WorldWideScience

Sample records for solubilized dense non-aqueous

  1. Deep Eutectic Solvent Aqueous Solutions as Efficient Media for the Solubilization of Hardwood Xylans.

    Science.gov (United States)

    Morais, Eduarda S; Mendonça, Patrícia V; Coelho, Jorge F J; Freire, Mara G; Freire, Carmen S R; Coutinho, João A P; Silvestre, Armando J D

    2018-02-22

    This work contributes to the development of integrated lignocellulosic-based biorefineries by the pioneering exploitation of hardwood xylans by solubilization and extraction in deep eutectic solvents (DES). DES formed by choline chloride and urea or acetic acid were initially evaluated as solvents for commercial xylan as a model compound. The effects of temperature, molar ratio, and concentration of the DES aqueous solutions were evaluated and optimized by using a response surface methodology. The results obtained demonstrated the potential of these solvents, with 328.23 g L -1 of xylan solubilization using 66.7 wt % DES in water at 80 °C. Furthermore, xylans could be recovered by precipitation from the DES aqueous media in yields above 90 %. The detailed characterization of the xylans recovered after solubilization in aqueous DES demonstrated that 4-O-methyl groups were eliminated from the 4-O-methylglucuronic acids moieties and uronic acids (15 %) were cleaved from the xylan backbone during this process. The similar M w values of both pristine and recovered xylans confirmed the success of the reported procedure. DES recovery in four additional extraction cycles was also demonstrated. Finally, the successful extraction of xylans from Eucalyptus globulus wood by using aqueous solutions of DES was demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Avaliação do desempenho de surfactantes para a solubilização de fases líquidas não aquosas em meio aquoso Evaluating surfactant performance as solubilizer of non-aqueous phase liquids within aqueous media

    Directory of Open Access Journals (Sweden)

    Elizabeth Fátima de Souza

    2010-01-01

    Full Text Available The presence of non-aqueous phase liquids (NAPLs in the subsurface is a threat to public health as well as a serious environmental issue. NAPLs may remain adsorbed or form lenses floating on aquifers causing long-term contaminations. Surfactants may increase NAPLs solubility, enhancing the pump-and-treatment performance. Size, shape, hydration and ionization degree of the micelles define the affinity and the space available for the solubilization of a particular contaminating agent. The tests carried out at laboratory scale, taking into account the NAPL to be removed and the medium characteristics were useful to select surfactants and evaluate their efficiency as NAPLs solubilizers.

  3. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions. Phase 1: Laboratory and pilot field-scale testing. Phase 2: Solubilization test and partitioning interwell tracer tests. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km 2 in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation

  4. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  5. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  6. Solubilization of bovine gelatin using power ultrasound: gelation without heating.

    Science.gov (United States)

    Farahnaky, Asgar; Zendeboodi, Fatemeh; Azizi, Rezvan; Mesbahi, Gholamreza; Majzoobi, Mahsa

    2017-04-01

    The aim of this study was to investigate the efficacy of power ultrasound without using any heating stage in solubilizeing gelatin dispersions, and to characterize the mechanical and microstructural properties of the resulting gels using texture analysis and scanning electron microscopy, respectively. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. For solubilising gelatin, an ultrasound equipment with a frequency of 20 kHz, amplitude of 100% and power range of 50-150 W was used. Aqueous gelatin dispersions (4% w/v) were subjected to ultrasound for different times (40-240 s) at a constant temperature of 13C. Applying ultrasound to gelatin dispersions caused increases in water absorption and water solubility of the hydrocolloid. The textural parameters of the resulting gelatin gels, increased with increasing time and power of ultrasound. Moreover, a generalized Maxwell model with three elements was used for calculating relaxation times of the gels. The microstructural observations by SEM showed that the structural cohesiveness of the gels increased by increasing ultrasonication time. Ultrasound-assisted solubilization of gelatin can have emerging implications for industrial uses in pharmaceuticals, food and non-food systems. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. Therefore, the use of gelatin as a hydrocolloid in food processings or pharmaceutical formulations which lack a heating step has been a technological and practical challenge. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. Ultrasound-assisted solubilisation of gelatin can have emerging implications for industrial uses in pharmaceuticals

  7. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  8. Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling

    International Nuclear Information System (INIS)

    Abriola, L.M.; Dekker, T.J.; Pennell, K.D.

    1993-01-01

    A mathematical model is developed to describe surfactant-enhanced solubilization of nonaqueous-phase liquids (NAPLs) in porous media. The model incorporates aqueous-phase transport equations for organic and surfactant components as well as a mass balance for the organic phase. Rate-limited solubilization and surfactant sorption are represented by a linear driving force expression and a Langmuir isotherm, respectively. The model is implemented in a one-dimensional Galerkin finite element simulator which idealizes the entrapped residual organic as a collection of spherical globules. Soil column data for the solubilization of residual dodecane by an aqueous solution of polyoxyethylene (20) sorbitan monooleate are used to evaluate the conceptual model. Input parameters were obtained, where possible, from independent batch experiments. Calibrated model simulations exhibit good agreement with measured effluent concentrations, supporting the utility of the conceptual modeling approach. Sensitivity analyses explore the influence of surfactant concentration and flushing strategy on NAPL recovery. 45 refs., 6 figs., 3 tabs

  9. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  10. Solubilization of Polycyclic Aromatic Hydrocarbons by Single and Binary Mixed Rhamnolipid-Sophorolipid Biosurfactants.

    Science.gov (United States)

    Song, Dandan; Liang, Shengkang; Yan, Lele; Shang, Yujun; Wang, Xiuli

    2016-07-01

    Biosurfactants are promising additives for surfactant enhanced remediation (SER) technologies due to their low toxicity and high biodegradability. To develop green and efficient additives for SER, the aqueous solubility enhancements of polycyclic aromatic hydrocarbons (PAHs; naphthalene, phenanthrene, and pyrene) by rhamnolipid (RL) and sophorolipid (SL) biosurfactants were investigated in single and binary mixed systems. The solubilization capacities were quantified in terms of the solubility enhancement factor, molar solubilization ratio (MSR), and micelle-water partition coefficient (). Rughbin's model was applied to evaluate the interaction parameters (β) in the mixed RL-SL micelles. The solubility of the PAHs increased linearly with the glycolipid concentration above the critical micelle concentration (CMC) in both single and mixed systems. Binary RL-SL mixtures exhibited greater solubilization than individual glycolipids. At a SL molar fraction of 0.7 to 0.8, the solubilization capacity was the greatest, and the MSR and reached their maximum values, and β values became positive. These results suggest that the two biosurfactants act synergistically to increase the solubility of the PAHs. The solubilization capacity of the RL-SL mixtures increased with increasing temperature and decreased with increasing salinity. The aqueous solubility of phenanthrene reached a maximum value at pH of 5.5. Moreover, the mixed RL-SL systems exhibited a strong ability to solubilize PAHs, even in the presence of heavy metal ions. These mixed biosurfactant systems have the potential to improve the performance of SER technologies using biosurfactants to solubilize hydrophobic organic contaminants by decreasing the applied biosurfactant concentration, which reduces the costs of remediation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Wenjun, E-mail: wenjunzhou@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China); Yang Juanjuan; Lou Linjie [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhu Lizhong [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310028 (China)

    2011-05-15

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd{sup 2+} or Zn{sup 2+}. Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: > The enhanced solubilization of PAHs by saponin was investigated in this study. > Saponin showed great solubilization capability for PAHs. > Saponin is more effective in enhancing HOCs solubilization at lower solution pH. > Increasing ionic strength can enhance HOCs solubilization in saponin solution. > Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  12. Solubilization properties of polycyclic aromatic hydrocarbons by saponin, a plant-derived biosurfactant

    International Nuclear Information System (INIS)

    Zhou Wenjun; Yang Juanjuan; Lou Linjie; Zhu Lizhong

    2011-01-01

    The enhanced solubilization of polycyclic aromatic hydrocarbons (PAHs) by saponin, a plant-derived non-ionic biosurfactant, was investigated. The results indicated that the solubilization capabilities of saponin for PAHs were greater than some representative synthetic non-ionic surfactants and showed strong dependence on solution pH and ionic strength. The molar solubilization ratio (MSR) of saponin for phenanthrene was about 3-6 times of those of the synthetic non-ionic surfactants, and decreased by about 70% with the increase of solution pH from 4.0 to 8.0, but increased by approximately 1 times with NaCl concentration increased from 0.01 to 1.0 M. Heavy metal ions can enhance saponin solubilization for phenanthrene and the corresponding MSR values increased by about 25% with the presence of 0.01 M of Cd 2+ or Zn 2+ . Saponin is more effective in enhancing PAHs solubilization than synthetic non-ionic surfactants and has potential application in removing organic pollutants from contaminated soils. - Highlights: → The enhanced solubilization of PAHs by saponin was investigated in this study. → Saponin showed great solubilization capability for PAHs. → Saponin is more effective in enhancing HOCs solubilization at lower solution pH. → Increasing ionic strength can enhance HOCs solubilization in saponin solution. → Heavy metal ions can also enhance phenanthrene solubilization in saponin solution. - Saponin showed different solubilization properties for PAHs from the synthetic non-ionic surfactants and anionic rhamnolipid biosurfactants.

  13. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2009-01-01

    A non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents theA non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to

  14. Photoacoustic analysis of the solubilization kinetics of pulmonary secretions from cystic fibrosis patients - secretor and non-secretor phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Barja, P R; Coelho, C C; Paiva, R F [Research and Development Institute, UNIVAP, Av. Shishima Hifumi 2911, Sao Jose dos Campos, SP (Brazil); Barboza, M A; Matos, L C; Matos, C C B [Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto, SP (Brazil); Oliveira, L V F, E-mail: barja@univap.b [Rehabilitation Sciences Master' s Program, Nove de Julho University (UNINOVE), Sao Paulo, SP (Brazil)

    2010-03-01

    Cystic fibrosis (CF) is an autosomal recessive inherited disease that increases viscoelasticity of pulmonary secretions. Affected patients are required to use therapeutic aerosols continuously. The expression of ABH glycoconjugates in exocrine secretions determines the nature of part of the carbohydrates present in these secretions, allowing the classification of individuals into the so-called 'secretor' and 'non secretor' phenotypes. The aim of this work was to employ photoacoustic (PA) measurements to monitor the solubilization kinetics of pulmonary secretions from CF patients, analyzing the influence of the secretor status in the solubilization kinetics of samples nebulized with different therapeutic aerosols. Sputum samples were obtained by spontaneous expectoration from positive and negative secretor CF patients. Each sample was nebulized with i) tobramycin, ii) alpha dornase, and iii) N-acetylcysteine in a PA cell; fitting of the data with the Boltzmann equation led to the determination of t{sub 0} (typical interaction time) and {Delta}t (solubilization interval) for each curve. Differences between the secretor and non-secretor phenotypes were statistically significant in the groups for tobramycin and alpha dornase, but not for N-acetylcysteine. Results show that the secretor status influences the solubilization of pulmonary mucus of CF patients nebulized with tobramycin and alpha dornase.

  15. Refinement of the Kansas City Plant site conceptual model with respect to dense non-aqueous phase liquids (DNAPL)

    International Nuclear Information System (INIS)

    Korte, N.E.; Hall, S.C.; Baker, J.L.

    1995-01-01

    This document presents a refinement of the site conceptual model with respect to dense non-aqueous phase liquid (DNAPL) at the US Department of Energy Kansas City Plant (KCP). This refinement was prompted by a review of the literature and the results of a limited study that was conducted to evaluate whether pools of DNAPL were present in contaminated locations at the KCP. The field study relied on the micropurge method of sample collection. This method has been demonstrated as a successful approach for obtaining discrete samples within a limited aquifer zone. Samples were collected at five locations across 5-ft well screens located at the base of the alluvial aquifer at the KCP. The hypothesis was that if pools of DNAPL were present, the dissolved concentration would increase with depth. Four wells with highly contaminated groundwater were selected for the test. Three of the wells were located in areas where DNAPL was suspected, and one where no DNAPL was believed to be present. The results demonstrated no discernible pattern with depth for the four wells tested. A review of the data in light of the available technical literature suggests that the fine-grained nature of the aquifer materials precludes the formation of pools. Instead, DNAPL is trapped as discontinuous ganglia that are probably widespread throughout the aquifer. The discontinuous nature of the DNAPL distribution prevents the collection of groundwater samples with concentrations approaching saturation. Furthermore, the results indicate that attempts to remediate the aquifer with conventional approaches will not result in restoration to pristine conditions because the tortuous groundwater flow paths will inhibit the efficiency of fluid-flow-based treatments

  16. Cocrystal solubilization in biorelevant media and its prediction from drug solubilization

    Science.gov (United States)

    Lipert, Maya P.; Roy, Lilly; Childs, Scott L.

    2015-01-01

    This work examines cocrystal solubility in biorelevant media, (FeSSIF, fed state simulated intestinal fluid), and develops a theoretical framework that allows for the simple and quantitative prediction of cocrystal solubilization from drug solubilization. The solubilities of four hydrophobic drugs and seven cocrystals containing these drugs were measured in FeSSIF and in acetate buffer at pH 5.00. In all cases, the cocrystal solubility (Scocrystal) was higher than the drug solubility (Sdrug) in both buffer and FeSSIF; however, the solubilization ratio of drug, SRdrug = (SFeSSIF/Sbuffer)drug, was not the same as the solubilization ratio of cocrystal, SRcocrystal = (SFeSSIF/Sbuffer)cocrystal, meaning drug and cocrystal were not solubilized to the same extent in FeSSIF. This highlights the potential risk of anticipating cocrystal behavior in biorelevant media based on solubility studies in water. Predictions of SRcocrystal from simple equations based only on SRdrug were in excellent agreement with measured values. For 1:1 cocrystals, the cocrystal solubilization ratio can be obtained from the square root of the drug solubilization ratio. For 2:1 cocrystals, SRcocrystal is found from (SRdrug)2/3. The findings in FeSSIF can be generalized to describe cocrystal behavior in other systems involving preferential solubilization of a drug such as surfactants, lipids, and other drug solubilizing media. PMID:26390213

  17. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization.

    Science.gov (United States)

    Jayashree, Shanmugam; Vadivukkarasi, Ponnusamy; Anand, Kirupanithi; Kato, Yuko; Seshadri, Sundaram

    2011-08-01

    Thirteen pink-pigmented facultative methylotrophic (PPFM) strains isolated from Adyar and Cooum rivers in Chennai and forest soil samples in Tamil Nadu, India, along with Methylobacterium extorquens, M. organophilum, M. gregans, and M. komagatae were screened for phosphate solubilization in plates. P-solubilization index of the PPFMs grown on NBRIP-BPB plates for 7 days ranged from 1.1 to 2.7. The growth of PPFMs in tricalcium phosphate amended media was found directly proportional to the glucose concentration. Higher phosphate solubilization was observed in four strains MSF 32 (415 mg l(-l)), MDW 80 (301 mg l(-l)), M. komagatae (279 mg l(-l)), and MSF 34 (202 mg l(-l)), after 7 days of incubation. A drop in the media pH from 6.6 to 3.4 was associated with an increase in titratable acidity. Acid phosphatase activity was more pronounced in the culture filtrate than alkaline phosphatase activity. Adherence of phosphate to densely grown bacterial surface was observed under scanning electron microscope after 7-day-old cultures. Biochemical characterization and screening for methanol dehydrogenase gene (mxaF) confirmed the strains as methylotrophs. The mxaF gene sequence from MSF 32 clustered towards M. lusitanum sp. with 99% similarity. This study forms the first detailed report on phosphate solubilization by the PPFMs.

  18. Solubilization and purification of melatonin receptors from lizard brain

    International Nuclear Information System (INIS)

    Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.

    1990-01-01

    Melatonin receptors in lizard brain were identified and characterized using 125 I-labeled melatonin ([ 125 I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography

  19. Solubilization and purification of melatonin receptors from lizard brain.

    Science.gov (United States)

    Rivkees, S A; Conron, R W; Reppert, S M

    1990-09-01

    Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.

  20. A system to analyze the complex physiological states of coal solubilizing fungi

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Moenkemann, H.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The mechanism by which some microorganisms solubilize brown coal is still unknown. The paper discusses the deuteromycetes Fusarium oxysporum and Trichoderma atroviride as a suitable test system to analyse the complex fungal physiology relating to coal solubilization. The two fungi can occur in two different growth substrate-controlled physiological states: a coal-solubilizing one, when cells are grown on glutamate or gluconate as substrate and a non-solubilizing one, when grown on carbohydrates. When grown on carbohydrates, F.oxysporum produces the pigment bikaverein. Purified bikaverein inhibits also coal solubilization by T. atroviride. The ability to solubilize coal is constitutive in F. oxysporum, while in T. atroviride, it has to be induced. 10 refs., 3 figs., 3 tabs.

  1. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  2. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  3. Non-aqueous slurries used as thickeners

    Energy Technology Data Exchange (ETDEWEB)

    Hatfield, J C

    1982-04-07

    A non-aqueous slurry is described that is suitable for use as a thickener or viscosifier in oil or gas drilling, fracturing, flow diversion completion or workover fluids. The slurry comprises a water-soluble cellulose ether polymer, a water-insoluble liquid hydrocarbon, a non-ionic surfactant having an HLB of from 7 to 14, and an organo modified clay. There also is described a process for thickening or viscosifying a drilling, fracturing, flow diversion, completion or workover fluid. The use of the slurry prevents bumping during addition to aqueous fluids. (27 claims)

  4. Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation.

    Science.gov (United States)

    Chang, Cheng-Hsiung; Yang, Shang-Shyng

    2009-02-01

    In order to prepare the multi-functional biofertilizer, thermo-tolerant phosphate-solubilizing microbes including bacteria, actinomycetes, and fungi were isolated from different compost plants and biofertilizers. Except Streptomycesthermophilus J57 which lacked pectinase, all isolates possessed amylase, CMCase, chitinase, pectinase, protease, lipase, and nitrogenase activities. All isolates could solubilize calcium phosphate and Israel rock phosphate; various isolates could solubilize aluminum phosphate, iron phosphate, and hydroxyapatite. During composting, biofertilizers inoculated with the tested microbes had a significantly higher temperature, ash content, pH, total nitrogen, soluble phosphorus content, and germination rate than non-inoculated biofertilizer; total organic carbon and carbon-to-nitrogen ratio showed the opposite pattern. Adding these microbes can shorten the period of maturity, improve the quality, increase the soluble phosphorus content, and enhance the populations of phosphate-solubilizing and proteolytic microbes in biofertilizers. Therefore, inoculating thermo-tolerant phosphate-solubilizing microbes into agricultural and animal wastes represents a practical strategy for preparing multi-functional biofertilizer.

  5. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  6. Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils

    Institute of Scientific and Technical Information of China (English)

    TAO Guang-Can; TIAN Shu-Jun; CAI Miao-Ying; XIE Guang-Hui

    2008-01-01

    Microorganisms capable of solubilizing and mineralizing phosphorus (P) pools in soils are considered vital in promoting P bioavailability. The study was conducted to screen and isolate inorganic P-solubilizing bacteria (IPSB) and organic P-mineralizing bacteria (OPMB) in soils taken from subtropical flooded and temperate non-flooded soils, and to compare inorganic P-solubilizing and organic P-solubilizing abilities between IPSB and OPMB. Ten OPMB strains were isolated and identified as Bacillus cereus and Bacillus megaterium, and five IPSB strains as B. megaterium, Burkholderia caryophylli,Pseudomonas ciehorii, and Pseudomonas syringae. P-solubilizing and -mineralizing abilities of the strains were measured using the methods taking cellular P into account. The IPSB strains exhibited inorganic P-sohibilizing abilities ranging between 25.4-41.7 μg P mL-1 and organic P-mineralizing abilities between 8.2-17.8 μg P mL-1. Each of the OPMB strains also exhibited both solubilizing and mineralizing abilities varying from 4.4 to 26.5 μg P mL-1 and from 13.8 to 62.8 μg P mL-1, respectively. For both IPSB and OPMB strains, most of the P mineralized from the organic P source was incorporated into the bacterial cells as cellular P. A significantly negative linear correlation (P < 0.05) was found between culture pH and P solubilized from inorganic P by OPMB strains. The results suggested that P solubilization and mineralization could coexist in the same bacterial strain.

  7. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Zhang, Lu; Huang, Jinhua; Burrell, Anthony

    2018-05-08

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte comprises a tetrafluorohydroquinone ether compound or a tetrafluorocatechol ether compound.

  8. Principles of interactions in non-aqueous electrolyte solutions

    NARCIS (Netherlands)

    Lyklema, J.

    2013-01-01

    In this paper a review is presented on the molecular interactions in non-aqueous media of low dielectric permittivity. Qualitative and quantitative distinctions with aqueous solutions are emphasized. The reviewed themes include dispersion forces, dissociation and association equilibria,

  9. Dense strongly non-ideal plasma generation by laser isobaric heating

    International Nuclear Information System (INIS)

    Kulik, P.P.; Rozanov, E.K.; Riabii, V.A.; Titov, M.A.

    1975-01-01

    A method of generation of a dense strongly non-ideal plasma by slow isobaric heating of a small target in a high inert gas medium is discussed. The characteristic life-time of dense plasma is 10 -3 sec. Estimations show that such a plasma is homogeneous. Conditions are found for temperature uniformity. The experimental results of the isobaric heating of a thin potassium foil target by a ruby laser beam at 500 atm are described. (Auth.)

  10. Organic non-aqueous cation-based redox flow batteries

    Science.gov (United States)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  11. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    Science.gov (United States)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. NON-AQUEOUS PIGMENTED INKJET INKS

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2010-01-01

    A non-aqueous inkjet ink includes a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  13. Non-aqueous nanoporous gold based supercapacitors with high specific energy

    International Nuclear Information System (INIS)

    Hou, Ying; Chen, Luyang; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2016-01-01

    In this study, we report that the supercapacitor performance of polypyrrole (PPy) in non-aqueous electrolytes can be dramatically improved by highly conductive nanoporous gold which acts as both the support of active PPy and the current collector of supercapacitors. The excellent electronic conductivity, rich porous structure and large surface area of the nanoporous electrodes give rise to a high specific capacitance and low internal resistance in non-aqueous electrolytes. Combining with a wide working potential window of ~ 2 V, the non-aqueous PPy-based supercapacitors show an extraordinary energy density and power density.

  14. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    HOOGMARTENS, IVAN; Bernaerts, Katrien; DEROOVER, GEERT

    2008-01-01

    A non-aqueous inkjet ink comprising C.I. Pigment Yellow 150 and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  15. Importance of Heat and Pressure for Solubilization of Recombinant Spider Silk Proteins in Aqueous Solution.

    Science.gov (United States)

    Jones, Justin A; Harris, Thomas I; Oliveira, Paula F; Bell, Brianne E; Alhabib, Abdulrahman; Lewis, Randolph V

    2016-11-23

    The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution.

  16. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins

    OpenAIRE

    Chae, Pil Seok; Rasmussen, Søren G. F.; Rana, Rohini; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A.; Kruse, Andrew C.; Nurva, Shailika; Loland, Claus J.; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G.; Guan, Lan

    2010-01-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces displayed by native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each of which is built around a central quaternary carbon atom derived from...

  17. Thermometric titration of some monoprotic and diprotic acids in aqueous and non-aqueous media.

    Science.gov (United States)

    Harries, R J

    1968-12-01

    Some mono- and diprotic acids have been titrated thermometrically with strong alkalis in aqueous and non-aqueous media. Thermograms with sharp arrest points were obtained, from which heats of neutralization were measured. Heats of neutralization in the media used were compared and an effect attributable to hydrogen bonding was found.

  18. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  19. Observations of non-linear plasmon damping in dense plasmas

    Science.gov (United States)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  20. Antidiabetic activity of aqueous extract and non polysaccharide fraction of Cynodon dactylon Pers.

    Science.gov (United States)

    Jarald, E E; Joshi, S B; Jain, D C

    2008-09-01

    Petroleum ether (60 degrees-80 degrees C), chloroform, acetone, ethanol, aqueous and crude hot water extracts of the whole plant of C. dactylon and the two fractions of aqueous extract were tested for antihyperglycaemic activity in glucose overloaded hyperglycemic rats and in alloxan induced diabetic model at two-dose levels, 200 and 400 mg/kg (po) respectively. The aqueous extract of C. dactylon and the non polysaccharide fraction of aqueous extract were found to exhibit significant antihyperglycaemic activity and only the non polysaccharide fraction was found to produce hypoglycemia in fasted normal rats. Treatment of diabetic rats with aqueous extract and non polysaccharide fraction of the plant decreased the elevated biochemical parameters, glucose, urea, creatinine, serum cholesterol, serum triglyceride, high density lipoprotein, low density lipoprotein, haemoglobin and glycosylated haemoglobin significantly. Comparatively, the non polysaccharide fraction of aqueous extract was found to be more effective than the aqueous extract.

  1. Effect of seed kernel aqueous extract from Annona squamosa against three mosquito vectors and its impact on non-target aquatic organisms

    Directory of Open Access Journals (Sweden)

    Ravichandran Ramanibai

    2016-09-01

    Full Text Available Objective: To evaluate the toxicity of Annona squamosa (A. squamosa aqueous (physiological saline seed soluble extract and its control of mosquito population. Methods: Ovicidal, larvicidal and pupicidal activity of A. squamosa crude soluble seed kernel extract was determined according to World Health Organization. The mortality of each mosquito stage was recorded after 24 h exposured to plant material. Toxicity assay was used to assess the non-target organisms with different concentrations according to Organisation for Economic Co-operation and Development. Results: The aqueous solubilized extracts of A. squamosa elicit the toxicity against all stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus, and the LC50 values against stages of egg, 1st-4th larvae were (1.45 and 1.26–2.5 mg/mL, (1.12 and 1.19–2.81 mg/ mL and (1.80 and 2.12–3.41 mg/mL respectively. The pupicidal activity also brought forth amended activity against all three mosquitoes species, and the LC50 values were consider to be 3.19, 2.42 and 4.47 mg/mL. Ultimately there was no mortality observed from non-target organism of Chironomus costatus. Conclusions: Based on the findings of the study, it suggests that the use of A. squamosa plant extract can act as an alternate insecticidal agents for controlling target mosquitoes without affecting the non-target aquatic insect. Further investigation to identify the active compounds and their mechanisms of action is recommended.

  2. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    International Nuclear Information System (INIS)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-01-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • 14 C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO 2 rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO 4 − ) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase 14 C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO 2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with 14 C-TCE. Transport experiments showed that MnO 4 − alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO 2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO 4 − , the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO 4 − improved TCE destruction by ∼16% over MnO 4 − alone (56.5% vs. 40.1%). These results support

  3. Non-dense domain operator matrices and Cauchy problems

    International Nuclear Information System (INIS)

    Lalaoui Rhali, S.

    2002-12-01

    In this work, we study Cauchy problems with non-dense domain operator matrices. By assuming that the entries of an unbounded operator matrix are Hille-Yosida operators, we give a necessary and sufficient condition ensuring that the part of this operator matrix generates a semigroup in the closure of its domain. This allows us to prove the well-posedness of the corresponding Cauchy problem. Our results are applied to delay and neutral differential equations. (author)

  4. Deep convolutional neural networks for dense non-uniform motion deblurring

    CSIR Research Space (South Africa)

    Cronje, J

    2015-11-01

    Full Text Available to form a dense non-uniform motion estimation map. Furthermore, a second CNN is trained to perform deblurring given a blurry image patch and the estimated motion vector. Combining the two trained networks result in a deep learning approach that can enhance...

  5. Complement-mediated solubilization of immune complexes. Solubilization inhibition and complement factor levels in SLE patients

    DEFF Research Database (Denmark)

    Baatrup, Gunnar; Petersen, Ivan; Kappelgaard, E

    1984-01-01

    Thirty-two of 36 serum samples from 19 SLE patients showed reduced capacity to mediate complement-dependent solubilization of immune complexes (IC). SLE patients with nephritis exerted the lowest complement-mediated solubilization capacity (CMSC) whereas sera from patients with inactive disease g...

  6. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  7. Phosphate solubilizing ability of two Arctic Aspergillus niger strains

    Directory of Open Access Journals (Sweden)

    Shiv Mohan Singh,

    2011-06-01

    Full Text Available Many filamentous fungi were isolated from the soils of Ny-Ålesund, Spitsbergen, Svalbard, and were screened in vitro for their phosphate solubilizing ability. Two strains of Aspergillus niger showed good tricalcium phosphate (TCP solubilizing ability in Pikovskaya's medium. The TCP solubilization index was calculated at varying levels of pH and temperatures. The ability of Aspergillus niger strain-1 to solubilize and release inorganic-P was 285 µg ml–1, while Aspergillus niger strain-2 solubilized 262 µg ml–1 from 0.5% TCP after seven days. This is the first report of TCP solubilization by Arctic strains that may serve as very good phosphate solubilizers in the form of biofertilizer.

  8. Solubilization of plutonium hydrous oxide by iron-reducing bacteria

    International Nuclear Information System (INIS)

    Rusin, P.A.; Quintana, L.; Brainard, J.R.; Strietelmeler, B.A.; Tait, C.D.; Ekberg, S.A.; Palmer, P.D.; Newton, T.W.; Clark, D.L.

    1994-01-01

    The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for α-FeOOH(s) and hydrous PuO 2 (s) suggests that iron-reducing bacteria may also reduce and solubilize plutonium. Bacillus strains were used to demonstrate that iron-reducing bacteria mediate the solubilization of hydrous PuO 2 (s) under anaerobic conditions. Up to ∼90% of the PuO 2 was biosolubilized in the presence of nitrilotriacetic acid (NTA) within 6-7 days. Biosolubilization occurred to a lesser extent (∼ 40%) in the absence of NTA. Little PuO 2 solubilization occurred in sterile culture media or in the presence of a non-iron-reducing Escherichia coli. These observations suggest a potentially attractive, environmentally benign strategy for the remediation of Pu-contaminated soils. 26 refs., 5 figs., 2 tabs

  9. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  10. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-component DNAPLS with surfactant solutions. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Laboratory studies were conducted at the State University of New York at Buffalo (SUNY) while numerical simulation and field work were undertaken by INTERA Inc. in collaboration with Martin Marietta Energy Systems Inc. at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). Ten of these were capable of solubilizing TCE to concentrations greater than 15,000 mg/L, compared to its aqueous solubility of 1,100 mg/L. Four surfactants were identified as good solubilizers of all three chlorinated solvents. Of these, a secondary alcohol ethoxylate was the first choice for in situ testing because of its excellent solubilizing ability and its low propensity to sorb. However, this surfactant did not meet the Commonwealth of Kentucky`s acceptance criteria. Consequently, it was decided to use a surfactant approved for use by the Food and Drug Administration as a food-grade additive. As a 1% micellar-surfactant solution, this sorbitan monooleate has a solubilization capacity of 16,000 mg TCE/L, but has a higher propensity to sorb to clays than has the alcohol ethoxylate.

  11. Adsorption of non-ionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium

    Science.gov (United States)

    Lerch, Jean-Philippe; Atanase, Leonard Ionut; Riess, Gérard

    2017-10-01

    A series of non-ionic ABC triblock copolymers, such as poly(butadiene)-b-poly(2-vinylpyrridine)-b-poly(ethylene oxide) (PB-P2VP-PEO) were synthesized by sequential anionic polymerizations. For these copolymers comprising an organo-soluble PB and a water-soluble PEO block, their P2VP middle block has been selected for its anchoring capacity on solid surfaces. The adsorption isotherms on TiO2 were obtained in heptane and in aqueous medium, as selective solvents. In both of these cases, the P2VP middle block provides the surface anchoring, whereas PB and PEO sequences are acting as stabilizing moieties in heptane and water respectively. By extension to ABC triblock copolymers of the scaling theory developed for diblock copolymers, the density of adsorbed chains could be correlated with the molecular characteristics of the PB-P2VP-PEO triblock copolymers. From a practical point a view, it could be demonstrated that these copolymers are efficient dispersing agents for the TiO2 pigments in both aqueous and non-aqueous medium.

  12. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    Science.gov (United States)

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  13. Electrochemical reactions of uranyl(VI) complexes in aqueous solution, non-aqueous solvents, and ionic liquids

    International Nuclear Information System (INIS)

    Ikeda, Yasuhisa

    2006-01-01

    Author's recent experimental results on the chemistry of U(V) in aqueous solution, non-aqueous solvents, and ionic solvents by cyclic voltametry are described. The U(V) was produced by electrochemical reduction of uranyl U(VI) ions or complexes such as carbonates, DMF(N, N-dimethylformamide), DMSO(dimethylsulfoxide), acetylacetonato, and other organic polydental ligands. The produced U(V) complexes were studied by spectrophotometry using optical-transmission thin-layer electrode. The U(V) complexes in non-aqueous solvents were found to be rather stable, they undergo ligand-dissociation reaction but not disproportionation reaction. The structure and electronic spectra as well as IR spectra of the complexes were studied. The present method was further developed to study the behavior of U(V) complexes in ionic liquids as molten salts, e.g., alkaline metals chlorides. Thus, the present research contributes to understanding the chemistry of 5fl system. Application to such nuclear technology as spent fuel reprocessing is discussed. (S. Ohno)

  14. Solubilization and characterization of a novel tyrosine kinase from rat adipocytes

    International Nuclear Information System (INIS)

    Yagaloff, K.A.; Czech, M.P.

    1987-01-01

    The authors report the efficient solubilization and characterization of a Triton X-100 insoluble tyrosine kinase from rat adipocytes. Plasma membranes were prepared from rat epididymal fat pads and were solubilized in 1% Triton X-100. Following centrifugation, the pellet was solubilized for 15 min at 4 0 C using both ionic and non-ionic detergents. Tyrosine kinase activity was measured in the soluble and particulate fractions using the exogenous substrate poly(glu-tyr) in a TCA precipitation assay. Reactions were performed in 50mM Hepes, 10mM MgCl 2 and 100μM gamma[ 32 P]-ATP (10Ci/mmol) at 4 0 C with or without 1mg/ml of the polyaminoacid. Incorporation rates of 100 to 1000 pmol/min/mg were obtained, while endogenous [ 32 P] incorporation was typically less than 10% of that in the presence of poly(glu-tyr). More than 75% of the tyrosine kinase activity was recovered in the soluble supernatant using this assay methodology. The solubilized tyrosine kinase was found to require Mg 2+ or Mn 2+ but preferred Mg 2+ and was inhibited by high levels of Mn 2+ . Kinase activity was strongly inhibited by Ca 2+ (>50% at 1mM), NaCl (>50% at 250mM) and NH 4 SO 4 (>50% at 50mM) but was activated by 10μM heparin and 5mM dithiothreitol. These properties distinguish the solubilized tyrosine kinase from other cellular tyrosine kinases

  15. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phua Choo Kwai Hoe; Khairuddin Abdul Rahim; Latiffah Norddin; Abdul Razak Ruslan

    2006-01-01

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  16. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Chokejaroenrat, Chanat, E-mail: chanat@sut.ac.th [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States); School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: cvtcns@ku.ac.th [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Dvorak, Bruce, E-mail: bdvorak1@unl.edu [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • {sup 14}C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO{sub 2} rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO{sub 4}{sup −}) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase {sup 14}C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO{sub 2} rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with {sup 14}C-TCE. Transport experiments showed that MnO{sub 4}{sup −} alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO{sub 2} rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO{sub 4}{sup −}, the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO{sub 4}{sup −} improved TCE destruction by

  17. Surfactant-enhanced aquifer remediation at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Jackson, R.E.; Londergan, J.T.; Pickens, J.

    1995-01-01

    Many DOE facilities are situated in areas of sand and gravel which have become polluted with dense, non-aqueous phase liquids or DNAPLs, such as chlorinated solvents, from the various industrial operations at these facilities. The presence of such DNAPLs in sand and gravel aquifers is now recognized as the principal factor in the failure of standard ground-water remediation methods, i.e., open-quotes pump-and-treatclose quotes operations, to decontaminate such systems. The principal objective of this study is to demonstrate that multi-component DNAPLs can be readily solubilized in sand and gravel aquifers by dilute surfactant solutions

  18. Fatty acid solubilizer from the oral disk of the blowfly.

    Directory of Open Access Journals (Sweden)

    Yuko Ishida

    Full Text Available Blowflies are economic pests of the wool industry and potential vectors for epidemics. The establishment of a pesticide-free, environmentally friendly blowfly control strategy is necessary. Blowflies must feed on meat in order to initiate the cascade of events that are involved in reproduction including juvenile hormone synthesis, vitellogenesis, and mating. During feeding blowflies regurgitate salivary lipase, which may play a role in releasing fatty acids from triglycerides that are found in food. However, long-chain fatty acids show low solubility in aqueous solutions. In order to solubilize and ingest the released hydrophobic fatty acids, the blowflies must use a solubilizer.We applied native PAGE, Edman degradation, cDNA cloning, and RT-PCR to characterize a protein that accumulated in the oral disk of the black blowfly, Phormia regina. In situ hybridization was carried out to localize the expression at the cellular level. A fluorescence competitive binding assay was used to identify potential ligands of this protein.A protein newly identified from P. regina (PregOBP56a belonged to the classic odorant-binding protein (OBP family. This gene was expressed in a cluster of cells that was localized between pseudotracheae on the oral disk, which are not accessory cells of the taste peg chemosensory sensilla that normally synthesize OBPs. At pH 7 and pH 6, PregOBP56a bound palmitic, stearic, oleic, and linoleic acids, that are mainly found in chicken meat. The binding affinity of PregOBP56a decreased at pH 5. We propose that PregOBP56a is a protein that solubilizes fatty acids during feeding and subsequently helps to deliver the fatty acids to the midgut where it may help in the process of reproduction. As such, PregOBP56a is a potential molecular target for controlling the blowfly.

  19. An efficient method for qualitative screening of phosphate-solubilizing bacteria.

    Science.gov (United States)

    Mehta, S; Nautiyal, C S

    2001-07-01

    An efficient protocol was developed for qualitative screening of phosphate-solubilizing bacteria, based upon visual observation. Our results indicate that, by using our formulation containing bromophenol blue, it is possible to quickly screen on a qualitative basis the phosphate-solubilizing bacteria. Qualitative analysis of the phosphate solubilized by various groups correlated well with grouping based upon quantitative analysis of bacteria isolated from soil, effect of carbon, nitrogen, salts, and phosphate solubilization-defective transposon mutants. However, unlike quantitative analysis methods that involve time-consuming biochemical procedures, the time for screening phosphate-solubilizing bacteria is significantly reduced by using our simple protocol. Therefore, it is envisaged that usage of this formulation based upon qualitative analysis will be salutary for the quick screening of phosphate-solubilizing bacteria. Our results indicate that the formulation can also be used as a quality control test for expeditiously screening the commercial bioinoculant preparations, based on phosphate solubilizers.

  20. Solid substrate fermentation of lignite by the coal-solubilizing mould, Trichoderma atroviride, in a new type of bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Holker, U.; Hofer, M. [University of Bonn, Bonn (Germany)

    2002-07-01

    Trichoderma atroviride CBS 349 is able to solubilize lignite. The mould was cultured under non-sterile conditions in a new type of bioreactor for solid substrate fermentation. German lignite (lithotype A, Bergheim) was used as complex solid substrate. Over 40 days 140 g of 1.5 kg lignite held in a 25 1-bioreactor was solubilized by the fungus.

  1. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  2. ELECTROCHEMICAL BEHAVIOUR OF METHYLENE BLUE IN NON-AQUEOUS SOLVENTS

    International Nuclear Information System (INIS)

    Caram, J.A.; Suárez, J.F. Martínez; Gennaro, A.M.; Mirífico, M.V.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The dye is electro-reduced in two separated monoelectronic charge transfers. • Solvent/supporting electrolyte/acid/base modifies the electrochemical parameters. • A dissociation equilibrium of the dye in non-aqueous solvent is proposed. • The electro-generated and stable dye-radical is also chemically produced in EDA or KOH/DMF. • A new species is reversibly formed in KOH/EtOH or ACN. - Abstract: The electrochemical behaviour of methylene blue in solution of non-aqueous solvents with different supporting electrolytes was studied by cyclic voltammetry. Dye electro-reduction presents two well-defined processes of monoelectronic charge transfer yielding a free radical in the first process and an anion in the second electron transfer. Free radical and anion are long living species in some of the studied media. Effects of supporting electrolyte and solvent on the peak potentials, the peak current functions and the reversibility of the charge transfer processes are reported. A dissociation equilibrium of the dye in solution of non-aqueous solvents and the acid or base added determine markedly the electrochemical responses. In the particular cases of KOH/DMF or EDA basic media the chemical formation of the stable methylene blue radical was detected and it was characterized by EPR spectroscopy. A general reaction scheme is proposed

  3. A critical overview of non-aqueous capillary electrophoresis. Part II: separation efficiency and analysis time.

    Science.gov (United States)

    Kenndler, Ernst

    2014-03-28

    A survey of the literature on non-aqueous capillary zone electrophoresis leaves one with the impression of a prevailing notion that non-aqueous conditions are principally more favorable than conventional aqueous media. Specifically, the application of organic solvents in capillary zone electrophoresis (CZE) is believed to provide the general advantages of superior separation efficiency, higher applicable electric field strength, and shorter analysis time. These advantages, however, are often claimed without providing any experimental evidence, or based on rather uncritical comparisons of limited sets of arbitrarily selected separation results. Therefore, the performance characteristics of non-aqueous vs. aqueous CZE certainly deserve closer scrutiny. The primary intention of Part II of this review is to give a critical survey of the literature on non-aqueous capillary electrophoresis (NACE) that has emerged over the last five years. Emphasis is mainly placed on those studies that are concerned with the aspects of plate height, plate number, and the crucial mechanisms contributing to zone broadening, both in organic and aqueous conditions. To facilitate a deeper understanding, this treatment covers also the theoretical fundamentals of peak dispersion phenomena arising from wall adsorption; concentration overload (electromigration dispersion); longitudinal diffusion; and thermal gradients. Theoretically achievable plate numbers are discussed, both under limiting (at zero ionic strength) and application-relevant conditions (at finite ionic strength). In addition, the impact of the superimposed electroosmotic flow contributions to overall CZE performance is addressed, both for aqueous and non-aqueous media. It was concluded that for peak dispersion due to wall adsorption and due to concentration overload (electromigration dispersion, leading to peak triangulation) no general conjunction with the solvent can be deduced. This is in contrast to longitudinal diffusion: the

  4. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology.

