquid reached 18.93 g/L, which was close to the yield of fermenting 80 g/L glucose. This result indicated that the commonly used carbon resource glucose could to some extent be replaced by processed hydrolytic liquid. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Chemical remediation of wood treated with micronised, nano or soluble copper preservatives

    Science.gov (United States)

    Saip Nami Kartal; Evren Terzi; Bessie Woodward; Carol A. Clausen; Stan T. Lebow

    2013-01-01

    The potential for extraction of copper from wood treated with micronised, nano or soluble forms of copper has been evaluated in view of chemical remediation. In focus were EDTA, oxalic acid, bioxalate, and D-gluconic acid for extraction of Cu from treated wood. Bioxalate extractions for 24 h resulted in Cu removal over 95% for all tested...

  20. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    International Nuclear Information System (INIS)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam

    2015-01-01

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In 2 O 3 NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO 3 ) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO 3 , the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10 −4 cm 2 V -1 s −1 to 4.5 × 10 −3 cm 2 V -1 s −1 , due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm 2 V -1 s −1 for the In 2 O 3 NC-Ala·HNO 3 TFT cured at 350 °C. It is also found that the ligand exchange of In 2 O 3 NC in acidic condition (e.g. HNO 3 ) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In 2 O 3 nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In 2 O 3 NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  2. Effect of para-chlorophenoxyacetic acid on acid invertase gene ...

    African Journals Online (AJOL)

    Your User Name

    2011-07-04

    Jul 4, 2011 ... transplanted to a solar greenhouse with array pitch of 50 cm and row spacing 35 cm. .... significant change in response to PCPA treatment. Effect of ..... The regulatory mechanism of sugar accumulation is quite complicated.

  3. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  4. Modulation of organic acids and sugar content in tomato fruits by an abscisic acid-regulated transcription factor.

    Science.gov (United States)

    Bastías, Adriana; López-Climent, María; Valcárcel, Mercedes; Rosello, Salvador; Gómez-Cadenas, Aurelio; Casaretto, José A

    2011-03-01

    Growing evidence suggests that the phytohormone abscisic acid (ABA) plays a role in fruit development. ABA signaling components of developmental programs and responses to stress conditions include the group of basic leucine zipper transcriptional activators known as ABA-response element binding factors (AREBs/ABFs). AREB transcription factors mediate ABA-regulated gene expression involved in desiccation tolerance and are expressed mainly in seeds and in vegetative tissues under stress; however, they are also expressed in some fruits such as tomato. In order to get an insight into the role of ABA signaling in fruit development, the expression of two AREB-like factors were investigated during different developmental stages. In addition, tomato transgenic lines that overexpress and downregulate one AREB-like transcription factor, SlAREB1, were used to determine its effect on the levels of some metabolites determining fruit quality. Higher levels of citric acid, malic acid, glutamic acid, glucose and fructose were observed in SlAREB1-overexpressing lines compared with those in antisense suppression lines in red mature fruit pericarp. The higher hexose concentration correlated with increased expression of genes encoding a vacuolar invertase (EC 3.2.1.26) and a sucrose synthase (EC 2.4.1.13). No significant changes were found in ethylene content which agrees with the normal ripening phenotype observed in transgenic fruits. These results suggest that an AREB-mediated ABA signal affects the metabolism of these compounds during the fruit developmental program. Copyright © Physiologia Plantarum 2010.

  5. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate; Lixiviacion de concentrados de cobre utilizando NaCl y el cobre soluble aportado por el propio concentrado

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-07-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs.

  6. Solubility of simulated PWR primary circuit corrosion products

    International Nuclear Information System (INIS)

    Kunig, R.H.; Sandler, Y.L.

    1986-08-01

    The solubility behavior of non-stoichiometric nickel ferrites, nickel-cobalt ferrites, and magnetite, as model substances for the corrosion products (''crud'') formed in nuclear pressurized water reactors, was studied in a flow system in aqueous solutions of lithium hydroxide, boric acid, and hydrogen with pH, temperature, and hydrogen concentrations as parameters. Below the temperature region of 300 to 330 0 C, at hydrogen concentrations of 25 to 40 cm 3 /kg H 2 O as used during reactor operation, the solubility of nickel-cobalt ferrite is the same as that of Ni and Co/sub x/Fe/sub 3-x/O 4 (x 3 /kg of hydrogen, the equilibrium iron and nickel solubilities increase congruently down to about 100 0 C, in a manner consistent with the solubility of Fe 3 O 4 , but sharply decline at lower temperatures, apparently due to formation of a borated layer. A cooldown experiment on a time scale of a typical Westinghouse reactor shutdown, as well as static experiments carried out on various ferrite samples at 60 0 C show that after addition of oxygen or peroxide evolution of nickel (and possibly cobalt) above the equilibrium solubility in hydrogen depends on the presence of dissociation products prior to oxidation. Thermodynamic calculations of various reduction and oxidative decomposition reactions for stoichiometric and non-stoichiometric nickel ferrite and cobalt ferrite are presented. Their significance to evolutions of nickel and cobalt on reactor shutdown is discussed. 30 refs., 38 figs., 34 tabs

  7. A Systematic Study of Molecular Interactions of Anionic Drugs with a Dimethylaminoethyl Methacrylate Copolymer Regarding Solubility Enhancement.

    Science.gov (United States)

    Saal, Wiebke; Ross, Alfred; Wyttenbach, Nicole; Alsenz, Jochem; Kuentz, Martin

    2017-04-03

    The methacrylate-copolymer Eudragit EPO (EPO) has raised interest in solubility enhancement of anionic drugs. Effects on aqueous drug solubility at rather low polymer concentrations are barely known despite their importance upon dissolution and dilution of oral dosage forms. We provide evidence for substantial enhancement (factor 4-230) of aqueous solubility of poorly water-soluble anionic drugs induced by low (0.1-5% (w/w)) concentration of EPO for a panel of seven acidic crystalline drugs. Diffusion data (determined by 1 H nuclear magnetic resonance spectroscopy) indicate that the solubility increasing effect monitored by quantitative ultraperformance liquid chromatography was caused primarily by molecular API polymer interactions in the bulk liquid phase. Residual solid API remained unaltered as tested by X-ray powder diffraction. The solubility enhancement (SE) revealed a significant rank correlation (r Spearman = -0.83) with rDiff API , where SE and rDiff API are defined ratios of solubility and diffusion coefficient in the presence and absence of EPO. SE decreased in the order of indomethacin, mefenamic acid, warfarin, piroxicam, furosemide, bezafibrate, and tolbutamide. The solubilizing effect was attributed to both ionic and hydrophobic interactions between drugs and EPO. The excellent solubilizing properties of EPO are highly promising for pharmaceutical development, and the data set provides first steps toward an understanding of drug-excipient interaction mechanisms.

  8. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    Science.gov (United States)

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Kinetics of Corrosion Inhibition of Aluminum in Acidic Media by Water-Soluble Natural Polymeric Pectates as Anionic Polyelectrolyte Inhibitors

    Directory of Open Access Journals (Sweden)

    Refat M. Hassan

    2013-06-01

    Full Text Available Corrosion inhibition of aluminum (Al in hydrochloric acid by anionic polyeletrolyte pectates (PEC as a water-soluble natural polymer polysaccharide has been studied using both gasometric and weight loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing inhibitor concentration and decrease with increasing temperature. The inhibition action of PEC on Al metal surface was found to obey the Freundlich isotherm. Factors such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and temperature affecting the corrosion rates were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the kinetic results is discussed in the paper.

  10. Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars.

    Science.gov (United States)

    Nghiem, Nhuan P; Montanti, Justin; Kim, Tae Hyun

    2016-05-01

    Dried distillers grains with solubles (DDGS), a co-product of corn ethanol production in the dry-grind process, was pretreated by soaking in aqueous ammonia (SAA) using a 15 % w/w NH4OH solution at a solid/liquid ratio of 1:10. The effect of pretreatment on subsequent enzymatic hydrolysis was studied at two temperatures (40 and 60 °C) and four reaction times (6, 12, 24, and 48 h). Highest glucose yield of 91 % theoretical was obtained for the DDGS pretreated at 60 °C and 24 h. The solubilized hemicellulose in the liquid fraction was further hydrolyzed with dilute H2SO4 to generate fermentable monomeric sugars. The conditions of acid hydrolysis included 1 and 4 wt% acid, 60 and 120 °C, and 0.5 and 1 h. Highest yields of xylose and arabinose were obtained at 4 wt% acid, 120 °C, and 1 h. The fermentability of the hydrolysate obtained by enzymatic hydrolysis of the SAA-pretreated DDGS was demonstrated in ethanol fermentation by Saccharomyces cerevisiae. The fermentability of the hydrolysate obtained by consecutive enzymatic and dilute acid hydrolysis was demonstrated using a succinic acid-producing microorganism, strain Escherichia coli AFP184. Under the fermentation conditions, complete utilization of glucose and arabinose was observed, whereas only 47 % of xylose was used. The succinic acid yield was 0.60 g/g total sugar consumed.

  11. Predicting trace metal solubility and fractionation in Urban soils from isotopic exchangeability

    International Nuclear Information System (INIS)

    Mao, L.C.; Young, S.D.; Tye, A.M.; Bailey, E.H.

    2017-01-01

    Metal-salt amended soils (MA, n = 23), and historically-contaminated urban soils from two English cities (Urban, n = 50), were investigated to assess the effects of soil properties and contaminant source on metal lability and solubility. A stable isotope dilution method, with and without a resin purification step, was used to measure the lability of Cd, Cu, Ni, Pb and Zn. For all five metals in MA soils, lability (%E-values) could be reasonably well predicted from soil pH value with a simple logistic equation. However, there was evidence of continuing time-dependent fixation of Cd and Zn in the MA soils, following more than a decade of storage under air-dried conditions, mainly in high pH soils. All five metals in MA soils remained much more labile than in Urban soils, strongly indicating an effect of contaminant source on metal lability in the latter. Metal solubility was predicted for both sets of soil by the geochemical speciation model WHAM-VII, using E-value as an input variable. For soils with low metal solution concentrations, over-estimation of Cd, Ni and Zn solubility was associated with binding to the Fe oxide fraction while accurate prediction of Cu solubility was dependent on humic acid content. Lead solubility was most poorly described, especially in the Urban soils. Generally, slightly poorer estimation of metal solubility was observed in Urban soils, possibly due to a greater incidence of high pH values. The use of isotopically exchangeable metal to predict solubility is appropriate both for historically contaminated soils and where amendment with soluble forms of metal is used, as in toxicological trials. However, the major limitation to predicting solubility may lie with the accuracy of model input variables such as humic acid and Fe oxide contents where there is often a reliance on relatively crude analytical estimations of these variables. Trace metal reactivity in urban soils depends on both soil properties and the original source material

  12. Accelerated healing of cutaneous leishmaniasis in non-healing BALB/c mice using water soluble amphotericin B-polymethacrylic acid.

    Science.gov (United States)

    Corware, Karina; Harris, Debra; Teo, Ian; Rogers, Matthew; Naresh, Kikkeri; Müller, Ingrid; Shaunak, Sunil

    2011-11-01

    Cutaneous leishmaniasis (CL) is a neglected tropical disease that causes prominent skin scaring. No water soluble, non-toxic, short course and low cost treatment exists. We developed a new water soluble amphotericin B-polymethacrylic acid (AmB-PMA) using established and scalable chemistries. AmB-PMA was stable for 9 months during storage. In vitro, it was effective against Leishmania spp. promastigotes and amastigote infected macrophages. It was also less toxic and more effective than deoxycholate-AmB, and similar to liposomal AmB. Its in vivo activity was determined in both early and established CL lesion models of Leishmania major infection in genetically susceptible non-healing BALB/c mice. Intradermal AmB-PMA at a total dose of 18 mg of AmB/kg body weight led to rapid parasite killing and lesion healing. No toxicity was seen. No parasite relapse occurred after 80 days follow-up. Histological studies confirmed rapid parasite clearance from macrophages followed by accelerated fibroblast mediated tissue repair, regeneration and cure of the infection. Quantitative mRNA studies of the CL lesions showed that accelerated healing was associated with increased Tumour Necrosis Factor-α and Interferon-γ, and reduced Interleukin-10. These results suggest that a cost-effective AmB-PMA could be used to pharmacologically treat and immuno-therapeutically accelerate the healing of CL lesions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium.

    Science.gov (United States)

    Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon

    2010-01-01

    To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.

  14. Solubility and fluoride release in ionomers and compomers.

    Science.gov (United States)

    Bertacchini, S M; Abate, P F; Blank, A; Baglieto, M F; Macchi, R L

    1999-03-01

    The degree of solubility and the fluoride release of glass-ionomer cements and "compomers" were determined as a function of time. Three conventional glass-ionomer cements, three hybrid ionomers, and two compomers were included in the study. Disk-shaped specimens were prepared and immersed in a lactic acid solution. Solubility was evaluated from determinations of loss of mass as a function of time. To evaluate fluoride release, similar specimens were immersed in 50 mL of deionized water to which 50 mL of buffer solution was added. A fluoride ion detector was used to read the concentration of fluoride ion in the overall solution at different times after immersion. Material and time factors had a significant influence on results. The compomers showed less corrosion and fluoride release than the ionomers. Some correlation was found between solubility and fluoride leakage values. Components of both the ionomers and compomers that were studied can dissolve in water. The materials leak fluoride ions in amounts that differ according to the characteristics of the individual products.

  15. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  16. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  17. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  18. Dilute acid/metal salt hydrolysis of lignocellulosics

    Science.gov (United States)

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  19. HILIC separation and quantitation of water-soluble vitamins using diol column.

    Science.gov (United States)

    Karatapanis, Andreas E; Fiamegos, Yiannis C; Stalikas, Constantine D

    2009-04-01

    Hydrophilic interaction liquid-chromatography (HILIC) in conjunction with diode array detection has been applied for the separation of selected-water-soluble vitamins using an end-capped HILIC-diol column. Vitamins with significant biological importance, such as thiamine (B(1)), riboflavin (B(2)), nicotinic acid (B(3)), nicotinamide (B(3)), pyridoxine (B(6)), folic acid (B(9)), cyanocobalamin (B(12)) and ascorbic acid (vitamin C) were simultaneously separated. Chromatographic conditions including type and percentage of organic modifier in the mobile phase, pH, type and concentration of buffer salt and flow rate were investigated. ACN was shown to offer superior separation for the compounds tested as compared to methanol, isopropanol and THF. Isocratic separation and analysis were achieved for six vitamins (B(1), B(2), nicotinic acid/nicotinamide, B(6) and C) at ACN-H(2)O 90:10, containing ammonium acetate 10 mM, triethylamine 20 mM, pH 5.0, using a flow rate of 0.8 mL/min, while a gradient was necessary to resolve a mixture of all eight water-soluble vitamins. The HILIC method was validated and successfully applied to the analysis of a pharmaceutical formulation and an energy drink negating the need for time consuming clean-up steps.

  20. Water soluble inorganic trace gases and related aerosol compounds in the tropical boundary layer. An analysis based on real time measurements at a pasture site in the Amazon Basin

    NARCIS (Netherlands)

    Trebs, I.

    2005-01-01

    This dissertation investigates the behavior of water-soluble inorganic trace gases and related aerosol species in the tropical boundary layer. Mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO;,) and the corresponding water-soluble

  1. Using urinary solubility data to estimate the level of safety concern of low levels of melamine (MEL) and cyanuric acid (CYA) present simultaneously in infant formulas.

    Science.gov (United States)

    Dominguez-Estevez, Manuel; Constable, Anne; Mazzatorta, Paolo; Renwick, Andrew G; Schilter, Benoit

    2010-01-01

    Melamine (MEL) and cyanuric acid (CYA) may occur simultaneously in milk products. There is no health based guidance value for the mixture of MEL+CYA. Limited toxicological data indicate that MEL+CYA toxicity occurs at levels lower than the toxic doses of the single compounds. The key adverse effect of MEL+CYA is the formation of crystals in the urinary tract, which is dependent on the solubility of the MEL+CYA complex. Urinary concentrations resulting from oral doses of MEL+CYA and MEL alone have been calculated from published data from animal studies. A human exposure scenario assuming consumption of infant formula contaminated at a level of 1 ppm of MEL and CYA each (2 ppm of MEL+CYA) was also analyzed. Margins of more than two orders or magnitude were observed between estimated urine concentrations known to be without detectable effects in rats and calculated human urine concentrations. Because the hazard is related to the physico-chemical characteristics of the mixture, there would be a negligible concern associated with crystal formation if the urinary concentration of the complex is within the solubility range. The solubility of MEL+CYA was higher in urine than in water. A strong pH-dependency was observed with the lowest solubility found at pH 5-5.5. The calculated human urinary concentration was about 30 times less than the solubility limit for MEL+CYA in adult human urine. Altogether, these data provide preliminary evidence suggesting that the presence of 1 ppm of MEL and CYA each in infant formula is unlikely to be of significant health concern. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Indium sulfide precipitation from hydrochloric acid solutions of calcium and sodium chlorides

    International Nuclear Information System (INIS)

    Kochetkova, N.V.; Bayandina, Yu.E.; Toptygina, G.M.; Shepot'ko, A.O.

    1988-01-01

    The effect of precipitation duration, acid concentration, indium complexing with chloride ions on the process of indium sulfide chemical precipitation in hydrochloric acid solutions, precipitate composition and dispersity are studied. It is established that indium sulfide solubility increases in solutions with acid concentration exceeding 0.40-0.45 mol/l. Calcium and indium chloride addition to diluted hydrochloric solutions greatly increases the solubility of indium sulfide. The effect of calcium chloride on In 2 S 3 solubility is higher than that of sodium chloride

  3. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.

    Science.gov (United States)

    Cizeikiene, Dalia; Juodeikiene, Grazina; Bartkiene, Elena; Damasius, Jonas; Paskevicius, Algimantas

    2015-01-01

    The objective of this study was to determinate phytase activity of bacteriocins producing lactic acid bacteria previously isolated from spontaneous rye sourdough. The results show that the highest extracellular phytase activity produces Pediococcus pentosaceus KTU05-8 and KTU05-9 strains with a volumetric phytase activity of 32 and 54 U/ml, respectively, under conditions similar to leavening of bread dough (pH 5.5 and 30 °C). In vitro studies in simulated gastrointestinal tract media pH provide that bioproducts prepared with P. pentosaceus strains used in wholemeal wheat bread preparation increase solubility of iron, zinc, manganese, calcium and phosphorus average 30%. Therefore, P. pentosaceus KTU05-9 and KTU05-8 strains could be recommended to use as a starter for sourdough preparation for increasing of mineral bioavailability from wholemeal wheat bread.

  4. Cocrystals of a 1,2,4-thiadiazole-based potent neuroprotector with gallic acid: solubility, thermodynamic stability relationships and formation pathways.

    Science.gov (United States)

    Surov, Artem O; Churakov, Andrei V; Proshin, Alexey N; Dai, Xia-Lin; Lu, Tongbu; Perlovich, German L

    2018-05-30

    Three distinct solid forms, namely anhydrous cocrystals with 2 : 1 and 1 : 1 drug/acid ratios ([TDZ : GA] (2 : 1), [TDZ : GA] (1 : 1)), and a hydrated one having 1 : 1 : 1 drug/acid/water stoichiometry ([TDZ : GA : H2O] (1 : 1 : 1)), have been formed by cocrystallization of the biologically active 1,2,4-thiadiazole derivative (TDZ) with gallic acid (GA). The thermodynamic stability relationships between the cocrystals were rationalized in terms of Gibbs energies of the formation reactions and further verified by performing a set of competitive and exchange mechanochemical reactions. Interestingly, competitive grinding in the presence of the structurally related vanillic acid led to the formation of a new polymorphic form of the [TDZ : Vanillic acid] (1 : 1) cocrystal, which was promoted by gallic acid. The mechanochemical method was also applied to elucidate the alternative pathways of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal formation. Direct cocrystallization of TDZ with GA monohydrate was found to proceed much faster than the reaction of TDZ and anhydrous GA in the presence of an acetonitrile/water mixture, which may indicate the presence of a transitional stage. According to dissolution studies, the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal was ca. 6.6 times more soluble than the parent 1,2,4-thiadiazole at pH 2.0 and 25.0 °C. The apparent two-step dehydration behavior of the [TDZ : GA : H2O] (1 : 1 : 1) cocrystal monohydrate was clarified by analyzing the intermolecular interactions of water molecules with the crystalline environment derived from solid state DFT calculations.

  5. Simple multipurpose apparatus for solubility measurement of solid solutes in liquids

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Christensen, Lars Porskjær

    2016-01-01

    students of chemical engineering program at University of Southern Denmark. The exercises included solubility measurement and cooling crystallization of salicylic acid from five different organic solvents and extraction of artemisinin from the leaves of the plant Artemisia annua by using different solvents...

  6. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  7. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  8. Biochemical Properties of Soluble and Bound Peroxidases from Artichoke Heads and Leaves

    Directory of Open Access Journals (Sweden)

    Angela Cardinali

    2009-01-01

    Full Text Available Soluble (SP, ionically bound (IBP and covalently bound (CBP peroxidases (POD from artichoke leaves and heads have been characterized for the main biochemical parameters. The three PODs, in both leaves and heads, showed the major apparent catalytic efficiency (vmax,app/Km,app towards ferulic acid, even though, in some cases, they showed higher affinity (Km,app for other substrates. In leaves, SP and IBP showed higher Km,app for ferulic and chlorogenic acids, and CBP for ferulic and caffeic acids. In heads, SP showed higher Km,app for chlorogenic acid, IBP for caffeic and ferulic acids, and CBP for ferulic acid. It was shown that pH optimum for PODs ranged between 5.0 and 6.0 in leaves. In heads, pH optimum for SP and IBP was 5.5, while CBP presented a very low activity in a wide pH range. All PODs showed high thermal stability but different ability to regenerate: the bound forms were more able to regenerate than the soluble one. The results obtained show that (i CBP from heads is able to work under very different cellular conditions, (ii all PODs, in both tissues, have a high apparent catalytic efficiency for ferulic acid, which could explain the effective involvement of POD in lignin biosynthesis, (iii in heads, high Km,app of SP for chlorogenic acid, particularly abundant in artichoke, could justify the possible involvement of PODs in browning mechanism, and (iv in heat-processed artichoke, the ability of PODs to regenerate could contribute to oxidation and loss of product quality.

  9. Using Aspen simulation package to determine solubility of mixed salts in TRU waste evaporator bottoms

    Energy Technology Data Exchange (ETDEWEB)

    Hatchell, J.L.

    1998-03-01

    Nitric acid from plutonium process waste is a candidate for waste minimization by recycling. Process simulation software packages, such as Aspen, are valuable tools to estimate how effective recovery processes can be, however, constants in equations of state for many ionic components are not in their data libraries. One option is to combine single salt solubility`s in the Aspen model for mixed salt system. Single salt solubilities were regressed in Aspen within 0.82 weight percent of literature values. These were combined into a single Aspen model and used in the mixed salt studies. A simulated nitric acid waste containing mixed aluminum, calcium, iron, magnesium and sodium nitrate was tested to determine points of solubility between 25 and 100 C. Only four of the modeled experimental conditions, at 50 C and 75 C, produced a saturated solution. While experimental results indicate that sodium nitrate is the first salt to crystallize out, the Aspen computer model shows that the most insoluble salt, magnesium nitrate, the first salt to crystallize. Possible double salt formation is actually taking place under experimental conditions, which is not captured by the Aspen model.

  10. Identification of the soluble HVP-associated antigen of the lymphoblastoid cell line established from lymphomatous baboon (Papio hamadryas).

    Science.gov (United States)

    Voevodin, A F; Lapin, B A; Agrba, V Z; Timanovskaya, V V

    1978-01-01

    A new technique (indirect double immunodiffusion) for detection of EBV-associated soluble antigen and corresponding antibodies has been developed. This technique includes three steps: 1) simple double immunodiffusion with extracts of Raji cells (or other EBV-genome positive cells) and human sera containing antibodies against EBV-associated soluble antigen; 2) extensive washing and treatment with anti-human globulin; 3) extensive washing and treatment with tannic acid. Using this test it was shown that the soluble antigen indistinguishable from EBV-associated soluble antigen was present in KMPG-1 cells producing HVP.

  11. Solubility of DCH18C6 and n-octanol in nitric acid system

    International Nuclear Information System (INIS)

    He Qiange; Wang Jianchen; Chen Jing

    2011-01-01

    Equilibrium solubility of DCH18C6 and n-octanol in aqueous solution were determined by GC. And effects of temperature, concentration of Sr 2+ or HNO 3 were studied. The results indicate that solubility of DCH18C6 is substantial and make the crown ether continually drain from organic phase which could be 3% at most. As diluent, n-octanol could dissolve in water with certain quantity. So n-octanol, and then kerosene should be used to extract DCH18C6 and n-octanol from aqueous phase. Or toluene is taken to recover DCH18C6 and n-octanol at the same time. Above extractants could recover more than 99% of solute from aqueous solution in the volume ratio 1:1. (author)

  12. Role of dust alkalinity in acid mobilization of iron

    Directory of Open Access Journals (Sweden)

    A. Ito

    2010-10-01

    Full Text Available Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III form to soluble forms (e.g., Fe(II, inorganic soluble species of Fe(III, and organic complexes of iron. On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkaline buffer ability of carbonate minerals (e.g., CaCO3 and MgCO3. Here we demonstrate the impact of dust alkalinity on the acid mobilization of iron in a three-dimensional aerosol chemistry transport model that includes a mineral dissolution scheme. In our model simulations, most of the alkaline dust minerals cannot be entirely consumed by inorganic acids during the transport across the North Pacific Ocean. As a result, the inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during the long-range transport to the North Pacific Ocean: only a small fraction of iron (<0.2% dissolves from hematite in the coarse-mode dust aerosols with 0.45% soluble iron initially. On the other hand, a significant fraction of iron (1–2% dissolves in the fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model quantitatively reproduces higher iron solubility in smaller particles as suggested by measurements over the Pacific Ocean. It implies that the buffering effect of alkaline content in dust aerosols might help to explain the inverse relationship between aerosol iron solubility and particle size. We also demonstrate that the iron solubility is sensitive to the chemical specification of iron-containing minerals in dust. Compared with the dust sources, soluble iron from combustion sources contributes to a relatively marginal effect for deposition of soluble iron over the North

  13. [Fat soluble constituents of the leaves of Vaccinium bracteatum Thunb].

    Science.gov (United States)

    Tu, P; Liu, J; Li, J

    1997-07-01

    Four compounds were isolated from the fat soluble fraction of the leaves of Vaccinium bracteatum and identified as friedelin (I), epifriedelinol (II), beta-sitosterol(III) and ursolic acid(IV) by IR, NMR and MS. Compound III and IV are isolated from the leaves of this plant for the first time.