    Science.gov (United States)

    Gupta, Anshu; Khare, S K

    2009-01-01

    Solvent-tolerant microbes are a newly emerging class that possesses the unique ability to thrive in the presence of organic solvents. Their enzymes adapted to mediate cellular and metabolic processes in a solvent-rich environment and are logically stable in the presence of organic solvents. Enzyme catalysis in non-aqueous/low-water media is finding increasing applications for the synthesis of industrially important products, namely peptides, esters, and other trans-esterification products. Solvent stability, however, remains a prerequisite for employing enzymes in non-aqueous systems. Enzymes, in general, get inactivated or give very low rates of reaction in non-aqueous media. Thus, early efforts, and even some recent ones, have aimed at stabilization of enzymes in organic media by immobilization, surface modifications, mutagenesis, and protein engineering. Enzymes from solvent-tolerant microbes appear to be the choicest source for studying solvent-stable enzymes because of their unique ability to survive in the presence of a range of organic solvents. These bacteria circumvent the solvent's toxic effects by virtue of various adaptations, e.g. at the level of the cytoplasmic membrane, by degradation and transformation of solvents, and by active excretion of solvents. The recent screening of these exotic microbes has generated some naturally solvent-stable proteases, lipases, cholesterol oxidase, cholesterol esterase, cyclodextrin glucanotransferase, and other important enzymes. The unique properties of these novel biocatalysts have great potential for applications in non-aqueous enzymology for a range of industrial processes.

  5. Improved glucose-neopentyl glycol (GNG) amphiphiles for membrane protein solubilization and stabilization.

    Science.gov (United States)

    Cho, Kyung Ho; Bae, Hyoung Eun; Das, Manabendra; Gellman, Samuel H; Chae, Pil Seok

    2014-02-01

    Membrane proteins are inherently amphipathic and undergo dynamic conformational changes for proper function within native membranes. Maintaining the functional structures of these biomacromolecules in aqueous media is necessary for structural studies but difficult to achieve with currently available tools, thus necessitating the development of novel agents with favorable properties. This study introduces several new glucose-neopentyl glycol (GNG) amphiphiles and reveals some agents that display favorable behaviors for the solubilization and stabilization of a large, multi-subunit membrane protein assembly. Furthermore, a detergent structure-property relationship that could serve as a useful guideline for the design of novel amphiphiles is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  7. Laboratory and pilot field-scale testing of surfactants for environmental restoration of chlorinated solvent DNAPLs

    International Nuclear Information System (INIS)

    Jackson, R.E.; Fountain, J.C.

    1994-01-01

    This project is composed of two phases and has the objective of demonstrating surfactant-enhanced aquifer remediation (SEAR) as a practical remediation technology at DOE sites with ground water contaminated by dense, non-aqueous phase liquids (DNAPLs), in particular, chlorinated solvents. The first phase of this project, Laboratory and Pilot Field Scale Testing, which is the subject of the work so far, involves (1) laboratory experiments to examine the solubilization of multiple component DNAPLs, e.g., solvents such as perchloroethylene (PCE) and trichloroethylene (TCE), by dilute surfactant solutions, and (2) a field test to demonstrate SEAR technology on a small scale and in an existing well

  8. Enhanced solubilization of curcumin in mixed surfactant vesicles.

    Science.gov (United States)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S K; Chaudhary, Ganga Ram; Mehta, S K

    2016-05-15

    Self-assemblies of equimolar double and single chain mixed ionic surfactants, with increasing numbers of carbon atoms of double chain surfactant, were analyzed on the basis of fluorescence and conductivity results. Attempts were also made to enhance the solubilization of curcumin in aqueous equimolar mixed surfactant systems. Mixed surfactant assembly was successful in retarding the degradation of curcumin in alkaline media (only 25-28 40% degraded in 10h at pH 13). Fluorescence spectroscopy and fluorescence quenching methods were employed to predict the binding position and mechanism of curcumin with self-assemblies. Results indicate that the interactions take place according to both dynamic and static quenching mechanisms and curcumin was distributed in a palisade layer of mixed aggregates. Antioxidant activity (using DPPH radical) and biocompatibility (using calf-thymus DNA) of curcumin-loaded mixed surfactant formulations were also evaluated. The prepared systems improved the stability, solubility and antioxidant activity of curcumin and additionally are biocompatible. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Comparison of Aqueous and 1-Octanol Solubility as well as Liquid?Liquid Distribution of Acyclovir Derivatives and Their Complexes with Hydroxypropyl-?-Cyclodextrin

    OpenAIRE

    Ko?bia?, Ma?gorzata; Gierycz, Pawe?

    2013-01-01

    The aim of the presented work is the comparison of aqueous and 1-octanol solubilities of different acyclovir derivatives and their hydroxypropyl-?-cyclodextrin inclusion complexes. The solubility measurements were carried out at different temperatures over the range 25?45??C using water, 1-octanol, water saturated with 1-octanol, 1-octanol saturated with water, buffered aqueous solutions (pH?=?5.5 and 7.0) and buffered aqueous solutions containing cyclodextrin as solvents. The aqueous solubil...

  10. Effect of biosurfactants on the aqueous solubility of PCE and TCE.

    Science.gov (United States)

    Albino, John D; Nambi, Indumathi M

    2009-12-01

    The effect of biosurfactants on the solubility of tetrachloroethylene (PCE) and trichloroethylene (TCE) was studied in batch experiments pertaining to their use for solubilization and mobilization of such contaminants in surfactant enhanced aquifer remediation. Biosurfactants, rhamnolipid and surfactin used in solubility studies were synthesized in our laboratory by Pseudomonas aeruginosa (MTCC 2297) and Bacillus subtilis (MTCC 2423), respectively. The efficiency of the biosurfactants in solubilizing the chlorinated solvents was compared to that of synthetic surfactants. The Weight Solubilization Ratio (WSR) values for solubilization of PCE and TCE by biosurfactants were very high compared to the values obtained for synthetic surfactants. Surfactin proved to be a better surfactant over rhamnolipid. The WSR of surfactin on solubilization of PCE and TCE were 3.83 and 12.5, respectively, whereas the values obtained for rhamnolipid were 2.06 and 8.36. The solubility of the chlorinated solvents by biosurfactants was considerably affected by the changes in pH. The aqueous solubility of PCE and TCE increased tremendously with decrease in pH. The solubility of biosurfactants was observed to decrease with the pH, favoring partitioning of surfactants into the chlorinated solvents in significant amounts at lower pH. The excessive accumulation of biosurfactants at the interface facilitated interfacial tension reductions resulting in higher solubility of the chlorinated solvents at pH less than 7.

  11. Solubilization of paraffinic deposits for microemulsions

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Erika A.S.; Soares, Ranieri G.F.; Nascimento, Roseane E.S.; Dantas Neto, Afonso A.; Barros Neto, Eduardo L. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The oil company has been intensifying its efforts to find more efficient solutions for the problems related to the paraffin in wells and transport lines. When applied in the flow lines, the solvents dissolve the paraffin and they must be used hot, since the temperature increases the solubility of the wax and, consequently, its removal rate. The microemulsions appear as an alternative capable of acting in the solubilization and in the inhibition of the formation of deposits due to its great interfacial area, low superficial tension and high capacity of solubilization. They present some advantages in relation to the methods of use of chemical products due to its flexibility of composition in which they can be used, presenting low toxicity and inflammability, without any loss of its capacity of solubilization. The use of oil-in-water microemulsion aims to solubilized paraffin in the disperse phase, where one can find the apolar part of the molecule of the surfactant and the also apolar chain of paraffin, occurring, therefore the 'encapsulation' of the crystal, prohibiting the growth of the chain due to the affinity of paraffin and oil. In this in case, it is possible to transport the inserted paraffin in direct micelles, reducing the precipitation and optimizing the transport. (author)

  12. Influence of clay and surfactant content in non-aqueous fluid rheology

    International Nuclear Information System (INIS)

    Guedes, I.C.; Gomes, N.L.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as viscosity agent in the production of non-aqueous fluids cannot be used without organic treatment for their surfaces to become hydrophobic. These clays are called organophilic clays, and are generally obtained by adding, in an aqueous way, ionic or a nonionic surfactant. Recent studies of the variables involved in the dispersion of bentonite clays and in the process of organophilization, showed their lack of influence. This work aims to study the influence of clay content and surfactants on the rheology of nonaqueous fluids. To this end, the clays were treats and characterized, evidencing the incorporation of the surfactant, and then formulated non-aqueous fluids, following PETROBRAS standards, being possible to verify the influence of clay content and surfactant both from the point of view as the characterizing and rheological behavior. (author)

  13. Nanodisc-solubilized membrane protein library reflects the membrane proteome

    OpenAIRE

    Marty, Michael T.; Wilcox, Kyle C.; Klein, William L.; Sligar, Stephen G.

    2013-01-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membr...

  14. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... To evaluate phosphate solubilization of ... and MHB had the potential to solubilize these phosphates by decreasing the pH and confirmed that ... Minerals like N, P, K, Ca, S, Zn, Cu and Sr are ... sterile distilled water, chopped, homogenized in 10 ml sterile .... The role of carbon source is important in mineral.

  15. Solubilization of human erythrocyte membranes by ASB detergents

    Directory of Open Access Journals (Sweden)

    C.C. Domingues

    2008-09-01

    Full Text Available Understanding the membrane solubilization process and finding effective solubilizing agents are crucial challenges in biochemical research. Here we report results on the interaction of the novel linear alkylamido propyl dimethyl amino propanosulfonate detergents, ASB-14 and ASB-16, with human erythrocyte membranes. An estimation of the critical micelle concentration of these zwitterionic detergents (ASB-14 = 100 µM and ASB-16 = 10 µM was obtained using electron paramagnetic resonance. The amount of proteins and cholesterol solubilized from erythrocytes by these detergents was then determined. The hemolytic activities of the ASB detergents were assayed and the detergent/lipid molar ratios for the onset of hemolysis (Re sat and total lysis (Re sol were calculated, allowing the determination of the membrane binding constants (Kb. ASB-14 presented lower membrane affinity (Kb = 7050 M-1 than ASB-16 (Kb = 15610 M-1. The amount of proteins and cholesterol solubilized by both ASB detergents was higher while Re sat values (0.22 and 0.08 detergent/lipid for ASB-14 and ASB-16, respectively were smaller than those observed with the classic detergents CHAPS and Triton X-100. These results reveal that, besides their well-known use as membrane protein solubilizers to enhance the resolution of two dimensional electrophoresis/mass spectrometry, ASB-14 and ASB-16 are strong hemolytic agents. We propose that the physicochemical properties of ASB detergents determine their membrane disruption efficiency and can help to explain the improvement in the solubilization of membrane proteins, as reported in the literature.

  16. Mineral phosphate solubilizing bacterial community in agro-ecosystem

    African Journals Online (AJOL)

    Mineral phosphate solubilizing bacterial community in agro-ecosystem. N Saha, S Biswas. Abstract. The present communication deals with the assessment of phosphate solubilizing bacterial community structure across artificially created fertility gradient with regards to N, P and K status of soil in the experimental site.

  17. Non-aqueous titration of hydroxamic acids.

    Science.gov (United States)

    Stamey, T W; Christian, R

    1966-01-01

    Benzohydroxamic acid is titrated with 0.1M tetrabutyl-anunonium hydroxide in nine non-aqueous solvents with three different indicating electrodes. The best results are obtained using dimethylformamide as solvent and platinum-platinum electrodes. Four monoprotic and three diprotic hydroxamie acids and iron(III) benzohydroxamate have been successfully titrated with this system. The effect of quantitative additions of carbon dioxide to the titrant on its apparent molarity are found to be dependent on the amount added, the strength and sample size of acid titrated and the solvent used.

  18. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from ...

  19. Improved solubilization of curcumin with a microemulsification formulation

    Directory of Open Access Journals (Sweden)

    ROMICĂ CREŢU

    Full Text Available Due to the large number of bioactive substances, with low and very low solubility in water, new and improved investigation methods were developed. Researches in this area have shown that lipid systems in lipophilic substances formulation increase their bioavailability and prevent or reduce the toxicological risk because most of the components involved in the formulation are of natural origin, with a structure compatible with biological membranes components. Among the lipid systems used in the leaching, transport and release of lipophilic substances there are: liposomes, solid lipid nanoparticles, double and single emulsions, autoemulsionante and auto-microemulsionante lipid systems. The last are the subject of the present research and meet specialists in concern for the harmonization of cost-benefit-risk in order to improve population health. Curcumin [(1E, 6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione] is a yellow pigment derived from the rhizome of the plant Curcuma Longa with phenol groups and conjugated double bounds which is unstable at light and basic pH, degrading within 30 minutes. The aim of this study is curcumin solubilization used as alimentary dye in automicroemulsionante systems. Dye/oil/surfactant/cosurfactant mixing ratio was made, based on quaternary phase diagrams. Mesofazice structures were revealed by conductivity and viscosimetric analysis. A curcumin solubilization system in aqueous medium was obtained. On the other hand, this paper studies the colour evolution of these automicroemulsionante systems comparing with hexane dye solution. The use of the chromatic attributes L*, a* and b* and L*, C* and hab, suggested by the Commission Internationale de l’Eclairage (CIE (i.e., the CIELAB system, obtained from direct transmitance measurements, which made it possible to follow the evolution of colour.

  20. Rock phosphate solubilizing and cellulolytic actinomycete isolates of earthworm casts

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Four microbial isolates, OP2, OP3, OP6, and OP7, of earthworm casts of Pontoscolex corethrurus were found to be acid tolerant actinomycetes and efficient rock phosphate (RP) solubilizers that could grow fast on NH4Cl-enriched or N-free carboxymethyl cellulose or glucose as sole carbon source. CMC (carboxymethyl cellulose) induced production of extracellular cellulase enzyme and the production of reducing sugar in all the isolates. RP solubilizing power was observed to be inversely related to glucose consumption. The most efficient RP solubilizer was found to consume the least glucose. Growth was faster on cellulose than on glucose media. N-free CMC induced greater glucose production than NH4Cl-enriched CMC medium. Both CMC and glucose media were acidified by all the isolates, however, RP solubilizing power decreased with acidification. Solubilization power was greatest with isolate OP7, which also produced the greatest amount of reducing sugar per gram CMC. Both RP solubilizing power and the cellulolytic efficiency varied among isolates. A minimum of 631 µg P/0.1 g RP and a maximum of 951.4 µg P/0.1 g RP was recorded.

  1. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.; Xu, Shaomao; Archer, Lynden A.

    2013-01-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved

  2. Solubilization of proteins: the importance of lysis buffer choice.

    Science.gov (United States)

    Peach, Mandy; Marsh, Noelle; Miskiewicz, Ewa I; MacPhee, Daniel J

    2015-01-01

    The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.

  3. Application of Potential Phosphate-Solubilizing Bacteria and Organic Acids on Phosphate Solubilization from Phosphate Rock in Aerobic Rice

    Directory of Open Access Journals (Sweden)

    Qurban Ali Panhwar

    2013-01-01

    Full Text Available A study was conducted at Universiti Putra Malaysia to determine the effect of phosphate-solubilizing bacteria (PSB and organic acids (oxalic & malic on phosphate (P solubilization from phosphate rock (PR and growth of aerobic rice. Four rates of each organic acid (0, 10, 20, and 30 mM, and PSB strain (Bacillus sp. were applied to aerobic rice. Total bacterial populations, amount of P solubilization, P uptake, soil pH, and root morphology were determined. The results of the study showed significantly high P solubilization in PSB with organic acid treatments. Among the two organic acids, oxalic acid was found more effective compared to malic acid. Application of oxalic acid at 20 mM along with PSB16 significantly increased soluble soil P (28.39 mg kg−1, plant P uptake (0.78 P pot−1, and plant biomass (33.26 mg. Addition of organic acids with PSB and PR had no influence on soil pH during the planting period. A higher bacterial population was found in rhizosphere (8.78 log10 cfu g−1 compared to the nonrhizosphere and endosphere regions. The application of organic acids along with PSB enhanced soluble P in the soil solution, improved root growth, and increased plant biomass of aerobic rice seedlings without affecting soil pH.

  4. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli , Elisabeth

    2017-01-01

    International audience; Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liq...

  5. NABTIT-a computer program for non-aqueous acid-base titration.

    Science.gov (United States)

    Budevsky, O; Zikolova, T; Tencheva, J

    1988-11-01

    A program NABTIT written in BASIC has been developed for the treatment of data (ml/mV) obtained from potentiometric acid-base titrations in non-aqueous solvents. No preliminary information on equilibrium constants is required for the input. The treatment of the data is based on known equations and uses least-squares procedures. The essence of the method is to determine the equivalence volume (V(e)) accurately, and to use the data acquired by adding titrant after V(e) for the pH*-calibration of the non-aqueous potentiometric cell. As a by-product or the calculations, the pK* value of the substance titrated is also obtained, and in some cases the autoprotolysis constant of the medium (pK*(s)). Good agreement between experiment and theory was found in the treatment of data obtained for water and methanol-water mixtures.

  6. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    International Nuclear Information System (INIS)

    Afanasiev, Pavel

    2015-01-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO 4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O 4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO 4 (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Canon-aqueous liquids. • Narrow size distributions explained by ionic association in non-aqueous media. • Nanoparticles of less than 10 nm size and highest ever specific surface areas were obtained. • Optical gap of scheelites changes in the series Ca

  7. Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes

    NARCIS (Netherlands)

    Dekker, Jan P.; Germano, Marta; Roon, Henny van; Boekema, Egbert J.

    2002-01-01

    We studied the aggregation state of Photosystem II in stacked and unstacked thylakoid membranes from spinach after a quick andmild solubilization with the non-ionic detergent n-dodecyl-α,D-maltoside, followed by analysis by diode-array-assisted gel filtration chromatography and electron microscopy.

  8. [Phosphate-solubilizing activity of aerobic methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Kaparullina, E N; Doronina, N V; Trotsenko, Iu A

    2014-01-01

    Phosphate-solubilizing activity was found in 14 strains of plant-associated aerobic methylobacteria belonging to the genera Methylophilus, Methylobacillus, Methylovorus, Methylopila, Methylobacterium, Delftia, and Ancyclobacter. The growth of methylobacteria on medium with methanol as the carbon and energy source and insoluble tricalcium phosphate as the phosphorus source was accompanied by a decrease in pH due to the accumulation of up to 7 mM formic acid as a methanol oxidation intermediate and by release of 120-280 μM phosphate ions, which can be used by both bacteria and plants. Phosphate-solubilizing activity is a newly revealed role of methylobacteria in phytosymbiosis.

  9. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    Science.gov (United States)

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  10. Rheology of dense suspensions of non colloidal particles

    OpenAIRE

    Guazzelli Élisabeth

    2017-01-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical co...

  11. Occurrence of symbiotic fungi and rhizospheric phosphate solubilization in weeds - doi: 10.4025/actasciagron.v35i1.15047

    Directory of Open Access Journals (Sweden)

    Edson Aparecido dos Santos

    2012-08-01

    Full Text Available Studies on the ecology of the organisms involved in the production process are necessary for the development of sustainable agriculture, and sustainability is currently closely linked to the profitability of production. The objective of this study was to verify the occurrence of arbuscular mycorrhizal fungi in weeds infesting Brazilian crops and to evaluate the inorganic phosphate solubilization potential of the associated microbiota. A total of 36 weed species were evaluated for the occurrence of mycorrhizae; of these, 11 were selected to evaluate their potential for total and relative phosphate solubilization. All of the species demonstrated mycorrhizal colonization, including a member of the Brassicaceae family, which is usually assumed to be non-mycorrhizal. In most of the species, morphological types of arbuscular and coiled hyphae were observed, with the coiled hyphae being the most common in the grasses. Dark septate endophytic fungi were observed in most of the plants. The weeds presented different potentials for P solubilization in the rhizosphere; Amaranthus retroflexus, Bidens pilosa and Leonotis nepetaefolia showed high values of relative phosphate solubilization. This is the first report on the mycorrhizae and phosphate solubilization activity in weeds in Brazil.

  12. Solubilization of Na,K-ATPase from rabbit kidney outer medulla using only C12E8

    Directory of Open Access Journals (Sweden)

    H.L. Santos

    2002-03-01

    Full Text Available SDS, C12E8, CHAPS or CHAPSO or a combination of two of these detergents is generally used for the solubilization of Na,K-ATPase and other ATPases. Our method using only C12E8 has the advantage of considerable reduction of the time for enzyme purification, with rapid solubilization and purification in a single chromatographic step. Na,K-ATPase-rich membrane fragments of rabbit kidney outer medulla were obtained without adding SDS. Optimum conditions for solubilization were obtained at 4ºC after rapid mixing of 1 mg of membrane Na,K-ATPase with 1 mg of C12E8/ml, yielding 98% recovery of the activity. The solubilized enzyme was purified by gel filtration on a Sepharose 6B column at 4ºC. Non-denaturing PAGE revealed a single protein band with phosphomonohydrolase activity. The molecular mass of the purified enzyme estimated by gel filtration chromatography was 320 kDa. The optimum apparent pH obtained for the purified enzyme was 7.5 for both PNPP and ATP. The dependence of ATPase activity on ATP concentration showed high (K0.5 = 4.0 µM and low (K0.5 = 1.4 mM affinity sites for ATP, with negative cooperativity. Ouabain (5 mM, oligomycin (1 µg/ml and sodium vanadate (3 µM inhibited the ATPase activity of C12E8-solubilized and purified Na,K-ATPase by 99, 81 and 98.5%, respectively. We have shown that Na,K-ATPase solubilized only with C12E8 can be purified and retains its activity. The activity is consistent with the form of (alphaß2 association.

  13. Non-aqueous energy storage devices using graphene nanosheets synthesized by green route

    Directory of Open Access Journals (Sweden)

    Dattakumar Mhamane

    2013-04-01

    Full Text Available In this paper we report the use of triethylene glycol reduced graphene oxide (TRGO as an electrode material for non-aqueous energy storage devices such as supercapacitors and Li-ion batteries. TRGO based non–aqueous symmetric supercapacitor is constructed and shown to deliver maximum energy and power densities of 60.4 Wh kg–1 and 0.15 kW kg–1, respectively. More importantly, symmetric supercapacitor shows an extraordinary cycleability (5000 cycles with over 80% of capacitance retention. In addition, Li-storage properties of TRGO are also evaluated in half-cell configuration (Li/TRGO and shown to deliver a reversible capacity of ∼705 mAh g–1 with good cycleability at constant current density of 37 mA g–1. This result clearly suggests that green-synthesized graphene can be effectively used as a prospective electrode material for non-aqueous energy storage systems such as Li-ion batteries and supercapacitors.

  14. Quantification of solubilized hemicellulose from pretreated lignocellulose by acid hydrolysis and high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Ploeger, A.; Simonsen, T.; Woidemann, A.; Schmidt, A.S.

    1996-11-01

    An investigation of the acid hydrolysis and HPLC analysis have been carried out in order to optimise the quantification of the solubilized hemicellulose fraction from wheat straw lignocellulose after pretreatment. Different acid hydrolyses have been performed to identify which conditions (concentrations of acid and hydrolysis time) gave the maximal quantification of the solubilized hemicellulose (measured as monosaccharides). Four different sugars were identified: xylose, arabinose, glucose and galactose. Some hydrolyses were carried out on aqueous samples and some using freeze-dried samples. The best overall hydrolysis was obtained by treatment of an aqueous sample with 4 %w/v sulfuric acid for 10 minutes. These conditions were not optimal for the determination of glucose, which was estimated by using a correction factor. A purification step was needed following the acid hydrolysis, and included a sulfate precipitation by barium hydroxide and elimination of remaining ions by mixed-bed ion exchange. The level of barium hydroxide addition significantly reduced the recovery of the sugars. Thus, lower than equivalent amounts of barium hydroxide were added in the purification step. For monosaccharide analysis two different HPLC columns, i.e. Aminex HPX-87P and HPX-87H with different resin ionic forms, lead (Pb{sup 2+}) and hydrogen (H{sup +}), respectively. The lead column (HPX-87P) separated all four sugars in the acid hydrolyzates, but sample purification required the removal of all interfering impurities, which resulted in poor reproducibility and a sugar recovery below 50%. The hydrogen column (HPX-87H) separated only glucose, xylose and arabinose, whereas galactose was not separated from xylose; however, the column was less sensitive towards impurities and gave improved recovery and reproducibility. Therefore, the hydrogen column (HPX-87H) was chosen for routine quantification of the hydrolyzed hemicellulose sugars. (au) 11 tabs., 8 ills., 19 refs.

  15. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Shi, Mingzi; Cao, Zhenyu; Lu, Qian; Yang, Tianxue; Fan, Yuying; Wei, Zimin

    2018-01-01

    Enriched phosphate-solubilizing bacteria (PSB) agent were acquired by domesticated cultivation, and inoculated into kitchen waste composting in different stages. The effect of different treatments on organic acids production, tricalcium phosphate (TCP) solubilization and their relationship with bacterial community were investigated during composting. Our results pointed out that inoculation affected pH, total acidity and the production of oxalic, lactic, citric, succinic, acetic and formic acids. We also found a strong advantage in the solubilization of TCP and phosphorus (P) availability for PSB inoculation especially in the cooling stage. Redundancy analysis and structural equation models demonstrated inoculation by different methods changed the correlation of the bacterial community composition with P fractions as well as organic acids, and strengthened the cooperative function related to P transformation among species during composting. Finally, we proposed a possible mechanism of P solubilization with enriched PSB inoculation, which was induced by bacterial community and organic acids production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  18. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  19. Prediction of the theoretical capacity of non-aqueous lithium-air batteries

    International Nuclear Information System (INIS)

    Tan, Peng; Wei, Zhaohuan; Shyy, W.; Zhao, T.S.

    2013-01-01

    Highlights: • The theoretical capacity of non-aqueous lithium-air batteries is predicted. • Key battery design parameters are defined and considered. • The theoretical battery capacity is about 10% of the lithium capacity. • The battery mass and volume changes after discharge are also studied. - Abstract: In attempt to realistically assess the high-capacity feature of emerging lithium-air batteries, a model is developed for predicting the theoretical capacity of non-aqueous lithium-air batteries. Unlike previous models that were formulated by assuming that the active materials and electrolyte are perfectly balanced according to the electrochemical reaction, the present model takes account of the fraction of the reaction products (Li 2 O 2 and Li 2 O), the utilization of the onboard lithium metal, the utilization of the void volume of the porous cathode, and the onboard excess electrolyte. Results show that the gravimetric capacity increases from 1033 to 1334 mA h/g when the reaction product varies from pure Li 2 O 2 to pure Li 2 O. It is further demonstrated that the capacity declines drastically from 1080 to 307 mA h/g when the case of full utilization of the onboard lithium is altered to that only 10% of the metal is utilized. Similarly, the capacity declines from 1080 to 144 mA h/g when the case of full occupation of the cathode void volume by the reaction products is varied to that only 10% of the void volume is occupied. In general, the theoretical gravimetric capacity of typical non-aqueous lithium-air batteries falls in the range of 380–450 mA h/g, which is about 10–12% of the gravimetric capacity calculated based on the energy density of the lithium metal. The present model also facilitates the study of the effects of different parameters on the mass and volume change of non-aqueous lithium-air batteries

  20. Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (Prepared by reverse-phase evaporation) by Triton X-100 octyl glucoside, and sodium cholate

    International Nuclear Information System (INIS)

    Paternostre, M.T.; Roux, M.; Rigaud, J.L.

    1988-01-01

    The mechanisms governing the solubilization by Triton X-100, octyl glucoside, and sodium cholate of large unilamellar liposomes prepared by reverse-phase evaporation were investigated. The solubilization process is described by the three-stage model previously proposed for the detergents. In stage I, detergent monomers are incorporated into the phospholipid bilayers until they saturate the liposomes. At this point, i.e., stage II, mixed phospholipid-detergent micelles begin to form. By stage III, the lamellar to micellar transition is complete and all the phospholipids are present as mixed micelles. The turbidity of liposome preparations was systematically measured as a function of the amount of detergent added for a wide range of phospholipid concentrations. The results allowed a quantitative determination of the effective detergent to lipid molar ratios in the saturated liposomes. The monomer concentrations of the three detergents in the aqueous phase were also determined at the lamellar to micellar transitions. These transitions were also investigated by 31 P NMR spectroscopy, and complete agreement was found with turbidity measurements. Freeze-fracture electron microscopy and permeability studies in the sublytic range of detergent concentrations indicated that during stage I of solubilization detergent partitioning between the aqueous phase and the lipid bilayer greatly affects the basic permeability of the liposomes without significantly changing the morphology of the preparations. A rough approximation of the partition coefficients was derived from the turbidity and permeability data. It is concluded that when performed systematically, turbidity measurements constitute a very convenient and powerful technique for the quantitative study of the liposome solubilization process by detergents

  1. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  2. Nanodisc-solubilized membrane protein library reflects the membrane proteome.

    Science.gov (United States)

    Marty, Michael T; Wilcox, Kyle C; Klein, William L; Sligar, Stephen G

    2013-05-01

    The isolation and identification of unknown membrane proteins offers the prospect of discovering new pharmaceutical targets and identifying key biochemical receptors. However, interactions between membrane protein targets and soluble ligands are difficult to study in vitro due to the insolubility of membrane proteins in non-detergent systems. Nanodiscs, nanoscale discoidal lipid bilayers encircled by a membrane scaffold protein belt, have proven to be an effective platform to solubilize membrane proteins and have been used to study a wide variety of purified membrane proteins. This report details the incorporation of an unbiased population of membrane proteins from Escherichia coli membranes into Nanodiscs. This solubilized membrane protein library (SMPL) forms a soluble in vitro model of the membrane proteome. Since Nanodiscs contain isolated proteins or small complexes, the SMPL is an ideal platform for interactomics studies and pull-down assays of membrane proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the protein population before and after formation of the Nanodisc library indicates that a large percentage of the proteins are incorporated into the library. Proteomic identification of several prominent bands demonstrates the successful incorporation of outer and inner membrane proteins into the Nanodisc library.

  3. A Comparative Study on Micellar and Solubilizing Behavior of Three EO-PO Based Star Block Copolymers Varying in Hydrophobicity and Their Application for the In Vitro Release of Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Bijal Vyas

    2018-01-01

    Full Text Available The temperature and pH dependent self-assembly of three star shaped ethylene oxide-propylene oxide (EO-PO block copolymers (Tetronics® 304, 904 and 908 with widely different hydrophobicity was examined in aqueous solutions. Physico-chemical methods viz. viscosity, cloud point, solubilization along with thermal, scattering and spectral techniques shows strongly temperature and salt dependent solution behavior. T304 possessing low molecular weight did not form micelles; moderately hydrophilic T904 remained as micelles at ambient temperature and showed micellar growth while very hydrophilic T908 formed micelles at elevated temperatures. The surface activity/micellization/solubilization power was favored in the presence of salt. The copolymers turn more hydrophilic in acidic pH due to protonation of central ethylene diamine moiety that hinders micelle formation. The solubilization of a model insoluble azo dye 1-(o-Tolylazo-2-naphthol (Orange OT and hydrophobic drugs (quercetin and curcumin for copolymer solutions in aqueous and salt solutions are also reported. Among the three copolymers, T904 showed maximum solubility of dye and drugs, hence the in vitro release of drugs from T904 micelles was estimated and the effect on cytotoxicity of loading the drugs in T904 micelles was compared with the cytotoxicity of free drugs on the CHO-K1 cells. The results from the present work provide a better insight in selection of Tetronics® for their application in different therapeutic applications.

  4. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media

    International Nuclear Information System (INIS)

    Maity, D.; Agrawal, D.C.

    2007-01-01

    Synthesis of magnetite (Fe 3 O 4 ) nanoparticles under oxidizing environment by precipitation from aqueous media is not straightforward because Fe 2+ gets oxidized to Fe 3+ and thus the ratio of Fe 3+ :Fe 2+ =2:1 is not maintained during the precipitation. A molar ratio of Fe 3+ :Fe 2+ smaller than 2:1 has been used by many to compensate for the oxidation of Fe 2+ during the preparation. In this work, we have prepared iron oxide nanoparticles in air environment by the precipitation technique using initial molar ratios Fe 3+ :Fe 2+ ≤2:1. The phases of the resulting powders have been determined by several techniques. It is found that the particles consist mainly of maghemite with little or no magnetite phase. The particles have been suspended in non-aqueous and aqueous media by coating the particles with a single layer and a bilayer of oleic acid, respectively. The particle sizes, morphology and the magnetic properties of the particles and the ferrofulids prepared from these particles are reported. The average particle sizes obtained from the TEM micrographs are 14, 10 and 9 nm for the water, kerosene and dodecane-based ferrofluids, respectively, indicating a better dispersion in the non-aqueous media. The specific saturation magnetization (σ s ) value of the oleic-acid-coated particles (∼53 emu/g) is found to be lower than that for the uncoated particles (∼63 emu/g). Magnetization σ s of the dodecane-based ferrofluid is found to be 10.1 emu/g for a volume fraction of particles φ=0.019. Zero coercivity and zero remanance on the magnetization curves indicate that the particles are superparamagnetic (SPM) in nature

  5. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as solvents'' in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO[sub 2] can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  6. Potentiality of Acidithiobacillus thiooxidans in Microbial Solubilization of Phosphate Mine Tailings

    Directory of Open Access Journals (Sweden)

    S Dhakar

    2015-04-01

    Full Text Available This paper deals with the solubilization behavior of the tailings produced by the floatation of a complex low grade phosphate ore. The composition of the tailings was essentially dolomite (52.04% with minor amounts of phosphate, iron and aluminium oxides (10.4 and 0.5% respectively. The presence of these products created uncontrolled land pollution and severely affected groundwater. An initiative has been taken up for utilization of this waste to generate an eco-friendly product. First step towards this panorama is incorporation of suitable microorganisms for the biodegradation of this effluent. Sulphur oxidizing bacteria Acidithiobacillus thiooxidans produces sulphuric acid which neutralizes the dolomitic tailings and convert it into plant available forms. The solubilization activity was tested in sulphur medium with 5, 10, 15 and 20% concentration of tailings. The solubilization is graded on the basis of pH, Electrical conductivity (EC, soluble calcium and magnesium and soluble phosphate. The results from ex-situ experiments showed that the treatment with 15% tailings ended with highest solubilization. The values of pH, EC, soluble calcium and magnesium and soluble phosphate for this treatment were 4.92, 31.6 dS/m, 10.8 mL EDTA and 17.24 µg/mL respectively. Also, the results proved that sulphur oxidizing bacteria Acidithiobacillus thiooxidans is capable of solubilizing dolomitic tailings from the Jhamarkotra mines. Finally, an important factor taken into account was solubilization of residual phosphate along with dolomite in the tailings. This combined action affects the solubilization behaviour of the residue, which was also showed successfully with the assayed laboratory studies.

  7. Bio-solubilization of Chinese lignite II: extra-cellular protein analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Xiu-xiang; Pan, Lan-ying; Shi, Kai-yi; Chen-hui; Yin, Su-dong; Luo, Zhen-fu [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2009-05-15

    A white rot fungus strain, Trichoderma sp. AH, was isolated from rotten wood in Fushun and used to study the mechanism of lignite bio-solubilization. The results showed that nitric acid pretreated Fushun lignite was solubilized by T. sp. AH and that extracellular proteins from T. sp. AH were correlated with the lignite bio-solubilization results. In the presence of Fushun lignite the extracellular protein concentration from T. sp. AH was 4.5 g/L while the concentration was 3 g/L in the absence of Fushun lignite. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the extracelular proteins detected at least four new protein bands after the T. sp. AH had solubilized the lignite. Enzyme color reactions showed that extracelular proteins from T. sp. AH mainly consisted of phenol-oxidases, but that lignin decomposition enzymes such as laccase, peroxidase and manganese peroxidases were not present. 9 refs., 8 figs.

  8. VIP receptors from porcine liver: High yield solubilization in a GTP-insensitive form

    International Nuclear Information System (INIS)

    Voisin, T.; Couvineau, A.; Guijarro, L.; Laburthe, M.

    1990-01-01

    Vasoactive intestinal peptide (VIP) receptors were solubilized from porcine liver membranes using CHAPS. The binding of 125 I-VIP to solubilized receptors was reversible, saturable and specific. Scatchard analysis indicated the presence of one binding site with a Kd of 6.5 ± 0.3 nM and a Bmax of 1.20 ± 0.15 pmol/mg protein. Solubilized and membrane-bound receptors displayed the same pharmacological profile since VIP and VIP-related peptides inhibited 125 I-VIP binding to both receptor preparations with the same rank order of potency e.g. VIP>helodermin>rat GRF>rat PHI>secretin>human GRF. GTP inhibited 125 I-VIP binding to membrane-bound receptors but not to solubilized receptors supporting functional uncoupling of VIP receptor and G protein during solubilization. Affinity labeling of solubilized and membrane-bound VIP receptors with 125 I-VIP revealed the presence of a single molecular component with Mr 55,000 in both cases. It is concluded that VIP receptors from porcine liver can be solubilized with a good yield, in a GTP-insensitive, G protein-free form. This represents a major advance towards the purification of VIP receptors

  9. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz

    2017-08-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  10. Challenges Faced in Field Application of Phosphate-Solubilizing Bacteria

    KAUST Repository

    Eida, Abdul Aziz; Hirt, Heribert; Saad, Maged

    2017-01-01

    The general inaccessibility of soil phosphorous (P) to plants in combination with the depletion of global P reserves provides an incentive for researchers to find sustainable solutions to sustain food security for the ever-increasing world population. Bio-fertilizers based on bacteria and fungi able to solubilize endogenous P in soils have a high potential for increasing nutrient availability in agriculture. However, the inconsistency of bio-fertilizer performance in the field poses a major challenge for farmers. This discrepancy is thought to stem from the complexity of the interactions between crop plants, microbes, and their soil environments, as well as our lack of understanding of the processes involved. For farmers, a clear beneficial effect across different soil types, crop species, environmental conditions, and microbial communities will be required to make it worth to adopt bio-fertilizer technology based on phosphate-solubilizing microbes (PSMs). Here, we attempt to review the current knowledge of the complexity of the P-solubilization mechanisms used by PSMs and how they may be affected by interactions in the field. We also identify possible explanations for the inconsistent performance of P-solubilizing bacteria in the field and ways to solve these obstacles.

  11. Stability of solubilized benzodiazepine receptors

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    1997-01-01

    According to the observations of other researchers, benzodiazepine receptors solubilized with sodium deoxycholate are unstable, but stability can be improved by exchanging deoxycholate for Triton X-100. In our experiments we conclude that the choice of detergent is not the restrictive factor for the

  12. Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins.

    Science.gov (United States)

    Chae, Pil Seok; Rasmussen, Søren G F; Rana, Rohini R; Gotfryd, Kamil; Chandra, Richa; Goren, Michael A; Kruse, Andrew C; Nurva, Shailika; Loland, Claus J; Pierre, Yves; Drew, David; Popot, Jean-Luc; Picot, Daniel; Fox, Brian G; Guan, Lan; Gether, Ulrik; Byrne, Bernadette; Kobilka, Brian; Gellman, Samuel H

    2010-12-01

    The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.

  13. Human erythrocytes inhibit complement-mediated solubilization of immune complexes by human serum

    International Nuclear Information System (INIS)

    Dorval, B.L.

    1987-01-01

    The aim of this study was to develop an autologus human system to evaluate the effects of human erythrocytes on solubilization of immune complex precipitates (IC) by human serum. Incubation of IC with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed erythrocytes were added to human serum or guinea pig serum binding of IC to the erythrocyte occurred and IC solubilization was inhibited significantly (p <.025). Sheep erythrocytes did not bind IC or inhibit IC solubilization. To evaluate the role of human erythrocyte complement receptor (CR1) on these findings, human erythrocytes were treated with trypsin or anti-CR1 antibodies. Both treatments abrogated IC binding to human erythrocytes but did not affect the ability of the human erythrocyte to inhibit IC solubilization. Radioimmunoassay was used to measure C3, C4 and C5 activation in human serum after incubation with IC, human erythrocytes, human erythrocytes plus IC, whole blood or in whole blood plus IC

  14. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  15. Preparation and characterization of stable aqueous higher-order fullerenes

    International Nuclear Information System (INIS)

    Aich, Nirupam; Flora, Joseph R V; Saleh, Navid B

    2012-01-01

    Stable aqueous suspensions of nC 60 and individual higher fullerenes, i.e. C 70 , C 76 and C 84 , are prepared by a calorimetric modification of a commonly used liquid–liquid extraction technique. The energy requirement for synthesis of higher fullerenes has been guided by molecular-scale interaction energy calculations. Solubilized fullerenes show crystalline behavior by exhibiting lattice fringes in high resolution transmission electron microscopy images. The fullerene colloidal suspensions thus prepared are stable with a narrow distribution of cluster radii (42.7 ± 0.8 nm, 46.0 ± 14.0 nm, 60 ± 3.2 nm and 56.3 ± 1.1 nm for nC 60 , nC 70 , nC 76 and nC 84 , respectively) as measured by time-resolved dynamic light scattering. The ζ-potential values for all fullerene samples showed negative surface potentials with similar magnitude ( − 38.6 ± 5.8 mV, − 39.1 ± 4.2 mV, − 38.9 ± 5.8 mV and − 41.7 ± 5.1 mV for nC 60 , nC 70 , nC 76 and nC 84 , respectively), which provide electrostatic stability to the colloidal clusters. This energy-based modified solubilization technique to produce stable aqueous fullerenes will likely aid in future studies focusing on better applicability, determination of colloidal properties, and understanding of environmental fate, transport and toxicity of higher-order fullerenes. (paper)

  16. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Burger, Alexa; Lindsay, Helen; Felker, Anastasia; Hess, Christopher; Anders, Carolin; Chiavacci, Elena; Zaugg, Jonas; Weber, Lukas M; Catena, Raul; Jinek, Martin; Robinson, Mark D; Mosimann, Christian

    2016-06-01

    CRISPR-Cas9 enables efficient sequence-specific mutagenesis for creating somatic or germline mutants of model organisms. Key constraints in vivo remain the expression and delivery of active Cas9-sgRNA ribonucleoprotein complexes (RNPs) with minimal toxicity, variable mutagenesis efficiencies depending on targeting sequence, and high mutation mosaicism. Here, we apply in vitro assembled, fluorescent Cas9-sgRNA RNPs in solubilizing salt solution to achieve maximal mutagenesis efficiency in zebrafish embryos. MiSeq-based sequence analysis of targeted loci in individual embryos using CrispRVariants, a customized software tool for mutagenesis quantification and visualization, reveals efficient bi-allelic mutagenesis that reaches saturation at several tested gene loci. Such virtually complete mutagenesis exposes loss-of-function phenotypes for candidate genes in somatic mutant embryos for subsequent generation of stable germline mutants. We further show that targeting of non-coding elements in gene regulatory regions using saturating mutagenesis uncovers functional control elements in transgenic reporters and endogenous genes in injected embryos. Our results establish that optimally solubilized, in vitro assembled fluorescent Cas9-sgRNA RNPs provide a reproducible reagent for direct and scalable loss-of-function studies and applications beyond zebrafish experiments that require maximal DNA cutting efficiency in vivo. © 2016. Published by The Company of Biologists Ltd.