  14. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    Science.gov (United States)

    Ying, Yibin; Liu, Yande; Tao, Yang

    2005-09-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r) 0.940 for the SSC and a moderate r of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples.

  15. Nondestructive quantification of the soluble-solids content and the available acidity of apples by Fourier-transform near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Ying Yibin; Liu Yande; Tao Yang

    2005-01-01

    This research evaluated the feasibility of using Fourier-transform near-infrared (FT-NIR) spectroscopy to quantify the soluble-solids content (SSC) and the available acidity (VA) in intact apples. Partial least-squares calibration models, obtained from several preprocessing techniques (smoothing, derivative, etc.) in several wave-number ranges were compared. The best models were obtained with the high coefficient determination (r 2 ) 0.940 for the SSC and a moderate r 2 of 0.801 for the VA, root-mean-square errors of prediction of 0.272% and 0.053%, and root-mean-square errors of calibration of 0.261% and 0.046%, respectively. The results indicate that the FT-NIR spectroscopy yields good predictions of the SSC and also showed the feasibility of using it to predict the VA of apples

  16. Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation.

    Science.gov (United States)

    de Oliveira, Kleber T; de Assis, Francisco F; Ribeiro, Anderson O; Neri, Claudio R; Fernandes, Adjaci U; Baptista, Mauricio S; Lopes, Norberto P; Serra, Osvaldo A; Iamamoto, Yassuko

    2009-10-16

    Syntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).

  17. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  18. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  19. Solubility Temperature Dependence Predicted from 2D Structure

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2015-12-01

    Full Text Available The objective of the study was to find a computational procedure to normalize solubility data determined at various temperatures (e.g., 10 – 50 oC to values at a “reference” temperature (e.g., 25 °C. A simple procedure was devised to predict enthalpies of solution, ΔHsol, from which the temperature dependence of intrinsic (uncharged form solubility, log S0, could be calculated. As dependent variables, values of ΔHsol at 25 °C were subjected to multiple linear regression (MLR analysis, using melting points (mp and Abraham solvation descriptors. Also, the enthalpy data were subjected to random forest regression (RFR and recursive partition tree (RPT analyses. A total of 626 molecules were examined, drawing on 2040 published solubility values measured at various temperatures, along with 77 direct calori    metric measurements. The three different prediction methods (RFR, RPT, MLR all indicated that the estimated standard deviations in the enthalpy data are 11-15 kJ mol-1, which is concordant with the 10 kJ mol-1 propagation error estimated from solubility measurements (assuming 0.05 log S errors, and consistent with the 7 kJ mol-1 average reproducibility in enthalpy values from interlaboratory replicates. According to the MLR model, higher values of mp, H‑bond acidity, polarizability/dipolarity, and dispersion forces relate to more positive (endothermic enthalpy values. However, molecules that are large and have high H-bond basicity are likely to possess negative (exothermic enthalpies of solution. With log S0 values normalized to 25 oC, it was shown that the interlaboratory average standard deviations in solubility measurement are reduced to 0.06 ‑ 0.17 log unit, with higher errors for the least-soluble druglike molecules. Such improvements in data mining are expected to contribute to more reliable in silico prediction models of solubility for use in drug discovery.

  20. Solubility of Ferulic Acid in Supercritical Carbon Dioxide with Ethanol as Cosolvent

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2001-01-01

    Roč. 46, č. 5 (2001), s. 1255-1257 ISSN 0021-9568 R&D Projects: GA ČR GA203/98/1445 Institutional research plan: CEZ:AV0Z4072921 Keywords : solubility * supercritical carbon * ethanol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.960, year: 2001

  1. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate

    International Nuclear Information System (INIS)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-01-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs

  2. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William

    1980-01-01

    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  3. Measurement of Soluble Biomarkers by Flow Cytometry

    OpenAIRE

    Antal-Szalm?s, P?ter; Nagy, B?la; Debreceni, Ildik? Beke; Kappelmayer, J?nos

    2013-01-01

    Microparticle based flow cytometric assays for determination of the level of soluble biomarkers are widely used in several research applications and in some diagnostic setups. The major advantages of these multiplex systems are that they can measure a large number of analytes (up to 500) at the same time reducing assay time, costs and sample volume. Most of these assays are based on antigen-antibody interactions and work as traditional immunoassays, but nucleic acid alterations ? by using spe...

  4. pH-dependent solubility of indomethacin-saccharin and carbamazepine-saccharin cocrystals in aqueous media.

    Science.gov (United States)

    Alhalaweh, Amjad; Roy, Lilly; Rodríguez-Hornedo, Naír; Velaga, Sitaram P

    2012-09-04

    Cocrystals constitute an important class of pharmaceutical solids for their remarkable ability to modulate solubility and pH dependence of water insoluble drugs. Here we show how cocrystals of indomethacin-saccharin (IND-SAC) and carbamazepine-saccharin (CBZ-SAC) enhance solubility and impart a pH-sensitivity different from that of the drugs. IND-SAC exhibited solubilities 13 to 65 times higher than IND at pH values of 1 to 3, whereas CBZ-SAC exhibited a 2 to 10 times higher solubility than CBZ dihydrate. Cocrystal solubility dependence on pH predicted from mathematical models using cocrystal K(sp), and cocrystal component K(a) values, was in excellent agreement with experimental measurements. The cocrystal solubility increase relative to drug was predicted to reach a limiting value for a cocrystal with two acidic components. This limiting value is determined by the ionization constants of cocrystal components. Eutectic constants are shown to be meaningful indicators of cocrystal solubility and its pH dependence. The two contributions to solubility, cocrystal lattice and solvation, were evaluated by thermal and solubility determinations. The results show that solvation is the main barrier for the aqueous solubility of these drugs and their cocrystals, which are orders of magnitude higher than their lattice barriers. Cocrystal increase in solubility is thus a result of decreasing the solvation barrier compared to that of the drug. This work demonstrates the favorable properties of cocrystals and strategies that facilitate their meaningful characterization.

  5. Synthesis of freestanding water-soluble indium oxide nanocrystals capped by alanine nitric acid via ligand exchange for thin film transistors and effects of ligands on the electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Koh, Ye-Seul; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2015-07-15

    We demonstrate synthesis of freestanding water-soluble indium oxide nanocrystals (In{sub 2}O{sub 3} NCs) by ligand exchange to β-alanine nitric acid (Ala·HNO{sub 3}) and its application for active channel layer in thin film transistors (TFTs), with investigation of the effect of curing temperatures on the TFT properties in terms of thermal behaviour of the ligand molecules at 150, 300, and 350 °C. After ligand exchange from long alkyl ligand (myristic acid, MA) to short Ala·HNO{sub 3}, the mobility of NC TFTs cured at 150 °C increased by over 1 order of magnitude, from 1.3 × 10{sup −4} cm{sup 2}V{sup -1}s{sup −1} to 4.5 × 10{sup −3} cm{sup 2}V{sup -1}s{sup −1}, due to enhanced tunnelling rate (Γ) between adjective NCs. Higher curing temperatures such as 300 and 350 °C, inducing thermal decomposition of the organic ligands, led to further enhancement of the mobility, particularly up to 2.2 cm{sup 2}V{sup -1}s{sup −1} for the In{sub 2}O{sub 3} NC-Ala·HNO{sub 3} TFT cured at 350 °C. It is also found that the ligand exchange of In{sub 2}O{sub 3} NC in acidic condition (e.g. HNO{sub 3}) would be simple and effective to reduce the surface defects by surface etching, which may lead to better device performances. - Graphical abstract: Display Omitted - Highlights: • Freestanding water-soluble In{sub 2}O{sub 3} nanocrystals (NCs) were synthesized by ligand exchange. • Thin film transistors (TFTs) of colloidal NCs were fabricated by spin-coating method. • Water-soluble In{sub 2}O{sub 3} NC TFTs showed higher mobilities due to shorter ligand length. • Surface defects of NCs were notably reduced by surface etching during ligand exchange.

  6. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Qin, Lei; Liu, Li; Li, Wen-Chao; Zhu, Jia-Qing; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-06-01

    This study is aimed to examine the inhibition of soluble fraction (SF) and enzymatic residual fraction (ERF) in dry dilute acid (DDA), ethylenediamine (EDA) and steam explosion (SE) pretreated corn stover (CS) on the enzymatic digestibility of cellulose. SF of DDA, EDA and SE pretreated CS has high xylose, soluble lignin and xylo-oligomer content, respectively. SF of EDA pretreated CS leads to the highest inhibition, followed by SE and DDA pretreated CS. Inhibition of ERF of DDA and SE pretreated CS is higher than that of EDA pretreated CS. The inhibition degree (A0/A) of SF is 1.76 and 1.21 times to that of ERF for EDA and SE pretreated CS, respectively. The inhibition degree of ERF is 1.05 times to that of SF in DDA pretreated CS. The quantitative analysis shows that SF of EDA pretreated CS, SF and ERF of SE pretreated CS cause significant inhibition during enzymatic hydrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  8. Sorption of Tannin and Related Phenolic Compounds and Effects on Extraction of Soluble-N in Soil Amended with Several Carbon Sources

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2012-02-01

    Full Text Available Some tannins sorb to soil and reduce soluble-N. However, we know little about how they interact with organic amendments in soil. Soil (0–5 cm from plots, which were amended annually with various carbon substances, was treated with water (control or solutions containing tannins or related phenolic subunits. Treatments included a proanthocyanidin, catechin, tannic acid, β-1,2,3,4,6-penta-O-galloyl-D-glucose (PGG, gallic acid, and methyl gallate. We applied solutions of each of these materials to soil and measured soluble-C and -N in supernatants after application and following extraction with hot water (16 h, 80 °C. Sorption was low for non-tannin phenolics, methyl gallate, gallic acid, and catechin, and unaffected by amendment. Sorption of tannins, proanthocyanidin, tannic acid, and PGG, was higher and greater in plots amended with biosolids or manure. Extraction of soluble-N was not affected by amendment or by catechin, proanthocyanidin, or methyl gallate, but was reduced with PGG, tannic acid and gallic acid. Soil cation exchange capacity increased following treatment with PGG but decreased with gallic acid, irrespective of amendment. Tannins entering soil may thus influence soil organic matter dynamics and nutrient cycling but their impact may be influenced by the composition of soil organic matter.

  9. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication

    Directory of Open Access Journals (Sweden)

    Ge Song

    2010-04-01

    Full Text Available Abstract Background Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experienced sub

  10. Thermodynamics of cosolvent action: phenacetin, salicylic acid and probenecid.

    Science.gov (United States)

    Peña, M A; Escalera, B; Reíllo, A; Sánchez, A B; Bustamante, P

    2009-03-01

    The solubility of phenacetin, salicylic acid, and probenecid in ethanol-water and ethanol-ethyl acetate mixtures at several temperatures (15-40 degrees C) was measured. The solubility profiles are related to medium polarity changes. The apparent thermodynamic magnitudes and enthalpy-entropy relationships are related to the cosolvent action. Salicylic acid and probenecid show a single peak against the solubility parameter delta(1) of both solvent mixtures, at 40% (delta(1) = 21.70 MPa(1/2)) and 30% (delta(1) = 20.91 MPa(1/2)) ethanol in ethyl acetate, respectively. Phenacetin displays two peaks at 60% ethanol in ethyl acetate (23.30 MPa(1/2)) and 90% ethanol in water (delta(1) = 28.64 MPa(1/2)). The apparent enthalpies of solution display a maximum at 30% (phenacetin and salicylic acid) and 40% (probenecid) ethanol in water, respectively. Two different mechanisms, entropy at low ethanol ratios, and enthalpy at high ethanol ratios control the solubility enhancement in the aqueous mixture. In the nonaqueous mixture (ethanol-ethyl acetate) enthalpy is the driving force throughout the whole solvent composition for salicylic acid and phenacetin. For probenecid, the dominant mechanism shifts from entropy to enthalpy as the ethanol in ethyl acetate concentration increases. The enthalpy-entropy compensation plots corroborate the different mechanisms involved in the solubility enhancement by cosolvents. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  11. The Solubility of metal oxides in molten carbonates - why the acid-basic chemistry fails?

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Qingfeng, Li; Borup, Flemming

    1999-01-01

    Solubilities of various metal oxides in molten Li/K carbonates have been measured at 650°C under carbon dioxide atmosphere. It is found that the solubility of NiO and PbO decreases with increasing lithium mole fraction and decreasing CO2 partial pressure. On the other hand, the emf measurement...... shows opposite effects, i.e., decreasing CO2 pressure leads to more negative emf values but increasing lithium content gives more positive emf values. This contradiction is explained by means of a complex formation model. The possible species for lead are proposed to be [Pb(CO3)2]-2 and/or [Pb(CO3) 3...

  12. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.

    Science.gov (United States)

    Jantke, Dominik; Pardatscher, Lorenz; Drees, Markus; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E

    2016-10-06

    The synthesis and characterization of two water-soluble bis-N-heterocyclic carbene (NHC) complexes of rhodium and iridium is presented. Both compounds are active in H 2 generation from formic acid and in hydrogenation of bicarbonate to formate. The rhodium derivative is most active in both reactions, reaching a TOF of 39 000 h -1 and a TON of 449 000 for H 2 production. The catalytic hydrogenation reactions were carried out in an autoclave system and analyzed using the integrated peak areas in the 1 H NMR spectra. Decomposition of formic acid was investigated using a Fisher-Porter bottle equipped with a pressure transducer. Long-term stability for hydrogen evolution was tested by surveillance of the gas flow rate. The procedure does not require any additives like amines or inert gas conditions. Density functional theory calculations in agreement with experimental results suggest a bicarbonate reduction mechanism involving a second catalyst molecule, which provides an external hydride acting as reducing agent. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Phase transitions, solubility, and crystallization kinetics of phytosterols and phytosterol-oil blends.

    Science.gov (United States)

    Vaikousi, Hariklia; Lazaridou, Athina; Biliaderis, Costas G; Zawistowski, Jerzy

    2007-03-07

    The thermal properties, solubility characteristics, and crystallization kinetics of four commercial phytosterol preparations (soy and wood sterols and stanols) and their blends with corn oil were examined. Differential scanning calorimetry (DSC) revealed narrow melting peaks between 138 and 145 degrees C for all phytosterol samples, reversible on rescan. Broader and less symmetrical melting transitions at lower temperatures with increasing oil content were observed for two samples of phytosterol-oil admixtures. The estimated, from the solubility law, deltaH values (34.7 and 70.7 mJ/mg for wood sterols and stanols, respectively), were similar to the DSC experimental data. Fatty acid esters of soy stanols differing in the chain length of the acyl groups (C2-C12) exhibited suppression of the melting point and increase of the fusion enthalpy with increasing chain length of the acyl group; the propionate ester exhibited the highest melting point (Tm: 151 degrees C) among all stanol-fatty acid esters. Solubility of phytosterols in corn oil was low (2-3% w/w at 25 degrees C) and increased slightly with a temperature rise. Plant sterols appeared more soluble than stanols with higher critical concentrations at saturation. The induction time for recrystallization of sterol-oil liquid blends, as determined by spectrophotometry, depended on the supersaturation ratio. The calculated interfacial free energies between crystalline sediments and oil were smaller for sterol samples (3.80 and 3.85 mJ/m2) than stanol mixtures (5.95 and 6.07 mJ/m2), in accord with the higher solubility of the sterol crystals in corn oil. The XRD patterns and light microscopy revealed some differences in the characteristics among the native and recrystallized in oil phytosterol preparations.

  14. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  15. Synthesis of LiBOB Fine Powder to Increase Solubility

    Directory of Open Access Journals (Sweden)

    Etty Marti Wigayati

    2017-04-01

    Full Text Available Lithium bis (oxalate borate or LiBOB compound has captured interest of researchers, because it is potentially viable to be used as electrolyte salt in lithium-ion battery system. This compound is easy to synthesize and considered to be more environmentally friendly compared to conventional electrolyte salt because LiBOB does not contain halogen element. This research focused on the synthesis of LiBOB fine powder, which main purpose is improving LiBOB salt solubility in liquid electrolyte solution. This will aid the ion transfer between electrodes which in turn will increase the electrolyte performance. Solid state reaction was employed in this experiment. Synthesis of LiBOB compound was performed by reacting oxalic acid dihydrate, lithium hydroxide monohydrate, and boric acid. The resulting powder was then processed into fine powder using ball milling technique with varying milling time (0, 6, 10, and 13 hour. Microstructure of the sample was then analyzed to obtain information regarding phase formation, functional groups, grain surface morphology, surface area, pore volume, solubility, and ionic conductivity. The analysis shown that LiBOB and LiBOB hydrate phase was formed during the reaction, there was no changed in existing phase during milling process, crystallinity index was shifted to lower value but there was no difference in functional groups. Highest value in surface area was found to be 83.11 m2/g, with pore volume of 1.21311e+02 A at 10 hours milling. Smaller powder size resulted in higher solubility, unfortunately the ionic conductivity was found to be decreased.

  16. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  17. Thermodynamic Modeling of Several Aqueous Alkanol Solutions Containing Amino Acids with the Perturbed-Chain Statistical Associated Fluid Theory Equation of State

    DEFF Research Database (Denmark)

    Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.

    2009-01-01

    parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...... and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino acids...... in water, but the correlation for the solubility in pure alcohols was not so satisfactory. The solubility in mixed solvents (ternary systems) was predicted on the basis of the modeling of the solubility in pure solvents, without any additional fitting of the parameters, and the results achieved were...

  18. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Folic Acid.

    Science.gov (United States)

    Hofsäss, Martin A; Souza, Jacqueline de; Silva-Barcellos, Neila M; Bellavinha, Karime R; Abrahamsson, Bertil; Cristofoletti, Rodrigo; Groot, D W; Parr, Alan; Langguth, Peter; Polli, James E; Shah, Vinod P; Tajiri, Tomokazu; Mehta, Mehul U; Dressman, Jennifer B

    2017-12-01

    This work presents a review of literature and experimental data relevant to the possibility of waiving pharmacokinetic bioequivalence studies in human volunteers for approval of immediate-release solid oral pharmaceutical forms containing folic acid as the single active pharmaceutical ingredient. For dosage forms containing 5 mg folic acid, the highest dose strength on the World Health Organization Essential Medicines List, the dose/solubility ratio calculated from solubility studies was higher than 250 mL, corresponding to a classification as "not highly soluble." Small, physiological doses of folic acid (≤320 μg) seem to be absorbed completely via active transport, but permeability data for higher doses of 1-5 mg are inconclusive. Following a conservative approach, folic acid is classified as a Biopharmaceutics Classification System class IV compound until more reliable data become available. Commensurate with its solubility characteristics, the results of dissolution studies indicated that none of the folic acid products evaluated showed rapid dissolution in media at pH 1.2 or 4.5. Therefore, according to the current criteria of the Biopharmaceutics Classification System, the biowaiver approval procedure cannot be recommended for immediate-release solid oral dosage forms containing folic acid. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  19. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    Science.gov (United States)

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  20. Study to evaluate the impact of heat treatment on water soluble vitamins in milk

    International Nuclear Information System (INIS)

    Khair-un-Nisa, A.; Tarar, O.M.; Ali, S.A.; Jamil, K.; Begum, A.

    2010-01-01

    Objectives: To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Methods: Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Results: Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin B1 content in fresh milk decreased from 0.037 mg/100g to 0.027 mg/100g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100g, vitamin B3 0.062 to 0.044 mg/100g, vitamin B6 0.025 to 0.019 mg/100g and folic acid 3.38 to 2.40 < g/100g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conclusion: Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk. (author)

  1. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles

    Science.gov (United States)

    Olson, Lauren; Harder, Adam; Isbell, Marilyn; Imig, John D.; Gutterman, David D.; Falck, J. R.; Campbell, William B.

    2011-01-01

    Cytochrome P-450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2), are important signaling molecules in the kidney. In renal arteries, EETs cause vasodilation whereas H2O2 causes vasoconstriction. To determine the physiological contribution of H2O2, catalase is used to inactivate H2O2. However, the consequence of catalase action on EET vascular activity has not been determined. In rat renal afferent arterioles, 14,15-EET caused concentration-related dilations that were inhibited by Sigma bovine liver (SBL) catalase (1,000 U/ml) but not Calbiochem bovine liver (CBL) catalase (1,000 U/ml). SBL catalase inhibition was reversed by the soluble epoxide hydrolase (sEH) inhibitor tAUCB (1 μM). In 14,15-EET incubations, SBL catalase caused a concentration-related increase in a polar metabolite. Using mass spectrometry, the metabolite was identified as 14,15-dihydroxyeicosatrienoic acid (14,15-DHET), the inactive sEH metabolite. 14,15-EET hydrolysis was not altered by the catalase inhibitor 3-amino-1,2,4-triazole (3-ATZ; 10–50 mM), but was abolished by the sEH inhibitor BIRD-0826 (1–10 μM). SBL catalase EET hydrolysis showed a regioisomer preference with greatest hydrolysis of 14,15-EET followed by 11,12-, 8,9- and 5,6-EET (Vmax = 0.54 ± 0.07, 0.23 ± 0.06, 0.18 ± 0.01 and 0.08 ± 0.02 ng DHET·U catalase−1·min−1, respectively). Of five different catalase preparations assayed, EET hydrolysis was observed with two Sigma liver catalases. These preparations had low specific catalase activity and positive sEH expression. Mass spectrometric analysis of the SBL catalase identified peptide fragments matching bovine sEH. Collectively, these data indicate that catalase does not affect EET-mediated dilation of renal arterioles. However, some commercial catalase preparations are contaminated with sEH, and these contaminated preparations diminish the biological activity of H2O2 and EETs. PMID:21753077

  2. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    International Nuclear Information System (INIS)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-01-01

    Graphical abstract: Homogenous and dense spreading of TiO 2 on surface modified CNTs and improved photocatalytic performance of TiO 2 was achieved by coupling TiO 2 with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO 2 coated on modified CNTs was obtained. ► Improved activity of TiO 2 is attributed to the intimate contact between TiO 2 and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO 2 nanocomposites were prepared by coupling of TiO 2 with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO 2 composites was obtained, which is mainly attributed to the high dispersion of TiO 2 on ethanol-soluble CNTs and the intimate contact between TiO 2 and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO 2 and CNTs.

  3. N-3 Polyunsaturated Fatty Acids Decrease the Protein Expression of Soluble Epoxide Hydrolase via Oxidative Stress-Induced P38 Kinase in Rat Endothelial Cells.

    Science.gov (United States)

    Okada, Takashi; Morino, Katsutaro; Nakagawa, Fumiyuki; Tawa, Masashi; Kondo, Keiko; Sekine, Osamu; Imamura, Takeshi; Okamura, Tomio; Ugi, Satoshi; Maegawa, Hiroshi

    2017-06-24

    N -3 polyunsaturated fatty acids (PUFAs) improve endothelial function. The arachidonic acid-derived metabolites (epoxyeicosatrienoic acids (EETs)) are part of the endothelial hyperpolarization factor and are vasodilators independent of nitric oxide. However, little is known regarding the regulation of EET concentration by docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in blood vessels. Sprague-Dawley rats were fed either a control or fish oil diet for 3 weeks. Compared with the control, the fish oil diet improved acetylcholine-induced vasodilation and reduced the protein expression of soluble epoxide hydrolase (sEH), a key EET metabolic enzyme, in aortic strips. Both DHA and EPA suppressed sEH protein expression in rat aorta endothelial cells (RAECs). Furthermore, the concentration of 4-hydroxy hexenal (4-HHE), a lipid peroxidation product of n -3 PUFAs, increased in n -3 PUFA-treated RAECs. In addition, 4-HHE treatment suppressed sEH expression in RAECs, suggesting that 4-HHE (derived from n -3 PUFAs) is involved in this phenomenon. The suppression of sEH was attenuated by the p38 kinase inhibitor (SB203580) and by treatment with the antioxidant N-acetyl-L-cysteine. In conclusion, sEH expression decreased after n -3 PUFAs treatment, potentially through oxidative stress and p38 kinase. Mild oxidative stress induced by n -3 PUFAs may contribute to their cardio-protective effect.

  4. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    Science.gov (United States)

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  5. 21 CFR 186.1093 - Sulfamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sulfamic acid. 186.1093 Section 186.1093 Food and... Substances Affirmed as GRAS § 186.1093 Sulfamic acid. (a) Sulfamic acid (H3NO3S, CAS Reg. No. 5329-14-6) is a white crystalline solid manufactured from urea, sulfur trioxide, and sulfuric acid. It is soluble and...

  6. Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria.

    Science.gov (United States)

    Kocal, Nurcan; Sonnewald, Uwe; Sonnewald, Sophia

    2008-11-01

    Cell wall-bound invertase (cw-Inv) plays an important role in carbohydrate partitioning and regulation of sink-source interaction. There is increasing evidence that pathogens interfere with sink-source interaction, and induction of cw-Inv activity has frequently been shown in response to pathogen infection. To investigate the role of cw-Inv, transgenic tomato (Solanum lycopersicum) plants silenced for the major leaf cw-Inv isoforms were generated and analyzed during normal growth and during the compatible interaction with Xanthomonas campestris pv vesicatoria. Under normal growth conditions, activities of sucrolytic enzymes as well as photosynthesis and respiration were unaltered in the transgenic plants compared with wild-type plants. However, starch levels of source leaves were strongly reduced, which was most likely caused by an enhanced sucrose exudation rate. Following X. campestris pv vesicatoria infection, cw-Inv-silenced plants showed an increased sucrose to hexose ratio in the apoplast of leaves. Symptom development, inhibition of photosynthesis, and expression of photosynthetic genes were clearly delayed in transgenic plants compared with wild-type plants. In addition, induction of senescence-associated and pathogenesis-related genes observed in infected wild-type plants was abolished in cw-Inv-silenced tomato lines. These changes were not associated with decreased bacterial growth. In conclusion, cw-Inv restricts carbon export from source leaves and regulates the sucrose to hexose ratio in the apoplast. Furthermore, an increased apoplastic hexose to sucrose ratio can be linked to inhibition of photosynthesis and induction of pathogenesis-related gene expression but does not significantly influence bacterial growth. Indirectly, bacteria may benefit from low invertase activity, since the longevity of host cells is raised and basal defense might be dampened.

  7. Amino acid digestibility of corn distillers dried grains with solubles, liquid condensed solubles, pulse dried thin stillage, and syrup balls fed to growing pigs.