  17. Towards Coated Nano-Gold Particles as Non-Reactive Tracers in Coated nZVI for In-Situ Remediation

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Uthuppu, Basil; Caspersen, Eva

    2014-01-01

    Background/Objectives. Chlorinated solvent (e.g. trichloroethene and tetrachloroethene) source zones in the subsurface pose a continuous threat to groundwater quality at many sites worldwide. Remediation of these contaminated sites is especially challenging in the presence of Dense Non-Aqueous Ph...

  18. Observations of non-collective x-ray scattering in warm dense carbon plasma

    International Nuclear Information System (INIS)

    Bao Lihua; Zhang Jiyan; Zhao Yang; Ding Yongkun; Zhang Xiaoding

    2012-01-01

    An experiment for observing the spectrally resolved non-collective x-ray scattering in warm dense carbon plasma is presented in this paper. The experiment used Ta M-band x-rays to heat a foamed carbon cylinder sample isochorically and measured the scattering spectrum with a HOPG crystal spectrometer. The spectrum was compared with the calculation results using a Born-Mermin-approximation model. The best fitting was found at an electron temperature of T e =34 eV and an electron density of n e =1.6×10 23 cm −3 .

  19. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  20. Effects of solubilization of short and medium-chain molecules in the self-assembly of two amphiphilic drugs in solution

    International Nuclear Information System (INIS)

    Barbosa, Silvia; Cheema, Mohammad Arif; Siddiq, Mohammad; Taboada, Pablo; Mosquera, Victor

    2009-01-01

    The effect of short and medium chain length alcohols ethanol, propanol, and butanol on the thermodynamic properties of aqueous solutions of the ionic amphiphilic antidepressants imipramine and clomipramine hydrochlorides has been investigated at T = 293 K. Critical concentrations of the drugs were obtained from ultrasound velocity measurements. Experimental results have shown a strong dependence of the ultrasound velocity with the alcohol concentration and chain length. Differences in the aggregate properties of both amphiphiles arise from the presence of the extra Cl - substituent on the ring system of clomipramine. Density and ultrasound measurements have been used to obtain the apparent molar volumes, V φ , and isentropic apparent molar compressibilities, K φ(S) , for the aqueous drug/water-alcohol solutions. The distribution coefficient of the amount solubilized between water and the aggregates, K, has been determined using an indirect method based on the pseudo-phase model by using apparent molar volume values. This method allows the calculation of the distribution coefficients at concentrations below saturation. The standard molar Gibbs free energy change on transfer from the aqueous to the micellar, ΔG 0 , phase was calculated from the partition coefficient. The results have highlighted the structural differences between both amphiphiles

  1. Kinetics of the decomposition and the estimation of the stability of 10% aqueous and non-aqueous hydrogen peroxide solutions

    Directory of Open Access Journals (Sweden)

    Zun Maria

    2014-12-01

    Full Text Available In this study, the stability of 10% hydrogen peroxide aqueous and non-aqueous solutions with the addition of 6% (w/w of urea was evaluated. The solutions were stored at 20°C, 30°C and 40°C, and the decomposition of hydrogen peroxide proceeded according to first-order kinetics. With the addition of the urea in the solutions, the decomposition rate constant increased and the activation energy decreased. The temperature of storage also affected the decomposition of substance, however, 10% hydrogen peroxide solutions prepared in PEG-300, and stabilized with the addition of 6% (w/w of urea had the best constancy.

  2. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process.

    Science.gov (United States)

    Singh, Anupam; Upadhyay, Vaibhav; Upadhyay, Arun Kumar; Singh, Surinder Mohan; Panda, Amulya Kumar

    2015-03-25

    Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.

  3. Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem

    Directory of Open Access Journals (Sweden)

    SRI WIDAWATI

    2011-01-01

    Full Text Available Widawati S (2011 Diversity and phosphate solubilization by bacteria isolated from Laki Island coastal ecosystem. Biodiversitas 12: 17-21. Soil, water, sand, and plant rhizosphere samples collected from coastal ecosystem of Laki Island-Jakarta were screened for phosphate solubilizing bacteria (PSB. While the population was dependent on the cultivation media and the sample type, the highest bacterial population was observed in the rhizosphere of Ipomea aquatica. The PSB strains isolated from the sample registered 18.59 g-1L-1, 18.31 g-1L-1, and 5.68 g-1L-1 of calcium phosphate (Ca-P, Al-P and rock phosphate solubilization after 7-days. Phosphate solubilizing capacity was the highest in the Ca-P medium. Two strains, 13 and 14, registered highest Phosphomonoesterase activities (2.01 µgNP.g-1.h-1 and 1.85NP µg.g-1.h-1 were identified as Serattia marcescens, and Pseudomonas fluorescense, respectively. Both strains were isolated from the crops of Amaranthus hybridus and I. aquatica, respectively, which are commonly observed in coastal ecosystems. The presence of phosphate solubilizing microorganisms and their ability to solubilize various types of phosphate species are indicative of the important role of both species of bacteria in the biogeochemical cycle of phosphorus and the plant growth in coastal ecosystems.

  4. One-electron redox potentials and rate of electron transfer in aqueous micellar solution. Partially solubilized quinones

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Thomas, J.K.

    1979-01-01

    The electron transfer equilibrium between AQS/AQS - and DQ/DQ - (where AQS is sodium 9,10-arthraquinone-2-sulfonate and DQ, duroquinone) has been studied by pulse radiolysis in aqueous micellar solutions of sodium lauryl sulfate. The equilibrium constant is changed as would be expected if AQS, AQS - , and DQ- were all mainly in the aqueous solution, and DQ distributed between the micelles and the aqueous phase with a distribution constant of K/sub D//N = 150 M -1 , in agreement with the independently determined value of this constant. The kinetics of the equilibration show, however, that electron transfer at the micelle surface is important, indicating that also AQS and DQ - are associated with the micelle to some extent. With reasonable assumptions regarding the distribution constants of these species (that have some independent support), the observed catalytic effect of the micelles on the electron transfer from DQ - to AQS can be understood

  5. Investigating the Composite Step Biconjugate A-Orthogonal Residual Method for Non-Hermitian Dense Linear Systems in Electromagnetics

    NARCIS (Netherlands)

    Jing, Yan-Fei; Huang, Ting-Zhu; Carpentieri, Bruno; Duan, Yong

    An interesting stabilizing variant of the biconjugate A-orthogonal residual (BiCOR) method is investigated for solving dense complex non-Hermitian systems of linear equations arising from the Galerlcin discretization of surface integral equations in electromagnetics. The novel variant is naturally

  6. Sedimentation behaviour and colloidal properties of porous, chemically modified silicas in non-aqueous solvents

    NARCIS (Netherlands)

    Vissers, J.P.C.; Laven, J.; Claessens, H.A.; Cramers, C.A.M.G.; Agterof, W.G.M.

    1997-01-01

    The sedimentation behaviour and colloidal properties of porous, chemically modified silicas dispersed in non-aqueous solvents have been studied. The free settling behaviour of non-aggregated silica suspensions could effectively be described with a modified Stokes equation that takes into account the

  7. Differential Precipitation and Solubilization of Proteins.

    Science.gov (United States)

    Ryan, Barry J; Kinsella, Gemma K

    2017-01-01

    Differential protein precipitation is a rapid and economical step in protein purification and is based on exploiting the inherent physicochemical properties of the polypeptide. Precipitation of recombinant proteins, lysed from the host cell, is commonly used to concentrate the protein of choice before further polishing steps with more selective purification columns (e.g., His-Tag, Size Exclusion, etc.). Recombinant proteins can also precipitate naturally as inclusion bodies due to various influences during overexpression in the host cell. Although this phenomenon permits easier initial separation from native proteins, these inclusion bodies must carefully be differentially solubilized so as to reform functional, correctly folded proteins. Here, appropriate bioinformatics tools to aid in understanding a protein's propensity to aggregate and solubilize are explored as a backdrop for a typical protein extraction, precipitation, and selective resolubilization procedure, based on a recombinantly expressed protein.

  8. An application of micelle solubilization spectrophotometry in the determination of thorium

    International Nuclear Information System (INIS)

    Peng Changhai; Zeng Xiaoming

    1988-01-01

    In this review article the characteristics of the analytical method of Th by means of micelle solubilization spectrophotometry are described and the mechanism of the solubilization and chemical reactions involved is discussed. Also the various color-developing reagents that have been used for this determination are described and compared

  9. Effect of acid and alkaline solubilization on the properties of surimi based film

    Directory of Open Access Journals (Sweden)

    Thummanoon Prodpran

    2005-05-01

    Full Text Available The effect of acid and alkaline solubilizing processes on the properties of the protein based film from threadfin bream surimi was investigated. Surimi films prepared from both processes had the similar light transmission, tensile strength (TS and elongation at break (EAB (P<0.05. However, film with alkaline process had slightly lower water vapor permeability (WVP, compared to that prepared by acid solubilizing process. The protein concentration in the film-forming solution directly affected the properties of the film. Increase in protein concentration resulted in an increase in TS, EAB as well as WVP. The film prepared by acid solubilizing process had an increase in yellowish color as evidenced by the continuous increase in b* and E* values during the storage at r oom temperature. The acid and alkali solubilizing processes caused the degradation of muscle protein in surimi, especially with increasing exposure time. Therefore, solubilizing process had the influence on the properties of the protein film from threadfin bream surimi.

  10. A NOVEL METHOD FOR QUANTITATIVE DETERMINATION OF ACECLOFENAC IN BULK DRUG AND TABLETS USING SODIUM SALICYLATE AS A HYDROTROPIC SOLUBILIZING AGENT

    Directory of Open Access Journals (Sweden)

    Shruti Moondra

    2010-03-01

    Full Text Available In titrimetric analysis costlier organic solvents are more often employed tosolubilize the poorly water-soluble drugs. Volatility and pollution are drawbacks of suchsolvents. Various techniques are employed to enhance the aqueous solubility of poorlywater-soluble drugs. Hydrotropic solubilization phenomenon has been widely used toenhance the aqueous solubility of large number of poorly water-soluble drugs. Aqueoussolubility of aceclofenac bulk drug [a poorly water-soluble NSAID] was enhanced to agreat extent i.e., 400 folds with 2.5 M sodium salicylate. The primary objective of thepresent investigation was to employ this hydrotropic solution to extract the drug from itsdosage forms, precluding the use of costlier organic solvents. The proposed method ofanalysis is new, simple, accurate, environmentally friendly and reproducible. Statisticaldata proved the accuracy, reproducibility and the precision of the proposed method. Theresults of titrimetric analysis by use of hydrotropy compared very well with the results ofPharmacopoeial method.

  11. A non-local structural derivative model for characterization of ultraslow diffusion in dense colloids

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen

    2018-03-01

    Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.

  12. Cr(VI) adsorption on functionalized amorphous and mesoporous silica from aqueous and non-aqueous media

    International Nuclear Information System (INIS)

    Perez-Quintanilla, Damian; Hierro, Isabel del; Fajardo, Mariano; Sierra, Isabel

    2007-01-01

    A mesoporous silica (SBA-15) and amorphous silica (SG) have been chemically modified with 2-mercaptopyridine using the homogeneous route. This synthetic route involved the reaction of 2-mercaptopyridine with 3-chloropropyltriethoxysilane prior to immobilization on the support. The resulting material has been characterized by powder X-ray diffraction, nitrogen gas sorption, FT-IR and MAS NMR spectroscopy, thermogravimetry and elemental analysis. The solid was employed as a Cr(VI) adsorbent from aqueous and non-aqueous solutions at room temperature. The effect of several variables (stirring time, pH, metal concentration and solvent polarity) has been studied using the batch technique. The results indicate that under the optimum conditions, the maximum adsorption value for Cr(VI) was 1.83 ± 0.03 mmol/g for MP-SBA-15, whereas the adsorption capacity of the MP-SG was 0.86 ± 0.02 mmol/g. On the basis of these results, it can be concluded that it is possible to modify chemically SBA-15 and SG with 2-mercaptopyridine and to use the resulting modified silicas as effective adsorbents for Cr(VI)

  13. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    Science.gov (United States)

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Directory of Open Access Journals (Sweden)

    Maryam Parhamfar

    2014-04-01

    Full Text Available Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiroft. Samples were incubated in PKV medium for 3 days. Screening of phosphate solubilizing bacteria was performed on the specific media, based on clear area diameter. The best bacterium was identified based on 16s rDNA gene. Phosphate solubilizing activity of this strain was considered in different carbon, nitrogen, phosphate and pH sources. Results: Sequence alignment and phylogenetic tree results show that B. sp. LOR033 is closely related to Bacillus licheniformis, with 97% homology. In addition, results show that maximum enzyme production was performed after 2 days that incubation pH was decreased simultaneously when the time was increased. Carbon sources investigation show that glucose is the most appropriate in enzyme production and phosphate releasing. Furthermore, results show that the optimum initial pH for phytase production was pH5.0. Different phosphate sources show that tricalcium phosphate has the suitable effect on enzyme activity in three days of incubation. Discussion and conclusion: Phosphatase enzyme production capacity, growth in acidic pH and phosphate solubilizing potential in different salt and phosphate sources show that this strain has considerable importance as biofertilizers.

  15. Wet skins tanning with chromium in dense CO{sub 2} under pressure; Tannage au chrome de peaux humides en CO{sub 2} dense sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Saldinari, L. [Tanneries Roux SA, 26 - Romans Sur Isere (France)]|[Tanneries du Puy (France)]|[Tanneries d' Annonay, 07 (France); Dutel, Ch. [Societe ATC (France); Perre, Ch. [CEA Centre de Pierrelatte (DCC/DTE/SLC), 26 (France)

    2000-07-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO{sub 2} helped sharply reduce the volume of the fatty effluents. To replace water by dense CO{sub 2} as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO{sub 2} is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH{sub 2}) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO{sub 2} via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained

  16. Evaluation of a Non-aqueous Ibuprofen-Phospholipid Complex Formulation in Rats.

    Science.gov (United States)

    Li, Chunhua; Xu, Songlin; Liu, Zhidong; Ding, Lingling; Zhao, Xiaobin; Lee, Robert J

    2016-01-01

    In the present study, a non-aqueous ibuprofen-phospholipid complex was developed to reduce the gastrointestinal (GI) toxicity of ibuprofen. A non-aqueous ibuprofen-phospholipid complex (IBU-PC) was prepared by mixing phosal-35SB and ibuprofen. In vitro release behavior was studied using a dissolution apparatus. Irritation to gastrointestinal (GI) tract and pharmacokinetics of IBU-PC were studied in rats. Rapid release of drug occurred with approximately 85% of ibuprofen released from the composition within the first 30 min. The GI injury in IBU-PC-treated rats was minimal compared to those of Advil Liqui-gels-treated group. There was no significant difference between IBU-PC and Motrin-treated groups. The area under the concentration-time curve (AUC0~24) of IBU-PC and Motrin were 366±115 and 391±105 μg/h/ml, respectively. The relative bioavailability of IBU-PC was 94.2%. IBU-PC can decrease GI adverse reaction induced by ibuprofen. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Fluorescence quenching of uric acid solubilized in bicontinuous microemulsion by nitrobenzene

    Directory of Open Access Journals (Sweden)

    Maurice O. Iwunze

    2013-02-01

    Full Text Available Abstract: Uric Acid is known to be practically insoluble in aqueous and alcoholic media. However, it exhibits a reasonable solubility in a Bicontinuous Microemulsion system – a 15-fold or more increase in solubility in this system compared to its solubility in water. The bicontinuous microemulsion is made up of three components –Dodecane-Surfactant-water. Uric acid solubilized in this system is quenched by nitrobenzene. The obtained fluorescence data do not obey the Stern-Volmer equation when plotted accordingly. Therefore, the modified Stern-Volmer equation was used to analyze the data. It was observed that only one third (1/3 of uric acid is accessible to quenching in this medium and the reaction is diffusion-limited. The Stern-Volmer quenching constant, KSV, was calculated to be 130 M-1 and the fluorescence lifetime, 0, the quantum yield,, and the bimolecular quenching rate constant, kq, were calculated as 10.6 nanoseconds, 0.06 and 1.231010 M-1s-1, respectively.

  18. [Solubilization Specificities Interferon beta-1b from Inclusion Bodies].

    Science.gov (United States)

    Zhuravko, A S; Kononova, N V; Bobruskin, A I

    2015-01-01

    A new solubilization method of recombinant interferon beta-1b (IFNβ-1b) from the inclusion bodies was developed. This method allows to extract the target protein selectively in the solutions of different alcohols, such as ethanol, propanol and isopropanol. It was shown that the more effective IFNβ-1b solubilization was achieved in the 55% propanol solution. This method allowed to extract the target protein from inclusion bodies around 85-90%, and significantly reduced Escherichia coli content in the solubilizate, in comparison with standard methods.

  19. Mechanisms of coal solubilization by the deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst. und Botanischer Garten

    1999-07-01

    Three different mechanisms can be envisaged that are used by fungi to solubilize coal: the production of alkaline substances, the extrusion of chelators and, of special interest in the scope of biotechnology, the action of enzymes. Whether these mechanisms are operating separately or in various combinations has not yet been finally assessed. The two deuteromycetes Fusarium oxysporum and Trichoderma atroviride solubilize coal by synergistic effects of various different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate-containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzyme activity to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  20. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  1. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.

    Science.gov (United States)

    Mumtaz, Muhammad Zahid; Ahmad, Maqshoof; Jamil, Moazzam; Hussain, Tanveer

    2017-09-01

    Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Distribution of phosphate solubilizer fungi on soil microhabitats in two landscapes from Guaviare, Colombia

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available The distribution of the phosphate solubilizer mycobiota in two different soil microhabitats present in Guaviare, Colombia, were studied. Twelve samples from Arazá rhizosphere (Eugenia stipitata McVaugh and from soil without roots were processed using the soil wahing method (Domsch  et al., 1980. The percentage of colonization of soil particles by fungi was 69 %, with a higher intensity of colonization coming from the rhizospheric microhabitat. The high percentage of potential solubilizer colonies may point to this type of soil as reserve pf solubilizer fungi. The rhizospheric effect has been the main factor involved in the composition of the solubilizer fungi community.

  3. Pitting morphologies of zirconium base alloys in aqueous and non aqueous chloride media

    International Nuclear Information System (INIS)

    Palit, G.C.; Gadiyar, H.S.

    1988-01-01

    Pitting morphology of zirconium and Zr-Cr alloys in aqueous chloride and nonaqueous methanol + 0.4 per cent HCl solution was investigated and observed to follow different modes in these two environments. While in aqueous chloride solution pitting was transgranular and randomly oriented, in methanol-chloride solution pits were observed to initiate and propagate along the grain boundaries. In aqueous chloride solution very irregular and sponge like zirconium metal was formed inside the pit while in methanol-chloride solution the pits were crystallographic in nature. Optical microscopy has revealed that pits preferentially initiate and propagate along scratch line in aqueous chloride solution, but such was not the case in nonaqueous methanol-chloride solution. The nature and the mechanism operating in the catastropic failure of these materials are investigated. (author). 10 refs., 11 figs

  4. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture

    Directory of Open Access Journals (Sweden)

    Elizabeth T. Alori

    2017-06-01

    Full Text Available The use of excess conventional Phosphorus (P fertilizers to improve agricultural productivity, in order to meet constantly increasing global food demand, potentially causes surface and ground water pollution, waterway eutrophication, soil fertility depletion, and accumulation of toxic elements such as high concentration of selenium (Se, arsenic (As in the soil. Quite a number of soil microorganisms are capable of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making it available to plants. These microorganisms improve the growth and yield of a wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing Microorganisms (PSM is a promising strategy to improve world food production without causing any environmental hazard. Despite their great significance in soil fertility improvement, phosphorus-solubilizing microorganisms have yet to replace conventional chemical fertilizers in commercial agriculture. A better understanding of recent developments in PSM functional diversity, colonizing ability, mode of actions and judicious application should facilitate their use as reliable components of sustainable agricultural systems. In this review, we discussed various soil microorganisms that have the ability to solubilize phosphorus and hence have the potential to be used as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and the mechanisms of organic phosphorus mineralization are highlighted together with some factors that determine the success of this technology. Finally we provide some indications that the use of PSM will promote sustainable agriculture and conclude that this technology is ready for commercial exploitation in various regions worldwide.

  5. Rapid Synthesis of Gold Nano-Particles Using Pulse Waved Potential in a Non-Aqueous Electrolyte

    Directory of Open Access Journals (Sweden)

    Jang J.G.

    2017-06-01

    Full Text Available Rapid synthesis of gold nanoparticles (AuNPs by pulsed electrodeposition was investigated in the non-aqueous electrolyte, 1-ethyl-3-methyl-imidazoliumbis(trifluoro-methanesulfonylimide ([EMIM]TFSI with gold trichloride (AuCl3. To aid the dissolution of AuCl3, 1-ethyl-3-methyl-imidazolium chloride ([EMIM]Cl was used as a supporting electrolyte in [EMIM]TFSI. Cyclic voltammetry experiments revealed a cathodic reaction corresponding to the reduction of gold at −0.4 V vs. Pt-QRE. To confirm the electrodeposition process, potentiostatic electrodeposition of gold in the non-aqueous electrolyte was conducted at −0.4 V for 1 h at room temperature. To synthesize AuNPs, pulsed electrodeposition was conducted with controlled duty factor, pulse duration, and overpotential. The composition, particle-size distribution, and morphology of the AuNPs were confirmed by field-emission scanning electron microscopy (FE-SEM, energy-dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The electrodeposited AuNPs were uniformly distributed on the platinum electrode surface without any impurities arising from the non-aqueous electrolyte. The size distribution of AuNPs could be also controlled by the electrodeposition conditions.

  6. Crude oil degradation by phosphate-solubilizing bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; David, J.J.; Chandramohan, D.

    Phosphate-solubilizing bacteria were isolated from tropical areas around the Indian peninsula. Two of the isolates showed high phosphatase activity. The isolates were identified as Klebsiella pneumoniae and Bacillus pumilus, and they showed high...

  7. Corn silk aqueous extracts and intraocular pressure of systemic and non-systemic hypertensive subjects.

    Science.gov (United States)

    George, Gladys O; Idu, Faustina K

    2015-03-01

    Hypotensive properties have been attributed to the stigma/style of Zea mays L (corn silk). Although the effect of corn silk extract on blood pressure has been documented in animal studies, we are not aware of any study on its effect on human blood pressure and intraocular pressure. A randomised study was carried out on the effect of water only, masked doses of corn silk aqueous extract (60, 130, 192.5 and 260 mg/kg body weight) on intraocular pressure and blood pressure of 20 systemic and 20 non-systemic hypertensive subjects. Intraocular pressure and blood pressure were measured at baseline and every hour for eight hours after administering water or a masked dose of corn silk aqueous extract. Each dose was administered at two-week intervals to each subject in the two study groups. The results showed that the last three doses of corn silk aqueous extract gave a statistically significant reduction (p Corn silk aqueous extract has a lowering effect on intraocular pressure in systemic and non-systemic hypertensive subjects. This may have resulted from the fall in blood pressure that is due to potassium-induced natriuresis and diuresis caused by the high potassium content in the high doses of the corn silk extract. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  8. Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene.

    Science.gov (United States)

    Peng, Cheng; Svirskis, Darren; Lee, Sung Je; Oey, Indrawati; Kwak, Hae-Soo; Chen, Guanyu; Bunt, Craig; Wen, Jingyuan

    2017-02-14

    Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.

  9. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius; Wong, Aloysius Tze; Groen, Arnoud; Serano, Natalia Lorena Gorron; Jankovic, Boris R.; Lilley, Kathryn; Gehring, Christoph A; Thomas, Ludivine

    2014-01-01

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  10. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    Directory of Open Access Journals (Sweden)

    Claudius Marondedze

    2014-12-01

    Full Text Available The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  11. Exploring the Arabidopsis Proteome: Influence of Protein Solubilization Buffers on Proteome Coverage

    KAUST Repository

    Marondedze, Claudius

    2014-12-31

    The study of proteomes provides new insights into stimulus-specific responses of protein synthesis and turnover, and the role of post-translational modifications at the systems level. Due to the diverse chemical nature of proteins and shortcomings in the analytical techniques used in their study, only a partial display of the proteome is achieved in any study, and this holds particularly true for plant proteomes. Here we show that different solubilization and separation methods have profound effects on the resulting proteome. In particular, we observed that the type of detergents employed in the solubilization buffer preferentially enriches proteins in different functional categories. These include proteins with a role in signaling, transport, response to temperature stimuli and metabolism. This data may offer a functional bias on comparative analysis studies. In order to obtain a broader coverage, we propose a two-step solubilization protocol with first a detergent-free buffer and then a second step utilizing a combination of two detergents to solubilize proteins.

  12. Non-aqueous removal of sodium from reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Welch, F H; Steele, O P [Rockwell International, Atomics International Division, Canoga Park (United States)

    1978-08-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component.

  13. Non-aqueous removal of sodium from reactor components

    International Nuclear Information System (INIS)

    Welch, F.H.; Steele, O.P.

    1978-01-01

    Reactor components from sodium-cooled systems. whether radioactive or not, must have the sodium removed before they can be safely handled for 1) disposal, 2) examination and test, or 3) decontamination, repair, and requalification. In the latter two cases, the sodium must be removed in a manner which will not harm the component. and prevent future use. Two methods for sodium removal using non-aqueous techniques have been studied extensively in the U.S.A. in the past few years: the Alcohol Process, which uses a fully denatured ethanol to react away the sodium; and the Evaporative Process, which uses heat and vacuum to evaporate the sodium from the component

  14. Characterization of solubilized human and rat brain US -endorphin-receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Helmeste, D.M.; Li, C.H.

    1986-01-01

    Opioid receptors have been solubilized from human striatal and rat whole-brain membranes by use of 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate (CHAPS). Tritiated human US -endorphin (TH-US /sub h/-EP) binding revealed high-affinity competition by morphine, naloxone, and various US -EP analogues. Lack of high-affinity competition by (+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide methanesulfonate (U50-488, Upjohn) indicated that k sites were not labeled by TH-US -/sub h/-EP under these conditions. Affinities were similar in both soluble and membrane preparations except for (Met)enkephalin, which appears to be rapidly degraded by the solubilized extract. Size differences between human and rat solubilized TH-US /sub h/-EP-receptor complexes were revealed by exclusion chromatography.

  15. Wet skins tanning with chromium in dense CO2 under pressure

    International Nuclear Information System (INIS)

    Saldinari, L.; Dutel, Ch.; Perre, Ch.

    2000-01-01

    An ancestral gesture steadily improved through the centuries, the transformation of skins into leather includes several stages of which the principal one is tanning. Today, 90 % of the world's leather products are tanned with chromium. However, this stage is an environmental liability, and reducing the volume and chromium content of the waste has become a major issue. A first study on skin degreasing by dense CO 2 helped sharply reduce the volume of the fatty effluents. To replace water by dense CO 2 as the tanning medium was the logical next step. The present study was carried out in cooperation with three tanneries in the Rhone-Alpes-Auvergne area of France and a manufacturer of tanning materials. The difficulty of the study was the chemically opposed character of the two media involved. CO 2 is a non-polar and lipophilic solvent while inorganic chromium is insoluble. The water present in the treated skin is a polar and ionic reaction medium and one of the reagents in tanning chemistry. The mixture of these two partially miscible compounds gives a pH 3 by carbonic acid formation. Tanning is based on the reactivity of collagen, the main component of the skin, with hydroxylated complexes of chromium. Collagen is a protein containing some chemical functions, amines (R-NH 2 ) and carboxylic (R-COOH) for example. These functions impart an amphoteric character to the compound. The WERNER theory of complex salts explains the formation of hydroxylated complexes of chromium and their fixing on the carboxylic functions of collagen by oxolation. pH is the key parameter in tanning. The success of the process demands chromium impregnation without fixing it at a pH lower than 5, and then to fix it by increasing the pH. This opened two alternatives for transferring chromium in the skin: solubilize chromium in CO 2 via soluble organometallic complexes; or put the chromium salt into suspension without solubilizing it. The best results were obtained with the second option, which

  16. Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium

    Directory of Open Access Journals (Sweden)

    Mauro Vestena

    Full Text Available Abstract Whiskers have been used as a nanomaterial dispersed in polymer matrices to modify the microscopic and macroscopic properties of the polymer. These nanomaterials can be isolated from cellulose, one of the most abundant natural renewable sources of biodegradable polymer. In this study, whiskers were isolated from sugarcane bagasse and corn cob straw fibers. Initially, the cellulose fiber was treated through an alkaline/oxidative process followed by acid hydrolysis. Dimethylformamide and dimethyl sulfoxide were used to replace the aqueous medium for the dispersion of the whiskers. For the solvent exchange, dimethylformamide or dimethyl sulfoxide was added to the aqueous dispersion and the water was then removed by fractional distillation. FTIR, TGA, XRD, TEM, Zeta and DLS techniques were used to evaluate the efficiency of the isolation process as well as the morphology and dimensions of the whiskers. The dimensions of the whiskers are comparable with values reported in the literature, maintaining the uniformity and homogeneity in both aqueous and non-aqueous solvents.

  17. Isolation of whiskers from natural sources and their dispersed in a non-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Vestena, Mauro; Gross, Idejan Padilha; Pires, Alfredo Tiburcio Nunes; Muller, Carmen Maria Olivera, E-mail: mauro@utfpr.edu.br [Universidade Federal Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2016-10-15

    Whiskers have been used as a nano material dispersed in polymer matrices to modify the microscopic and macroscopic properties of the polymer. These nanomaterials can be isolated from cellulose, one of the most abundant natural renewable sources of biodegradable polymer. In this study, whiskers were isolated from sugarcane bagasse and corn cob straw fibers. Initially, the cellulose fiber was treated through an alkaline/oxidative process followed by acid hydrolysis. Dimethylformamide and dimethyl sulfoxide were used to replace the aqueous medium for the dispersion of the whiskers. For the solvent exchange, dimethylformamide or dimethyl sulfoxide was added to the aqueous dispersion and the water was then removed by fractional distillation. FTIR, TGA, XRD, TEM, Zeta and DLS techniques were used to evaluate the efficiency of the isolation process as well as the morphology and dimensions of the whiskers. The dimensions of the whiskers are comparable with values reported in the literature, maintaining the uniformity and homogeneity in both aqueous and non-aqueous solvents. (author)

  18. EVALUATION OF PHOSPHATE SOLUBILIZING MICROORGANISMS (PSMs FROM RHIZOSPHERE SOIL OF DIFFERENT CROP PLANTS AND ITS ANTAGONISTIC ACTIVITY

    Directory of Open Access Journals (Sweden)

    Samikan Krishnakumar

    2014-04-01

    Full Text Available Indigenous rhizosphere soil samples were collected during study period (October 2011 – March 2012 of different crop plant from Thiruvannamalai District, Tamilnadu, India for the enumeration of Phosphate solubilizing microorganisms (PSMs. Efficient phosphate solubilizing bacteria, fungi and heterotrophic bacteria were enumerated. Maximum heterotrophic bacterial populations (19.4 X105, phosphate solubilizing bacteria (4.7 X 105 were recorded in the month of February and phosphate solubilizing fungi (3.9 X 102 were documented in the month of December in rhizosphere soil of ground nut. Minimum bacterial populations (14.3 X 105 were observed in rhizosphere soil of chilli in the month of March. Lowest phosphate solubilizing bacteria (1.2 X105 and phosphate solubilzing fungi (1.2 X 102 were observed in rhizosphere soil of paddy during the month of October. Phosphate solubilizing bacteria Pseudomonassp. - BS1, Bacillus sp. – BS2, Micrococcus sp. – BS3 and fungi Aspergillus sp. – FS1, Penicillium sp. – FS2.and Trichoderma sp. – FS3 were identified. Pseudomonas sp. - BS1. exhibited maximum solubilizing efficiency (SE and solubilizing index (SI of 300.0 and 4.0 respectively. In fungi Aspergillus sp. – FS1 showed a maximum solubilizing efficiency (SE and solubilizing index(SI of 283.3 and 3.8 respectively. Antagonistic activity of P-solubilizing Pseudomonassp. - BS1 was deliberated against selected fungal plant pathogens. Among pathogens studied Aspergillus sp. showed a maximum inhibition activity (16 mm and minimum activity (12 mm was observed against Fusarium sp. Moreover inhibition efficiency (IE and inhibition index (II of Pseudomonas sp. - BS1. also calculated base on the antagonistic activity. Aspergillus sp. exhibited highest inhibition efficiency and inhibition index of 166.6 and 3.6 respectively.

  19. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  20. Rock phosphate solubilization by the ectomycorrhizal fungus ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... phosphate solubilization is accompanied by acid production. Thus, the evidence ..... of organic acids. (Khan et al., 2010) such as acetate, lactate, oxalate, ... (2014) also observed that oxalic acid was secreted by L. fraterna to ...

  1. Non-covalent and reversible functionalization of carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Antonello Di Crescenzo

    2014-09-01

    Full Text Available Carbon nanotubes (CNTs have been proposed and actively explored as multipurpose innovative nanoscaffolds for applications in fields such as material science, drug delivery and diagnostic applications. Their versatile physicochemical features are nonetheless limited by their scarce solubilization in both aqueous and organic solvents. In order to overcome this drawback CNTs can be easily non-covalently functionalized with different dispersants. In the present review we focus on the peculiar hydrophobic character of pristine CNTs that prevent them to easily disperse in organic solvents. We report some interesting examples of CNTs dispersants with the aim to highlight the essential features a molecule should possess in order to act as a good carbon nanotube dispersant both in water and in organic solvents. The review pinpoints also a few examples of dispersant design. The last section is devoted to the exploitation of the major quality of non-covalent functionalization that is its reversibility and the possibility to obtain stimuli-responsive precipitation or dispersion of CNTs.

  2. Dopamine transporter; solubilization and characterization of [3H] GBR-12935 binding in canine caudate

    International Nuclear Information System (INIS)

    Sallee, F.R.

    1988-01-01

    The dopamine (DA) transporter protein, as indexed by [ 3 H]GBR-12935 binding, was solubilized from canine striatal membranes with the detergent digitonin. This solubilized protein retained the same pharmacological characteristics as membrane attached uptake sites. The binding of [ 3 H]GBR-12935 to solubilized preparations was specific, saturable and reversible with an equilibrium dissociation constant of approximately 3 nM and a maximum ligand binding (B max ) of 3.4 pmol/mg protein. [ 3 H]GBR-12935 also bound to solubilized sites in a sodium-independent manner with a K D of approximately 6 nM and a B max of 1.2 ± 0.2 pmol/mg protein. Dopamine uptake inhibitors and substrates of DA uptake inhibited [ 3 H]GBR-12935 binding in a stereoselective and concentration dependent manner. For these compounds rank order of potency for inhibition of [ 3 H]GBR-12935 binding correlated with their potency for inhibition of dopamine uptake. K D values for DA uptake inhibitors in solubilized preparations correlated with those obtained on [ 3 H]GBR-12935 binding in the native state. The dopamine transporter appears to be a transmembrane glycoprotein by virtue of its absorption and specific elution from wheat germ agglutinin (WGA)-lectin column. Solubilization of the putative dopamine transporter with full retention of binding activity now allows for the purification and biochemical characterization of this important membrane protein

  3. Isolation of phosphate solubilizer fungi from Araza rhizosphere

    Directory of Open Access Journals (Sweden)

    Diana Fernanda Vera

    2002-01-01

    Full Text Available Araza is an eatable plant, original from the Amazon region which has been describedas a promising species for commercialization (Quevedo 1995. This plant has highproductivity even in low content phosphate soil but the presence of phosphatesolubilizazing microorganisms may contribute to increase this element availability.In this study we report the isolation and characterization of solubilizing fungiprocessed using the soil washing method, from soil samples were Araza is cultivated attwo regions in Guaviare, Colombia. Eighteen isolates of fungi capable of solubilizingphosphate were obtained from 2 different sources. The most importat species that solubilized phosphate from calcium were Trichodermaaureoviride, Aspergillus aculeatus,Trichodermastrain 1 y Trichodermastrain 2 and for phosphate from iron: Aspergillus oryzae,Paecilomycesstrain 3, Gongronella butleri& Fusarium oxysporum

  4. A continuous stochastic model for non-equilibrium dense gases

    Science.gov (United States)

    Sadr, M.; Gorji, M. H.

    2017-12-01

    While accurate simulations of dense gas flows far from the equilibrium can be achieved by direct simulation adapted to the Enskog equation, the significant computational demand required for collisions appears as a major constraint. In order to cope with that, an efficient yet accurate solution algorithm based on the Fokker-Planck approximation of the Enskog equation is devised in this paper; the approximation is very much associated with the Fokker-Planck model derived from the Boltzmann equation by Jenny et al. ["A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion," J. Comput. Phys. 229, 1077-1098 (2010)] and Gorji et al. ["Fokker-Planck model for computational studies of monatomic rarefied gas flows," J. Fluid Mech. 680, 574-601 (2011)]. The idea behind these Fokker-Planck descriptions is to project the dynamics of discrete collisions implied by the molecular encounters into a set of continuous Markovian processes subject to the drift and diffusion. Thereby, the evolution of particles representing the governing stochastic process becomes independent from each other and thus very efficient numerical schemes can be constructed. By close inspection of the Enskog operator, it is observed that the dense gas effects contribute further to the advection of molecular quantities. That motivates a modelling approach where the dense gas corrections can be cast in the extra advection of particles. Therefore, the corresponding Fokker-Planck approximation is derived such that the evolution in the physical space accounts for the dense effects present in the pressure, stress tensor, and heat fluxes. Hence the consistency between the devised Fokker-Planck approximation and the Enskog operator is shown for the velocity moments up to the heat fluxes. For validation studies, a homogeneous gas inside a box besides Fourier, Couette, and lid-driven cavity flow setups is considered. The results based on the Fokker-Planck model are

  5. Synthesis of Some New Quaternary Ammonium Compounds Evaluation of their Surface properties and Solubilization Activity

    International Nuclear Information System (INIS)

    Ismail, D.A.; Mohamed, A.S.; Mohamed, M.Z.

    2004-01-01

    Four cationic surfactants were prepared by condensing fatty acid methyl diethanolamine derivatives (C 6 , C I0 , C I2 , C I8 ) with stoichiometric amounts of trimethyl chlorosilane. The surface properties and parameters were investigated to find the relationship between the structure of the hydrophobic portion of such compounds and their efficiency toward solubilization. The properties studied included surface excess concentration (Γ m ax), critical micelle concentration (cmc). free energy of micellization (ΔG ο m ic) and adsorption (ΔG ο a ds) in addition to the surface tension (γ c mc) at cmc and effectiveness (Π c mc). The values of Γ m ax, ΔG ο mic and ΔG ο a ds were found to increase with increasing number of chain length. while cmc and minimum surface area occupied by one molecule (A m in) were decreased. Solubilization effect of these surfactants on paraffin oil as a non polar solubilizate and biodegradability were studied

  6. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  7. Optimization of Liquid Medium for High Phosphate Solubilization by Serratia Marcescens Strain AGKT4

    Directory of Open Access Journals (Sweden)

    Mohd Yusoff Abd. Samad

    2017-12-01

    Full Text Available This study is on the optimization of the medium for solubilization of phosphate based on the Box-Behnken design and response surface methodology. Optimization of the liquid medium for phosphate solubilization using Serratia marcescens strain AGKT4 was carried out by varying the concentrations of 3 ingredients; the fructose, peptone and inoculum size of bacteria. A mathematical model derived from the response surface methodology was then validated statistically for the target test variables. The highest phosphate solubilization in the medium was achieved at the optimal concentrations of fructose and peptone at 6% (w/v and 0.6% (w/v, respectively. The maximum phosphate solubilization at these concentrations was 239.12 µg/mL. Under the same conditions, the bacterial growth in the medium was 9 log10 CFU.

  8. The renaissance of non-aqueous uranium chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, Stephen T. [School of Chemistry, University of Nottingham (United Kingdom)

    2015-07-20

    Prior to the year 2000, non-aqueous uranium chemistry mainly involved metallocene and classical alkyl, amide, or alkoxide compounds as well as established carbene, imido, and oxo derivatives. Since then, there has been a resurgence of the area, and dramatic developments of supporting ligands and multiply bonded ligand types, small-molecule activation, and magnetism have been reported. This review (1) introduces the reader to some of the specialist theories of the area, (2) covers all-important starting materials, (3) surveys contemporary ligand classes installed at uranium, including alkyl, aryl, arene, carbene, amide, imide, nitride, alkoxide, aryloxide, and oxo compounds, (4) describes advances in the area of single-molecule magnetism, and (5) summarizes the coordination and activation of small molecules, including carbon monoxide, carbon dioxide, nitric oxide, dinitrogen, white phosphorus, and alkanes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. The effect of aqueous Elaeagnus angustifolia extract on acute non-inflammatory diarrhea in 1-5 year old children

    Directory of Open Access Journals (Sweden)

    Khoshdel Abofazl

    2014-01-01

    Full Text Available Introduction: Acute diarrhea is one of the most important causes of global childhood mortality and morbidity. The most common complication of acute diarrhea is dehydration. The aim of this study was to evaluate the use of aqueous Elaeagnus angustifolia extract in controlling non-inflammatory diarrhea in a hospital setting. Methods: In this case–controlled randomized double blind clinical trial 80 children in age range of 1-5 years were admitted in pediatric ward with diagnosis of non-inflammatory diarrhea. The patients were randomly divided into two equal groups of 40 cases. The subject in the first group received aqueous Elaeagnus angustifolia extract, 1.2 ml/Kg single dose for 4 days duration and the second group (control group 1.2 cm/Kg distilled water single dose for 4 days duration. Data analysis were performed by Chi-square and t-tests, using SPSS software. Results: The groups were similar regarding gender, mean age, and frequency, and consistency of defecation (p> 0.05. Although the children seemed better in regard to frequency and consistency of defecation, however the results showed that aqueous extract of Elaeagnus angustifolia was not significantly effective in the treatment of non-inflammatory diarrhea. Conclusion: The results of this study demonstrated that the use of aqueous extract of Elaeagnus angustifolia was not effective in the treatment of non-inflammatory diarrhea in children.

  10. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  11. Isolation and characterization of phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    ... in nitrogen, free semi-solid medium and able to produce siderophore. PSB inoculants with their beneficial traits would be considered as potential biofertilizer for the sustainable aerobic rice cultivation system. Key words: Aerobic rice, antagonistic effect, indoleacetic acid, organic acids, phosphorus solubilizing bacteria.

  12. Isolation and Characterization of Efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Vostro154032bit

    ABSTRACT. Applications of biofertilizer have great practical importance for increasing fertility of the soil and reducing environmental pollution. Screening and characterizing phosphate solubilizing Bacillus. (PSB) strains from different agroecologies of Tigray soil and in vitro assessment for the adaptability under different ...

  13. Isolation and characterization of efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Applications of biofertilizer have great practical importance for increasing fertility of the soil and reducing environmental pollution. Screening and characterizing phosphate solubilizing Bacillus (PSB) strains from different agroecologies of Tigray soil and in vitro assessment for the adaptability under different abiotic stress ...

  14. A non-aqueous all-copper redox flow battery with highly soluble active species

    International Nuclear Information System (INIS)

    Li, Yun; Sniekers, Jeroen; Malaquias, João; Li, Xianfeng; Schaltin, Stijn; Stappers, Linda; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F.J.

    2017-01-01

    A metal-based redox pair with acetonitrile as ligand [Cu(MeCN)_4][Tf_2N] is described for use in non-aqueous redox flow battery (RFB). The electrode kinetics of the anode and cathode are studied using cyclic voltammetry. The Cu"2"+/Cu"+ and Cu"+/Cu couples in this system yield a cell potential of 1.24 V. The diffusion coefficient for [Cu(MeCN)_4][Tf_2N] in acetonitrile is estimated to be 6.8 × 10"−"6 cm"2 s"−"1 at room temperature. The copper-acetonitrile complex has a very high solubility of 1.68 M in acetonitrile, the most widely used organic solvent for non-aqueous electrochemical applications. Hence, a maximum theoretical energy density around 28 Wh L"−"1 can be reached with the reported system. The RFB with this electrolyte shows a promising performance, with coulombic efficiencies of 87% and energy efficiencies of 44% (5 mA cm"−"2).

  15. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  16. Marine actinobacteria showing phosphate-solubilizing efficiency in Chorao Island, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Dastager, S.G.; Damare, S.R.

    . 2005, Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology & Biochemistry. 37, 1970–1974. 6. Collins C.H., Lyne P.M., 1980, Microbiological methods. London: Butterworth and Co..., Studies on phosphobacteriain Cochin Backwater. J. Mar. Biolog Associ. India. 29, 297–305. 21. Ramachandran K., Srinivasan V., Hamza S., Anandaraj M., 2007, Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion...

  17. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  18. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strain MWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate.

    Science.gov (United States)

    Tahir, Muhammad; Khalid, Umaira; Ijaz, Muhammad; Shah, Ghulam Mustafa; Naeem, Muhammad Asif; Shahid, Muhammad; Mahmood, Khalid; Ahmad, Naveed; Kareem, Fazal

    2018-04-24

    This study was aimed to investigate the effect of bio-organic phosphate either alone or in combination with phosphorus solubilizing bacteria strain (Bacillus MWT-14) on the growth and productivity of two wheat cultivars (Galaxy-2013 and Punjab-2011) along with recommended (150-100NPkgha -1 ) and half dose (75-50NPkgha -1 ) of fertilizers. The combined application of bio-organic phosphate and the phosphorous solubilizing bacteria strain at either fertilizer level significantly improved the growth, yield parameters and productivity of both wheat cultivars compared to non-inoculated control treatments. The cultivar Punjab-2011 produced the higher chlorophyll contents, crop growth rate, and the straw yield at half dose of NP fertilizer; while Galaxy-2013, with the combined application of bio-organic phosphate and phosphorous solubilizing bacteria under recommended NP fertilizer dose. Combined over both NP fertilizer levels, the combined use of bio-organic phosphate and phosphorous solubilizing bacteria enhanced the grain yield of cultivar Galaxy-2013 by 54.3% and that of cultivar Punjab-2011 by 83.3%. The combined application of bio-organic phosphate and phosphorous solubilizing bacteria also increased the population of phosphorous solubilizing bacteria, the soil organic matter and phosphorous contents in the soil. In conclusion, the combined application of bio-organic phosphate and phosphorous solubilizing bacteria offers an eco-friendly option to harvest the better wheat yield with low fertilizer input under arid climate. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. Chelating agents improve enzymatic solubilization of pectinaceous co-processing streams

    DEFF Research Database (Denmark)

    Ravn, Helle Christine; Meyer, Anne S.

    2014-01-01

    of different levels of ethylene-diaminetetraacetic acid (EDTA), citric acid, oxalic acid, and phosphate was assessed in relation to enzymatic solubilization of isopropanol precipitatable oligo- and polysaccharides from sugar beet pulp, citrus peel, and two types of potato pulp. The two types of potato pulp...... solubilization yields. The effect of the chelating agents correlated to their dissociation constants (pKa values) and calcium binding constants and citric acid and EDTA exerted highest effects. Maximum polysaccharide yield was obtained for FiberBind 400 where the enzymatic treatment in presence of citric acid...

  20. 1,3-Dioxolane, tetrahydrofuran, acetylacetone and dimethyl sulfoxide as solvents for non-aqueous vanadium acetylacetonate redox-flow-batteries

    International Nuclear Information System (INIS)

    Herr, T.; Noack, J.; Fischer, P.; Tübke, J.

    2013-01-01

    Highlights: • Four solvents were employed in a non-aqueous redox flow battery system. • Coulombic efficiencies of 85.9–98.5% and energy efficiencies of 26.6–43.6% were achieved. • Discharge power density was enhanced up to 0.080 mW cm −2 . • Solubility of V(acac) 3 was increased to 0.8 M compared to the acetonitrile system. -- Abstract: A non-aqueous vanadium acetylacetonate redox flow battery with different organic solvents and tetrabutylammonium hexafluorophosphate has been investigated. Cyclic voltammograms show three redox couples in 1,3-dioxolane, tetrahydrofuran, acetylacetone and two redox couples in dimethyl sulfoxide. Cell potentials between 2.21 and 2.61 V are measured, depending on the solvent used. Impedance Spectroscopy has been used to determine rate limiting step in the non-aqueous redox flow battery. Experiments in a charge–discharge test cell yielded coulombic and energy efficiencies of 85.9–98.5% and 26.6–43.6%, respectively

  1. Effects of Phosphorus Solubilizing Bacteria and Nitrogen on the Qualitative and Quantitative Properties of Tuberose (Polianthes tuberosa

    Directory of Open Access Journals (Sweden)

    T. Taher

    2016-02-01

    three levels (0, 5 and 10 kg ha-1 and nitrogen at four levels (0, 50, 100 and 200 kg ha-1 taken from urea source. Before cultivation, the bulbs, which were supposed to be inoculated with the mentioned bacteria, were placed in dense suspension (4gL-1 containing phosphate solubilizing bacteria for some minutes. After germination of the bulbs and formation of the actual leaves, the first stage of nitrogen consumption was performed during the growing season. The second stage of N consumption began 20 days after the first stage. At the end of the experiment, such parameters as flower vase life, Leaf area per plant, percentage of simultaneous opening of the florets, relative water content percentage, leaf chlorophyll index, plant biomass, dry matter percentage and leaf nitrogen and phosphorous percentages were measured. For means comparison, data variance analysis was carried out by SAS software and Duncan’s multiple-range test. Results and Discussion: According to data variance analysis, different levels of nitrogen had a significant impact on all properties except for flower vase life and leaf P percentage at the probability level of 1℅. Also, phosphate solubilizing bacteria left a significant effect on all properties except for flower vase life and leaf N and P percentages at p=1℅. The interactive effect of nitrogen and the bacteria on such traits as percentage of simultaneous opening of the florets, flower vase life, dry matter percentage and plant biomass was significant at p=1℅. Also, with rise in N levels and in bio fertilizer containing phosphate solubilizing bacteria, there occurred an increase in leaf area, relative water percentage, leaf chlorophyll index, leaf N percentage, dry matter content and plant biomass as well. The results showed that a rise in the application of nitrogen up to 200 kg ha-1 led to an increase in leaf area in bush, relative water percentage, leaf chlorophyll index, leaf N and P percentages, biomass per plant and the percentage of

  2. Consortium inoculum of five thermo-tolerant phosphate solubilizing Actinomycetes for multipurpose biofertilizer preparation.

    Science.gov (United States)

    Nandimath, Arusha P; Karad, Dilip D; Gupta, Shantikumar G; Kharat, Arun S

    2017-10-01

    Alkaline pH of the soil facilitates the conversion of phosphate present in phosphate fertilizer applied in the field to insoluble phosphate which is not available to plants. Problem of soluble phosphate deficiency arises, primarily due to needless use of phosphate fertilizer. We sought to biofertilizer with the thermo-tolerant phosphate solubilizing actinomycetes consortium that could convert insoluble phosphate to soluble phosphate at wider temperature range. In the present investigation consortium of five thermo-tolerant phosphate solubilizing actinomycetes was applied for preparation of inoculum to produce multipurpose bio-fertilizer. Phosphates solubilizing thermo-tolerant 32 actinomycetes strains were processed for identification with the use of PIBWIN software and were screened for phosphate solubilizing activity. Amongst these five actinomycetes were selected on the basis of their ability to produce cellulase, chitinase, pectinase, protease, lipase, amylase and phosphate solubilizing enzymes. Ability to produce these enzymes at 28°C and 50°C were examined. Biofertilizer was prepared by using agricultural waste as a raw material. While preparation of bio-fertilizer the pH decreased from 7.5 to 4.3 and temperature increased up to 74°C maximum at the end of 4 th week and in subsequent week it started to decline gradually till it reached around 50°C, which was found to be stable up to eighth week. This thermo-tolerant actinomycetes consortium released soluble phosphate of up to 46.7 μg ml -1 . As the mesophilic organisms die out at high temperature of composting hence thormo-tolerant actinomycetes would be the better substitute for preparation of phosphate solubilizing bio-fertilizer with added potential to degrade complex macromolecules in composting.

  3. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  4. On the mechanism of dechlorination of polychlorinated biphenyls (PCBs) induced by electron beam irradiation in aqueous and aqueous micellar solutions, transformer oil, and sediment

    International Nuclear Information System (INIS)

    Chaychian, M.; Silverman, J.; Al-Sheirkhly, M.

    2011-01-01

    Complete text of publication follows. The widespread release of PCBs into the environment presents a serious problem due to their persistence and toxicity. Ionizing radiation, such as gamma rays and high-energy electron beam, is remarkably effective in dechlorinating PCBs into biphenyls. The kinetics of the reductive dechlorination of PCBs in aqueous and aqueous micellar solutions and in transformer oil is being studied by pulse radiolysis and steady-state radiolysis. In aqueous micellar solutions, dichlori-, tetrachloro-, and decachlorobiphenyl congeners were solubilized in water using a commercially available non-ionic surfactant, Triton X-100, and subsequently pulse irradiated by electron accelerator using optical detection method. The reaction rate constant between decachlorobiphenyl and aqueous electrons e aq ·- , and Triton with e aq ·- in the 2% Triton solution, were measured as 2.6 x 10 9 Lmol -1 s -1 and 1.2 x 10 7 Lmol -1 s -1 , respectively. We have also measured in aqueous solutions, the reaction rate constant of e aq ·- with dichlorobiphenyl as 3.8 x 10 9 Lmol -1 s -1 . In aqueous-propanol, the reaction rate constants of e aq ·- with dichlorobiphenyl, tetrachlorobiphenyl, and dechachlorobiphenyl are 2 x 10 9 Lmol -1 s -1 , 3 x 10 9 Lmol -1 s -1 , and 7 x 10 9 Lmol -1 s -1 , respectively. In addition to the presence of PCBs as high-dielectric component, transformer oil contains many aromatic hydrocarbons; the most abundant being biphenyl, fluorine, and phenanthrene. Solvated electrons formed by irradiation of the oil react either with PCB to lead to dechlorination or with the aromatic hydrocarbons present in the oil to form radical anions. These species are shown to transfer an electron to chlorinated biphenyls relative rapidly, leading to dechlorination. The rate constants for several such reactions, determined in 2-propanol solutions, are in the range of 10 7 - 10 8 Lmol -1 s -1 . These rapid reactions explain why PCB can be dechlorinated in oil

  5. Studying furosemide solubilization using an in vitro model simulating gastrointestinal digestion and drug solubilization in neonates and young infants

    DEFF Research Database (Denmark)

    Klitgaard, Mette; Sassene, Philip Jonas; Selen, Arzu

    2017-01-01

    -2months). METHODS: The utilized in vitro model was designed to mimic the digestion and drug solubilization processes occurring in the stomach, and the small intestine of the neonate and young infant population, using physiologically relevant media, volumes and digestive enzymes. Overall the experimental...

  6. Evaluation methods used for phosphate-solubilizing bacteria ...

    African Journals Online (AJOL)

    This work aimed to evaluate the different selection methods and select inorganic phosphorus-solubilizing bacteria as potential plant-growth promoters. Bacterial isolates obtained from sugarcane roots and soil were tested using solid growth media containing bicalcium phosphate and Irecê Apatite ground rock phosphate as ...

  7. Microbial efficacy of phosphate solubilization in agro-saline soils of various areas of sindh region

    International Nuclear Information System (INIS)

    Noor, A.A.; Shah, F.A.

    2013-01-01

    Microorganisms are the most prominent entities for solubilization of phosphate in various soils of different areas of Sindh Province including Tando Muhammad Khan, Tando Allah Yar, Nawabshah, Rato Dero-Larkana, Shikarpur and Umer Kot. These soils, having varying concentrations of chemicals, different climatic conditions, pH and varying numbers of microorganisms for PSA (Phosphate Solubilization Activity). This presentation shows the isolation of different fungi and bacteria capable Psa including fungi (Fusarium sp. Aspergillus sp. Penicillium sp. and Rhizopus sp.) and bacteria (Bacillus sp. Pseudomonas sp. and Arthrobacter sp.). From the observations, it was revealed that fungi Aspergillus sp. and Bacillus sp. showed greater phosphate solubilization activity as compared to other fungi and bacteria showing 60 and 53.33% Psa (Phosphate Solubilizing Activity) respectively. (author)

  8. Isolation of Indigenous Bacteria of Phosphate Solubilizing from Green Bean Rhizospheres

    Directory of Open Access Journals (Sweden)

    N Arfarita

    2017-04-01

    Full Text Available The use of phosphate-solubilizing bacteria (PSB as a biological fertilizer of Agricultural land is one solution to overcome problem of phosphate availability for plants. However, often application of a biological fertilizer is ineffective for certain places. The purpose of this study was to obtain indigenous phosphate solubilizing bacterial isolates that can be effective in the area of Malang. Samples were collected from rhizosphereof green bean plants at three locations in Malang, East Java. The study was conducted to determine the total bacterial population of soil samples, to select the best three bacterial isolates in phosphate solubilizing ability, which is not antagonistic and nonpathogenic for plants,along with observing its potential as a bacterial consortium. The highest total population was found in FHR samples of 1.5x1011 CFU / mL. We have selected three bacterial isolates namely SPP1, SPP2 and SPP3. They were not antagonistic to each other and nonpathogenic on mungbean sprouts. They had possibility of producing growth hormone which characterized by an increasing in length of plant and total root length, be compared to controls. Strain SPP2 has shown the highest activity of phosphate solubilization then was selected for 16S rRNA identification. Similarity test of genome sequence of strain SPP2 had 99% similarity with Pseudomonas plecoglossicida strain PR19

  9. Formation of self-assembled quantum dots of iron oxide thin films by spray pyrolysis from non-aqueous medium

    International Nuclear Information System (INIS)

    Desai, J.D.; Pathan, H.M.; Min, Sun-Ki; Jung, Kwang-Deog; Joo, Oh-Shim

    2006-01-01

    Quantum dots (QDs) of iron oxide have been deposited onto ITO coated glass substrates by spray pyrolysis technique, using ferric chloride (FeCl 3 .7H 2 O) in non-aqueous medium as a starting material. The non-aqueous solvents namely methanol, ethanol, propanol, butanol and pentanol were used as solvents. The effect of solvents on the film structure and morphology was studied. The structural, morphological, compositional and optical properties were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-rays (EDAX), and optical absorption measurement techniques

  10. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  11. Effect of hydrostatic pressure on gas solubilization in micelles.

    Science.gov (United States)

    Meng, Bin; Ashbaugh, Henry S

    2015-03-24

    Molecular dynamics simulations of anionic sodium decylsulfate and nonionic pentaethylene glycol monodecyl ether micelles in water have been performed to examine the impact of hydrostatic pressure on argon solubilization as a function of pressure. The potential-of-mean force between the micelles and argon demonstrates that nonpolar gases are attracted to the interiors of both micelles. The affinity of argon for micelle interiors, however, decreases with increasing pressure as a result of the comparatively higher molar volume of argon inside assemblies. We evaluate solubility enhancement coefficients, which describe the drop in the solute chemical potential as a function of the micellized surfactant concentration, to quantify the impact of micellization on gas solubilization. While argon is similarly attracted to the hydrophobic cores of both micelles, the gas is more effectively sequestered within nonionic micelles compared with anionic micelles as a result of salting out by charged head groups and accompanying counterions. The solubility enhancement coefficients of both micelles decrease with increasing pressure, reflecting the changing forces observed in the potentials-of-mean force. An analytical liquid drop model is proposed to describe the pressure dependence of argon solubilization within micelles that captures the simulation solubility enhancement coefficients after fitting an effective micelle radius for each surfactant.

  12. Cocrystal solubility-pH and drug solubilization capacity of sodium dodecyl sulfate – mass action model for data analysis and simulation to improve design of experiments

    Directory of Open Access Journals (Sweden)

    Alex Avdeef

    2018-06-01

    Full Text Available This review discusses the disposition of the anionic surfactant, sodium dodecyl sulfate (SDS; i.e., sodium lauryl sulfate, to solubilize sparingly-soluble drugs above the surfactant critical micelle concentration (CMC, as quantitated by the solubilization capacity (k. A compilation of 101 published SDS k values of mostly poorly-soluble drug molecules was used to develop a prediction model as a function of the drug’s intrinsic solubility, S0, and its calculated H-bond acceptor/donor potential. In almost all cases, the surfactant was found to solubilize the neutral form of the drug. Using the mass action model, the k values were converted to drug-micelle stoichiometric binding constants, Kn, corresponding to drug-micelle equilibria in drug-saturated solutions. An in-depth case study (data from published sources considered the micellization reactions as a function of pH of a weak base, B, (pKa 3.58, S0 52 μg/mL, where at pH 1 the BH.SDS salt was predicted to precipitate both below and above the CMC. At low SDS concentrations, two drug salts were predicted to co-precipitate: BH.Cl and BH.SDS. Solubility products of both were determined from the analysis of the reported solubility-surfactant data. Above the CMC, in a rare example, the charged form of the drug (BH+ appeared to be strongly solubilized by the surfactant. The constant for that reaction was also determined. At pH 7, the reactions were simpler, as only the neutral form of the drug was solubilized, to a significantly lesser extent than at pH 1. Case studies also featured examples of solubilization of solids in the form of cocrystals. For many cocrystal systems studied in aqueous solution, the anticipated supersaturated state is not long-lasting, as the drug component precipitates to a thermodynamically stable form, thus lowering the amount of the active ingredient available for intestinal absorption. Use of surfactant can prevent this. A recently-described method for predicting the

  13. Aqueous slip casting of MgAl2O4 spinel powder

    Indian Academy of Sciences (India)

    The reaction proceeds by counter diffusion of the cations through the product layer, .... tain powders, such as Ube E10 silicon nitride Starck, B10 silicon carbide .... 779 kg/mm2 for a nanocrystalline dense MAS consolidated by aqueous slip ...

  14. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  15. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  16. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    GOOLSBY, TOMMY D.; SCOTT, STEVEN H.

    1999-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  17. 1H NMR analysis of complexation of hydrotropic agents nicotinamide and caffeine with aromatic biologically active molecules in aqueous solution

    Science.gov (United States)

    Lantushenko, Anastasia O.; Mukhina, Yulia V.; Veselkov, Kyrill A.; Davies, David B.; Veselkov, Alexei N.

    2004-07-01

    NMR spectroscopy has been used to elucidate the molecular mechanism of solubilization action of hydrotropic agents nicotinamide (NA) and caffeine (CAF). Hetero-association of NA with riboflavine-mononucleotide (FMN) and CAF with low soluble in aqueous solution synthetic analogue of antibiotic actinomycin D, actinocyl-bis-(3-dimethylaminopropyl) amine (Actill), has been investigated by 500 MHz 1H NMR spectroscopy. Concentration and temperature dependences of proton chemical shifts have been analysed in terms of a statistical-thermodynamic model of indefinite self- and heteroassociation of aromatic molecules. The obtained results enable to conclude that NA-FMN and CAF-Actill intermolecular complexes are mainly stabilized by the stacking interactions of the aromatic chromophores. Hetero-association of the investigated molecules plays an important role in solubilization of aromatic drugs by hydrotropic agents nicotinamide and caffeine.

  18. Interaction of complement-solubilized immune complexes with CR1 receptors on human erythrocytes. The binding reaction

    DEFF Research Database (Denmark)

    Jepsen, H H; Svehag, S E; Jarlbaek, L

    1986-01-01

    showed no binding. IC solubilized in 50% human serum in the presence of autologous RBC bound rapidly to RBC-CR1, with maximal binding within less than 1 min at 37 degrees C. Release of CR1-bound IC under these conditions occurred slowly, requiring more than 30 min. Only binding of 'partially' solubilized...... of an intact classical pathway in preparing the IC for binding to RBC-CR1. C-solubilized IC could be absorbed to solid-phase conglutinin or antibody to C3c and C4c, and these ligands were able to inhibit the binding of solubilized IC to RBC. Heparin also exerted a marked, dose-dependent inhibitory effect...

  19. Phosphate solubilizing bacteria and alkaline phosphatase activity in coastal waters off Trivandrum

    Digital Repository Service at National Institute of Oceanography (India)

    Mamatha, S.S.; Gobika, A.; Janani, P.

    , Korea. Marine Pollution Bulletin. 62. pp. 2476–2482. 98 Journal of Coastal Environment Illmer, P. and Schinner, F. 1995. Solubilization of inorganic calcium phosphates solubilization mechanisms. Soil Biology and Biochemistry. 27. pp. 57...-solubilising microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils. 30. 460-468. Wurl, O. 2009. Practical guidelines for the analysis of sea water. CRC Press, Boca Raton. pp. 143-178. Zohary, T...

  20. Solubilization of poorly soluble photosensitizer hypericin by polymeric micelles and polyethylene glycol.

    Science.gov (United States)

    Búzová, Diana; Kasák, Peter; Miškovský, Pavol; Jancura, Daniel

    2013-06-01

    Hypericin (Hyp) is a promising photosensitizer for photodiagnostic and photodynamic therapy of cancer. However, Hyp has a large conjugated system and in aqueous solutions forms insoluble aggregates which do not possess biological activity. This makes intravenous injection of Hyp problematic and restricts its medical applications. To overcome this problem, Hyp is incorporated into drug delivery systems which can increase its solubility and bioavailability. One of the possibilities is utilization of polymeric micelles. The most used hydrophilic block for preparation of polymeric micelles is polyethylen glycol (PEG). PEG is a polymer which for its lack of immunogenicity, antigenicity and toxicity obtained approval for use in human medicine. In this work we have studied the solubilization of Hyp aggregates in the presence of PEG-PE and PEG-cholesterol micelles. The concentration of polymeric micelles which allows total monomerization of Hyp corresponds to the critical micellar concentration of these micelles (~10(-6) M). We have also investigated the effect of the molecular weight and concentration of PEG on the transition of aggregated Hyp to its monomeric form. PEGs with low molecular weight ( 2000 g/mol efficiently transform Hyp aggregates to the monomeric state of this photosensitizer.

  1. High-activity MgO-supported CoMo Hydrodesulfurization Catalysts Prepared by Non-aqueous Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Gulková, Daniela; Vít, Zdeněk; Zdražil, Miroslav

    2015-01-01

    Roč. 162, JAN 2015 (2015), s. 430-436 ISSN 0926-3373 R&D Projects: GA ČR GAP106/11/0902 Institutional support: RVO:67985858 Keywords : CoMo/MgO * benzothiophene hydrodesulfurization * non-aqueous impregnation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.328, year: 2015

  2. Isolation and Characterization of Efficient Phosphate Solubilizing ...

    African Journals Online (AJOL)

    Vostro154032bit

    Research Article http://dx.doi.org/10.4314/mejs.v9i2.9. Momona Ethiopian Journal of Science (MEJS), V9(2):262-273,2017 ©CNCS, Mekelle University, ISSN:2220-184X. Isolation and Characterization of Efficient Phosphate Solubilizing Bacillus (PSB) from Different Agro-ecological Zones of Tigray Soil, Ethiopia. Kibrom, F.G.

  3. Mild-temperature thermochemical pretreatment of green macroalgal biomass: Effects on solubilization, methanation, and microbial community structure.

    Science.gov (United States)

    Jung, Heejung; Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    The effects of mild-temperature thermochemical pretreatments with HCl or NaOH on the solubilization and biomethanation of Ulva biomass were assessed. Within the explored region (0-0.2M HCl/NaOH, 60-90°C), both methods were effective for solubilization (about 2-fold increase in the proportion of soluble organics), particularly under high-temperature and high-chemical-dose conditions. However, increased solubilization was not translated into enhanced biogas production for both methods. Response surface analysis statistically revealed that HCl or NaOH addition enhances the solubilization degree while adversely affects the methanation. The thermal-only treatment at the upper-limit temperature (90°C) was estimated to maximize the biogas production for both methods, suggesting limited potential of HCl/NaOH treatment for enhanced Ulva biomethanation. Compared to HCl, NaOH had much stronger positive and negative effects on the solubilization and methanation, respectively. Methanosaeta was likely the dominant methanogen group in all trials. Bacterial community structure varied among the trials according primarily to HCl/NaOH addition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Citrem Modulates Internal Nanostructure of Glyceryl Monooleate Dispersions and Bypasses Complement Activation

    DEFF Research Database (Denmark)

    Wibroe, Peter P; Mat Azmi, Intan Diana Binti; Nilsson, Christa

    2015-01-01

    Lyotropic non-lamellar liquid crystalline (LLC) aqueous nanodispersions hold a great promise in drug solubilization and delivery, but these nanosystems often induce severe hemolysis and complement activation, which limit their applications for safe intravenous administration. Here, we engineer an...

  5. Solubilization of diabase and phonolite dust by filamentous fungus

    Directory of Open Access Journals (Sweden)

    Juliana Andréia Vrba Brandão

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effect of the fungus Aspergillus niger strain CCT4355 in the release of nutrients contained in two types of rock powder (diabase and phonolite by means of in vitro solubilization trials. The experimental design was completely randomized in a 5 x 4 factorial design with three replications. It was evaluated five treatments (phonolite dust + culture medium; phonolite dust + fungus + culture medium; diabase powder + culture medium; diabase powder + fungus + culture medium and fungus + culture medium and four sampling dates (0, 10, 20 and 30 days. Rock dust (0.4% w/v was added to 125 mL Erlenmeyer flasks containing 50 mL of liquid culture medium adapted to A. niger. The flasks were incubated at 30°C for 30 days, and analysis of pH (in water, titratable acidity, and concentrations of soluble potassium, calcium, magnesium, zinc, iron and manganese were made. The fungus A. niger was able to produce organic acids that solubilized ions. This result indicates its potential to alter minerals contained in rock dust, with the ability to interact in different ways with the nutrients. A significant increase in the amount of K was found in the treatment with phonolite dust in the presence of the fungus. The strain CCT4355 of A. niger can solubilize minerals contained in these rocks dust.

  6. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    Science.gov (United States)

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  7. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant

    International Nuclear Information System (INIS)

    Doong Rueyan; Lei Wengang

    2003-01-01

    The solubilization and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a soil system amended with different surfactants was examined. Mineralization experiments were conducted with the addition of [ 14 C]pyrene. An inoculum of the PAH-degrading microorganism, Pseudomonas putida, was investigated for its sensitivity towards four non-ionic and one anionic surfactants with different polyoxyethylene (POE) chain lengths. The addition of surfactant was found to enhance the bioavailability of naphthalene, phenanthrene and pyrene with efficiencies ranging from 21.1 to 60.6%, 33.3 to 62.8% and 26.8 to 70.9%, respectively. The enhanced efficiency followed the order of Brij 30, Triton X-100, Tween 80, and Brij 35, which is correlated with the polyoxyethylene chain of the surfactants. Brij 35 and Tween 80 inhibited the growth of P. putida. However, microorganisms can utilize Triton X-100 and Brij 30 as the sole carbon and energy sources at concentrations above CMC values. In the aqueous system without the addition of surfactants, microorganisms could mineralize [ 14 C]pyrene to 14 CO 2 which corresponds to 28% of mineralization. The addition of surfactants decreased the mineralization rate of pyrene. Also, the fraction of the micellar-phase pyrene that can be directly biodegraded decreased as the concentration of micelle increases. However, the mineralization rate can be enhanced by the amendment of Brij 30 when soil was applied to the cultures. This suggests that biodegradable surfactants can be applicable for increasing the bioavailability and mineralization of PAHs in soil systems

  8. Mineral phosphate solubilization by wild type and radiation induced mutants of pantoea dispersa and pantoea terrae

    International Nuclear Information System (INIS)

    Murugesan, Senthilkumar; Lee, Young Keun; Kim, Jung Hun

    2009-01-01

    Three mineral phosphate solubilizing (MPS) bacteria where isolated from rhizosphere soil samples of common bean and weed plants. 16S rDNA analysis indicated that the isolate P2 and P3 are closely related to Pantoea dispersa while isolate P4 is closely related to Pantoea terrae. Islates P2 and P3 recorded 381.60 μg ml -1 of tricalcium phosphate (TCP) solubilization respectively on 3 days incubation. Isolate P4 recorded the TCP solubilization of 215.85 μg ml -1 and the pH was dropped to 4.44 on 24 h incubation. Further incubation of P4 sharply decreased the available phosphorous to 28.94 μg ml -1 and pH level was raised to 6.32. Gamma radiation induced mutagenesis was carried out at LD 99 dose of the wild type strains. The total of 14 mutant clones with enhanced MPS activity and 4 clones with decreased activity were selected based on solubilization index (SI) and phosphate solubilization assay. Mutant P2-M1 recorded the highest P-solubilizing potential among any other wild or mutnat clones by releasing 504.21 μg ml -1 of phosphorous i.e. 35% higher than its wild type by the end of day 5. A comparative evaluation of TCP solubilization by wild type isolates of Pantoea and their mutants, led to select three MPS mutant clones such as P2-M1, P3-M2 and P3-M4 with a potential to release >471.67 μg ml 1 of phosphorous from TCP. These over expressing mutant clones are considered as suitable candidates for biofertilization

  9. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs.

    Science.gov (United States)

    di Cagno, Massimiliano; Terndrup Nielsen, Thorbjørn; Lambertsen Larsen, Kim; Kuntsche, Judith; Bauer-Brandl, Annette

    2014-07-01

    The aim of this study was to assess the potential of novel β-cyclodextrin (βCD)-dextran polymers for drug delivery. The size distribution of βCD-dextrans (for eventual parenteral administration), the influence of the dextran backbones on the stability of the βCD/drug complex, the solubilization efficiency of poorly soluble drugs and drug release properties were investigated. Size analysis of different βCD-dextrans was measured by size exclusion chromatography (SEC) and asymmetrical flow field-flow fractionation (AF4). Stability of drug/βCD-dextrans was assessed by isothermal titration calorimetry (ITC) and molar enthalpies of complexation and equilibrium constants compared to some commercially available βCD derivatives. For evaluation of the solubilization efficiency, phase-solubility diagrams were made employing hydrocortisone (HC) as a model of poorly soluble drugs, whereas reverse dialysis was used to detect potential drug supersaturation (increased molecularly dissolved drug concentration) as well as controlled release effects. Results indicate that all investigated βCD-polymers are of appropriate sizes for parenteral administration. Thermodynamic results demonstrate that the presence of the dextran backbone structure does not affect the stability of the βCD/drug complex, compared to native βCD and commercially available derivatives. Solubility studies evidence higher solubilizing abilities of these new polymers in comparison to commercially available βCDs, but no supersaturation states were induced. Moreover, drug release studies evidenced that diffusion of HC was influenced by the solubilization induced by the βCD-derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Hydroxypropyl cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimers as effective carbohydrate-solubilizers for polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Choi, Jae Min; Jeong, Daham; Piao, Jinglan; Kim, Kyoungtea; Nguyen, Andrew Bao Loc; Kwon, Nak-Jung; Lee, Mi-Kyung; Lee, Im Soon; Yu, Jae-Hyuk; Jung, Seunho

    2015-01-12

    The removal of polycyclic aromatic hydrocarbons by soil washing using water is extremely difficult due to their intrinsic hydrophobic nature. In this study, the effective aqueous solubility enhancements of seven polycyclic aromatic hydrocarbons by chemically modified hydroxypropyl rhizobial cyclic β-(1 → 2)-D-glucans and epichlorohydrin β-cyclodextrin dimer have been investigated for the first time. In the presence of hydroxypropyl cyclic β-(1 → 2)-D-glucans, the solubility of benzo[a]pyrene is increased up to 38 fold of its native solubility. The solubility of pyrene and phenanthrene dramatically increased up to 160 and 359. Coronene, chrysene, perylene, and fluoranthene also show an increase of 11, 23, 23, and 97 fold, respectively, of enhanced solubility by complexation with synthetic epichlorohydrin β-cyclodextrin dimer. The physicochemical properties of the complex are characterized by Fourier-transform infrared spectra and differential scanning calorimetry. Utilizing a scanning electron microscopy, the morphological structures of native benzo[a]pyrene, pyrene, phenanthrene, coronene, chrysene, perylene, fluoranthene and their complex with novel carbohydrate-solubilizers are studied. These results elucidate that polycyclic aromatic hydrocarbons are able to form an efficient complex with hydroxypropyl cyclic β-(1 → 2)-D-glucans and β-cyclodextrin dimer, suggesting the potential usage of chemically modified novel carbohydrate-solubilizers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Solubilization of tea seed oil in a food-grade water-dilutable microemulsion.

    Directory of Open Access Journals (Sweden)

    Lingli Deng

    Full Text Available Food-grade microemulsions containing oleic acid, ethanol, Tween 20, and water were formulated as a carrier system for tea seed oil (Camellia oleifera Abel.. The effect of ethanol on the phase behavior of the microemulsion system was clearly reflected in pseudo-ternary diagrams. The solubilization capacity and solubilization efficiency of tea seed oil dispersions were measured along the dilution line at a 70/30 surfactant/oil mass ratio with Tween 20 as the surfactant and oleic acid and ethanol (1:3, w/w as the oil phase. The dispersed phase of the microemulsion (1.5% weight ratio of tea seed oil to the total amount of oil, surfactant, and tea seed oil could be fully diluted with water without phase separation. Differential scanning calorimetry and viscosity measurements indicated that both the carrier and solubilized systems underwent a similar microstructure transition upon dilution. The dispersion phases gradually inverted from the water-in-oil phase ( 45% water along the dilution line.

  12. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus.

    Science.gov (United States)

    Christybapita, D; Divyagnaneswari, M; Michael, R Dinakaran

    2007-10-01

    Immunostimulatory effects of the oral administration of the medicinal plant, Eclipta alba leaf extracts was studied in tilapia, Oreochromis mossambicus. For this purpose, fish were fed for 1, 2 or 3 weeks with diets containing E. alba leaf aqueous extract at 0, 0.01, 0.1 or 1% levels. After each week, non-specific humoral (lysozyme, antiprotease and complement) and cellular (myeloperoxidase content, production of reactive oxygen and nitrogen species) responses and disease resistance against Aeromonas hydrophila were determined. The results indicated that E. alba aqueous extract administered as feed supplement significantly enhanced most of the non-specific immune parameters tested. Among the humoral responses, lysozyme activity significantly increased after feeding with aqueous extract for 1, 2 or 3 weeks. No significant modulation was noticed in all the cellular responses tested after 3 weeks of feeding, while reactive oxygen species production and myeloperoxidase content showed significant enhancement after 1 week of feeding with aqueous extract. When challenged with A. hydrophila after 1, 2 or 3 weeks of feeding, the percentage mortality was significantly reduced in the treated fish. The highest dose of 1% gave better protection than the other doses with the relative percentage survival (RPS) values of 64, 75 and 32 after feeding for 1, 2 and 3 weeks respectively. The results indicate that dietary intake of E. alba aqueous leaf extract enhances the non-specific immune responses and disease resistance of O. mossambicus against A. hydrophila.

  13. Dermal absorption of a dilute aqueous solution of malathion

    Directory of Open Access Journals (Sweden)

    Scharf John

    2008-01-01

    Full Text Available Malathion is an organophosphate pesticide commonly used on field crops, fruit trees, livestock, agriculture, and for mosquito and medfly control. Aerial applications can result in solubilized malathion in swimming pools and other recreational waters that may come into contact with human skin. To evaluate the human skin absorption of malathion for the assessment of risk associated with human exposures to aqueous solutions, human volunteers were selected and exposed to aqueous solutions of malathion. Participants submerged their arms and hands in twenty liters of dilute malathion solution in either a stagnant or stirred state. The "disappearance method" was applied by measuring malathion concentrations in the water before and after human exposure for various periods of time. No measurable skin absorption was detected in 42% of the participants; the remaining 58% of participants measured minimal absorbed doses of malathion. Analyzing these results through the Hazard Index model for recreational swimmer and bather exposure levels typically measured in contaminated swimming pools and surface waters after bait application indicated that these exposures are an order of magnitude less than a minimal dose known to result in a measurable change in acetylcholinesterase activity. It is concluded that exposure to aqueous malathion in recreational waters following aerial bait applications is not appreciably absorbed, does not result in an effective dose, and therefore is not a public health hazard.

  14. Carbon dioxide assist for non-aqueous sodium–oxygen batteries

    KAUST Repository

    Das, Shyamal K.

    2013-02-01

    We report a novel non-aqueous Na-air battery that utilizes a gas mixture of CO2 and O2. The battery exhibits a high specific energy of 6500-7000 Whkg- 1 (based on the carbon mass) over a range of CO2 feed compositions. The energy density achieved is higher, by 200% to 300%, than that obtained in pure oxygen. Ex-situ FTIR and XRD analysis reveal that Na2O2, Na2C2O 4 and Na2CO3 are the principal discharge products. The Na-CO2/O2 and Mg-CO2/O 2 battery platforms provide a promising, new approach for CO 2 capture and generation of electrical energy. © 2012 Elsevier B.V. All rights reserved.

  15. Development of technology and equipment for manufacturing fluorides rare-earths via non-aqueous method

    International Nuclear Information System (INIS)

    Chatalov, V.V.; Kozlov, O.I.; Machirev, V.P.; Zvonarev, E.N.

    1998-01-01

    Full text: The works on technology and equipment for rare earths (RE) fluorides are very scarce. Presently RE-fluorides are manufactured by various methods. Conventionally they can be divided into two main groups. The first group comprises methods based on precipitation of fluorides from soluble salts of corresponding metals by fluohydric acid (aqueous methods) with following thermal decomposition of aquatic fluorides obtained until anhydric state is reached. The second group (called dry, gaseous or non-aqueous) comprises methods based on direct fluorizating (by fluorine hydride, fluor or other fluorating agents) have several important advantages compared to the aqueous methods: the fluorides obtained are anhydrous; the operations of fluoride precipitation, washing, decantation, filtration are excluded as well as their drying and calcination. The process of calcination is, as a rule, accompanied by pyrohydrolysis. The products manufactured by precipitation are inferior to those obtained by the non-aqueous technique. The world production practice uses both groups of methods. Nevertheless, the method of gaseous hydrofluorination is preferable. In all non-aqueous processes the initial materials are oxides RE which interact with gaseous fluorine hydride. The initial materials - oxides are obtained by thermal decomposition of carbonates, hydroxides, oxalates and so on. One of the best type of apparatus for thermal decomposition processes is a horizontal ring shaped vibrating apparatus with direct heating. The RE - fluorides is synthesized by way of RE-oxide interacting with hydrogen fluoride at 200-550 deg C in single continuous operation: (RE) 2 O 3 + 6 HF → 2 (RE)F 3 + 3 H 2 0 The apparatus consists of a nickel horizontal two tube screw. Reaction time is varied from 2 to 6 hours; the productivity of reactor is defined by feed screw rotation and initial material bulk density. Hydrogen fluoride was passing the reactor opposite to the solid phase. The degree

  16. Solubilization of trace organics in block copolymer micelles for environmental separation using membrane extraction principles. Progress report, May 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T.A.