    Science.gov (United States)

    Soares, J A; Stein, H H; Singh, V; Shurson, G S; Pettigrew, J E

    2012-04-01

    Distillers dried grains with solubles (DDGS) has low and variable AA digestibility. The variability is often attributed to damage during the heating process, and it has been suggested that the damage happens to the soluble components of DDGS such as reducing sugars. Combining solubles and grains sometimes produces syrup balls (SB); their digestibility is unknown. The objective of this experiment was to identify potential sources of poor and variable AA digestibility in DDGS. Specifically, our objective was to determine whether the problems are associated with the solubles component or with SB. The ingredients evaluated were DDGS, intact SB, ground SB, liquid condensed solubles (LCS), and pulse dried thin stillage (PDTS) obtained from the same ethanol plant. The LCS is produced by evaporation of thin stillage. Each ingredient was used as the only source of AA in an experimental diet. In a duplicate 6 × 6 Latin square design with 7-d adaptation and collection periods, the 6 treatments consisted of an N-free diet and the 5 test ingredients. Pigs had 5 d of adaptation to each diet, and on d 6 and 7 ileal digesta were collected from an ileal cannula for 8 h each day. Both SB treatments had apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of AA that were similar or greater (P < 0.05) than those of DDGS. The AID and SID values of Lys and a few other AA were similar in LCS (SID Lys: 63.1%) and DDGS (SID Lys: 61.5%), but the digestibility values of most AA in LCS were less than in DDGS (P < 0.05). The low digestibility of AA in LCS was most pronounced for Met (SID: LCS, 41.9% vs. DDGS, 82.8%). The LCS had less (P < 0.05) AID and SID of CP (SID: 67.8%) than intact SB (SID: 85.2%) and ground SB (SID: 85.9%) as well as all AA. The PDTS generally had the least AID and SID and had less (P < 0.05) CP (SID: 55.3%) and several AA, including Lys, compared with LCS. In conclusion, the presence of SB does not decrease AA digestibility of DDGS, and the LCS

  8. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  9. Novel furosemide cocrystals and selection of high solubility drug forms.

    Science.gov (United States)

    Goud, N Rajesh; Gangavaram, Swarupa; Suresh, Kuthuru; Pal, Sharmistha; Manjunatha, Sulur G; Nambiar, Sudhir; Nangia, Ashwini

    2012-02-01

    Furosemide was screened in cocrystallization experiments with pharmaceutically acceptable coformer molecules to discover cocrystals of improved physicochemical properties, that is high solubility and good stability. Eight novel equimolar cocrystals of furosemide were obtained by liquid-assisted grinding with (i) caffeine, (ii) urea, (iii) p-aminobenzoic acid, (iv) acetamide, (v) nicotinamide, (vi) isonicotinamide, (vii) adenine, and (viii) cytosine. The product crystalline phases were characterized by powder x-ray diffraction, differential scanning calorimetry, infrared, Raman, near IR, and (13) C solid-state NMR spectroscopy. Furosemide-caffeine was characterized as a neutral cocrystal and furosemide-cytosine an ionic salt by single crystal x-ray diffraction. The stability of furosemide-caffeine, furosemide-adenine, and furosemide-cytosine was comparable to the reference drug in 10% ethanol-water slurry; there was no evidence of dissociation of the cocrystal to furosemide for up to 48 h. The other five cocrystals transformed to furosemide within 24 h. The solubility order for the stable forms is furosemide-cytosine > furosemide-adenine > furosemide-caffeine, and their solubilities are approximately 11-, 7-, and 6-fold higher than furosemide. The dissolution rates of furosemide cocrystals were about two times faster than the pure drug. Three novel furosemide compounds of higher solubility and good phase stability were identified in a solid form screen. Copyright © 2011 Wiley Periodicals, Inc.

  10. Cloning and expression of pineapple sucrose- phosphate synthase ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... phosphate; EDTA, ethylene diamine tetraacetic acid; Ivr, invertase; SS .... phenolics, tannins and artifacts due to differences of tissue composition ..... Banana sucrose-phosphate synthase gene expression during fruit ripening.

  11. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.

    Science.gov (United States)

    Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F

    2014-01-01

    The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.

  13. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  14. Effect of Different Inclusion Level of Condensed Distillers Solubles Ratios and Oil Content on Amino Acid Digestibility of Corn Distillers Dried Grains with Solubles in Growing Pigs

    Directory of Open Access Journals (Sweden)

    P. Li

    2015-01-01

    Full Text Available The purpose of this experiment was to determine and compare the digestibility of crude protein (CP and amino acids (AA in full-oil (no oil extracted and de-oiled (oil extracted corn distillers dried grains with solubles (DDGS with different condensed distillers solubles (CDS ratios. Six barrows (29.6±2.3 kg fitted with ileal T-cannula were allotted into a 6×6 Latin square design. Each period was comprised of a 5-d adaption period followed by a 2-d collection of ileal digesta. The five test diets contained 62% DDGS as the sole source of AA. A nitrogen-free diet was used to measure the basal endogenous losses of CP and AA. Chromic oxide (0.3% was used as an index in each diet. The results showed that CP and AA were very similar in 5 DDGS, but the standardized ileal digestibility (SID of lysine (from 56.16% to 71.15% and tryptophan (from 54.90% to 68.38% had the lowest values and largest variation within the essential AA, which suggests reduced availability of AA and different levels of Maillard reactions in the five DDGS. The apparent ileal digestibility and SID of CP and most of AA in full-oil DDGS (sources 1 and 2 were greater (p0.05 than full-oil with high CDS ratio DDGS (source 2; however, the SID of most AA of de-oiled with low CDS ratios DDGS (source 3 were non-significantly lower (p>0.05 than de-oiled with high CDS ratio DDGS (source 4; and the de-oiled DDGS with middle CDS ratio (source 5 but with different drying processing had the lowest SID AA values. In conclusion, de-oiled DDGS had lower SID of CP and AA than full-oil DDGS; a higher CDS ratio tended to decrease the SID of AA in full-oil DDGS but not in de-oiled DDGS; and compared with CDS ratio, processing, especially drying, may have more of an effect on AA digestibility of DDGS.

  15. Effect of fluoride pretreatment on the solubility of synthetic carbonated apatite.

    Science.gov (United States)

    Barry, A B; Zhuang, H; Baig, A A; Higuchi, W I

    2003-03-01

    The purpose of this research was to address the following question: How is the solubility of fluoride-pretreated carbonated apatite (CAP) in aqueous acidic media related to the equilibrium solution fluoride and/or the CAP adsorbed fluoride levels? A CAP sample prepared by a precipitation method at 70 degrees C containing approximately 6% carbonate was fluoride-treated (F adsorption from neutral aqueous solutions) to yield a approximately 1000 ppm F CAP and a approximately 3300 ppm F CAP. Metastable equilibrium solubility distributions were determined in acetate buffers at pH 5.0. Solution fluoride, calcium, phosphate, and pH were determined from the equilibrated solutions. The equilibrium solution fluoride levels were extremely low, e.g., as low as approximately 0.10 ppb to approximately 0.30 ppb at 50% dissolved for the two CAP preparations. The approximately 3300 ppm F CAP yielded a lower solubility than the approximately 1000 ppm F CAP (shift in the mean pKHAP value of 1.5-2 units). This can be attributed to the lower solution F(-) for the sample containing approximately 1000 ppm fluoride compared with the approximately 3300 ppm fluoride-containing CAP. These important findings suggest that a fluoride treatment simply may provide an adsorption fluoride depot for subsequent release, providing a solution fluoride effect upon the CAP solubility and not necessarily any intrinsic alteration of the mineral solubility.

  16. Solubility of jarosite solid solutions precipitated from acid mine waters, Iron Mountain, California

    Science.gov (United States)

    Alpers, Charles N.; Nordstrom, D. Kirk; Ball, J.W.

    1989-01-01

    Because of the common occurrence of 15 to 25 mole percent hydronium substitution on the alkali site in jarosites, it is necessary to consider the hydronium content of jarosites in any attempt at rigorous evaluation of jarosite solubility or of the saturation state of natural waters with respect to jarosite. A Gibbs free energy of 3293.5±2.1 kJ mol-1 is recommended for a jarosite solid solution of composition K.77Na.03(H3O).20Fe3(SO4)2(OH)6. Solubility determinations for a wider range of natural and synthetic jarosite solid solutions will be necessary to quantify the binary and ternary mixing parameters in the (K-Na-H3O) system. In the absence of such studies, molar volume data for endmember minerals indicate that the K-H3O substitution in jarosite is probably closer to ideal mixing than either the Na-K or Na-H3O substitution.

  17. Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Karousis, N.; Ali-Boucetta, H.; Kostarelos, K.; Tagmatarchis, N.

    2008-01-01

    The functionalization of very-thin multi-walled carbon nanotubes (VT-MWNTs) with an aniline derivative, via the protocol of in situ generated aryl diazonium salts results, upon acidic deprotection of the terminal BOC group, on the formation of the water-soluble positively charged ammonium functionalized VT-MWNTs-NH 3 + material. The new materials have been structurally and morphologically characterized by infra-red (ATR-IR) spectroscopy and transmission electron microscopy (TEM). The quantitative calculation of the grafted aryl units onto the skeleton of VT-MWNTs has been estimated by thermogravimetric analysis (TGA), while the quantitative Kaiser test showed the amine group loaded onto VT-MWNTs-NH 3 + material. The aqueous solubility of this material has allowed the performance of some initial toxicological in vitro investigations

  18. Protein Solubility as Quality Index for Processed Soybean

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Protein quality of soybean meal (SBM is linked to both the reduction of antinutritional factors (ANFs, and the optimization of protein digestibility. Both insufficient- and over-heating result in poor quality SBM. Inadequate heating fails to completely destroy the ANFs, which may have a detrimental impact on animal performance, while excessive heating reduces the availability of lysine via the Maillard reaction and possibly, to a lesser extent, of other amino acids. The objective of our study was to compare some biochemical laboratory procedures for assessing quality of SBM: urease index (UI, protein dispersibility index (PDI, KOH protein solubility (PS, and nitrogen solubility index (NSI. The experimental data reveal that UI is not useful to determine excessive heat treatment since additional heating has no effect on the urease index. KOH protein solubility remains high, during initial heat treatment. In marked contrast, the PDI and NSI decreased incrementally from 78% to 20% and from 97% to 60%, respectively, when heating 0 to 30 minutes. Combing the PDI test with the urease test could be useful to monitor soybean quality. SBM containing low UI (0.3 or below and high PDI (40 to 45% may indicate that the sample is definitely high quality because it has been adequately heat processed, but not overprocessed.

  19. Simultaneous and accurate determination of water- and fat-soluble vitamins in multivitamin tablets by using an RP-HPLC method

    Directory of Open Access Journals (Sweden)

    Semahat Kucukkolbasi

    2013-01-01

    Full Text Available In the present study, a reversed-phase high-performance liquid chromatographic (RP-HPLC procedure was developed and validated for the simultaneous determination of seven water-soluble vitamins (thiamine, riboflavin, niacin, cyanocobalamin, ascorbic acid, folic acid, and p-aminobenzoic acid and four fat-soluble vitamins (retinol acetate, cholecalciferol, α-tocopherol, and phytonadione in multivitamin tablets. The linearity of the method was excellent (R² > 0.999 over the concentration range of 10 - 500 ng mL-1. The statistical evaluation of the method was carried out by performing the intra- and inter-day precision. The accuracy of the method was tested by measuring the average recovery; values ranged between 87.4% and 98.5% and were acceptable quantitative results that corresponded with the label claims.

  20. High pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites

    International Nuclear Information System (INIS)

    Sabourin, P.J.; Bechtold, W.E.; Henderson, R.F.

    1988-01-01

    The glucuronide and sulfate conjugates of benzene metabolite as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl [ 14 C]glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount of metabolite present in urine following exposure to [ 3 H]benzene was determined using p-nitrophenyl [ 14 C]glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm [ 3 H]benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues

  1. Uranium solubility and solubility controls in selected Needle's Eye groundwaters

    International Nuclear Information System (INIS)

    Falck, W.E.; Hooker, P.J.

    1991-01-01

    The solubility control of uranium in selected groundwater samples from the cliff and sediments at the Needle's Eye natural analogue site is investigated using the speciation code PHREEQE and the CHEMVAL thermodynamic database (release 3). Alkali-earth bearing uranyl carbonate secondary minerals are likely to exert influence on the solubility . Other candidates are UO 2 and arsenates, depending on the prevailing redox conditions. In the absence of literature data, solubility products for important arsenates have been estimated from analogy with other arsenates and phosphates. Phosphates themselves are unlikely to exert control owing to their comparatively high solubilities. The influence of seawater flooding into the sediments is also discussed. The importance of uranyl arsenates in the retardation of uranium in shallow sediments has been demonstrated in theory, but there are some significant gaps in the thermodynamic databases used. (author)

  2. Produção de invertases termoestáveis por Aspergillus caespitosus em fermentação submersa e em estado sólido usando resíduos agroindustriais como fonte de carbono

    OpenAIRE

    Alegre, Ana Cláudia Paiva; Polizeli, Maria de Lourdes Teixeira de Moraes; Terenzi, Héctor Francisco; Jorge, João Atílio; Guimarães, Luis Henrique Souza

    2009-01-01

    The filamentous fungus Aspergillus caespitosus was a good producer of intracellular and extracellular invertases under submerged (SbmF) or solid-state fermentation (SSF), using agroindustrial residues, such as wheat bran, as carbon source. The production of extracellular enzyme under SSF at 30ºC, for 72h, was enhanced using SR salt solution (1:1, w/v) to humidify the substrate. The extracellular activity under SSF using wheat bran was around 5.5-fold higher than that obtained in SbmF (Khanna ...

  3. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    Science.gov (United States)

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-05-01

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Solubility and bioavailability of stabilized amorphous calcium carbonate.