    1992-12-01

    The solubilization of a range of polycyclic aromatic hydrocarbons in block copolymer micelles has been studied as a function of polymer composition, architecture, and temperature. Micelle formation is favored at high temperatures, leading to significant enhancements in solubilization capacity. At low temperatures, however, micelles do not form and the solubilization capacity of the block copolymer solution for the organics is low; this provides a convenient method for the regeneration of micellar solutions used as ``solvents`` in the treatment of contaminated feed streams using membrane extraction principles. It has also been shown (in collaboration with K.P. Johnston of University of Texas, Austin) that supercritical CO{sub 2} can be used effectively for micelle regeneration. Theoretical calculations of the structure of block copolymer micelles in the presence and absence of solutes using self-consistent mean-field lattice theories have successfully captured the trends observed with changing polymer composition and architecture, often quantitatively. The temperature and composition dependence of the micellar properties were determined by allowing the individual polymer segments to assume both polar and non-polar conformations.

  17. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  18. Evaluation of the Effects of Bio Fertilizers Containing non Symbiotic Nitrogen Fixing and Phosphate Solubilizing Bacteria on Quantitative and Qualitative Traits of Wheat

    Directory of Open Access Journals (Sweden)

    M Mohtadi

    2016-02-01

    Full Text Available Introduction Wheat crop plays an important role in food security in a country such as Iran. Therefore, serious attention has been paid to ecological farming systems and sustainable management of wheat. For this purpose extensive efforts is done to find proper strategies to improve the quality of soil, agricultural products and started removal pollutants. One of the factors to achieve sustainable agriculture is to use natural agents such as biofertilizers. Several mechanisms are proposed to explain how effective plant growth promoting rhizobacteria is for growth and development of plants. These mechanisms include two groups, direct and indirect in general. Indirect mechanism is to increase absorption and availability of the nutrient elements soluble, producing plant growth regulators, siderophore production of iron chelator, and the phosphate soluble. Through indirect mechanisms such as antagonistic relation, PGPRs moderate the harmful effects of of plant pathogens and thereby lead to increase plant growth. The main goal of this study was to investigate the effect of biofertilizers containing non-symbiotic nitrogen fixing and phosphate solubilizing bacteria on quantitative and qualitative traits of wheat. Materials and Methods This Experiment was conducted in the research farm of Baykola agricultural research stations affiliated by agriculture and natural resources research center of Mazandaran during 2011-12 cropping season. In order to determine physical and chemical properties of the soil samples were taken from the depth of 0-30 cm,. Experimental design was split plots arrangement based on randomized complete block design with three replications. In this experiment chemical fertilizer was assumed as the main plot in 3 levels include: 1- noconsumption (C0, 2- equivalent to 50% of the fertilizer recommendations (C1, 3- equivalent to 100% of the fertilizer recommendations(C2 and two types of biological fertilizers was applied in the sub plot in

  19. Evaluation of the influence of nitrogen fixing, phosphate solubilizing ...

    African Journals Online (AJOL)

    Three biofertilizers nitrobein, phosphorein, and potash, containing nitrogen fixing, phosphate solubilizing, and potash mobilizing microorganisms, respectively were studied in peanut (Arachis hypogea L.) and sunflower (Helianthus annuus L.). Amendment with each of these biofertilizers enhanced different growth ...

  20. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  1. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    Science.gov (United States)

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  2. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors

    International Nuclear Information System (INIS)

    Wong, K.Y.; Hawley, D.; Vigneri, R.; Goldfine, I.D.

    1988-01-01

    Prior studies have detected biochemical and immunological differences between insulin receptors in plasma membranes and isolated nuclei. To further investigate these receptors, they were solubilized in Triton X-100 partially purified by wheat germ agglutinin-agarose chromatography. In these preparations, the nuclear and plasma membrane receptors had very similar pH optima (pH 8.0) and reactivities to a group of polyclonal antireceptor antibodies. Further, both membrane preparations had identical binding activities when labeled insulin was competed for by unlabeled insulin (50% inhibition at 800 pM). Next, nuclear and plasma membranes were solubilized and purified to homogeneity by wheat germ agglutinin-agarose and insulin-agarose chromatography. In both receptors, labeled insulin was covalently cross-linked to a protein of 130 kilodaltons representing the insulin receptor α subunit. When preparations of both receptors were incubated with insulin and then adenosine 5'-[γ- 32 P]triphosphate, a protein of 95 kilodaltons representing the insulin receptor β subunit was phosphorylated in a dose-dependent manner. These studies indicate, therefore, that solubilized plasma membrane and nuclear insulin receptors have similar structures and biochemical properties, and they suggest that they are the same (or very similar) proteins

  3. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations

    International Nuclear Information System (INIS)

    Chaudhary, Sonam; Gothwal, Avinash; Khan, Iliyas; Srivastava, Shubham; Malik, Ruchi; Gupta, Umesh

    2017-01-01

    Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH 2 ) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH 2 ). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2 mM G5-PPI-NH 2 concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH 10.0, respectively (p < 0.05). The solubility of the drug was increased to a greater extent with G5-PPI-NH 2 dendrimers because it has more hydrophobic interior than G4-PAMAM-NH 2 dendrimers. The release of BTZ from G5-PPI-NH 2 complex was comparatively slower than G4-PAMAM-NH 2 . The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions. - Highlights: • The present study reports the application of PAMAM and PPI dendrimers in solubilizing bortezomib with possible mechanism. • Improved solubility of bortezomib through dendrimers could significantly contribute its successful anticancer potential. • Molecular simulation and thermodynamic

  4. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Sonam; Gothwal, Avinash; Khan, Iliyas; Srivastava, Shubham; Malik, Ruchi; Gupta, Umesh, E-mail: umeshgupta175@gmail.com

    2017-03-01

    Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH{sub 2}) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH{sub 2}). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2 mM G5-PPI-NH{sub 2} concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH 10.0, respectively (p < 0.05). The solubility of the drug was increased to a greater extent with G5-PPI-NH{sub 2} dendrimers because it has more hydrophobic interior than G4-PAMAM-NH{sub 2} dendrimers. The release of BTZ from G5-PPI-NH{sub 2} complex was comparatively slower than G4-PAMAM-NH{sub 2}. The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions. - Highlights: • The present study reports the application of PAMAM and PPI dendrimers in solubilizing bortezomib with possible mechanism. • Improved solubility of bortezomib through dendrimers could significantly contribute its successful anticancer potential.

  5. Open Circuit Potential Changes upon Protonation/Deprotonation of ω-Functionalized Alkanethiols on Au: Determination of Surface pK {sub 1/2} in Aqueous and Non-Aqueous System

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seung Ryul; Park, Kyung Soon; Jang, Jae Won; Hwang, Seong Pil [Korea Univ., Sejong (Korea, Republic of)

    2016-09-15

    The controlled assembly of functional nanomaterials has been drawing significant interest for making devices by integration of nanomaterials. The building blocks of functional nanomaterials might be confined spatially on the chemically patterned surface through both covalent and non-covalent bonds. Potentiometric measurement is affordable technique for various researchers because it requires only voltmeter and reference electrode. Moreover, it can be applied to various polar solvent such as methanol and ethanol. The open circuit potential (OCP) is measured indicating the potential difference between reference electrode and working electrode. The potential of working electrode might be affected by redox chemical reaction and charge state/separation. Our results provide the simple and affordable method to investigate pK {sub 1/2} of thin film both in aqueous phase and in non-aqueous phase, which has significant role in colloidal chemistry, nanochemistry, surface chemistry, electrochemistry, and others.

  6. Electrochemical deposition of coatings of highly entropic alloys from non-aqueous solutions

    Directory of Open Access Journals (Sweden)

    Jeníček V.

    2016-03-01

    Full Text Available The paper deals with electrochemical deposition of coatings of highly entropic alloys. These relatively new materials have been recently intensively studied. The paper describes the first results of electrochemical coating with highly entropic alloys by deposition from non-aqueous solutions. An electrochemical device was designed and coatings were deposited. The coatings were characterised with electronic microscopy scanning, atomic absorption spectrometry and X-ray diffraction methods and the combination of methods of thermic analysis of differential scanning calorimetry and thermogravimetry.

  7. Physicochemical investigation of mixed surfactant microemulsions: water solubilization, thermodynamic properties, microstructure, and dynamics.

    Science.gov (United States)

    Bardhan, Soumik; Kundu, Kaushik; Saha, Swapan K; Paul, Bidyut K

    2013-12-01

    In this contribution, we report on a systematic investigation of phase behavior and solubilization of water in water-in-heptane or decane aggregates stabilized by mixtures of polyoxyethylene (20) cetyl ether (Brij-58) and cetyltrimethylammonium bromide (CTAB) surfactants with varying compositions in conjugation with 1-pentanol (Pn) at fixed surfactant(s)/Pn ratio and temperature. Synergism in water solubilization was evidenced by the addition of CTAB to Brij-58 stabilized system in close proximity of equimolar composition in both oils. An attempt has been made to correlate composition dependent water solubilization and volume induced conductivity studies to provide insight into the solubilization mechanism of these mixed systems. Conductivity studies reveal the ascending curve in water solubilization capacity-(Brij-58:CTAB, w/w) profile as the interdroplet interaction branch indicating percolation of conductance and the descending curve is a curvature branch due to the rigidity of the interface in these systems. The microstructure of these systems as a function of surfactant composition has been determined by dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR) measurements. FTIR study reveals increase and decrease in relative population of bound and bulk-like water, respectively, with increase in Brij-58:CTAB (w/w). DLS measurements showed that the droplet hydrodynamic diameter (Dh) decreases significantly with the increase in Brij-58:CTAB (w/w). Further, the interfacial composition and energetic parameters for the transfer of Pn from bulk oil to the interface were evaluated by the dilution method. Formation of temperature-insensitive microemulsions and temperature invariant droplet sizes are evidenced in the vicinity of the equimolar composition. The results are interpreted in terms of a proposed mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Performance of phosphate solubilizing bacteria for improving growth ...

    African Journals Online (AJOL)

    The ability of phosphate solubilizing bacteria (PSB) to convert insoluble forms of phosphorus to an accessible form is an important trait in sustainable farming for increasing plant yields. The beneficial effects of PSB on crop productivity have been widely described, but the use of PSB as biofertilizer is scarcely documented in ...

  9. Proceedings of RIKEN BNL research center workshop, equilibrium and non-equilibrium aspects of hot, dense QCD, Vol. 28

    International Nuclear Information System (INIS)

    De Vega, H.J.; Boyanovsky, D.

    2000-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation ∼2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision

  10. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    De Vega, H.J.; Boyanovsky, D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  11. PROCEEDINGS OF RIKEN/BNL RESEARCH CENTER WORKSHOP, EQUILIBRIUM AND NON-EQUILIBRIM ASPECTTS OF HOT, DENSE QCD, VOLUME 28.

    Energy Technology Data Exchange (ETDEWEB)

    DE VEGA,H.J.; BOYANOVSKY,D. [and others

    2000-07-17

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven, beginning operation this year, and the Large Hadron Collider (LHC) at CERN, beginning operation {approximately}2005, will provide an unprecedented range of energies and luminosities that will allow us to probe the Gluon-Quark plasma. At RHIC and LHC, at central rapidity typical estimates of energy densities and temperatures are e * 1-10 GeV/fm3 and T0 * 300 - 900 MeV. Such energies are well above current estimates for the GQ plasma. Initially, this hot, dense plasma is far from local thermal equilibrium, making the theoretical study of transport phenomena, kinetic and chemical equilibration in dense and hot plasmas, and related issues a matter of fundamental importance. During the last few years a consistent framework to study collective effects in the Gluon-Quark plasma, and a microscopic description of transport in terms of the hard thermal (and dense) loops resummation program has emerged. This approach has the potential of providing a microscopic formulation of transport, in the regime of temperatures and densities to be achieved at RHIC and LHC. A parallel development over the last few years has provided a consistent formulation of non-equilibrium quantum field theory that provides a real-time description of phenomena out of equilibrium. Novel techniques including non-perturbative approaches and the dynamical renormalization group techniques lead to new insights into transport and relaxation. A deeper understanding of collective.excitations and transport phenomena in the GQ plasma could lead to recognize novel potential experimental signatures. New insights into small-c physics reveals a striking similarity between small-c and hard thermal loops, and novel real-time numerical simulations have recently studied the parton distributions and their thermalizations in the initial stages of a heavy ion collision.

  12. Paracetamol degradation in aqueous solution by non-thermal plasma

    Science.gov (United States)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  13. Changes in brown coal structure caused by coal-solubilizing microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Schmiers, H.; Koepsel, R.; Weber, A.; Winkelhoefer, M.; Grosse, S. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Energieverfahrenstechnik und Chemieingenieurwesen

    1997-12-31

    The phenomenon of coal solubilization caused by microorganisms has been explained by various mechanisms: extraction of non-covalently bonded polar components of the coal substance by biogenic agents (chelating agents, alkaline substances) and enzyme-catalyzed cleavage of covalent bonds by extracellular enzyme systems. For this it is assumed that bond cleavage occurs on the aliphatic carbon (methylene groups, aliphatic bridges or on ester groups). As the coal has usually been treated with oxidizing agents such as H{sub 2}O{sub 2} or HNO{sub 3} before bioconversion, there is a possibility that the result of bioconversion is overlaid with the effect of the chemical treatment. We therefore studied the structural changes in the organic coal substance during pre-oxidation with H{sub 2}O{sub 2}, treatment with MnP and conversion using the fungal strains of Trichoderma and Fusarium oxysporum. (orig.)

  14. The capture of attention by entirely irrelevant pictures of calorie-dense foods.

    Science.gov (United States)

    Cunningham, Corbin A; Egeth, Howard E

    2018-04-01

    Inborn preference for palatable energy-dense food is thought to be an evolutionary adaptation. One way this preference manifests itself is through the control of visual attention. In the present study, we investigated how attentional capture is influenced by changes in naturally occurring goal-states, in this case desire for energy-dense foods (typically high fat and/or high sugar). We demonstrate that even when distractors are entirely irrelevant, participants were significantly more distracted by energy-dense foods compared with non-food objects and even low-energy foods. Additionally, we show the lability of these goal-states by having a separate set of participants consume a small amount of calorie-dense food prior to the task. The amount of distraction by the energy-dense food images in this case was significantly reduced and no different than distraction by images of low-energy foods and images of non-food objects. While naturally occurring goal-states can be difficult to ignore, they also are highly flexible.

  15. Passivation behavior of Type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF6 salt

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Sasaki, Yusuke; Saito, Takamitsu; Sun, Yang-Kook; Yashiro, Hitoshi

    2009-01-01

    Passivation behavior of type 304 stainless steel in a non-aqueous alkyl carbonate solution containing LiPF 6 salt was studied using electrochemical polarization, X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectroscopy (ToF-SIMS). Cathodic polarization to 0 V vs. Li/Li + resulted in most but not complete reduction of the air-formed film from oxides to metal on the stainless steel, as confirmed by XPS. For complete elimination of the air-formed film, the surface of the stainless steel was scratched under anodic polarization conditions. At 3 V vs. Li/Li + where an anodic current peak appeared, only an indistinct layer was recognized on the newly scratched surface, according to ToF-SIMS analysis. Above 4 V vs. Li/Li + , substantial passive films were formed, which were composed of oxides and fluorides of iron and chromium. The origin of oxide was due to water contained in the non-aqueous alkyl carbonate solution, and that of fluorides were the result of the decomposition of electrolytic salt, LiPF 6 , especially at higher potential. The resultant passive films were stable in the non-aqueous alkyl carbonate solution containing LiPF 6 salt.

  16. Identification of phosphate solubilizing bacteria in a Andisol of Colombian coffee region

    Directory of Open Access Journals (Sweden)

    Carlos Adolfo Cisneros Rojas

    2017-01-01

    Full Text Available Phosphorus is an essential nutrient for coffee growing, however, in Colombia most of the soils have low concentrations of this element. A strategy to supply the demand is the use of phosphate solubilizing microorganisms (PSM, in that order, 26 rhizospheric bacteria of Typic melanudans soil of Cajibío (Cauca, Colombia were isolated, in three agroecosystems: coffee at full sun exposure, coffee with shade and relic secondary forest, evaluating the phosphate solubilizing efficiency (PSE for Ca-P, Al-P, Fe-P in the solid and liquid Pikovskaya media. It showed the following solubilization sequence: Ca-P> Al-P> Fe-P. Two isolated bacteria were identified by DNA extraction and analysis of the 16S rRNA gene as Kocuria sp, and Bacillus subtilis. Later, using HPLC were identified organic acids present in the three phosphorus sources as: citric, gluconic, D- and L-malic, D- and L-lactic acid with higher presence in Ca-P-Kocuria sp. Strong acidification was observed for Fe-P and Al-P in all conditions.

  17. Solubilization of Australian lignites by fungi and other microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Catcheside, D.E.A.; Mallett, K.J. (Flinders University, Bedford Park, SA (Australia). School of Biological Sciences)

    Lignites (brown coals) from the Latrobe Valley in Victoria are solubilized by {ital Coriolus versicolor}, {ital Phanerochaete chrysosporium}, and five other species known to be active on Leonardite and various acid-treated North America lignites. Run-of-mine coal from Morwell and Loy Yang is refractory but is soluble after pretreatment with acid. A weathered deposit at Loy Yang, like Leonardite, is susceptible to biosolubilization without pretreatment. The white rot fungi {ital Ganoderma applanatum}, {ital Perenniporia tephropora} ({ital Fomes lividus}), {ital Pleurotus ostreatus}, {ital Pycnoporus cinnabarinus}, {ital Rigidoporus ulmarius}, and {ital Xylaria hypoxylon} were found to be capable of solubilizing lignite. In contrast, brown rot fungi were weakly active or inactive under the same test conditions. Lignite-degrading fungi, actinomycetes, and other bacteria, including some active on untreated run-of-mine coal, were isolated from natural lignite exposures and mining sites. 15 refs., 5 tabs.

  18. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries.

    Science.gov (United States)

    Hwang, Byunghyun; Park, Min-Sik; Kim, Ketack

    2015-01-01

    Ferrocene and cobaltocene and their derivatives are studied as new redox materials for redox flow cells. Their high reaction rates and moderate solubility are attractive properties for their use as active materials. The cyclability experiments are carried out in a static cell; the results showed that these materials exhibit stable capacity retention and predictable discharge potentials, which agree with the potential values from the cyclic voltammograms. The diffusion coefficients of these materials are 2 to 7 times higher than those of other non-aqueous materials such as vanadium acetylacetonate, iron tris(2,2'-bipyridine) complexes, and an organic benzene derivative. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  20. OH megamasers: dense gas & the infrared radiation field

    Science.gov (United States)

    Huang, Yong; Zhang, JiangShui; Liu, Wei; Xu, Jie

    2018-06-01

    To investigate possible factors related to OH megamaser formation (OH MM, L_{H2O}>10L_{⊙}), we compiled a large HCN sample from all well-sampled HCN measurements so far in local galaxies and identified with the OH MM, OH kilomasers (L_{H2O}gas and the dense gas, respectively), we found that OH MM galaxies tend to have stronger HCN emission and no obvious difference on CO luminosity exists between OH MM and non-OH MM. This implies that OH MM formation should be related to the dense molecular gas, instead of the low-density molecular gas. It can be also supported by other facts: (1) OH MMs are confirmed to have higher mean molecular gas density and higher dense gas fraction (L_{HCN}/L_{CO}) than non-OH MMs. (2) After taking the distance effect into account, the apparent maser luminosity is still correlated with the HCN luminosity, while no significant correlation can be found at all between the maser luminosity and the CO luminosity. (3) The OH kMs tend to have lower values than those of OH MMs, including the dense gas luminosity and the dense gas fraction. (4) From analysis of known data of another dense gas tracer HCO^+, similar results can also be obtained. However, from our analysis, the infrared radiation field can not be ruled out for the OH MM trigger, which was proposed by previous works on one small sample (Darling in ApJ 669:L9, 2007). On the contrary, the infrared radiation field should play one more important role. The dense gas (good tracers of the star formation) and its surrounding dust are heated by the ultra-violet (UV) radiation generated by the star formation and the heating of the high-density gas raises the emission of the molecules. The infrared radiation field produced by the re-radiation of the heated dust in turn serves for the pumping of the OH MM.

  1. Enhancing the stability and performance of a battery cathode using a non-aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Yeol [Division of Engineering, Brown University, Providence, RI 02912 (United States); Sen, Sujat [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Song, Hyun-Kon [Interdisciplinary School of Green Energy and School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulju-gun, Ulsan 689-798 (Korea); Palmore, G. Tayhas R. [Division of Biology and Medicine, Brown University, Providence, RI 02912 (United States)

    2010-06-15

    For conductive polymers to be considered materials for energy storage, both their electroactivity and stability must be optimized. In this study, a non-aqueous electrolyte (0.2 M LiClO{sub 4} in acetonitrile) was studied for its effect on the charge storage capacity and stability of two materials used in batteries developed in our laboratory, polypyrrole (pPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2,2'-azino-bis(3-ethylbenzothiaxoline-6-sulfonic acid (ABTS)). The results are compared to the performance of these materials in an aqueous electrolyte (0.2 M HCl/aq). Loss of ABTS dopant was eliminated principally due to the low solubility of ABTS in acetonitrile, resulting in cathode materials with improved stability in terms of load cycling and performance. (author)

  2. The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops

    International Nuclear Information System (INIS)

    Barea, J.M.; Toro, M.; Azcon, R.; Orozco, M.O.; Campos, E.; Azcon, R.

    2002-01-01

    A pot experiment was designed to evaluate the interactive effects of multifunctional microbial inoculation treatments and rock phosphate (RP) application on N and P uptake by alfalfa through the use of 15 N and 32 P isotopic dilution approaches. The microbial inocula consisted of a wild type (WT) Rhizobium meliloti strain, the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and a phosphate solubilizing rhizobacterium (Enterobacter sp.). Inoculated microorganisms were established in the root tissues and/or in the rhizosphere soil of alfalfa plants (Medicago sativa L.). Improvements in N and P accumulation in alfalfa corroborate beneficial effects of Rhizobium and AM interactions. Inoculation with selected rhizobacteria improved the AM effect on N or P accumulation in both the RP-added soil and in the non RP-amended controls. Measurements of the 15 N/ 14 N ratio in plant shoots indicate an enhancement of the N 2 fixation rates in Rhizobium-inoculated AM-plants, over that achieved by Rhizobium in non-mycorrhizal plants. Whether or not RP was added, AM-inoculated plants showed a lower specific activity ( 32 P/ 31 P) than did their comparable non-mycorrhizal controls, suggesting that the plant was using otherwise unavailable P sources. The phosphate-solubilizing, AM-associated, microbiota could in fact release phosphate ions, either from the added RP or from the indigenous 'less-available' soil phosphate. A low Ca concentrations in the test soil may have benefited P solubilization. Under field conditions, the inoculation with AM fungi significantly increased plant biomass and N and P accumulation in plant tissues. Phosphate-solubilizing rhizobacteria improved mycorrhizal responses in soil dually receiving RP and organic matter amendments. Organic matter addition favoured RP solubilization. This, together with a tailored microbial inoculation, increased the agronomic efficiency of RP in the test soil that was Ca deficient at neutral

  3. Suprathermal viscosity of dense matter

    International Nuclear Information System (INIS)

    Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai

    2010-01-01

    Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.

  4. Arbitrary electron acoustic waves in degenerate dense plasmas

    Science.gov (United States)

    Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.

    2017-05-01

    A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.

  5. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho [Univ. of Suwon, Hwaseong (Korea, Republic of); Lee, Young Chul [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)

    2016-02-15

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites.

  6. Properties of Eco-friendly Acrylic Resin/Clay Nanocomposites Prepared by Non-aqueous Dispersion (NAD) Polymerization

    International Nuclear Information System (INIS)

    Kim, Yeongho; Lee, Minho; Jeon, Hyeon Yeol; Min, Byong Hun; Kim, Jeong Ho; Lee, Young Chul

    2016-01-01

    Eco-friendly acrylic resin/clay nanocomposites containing pristine montmorillonite (PM) or modified clays (30B and 25A) were prepared from acrylic and styrenic monomers using non-aqueous dispersion (NAD) polymerization. Effect of nanoclays on physical properties of polymerization product and resulting nanocomposites was investigated. In view of NAD particle stability, addition of nanoclay at the beginning of polymerization is proved to be good. Results of gel fraction, acid value and viscosity of the NAD product showed that nanocomposites containing clay 25A showed better physical properties than the ones with other clays. GPC results exhibit the increase in molecular weight and decrease in polydispersity index for the 25A nanocomposite. Increase in layer distance confirmed from XRD analysis showed good dispersion of 25A in the nanocomposite. Thermal and dynamic mechanical analysis showed that highest glass transition temperature and storage modulus for 25A nanocomposites. These results indicate that 25A nanoclay gives the best properties in the process of non-aqueous dispersion polymerization of acrylic resin/nanoclay nanocomposites

  7. Geometrical optics of dense aerosols: forming dense plasma slabs.

    Science.gov (United States)

    Hay, Michael J; Valeo, Ernest J; Fisch, Nathaniel J

    2013-11-01

    Assembling a freestanding, sharp-edged slab of homogeneous material that is much denser than gas, but much more rarefied than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed field, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the finite particle density reduces the effective Stokes number of the flow, a critical result for controlled focusing.

  8. Different strategies of fungi to solubilize coal: a comparison of the deutermycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Hoelker, U.; Ludwig, S.; Moenkemann, H.; Scheel, T.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Four different mechanisms can be envisaged which are used by microorganisms to solubilize coal: the production of alkaline substances, the extrusion of chelators, the action of biotensides, and of special interest in terms of biotechnology, the action of enzymes. Whether these mechanisms are operating seperately or in varying combinations has not yet been settled. The two deuteromycetes Fusarium oxysporum and Trichoderma altroviride solubilize coal by synergistic effects of different mechanisms depending on the cell metabolism. F. oxysporum seems to solubilize coal by increasing the pH of the mycelial surroundings and by the action of chelators induced during growth in glutamate containing media (without involvement of enzymes). T. atroviride, on the other hand, appears to use, in addition to an alkaline pH and a high chelator activity, at least two classes of enzymes to attack coal: hydrolytic activity for coal solubilization and ligninolytic activity for degradation of humic acids. (orig.)

  9. Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2006-01-01

    A single step non-aqueous electrodeposition of cadmium zinc telluride (CZT) nanowires on nanoporous TiO 2 substrate was investigated under pulsed-potential conditions. Propylene carbonate was used as the non-aqueous medium. Cyclic voltammogram studies were carried out to understand the growth mechanism of CZT. EDAX and XRD measurements indicated formation of a compound semiconductor with a stoichiometry of Cd 1-x Zn x Te, where x varied between 0.04 and 0.2. Variation of the pulsed-cathodic potentials could modulate the composition of the CZT. More negative cathodic potentials resulted in increased Zn content. The nanowires showed an electronic band gap of about 1.6 eV. Mott-Schottky analyses indicated p-type semiconductor properties of both as-deposited and annealed CZT materials. Increase in Zn content increased the charge carrier density. Annealing of the deposits resulted in lower charge carrier densities, in the order of 10 15 cm -3

  10. The population of phosphate solubilizing bacteria (PSB from Cikaniki, Botol Mountain, and Ciptarasa Area, and the ability of PSB to solubilize insoluble P in solid pikovskaya medium

    Directory of Open Access Journals (Sweden)

    SULIASIH

    2006-04-01

    Full Text Available Phosphate solubilizing bacteria (PSB were collected from plant rhizosphere at Cikaniki (1100 m asl., soil at Botol Mountain (1000, 1500, and 1800 m asl., and Ciptarasa (600, 1000, and 1500 m asl., area at Gunung Halimun National Park (GHNP. The soil ware collected randomly from 3 areas and taken from 0-15 cm depth in the plants rhizosphere at Cikaniki and forest floor soil in Gunung Botol and Ciptarasa. The result showed that the difference of elevation area, soil pH, forest vegetation, and microbial habitat (rhizosphere and forest floor were not the inhabitation factors of the biodiversity of PSB and their ability to solubilize insoluble phosphate, but the inhabitation factors on the growth of the PSB population. The highest population of PSB at GHNP was founded in the plant rhizosphere of Altingia exelsa Norona and Schima wallichii (Dc. Korth (107sel/g soil at Cikaniki and in the forest floor soil (108sel/g soil at Botol Mountain (1000 m asl.. Pseudomonas sp., Bacillus sp., Bacillus megaterium, and Chromobacterium sp. dominated Cikaniki, Botol Mountain and Ciptarasa area. Those isolates could solubilize insoluble phosphate on solid Pikovskaya medium with the range of diameter is 1.5-2.5 cm.

  11. Solubilization and reconstitution of the formylmethionylleucylphenylalanine receptor coupled to guanine nucleotide regulatory protein

    International Nuclear Information System (INIS)

    Williamson, K.; Dickey, B.F.; Pyun, H.Y.; Navarro, J.

    1988-01-01

    The authors describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [ 3 H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [ 3 H]fMET-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, they also demonstrated fMET-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils

  12. Homogeneous dispersion of gadolinium oxide nanoparticles into a non-aqueous-based polymer by two surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Jorice, E-mail: jorice.samuel@gmail.com [AREVA T and D UK Ltd, AREVA T and D Research and Technology Centre (United Kingdom); Raccurt, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Mancini, Cedric; Dujardin, Christophe; Amans, David; Ledoux, Gilles [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France); Poncelet, Olivier [NanoChemistry and Nanosafety Laboratory (DRT/LITEN/DTNM/LCSN), CEA Grenoble, Department of NanoMaterials (France); Tillement, Olivier [Universite de Lyon, Laboratoire de Physico Chimie des Materiaux Luminescents (LPCML) (France)

    2011-06-15

    Gadolinium oxide nanoparticles are more and more used. They can notably provide interesting fluorescence properties. Herein they are incorporated into a non-aqueous-based polymer, the poly(methyl methacrylate). Their dispersion within the polymer matrix is the key to improve the composite properties. As-received gadolinium oxide nanopowders cannot be homogeneously dispersed in such a polymer matrix. Two surface treatments are, therefore, detailed and compared to achieve a good stability of the nanoparticles in a non-aqueous solvent such as the 2-butanone. Then, once the liquid suspensions have been stabilized, they are used to prepare nanocomposites with homogeneous particles dispersion. The two approaches proposed are an hybrid approach based on the growth of a silica shell around the gadolinium oxide nanoparticles, and followed by a suitable silane functionalization; and a non-hybrid approach based on the use of surfactants. The surface treatments and formulations involved in both methods are detailed, adjusted and compared. Thanks to optical methods and in particular to the use of a 'home made' confocal microscope, the dispersion homogeneity within the polymer can be assessed. Both methods provide promising and conclusive results.

  13. Effect of phosphate-solubilizing bacteria isolated from semiarid soils on pitahaya seedlings (Hylocereus undatus)

    OpenAIRE

    Bautista-Cruz, Angélica; Ortiz-Hernández, Yolanda Donají; Martínez-Gallegos, Verónica; Martínez Gutiérrez, Gabino

    2015-01-01

    Phosphate-solubilizing bacteria (PSB) are a group of organisms that solubilize fixed forms of phosphorus, making it available for the plant growth. The effect of three PSB strains, called PSBMi, PSBHc and PSBVa, on growth of pitahaya seedlings (Hylocereus undatus) was studied in a growth chamber. The results indicated that plant stem diameter, plant height, plant total dry weight and root length were greatest in pitahaya seedlings inoculated with PSBMi. The increase in these plant growth vari...

  14. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles

    Science.gov (United States)

    Singla, Pankaj; Singh, Onkar; Chabba, Shruti; Aswal, V. K.; Mahajan, Rakesh Kumar

    2018-02-01

    In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (Δ G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3 months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.

  15. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    International Nuclear Information System (INIS)

    Gurzynski, Lukasz; Puszko, Aniela; Chmurzynski, Lech

    2007-01-01

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK a values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase

  16. Basicity comparison for di-substituted 4-nitropyridine derivatives in polar non-aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Gurzynski, Lukasz [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Chmurzynski, Lech [Department of General and Inorganic Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)], E-mail: lech@chemik.chem.univ.gda.pl

    2007-12-15

    Acid dissociation, as well as cationic homoconjugation equilibria have been studied potentiometrically in systems involving four di-substituted 4-nitropyridines and conjugate cationic acids in the polar non-aqueous solvents - aprotic protophobic acetonitrile (AN) and propylene carbonate (PC), the amphiprotic methanol (MeOH), and in the aprotic protophilic dimethyl sulfoxide (DMSO). The influence of solvent effect on the obtained acidity constants has been discussed. The acidity constants (expressed as pK{sub a} values) were compared with those previously determined in another polar protophobic aprotic solvent - acetone (AC), and obtained for the unsubstituted pyridine (Py). A comparison of the acid dissociation constants determined in all media studied has proved that the strength of the cationic acids increases on going from acetonitrile through propylene carbonate, acetone, and methanol to dimethyl sulfoxide. Furthermore, the values of acidity constants in the non-aqueous media have shown that in all the solvents studied they change according to the substituent effects. It has been also found that substituted 4-nitropyridine derivatives studied exhibit no tendency towards cationic homoconjugation in acetonitrile, propylene carbonate, and methanol and dimethyl sulfoxide. Moreover, it has been demonstrated that the acid dissociation constants determined by potentiometric titration method in all the solutions investigated correlate well with the calculated energy parameters of the protonation reactions in the gaseous phase.

  17. The ability of rhizobacteria to solubilize phosphate and synthesize of indoleacetic acid in cowpea

    Directory of Open Access Journals (Sweden)

    Weslany Silva Rocha

    2018-01-01

    Full Text Available The Cerrado comprises a vast ecoregion in central Brazil where plants show both growth and nitrogen fixation deficiencies due to low soil fertility. Farmers may overcome such problem using species of microorganisms capable of improving soil fertility such as the Rhizobia bacteria. This work aimed to assess the ability of phosphate solubilization and synthesis of indoleacetic acid (IAA of Rhizobium isolates obtained from Cerrado soils in the state of Tocantins, Brazil, evaluating their symbiotic efficiency in cowpea (Vigna unguiculata L. Walp. plants. We used a total of 32 isolates (or strains of Rhizobium and a reference species of Bradyrhizobium. The capacity of phosphate solubilization and synthesis of IAA was evaluated in vitro, while the symbiotic function of rhizobia isolates and the effect on cowpea biomass was assessed in a greenhouse. Only eight strains were able to solubilize calcium phosphate, while all isolates produced IAA. The rhizobia inoculation caused a significant increase in biomass and nodulation of cowpea. The isolates UFT R122 and UFT R124 stood out with the highest values for the studied parameters, showing rises above 33% of relative efficiency in comparison to the treatment with nitrogen fertilization. By associating the results of phosphate solubilization capacity, IAA synthesis, symbiotic ability, and nodulation, we conclude that the isolates that showed good performance are potential inoculants for cowpea in Cerrado soils.

  18. Water solubilization capacity of pharmaceutical microemulsions based on Peceol®, lecithin and ethanol.

    Science.gov (United States)

    Mouri, Abdelkader; Diat, Olivier; Lerner, Dan Alain; El Ghzaoui, Abdeslam; Ajovalasit, Alessia; Dorandeu, Christophe; Maurel, Jean-Claude; Devoisselle, Jean-Marie; Legrand, Philippe

    2014-11-20

    Biocompatible microemulsions composed of Peceol(®), lecithin, ethanol and water developed for encapsulation of hydrophilic drugs were investigated. The binary mixture Peceol(®)/ethanol was studied first. It was shown that the addition of ethanol to pure Peceol(®) has a significant fluidifying and disordering effect on the Peceol(®) supramolecular structure with an enhancement in water solubilization. The water solubilization capacity was improved by adding lecithin as a third component. It was then demonstrated that the ethanol/lecithin weight ratio played an important role in determining the optimal composition in term of water solubilization efficiency, a necessary property for a nutraceutical or pharmaceutical application. The optimal ethanol/lecithin weight ratio in the Peceol(®) rich region was found to be 40/60. Combination different techniques such as SAXS, fluorimetry, rheology and conductivity, we analyzed the water uptake within the microemulsion taking into account the partitioning of ethanol between polar and apolar domains. This ethanol distribution quantified along a water dilution line has a major effect on microemulsion properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Isolation and characterization of a phosphate solubilizing heavy metal tolerant bacterium from River Ganga, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-12-01

    Full Text Available Phosphates solubilizing bacterial (PSB strains were isolated from the jute mill effluent discharge area of the Ganga river water at Bansberia, West Bengal, India. Experimental studies found that the strain KUPSB16 was effective in solubilization of phosphate with phosphate solubilization index (SI = 3.14 in Pikovskaya’s agar plates along with maximum solubilized phosphate production of 208.18 g mL-1 in broth culture. Highest drop in pH value was associated with maximum amount of phosphate solubilization by the PSB strain KUPSB16 where pH decreased to 3.53 from initial value of 7.0±0.2. The isolated PSB strains were tested for tolerance against four heavy metals such as cadmium (Cd, chromium (Cr, lead (Pb and zinc (Zn at concentrations 1-15 mM. The results showed that most of the PSB isolates grew well at low concentrations of heavy metals and their number gradually decreased as the concentration increased. Isolated PSB strain KUPSB16 was tested for its multiple metal resistances. Minimal inhibitory concentrations (MIC for Cd2+, Cr6+, Pb2+ and Zn2+ in tris-minimal broth medium were 4.2, 5.5, 3.6 and 9.5 mM respectively. The MIC values for the metals studied on agar medium was higher than in broth medium and ranged from 4.8-11.0 mM. The isolated bacterial strain KUPSB16 was subjected to morphological, physiological and biochemical characterization and identified as the species of the genus Bacillus. The phosphate solubilizing bacterium possessing the properties of multiple heavy metal tolerance in heavy metal contaminated areas might be exploited for bioremediation studies in future.

  20. Alkaline and non-aqueous proton-conducting pouch-cell batteries

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean; Meng, Tiejun

    2018-01-02

    Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.

  1. Breast cancer detection using sonography in women with mammographically dense breasts

    International Nuclear Information System (INIS)

    Okello, Jimmy; Kisembo, Harriet; Bugeza, Sam; Galukande, Moses

    2014-01-01

    Mammography, the gold standard for breast cancer screening misses some cancers, especially in women with dense breasts. Breast ultrasonography as a supplementary imaging tool for further evaluation of symptomatic women with mammographically dense breasts may improve the detection of mass lesions otherwise missed at mammography. The purpose of this study was to determine the incremental breast cancer detection rate using US scanning in symptomatic women with mammographically dense breasts in a resource poor environment. A cross sectional descriptive study. Women referred for mammography underwent bilateral breast ultrasound, and mammography for symptom evaluation. The lesions seen by both modalities were described using sonographic BI-RADS lexicon and categorized. Ultrasound guided core biopsies were performed. IRB approval was obtained and all participants provided informed written consent. In total 148 women with mammographically dense breasts were recruited over six months. The prevalence of breast cancer in symptomatic women with mammographically dense breasts was 22/148 (15%). Mammography detected 16/22 (73%) of these cases and missed 6/22 (27%). The six breast cancer cases missed were correctly diagnosed on breast ultrasonography. Sonographic features typical of breast malignancy were irregular shape, non-parallel orientation, non circumscribed margin, echogenic halo, and increased lesion vascularity (p values < 0.005). Typical sonofeatures of benign mass lesions were: oval shape, parallel orientation and circumscribed margin (p values <0.005). Breast ultrasound scan as a supplementary imaging tool detected 27% more malignant mass lesions otherwise missed by mammography among these symptomatic women with mammographically dense breasts. We recommend that ultra sound scanning in routine evaluation of symptomatic women with mammographically dense breasts

  2. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    Science.gov (United States)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  3. Effects of Fructose and Temperature on the Micellization of a Cationic Gemini Surfactant, Pentanediyl-1,5-bis(dimethylcetylammonium) Bromide in Aqueous Solutions

    Science.gov (United States)

    Alam, Md. Sayem; Mohammed Siddiq, A.; Mandal, Asit Baran

    2017-12-01

    By the conductivity measurements the effects of fructose and temperature (293-308 K) on the micellization of a cationic gemini surfactant (GS), pentanediyl-1,5-bis(dimethylcetylammonium) bromide in aqueous solutions have been investigated. The critical micelle concentration (CMC) of GS was measured at the different temperatures and fructose concentrations. An increasing trend of the CMC values is with addition of fructose. With increasing temperature, the CMC values are in a similar increasing trend. The CMC of GS by dye solubilization method at room temperature have been determined. The standard Gibbs energy, enthalpy and entropy of GS micellization have been evaluated. From these thermodynamic parameters, it was found that in presence of fructose, the stability of the GS aqueous solutions decreases.

  4. Optimized conditions for high-level solubilization and purification of ...

    African Journals Online (AJOL)

    In this report, we describe the cloning, over-expression, efficient solubilization, purification and evaluation of bioactivity of camel growth hormone (cGH). The total cellular RNA was extracted from pituitary glands of freshly slaughtered animals and cDNA of cGH was synthesized by a pair of sequence specific primers with a ...