    Science.gov (United States)

    Meiron, Oren E; Bar-David, Elad; Aflalo, Eliahu D; Shechter, Assaf; Stepensky, David; Berman, Amir; Sagi, Amir

    2011-02-01

    Since its role in the prevention of osteoporosis in humans was proven some 30 years ago, calcium bioavailability has been the subject of numerous scientific studies. Recent technology allowing the production of a stable amorphous calcium carbonate (ACC) now enables a bioavailability analysis of this unique form of calcium. This study thus compares the solubility and fractional absorption of ACC, ACC with chitosan (ACC-C), and crystalline calcium carbonate (CCC). Solubility was evaluated by dissolving these preparations in dilute phosphoric acid. The results demonstrated that both ACC and ACC-C are more soluble than CCC. Fractional absorption was evaluated by intrinsically labeling calcium carbonate preparations with (45)Ca, orally administrated to rats using gelatin capsules. Fractional absorption was determined by evaluating the percentage of the administrated radioactive dose per milliliter that was measured in the serum, calcium absorption in the femur, and whole-body retention over a 34-hour period. Calcium serum analysis revealed that calcium absorption from ACC and ACC-C preparations was up to 40% higher than from CCC, whereas retention of ACC and ACC-C was up to 26.5% higher than CCC. Absorbed calcium in the femurs of ACC-administrated rats was 30% higher than in CCC-treated animals, whereas 15% more calcium was absorbed following ACC-C treatment than following CCC treatment. This study demonstrates the enhanced solubility and bioavailability of ACC over CCC. The use of stable ACC as a highly bioavailable dietary source for calcium is proposed based on the findings of this study. Copyright © 2011 American Society for Bone and Mineral Research.

  5. Enzyme Enzyme activities in relation to sugar accumulation in tomato

    International Nuclear Information System (INIS)

    Alam, M.J.; Rahman, M.H.; Mamun, M.A.; Islam, K.

    2006-01-01

    Enzyme activities in tomato juice of five different varieties viz. Ratan, Marglove, BARI-1, BARI-5 and BARI-6, in relation to sugar accumulation were investigated at different maturity stages. The highest amount of invertase and beta-galactosidase was found in Marglove and the lowest in BARI- 6 at all maturity stages. Total soluble sugar and sucrose contents were highest in BARI-1 and lowest in BARI-6. The activity of amylase was maximum in Ratan and minimum in Marglove. Protease activity was highest in Ratan and lowest in BARI-6. BARI-1 contained the highest cellulase activity and the lowest in BARI-5. The amount of total soluble sugar and sucrose increased moderately from premature to ripe stage. The activities of amylase and cellulase increased up to the mature stage and then decreased drastically in the ripe stage. The activities of invertase and protease increased sharply from the premature to the ripe stage while the beta-galactosidase activity decreased remarkably. No detectable amount of reducing sugar was present in the premature stage in all cultivars of tomato but increased thereafter upto the ripe stage. The highest reducing sugar was present in BARI-5 in all of the maturity stages. (author)

  6. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    Science.gov (United States)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  7. Control of bovine hepatic fatty acid oxidation

    International Nuclear Information System (INIS)

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-01-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-[ 14 C]palmitate to 14 CO 2 and total [ 14 C]acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO 2 and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 μM). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 μM and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine

  8. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  9. Improved dissolution and absorption of ketoconazole in the presence of organic acids as pH-modifiers.

    Science.gov (United States)

    Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira

    2015-08-30

    Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Absence of transient elevated uv resistance during germination of Bacillus subtilis spores lacking small, acid-soluble spore proteins α and β

    International Nuclear Information System (INIS)

    Setlow, B.; Setlow, P.

    1988-01-01

    Dormant spores of various Bacillus species are much more resistant to UV irradiation than are the corresponding vegetative cells. This elevated spore UV resistance appears to have two causes. First, UV irradiation of spores does not produce the pyrimidine dimers formed in vegetative-cell DNA, but rather produces several other photoproducts, the most predominant of which is termed the spore photoproduct, a 5-thyminyl-5,6-dihydrothymine adduct (1, 10). Second, spores have at least two mechanisms which efficiently repair this spore photoproduct during spore germination, including one which monomerizes the adduct back to two thymines. This study shows that germinating spores of bacillus subtilis mutants which lack small, acid-soluble spore proteins α and β did not exhibit the transient elevated UV resistance seen during germination of wild-type spores

  11. Uranium recovery from wet-process phosphoric acid with octylphenyl acid phosphate. Progress report

    International Nuclear Information System (INIS)

    Arnold, W.D.; McKamey, D.R.; Baes, C.F.

    1980-01-01

    Studies were continued of a process for recovering uranium from wet-process phosphoric acid with octylphenyl acid phosphate (OPAP), a mixture of mono- and dioctylphenyl phosphoric acids. The mixture contained at least nine impurities, the principal one being octyl phenol, and also material that readily hydrolyzed to octyl phenol and orthophosphoric acid. The combination of mono- and dioctylphenyl phosphoric acids was the principal uranium extractant, but some of the impurities also extracted uranium. Hydrolysis of the extractant had little effect on uranium extraction, as did the presence of moderate concentrations of octyl phenol and trioctylphenyl phosphate. Diluent choice among refined kerosenes, naphthenic mixtures, and paraffinic hydrocarbons also had little effect on uranium extraction, but extraction was much lower when an aromatic diluent was used. Purified OPAP fractions were sparingly soluble in aliphatic hydrocarbon diluents. The solubility was increased by the presence of impurities such as octyl phenol, and by the addition of water or an acidic solution to the extractant-diluent mixture. In continuous stability tests, extractant loss by distribution to the aqueous phase was much less to wet-process phosphoric acid than to reagent grade acid. Uranium recovery from wet-process acid decreased steadily because of the combined effects of extractant poisoning and precipitation of the extractant as a complex with ferric iron. Unaccountable losses of organic phase volume occurred in the continuous tests. While attempts to recover the lost organic phase were unsuccessful, the test results indicate it was not lost by entrainment or dissolution in the phosphoric acid solutions. 21 figures, 8 tables

  12. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice.

    Science.gov (United States)

    Shao, Yafang; Hu, Zhanqiang; Yu, Yonghong; Mou, Renxiang; Zhu, Zhiwei; Beta, Trust

    2018-01-15

    Soluble-free, soluble-conjugated, insoluble-bound phenolics and antioxidant activity, flavonoid (TFC), proanthocyanidins (TPAC), anthocyanins and minerals of fifteen whole rice grains with different colors were investigated. Soluble-free protocatechuic and vanillic acids were only quantified in black rice, which had the most quantities. Non-pigmented rice had no detectable conjugated protocatechuic and 2,5-dihydroxybenzoic acids both of which were found in black and red rice, respectively. The main bound phenolic acids were ferulic and p-coumaric, as well as 2,5-dihydroxybenzoic in red rice and protocatechuic and vanillic acids in black rice. Soluble-conjugated phenolics, TFC, and anthocyanins were negatively correlated with L ∗ , b ∗ , C and H° values. TPAC was positively correlated with a ∗ (Pblack rice groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...... amino acids had enhanced savory taste impressions described as mainly bouillon, bitter, sour, salty and plastic with odor notes of boiled potato. Determination of amino acids in the fractions before and after hydrolysis revealed the presence of mainly hydrophilic peptides in all fractions. Partial least...

  14. Measurement and prediction of the solubility of acid gases in monoethanolamine solutions at low partial pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, P; Mather, A E

    1977-12-01

    An apparatus for the determination of the solubility of hydrogen sulfide, carbon dioxide, and their mixtures in ethanolamine solutions at low pressures is described. With this apparatus, the solubility of H/sub 2/S, CO/sub 2/ and their mixtures in aqueous solutions of monoethanolamine was measured at partial pressures between 0.001 kPa and 9 kPa at temperatures of 80 and 100/sup 0/C. The results for the mixture were compared with two methods of prediction based on a thermodynamic model. 6 figures, 4 tables.

  15. Epoxy fatty acids and inhibition of the soluble epoxide hydrolase selectively modulate GABA mediated neurotransmission to delay onset of seizures.

    Directory of Open Access Journals (Sweden)

    Bora Inceoglu

    Full Text Available In the brain, seizures lead to release of large amounts of polyunsaturated fatty acids including arachidonic acid (ARA. ARA is a substrate for three major enzymatic routes of metabolism by cyclooxygenase, lipoxygenase and cytochrome P450 enzymes. These enzymes convert ARA to potent lipid mediators including prostanoids, leukotrienes and epoxyeicosatrienoic acids (EETs. The prostanoids and leukotrienes are largely pro-inflammatory molecules that sensitize neurons whereas EETs are anti-inflammatory and reduce the excitability of neurons. Recent evidence suggests a GABA-related mode of action potentially mediated by neurosteroids. Here we tested this hypothesis using models of chemically induced seizures. The level of EETs in the brain was modulated by inhibiting the soluble epoxide hydrolase (sEH, the major enzyme that metabolizes EETs to inactive molecules, by genetic deletion of sEH and by direct administration of EETs into the brain. All three approaches delayed onset of seizures instigated by GABA antagonists but not seizures through other mechanisms. Inhibition of neurosteroid synthesis by finasteride partially blocked the anticonvulsant effects of sEH inhibitors while the efficacy of an inactive dose of neurosteroid allopregnanolone was enhanced by sEH inhibition. Consistent with earlier findings, levels of prostanoids in the brain were elevated. In contrast, levels of bioactive EpFAs were decreased following seizures. Overall these results demonstrate that EETs are natural molecules which suppress the tonic component of seizure related excitability through modulating the GABA activity and that exploration of the EET mediated signaling in the brain could yield alternative approaches to treat convulsive disorders.

  16. Partial characterization of soluble polysaccharides leaves Malva parviflora L. (Malvaceae): prebiotic activity

    International Nuclear Information System (INIS)

    Boual, Z.; Kemassi, A.; Oudjana, A.H.; Michaud, P.; Didi, O.H.M.

    2013-01-01

    Malva parviflora L. (Malvaceae), a spontaneous plant used in traditional medicine is found inGhardaia (Septentrional EastAlgerian Sahara). This paper reports on the extraction and partial characterization of water-soluble polysaccharides from M. parviflorleaves. These polysaccharides were obtained by elimination of the ethanol extract and sequential extraction in distilled water, followed by precipitation in 75% ethanol. The yield of extract is of 1.46%. The crude water soluble polysaccharide extract was further characterized and revealed the average values:15 ± 2,64% total ashes, 17,14 ± 1,43% proteins and 68,18 ± 0,94% carbohydrates, among them 44,96 ± 0,42% are acidic monosaccharides and the rest 55 ± 0,62% are neutral monosaccharides. The considered optimum conditions of hydrolysis by trifluoroacetic acid were: 4 M during 5 hours at 80°C. Anion exchange high performance chromatography of hydrosoluble polysaccharides of Malva leaves indicates the presence of galactose (56.86%), glucuronic acid (20.57%), arabinose (9.04%), rhamnose (8.46%) and mannose (5.05%). The oligosaccharides resulting from the partial hydrolys is of the hydrosoluble polysaccharides stimulate significantly (concentration of 0,333 mg/mL) for 0,1 DO after 24 hours, the growth of Bifido bacterium longum. Their prebiotic effect is notable. (author)

  17. Student certainty answering misconception question: study of Three-Tier Multiple-Choice Diagnostic Test in Acid-Base and Solubility Equilibrium

    Science.gov (United States)

    Ardiansah; Masykuri, M.; Rahardjo, S. B.

    2018-04-01

    Students’ concept comprehension in three-tier multiple-choice diagnostic test related to student confidence level. The confidence level related to certainty and student’s self-efficacy. The purpose of this research was to find out students’ certainty in misconception test. This research was quantitative-qualitative research method counting students’ confidence level. The research participants were 484 students that were studying acid-base and equilibrium solubility subject. Data was collected using three-tier multiple-choice (3TMC) with thirty questions and students’ questionnaire. The findings showed that #6 item gives the highest misconception percentage and high student confidence about the counting of ultra-dilute solution’s pH. Other findings were that 1) the student tendency chosen the misconception answer is to increase over item number, 2) student certainty decreased in terms of answering the 3TMC, and 3) student self-efficacy and achievement were related each other in the research. The findings suggest some implications and limitations for further research.

  18. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  19. Coamorphous Loratadine-Citric Acid System with Enhanced Physical Stability and Bioavailability.

    Science.gov (United States)

    Wang, Jin; Chang, Ruimiao; Zhao, Yanan; Zhang, Jiye; Zhang, Ting; Fu, Qiang; Chang, Chun; Zeng, Aiguo

    2017-10-01

    Coamorphous systems using citric acid as a small molecular excipient were studied for improving physical stability and bioavailability of loratadine, a BCS class II drug with low water solubility and high permeability. Coamorphous loratadine-citric acid systems were prepared by solvent evaporation technique and characterized by differential scanning calorimetry, X-ray powder diffraction, and Fourier transform infrared spectroscopy. Solid-state analysis proofed that coamorphous loratadine-citric acid system (1:1) was amorphous and homogeneous, had a higher T g over amorphous loratadine, and the intermolecular hydrogen bond interactions between loratadine and citric acid exist. The solubility and dissolution of coamorphous loratadine-citric acid system (1:1) were found to be significantly greater than those of crystalline and amorphous form. The pharmacokinetic study in rats proved that coamorphous loratadine-citric acid system (1:1) could significantly improve absorption and bioavailability of loratadine. Coamorphous loratadine-citric acid system (1:1) showed excellently physical stability over a period of 3 months at 25°C under 0% RH and 25°C under 60% RH conditions. The improved stability of coamorphous loratadine-citric acid system (1:1) could be related to an elevated T g over amorphous form and the intermolecular hydrogen bond interactions between loratadine and citric acid. These studies demonstrate that the developed coamorphous loratadine-citric acid system might be a promising oral formulation for improving solubility and bioavailability of loratadine.