  5. Dense pigmentation of the posterior lens capsule associated with the pigment dispersion syndrome.

    Science.gov (United States)

    Lin, Danny Y; Volpicelli, Mark; Singh, Kuldev

    2003-12-01

    To report an unusual case of pigment dispersion syndrome associated with unilateral dense pigmentation of the posterior lens capsule. Case report. A 59-year-old male with bilateral pigment dispersion syndrome presented with progressive decrease in visual acuity in the left eye over the past 10 to 20 years. Clinical examination revealed the typical findings of pigment dispersion syndrome including the presence of bilateral Krunkenberg spindles, iris transillumination defects, and heavy trabecular meshwork pigmentation. Of note, there was remarkably dense pigmentation of the posterior lens capsule in the eye with decreased visual acuity. Pigmentation of the posterior lens capsule may be a rare finding associated with pigment dispersion syndrome. Such a finding suggests that there may be aqueous flow into the retrolental space in some patients with this condition. The optimal treatment of this unusual condition remains undetermined.

  6. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    Science.gov (United States)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  7. Effects of oil dispersant on solubilization, sorption and desorption of polycyclic aromatic hydrocarbons in sediment–seawater systems

    International Nuclear Information System (INIS)

    Zhao, Xiao; Gong, Yanyan; O’Reilly, S.E.; Zhao, Dongye

    2015-01-01

    Highlights: • Oil dispersant enhances solubilization of PAHs more effectively than surfactants. • Dispersant and dispersed oil enhance sediment sorption of PAHs and induce hysteresis. • Partitioning to sediment-sorbed dispersant is the mechanism for enhanced PAH uptake. • Dual-mode models well simulate dispersant-facilitated sorption of PAHs on sediment. • Deepwater conditions reduce solubilization of PAHs and lessen dispersant effects. - Abstract: This work investigated effects of a prototype oil dispersant on solubilization, sorption and desorption of three model PAHs in sediment–seawater systems. Increasing dispersant dosage linearly enhanced solubility for all PAHs. Conversely, the dispersant enhanced the sediment uptake of the PAHs, and induced significant desorption hysteresis. Such contrasting effects (adsolubilization vs. solubilization) of dispersant were found dependent of the dispersant concentration and PAH hydrophobicity. The dual-mode models adequately simulated the sorption kinetics and isotherms, and quantified dispersant-enhanced PAH uptake. Sorption of naphthalene and 1-methylnaphthalene by sediment positively correlated with uptake of the dispersant, while sorption of pyrene dropped sharply when the dispersant exceeded its critical micelle concentration (CMC). The deepwater conditions diminished the dispersant effects on solubilization, but enhanced uptake of the PAHs, albeit sorption of the dispersant was lowered. The information may aid in understanding roles of dispersants on distribution, fate and transport of petroleum PAHs in marine systems

  8. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Li, Shudong; Pi, Yongrui; Bao, Mutai; Zhang, Cong; Zhao, Dongwei; Li, Yiming; Sun, Peiyan; Lu, Jinren

    2015-12-15

    Rhamnolipid biosurfactant-producing bacteria, Bacillus Lz-2, was isolated from oil polluted water collected from Dongying Shengli oilfield, China. The factors that influence PAH solubilization such as biosurfactant concentration, pH, ionic strength and temperature were discussed. The results showed that the solubilities of naphthalene, phenanthrene and pyrene increased linearly with the rise of rhamnolipid biosurfactant dose above the biosurfactant critical micelle concentration (CMC). Furthermore, the molar solubilization ratio (MSR) values decreased in the following order: naphthalene>phenanthrene>pyrene. However, the solubility percentage increased and followed the opposite order: pyrene>phenanthrene>naphthalene. The solubilities of PAHs in rhamnolipid biosurfactant solution increased with the rise of pH and ionic strength, and reached the maximum values under the conditions of pH11 and NaCl concentration 8 g · L(-1). The solubility of phenanthrene and pyrene increased with the rise of temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Measuring chlorophyll a and 14C-labeled photosynthate in aquatic angiosperms by the use of a tissue solubilizer

    International Nuclear Information System (INIS)

    Beer, S.; Stewart, A.J.; Wetzel, R.G.

    1982-01-01

    A compound that quantitatively correlated with chlorophyll a could be measured fluorometrically in the extracts of leaves of three aquatic angiosperms (Myriophyllum heterophyllum Michx., Potamogeton crispus L., Elodea canadensis Michx.) treated with the tissue solubilizer BTS-450. Fluorescent characteristics of the solubilized plant tissues were stable for several weeks in the dark at temperatures up to 60 0 C but rapidly degraded in sunlight or when acidified. 14 C-Labeled photosynthate, which had been fixed by leaf discs during 1- to 10-hour exposure to H 14 CO 3 , was also readily extracted by the tissue solubilizer. Solubilizer extraction can, therefore, be use to determine both chlorophyll a content and 14 C incorporation rates in the same leaf sample. The method is practical, because no grinding is required, the fluorescent characteristics of the extracts are stable, and analyses can be performed with very little plant material

  10. Influence of clay, surfactant and presence of dispersant in the non-aqueous fluids rheology

    International Nuclear Information System (INIS)

    Gomes, N.L.; Guedes, I.C.; Menezes, R.R.; Campos, L.F.A.; Ferreira, H.S.

    2012-01-01

    The bentonite clay used as a thickening agent in production of non-aqueous fluids and can not be used without a prior treatment to their organic surfaces become hydrophobic. These treated clays are called organoclays, and are usually obtained by adding, in aqueous solution, a quaternary ammonium salt. This work makes a detailed study of the variables involved in the dispersion of the bentonite clays in organophilization process, as well, the type of clay, type of surfactant and the presence of dispersant. It was observed this study that the process variables involved in the dispersion of the clays and organophilization, observed through characterization, have low influence on the peaks related to interplanar basal distance caused by the incorporation of the surfactant and bentonite clays been influential the type of clay and surfactant and the presence of sodium as dispersant agent, on the rheological properties. (author)

  11. Cathodic behaviours of a CrO sub 3 -graphite intercalation compound in non-aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Miura, T.; Kishi, T. (Keio University, Tokyo (Japan). Faculty of Science)

    1991-08-05

    CrO{sub 3}-graphite intercalation compound (GIC) specimen was prepared by solvent method using acetic acid as a solvent and potassium permanganate as a catalyst, and its cathodic behavior in a lithium cell was studied in non-aqueous solutions (1 mol/dm{sup 3} LiClO{sub 4} in propylene carbonate (PC) or dimethylsulfoxide (DMSO)). Changes in electronic and layered lattice structures induced by cathodic reduction were measured by electron spin resonance method and X-ray diffraction one, respectively. As a result, electrochemical insertion of Li into CrO{sub 3}-GIC proceeded only in DMSO solution where reduction of Cr components was followed by that of graphite units. The amount of discharge electricity for CrO{sub 3}-GIC in DMSO solution was three times as large as that for graphite. Although the effect of non-aqueous solutions on the lithiation reaction was not yet clear fundamentally, it was expected that another electrolyte solutions are probably found out based on this experiments from which Li is inserted into CrO{sub 3}-GIC at higher discharge potentials. 22 refs., 9 figs., 1 tab.

  12. β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Nielsen, Thorbjørn Terndrup; Lambertsen Larsen, Kim

    2014-01-01

    The aim of this work was to assess the potential of β-cyclodextrin (β-CD)-dextran polymers for drug delivery, in terms of molecular mass, the complexation reaction mechanism using a model drug, and solubilization efficiency for examples of poorly soluble model drugs. For this purpose size analysis...... of different β-CD-dextrans was carried out by both size exclusion chromatography (SEC) and flow field-flow fractionation (FFF). All investigated polymers were of appropriate sizes for potential parenteral administration. Mass/mass percentage ratio between β-CD units and dextran backbones where measured by both...... of solubilization efficiencies, phase-solubility diagrams where made employing two poorly soluble model drugs, one dissociating (ibuprofen, IBP) and one pH independent (hydrocortisone, HC). Thermodynamic results demonstrated that the presence of the dextran-back bone structure improves complexation efficiency...

  13. Quaternary structure of the lactose transport protein of Streptococcus thermophilus in the detergent-solubilized and membrane-reconstituted state

    NARCIS (Netherlands)

    Friesen, R.H.E.; Poolman, B.; Knol, J.

    2000-01-01

    The quaternary structure of LacS, the lactose transporter of Streptococcus thermophilus, has been determined for the detergent-solubilized and the membrane-reconstituted state of the protein. The quaternary structure of the n-dodecyl-β-D-maltoside-solubilized state was studied using a combination of

  14. of radioconjugated DOTA-1-Nal3-octreotide labeled with gallium-68 using non-aqueous solvents

    International Nuclear Information System (INIS)

    Pérez-Malo Cruz, Marylaine; Leyva Montaña, René

    2016-01-01

    Neuroendocrine tumors specifically over-expressing somatostatin receptors. Diagnosis has expanded due to radiolabelling of DOTA-peptides such as somatostatin analogue DOTA-1-Nal 3 -Octreotide (DOTA-NOC) conjugated to β+ emitting radionuclides such as 68 Ga, which has very favorable physics-nuclear properties. This paper describes the radiolabeling procedures of DOTA-NOC with 68 Ga, in pure aqueous medium and in presence of non-aqueous solvents as well as the methods used for quality control where a formulation is obtained with a radiochemical yield exceeding 95%. The addition of ethanol (30% - v / v) to reaction mixture allowed to increase the specific activity of 68 Ga-DOTA-NOC radioconjugate, reaching a value of 182 MBq / nmol, higher than reported in the literature (50 MBq / nmol ) for labeling in pure aqueous medium. Stability studies are also presented (in presence of saline solution and saline phosphate buffer, transmetallation studies in Fe 3+ , Ca 2+ , Mg 2+ and Zn 2+ solutions, challenges competition against EDTA and DTPA chelators and in vitro stability in human transferrin) performed to 68Ga-DOTA-NOC radioconjugated, showing its high stability (> 95%). (author)

  15. Characterization of a Biomimetic Mesophase Composed of Nonionic Surfactants and an Aqueous Solvent.

    Science.gov (United States)

    Adrien, V; Rayan, G; Reffay, M; Porcar, L; Maldonado, A; Ducruix, A; Urbach, W; Taulier, N

    2016-10-11

    We have investigated the physical and biomimetic properties of a sponge (L 3 ) phase composed of pentaethylene glycol monododecyl ether (C 12 E 5 ), a nonionic surfactant, an aqueous solvent, and a cosurfactant. The following cosurfactants, commonly used for solubilizing membrane proteins, were incorporated: n-octyl-β-d-glucopyranoside (β-OG), n-dodecyl-β-d-maltopyranoside (DDM), 4-cyclohexyl-1-butyl-β-d-maltoside (CYMAL-4), and 5-cyclohexyl-1-pentyl-β-d-maltoside (CYMAL-5). Partial phase diagrams of these systems were created. The L 3 phase was characterized using crossed polarizers, diffusion of a fluorescent probe by fluorescence recovery after pattern photobleaching (FRAPP), and freeze fracture electron microscopy (FFEM). By varying the hydration of the phase, we were able to tune the distance between adjacent bilayers. The characteristic distance (d b ) of the phase was obtained from small angle scattering (SAXS/SANS) as well as from FFEM, which yielded complementary d b values. These d b values were neither affected by the nature of the cosurfactant nor by the addition of membrane proteins. These findings illustrate that a biomimetic surfactant sponge phase can be created in the presence of several common membrane protein-solubilizing detergents, thus making it a versatile medium for membrane protein studies.

  16. Radiation-induced changes of liposomes and lecithin in non-aqueous media

    International Nuclear Information System (INIS)

    Nakazawa, T.; Nagatsuka, S.; Sakurai, T.

    1981-01-01

    Radiation-induced changes of lipids in non-aqueous media were studied to elucidate the process of radiation damage in biological membranes. The lipid peroxidation progressed linearly with increasing dose and decreasing dose rate of γ-irradiation in soyabean lecithin in chloroform. The fatty acid composition of lecithin also changed, especially in linoleic and linolenic acids. Lower dose rate radiation enhanced these changes in oxic condition. Lipid peroxidation was also shown in lipids extracted from irradiated liposomes or in liposomes prepared from irradiated lecithin in chloroform. The dose-dependent glucose efflux was seen in liposomes prepared from irradiated lecithin in chloroform. These results indicate that the peroxidation of lipid molecules might cause radiation damage to the membrane conformation. (author)

  17. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.

    Science.gov (United States)

    Suo, Liumin; Oh, Dahyun; Lin, Yuxiao; Zhuo, Zengqing; Borodin, Oleg; Gao, Tao; Wang, Fei; Kushima, Akihiro; Wang, Ziqiang; Kim, Ho-Cheol; Qi, Yue; Yang, Wanli; Pan, Feng; Li, Ju; Xu, Kang; Wang, Chunsheng

    2017-12-27

    Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

  18. Human proton coupled folic acid transporter is a monodisperse oligomer in the lauryl maltose neopentyl glycol solubilized state

    DEFF Research Database (Denmark)

    Aduri, Nanda G.; Ernst, Heidi A.; Prabhala, Bala K.

    2018-01-01

    and purification of recombinant PCFT. Following detergent screening n-Dodecyl β-D-maltoside (DDM) and lauryl maltose neopentyl glycol (LMNG) were chosen for further work as they exhibited the most optimal solubilization. We found that purified detergent solubilized PCFT was able to bind folic acid, thus indicating...

  19. Aqueous shunt implantation in glaucoma

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-01-01

    Full Text Available Aqueous shunts or glaucoma drainage devices are increasingly utilized in the management of refractory glaucoma. The general design of the most commonly-used shunts is based on the principles of the Molteno implant: ie. a permanent sclerostomy (tube, a predetermined bleb area (plate and diversion of aqueous humour to the equatorial region and away from the limbal subconjunctival space. These three factors make aqueous shunts more resistant to scarring as compared to trabeculectomy. The two most commonly used shunts are the Ahmed Glaucoma Valve, which contains a flow-restrictor, and the non-valved Baervedlt Glaucoma Implant. While the valved implants have a lower tendency to hypotony and related complications, the non-valved implants with larger, more-biocompatible end plate design, achieve lower intraocular pressures with less encapsulation. Non-valved implants require additional suturing techniques to prevent early hypotony and a number of these methods will be described. Although serious shunt-related infection is rare, corneal decompensation and diplopia are small but significant risks.

  20. Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution

    International Nuclear Information System (INIS)

    Sun, Y.; Qi, L.; Lee, M.; Lee, B.I.; Samuels, W.D.; Exarhos, G.J.

    2004-01-01

    Europium-doped yttrium oxide phosphors were obtained by firing precursors prepared by urea precipitation in ethanol and ethylenediamine. The precipitation in non-aqueous solution was carried out in an autoclave at 150 deg. C to allow the decomposition of urea. The photoluminescent intensities of the phosphors prepared in ethanol and ethylenediamine increased by about 30% compared to that of the phosphor prepared by the conventional urea homogeneous precipitation in aqueous solution. Amorphous carbonates and amorphous hydroxides/carbonates mixtures were identified as precursors from ethanol and ethylenediamine, respectively. The morphology and particle size were studied by SEM and dynamic laser scattering method

  1. Studies on ultrasonic velocity and electrical conductivity of samarium soaps in non-aqueous medium

    International Nuclear Information System (INIS)

    Mehrotra, K.N.; Chauhan, M.; Shukla, R.K.

    1990-01-01

    The ultrasonic velocity of solutions of samarium soaps in non-aqueous medium has been measured at a constant temperature and the results have been used to evaluate the various acoustic parameters. The pre-micellar association and the formation of micelles in samarium soap solutions have been determined by conductometric measurements. The molar conductance at infinite dilution, degree of ionisation and ionisation constant have been evaluated. The results show that samarium soaps behave as weak electrolyte in dilute solutions. (Authors)

  2. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Helen; Di Francesco, James [NRC Herzberg Astronomy and Astrophysics, 5071 West Saanich Rd, Victoria, BC, V9E 2E7 (Canada); Friesen, Rachel K. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario M5S 3H4 (Canada); Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748, Garching (Germany); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada); Offner, Stella S. R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Matzner, Christopher D.; Singh, Ayushi [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George St., Toronto, Ontario, M5S 3H4 (Canada); Myers, Philip C.; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Chen, Michael Chun-Yuan; Keown, Jared [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Rd., Victoria, BC, V8P 5C2 (Canada); Seo, Young Min [Jet Propulsion Laboratory, NASA, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States); Shirley, Yancy [Steward Observatory, 933 North Cherry Ave., Tucson, AZ 85721 (United States); Ginsburg, Adam [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Hall, Christine [Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, K7L 3N6 (Canada); and others

    2017-09-10

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  3. The Green Bank Ammonia Survey: Dense Cores under Pressure in Orion A

    International Nuclear Information System (INIS)

    Kirk, Helen; Di Francesco, James; Friesen, Rachel K.; Pineda, Jaime E.; Caselli, Paola; Alves, Felipe O.; Chacón-Tanarro, Ana; Punanova, Anna; Rosolowsky, Erik; Offner, Stella S. R.; Matzner, Christopher D.; Singh, Ayushi; Myers, Philip C.; Chen, How-Huan; Chen, Michael Chun-Yuan; Keown, Jared; Seo, Young Min; Shirley, Yancy; Ginsburg, Adam; Hall, Christine

    2017-01-01

    We use data on gas temperature and velocity dispersion from the Green Bank Ammonia Survey and core masses and sizes from the James Clerk Maxwell Telescope Gould Belt Survey to estimate the virial states of dense cores within the Orion A molecular cloud. Surprisingly, we find that almost none of the dense cores are sufficiently massive to be bound when considering only the balance between self-gravity and the thermal and non-thermal motions present in the dense gas. Including the additional pressure binding imposed by the weight of the ambient molecular cloud material and additional smaller pressure terms, however, suggests that most of the dense cores are pressure-confined.

  4. Self-diffusion nuclear magnetic resonance, microstructure transitions, and solubilization capacity of phytosterols and cholesterol in Winsor IV food-grade microemulsions

    DEFF Research Database (Denmark)

    Spernath, Aviram; Yaghmur, Anan; Aserin, Abraham

    2003-01-01

    Microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. The incorporation of molecular phytosterols, cholesterol-lowering agents, in food products is of great interest...... to the food industry. In this work is demonstrated the use of water dilutable food-grade microemulsions consisting of ethoxylated sorbitan ester (Tween 60), water, R-(+)-limonene, ethanol, and propylene glycol as vehicles for enhancing the phytosterols solubilization. Phytosterols were solubilized up to 12...... times more than the dissolution capacity of the oil [R-(+)-limonene] for the same compounds. The solubilization capacity of phytosterols and cholesterol along a dilution line in a pseudo-ternary phase diagram [on this dilution line the weight ratio of R-(+)-limonene/ethanol/Tween 60 is constant at 1...

  5. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  6. Effects of solubilization on the inhibition of the p-type ATPase from maize roots by N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline.

    Science.gov (United States)

    Brauer, D K; Gurriel, M; Tu, S I

    1992-12-01

    The biochemical events utilized by transport proteins to convert the chemical energy from the hydrolysis of ATP into an electro-chemical gradient are poorly understood. The inhibition of the plasma membrane ATPase from corn (Zea mays L.) roots by N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) was compared to that of ATPase solubilized with N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate (3-14) to provide insight into the minimal functional unit. The chromatographic behavior of the 3-14-solubilized ATPase activity during size exclusion chromatography and glycerol gradient centrifugation indicated that the solubilized enzyme was in a monomeric form. Both plasma membrane-bound and solubilized ATPase were inhibited by EEDQ in a time- and concentration-dependent manner consistent with a first-order reaction. When the log of the reciprocal of the half-time for inhibition was plotted as a function of the log of the EEDQ concentration, straight lines were obtained with slopes of approximately 0.5 and 1.0 for membrane-bound and 3-14-solubilized ATPase, respectively, indicating a change in the number of polypeptides per functional ATPase complex induced by solubilization with 3-14.

  7. Polypropyleneimine and polyamidoamine dendrimer mediated enhanced solubilization of bortezomib: Comparison and evaluation of mechanistic aspects by thermodynamics and molecular simulations.

    Science.gov (United States)

    Chaudhary, Sonam; Gothwal, Avinash; Khan, Iliyas; Srivastava, Shubham; Malik, Ruchi; Gupta, Umesh

    2017-03-01

    Bortezomib (BTZ) is the first proteasome inhibitor approved by the US-FDA is majorly used for the treatment of newly diagnosed and relapsed multiple myeloma including mantle cell lymphoma. BTZ is hydrophobic in nature and is a major cause for its minimal presence as marketed formulations. The present study reports the design, development and characterization of dendrimer based formulation for the improved solubility and effectivity of bortezomib. The study also equally focuses on the mechanistic elucidation of solubilization by two types of dendrimers i.e. fourth generation of poly (amidoamine) dendrimers (G4-PAMAM-NH 2 ) and fifth generation of poly (propylene) imine dendrimers (G5-PPI-NH 2 ). It was observed that aqueous solubility of BTZ was concentration and pH dependent. At 2mM G5-PPI-NH 2 concentration, the fold increase in bortezomib solubility was 1152.63 times in water, while approximately 3426.69 folds increase in solubility was observed at pH10.0, respectively (pdendrimers because it has more hydrophobic interior than G4-PAMAM-NH 2 dendrimers. The release of BTZ from G5-PPI-NH 2 complex was comparatively slower than G4-PAMAM-NH 2 . The thermodynamic treatment of data proved that dendrimer drug complexes were stable at all pH with values of ΔG always negative. The experimental findings were also proven by molecular simulation studies and by calculating RMSD and intermolecular hydrogen bonding through Schrodinger software. It was concluded that PPI dendrimers were able to solubilize the drug more effectively than PAMAM dendrimers through electrostatic interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Effect of Combined Application of Phosphate Solubilizing Bacteria and Phosphrous Fertilizer on Growth and Yield of Sesame

    Directory of Open Access Journals (Sweden)

    S. Nikmehr

    2016-02-01

    phosphorous fertilizer (0, 100, 200 and 400 kg ha-1 of triple superphosphate and 1200 kg ha-1 of rock phosphate and three bacterial levels (inoculation with two phosphate solubilizing fluorescent pseudomonad, isolates of P3 and P5 that known in this study as B1 and B2 and non-inoculated. It should be noted that rock phosphate used in this study has contained 4% of zinc oxide. The bacteria selected from microbial bank of Vali-E-Asr University were able to dissolve the insoluble phosphate and produce siderophore and IAA. Four months after planting, plants were cut at the soil surface, and shoot dry weight, stem height, number of Seeds in pot, seed dry weight and seed oil percentage were recorded. Also phosphorus and Zinc contents in shoot were determined. Results and Discussion: Results indicated that both bacteria (B1 and B2 significantly increased shoot dry weight and B1 increased seed dry weight. Also application of phosphorus fertilizer significantly increased shoot dry weight and plant height. 200 kg ha-1 of triple superphosphate had highest shoot dry weight and was similar with rock phosphate. Combined application of Phosphorous fertilizer and phosphate solubilizing bacteria increased shoot dry weight. Results also showed that seed oil was increased by application of Phosphate rock. Phosphorus concentration in seed was increased with Using B1 and B2 isolates. Application of B2 significantly increased phosphorus concentration in seed (11.5% and Phosphorous fertilizer levels increased concentration of P and Zn in seed. Application of 200 and 400 kg ha-1 triple superphosphate had the highest concentration of P and Zn in seed. Phosphorus fertilizer levels significantly enhanced uptake of P and Zn in shoot. Application of 200 and 400 kg ha-1 triple superphosphate led to increased uptake of phosphorous in shoot. Also rock phosphate significantly increased uptake of Zn in shoot. Combined application of Rock phosphate and bacteria of B1 and B2 had more significant effects on

  9. Ligninolytic enzymes in the coal solubilizing deuteromycetes Trichoderma atroviride and Fusarium oxysporum

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Scheel, T.; Hoelker, U.; Ludwig, S.; Hoefer, M. [Bonn Univ. (Germany). Botanisches Inst.

    1997-12-31

    Evidence is presented for the lignite induced expression of lignin peroxidases, manganese-dependent peroxidases, laccases and glyoxal oxidases in the coal solubilizing fungi Trichoderma atroviride and Fusarium oxysporum under different growth conditions. (orig.)

  10. The application of isotopic ({sup 32}P and {sup 15}N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops

    Energy Technology Data Exchange (ETDEWEB)

    Barea, J.M. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain)]. E-mail: jmbarea@eez.csic.es; Toro, M.; Azcon, R. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain); Orozco, M.O. [Instituto de Sistematica y Ecologia, Academia Cubana de Ciencias, Habana (Cuba); Campos, E. [Departamento de Ciencias de la Tierra y Quimica Ambiental Estacion Experimental del Zaidin (CSIC), Granada (Spain); Azcon, R. [Departamento de Microbiologia del Suelo y Sistemas Simbioticos (Spain)

    2002-05-15

    A pot experiment was designed to evaluate the interactive effects of multifunctional microbial inoculation treatments and rock phosphate (RP) application on N and P uptake by alfalfa through the use of {sup 15}N and {sup 32}P isotopic dilution approaches. The microbial inocula consisted of a wild type (WT) Rhizobium meliloti strain, the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and a phosphate solubilizing rhizobacterium (Enterobacter sp.). Inoculated microorganisms were established in the root tissues and/or in the rhizosphere soil of alfalfa plants (Medicago sativa L.). Improvements in N and P accumulation in alfalfa corroborate beneficial effects of Rhizobium and AM interactions. Inoculation with selected rhizobacteria improved the AM effect on N or P accumulation in both the RP-added soil and in the non RP-amended controls. Measurements of the {sup 15}N/{sup 14}N ratio in plant shoots indicate an enhancement of the N{sub 2} fixation rates in Rhizobium-inoculated AM-plants, over that achieved by Rhizobium in non-mycorrhizal plants. Whether or not RP was added, AM-inoculated plants showed a lower specific activity ({sup 32}P/{sup 31}P) than did their comparable non-mycorrhizal controls, suggesting that the plant was using otherwise unavailable P sources. The phosphate-solubilizing, AM-associated, microbiota could in fact release phosphate ions, either from the added RP or from the indigenous 'less-available' soil phosphate. A low Ca concentrations in the test soil may have benefited P solubilization. Under field conditions, the inoculation with AM fungi significantly increased plant biomass and N and P accumulation in plant tissues. Phosphate-solubilizing rhizobacteria improved mycorrhizal responses in soil dually receiving RP and organic matter amendments. Organic matter addition favoured RP solubilization. This, together with a tailored microbial inoculation, increased the agronomic efficiency of RP in the

  11. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  12. Response surface methodology for the optimization of sludge solubilization by ultrasonic pre-treatment

    Science.gov (United States)

    Zheng, Mingyue; Zhang, Xiaohui; Lu, Peng; Cao, Qiguang; Yuan, Yuan; Yue, Mingxing; Fu, Yiwei; Wu, Libin

    2018-02-01

    The present study examines the optimization of the ultrasonic pre-treatment conditions with response surface experimental design in terms of sludge disintegration efficiency (solubilisation of organic components). Ultrasonic pre-treatment for the maximum solubilization with residual sludge enhanced the SCOD release. Optimization of the ultrasonic pre-treatment was conducted through a Box-Behnken design (three variables, a total of 17 experiments) to determine the effects of three independent variables (power, residence time and TS) on COD solubilization of sludge. The optimal COD was obtained at 17349.4mg/L, when the power was 534.67W, the time was 10.77, and TS was 2%, while the SE of this condition was 28792J/kg TS.

  13. Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer.

    Science.gov (United States)

    Liu, Sainan; Tang, Wenzhu; Yang, Fan; Meng, Jun; Chen, Wenfu; Li, Xianzhen

    2017-01-02

    Biochar can enhance soil fertility to increase agricultural productivity, whereas its improvement in soil microbial activity is still unclear. In this article, the influence of biochar on the cell growth and the potassium-solubilizing activity of Bacillus mucilaginosus AS1153 was examined. The impact on cell growth is related to the biochar-derived feedstocks and the particle size of biochar. Both intrinsic features and inner component fraction can promote the cell growth of B. mucilaginosus AS1153. The potassium-solubilizing activity was increased by 80% when B. mucilaginosus was incubated in conjunction with the biochar derived from corn stover. The survival time of B. mucilaginosus also was prolonged by adsorption in biochar. The experimental results suggested that the biochar containing B. mucilaginosus could be used as a potential biofertilizer to sustain crop production.

  14. Impact of phosphate-solubilizing bacteria inoculation methods on phosphorus transformation and long-term utilization in composting.

    Science.gov (United States)

    Wei, Yuquan; Zhao, Yue; Fan, Yuying; Lu, Qian; Li, Mingxiao; Wei, Qingbin; Zhao, Yi; Cao, Zhenyu; Wei, Zimin

    2017-10-01

    This study aimed to assess the effect of phosphate-solubilizing bacteria (PSB) application and inoculation methods on rock phosphate (RP) solubilization and bacterial community during composting. The results showed that PSB inoculation in different stages of composting, especially both in the beginning and cooling stages, not only improved the diversity and abundance of PSB and bacterial community, but also distinctly increased the content of potential available phosphorus. Redundancy analysis indicated that the combined inoculation of PSB in the initial stage with higher inoculation amount and in the cooling stage with lower inoculation amount was the best way to improve the inoculation effect and increase the solubilization and utilization of RP during composting. Besides, we suggested three methods to improve phosphorus transformation and long-term utilization efficiency in composts based on biological fixation of phosphates by humic substance and phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimization of Aqueous Ammonia Soaking of manure fibers by Response Surface Methodology for unlocking the methane potential of swine manure.

    Science.gov (United States)

    Lymperatou, Anna; Gavala, Hariklia N; Skiadas, Ioannis V

    2017-11-01

    Swine manure mono-digestion often results to economically non-feasible processes, due to the high dilution and ammonia concentration together with the low degradation rates it presents. The effects of different parameters of Aqueous Ammonia Soaking (AAS) as a pretreatment for improving the digestion of manure fibers when coupled to an ammonia removal step were investigated in this study. Response Surface Methodology was followed and the influence and interactions of the following AAS parameters were studied: NH 3 concentration, duration and solid-to-liquid ratio. The mild conditions found to be optimal (7%w/w NH 3 , 96h, and 0.16kg/L) in combination to a significant increase of the short term CH 4 yield (244% in 17days), make this pretreatment a promising solution for improving swine manure mono-digestion. Furthermore, compositional analysis of the manure fibers revealed significant solubilization of hemicellulose, while no lignin removal or loss of cellulose occurred under optimal conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. [Filamentous and phosphate solubilizing fungi relationships with some edaphic parameters and coffee plantations management].

    Science.gov (United States)

    Posada, Raúl Hernando; Sánchez de Prager, Marina; Sieverding, Ewald; Aguilar Dorantes, Karla; Heredia-Abarca, Gabriela Patricia

    2012-09-01

    Soil properties and the environment have multiple outcomes on fungal communities. Although, the interaction effects between management intensity, pH, available phosphorus, organic carbon, soil texture and different fractions of water stable macro-aggregates on the communities of microscopic filamentous fungi (MFF), iron phosphate solubilizing fungi (PSF-Fe), and iron and calcium phosphate solubilizing fungi (PSF-(Fe+Ca)), have been previously evaluated in field conditions, this has never been performed in terms of their combined effects, neither with phosphate solubilizing fungi. To assess this, we collected 40 composite soil samples from eight Mexican and Colombian coffee plantations, with different management intensities and physico-chemical edaphic parameters, during 2008-2009. We isolated different communities of MFF, PSF-Fe and PSF-(Fe+Ca), by wet sieving and soil particles culture in Potato-Dextrose-Agar from soil samples, and we classified isolates in terms of their phosphate solubilizing ability. Following the principal component analysis results, we decided to analyze fungal communities and abiotic factors interactions for each country separately. Structural Equation Models revealed that organic carbon was positively associated to MFF richness and number of isolates (lambda>0.58), but its relationship with PSF-Fe and PSF-(Fe+Ca) were variable; while the available phosphorus, pH and water stable macro-aggregate fractions did not show a clear pattern. Management intensity was negatively related to PSF-Fe (lambda coffee plantations. We found that the relationships of clay and organic carbon content, and available phosphorus and soil pH, with the species richness and number of isolates of MFF, PSF-Fe and PSF-(Fe+Ca) were highly variable; this made impossible to generalize the responses between saprotrophic fungal groups and geographic zones. The management intensity was not related to species richness and number of isolates of MFF in any coffee areas, while

  17. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    Science.gov (United States)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  18. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    Science.gov (United States)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  19. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions

    Science.gov (United States)

    C. Yao; F. Wang; Z. Cai; X. Wang

    2016-01-01

    Nanoscale sorption is a promising strategy for catalyst and purification system design. In this paper, cellulose nanofibrils (CNFs) were densely attached with aldehyde functional groups on the surface via a mild periodate oxidation process, and then applied as mesoporous sorbents to remove Cu(II) and Pb(II) from aqueous solutions. In the studied concentration range (0....

  20. Hydrolysis of biomass material

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Andrew J.; Orth, Rick J.; Franz, James A.; Alnajjar, Mikhail

    2004-02-17

    A method for selective hydrolysis of the hemicellulose component of a biomass material. The selective hydrolysis produces water-soluble small molecules, particularly monosaccharides. One embodiment includes solubilizing at least a portion of the hemicellulose and subsequently hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A second embodiment includes solubilizing at least a portion of the hemicellulose and subsequently enzymatically hydrolyzing the solubilized hemicellulose to produce at least one monosaccharide. A third embodiment includes solubilizing at least a portion of the hemicellulose by heating the biomass material to greater than 110.degree. C. resulting in an aqueous portion that includes the solubilized hemicellulose and a water insoluble solids portion and subsequently separating the aqueous portion from the water insoluble solids portion. A fourth embodiment is a method for making a composition that includes cellulose, at least one protein and less than about 30 weight % hemicellulose, the method including solubilizing at least a portion of hemicellulose present in a biomass material that also includes cellulose and at least one protein and subsequently separating the solubilized hemicellulose from the cellulose and at least one protein.

  1. Solubilization of myofibrillar proteins in water or low ionic strength media: Classical techniques, basic principles, and novel functionalities.

    Science.gov (United States)

    Chen, Xing; Tume, Ron K; Xu, Xinglian; Zhou, Guanghong

    2017-10-13

    The qualitative characteristics of meat products are closely related to the functionality of muscle proteins. Myofibrillar proteins (MPs), comprising approximately 50% of total muscle proteins, are generally considered to be insoluble in solutions of low ionic strength ( 0.3 M) for solubilization. These soluble proteins are the ones which determine many functional properties of meat products, including emulsification and thermal gelation. In order to increase the utilization of meat and meat products, many studies have investigated the solubilization of MPs in water or low ionic strength media and determining their functionality. However, there still remains a lack of systematic information on the functional properties of MPs solubilized in this manner. Hence, this review will explore some typical techniques that have been used. The main procedures used for their solubilization, the fundamental principles and their functionalities in water (low ionic strength medium) are comprehensively discussed. In addition, advantages and disadvantages of each technique are summarized. Finally, future considerations are presented to facilitate progress in this new area and to enable water soluble muscle MPs to be utilized as novel meat ingredients in the food industry.

  2. Partially Fluorinated Solvent as a co-solvent for the Non-aqueous Electrolyte of Li/air Battery

    Science.gov (United States)

    2010-11-11

    ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li–air battery. Results...fluorinated solvents on the discharge performance of Li–air bat- tery. For this purpose, we here selectmethyl nonafluorobutyl ether ( MFE ) and tris...196, (2011) pgs. 2867-2870 14. ABSTRACT In this workwestudy methyl nonafluorobutyl ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP

  3. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    Science.gov (United States)

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization.

  4. Stripes instability of an oscillating non-Brownian iso-dense suspension of spheres

    Science.gov (United States)

    Roht, Y. L.; Ippolito, I.; Hulin, J. P.; Salin, D.; Gauthier, G.

    2018-03-01

    We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H. We do observe an instability of the initially homogeneous concentration in the form of concentration variation stripes transverse to the flow. The wavelength of these regular spatial structures scales roughly as the gap of the cell and is independent of the particle concentration and of the period of oscillation. This instability requires large enough particle volume fractions φ≥ 0.25 and a gap large enough compared to the sphere diameter (H/d ≥ 8) . Mapping the domain of the existence of this instability in the space of the control parameters shows that it occurs only in a limited range of amplitudes of the fluid displacement. The analysis of the concentration distribution across the gap supports a scenario of particle migration towards the wall followed by an instability due to a particle concentration gradient with a larger concentration at the walls. In order to account for the main features of this stripes instability, we use the theory of longitudinal instability due to normal stresses difference and recent observations of a dependence of the first normal stresses difference on the particle concentration.

  5. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Science.gov (United States)

    Kim, Hyun-seung; Hwang, Seunghae; Kim, Youngjin; Ryu, Ji Heon; Oh, Seung M.; Kim, Ki Jae

    2018-04-01

    Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M) than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N',N'-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  6. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil

    DEFF Research Database (Denmark)

    Zheng, Bang Xiao; Bi, Qing Fang; Hao, Xiuli

    2017-01-01

    A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest similari......A Gram-stain-negative and rod-shaped bacterial strain, 12-OD1T, with rock phosphate solubilizing ability was isolated from agricultural soil in Hailun, Heilongjiang, PR China. The isolate was affiliated to the genus Massilia, based on 16S rRNA gene sequence alignments, having the highest...

  7. Sparse symmetric preconditioners for dense linear systems in electromagnetism

    NARCIS (Netherlands)

    Carpentieri, Bruno; Duff, Iain S.; Giraud, Luc; Monga Made, M. Magolu

    2004-01-01

    We consider symmetric preconditioning strategies for the iterative solution of dense complex symmetric non-Hermitian systems arising in computational electromagnetics. In particular, we report on the numerical behaviour of the classical incomplete Cholesky factorization as well as some of its recent

  8. High frequency titration in non-aqueous solvents. Application to HF and UF6

    International Nuclear Information System (INIS)

    Neveu, Claude

    1965-01-01

    In this research thesis, the author first presents the main theoretical notions regarding high frequency titration, notably by studying characteristic curves, i.e. the titration meter indication with respect to conductibility. He reports the use of this method for the study of various reactions in non-aqueous medium: reaction of AlCl 3 with pyridine in acetonitrile, of AlCl 3 with HCl in tetrachloroethane and in nitromethane. He also reports the attempt of application of this method to the titration of HF in presence of UF 6 in CCl 4 as solvent, or by using F acceptors like BF 3 , PF 5 or ClF 3 as reactants [fr

  9. Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries.

    Science.gov (United States)

    Doris, Sean E; Ward, Ashleigh L; Baskin, Artem; Frischmann, Peter D; Gavvalapalli, Nagarjuna; Chénard, Etienne; Sevov, Christo S; Prendergast, David; Moore, Jeffrey S; Helms, Brett A

    2017-02-01

    Intermittent energy sources, including solar and wind, require scalable, low-cost, multi-hour energy storage solutions in order to be effectively incorporated into the grid. All-Organic non-aqueous redox-flow batteries offer a solution, but suffer from rapid capacity fade and low Coulombic efficiency due to the high permeability of redox-active species across the battery's membrane. Here we show that active-species crossover is arrested by scaling the membrane's pore size to molecular dimensions and in turn increasing the size of the active material above the membrane's pore-size exclusion limit. When oligomeric redox-active organics (RAOs) were paired with microporous polymer membranes, the rate of active-material crossover was reduced more than 9000-fold compared to traditional separators at minimal cost to ionic conductivity. This corresponds to an absolute rate of RAO crossover of less than 3 μmol cm -2  day -1 (for a 1.0 m concentration gradient), which exceeds performance targets recently set forth by the battery industry. This strategy was generalizable to both high and low-potential RAOs in a variety of non-aqueous electrolytes, highlighting the versatility of macromolecular design in implementing next-generation redox-flow batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A comparative study on the solubility and stability of p-phenylenediamine-based organic redox couples for non-aqueous flow batteries

    Science.gov (United States)

    Kim, Hyun-seung; Lee, Keon-Joon; Han, Young-Kyu; Ryu, Ji Heon; Oh, Seung M.

    2017-04-01

    A methyl-substituted p-phenylenediamine (PD), N,N,N‧,N‧-tetramethyl-p-phenylenediamine (TMPD), is examined as a positive redox couple with high energy density for non-aqueous Li-flow batteries. Methyl substitution affects the solubility of the redox couple, as the solubility is increased by a factor of ten, to a maximum solubility of 5.0 M in 1.0 M lithium tetrafluoroborate-propylene carbonate supporting electrolyte due to elimination of the hydrogen bonding between the solute molecules. The methyl substitution also enhances the chemical stability of the cation radical and di-cation being generated from PD, as the redox center is shielded by the methyl groups. Furthermore, this organic redox couple demonstrate two-electron redox reactions at 3.2 and 3.8 V (vs. Li/Li+); therefore, the volumetric capacity is twice higher compared to conventional one-electron involved redox couples. In a non-flowing Li/TMPD coin-cell, this organic redox couple demonstrates very stable cycleability as a positive redox couple for non-aqueous flow batteries.

  11. Molecular dynamics investigation of carbon nanotube junctions in non-aqueous solutions

    KAUST Repository

    Gkionis, Konstantinos

    2014-07-23

    The properties of liquids in a confined environment are known to differ from those in the bulk. Extending this knowledge to geometries defined by two metallic layers in contact with the ends of a carbon nanotube is important for describing a large class of nanodevices that operate in non-aqueous environments. Here we report a series of classical molecular dynamics simulations for gold-electrode junctions in acetone, cyclohexane and N,N-dimethylformamide solutions and analyze the structure and the dynamics of the solvents in different regions of the nanojunction. The presence of the nanotube has little effect on the ordering of the solvents along its axis, while in the transversal direction deviations are observed. Importantly, the orientational dynamics of the solvents at the electrode-nanotube interface differ dramatically from that found when only the electrodes are present.