  20. Solubility measurement of iron-selenium compounds under reducing conditions. Research document

    International Nuclear Information System (INIS)

    Kitamura, Akira; Shibata, Masahiro

    2003-03-01

    Chemical behavior of selenium (Se), which was one of the important elements for performance assessment of geological disposal of high-level radioactive waste, was investigated under reducing and iron-containing conditions. A washing method for an iron diselenide (FeSe 2 (cr)) reagent with acidic and basic solutions (0.1 and 1 M HCl and 1 M NaOH) was carried out for the purification of FeSe 2 reagent, which was considered to be a solubility limiting solid for Se under the geological disposal conditions. Furthermore, solubility of FeSe 2 (cr) was measured in alkaline solution (pH: 11 - 13) under reducing conditions (E h vs SHE: -0.4 - 0 V), and thermodynamic data on equilibrium reactions between Se in solution and Se precipitate were obtained. The dependencies of solubility values on pH and redox potential (E h : vs. standard hydrogen electrode) were best interpreted that the solubility limiting solid was not FeSe 2 (cr) but Se(cr) and the aqueous species was SeO 3 2- in the present experimental conditions. The equilibrium constant between Se(cr) and SeO 3 2- at zero ionic strength was determined and compared with literature values. The chemical behavior of Se under geological disposal conditions was discussed. (author)

  1. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecectomized rooster assay and the standardized ileal amino acid digestibility assay.

    Science.gov (United States)

    Kim, E J; Utterback, P L; Applegate, T J; Parsons, C M

    2011-11-01

    The objective of this study was to evaluate and compare amino acid digestibility of several feedstuffs using 2 commonly accepted methods: the precision-fed cecectomized rooster assay (PFR) and the standardized ileal amino acid assay (SIAAD). Six corn, 6 corn distillers dried grains with or without solubles (DDGS/DDG), one wet distillers grains, one condensed solubles, 2 meat and bone meal (MBM) and a poultry byproduct meal were evaluated. Due to insufficient amounts, the wet distillers grains and condensed solubles were only evaluated in roosters. Standardized amino acid digestibility varied among the feed ingredients and among samples of the same ingredient for both methods. For corn, there were generally no differences in amino acid digestibility between the 2 methods. When differences did occur, there was no consistent pattern among the individual amino acids and methods. Standardized amino acid digestibility was not different between the 2 methods for 4 of the DDG samples; however, the PFR yielded higher digestibility values for a high protein DDG and a conventionally processed DDGS. The PFR yielded higher amino acid digestibility values than the SIAAD for several amino acids in 1 MBM and the poultry byproduct meal, but it yielded lower digestibility values for the other MBM. Overall, there were no consistent differences between methods for amino acid digestibility values. In conclusion, the PFR and SIAAD methods are acceptable for determining amino acid digestibility. However, these procedures do not always yield similar results for all feedstuffs evaluated. Thus, further studies are needed to understand the underlying causes in this variability.

  2. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  3. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers.

    Science.gov (United States)

    Sun, Dajun D; Lee, Ping I

    2015-08-10

    The objective of the current study is to mechanistically differentiate the dissolution and supersaturation behaviors of amorphous drugs from amorphous solid dispersions (ASDs) based on medium-soluble versus medium-insoluble carriers under nonsink dissolution conditions through a direct head-to-head comparison. ASDs of indomethacin (IND) were prepared in several polymers which exhibit different solubility behaviors in acidic (pH1.2) and basic (pH7.4) dissolution media. The selected polymers range from water-soluble (e.g., PVP and Soluplus) and water-insoluble (e.g., ethylcellulose and Eudragit RL PO) to those only soluble in an acidic or basic dissolution medium (e.g., Eudragit E100, Eudragit L100, and HPMCAS). At 20wt.% drug loading, DSC and powder XRD analysis confirmed that the majority of incorporated IND was present in an amorphous state. Our nonsink dissolution results confirm that whether the carrier matrix is medium soluble determines the release mechanism of amorphous drugs from ASD systems which has a direct impact on the rate of supersaturation generation, thus in turn affecting the evolution of supersaturation in amorphous systems. For example, under nonsink dissolution conditions, the release of amorphous IND from medium-soluble carriers is governed by a dissolution-controlled mechanism leading to an initial surge of supersaturation followed by a sharp decline in drug concentration due to rapid nucleation and crystallization. In contrast, the dissolution of IND ASD from medium-insoluble carriers is more gradual as drug release is regulated by a diffusion-controlled mechanism by which drug supersaturation is built up gradually and sustained over an extended period of time without any apparent decline. Since several tested carrier polymers can be switched from soluble to insoluble by simply changing the pH of the dissolution medium, the results obtained here provide unequivocal evidence of the proposed transition of kinetic solubility profiles from the

  4. Poly(glycolide multi-arm star polymers: Improved solubility via limited arm length

    Directory of Open Access Journals (Sweden)

    Florian K. Wolf

    2010-06-01

    Full Text Available Due to the low solubility of poly(glycolic acid (PGA, its use is generally limited to the synthesis of random copolyesters with other hydroxy acids, such as lactic acid, or to applications that permit direct processing from the polymer melt. Insolubility is generally observed for PGA when the degree of polymerization exceeds 20. Here we present a strategy that allows the preparation of PGA-based multi-arm structures which significantly exceed the molecular weight of processable oligomeric linear PGA (<1000 g/mol. This was achieved by the use of a multifunctional hyperbranched polyglycerol (PG macroinitiator and the tin(II-2-ethylhexanoate catalyzed ring-opening polymerization of glycolide in the melt. With this strategy it is possible to combine high molecular weight with good molecular weight control (up to 16,000 g/mol, PDI = 1.4–1.7, resulting in PGA multi-arm star block copolymers containing more than 90 wt % GA. The successful linkage of PGA arms and PG core via this core first/grafting from strategy was confirmed by detailed NMR and SEC characterization. Various PG/glycolide ratios were employed to vary the length of the PGA arms. Besides fluorinated solvents, the materials were soluble in DMF and DMSO up to an average arm length of 12 glycolic acid units. Reduction in the Tg and the melting temperature compared to the homopolymer PGA should lead to simplified processing conditions. The findings contribute to broadening the range of biomedical applications of PGA.

  5. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    Science.gov (United States)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  6. Enzymatic Production of FAME Biodiesel with Soluble Lipases

    DEFF Research Database (Denmark)

    T. Gundersen, Maria; Heltborg, Carsten Kirstejn; Yang, V

    Biodiesel is a viable alternative to fossil fuels, and biocatalysis is gaining interest as a greener process. We focus on converting oils to Fatty Acid Methyl Ester (FAME) using soluble lipases, which offer an advantage compared to immobilized enzymes by cost efficiency and ease of implementation...... the defined operating space concerning: temperature, water content, initial methanol concentration and enzyme content. The identified optimum range was experimentally evaluated, and model findings were confirmed. Another barrier in lipase use in biodiesel production is the higher melting point (m...

  7. Pure Phase Solubility Limits: LANL

    International Nuclear Information System (INIS)

    C. Stockman

    2001-01-01

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO 2 partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility products

  8. Pure Phase Solubility Limits: LANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Stockman

    2001-01-26

    The natural and engineered system at Yucca Mountain (YM) defines the site-specific conditions under which one must determine to what extent the engineered and the natural geochemical barriers will prevent the release of radioactive material from the repository. Most important mechanisms for retention or enhancement of radionuclide transport include precipitation or co-precipitation of radionuclide-bearing solid phases (solubility limits), complexation in solution, sorption onto surfaces, colloid formation, and diffusion. There may be many scenarios that could affect the near-field environment, creating chemical conditions more aggressive than the conditions presented by the unperturbed system (such as pH changes beyond the range of 6 to 9 or significant changes in the ionic strength of infiltrated waters). For an extended period of time, the near-field water composition may be quite different and more extreme in pH, ionic strength, and CO{sub 2} partial pressure (or carbonate concentration) than waters at some distance from the repository. Reducing conditions, high pH (up to 11), and low carbonate concentration may be present in the near-field after reaction of infiltrating groundwater with engineered barrier systems, such as cementitious materials. In the far-field, conditions are controlled by the rock-mass buffer providing a near-neutral, oxidizing, low-ionic-strength environment that controls radionuclide solubility limits and sorption capacities. There is the need for characterization of variable chemical conditions that affect solubility, speciation, and sorption reactions. Modeling of the groundwater chemistry is required and leads to an understanding of solubility and speciation of the important radionuclides. Because experimental studies cannot be performed under the numerous potential chemical conditions, solubility limitations must rely on geochemical modeling of the radionuclide's chemistry. Fundamental thermodynamic properties, such as solubility

  9. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  10. Usnic acid controls the acidity tolerance of lichens

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene

    2008-01-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK a1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO 2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH a1 . - Combined field and experimental data suggest that usnic acid makes lichens sensitive to acidity at pH <3.5

  11. Effectiveness acidic pre-cleaning for copper-gold ore

    Directory of Open Access Journals (Sweden)

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  12. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  13. High pressure measurement and CPA equation of state for solubility of carbon dioxide and hydrogen sulfide in 1-butyl-3-methylimidazolium acetate

    International Nuclear Information System (INIS)

    Haghtalab, Ali; Kheiri, Alireza

    2015-01-01

    Highlights: • Solubility of carbon dioxide in pure [bmim][acetate] is measured. • Simultaneous solubility of CO 2 + H 2 S in [bmim][acetate] is measured. • Both physical and chemical models are applied to modelling the (acid gas + IL) systems. • The CPA EoS is used for phase equilibrium calculation. • A reaction thermodynamic equilibrium model is used in liquid phase. - Abstract: Removal of acid gases such as CO 2 and H 2 S from natural gas is essential for commercial, safety and environmental protection that demonstrate the importance of gas sweetening process. Ionic liquids (IL) have been highly demanded as a green solvent to remove acid gases from sour natural gas and capturing of CO 2 from flue gases. In this work, the solubility of CO 2 in 1-butyl-3-methylimidazolium acetate ([bmim][Ac]) is measured at temperatures (303.15, 328.15, 343.15) K and pressure range of (0.1 to 3.9) MPa. Moreover, the experiments are carried out for simultaneous measurements of (CO 2 + H 2 S) (70% + 30% on a mole basis) solubility in the same ionic liquid at T = (303.15, 323.15, 343.15) K and a pressure range of (0.1 to 2.2) MPa. To model the solubility of acid gases in IL, both physical and chemical equilibria are applied so that the (vapour + liquid) equilibrium calculation is carried out through Cubic-Plus-Association (CPA) EoS. The reaction equilibrium thermodynamic model is used in liquid phase so that the chemical reaction is taking place between IL and acid gasses. The Henry’s and reaction equilibrium constants are obtained though optimization of the solubility data. Using CPA EOS, the pure parameters of [bmim][acetate] are optimised and consequently using these parameters, gas partial pressure calculation is performed for the (CO 2 + IL) and (CO 2 + H 2 S + IL) systems. For the (CO 2 + IL) system, the percent average absolute deviation (AAD%) of 4.83 is resulted and for the (H 2 S + CO 2 + IL) system the values of 18.8 and 13.7 are obtained for H 2 S and CO 2

  14. Thermodynamic properties of citric acid and the system citric acid-water

    NARCIS (Netherlands)

    Kruif, C.G. de; Miltenburg, J.C. van; Sprenkels, A.J.J.; Stevens, G.; Graaf, W. de; Wit, H.G.M. de

    1982-01-01

    The binary system citric acid-water has been investigated with static vapour pressure measurements, adiabatic calorimetry, solution calorimetry, solubility measurements and powder X-ray measurements. The data are correlated by thermodynamics and a large part of the phase diagram is given. Molar heat

  15. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  16. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs.

    Science.gov (United States)

    Dahan, Arik; Miller, Jonathan M

    2012-06-01

    While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug's diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug's apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility-permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility-permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility-permeability interplay must be taken into account to strike the optimal solubility-permeability balance, in order to maximize the overall absorption.

  17. Inhibition of soluble epoxide hydrolase by cis-4-[4-(3-adamantan-1-ylureido)cyclohexyl-oxy]benzoic acid exhibits antihypertensive and cardioprotective actions in transgenic rats with angiotensin II-dependent hypertension

    Czech Academy of Sciences Publication Activity Database

    Neckář, Jan; Kopkan, L.; Husková, Z.; Kolář, František; Papoušek, František; Kramer, H. J.; Hwang, S.H.; Hammock, B.D.; Imig, J. D.; Malý, J.; Netuka, I.; Ošťádal, Bohuslav; Červenka, L.

    2012-01-01

    Roč. 122, č. 11 (2012), s. 513-525 ISSN 0143-5221 R&D Projects: GA AV ČR(CZ) IAAX01110901; GA AV ČR(CZ) KAN200520703; GA MŠk(CZ) 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : hypertension * angiotensin II * kidney * epoxyeicosatrienoic acids * soluble epoxide hydrolase inhibitor * myocardial ischemia/reperfusion injury Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.859, year: 2012

  18. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    -selective electrodes and inductively coupled plasma (ICP)-atomic emission spectrometry (AES). The WSO found in produced water samples was primarily polar in nature and distributed between the low and midrange carbon ranges. Typical levels of total extractable material (TEM) was about 20 mg/L; that associated with the aromatic fraction was present at 0.2 mg/L and that in the saturated hydrocarbon fraction was present at less than 0.02 mg/L. Formic, acetic, and propionic acids were also found in the produced water, occurring at a total concentration of 30 mg/L. It was estimated that the presence of 30 mg/L organic acids would artificially overstate TEM content by 2 mg/L. Of the five tested parameters, the factor that most controlled the total WSO in produced water was that of aqueous phase pH. Beyond a value of pH7 significant quantities of C{sub 10}-C{sub 20} range material become markedly soluble as they deprotonate in a basic aqueous phase. Both the absolute and relative volumes of GOM brine and crude additionally affected total WSO. Produced water appeared to reach a saturation level of WSO at a.50% water/oil ratio. Pressure slightly enhanced WSO by increasing the relative quantity of C{sub 6}-C{sub 10} range material. Temperature primarily altered the relative ratio of carbon ranges within the WSO without significantly elevating the total WSO in the GOM brine. Salinity had the least affect on the chemical character or the carbon size of WSO in produced water.