  12. Dilute and dense axion stars

    Science.gov (United States)

    Visinelli, Luca; Baum, Sebastian; Redondo, Javier; Freese, Katherine; Wilczek, Frank

    2018-02-01

    Axion stars are hypothetical objects formed of axions, obtained as localized and coherently oscillating solutions to their classical equation of motion. Depending on the value of the field amplitude at the core |θ0 | ≡ | θ (r = 0) |, the equilibrium of the system arises from the balance of the kinetic pressure and either self-gravity or axion self-interactions. Starting from a general relativistic framework, we obtain the set of equations describing the configuration of the axion star, which we solve as a function of |θ0 |. For small |θ0 | ≲ 1, we reproduce results previously obtained in the literature, and we provide arguments for the stability of such configurations in terms of first principles. We compare qualitative analytical results with a numerical calculation. For large amplitudes |θ0 | ≳ 1, the axion field probes the full non-harmonic QCD chiral potential and the axion star enters the dense branch. Our numerical solutions show that in this latter regime the axions are relativistic, and that one should not use a single frequency approximation, as previously applied in the literature. We employ a multi-harmonic expansion to solve the relativistic equation for the axion field in the star, and demonstrate that higher modes cannot be neglected in the dense regime. We interpret the solutions in the dense regime as pseudo-breathers, and show that the life-time of such configurations is much smaller than any cosmological time scale.

  13. Phosphate Solubilizing Bacteria Adaptive to Vinasse

    Directory of Open Access Journals (Sweden)

    Kahar Muzakhar

    2015-06-01

    Full Text Available Microorganisms identified as phosphate solubilizing bacteria (PSB adaptive to vinasse were successfully screened from sugarcane soil from an agriculatural estate in Jatiroto. By conducting a screening on Pikovskaya’s agar medium (PAM, we found that five different isolates were detected as PSB (pvk-5a, pvk-5b, pvk-6b, pvk-7a, and pvk-8a. Of the five isolates only three could be grown and were found to be adaptive to vinasse based medium without any nutrients added (pvk-5a, pvk-5b and pvk-7a. The three isolates were characterized as coccus and Gram negative with no endospores detected. We suggest that these three isolates can be used as biofertilizer agent to support organic farming.

  14. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  15. WARM EXTENDED DENSE GAS AT THE HEART OF A COLD COLLAPSING DENSE CORE

    International Nuclear Information System (INIS)

    Shinnaga, Hiroko; Phillips, Thomas G.; Furuya, Ray S.; Kitamura, Yoshimi

    2009-01-01

    In order to investigate when and how the birth of a protostellar core occurs, we made survey observations of four well-studied dense cores in the Taurus molecular cloud using CO transitions in submillimeter bands. We report here the detection of unexpectedly warm (∼30-70 K), extended (radius of ∼2400 AU), dense (a few times 10 5 cm -3 ) gas at the heart of one of the dense cores, L1521F (MC27), within the cold dynamically collapsing components. We argue that the detected warm, extended, dense gas may originate from shock regions caused by collisions between the dynamically collapsing components and outflowing/rotating components within the dense core. We propose a new stage of star formation, 'warm-in-cold core stage (WICCS)', i.e., the cold collapsing envelope encases the warm extended dense gas at the center due to the formation of a protostellar core. WICCS would constitute a missing link in evolution between a cold quiescent starless core and a young protostar in class 0 stage that has a large-scale bipolar outflow.

  16. The effect of non-aqueous solvents on spectrophotometric analysis of lead (II)

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Bahbouh, M.; Kamuah, M.

    1992-01-01

    The effect of the following non-aqueous solvents: Methanol, Ethanol, Propanol, iso-propanol, dimethylsulfoxide, dimethylformamide and acetonitrile on spectrophotometric analysis of lead (II) was studied. One absorption peak at range 220-340 nm was observed. The values of maximum wave length (λ max ) and maximum molar absorptivity coefficient (ε max ) vary in accordance with the above solvents and the concentration of HC1. the analytical curves, A=f(C Pb 2+ ), for the determination of lead (II) in presence 5 M HC1 (in methanol) and 7 M HC1 (in other solvents) showed linear proportionality over the concentration range 2.5x10 -5 - 2.0x10 -4 M Pb 2+ . (author). 16 Refs., 4 figs., 2 Tabs

  17. Uranium association with halophilic and non-halophilic bacteria and archaea

    International Nuclear Information System (INIS)

    Francis, A.J.; Gillow, J.B.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Papenguth, H.W.

    2004-01-01

    We determined the association of uranium with bacteria isolated from the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico, and compared this with known strains of halophilic and non-halophilic bacteria and archaea. Examination of the cultures by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) showed uranium accumulation extracellularly and/or intracellularly to a varying degree. In Pseudomonas fluorescens and Bacillus subtilis uranium was associated with the cell surface and in the latter it was present as irregularly shaped grains. In Halobacterium halobium, the only archeon studied here, uranium was present as dense deposits and with Haloanaerobium praevalens as spikey deposits. Halomonas sp. isolated from the WIPP site accumulated uranium both extracellularly on the cell surface and intracellularly as electron-dense discrete granules. Extended X-ray absorption fine structure (EXAFS) analysis of uranium with the halophilic and non-halophilic bacteria and archaea showed that the uranium present in whole cells was bonded to an average of 2.4 ± 0.7 phosphoryl groups at a distance of 3.65 ± 0.03 Aa. Comparison of whole cells of Halomonas sp. with the cell wall fragments of lysed cells showed the presence of a uranium bidentate complex at 2.91 ± 0.03 Aa with the carboxylate group on the cell wall, and uranyl hydroxide with U-U interaction at 3.71 ± 0.03 Aa due to adsorption or precipitation reactions; no U-P interaction was observed. Addition of uranium to the cell lysate of Halomonas sp. resulted in the precipitation of uranium due to the inorganic phosphate produced by the cells. These results show that the phosphates released from bacteria bind a significant amount of uranium. However, the bacterially immobilized uranium was readily solubilized by bicarbonate with concurrent release of phosphate into solution. (orig.)

  18. Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model

    International Nuclear Information System (INIS)

    Tamura, Koetsu; Kikuchi, Eiji; Konno, Tomohiro; Ishihara, Kazuhiko; Matsumoto, Kazuhiro; Miyajima, Akira; Oya, Mototsugu

    2015-01-01

    To evaluate the effects of intravesical administration of paclitaxel (PTX-30W), which was prepared by solubilization with a water-soluble amphiphilic polymer composed of PMB30W, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate, in an orthotopic bladder cancer model. The cytotoxicities of PMB30W were examined in MBT-2 cell cultures and the results were compared with those of the conventional paclitaxel solubilizer Cremophor. In an orthotopic MBT-2 bladder cancer model, the effect of intravesical administration of PTX-30W was compared with that of paclitaxel solubilized with Cremophor (PTX-CrEL). The paclitaxel concentration in bladder tumors after the intravesical treatment was also evaluated using liquid chromatography tandem mass spectrometry (LC-MS/MS) system. In vitro, Cremophor exhibited dose-dependent cytotoxicity towards MBT-2 cells, whereas no cytotoxicity was observed with PMB30W. In the orthotopic bladder cancer model, intravesical administration of PTX-30W resulted in a significant reduction of bladder wet weight compared with that of PTX-CrEL. The paclitaxel concentration in bladder tumors after the intravesical treatment was significantly higher in PTX-30W treated mice than in PTX-CrEL treated mice. Intravesically administered PTX-30W can elicit stronger antitumor effects on bladder tumors than conventional paclitaxel formulated in Cremophor, presumably because of its better penetration into tumor cells. PTX-30W might be a promising antitumor agent for intravesical treatment of non-muscle invasive bladder cancer

  19. Bioaugmentation-assisted phytoextraction of Co, Pb and Zn: an assessment with a phosphate-solubilizing bacterium isolated from metal-contaminated mines of Boryeong Area in South Korea

    Directory of Open Access Journals (Sweden)

    Arunakumara, KKIU.

    2015-01-01

    Full Text Available Description of the subject. Make use of microbes having remarkable metal tolerance and plant growth-promoting abilities to remediate metal-contaminated soils. Objectives. The objectives were to isolate phosphate solubilizing bacterial strain, assess metal (Co, Pb and Zn mobilization potential of the strain and to evaluate the effects of the strain on growth and uptake of metals by Helianthus annuus. Method. A phosphate solubilizing bacterium was isolated from metal-contaminated soils. Heavy metal (Co, Pb and Zn tolerance of the strain was assessed using the agar dilution method. Bacterial-assisted growth promotion and metal uptake by H. annuus was evaluated in a pot experiment. The impact of bacterial inoculation on the mobility of metals in soil was investigated in a batch experiment. Results. The strain showed close proximity with Klebsiella oxytoca JCM1665, according to 16S rRNA sequence analysis. The strain was efficient in solubilizing phosphate, both in the presence and absence of metals. Inoculation of the strain enhanced the growth of H. annuus (49, 22 and 39% respectively in Co, Pb and Zn contaminated soils compared to non-inoculated plants. Accumulation and translocation of Co, Pb and Zn from roots to shoots were also enhanced by the strain. Water soluble fraction of Co, Pb and Zn in soil was increased by 51, 24 and 76% respectively in inoculated soils with regard to those of non-inoculated soils. Conclusions. Taking the plant growth promotion and metal mobilizing potential of the strain into account, practical application of the strain in enhancing phytoextraction of Co, Pb and Zn from contaminated soils could be recommended.

  20. Potential of mean force for ion pairs in non-aqueous solvents. Comparison of polarizable and non-polarizable MD simulations

    Science.gov (United States)

    Odinokov, A. V.; Leontyev, I. V.; Basilevsky, M. V.; Petrov, N. Ch.

    2011-01-01

    Potentials of mean force (PMF) are calculated for two model ion pairs in two non-aqueous solvents. Standard non-polarizable molecular dynamics simulation (NPMD) and approximate polarizable simulation (PMD) are implemented and compared as tools for monitoring PMF profiles. For the polar solvent (dimethylsulfoxide, DMSO) the PMF generated in terms of the NPMD reproduces fairly well the refined PMD-PMF profile. For the non-polar solvent (benzene) the conventional NPMD computation proves to be deficient. The validity of the correction found in terms of the approximate PMD approach is verified by its comparison with the result of the explicit PMD computation in benzene. The shapes of the PMF profiles in DMSO and in benzene are quite different. In DMSO, owing to dielectric screening, the PMF presents a flat plot with a shallow minimum positioned in the vicinity of the van der Waals contact of the ion pair. For the benzene case, the observed minimum proves to be unexpectedly deep, which manifests the formation of a tightly-binded contact ion pair. This remarkable effect arises owing to the strong electrostatic interaction that is incompletely screened by a non-polar medium. The PMFs for the binary benzene/DMSO mixtures display intermediate behaviour depending on the DMSO content.

  1. Solubilization and molecular size of atrial natriuretic hormone (ANH) receptors from rabbit aorta, renal cortex and adrenal

    International Nuclear Information System (INIS)

    Budzik, G.P.; Bush, E.N.; Holleman, W.H.

    1986-01-01

    ANH(1-28) is presumed to regulate blood pressure and fluid balance via membrane receptors coupled to particulate guanylate cyclase. ANH receptors were solubilized from rabbit aorta, renal cortex and adrenal, primary ANH targets. Plasma membranes extracted with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate(CHAPS) yield solubilized receptors with high affinity binding of 125 I-Tyr 28 -ANH. Degradation of hormone was minimized with a broad spectrum of protease inhibitors. 125 I-ANH binding reached maximum by 1 hr at 0 0 C and was stable for at least an additional 2 hrs. Bound was separated from free ligand by HPLC gel filtration on TSK-3000SW in PBS/CHAPS. Bound hormone eluted at a MW of ∼ 200KD in each tissue preparation and was displaced by unlabelled ANH. The concentration of solubilized binding sites was proportional to densities in intact plasma membranes, i.e., adrenal > renal > aorta. Following separation of free hormone, 125 I-ANH-receptors complexes were coupled using bifunctional crosslinking reagents. SDS-PAGE analysis and autoradiography indicated a major labelled band at ∼ 150KD in each tissue preparation. The mobility of this labelled band was not sensitive to reduction before SDS-PAGE. Although these results suggest that solubilized ANH receptors from primary target tissues are very similar, microheterogeneity affecting binding affinity or signal transduction cannot as yet be excluded

  2. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    light was analyzed using an image processing technique. We examined behaviors of the strobe light beam propagation in an aerosol-like non-visibility (dense fog) environment, which is a simulated visibility environments of the DBA (or severe accident) of the nuclear power plant.

  4. A Behavior of Strobe Light in Non-Visibility (Dense Fog) Environments

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2015-01-01

    light was analyzed using an image processing technique. We examined behaviors of the strobe light beam propagation in an aerosol-like non-visibility (dense fog) environment, which is a simulated visibility environments of the DBA (or severe accident) of the nuclear power plant

  5. HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185.

    Science.gov (United States)

    Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H

    2015-12-01

    The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Solubilization and purification of the glucosyltransferase involved in the biosynthesis of teichuronic acid by fragments of Micrococcus luteus cell membranes

    International Nuclear Information System (INIS)

    Hildebrandt, K.M.; Anderson, J.S.

    1987-01-01

    Enzymes involved in the biosynthesis of teichuronic acid have been demonstrated in cytoplasmic membrane fragments recovered from lysozyme treated Micrococcus luteus cells. Solubilization of the glucosyltransferase activity was effected with aqueous solutions of Triton X-100, Nonidet P-40, Tween 20, or Thesit. Thesit proved most amenable for recovery of glucosyltransferase activity as well as spectrophotometric protein determinations. Recovery of the glucosyltranferase activity was aided during purification by inclusion of 15% glycerol, 0.75% Thesit, 20 mM magnesium ion and 2 mM 2-mercaptoethanol in all buffers. Glucosyltransferase activity was monitored by the transfer of [ 14 C]glucose from UDP-[ 14 C]glucose to an artificial acceptor. Although the natural acceptor is presumed to be an undecaprenyl diphosphate-activated oligosaccharide, alternate acceptors such as isolated cell wall fractions containing teichuronic acid served equally well. Highly purified teichuronic acid devoid of peptidoglycan was the most effective alternate acceptor. The glucosyltransferase was purified by ammonium sulfate precipitation followed by ion exchange chromatography on DEAE-cellulose yielding an overall 200-fold increase in specific activity

  7. Effect of cholesterol nucleation-promoting activity on cholesterol solubilization in model bile

    NARCIS (Netherlands)

    Groen, A. K.; Ottenhoff, R.; Jansen, P. L.; van Marle, J.; Tytgat, G. N.

    1989-01-01

    Human bile contains a factor with cholesterol nucleation-promoting activity that binds to concanavalin A-Sepharose. In this study we have investigated the effect of this activity on the dynamics of lipid solubilization in supersaturated model bile. A concanavalin A binding protein fraction of human

  8. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    Directory of Open Access Journals (Sweden)

    Hyun-seung Kim

    2018-04-01

    Full Text Available Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N′,N′-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  9. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    Science.gov (United States)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  10. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry.

    Science.gov (United States)

    Nistor, Cristina Lavinia; Ianchis, Raluca; Ghiurea, Marius; Nicolae, Cristian-Andi; Spataru, Catalin-Ilie; Culita, Daniela Cristina; Pandele Cusu, Jeanina; Fruth, Victor; Oancea, Florin; Donescu, Dan

    2016-01-05

    The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA). The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent's molar ratio. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  11. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  12. Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India

    Directory of Open Access Journals (Sweden)

    B.C. Behera

    2017-06-01

    Full Text Available Phosphorus is an essential element for all life forms. Phosphate solubilizing bacteria are capable of converting phosphate into a bioavailable form through solubilization and mineralization processes. Hence in the present study a phosphate solubilizing bacterium, PSB-37, was isolated from mangrove soil of the Mahanadi river delta using NBRIP-agar and NBRIP-BPB broth containing tricalcium phosphate as the phosphate source. Based on phenotypic and molecular characterization, the strain was identified as Serratia sp. The maximum phosphate solubilizing activity of the strain was determined to be 44.84 μg/ml, accompanied by a decrease in pH of the growth medium from 7.0 to 3.15. During phosphate solubilization, various organic acids, such as malic acid (237 mg/l, lactic acid (599.5 mg/l and acetic acid (5.0 mg/l were also detected in the broth culture through HPLC analysis. Acid phosphatase activity was determined by performing p-nitrophenyl phosphate assay (pNPP of the bacterial broth culture. Optimum acid phosphatase activity was observed at 48 h of incubation (76.808 U/ml, temperature of 45 °C (77.87 U/ml, an agitation rate of 100 rpm (80.40 U/ml, pH 5.0 (80.66 U/ml and with glucose as a original carbon source (80.6 U/ml and ammonium sulphate as a original nitrogen source (80.92 U/ml. Characterization of the partially purified acid phosphatase showed maximum activity at pH 5.0 (85.6 U/ml, temperature of 45 °C (97.87 U/ml and substrate concentration of 2.5 mg/ml (92.7 U/ml. Hence the present phosphate solubilizing and acid phosphatase production activity of the bacterium may have probable use for future industrial, agricultural and biotechnological application.

  13. Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Mukhtar, Salma; Shahid, Izzah; Mehnaz, Samina; Malik, Kauser A

    2017-12-01

    Biofertilizers are usually carrier-based inoculants containing beneficial microorganisms. Incorporation of microorganisms in carrier material enables easy-handling, long-term storage and high effectiveness of biofertilizers. Objective of the present study was to assess enriched biogas sludge and soil as biofertilizer carriers on growth and yield of wheat. Six phosphate solubilizing strains were used in this study. Three phosphate solubilizing strains, 77-NS2 (Bacillus endophyticus), 77-CS-S1 (Bacillus sphaericus) and 77-NS5 (Enterobacter aerogenes) were isolated from the rhizosphere of sugarcane, two strains, PSB5 (Bacillus safensis) and PSB12 (Bacillus megaterium) from the rhizosphere of wheat and one halophilic phosphate solubilizing strain AT2RP3 (Virgibacillus sp.) from the rhizosphere of Atriplex amnicola, were used as bioinoculants. Phosphate solubilization ability of these strains was checked in vitro in Pikovskaya medium, containing rock phosphate (RP) as insoluble P source, individually supplemented with three different carbon sources, i.e., glucose, sucrose and maltose. Maximum phosphate solubilization; 305.6μg/ml, 217.2μg/ml and 148.1μg/ml was observed in Bacillus strain PSB12 in Pikovskaya medium containing sucrose, maltose and glucose respectively. A field experiment and pot experiments in climate control room were conducted to study the effects of biogas sludge and enriched soil based phosphorous biofertilizers on growth of wheat. Bacillus strain PSB12 significantly increased root and shoot dry weights and lengths using biogas sludge as carrier material in climate control room experiments. While in field conditions, significant increase in root and shoot dry weights, lengths and seed weights was seen by PSB12 and PSB5 (Bacillus) and Enterobacter strain 77-NS5 using biogas sludge as carrier. PSB12 also significantly increased both root and shoot dry weights and lengths in field conditions when used as enriched soil based inoculum. These results

  14. Phosphorus Solubilizing and Releasing Bacteria Screening from the Rhizosphere in a Natural Wetland

    Directory of Open Access Journals (Sweden)

    Ying Cao

    2018-02-01

    Full Text Available Inorganic phosphorus (P-solubilizing bacteria (IPSB and organic P-mineralizing bacteria (OPMB were isolated from bacteria that were first extracted from the rhizosphere soil of a natural wetland and then grown on either tricalcium phosphate or lecithin medium. The solubilizing of inorganic P was the major contribution to P availability, since the isolated bacteria released much more available P from inorganic tricalcium phosphate than lecithin. IPSB No. 5 had the highest P release rate, that is, 0.53 mg·L−1·h−1 in 96 h, and R10′s release rate was 0.52 mg·L−1·h−1 in 10 days. The bacteria were identified as Pseudomonas sp. and Pseudomonas knackmussii, respectively. R10 released as much as 125.88 mg·L−1 dissolved P from tricalcium phosphate medium, while R4 released the most dissolved P from organic P medium among the isolates, with a concentration of 1.88 mg·L−1 and a releasing rate of 0.0078 mg·L−1·h−1 in ten days. P releasing increased with a pH decrease only when it was from inorganic P, not organic lecithin, and there was no significant correlation between the culture pH and P solubilizing. High-throughput sequencing analysis revealed that the dominant phylum in the studied wetland rhizosphere consisted of Acidobacteria, Proteobacteria, Bacteroidetes and Chloroflexi, accounting for 34.9%, 34.2%, 8.8% and 4.8%, respectively.

  15. Influence of aqueous media properties on aggregation and solubility of four structurally related meso-porphyrin photosensitizers evaluated by spectrophotometric measurements.

    Science.gov (United States)

    Sobczyński, J; Tønnesen, H H; Kristensen, S

    2013-02-01

    Porphyrin photosensitizers tend to aggregate in aqueous solutions even in the micromolar concentration range. This is a challenge during formulation of e.g., parenteral preparations for photodynamic cancer therapy, or preparations for local or topical administration in antimicrobial photodynamic therapy. Monomerization is essential to achieve biocompatible drug formulations of high bioavailability and physiological response (i.e., photoreactivity) and low toxicity. The aggregation and solubilization of four structurally related meso-tetraphenyl porphyrin photosensitizers with nonionic (4-hydroxy), anionic (4-sulphonate; 4-carboxy) and cationic (4-trimethylanilinium) substituents were evaluated in various vehicles by use of UV-Vis spectroscopy. Substituents, overall charge and charge distribution influenced the pKa-values and interaction of the porphyrins with different solvents, excipients and impurities. Modification of medium polarity and solubilization by the nonionic surfactant Tween 80 adjusted the acid-base equilibria and increased the solubility by reduction of porphyrin aggregation. The selected porphyrins were sensitive towards ionic strength, temperature and inorganic impurities to various extents. The results will be further used during development of parenteral and topical formulations of porphyrin photosensitizers for use in photodynamic therapy of cancer and bacterial infections.

  16. Dense gene physical maps of the non-model species Drosophila subobscura.

    Science.gov (United States)

    Orengo, Dorcas J; Puerma, Eva; Papaceit, Montserrat; Segarra, Carmen; Aguadé, Montserrat

    2017-06-01

    The comparative analysis of genetic and physical maps as well as of whole genome sequences had revealed that in the Drosophila genus, most structural rearrangements occurred within chromosomal elements as a result of paracentric inversions. Genome sequence comparison would seem the best method to estimate rates of chromosomal evolution, but the high-quality reference genomes required for this endeavor are still scanty. Here, we have obtained dense physical maps for Muller elements A, C, and E of Drosophila subobscura, a species with an extensively studied rich and adaptive chromosomal polymorphism. These maps are based on 462 markers: 115, 236, and 111 markers for elements A, C, and E, respectively. The availability of these dense maps will facilitate genome assembly and will thus greatly contribute to obtaining a good reference genome, which is a required step for D. subobscura to attain the model species status. The comparative analysis of these physical maps and those obtained from the D. pseudoobscura and D. melanogaster genomes allowed us to infer the number of fixed inversions and chromosomal evolutionary rates for each pairwise comparison. For all three elements, rates inferred from the more closely related species were higher than those inferred from the more distantly related species, which together with results of relative-rate tests point to an acceleration in the D. subobscura lineage at least for elements A and E.

  17. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    KAUST Repository

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  18. Study of the Conformational State of Non-Cross-Linked and Cross-Linked Poly(alkylmethyldiallylammonium chlorides) in Aqueous Solution by Fluorescence Probing

    NARCIS (Netherlands)

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    The aggregation behaviour of novel non-cross-linked and cross-linked poly(alkylmethyldiallylammonium chlorides) in aqueous solutions has been investigated by fluorescence spectroscopy using pyrene as a probe. These copolymers were found to exhibit similar aggregate properties as the corresponding

  19. Increased Aqueous Humor CD4+/CD8+ Lymphocyte Ratio in Sarcoid Uveitis.

    Science.gov (United States)

    Dave, Namita; Chevour, Priyanka; Mahendradas, Padmamalini; Venkatesh, Anitha; Kawali, Ankush; Shetty, Rohit; Ghosh, Arkasubhra; Sethu, Swaminathan

    2018-02-08

    To determine aqueous humor CD4+/CD8+ T-lymphocyte ratio changes in sarcoid and non-sarcoid uveitis with anterior chamber involvement. The case-control study includes 61 patients with either anterior uveitis, intermediate uveitis with anterior spill, or panuveitis. A total of 21 of them were categorized as sarcoid uveitis and 40 as non-sarcoid uveitis according to diagnostic criteria. CD4+/CD8+ ratio in the aqueous humor was determined using flow cytometry. Significantly higher CD4+/CD8+ ratio in the aqueous humor was observed in patients with sarcoid uveitis (6.3 ± 1.4; mean ± SEM) compared to non-sarcoid uveitis (1.6 ± 0.1; mean ± SEM). Whole blood CD4+/CD8+ ratio was not elevated in subjects with sarcoid and non-sarcoid uveitis. Aqueous humor CD4+/CD8+ ratio >3.5 was observed to be associated with sarcoid uveitis (OR 38, 95% CI 7.0-205.2). Increased aqueous humor CD4+/CD8+ ratio in sarcoid uveitis. Immunophenotyping of localized lymphocytosis in aqueous humor could be utilized as an additional confirmatory marker for ocular sarcoidosis.

  20. Biotoxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system.

    Science.gov (United States)

    Pan, Tao; Liu, Chunyan; Zeng, Xinying; Xin, Qiao; Xu, Meiying; Deng, Yangwu; Dong, Wei

    2017-06-01

    A recent work has shown that hydrophobic organic compounds solubilized in the micelle phase of some nonionic surfactants present substrate toxicity to microorganisms with increasing bioavailability. However, in cloud point systems, biotoxicity is prevented, because the compounds are solubilized into a coacervate phase, thereby leaving a fraction of compounds with cells in a dilute phase. This study extends the understanding of the relationship between substrate toxicity and bioavailability of hydrophobic organic compounds solubilized in nonionic surfactant micelle phase and cloud point system. Biotoxicity experiments were conducted with naphthalene and phenanthrene in the presence of mixed nonionic surfactants Brij30 and TMN-3, which formed a micelle phase or cloud point system at different concentrations. Saccharomyces cerevisiae, unable to degrade these compounds, was used for the biotoxicity experiments. Glucose in the cloud point system was consumed faster than in the nonionic surfactant micelle phase, indicating that the solubilized compounds had increased toxicity to cells in the nonionic surfactant micelle phase. The results were verified by subsequent biodegradation experiments. The compounds were degraded faster by PAH-degrading bacterium in the cloud point system than in the micelle phase. All these results showed that biotoxicity of the hydrophobic organic compounds increases with bioavailability in the surfactant micelle phase but remains at a low level in the cloud point system. These results provide a guideline for the application of cloud point systems as novel media for microbial transformation or biodegradation.

  1. Mixed system of ionic liquid and non-ionic surfactants in aqueous media: Surface and thermodynamic properties

    International Nuclear Information System (INIS)

    Bhatt, Darshak; Maheria, Kalpana; Parikh, Jigisha

    2014-01-01

    Highlights: • Interaction of ionic liquid and ethylene oxide based non-ionic surfactants in aqueous media. • Evaluation of various surface properties and thermodynamic parameters. • Micellar growth ensues from exothermic to endothermic with increase in temperature. • Micelle formation is enthalpy driven at low temperature and entropy driven at higher temperature. • The micellization power and adsorption proficiency decreased at high IL concentrations. - Abstract: The mixed system of ionic liquid (IL) tetraethyl ammonium tetrafluoroborate [TEA(BF 4 )] and numerous ethylene oxide based non-ionic surfactants in aqueous media were studied using surface tension, viscosity and dynamic light scattering (DLS) measurements. Various surface properties like critical micelle concentration (cmc), maximum surface excess concentration (Γ max ), minimum surface area per surfactant molecule (A min ), surface tension at the cmc (γ cmc ), adsorption efficiency (pC 20 ), and effectiveness of surface tension reduction (π cmc ) as well as thermodynamic parameters of micellization have been determined. DLS and viscosity measurements revealed that the micellar growth was attributed to the bridged solvophilicity of the POE chain in surfactants at elevated temperatures. In most of the cases, the progression ensues from exothermic to endothermic with increase in temperature of the mixed system. Thermodynamic parameter indicates that the micelle formation process is enthalpy driven at low temperature and entropy driven at higher temperature

  2. The equation of state and ionization equilibrium of dense aluminum plasma with conductivity verification

    International Nuclear Information System (INIS)

    Wang, Kun; Shi, Zongqian; Shi, Yuanjie; Bai, Jun; Wu, Jian; Jia, Shenli

    2015-01-01

    The equation of state, ionization equilibrium, and conductivity are the most important parameters for investigation of dense plasma. The equation of state is calculated with the non-ideal effects taken into consideration. The electron chemical potential and pressure, which are commonly used thermodynamic quantities, are calculated by the non-ideal free energy and compared with results of a semi-empirical equation of state based on Thomas-Fermi-Kirzhnits model. The lowering of ionization potential, which is a crucial factor in the calculation of non-ideal Saha equation, is settled according to the non-ideal free energy. The full coupled non-ideal Saha equation is applied to describe the ionization equilibrium of dense plasma. The conductivity calculated by the Lee-More-Desjarlais model combined with non-ideal Saha equation is compared with experimental data. It provides a possible approach to verify the accuracy of the equation of state and ionization equilibrium

  3. Characterization and bioremediation potential of phosphate solubilizing bacteria isolated from tunisian phosphogypsum

    International Nuclear Information System (INIS)

    Trifi, Houda

    2011-01-01

    Phosphorus bioavailability is often limited in agricultural soils. In this work, two bacteria were isolated from Tunisian phosphogypsum (PG). These ones have the capacity to dissolve inorganic phosphate (CaHPO 4 and Ca 3 (PO 4 ) 2 ). This capacity is determined by the clear halo formation around colonies in NBRIP agar medium. To confirm the solubilization phenotype, the concentration of solubilized phosphate by isolates cultivated in NBRIP broth containing PG was measured. These two bacteria noted BRM17 and BRM18 are identified as Pantoea sp. and Pseudomonas sp, respectively. The results show that BRM17 solubilizes about 2 times more phosphate in broth NBRIP medium after 48 hours of incubation than BRM18. Tunisian phosphogypsum contains 1100 ppm of strontium (Sr). Sr toxicity on bacteria was determined by concentration that gives half-maximal inhibition of bacteria (IC 50 ). Compared with Cupriavidus metallidurans (bacteria tolerant to most of heavy metals), BRM17 and BRM18 cultivated in broth medium containing increasing concentrations of Sr were found tolerant to Sr. The potential of bioremediation is tested by the rate evaluation of Sr adsorption by these bacteria. The results show the high ability of BRM18 to adsorb Sr. The resistance of isolates to ionizing radiation is also determined by the exposure of bacterial cultures to various doses of gamma radiation. BRM17 is considered radioresistant while BRM18 is radiosensitive. The effect on seed germination of wheat and pea inoculated with bacteria was tested. No positive effect was detected. This study is considered with the use of BRM17 and BRM18 in a bioremediation process and the improvement of phosphate uptake by plants cultivated in polluted environments.

  4. Solubilization of industrial grade plant protein by enzymatic hydrolysis monitored by vibrational and nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Bevilacqua, Marta; Pratico, Giulia; Plesner, Johanne

    2017-01-01

    Protein hydrolysates are of great interest in the food industry due to their nutritional and functional properties, but their use often implies solubilization in water and therefore hamper the use of plant proteins with inherent low water solubility. Protein solubility in water can be modified...... (1H NMR and IR) coupled with chemometrics analysis in monitoring the hydrolysis of five different industrial grade plant proteins by the enzyme Alcalase. Logarithmic modeling of the PCA (Principal Component Analysis) scores confirmed that they can represent a measurement of the solubilized protein...

  5. Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAJ09 isolated from pesticides treated Achillea clavennae rhizosphere soil.

    Science.gov (United States)

    Rajasankar, R; Manju Gayathry, G; Sathiavelu, A; Ramalingam, C; Saravanan, V S

    2013-05-01

    In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.

  6. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    1999-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilization abilities are also discussed. (author)

  7. STUDI CAMPURAN SURFACTANT UNTUK MENENTUKAN FUNGSI SOLUBILIZER DAN FIXATIVE PADA INDUSTRI PARFUM

    Directory of Open Access Journals (Sweden)

    K N Adli

    2016-03-01

    Full Text Available Kualitas parfum  ditentukan oleh kejernihan dan longlasting parfum. Campuran surfaktan dapat meningkatkan kualitas parfum dengan biaya produksi yang murah. Penelitian ini bertujuan untuk mengkaji rasio campuran surfaktan untuk menentukan fungsi solubilizer dan fixative. Bibit parfum yang digunakan dalam penelitian ini adalah eugenol, surfaktan dengan fungsi solubilizer adalah portasol 40 dan tween 80 sedangkan surfaktan dengan fungsi fixative adalah glucam P20 dan patchouli alkohol. Rasio yang digunakan pada penelitian ini antara lain rasio glucam p20 : portasol (r G/P, rasio portasol 40 : tween 80 (r P/T dan rasio glucam P20 : patchouli alkohol (r G/PA. Hasil penelitian menunjukkan campuran surfaktan dapat meningkatkan kejernihan dan longlasting parfum lebih baik daripada surfaktan tunggal. Optimasi menggunakan RSM didapatkan rasio campuran yang paling berpengaruh terhadap kejernihan adalah r P/T sedangkan rasio yang paling berpengaruh terhadap longlasting parfum adalah r G/PA. Hasil optimum dengan respon turbiditas r G/P = 3,59; r P/T = 0,48; r G/PA = 0,41 dan respon longlasting  r G/P = 4,51; r P/T = 0,40; r G/PA = 0,42 menghasilkan turbiditas 0,0489 NTU serta longlasting 3,68 jam.Perfume quality is determined by the clarity and longlasting perfume. Surfactant mixture can improve the quality of perfumes at low production costs. This study objectives are to examines the blending ratio surfactant and to determine the function of solubilizer and fixative. Perfume seeds used in this study is eugenol, surfactants with solubilizer function is Portasol 40 and Tween 80 while surfactant with fixative function are glucam P20 and patchouli alcohol. The ratio used in this study include glucam ratio P20: portasol (r G/P, the ratio portasol 40: tween 80 (rP/T and the ratio of glucam P20: patchouli alcohol (r G/PA. The results showed a mixture of surfactants may improve the clarity and longlasting perfume is better than a single surfactant. RSM

  8. Genome Sequence of Selenium-Solubilizing Bacterium Caulobacter vibrioides T5M6

    DEFF Research Database (Denmark)

    Wang, Yihua; Qin, Yanan; Kot, Witold

    2016-01-01

    Caulobacter vibrioides T5M6 is a Gram-negative strain that strongly solubilizes selenium (Se) mineral into Se(IV) and was isolated from a selenium mining area in Enshi, southwest China. This strain produces the phytohormone IAA and promotes plant growth. Here we present the genome of this strain...

  9. Aqueous Angiography: Real-Time and Physiologic Aqueous Humor Outflow Imaging.

    Directory of Open Access Journals (Sweden)

    Sindhu Saraswathy

    Full Text Available Trabecular meshwork (TM bypass surgeries attempt to enhance aqueous humor outflow (AHO to lower intraocular pressure (IOP. While TM bypass results are promising, inconsistent success is seen. One hypothesis for this variability rests upon segmental (non-360 degrees uniform AHO. We describe aqueous angiography as a real-time and physiologic AHO imaging technique in model eyes as a way to simulate live AHO imaging.Pig (n = 46 and human (n = 6 enucleated eyes were obtained, orientated based upon inferior oblique insertion, and pre-perfused with balanced salt solution via a Lewicky AC maintainer through a 1mm side-port. Fluorescein (2.5% was introduced intracamerally at 10 or 30 mm Hg. With an angiographer, infrared and fluorescent (486 nm images were acquired. Image processing allowed for collection of pixel information based on intensity or location for statistical analyses. Concurrent OCT was performed, and fixable fluorescent dextrans were introduced into the eye for histological analysis of angiographically active areas.Aqueous angiography yielded high quality images with segmental patterns (p<0.0001; Kruskal-Wallis test. No single quadrant was consistently identified as the primary quadrant of angiographic signal (p = 0.06-0.86; Kruskal-Wallis test. Regions of high proximal signal did not necessarily correlate with regions of high distal signal. Angiographically positive but not negative areas demonstrated intrascleral lumens on OCT images. Aqueous angiography with fluorescent dextrans led to their trapping in AHO pathways.Aqueous angiography is a real-time and physiologic AHO imaging technique in model eyes.

  10. Sucrose dependent mineral phosphate solubilization in Enterobacter asburiae PSI3 by heterologous overexpression of periplasmic invertases.

    Science.gov (United States)

    Kumar, Chanchal; Wagh, Jitendra; Archana, G; Naresh Kumar, G

    2016-12-01

    Enterobacter asburiae PSI3 solubilizes mineral phosphates in the presence of glucose by the secretion of gluconic acid generated by the action of a periplasmic pyrroloquinoline quinone dependent glucose dehydrogenase. In order to achieve mineral phosphate solubilization phenotype in the presence of sucrose, plasmids pCNK4 and pCNK5 containing genes encoding the invertase enzyme of Zymomonas mobilis (invB) and of Saccharomyces cerevisiae (suc2) under constitutive promoters were constructed with malE signal sequence (in case of invB alone as the suc2 is secreted natively). When introduced into E. asburiae PSI3, E. a. (pCNK4) and E. a. (pCNK5) transformants secreted 21.65 ± 0.94 and 22 ± 1.3 mM gluconic acid, respectively, in the presence of 75 mM sucrose and they also solubilized 180 ± 4.3 and 438 ± 7.3 µM P from the rock phosphate. In the presence of a mixture of 50 mM sucrose and 25 mM glucose, E. a. (pCNK5) secreted 34 ± 2.3 mM gluconic acid and released 479 ± 8.1 µM P. Moreover, in the presence of a mixture of eight sugars (10 mM each) in the medium, E. a. (pCNK5) released 414 ± 5.3 µM P in the buffered medium. Thus, this study demonstrates incorporation of periplasmic invertase imparted P solubilization ability to E. asburiae PSI3 in the presence of sucrose and mixture of sugars.

  11. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE.

    Science.gov (United States)

    Gao, Hao; Allan, Andrew; McComb, Christie; Luo, Xiaoyu; Berry, Colin

    2014-07-07

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.

  12. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    Science.gov (United States)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  13. Role of the CipA Scaffoldin Protein in Cellulose Solubilization, as Determined by Targeted Gene Deletion and Complementation in Clostridium thermocellum

    Science.gov (United States)

    Olson, Daniel G.; Giannone, Richard J.; Hettich, Robert L.

    2013-01-01

    The CipA scaffoldin protein plays a key role in the Clostridium thermocellum cellulosome. Previous studies have revealed that mutants deficient in binding or solubilizing cellulose also exhibit reduced expression of CipA. To confirm that CipA is, in fact, necessary for rapid solubilization of crystalline cellulose, the gene was deleted from the chromosome using targeted gene deletion technologies. The CipA deletion mutant exhibited a 100-fold reduction in cellulose solubilization rate, although it was eventually able to solubilize 80% of the 5 g/liter cellulose initially present. The deletion mutant was complemented by a copy of cipA expressed from a replicating plasmid. In this strain, Avicelase activity was restored, although the rate was 2-fold lower than that in the wild type and the duration of the lag phase was increased. The cipA coding sequence is located at the beginning of a gene cluster containing several other genes thought to be responsible for the structural organization of the cellulosome, including olpB, orf2p, and olpA. Tandem mass spectrometry revealed a 10-fold reduction in the expression of olpB, which may explain the lower growth rate. This deletion experiment adds further evidence that CipA plays a key role in cellulose solubilization by C. thermocellum, and it raises interesting questions about the differential roles of the anchor scaffoldin proteins OlpB, Orf2p, and SdbA. PMID:23204466

  14. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  15. Reconstitution of hormone-responsive detergent-solubilized follicle stimulating hormone receptors into liposomes

    International Nuclear Information System (INIS)

    Grasso, P.; Dattatreyamurty, B.; Reichert, L.E. Jr.

    1988-01-01

    An FSH receptor-enriched fraction that responds to exogenous FSH by activation of adenylate cyclase was prepared by ultrafiltration of sucrose density gradient-purified light membranes derived from bovine calf testes homogenates and solubilized with Triton X-100. To further confirm the functional nature of the detergent-solubilized FSH receptor, the extract was incorporated by lipid hydration into large multilamellar vesicles composed of dioleoyl phosphatidylcholine and cholesterol, 2:1 molar ratio. Receptor incorporation was determined by measurement of specific binding of [125I] human FSH ([125I] hFSH). Substitution of dioleoyl phosphatidylcholine with dipalmitoyl phosphatidylcholine or increasing the cholesterol concentration of the vesicles reduced specific binding of [125I]hFSH. Under conditions favoring optimal incorporation of the receptor, specific binding of [125I]hFSH was time and temperature dependent and saturable when increasing concentrations of radioligand were added to a constant amount of proteoliposomes. Reconstituted proteoliposomes bound 1600 fmol FSH/mg protein with an affinity of 3.54 x 10(9) M-1. Inhibition of [125I] hFSH binding by hFSH was comparable to that seen with the membrane-bound receptor (ED50 = 10 ng). Equilibrium binding studies with [3H]Gpp(NH)p indicated that a single class of high affinity GTP binding sites with an association constant (Ka) of 3.33 x 10(7) m-1 which bound 2.19 fmol [3H]Gpp(NH)p/mg protein had also been incorporated into the proteoliposomes. Addition of FSH induced a 2-fold stimulation of [3H]Gpp(NH)p binding, supporting our earlier studies suggesting that the detergent-solubilized FSH receptor is complexed to the G protein. Of particular significance in the present study was the observation that both NaF and FSH stimulated cAMP production in the reconstituted system

  16. Low-Resolution Structure of Detergent-Solubilized Membrane Proteins from Small-Angle Scattering Data.

    Science.gov (United States)

    Koutsioubas, Alexandros

    2017-12-05

    Despite the ever-increasing usage of small-angle scattering as a valuable complementary method in the field of structural biology, applications concerning membrane proteins remain elusive mainly due to experimental challenges and the relative lack of theoretical tools for the treatment of scattering data. This fact adds up to general difficulties encountered also by other established methods (crystallography, NMR) for the study of membrane proteins. Following the general paradigm of ab initio methods for low-resolution restoration of soluble protein structure from small-angle scattering data, we construct a general multiphase model with a set of physical constraints, which, together with an appropriate minimization procedure, gives direct structural information concerning the different components (protein, detergent molecules) of detergent-solubilized membrane protein complexes. Assessment of the method's precision and robustness is evaluated by performing shape restorations from simulated data of a tetrameric α-helical membrane channel (Aquaporin-0) solubilized by n-Dodecyl β-D-Maltoside and from previously published small-angle neutron scattering experimental data of the filamentous hemagglutinin adhesin β-barrel protein transporter solubilized by n-Octyl β-D-glucopyranoside. It is shown that the acquisition of small-angle neutron scattering data at two different solvent contrasts, together with an estimation of detergent aggregation number around the protein, permits the reliable reconstruction of the shape of membrane proteins without the need for any prior structural information. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Solubilization of docetaxel in poly(ethylene oxide)-block-poly(butylene/styrene oxide) micelles.