  19. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  20. Higher value films prepared from poly(vinyl alcohol) and amylose-fatty acid derivatives inclusion complexes

    Science.gov (United States)

    Water soluble amylose fatty acid and fatty ammonium salt inclusion complexes (AIC) were prepared by jet cooked high amylose corn starch with water soluble salts of long chain fatty acids or fatty amines. The formation of AIC was confirmed by X-ray diffraction of freeze-dried samples. After dissoluti...

  1. Accumulation of solvent-soluble and solvent-insoluble antioxidant phenolics in edible bean sprouts: implication of germination

    Directory of Open Access Journals (Sweden)

    Ren-You Gan

    2016-08-01

    Full Text Available Background: Edible bean sprouts are popular fresh vegetables widely recognized for their nutritional quality. However, while their antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble extracts has not been systematically evaluated. Methods: The antioxidant capacity and phenolic composition in both solvent-soluble and solvent-insoluble fractions of 12 cultivars of edible bean sprouts were evaluated, and relationships of antioxidant capacity and total phenolic content were also analyzed. Results: Sprouts demonstrated a wide range of antioxidant capacity and total phenolic content, with lower but substantial antioxidant capacity and total phenolic content in the solvent-insoluble fractions. Highest levels were found in the green mung bean sprout. Phenolic compounds, such as catechin, ellagic acid, ferulic acid, gallic acid and p-coumaric acid were widely detected in these sprouts. Additionally, a positive correlation was discovered between antioxidant capacity and total phenolic content in these edible bean sprouts. Conclusions: Germination generally resulted in the accumulation of antioxidant phenolics in the most edible bean sprouts. Edible bean sprouts with high antioxidant phenolics can be valuable natural sources of dietary antioxidants for the prevention of oxidative stress-related chronic diseases.

  2. Role of dust alkalinity in acid mobilization of iron

    OpenAIRE

    A. Ito; Y. Feng

    2010-01-01

    Atmospheric processing of mineral aerosols by acid gases (e.g., SO2, HNO3, N2O5, and HCl) may play a key role in the transformation of insoluble iron (Fe in the oxidized or ferric (III) form) to soluble forms (e.g., Fe(II), inorganic soluble species of Fe(III), and organic complexes of iron). On the other hand, mineral dust particles have a potential of neutralizing the acidic species due to the alkali...

  3. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  4. Study on Processing Technology and Quality of Moringa oleifera leaves with y - Aminobutyric Acid

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-01-01

    Full Text Available In order to obtain the high level of γ-aminobutyric acid Moringa oleifera leaves, Use 7% sodium glutamate solution to soak the fresh Moringa oleifera leaves, study effect of different treatment times and three different drying methods( hot air drying, vacuum freeze drying, shadow drying on the formation of y-aminobutyric acid and quality (total flavonoids, soluble sugar, amino acids, polyphenols, colorof dried Moringa oleifera leaves. The results indicated that shadow-dried Moringa oleifera leaves had the hightest retention of γ-aminobutyric acid, but its browning degree were not preferable, soluble sugar was damaged gravely, and its vulnerable to weather conditions. Vacuum freeze dried Moringa oleifera leaves had the hightest retention of flavonoids, polyphenols and amino acids. The y-aminobutyric acid content of Vacuum freeze dried and hot air dried Moringa oleifera leaves had no much difference. Hot air dried Moringa oleifera leaves browning degree were preferable, it’s had an moderate content of soluble sugar and amino acids, the short drying time is characteristics of this drying method.with the treatment time increased, the content of γ-aminobutyric acid and amino acids content first increased and then decreased. Flavonoids and polyphenols content first decreased and then increased. Soluble sugar content decreased. In summary, after soaking with 7% sodium glutamate solution for 10h, then dried by hot air drying(drying temperature of 60°C, was the most suitable way for industrial production of the high level of γ-aminobutyric acid Moringa oleifera leaves.

  5. Head-To-Head Comparison of Different Solubility-Enabling Formulations of Etoposide and Their Consequent Solubility-Permeability Interplay.

    Science.gov (United States)

    Beig, Avital; Miller, Jonathan M; Lindley, David; Carr, Robert A; Zocharski, Philip; Agbaria, Riad; Dahan, Arik

    2015-09-01

    The purpose of this study was to conduct a head-to-head comparison of different solubility-enabling formulations, and their consequent solubility-permeability interplay. The low-solubility anticancer drug etoposide was formulated in several strengths of four solubility-enabling formulations: hydroxypropyl-β-cyclodextrin, the cosolvent polyethylene glycol 400 (PEG-400), the surfactant sodium lauryl sulfate, and an amorphous solid dispersion formulation. The ability of these formulations to increase the solubility of etoposide was investigated, followed by permeability studies using the parallel artificial membrane permeability assay (PAMPA) and examination of the consequent solubility-permeability interplay. All formulations significantly increased etoposide's apparent solubility. The cyclodextrin-, surfactant-, and cosolvent-based formulations resulted in a concomitant decreased permeability that could be modeled directly from the proportional increase in the apparent solubility. On the contrary, etoposide permeability remained constant when using the ASD formulation, irrespective of the increased apparent solubility provided by the formulation. In conclusion, supersaturation resulting from the amorphous form overcomes the solubility-permeability tradeoff associated with other formulation techniques. Accounting for the solubility-permeability interplay may allow to develop better solubility-enabling formulations, thereby maximizing the overall absorption of lipophilic orally administered drugs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents

    Czech Academy of Sciences Publication Activity Database

    Sobechko, I.; Dibrivnyi, V.; Horak, Y.; Velychkivska, Nadiia; Kochubei, V.; Obushak, M.

    2017-01-01

    Roč. 11, č. 4 (2017), s. 397-404 ISSN 1996-4196 Institutional support: RVO:61389013 Keywords : enthalpy * entropy * Gibbs energy of solubility Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  7. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  8. Antioxidative activity of water soluble polysaccharide in pumpkin fruits (Cucurbita maxima Duchesne).

    Science.gov (United States)

    Nara, Kazuhiro; Yamaguchi, Akira; Maeda, Naomi; Koga, Hidenori

    2009-06-01

    We evaluated the antioxidative activity of a water soluble polysaccharide fraction (WSP) from pumpkin fruits (Cucurbita maxima Duchesne). In the WSP, DPPH radical scavenging and superoxide dismutase-like activity increased depending on the total sugar content. Furthermore, the WSP can serve as an inhibitor of ascorbic acid oxidation. The efficacy was also affected by the total sugar content.

  9. The physicochemical properties and solubility of pharmaceuticals – Methyl xanthines

    International Nuclear Information System (INIS)

    Pobudkowska, Aneta; Domańska, Urszula; Kryska, Justyna A.

    2014-01-01

    the decomposition of Ph at high temperature. The important property tested was the constant acidity, to this end, the spectrophotometric method of Bates–Schwarzenbach was used. Unfortunately, with this method it was not possible to determine the value of pK a 7-(β-hydroxyethyl) theophylline. For other Phs, these values do not differ significantly from those proposed in the literature. Both awareness and knowledge of values of the drug pK a and solubility are important in Phs production. This allows the selection of a suitable solvent and allows estimation of the correct dose and its capacity to absorb in human body

  10. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.

    1980-01-01

    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  11. Rational identification of aggregation hotspots based on secondary structure and amino acid hydrophobicity.

    Science.gov (United States)

    Matsui, Daisuke; Nakano, Shogo; Dadashipour, Mohammad; Asano, Yasuhisa

    2017-08-25

    Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility. To date, however, the identification of these hotspots has proven difficult. In this study, using a combination of approaches involving directed evolution and primary sequence analysis, we found two rules to help inductively identify hotspots: the α-helix rule, which focuses on the hydrophobicity of amino acids in the α-helix structure, and the hydropathy contradiction rule, which focuses on the difference in hydrophobicity relative to the corresponding amino acid in the consensus protein. By properly applying these two rules, we succeeded in improving the probability that expressed proteins would be soluble. Our methods should facilitate research on various insoluble proteins that were previously difficult to study due to their low solubility.

  12. Effect of Fermentation and Cooking on Soluble and Bound Phenolic Profiles of Finger Millet Sour Porridge.

    Science.gov (United States)

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2016-10-12

    The aim of this study was to evaluate the soluble and bound phenolic content of finger millet and the impact of process induced changes on phenolic profiles of their sour porridge. Finger millet porridge and intermediate products were collected from four groups of households in the Hwedza communal area, Zimbabwe, after which soluble and bound phenolic compounds (PC) including condensed tannins (CT) were quantified. Bound PC and CT contributed 95% of the total PC and CT. The CT were only detected in the red varieties. Major individual PC identified were catechin occurring in the soluble fraction only, while ferulic, sinapic, and salicylic acid were mainly present in the bound fraction. Fermentation and cooking caused a more than 2-fold increase in soluble PC, CT, and individual PC. Improved traditional processing techniques optimized for improved bioavailability and health benefits of phenolics are highly relevant for the low income populations.

  13. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  14. The potential application of fungus Trichoderma harzianum Rifai in biodegradation of detergent and industry

    Directory of Open Access Journals (Sweden)

    Jakovljević Violeta D.

    2015-01-01

    Full Text Available The potential application of fungus Trichoderma harzianum Rifai in biodegradation of commercial detergent (MERIX, Henkel, Serbia was in the focus of this study. The fungus was isolated from wastewater samples of the Rasina River, downstream where the industrial wastewaters of factory Henkel (Krusevac, Serbia discharge into river. The fungus was cultivated in liquid growth medium by Czapek with addition of detergent at a concentration of 0.3% during 16 days. Analysis of fermentation broth evaluated the chemical and biochemical changes of pH, redox potential, activity of alkaline and acid invertase as well as activity of alkaline protease. In addition, the influence of detergent on fungal growth and total dry weight biomass was determined. At the same time, detergent disappearance in terms of methylene blue active substances in the medium was measured. The detergent at a concentration of 0.3% influenced significant decrease of pH value and increase of redox potential. The detergent showed inhibitory effect on acid invertase activity and stimulatory effect on alkaline invertase and protease activity. The fungus decomposed about 74.24% of tested detergent during 16 days, but total dry weight biomass reduced about 20% in relation to control. [Projekat Ministarstva nauke Republike Srbije, br. III 43004

  15. Graft copolymerization of water soluble mixed monomers onto polyethylene by the pre-irradiation method

    International Nuclear Information System (INIS)

    Long Fu; Tang Liming; Zhao Jin; Gao Zhenyong

    1993-01-01

    Grafting of water soluble mixed monomers of acrylic acid (AA)/acrylamide (Am) and acrylic acid/methacrylic acid (MA) onto polyethylene film by the pre-irradiation grafting method was investigated. The results showed that the grafting proceeded successfully with the adding of ferric salt in the solution. In the case of AA/Am system, a synergistic effect was noticed. In the case of AA/MA system, the graft percent increased with the increase in the concentration of MA in the feed ratio. Furthermore, the effects of monomer concentration, radiation dose and temperature on the grafting were also studied

  16. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  17. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble

    DEFF Research Database (Denmark)

    Christgau, S; Schierbeck, H; Aanstoot, H J

    1991-01-01

    The 64-kDa pancreatic beta-cell autoantigen, which is a target of autoantibodies associated with early as well as progressive stages of beta-cell destruction, resulting in insulin-dependent diabetes (IDDM) in humans, has been identified as the gamma-aminobutyric acid-synthesizing enzyme glutamic...... acid decarboxylase. We have identified two autoantigenic forms of this protein in rat pancreatic beta-cells, a Mr 65,000 (GAD65) hydrophilic and soluble form of pI 6.9-7.1 and a Mr 64,000 (GAD64) component of pI 6.7. GAD64 is more abundant than GAD65 and has three distinct forms with regard to cellular...

  18. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Vorinostat with Sustained Exposure and High Solubility in Poly(ethylene glycol)-b-poly(DL-lactic acid) Micelle Nanocarriers: Characterization and Effects on Pharmacokinetics in Rat Serum and Urine

    Science.gov (United States)

    Mohamed, Elham A.; Zhao, Yunqi; Meshali, Mahasen M.; Remsberg, Connie M.; Borg, Thanaa M.; Foda, Abdel Monem M.; Takemoto, Jody K.; Sayre, Casey; Martinez, Stephanie; Davies, Neal M.; Forrest, M. Laird

    2015-01-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anti-cancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat’s pharmacokinetics in rats were investigated after intravenous (i.v.) (10 mg/kg) and oral (50 mg/kg) micellar administrations and compared to a conventional PEG400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 mg/ml to 8.15 ± 0.60 mg/ml and 10.24 ± 0.92 mg/ml at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 nm and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19 %, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the oral and intravenous pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. PMID:22806441

  20. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    Science.gov (United States)

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.