    Science.gov (United States)

    Elsabahy, Mahmoud; Perron, Marie-Eve; Bertrand, Nicolas; Yu, Ga-Er; Leroux, Jean-Christophe

    2007-07-01

    Poly(ethylene oxide)-block-poly(styrene oxide) (PEO-b-PSO) and PEO-b-poly(butylene oxide) (PEO-b-PBO) of different chain lengths were synthesized and characterized for their self-assembling properties in water by dynamic/static light scattering, spectrofluorimetry, and transmission electron microscopy. The resulting polymeric micelles were evaluated for their ability to solubilize and protect the anticancer drug docetaxel (DCTX) from degradation. The drug release kinetics as well as the cytotoxicity of the loaded micelles were assessed in vitro. All polymers formed micelles with a highly viscous core at low critical association concentrations (hydrolysis under accelerated stability testing conditions. Only PEO-b-PBO bearing 24 BO units afforded significant protection against degradation. In vitro, DCTX was released slower from the latter micelles, but all formulations possessed a similar cytotoxic effect against PC-3 prostate cancer cells. These data suggest that PEO-b-P(SO/BO) micelles could be used as alternatives to conventional surfactants for the solubilization of taxanes.

  18. Water solubilization and the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid

    Energy Technology Data Exchange (ETDEWEB)

    Demchenko, P.A.; Novitskaya, L.D.

    The investigation of the dependence of water solubilization on the dielectric permeability of isomolar solutions of oleic acid and triethanolamine soap of oleic acid in benzene has shown that at certain acid additions, the solubilization effect can increase almost 6 times, as compared to the soap solution without acid additions. In some cases, electron donor-acceptor complexes are formed, which are more polar than the original components. This leads to a change in the molecular-disperse and micellar part of solution and affects significantly the structure and properties of micellar hydrocarbon solutions of surfactants.

  19. Dense neuron clustering explains connectivity statistics in cortical microcircuits.

    Directory of Open Access Journals (Sweden)

    Vladimir V Klinshov

    Full Text Available Local cortical circuits appear highly non-random, but the underlying connectivity rule remains elusive. Here, we analyze experimental data observed in layer 5 of rat neocortex and suggest a model for connectivity from which emerge essential observed non-random features of both wiring and weighting. These features include lognormal distributions of synaptic connection strength, anatomical clustering, and strong correlations between clustering and connection strength. Our model predicts that cortical microcircuits contain large groups of densely connected neurons which we call clusters. We show that such a cluster contains about one fifth of all excitatory neurons of a circuit which are very densely connected with stronger than average synapses. We demonstrate that such clustering plays an important role in the network dynamics, namely, it creates bistable neural spiking in small cortical circuits. Furthermore, introducing local clustering in large-scale networks leads to the emergence of various patterns of persistent local activity in an ongoing network activity. Thus, our results may bridge a gap between anatomical structure and persistent activity observed during working memory and other cognitive processes.

  20. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.).

    Science.gov (United States)

    Pradhan, Madhusmita; Sahoo, Ranjan Kumar; Pradhan, Chinmay; Tuteja, Narendra; Mohanty, Santanu

    2017-11-01

    The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al 3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.

  1. Solubilization of silk protein by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sudatis, Boonya; Pongpat, Suchada [Office of Atomic Energy of Peace, Bangkok (Thailand)

    2002-03-01

    Gamma irradiated silk fibroin at doses of 0, 5, 10, 20, 40, 60, 80, 100, 125, 250, 500, 750 and 1000 kGy were soaked in water for 1 hr. Silk fibroin solubilized percentage was investigated from lost weight of sample (dried at 105{sup 0}C), they were 0, 0, 0.7, 0, 0.11, 0.11, 0, 0.73, 0.77, 4.38, 8.32, 10.22 and 18.52 respectively. It showed that at the higher dose up to 250 kGy had direct effect to solubility, and increased with increasing dose. In addition, silk sericin dissolved 77.76, 82.22, 83.55, 84.31, 86.04, 86.67 and 87.37% after gamma irradiation at the doses of 0, 50, 100, 200, 500, 750 and 1000 kGy respectively. It presents that radiation can cause silk protein, fibroin and sericin dissolve because of their degradation. (author)

  2. High Performance Redox Flow Batteries: An Analysis of the Upper Performance Limits of Flow Batteries Using Non-aqueous Solvents

    International Nuclear Information System (INIS)

    Sun, C.-N.; Mench, M.M.; Zawodzinski, T.A.

    2017-01-01

    Redox Flow Batteries (RFBs) are a promising technology for grid-scale electrochemical energy storage. In this work, we use a recently achieved high-performance flow battery performance curve as a basis to assess the maximum achievable performance of a RFB employing non-aqueous solutions as active materials. First we show high performance in a vanadium redox flow battery (VRFB), specifically a limiting situation in which the cell losses are ohmic in nature and derive from electrolyte conductance. Based on that case, we analyze the analogous limiting behavior of non-aqueous (NA) systems using a series of calculations assuming similar ohmic losses, scaled by the relative electrolyte resistances, with a higher voltage redox couple assumed for the NA battery. The results indicate that the NA battery performance is limited by the low electrolyte conductivity to a fraction of the performance of the VRFB. Given the narrow window in which the NARFB offers advantages, even for the most generous limiting assumptions related to performance while ignoring the numerous other disadvantageous aspects of these systems, we conclude that this technology is unlikely under present circumstances to provide practical large-scale energy storage solutions.

  3. Aqueous Dispersions of Silica Stabilized with Oleic Acid Obtained by Green Chemistry

    Directory of Open Access Journals (Sweden)

    Cristina Lavinia Nistor

    2016-01-01

    Full Text Available The present study describes for the first time the synthesis of silica nanoparticles starting from sodium silicate and oleic acid (OLA. The interactions between OLA and sodium silicate require an optimal OLA/OLANa molar ratio able to generate vesicles that can stabilize silica particles obtained by the sol-gel process of sodium silicate. The optimal molar ratio of OLA/OLANa can be ensured by a proper selection of OLA and respectively of sodium silicate concentration. The titration of sodium silicate with OLA revealed a stabilization phenomenon of silica/OLA vesicles and the dependence between their average size and reagent’s molar ratio. Dynamic light scattering (DLS and scanning electron microscopy (SEM measurements emphasized the successful synthesis of silica nanoparticles starting from renewable materials, in mild condition of green chemistry. By grafting octadecyltrimethoxysilane on the initial silica particles, an increased interaction between silica particles and the OLA/OLANa complex was achieved. This interaction between the oleyl and octadecyl chains resulted in the formation of stable gel-like aqueous systems. Subsequently, olive oil and an oleophylic red dye were solubilized in these stable aqueous systems. This great dispersing capacity of oleosoluble compounds opens new perspectives for future green chemistry applications. After the removal of water and of the organic chains by thermal treatment, mesoporous silica was obtained.

  4. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    Science.gov (United States)

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  5. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE

    International Nuclear Information System (INIS)

    Gao, Hao; Luo, Xiaoyu; Allan, Andrew; McComb, Christie; Berry, Colin

    2014-01-01

    Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (− 0.18 ± 0.04 versus − 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice. (paper)

  6. Isolation, Characterization, and Molecular Identification of Phosphate Solubilizing Bacteria from Several Tropical Soils

    Directory of Open Access Journals (Sweden)

    Fahrizal Hazra

    2013-03-01

    Full Text Available The objectives of the research were: (i to isolate and characterize of phosphate solubilizing bacteria (PSB and (ii to identify PSB based on molecular amplification of 16S rRNA gene. Soil samples were collected from rhizosphere in Bogor, West Nusa Tenggara, and East Nusa Tenggara. Several stages in this research were: (i isolation PSB in Pikovskaya agar, (ii morphological and biochemical characterization of PSB, (iii measurement of phosphatase enzymes, and (iv measurement of secreting indole acetic acid phytohormone. As many as 29 isolates of PSB have been collected and three isolates of them, namely: P 3.5 (East Nusa Tenggara, P 6.2 (West Nusa Tenggara, and P 10.1 (Citeureup, West Java were chosen for further study. There were many characteristics of isolate P 10.1: (i it had capable to solubilize P with the value of highest solubilization index (1.80, (ii it had the highest phosphatase enzyme (120.40 mg kg-1, and (iii it had the highest pH decrease at each observation for six days. Isolates P 3.5 and P 10.1 were the Gram-negative bacteria with coccus shapes and isolate P 6.2 was a Gram-negative bacteria with bacillus shape. Deoxiribonucleat Acid (DNA amplification of these bacteria employing 16S rRNA primers generated the 1,300bp-PCR product. The results of the analysis of 16S rRNA gene sequences showed that isolates P 3.5 and P 10.1 has 98% similarity with Gluconacetobacter sp. strains Rg1-MS-CO and isolate P 6.2 has 97% similarity with Enterobacter sp. pp9c strains.

  7. Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita.

    Science.gov (United States)

    Saravanan, V S; Kalaiarasan, P; Madhaiyan, M; Thangaraju, M

    2007-03-01

    To examine the zinc (Zn) solubilization potential and nematicidal properties of Gluconacetobacter diazotrophicus. Atomic Absorption Spectrophotometer, Differential Pulse Polarography and Gas Chromatography Coupled Mass Spectrometry were used to estimate the total Zn and Zn(2+) ions and identify the organic acids present in the culture supernatants. The effect of culture filtrate of Zn-amended G. diazotrophicus PAl5 on Meloidogyne incognita in tomato was examined under gnotobiotic conditions. Gluconacetobacter diazotrophicus PAl5 effectively solubilized the Zn compounds tested and 5-ketogluconic acid was identified as the major organic acid aiding the solubilization of zinc oxide. The presence of Zn compounds in the culture filtrates of G. diazotrophicus enhanced the mortality and reduced the root penetration of M. incognita under in vitro conditions. 5-ketogluconic acid produced by G. diazotrophicus mediated the solubilization process and the available Zn(2+) ions enhanced the nematicidal activity of G. diazotrophicus against M. incognita. Zn solubilization and enhanced nematicidal activity of Zn-amended G. diazotrophicus provides the possibility of exploiting it as a plant growth promoting bacteria.

  8. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue.

    Science.gov (United States)

    Shao, Xiongjun; DiMarco, Kay; Richard, Tom L; Lynd, Lee R

    2015-01-01

    Winter annual crops such as winter rye (Secale cereale L) can produce biomass feedstock on seasonally fallow land that continues to provide high-value food and feed from summer annuals such as corn and soybeans. As energy double crops, winter grasses are likely to be harvested while still immature and thus structurally different from the fully senesced plant material typically used for biofuels. This study investigates the dynamic trends in biomass yield, composition, and biological solubilization over the course of a spring harvest season. The water soluble fraction decreased with increasing maturity while total carbohydrate content stayed roughly constant at about 65%. The protein mass fraction decreased with increasing maturity, but was counterbalanced by increasing harvest yield resulting in similar total protein across harvest dates. Winter rye was ground and autoclaved then fermented at 15 g/L total solids by either (1) Clostridium thermocellum or (2) simultaneous saccharification and cofermentation (SSCF) using commercial cellulases (CTec2 and HTec2) and a xylose-fermenting Saccharomyces cerevisiae strain. Solubilization of total carbohydrate dropped significantly as winter rye matured for both C. thermocellum (from approximately 80% to approximately 50%) and SSCF (from approximately 60% to approximately 30%). C. thermocellum achieved total solubilization 33% higher than that of SSCF for the earliest harvest date and 50% higher for the latest harvest date. Potential revenue from protein and bioethanol was stable over a range of different harvest dates, with most of the revenue due to ethanol. In a crop rotation with soybean, recovery of the soluble protein from winter rye could increase per hectare protein production by 20 to 35%. Double-cropping winter rye can produce significant biomass for biofuel production and feed protein as coproduct without competing with the main summer crop. During a 24-day harvest window, the total carbohydrate content remained

  9. Acyclic cucurbit[n]uril-type molecular containers: influence of glycoluril oligomer length on their function as solubilizing agents.

    Science.gov (United States)

    Gilberg, Laura; Zhang, Ben; Zavalij, Peter Y; Sindelar, Vladimir; Isaacs, Lyle

    2015-04-07

    We present the synthesis of a series of six new glycoluril derived molecular clips and acyclic CB[n]-type molecular containers (1–3) that all feature SO3(−) solubilizing groups but differ in the number of glycoluril rings between the two terminal dialkoxyaromatic sidewalls. We report the X-ray crystal structure of 3b which shows that its dialkoxynaphthalene sidewalls actively define a hydrophobic cavity with high potential to engage in π–π interactions with insoluble aromatic guests. Compounds 1–3 possess very good solubility characteristics (≥38 mM) and undergo only very weak self-association (Ks containers 3a and 3b which feature three glycoluril rings between the terminal dialkoxy-o-xylylene and dialkoxynaphthalene sidewalls are less efficient solubilizing agents than 4a and 4b because of their smaller hydrophobic cavities. Containers 1 and 2 behave as molecular clip type receptors and therefore possess the ability to bind to and thereby solubilize aromatic drugs like camptothecin, ziprasidone, and PBS-1086.

  10. PMMA-g-OEtOx Graft Copolymers: Influence of Grafting Degree and Side Chain Length on the Conformation in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Irina Muljajew

    2018-03-01

    Full Text Available Depending on the degree of grafting (DG and the side chain degree of polymerization (DP, graft copolymers may feature properties similar to statistical copolymers or to block copolymers. This issue is approached by studying aqueous solutions of PMMA-g-OEtOx graft copolymers comprising a hydrophobic poly(methyl methacrylate (PMMA backbone and hydrophilic oligo(2-ethyl-2-oxazoline (OEtOx side chains. The graft copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT copolymerization of methyl methacrylate (MMA and OEtOx-methacrylate macromonomers of varying DP. All aqueous solutions of PMMA-g-OEtOx (9% ≤ DG ≤ 34%; 5 ≤ side chain DP ≤ 24 revealed lower critical solution temperature behavior. The graft copolymer architecture significantly influenced the aggregation behavior, the conformation in aqueous solution and the coil to globule transition, as verified by means of turbidimetry, dynamic light scattering, nuclear magnetic resonance spectroscopy, and analytical ultracentrifugation. The aggregation behavior of graft copolymers with a side chain DP of 5 was significantly affected by small variations of the DG, occasionally forming mesoglobules above the cloud point temperature (Tcp, which was around human body temperature. On the other hand, PMMA-g-OEtOx with elongated side chains assembled into well-defined structures below the Tcp (apparent aggregation number (Nagg = 10 that were able to solubilize Disperse Orange 3. The thermoresponsive behavior of aqueous solutions thus resembled that of micelles comprising a poly(2-ethyl-2-oxazoline (PEtOx shell (Tcp > 60 °C.

  11. Micellar solubilization in strongly interacting binary surfactant systems. [Binary surfactant systems of: dodecyltrimethylammonium chloride + sodium dodecyl sulfate; benzyldimethyltetradecylammonium chloride + tetradecyltrimethylammonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Treiner, C. (Universite Pierre et Marie Curie, Paris (France)); Nortz, M.; Vaution, C. (Faculte de Pharmacie de Paris-sud, Chatenay-Malabry (France))

    1990-07-01

    The apparent partition coefficient P of barbituric acids between micelles and water has been determined in mixed binary surfactant solutions from solubility measurements in the whole micellar composition range. The binary systems chosen ranged from the strongly interacting system dodecyltrimethylammonium chloride + sodium dodecyl sulfate to weakly interacting systems such as benzyldimethyltetradecylammonium chloride + tetradecyltrimethyammonium chloride. In all cases studied, mixed micelle formation is unfavorable to micellar solubilization. A correlation is found between the unlike surfactants interaction energy, as measured by the regular solution parameter {beta} and the solute partition coefficient change upon surfactant mixing. By use of literature data on micellar solubilization in binary surfactant solutions, it is shown that the change of P for solutes which are solubilized by surface adsorption is generally governed by the sign and amplitude of the interaction parameter {beta}.

  12. Atoms in dense plasmas

    International Nuclear Information System (INIS)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs

  13. Atoms in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    More, R.M.

    1986-01-01

    Recent experiments with high-power pulsed lasers have strongly encouraged the development of improved theoretical understanding of highly charged ions in a dense plasma environment. This work examines the theory of dense plasmas with emphasis on general rules which govern matter at extreme high temperature and density. 106 refs., 23 figs.

  14. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  15. Thermodynamic study on competitive solubilization of cholesterol and beta-sitosterol in bile salt micelles.

    Science.gov (United States)

    Matsuoka, Keisuke; Hirosawa, Takashi; Honda, Chikako; Endo, Kazutoyo; Moroi, Yoshikiyo; Shibata, Osamu

    2007-07-01

    Differences in the preferential solubilization of cholesterol and competitive solubilizates (beta-sitosterol and aromatic compounds) in bile salt micelles was systematically studied by changing the molar ratio of cholesterol to competitive solubilizates. The cholesterol solubility in a mixed binary system (cholesterol and beta-sitosterol) was almost half that of the cholesterol alone system, regardless of the excess beta-sitosterol quantity added. On the other hand, the mutual solubilities of cholesterol and pyrene were not inhibited by their presence in binary mixed crystals. Finally, the cholesterol solubility was measured by changing the alkyl chain length of n-alkylbenzenes. When tetradecylbenzene was added to the bile solution, the cholesterol solubility decreased slightly and was below the original cholesterol solubility. Based on Gibbs energy change (DeltaG degrees ) for solubilization, chemicals that inhibit cholesterol solubility in their combined crystal systems showed a larger negative DeltaG degrees value than cholesterol alone.

  16. Aqueous CO2 vs. aqueous extraction of soils as a preparative procedure for acute toxicity testing

    International Nuclear Information System (INIS)

    Yates, G.W.; Burks, S.L.

    1994-01-01

    This study was to determine if contaminated soils extracted with supercritical CO 2 (SFE) would yield different results from soils extracted with an aqueous media. Soil samples from an abandoned oil refinery were subjected to aqueous and SFE extraction. Uncontaminated control sites were compared with contaminated sites. Each extract was analyzed for 48 hour acute Ceriodaphnia LC50s and Microtox reg-sign EC50s. Comparisons were then made between the aqueous extracts and the SFE extracts. An additional study was made with HPLC chromatographs of the SFE contaminated site extracts to determine if there was a correlation between LC50 results and peak area of different sections of the chromatograph. The 48 hour Ceriodaphnia LC50 of one contaminated site showed a significant increase in toxicity with the supercritical extract compared to the aqueous extract. All contaminated sites gave toxic responses with the supercritical procedure. The Microtox reg-sign assay showed a toxic response with 2 of the 3 contaminated sites for both aqueous and SFE extracts. Results indicate that the Ceriodaphnia assays were more sensitive than Microtox reg-sign to contaminants found in the refinery soil. SFE controls did not show adverse effects with the Ceriodaphnia, but did have a slight effect with Microtox reg-sign. The best correlation (r 2 > 0.90) between the Ceriodaphnia LC50s and the peak areas of the chromatographs was obtained for sections with an estimated log K ow of 1 to 5. SFE extraction provided a fast, efficient and inexpensive method of collecting and testing moderately non-polar to strongly non-polar organic contaminants from contaminated soils

  17. Aqueous foam toxicology evaluation and hazard review

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.

    1995-10-01

    Aqueous foams are aggregates of bubbles mechanically generated by passing air or other gases through a net, screen, or other porous medium that is wetted by an aqueous solution of surface-active foaming agents (surfactants). Aqueous foams are important in modem fire-fighting technology, as well as for military uses for area denial and riot or crowd control. An aqueous foam is currently being developed and evaluated by Sandia National Laboratories (SNL) as a Less-Than-Lethal Weapon for the National Institute of Justice (NIJ). The purpose of this study is to evaluate the toxicity of the aqueous foam developed for the NIJ and to determine whether there are any significant adverse health effects associated with completely immersing individuals without protective equipment in the foam. The toxicity of the aqueous foam formulation developed for NIJ is determined by evaluating the toxicity of the individual components of the foam. The foam is made from a 2--5% solution of Steol CA-330 surfactant in water generated at expansion ratios ranging from 500:1 to 1000:1. SteoI CA-330 is a 35% ammonium laureth sulfate in water and is produced by Stepan Chemical Company and containing trace amounts (<0.1%) of 1,4-dioxane. The results of this study indicate that Steol CA-330 is a non-toxic, mildly irritating, surfactant that is used extensively in the cosmetics industry for hair care and bath products. Inhalation or dermal exposure to this material in aqueous foam is not expected to produce significant irritation or systemic toxicity to exposed individuals, even after prolonged exposure. The amount of 1,4-dioxane in the surfactant, and subsequently in the foam, is negligible and therefore, the toxicity associated with dioxane exposure is not significant. In general, immersion in similar aqueous foams has not resulted in acute, immediately life-threatening effects, or chronic, long-term, non-reversible effects following exposure.

  18. P contribution derived from phosphate solubilizing microorganism activity, rock phosphate and SP-36 determination by isotope "3"2P technique

    International Nuclear Information System (INIS)

    Anggi Nico Flatian; Iswandi Anas; Atang Sutandi; Ishak

    2016-01-01

    The "3"2P isotope technique has been used to trace P nutrients in the soil and soil-plant systems. The use of the isotope "3"2P has made it possible to differentiate the P contribution derived from phosphate solubilizing microorganism activity and the fertilizer P in the soil. The aims of the study were to obtain the quantitative data of P contribution derived from phosphate-solubilizing microorganism activity (Aspergillus niger and Burkholderia cepacia), rock phosphate and SP-36 through P uptake by the plants using isotope "3"2P technique and also to study the effects on growth and production of corn plants. The results were showed that phosphate-solubilizing microorganism, rock phosphate and SP-36 was produced specific activity ("3"2P) lower than control. The results were indicated that all treatments could contribute P for the plants. The lower specific activity was caused by supply P from rock phosphate and SP-36, and also was caused by solubilized of unavailable "3"1P from PSM activity, which decreased specific activity on labeled soil. The combination of phosphate-solubilizing microorganism and SP-36 treatments produced the highest P contribution, significantly higher than control and SP-36 only. Phosphate derived from combination of microorganism and SP-36 treatments ranging from 56.06% - 68.54% after 50 days planting, after 35 days planting, 51.96% - 59.65% on stover, 46.33% - 47.70% on grain and 53.02% - 59.87% on corn cob. In addition, the treatments could significantly support the plant growth and yield. It is expressed by increased number of leave at 35 days after planting, dry weight of leave at 35 days after planting and dry weight of grain. (author)

  19. Dense-gas dispersion advection-diffusion model

    International Nuclear Information System (INIS)

    Ermak, D.L.

    1992-07-01

    A dense-gas version of the ADPIC particle-in-cell, advection- diffusion model was developed to simulate the atmospheric dispersion of denser-than-air releases. In developing the model, it was assumed that the dense-gas effects could be described in terms of the vertically-averaged thermodynamic properties and the local height of the cloud. The dense-gas effects were treated as a perturbation to the ambient thermodynamic properties (density and temperature), ground level heat flux, turbulence level (diffusivity), and windfield (gravity flow) within the local region of the dense-gas cloud. These perturbations were calculated from conservation of energy and conservation of momentum principles along with the ideal gas law equation of state for a mixture of gases. ADPIC, which is generally run in conjunction with a mass-conserving wind flow model to provide the advection field, contains all the dense-gas modifications within it. This feature provides the versatility of coupling the new dense-gas ADPIC with alternative wind flow models. The new dense-gas ADPIC has been used to simulate the atmospheric dispersion of ground-level, colder-than-ambient, denser-than-air releases and has compared favorably with the results of field-scale experiments

  20. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    International Nuclear Information System (INIS)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-01-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  1. Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Liu, X.; Cheng, B.S.; Ma, X.L.; Lyu, X.; Zhao, X.; Ju, Y.; Min, Z.; Fang, Y.

    2016-07-01

    Phosphate-solubilizing bacteria (PSB) have the ability to solubilize insoluble phosphorus (P) and release soluble P. Extensive research has been performed with respect to PSB isolation from the rhizospheres of various plants, but little is known about the prevalence of PSB in the grapevine rhizosphere. In this study, we aimed to isolate and identify PSB from the grapevine rhizosphere in five vineyards of Northwest China, to characterize their plant-growth-promoting (PGP) traits, evaluate the effect of stress on their phosphate-solubilizing activity (PSA), and test their ability to stimulate the growth of Vitis vinifera L. cv. Cabernet Sauvignon. From the vineyard soils, 66 PSB isolates were screened, and 10 strains with high PSA were identified by 16S rRNA sequencing. Sequence analysis revealed that these 10 strains belonged to 4 genera and 5 species: Bacillus aryabhattai, B. megaterium, Klebsiella variicola, Stenotrophomonas rhizophila, and Enterobacter aerogenes. The selected PSB strains JY17 (B. aryabhattai) and JY22 (B. aryabhattai) were positive for multiple PGP traits, including nitrogen fixation and production of indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, and protease. JY17 and JY22 showed strong PSA under stress conditions of high pH, high salt, and high temperature. Therefore, these two isolates can be used as biofertilizers in saline-alkaline soils. The inoculation with PSB significantly facilitated the growth of V. vinifera cv. Cabernet Sauvignon under greenhouse conditions. Use of these PSB as biofertilizers will increase the available P content in soils, minimize P-fertilizer application, reduce environmental pollution, and promote sustainable agriculture.

  2. Colloidal behavior of aqueous montmorillonite suspensions in the presence of non-ionic polymer

    Science.gov (United States)

    Gareche, M.; Azri, N.; Allal, A.; Zeraibi, N.

    2015-04-01

    In this paper we characterized at first, the rheological behavior of the bentonite suspensions and the aqueous solutions of polyethylene oxide (PEO), then we were investigated the influence of this polymer in a water-based drilling fluid model (6% of bentonite suspension). The objective is to exhibit how the non ionic polymer with molecular weight 6×103 g/mol. of varying concentration mass (0.7%, 1%, 2% et 3%) significantly alter the rheological properties (yield stress, viscosity, loss and elastic modulus) of the bentonite suspensions. The rheological measurements made in simple shear and in dynamic on the mixture (water-bentonite-PEO), showed rheological properties of bentonite suspensions both in the presence and absence of non-ionic polymer. The PEO presents an affinity for the bentonite particles slowing down their kinetic aggregation. The analysis by X-rays diffraction also allowed understanding the structure of this mixture. It had revealed the intercalation between of the clay platelets on one hand, and the links bridges assured by the chains of polymer between bentonite particles beyond a critical concentration in PEO on the other hand. The Herschel- Bulkley rheological model is used for the correlation of our experimental results.

  3. Colloidal behavior of aqueous montmorillonite suspensions in the presence of non-ionic polymer

    International Nuclear Information System (INIS)

    Gareche, M; Azri, N; Zeraibi, N; Allal, A

    2015-01-01

    In this paper we characterized at first, the rheological behavior of the bentonite suspensions and the aqueous solutions of polyethylene oxide (PEO), then we were investigated the influence of this polymer in a water-based drilling fluid model (6% of bentonite suspension). The objective is to exhibit how the non ionic polymer with molecular weight 6×10 3 g/mol. of varying concentration mass (0.7%, 1%, 2% et 3%) significantly alter the rheological properties (yield stress, viscosity, loss and elastic modulus) of the bentonite suspensions. The rheological measurements made in simple shear and in dynamic on the mixture (water-bentonite-PEO), showed rheological properties of bentonite suspensions both in the presence and absence of non-ionic polymer. The PEO presents an affinity for the bentonite particles slowing down their kinetic aggregation. The analysis by X-rays diffraction also allowed understanding the structure of this mixture. It had revealed the intercalation between of the clay platelets on one hand, and the links bridges assured by the chains of polymer between bentonite particles beyond a critical concentration in PEO on the other hand. The Herschel- Bulkley rheological model is used for the correlation of our experimental results. (paper)

  4. Energy compensation and nutrient displacement following regular consumption of hazelnuts and other energy-dense snack foods in non-obese individuals.

    Science.gov (United States)

    Pearson, Katherine R; Tey, Siew Ling; Gray, Andrew R; Chisholm, Alexandra; Brown, Rachel C

    2017-04-01

    Regular nut consumption reduces cardiovascular disease risk, partly from improvements to dietary quality. Examining how individuals make dietary changes when consuming nuts may reveal key behavioural eating patterns beneficial for the development of dietary interventions. We examined the effects of nuts in comparison with other energy-dense snacks on energy compensation, nutrient displacement, and food group patterns. This was a 12-week randomised, controlled, parallel study with four arms: ~1100 kJ/day for each of hazelnuts (42 g), chocolate (50 g), potato crisps (50 g), or no added snack food. Diet records, body composition, and physical activity were measured at baseline and week 12, in 102 non-obese participants. Significant improvements in diet quality were observed in the hazelnut group, particularly when consumed as snacks. Intakes of monounsaturated fat (MUFA) and vitamin E were significantly higher (all P snacks in this non-obese population. Regular nut consumption significantly improves nutrient profiles compared to other snacks with changes occurring at the snack level.

  5. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous ans non-aqueous electrochemistry

    DEFF Research Database (Denmark)

    Illa, Xavi; Sala, Olga Ordeig; Snakenborg, Detlef

    2010-01-01

    and 24 m deep channel was fabricated via hot embossing. Cyclic voltammetric measurements were carried out in aqueous and organic media, using a solution consisting of 5 mM ferrocyanide/ferricyanide in 0.5 M KNO3 and 5 mM ferrocene in 0.1 M TBAP/acetonitrile, respectively. Experimental currents obtained...

  6. Status and phosphorus solubilization potential of bacteria and arbuscular mycorrhizal fungi isolated from various locations of Khyber Pakhtunkhwa province

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M.

    2016-01-01

    The soils of Pakistan are alkaline calcareous in nature and its high pH makes phosphorus (P) unavailable for plants uptake. Chemical sources of P fertilizers are a costly and detrimental practice. Therefore, investigations were conducted to determine the native status of phosphate solubilizing bacteria (PSB) and arbuscular mycorrhizal fungi (AMF) in three different zones of Khyber Pakhtunkhwa province of Pakistan. In order to select the efficient PSB strains for solubility enhancement of P from rock phosphate (RP), rhizosphere soil samples were collected from irrigated and rainfed fields of maize, sorghum, pastures and vegetables. Population density of PSB ranged from 1.7*107 to 2.7*108 CFU g-1 rhizosphere soil. The bacterial strains Coccus, Streptoccocus and Bacillus sp. were identified on the basis of their microscopic, phenotypic and morphological characters. Most of the AM fungal spores identified were belonging to Glomus mosseae and Glomus intradices. A range of 02-35 spores per 20 g air dried soil were recorded. The PSB strains such as Coccus DIM7, Streptococcus PIM6 and Bacillus sp. PIS7 solubilized more P from RP than any other strain in both of the liquid and solid medium. Results show that areas under investigations are rich in P solubilizing micro flora providing a rich source for inoculum production. Moreover, the PSB strains have the capability to solubilize P from RP that can be used as biofertilizers for optimum crop production. (author)

  7. Synthesis of β-cyclodextrin hydrogel nanoparticles for improving the solubility of dexibuprofen: characterization and toxicity evaluation.

    Science.gov (United States)

    Khalid, Qandeel; Ahmad, Mahmood; Minhas, Muhammad Usman

    2017-11-01

    This study was aimed to enhance aqueous solubility of dexibuprofen through designing β-cyclodextrin (βCD) hydrogel nanoparticles and to evaluate toxicological potential through acute toxicity studies in rats. Dexibuprofen is a non-steroidal analgesic and anti-inflammatory drug that is one of safest over the counter medications. However, its clinical effectiveness is hampered due to poor aqueous solubility. βCD hydrogel nanoparticles were prepared and characterized by percent yield, drug loading, solubilization efficiency, FTIR, XRD, DSC, FESEM and in-vitro dissolution studies. Acute oral toxicity study was conducted to assess safety of oral administration of prepared βCD hydrogel nanoparticles. βCD hydrogel nanoparticles dramatically enhanced the drug loading and solubilization efficiency of dexibuprofen in aqueous media. FTIR, TGA and DSC studies confirmed the formation of new and a stable nano-polymeric network and interactions of dexibuprofen with these nanoparticles. Resulting nanoparticles were highly porous with 287 nm in size. XRD analysis revealed pronounced reduction in crystalline nature of dexibuprofen within nanoparticles. Release of dexibuprofen in βCD hydrogel nanoparticles was significantly higher compared with dexibuprofen tablet at pH 1.2 and 6.8. In acute toxicity studies, no significant changes in behavioral, physiological, biochemical or histopathologic parameters of animals were observed. The efficient preparation, high solubility, excellent physicochemical characteristics, improved dissolution and non-toxic βCD hydrogel nanoparticles may be a promising approach for oral delivery of lipophilic drugs.

  8. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge

    International Nuclear Information System (INIS)

    Gao Jingfeng; Zhang Qian; Su Kai; Chen Ranni; Peng Yongzhen

    2010-01-01

    Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.

  9. Preparation and characterization of protein isolate from Yellowfin tuna Thunnus albacares roe by isoelectric solubilization/precipitation process

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-05-01

    Full Text Available Abstract Isoelectric solubilization/precipitation (ISP processing allows selective, pH-induced water solubility of proteins with concurrent separation of lipids and removal of materials not intended for human consumption such as bone, scales, skin, etc. Recovered proteins retain functional properties and nutritional value. Four roe protein isolates (RPIs from yellowfin tuna roe were prepared under different solubilization and precipitation condition (pH 11/4.5, pH 11/5.5, pH 12/4.5 and pH 12/5.5. RPIs contained 2.3–5.0 % moisture, 79.1–87.8 % protein, 5.6–7.4 % lipid and 3.0–3.8 % ash. Protein content of RPI-1 and RPI-2 precipitated at pH 4.5 and 5.5 after alkaline solubilization at pH 11, was higher than those of RPI-3 and RPI-4 after alkaline solubilization at pH 12 (P < 0.05. Lipid content (5.6–7.4 % of RPIs was lower than that of freeze-dried concentrate (10.6 %. And leucine and lysine of RPIs were the most abundant amino acids (8.8–9.4 and 8.5–8.9 g/100 g protein, respectively. S, Na, P, K as minerals were the major elements in RPIs. SDS-PAGE of RPIs showed bands at 100, 45, 25 and 15 K. Moisture and protein contents of process water as a 2’nd byproduct were 98.9–99.0 and 1.3–1.8 %, respectively. Therefore, yellowfin tuna roe isolate could be a promising source of valuable nutrients for human food and animal feeds.

  10. Recovery of Cu(II from diluted aqueous solutions by non-dispersive solvent extraction

    Directory of Open Access Journals (Sweden)

    Alguacil, E. J.

    2002-08-01

    Full Text Available The removal of copper from diluted aqueous solutions with ACORGA M5640 extractant using non-dispersive solvent extraction technology was studied. It was possible to remove Cu(II below the international standars from solutions having initially as low concentration as 0,01 g/l under various experimental conditions, i.e aqueous pH 4.0, 10 % v/v ACORGA M5640 in Exxol D100, an organic flow of 100 ml/min, and an aqueous flow 50ml/min. Since the removal occurs by chelating ion exchange between copper from solution and protons from the extractant, the former was stripped by using a 180 g/l sulphuric acid solution which flowed (50 ml/min through the tube side organic was passed (400 ml/min through the shell side of the fibers of the module

    Se estudia la eliminación del cobre presente en disoluciones acuosas diluidas empleando el agente de extracción ACORGA M5640 y la tecnología de extracción con disolventes no dispersiva. Bajo las condiciones experimentales estudiadas, pH de la fase acuosa 4,0 ±0,1, 10 % v/v ACORGA M5640 en Exxsol D100, flujo de la fase orgánica 100 ml/min, flujo de la fase acuosa 50 ml/min, es posible eliminar el Cu(II, por debajo de los límites marcados internacionalmente, en disoluciones con un contenido tan bajo como 0,01 g/1 del metal. Debido a que la extracción transcurre mediante un intercambio catiónico (y formación de un compuesto tipo quelato entre el cobre presente en el medio acuoso y los protones del agente de extracción, el metal se puede reextraer mediante la utilización de una disolución de 180 g/1 de ácido sulfúrico que fluye (50 ml/min a través de la parte interior de las fibras del módulo, mientras que la fase orgánica fluye (400 ml/min por la parte exterior de las mismas fibras.

  11. Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids

    DEFF Research Database (Denmark)

    Hedegaard, S.F.; Nilsson, Christa; Laurinmäki, P.

    2013-01-01

    We report on the formation of nanostructured aqueous dispersions based on the negatively charged food-grade emulsifier citrem (citric acid esters of mono- and diglycerides). To our knowledge, this is the first report in the literature on the spontaneous formation of aqueous PEGylated and non-PEGy...... ) phase. Based on the SAXS results, the partial replacement of citrem by high amount of MO or PHYT induced the formation of hexosomes. The investigated dispersions of citrem could be attractive as nanocarriers of poorly water-soluble drugs and functional foods.......We report on the formation of nanostructured aqueous dispersions based on the negatively charged food-grade emulsifier citrem (citric acid esters of mono- and diglycerides). To our knowledge, this is the first report in the literature on the spontaneous formation of aqueous PEGylated and non...

  12. A class-A GPCR solubilized under high hydrostatic pressure retains its ligand binding ability

    Science.gov (United States)

    The effect of high hydrostatic pressure (HHP) on the solubilization of a class-A G protein-coupled receptor, the silkmoth pheromone biosynthesis-activating neuropeptide receptor (PBANR), was investigated. PBANR was expressed in expresSF+ insect cells as a C-terminal fusion protein with EGFP. The mem...

  13. Development and validation of alternative methods by non-aqueous acid-base titration and derivative ultraviolet spectrophotometry for quantification of sildenafil in raw material and tablets

    Directory of Open Access Journals (Sweden)

    Taízia Dutra Silva

    2017-04-01

    Full Text Available Sildenafil citrate (SILC is a potent phosphodiesterase-5 inhibitor used for erectile dysfunction and pulmonary hypertension. This study shows two simple, fast and alternative analytical methods for SILC determination by non-aqueous titration and by derivative ultraviolet spectrophotometry (DUS in active pharmaceutical ingredient and/or dosage forms. The quantitation method of SILC active pharmaceutical ingredient by non-aqueous acid-base titration was developed using methanol as solvent and 0.1 mol/L of perchloric acid in acetic acid as titrant. The endpoint was potentiometrically detected. The non-aqueous titration method shows satisfactory repeatability and intermediate precision (RSD 0.70-1.09%. The neutralization reaction occurred in the stoichiometric ratio 1:1 in methanol. The determination of SILC active pharmaceutical ingredient or dosage forms by DUS was developed in the linear range from 10 to 40 µg/mL, in 0.01 mol/L HCl, using the first order zero-peak method at λ 256 nm. The DUS method shows selectivity toward tablets excipients, appropriate linearity (R2 0.9996, trueness (recovery range 98.86-99.30%, repeatability and intermediate precision in three concentration levels (RSD 1.17-1.28%; 1.29-1.71%, respectively. Therefore, the methods developed are excellent alternatives to sophisticated instrumental methods and can be easily applied in any pharmaceutical laboratory routine due to simple and fast executions.

  14. Utilization of selected biorenewable resources: solubilization of lignocellulosics and conjugation of soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Oshel, Reed E. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    In recent years, concern has risen over the use of fossil fuels due to their contribution to global warming, and to our dependence on imports of petroleum from nations that could pose a threat to national security. As a result, it has become increasingly important to develop technologies to replace fossil fuel based products with biorenewable alternatives. In this thesis nearly quantitative solubilization of lignocellulosic materials using phosphite esters has been realized, and is presented as a potential pretreatment for production of fermentable sugars for use in manufacturing commodity chemicals, specifically ethanol. Water solubilization of lignocellulosics using phosphite esters will enhance digestibility by disrupting the lignocellulose structure, changing cellulose morphology, and cleaving some glycosidic bonds. In a second project, soybean oil, which contains un-conjugated polyunsaturated fatty acid esters, is isomerized into oil containing conjugated polyunsaturates. The process is carried out under photochemical conditions using iodine as a catalyst in a hexanes solution to achieve 99% conjugation. The resulting conjugated soybean oil is demonstrated to have enhanced drying properties for use in alkyd resins.

  15. Phylogenetic Relationship of Phosphate Solubilizing Bacteria according to 16S rRNA Genes

    Directory of Open Access Journals (Sweden)

    Mohammad Bagher Javadi Nobandegani

    2015-01-01

    Full Text Available Phosphate solubilizing bacteria (PSB can convert insoluble form of phosphorous to an available form. Applications of PSB as inoculants increase the phosphorus uptake by plant in the field. In this study, isolation and precise identification of PSB were carried out in Malaysian (Serdang oil palm field (University Putra Malaysia. Identification and phylogenetic analysis of 8 better isolates were carried out by 16S rRNA gene sequencing in which as a result five isolates belong to the Beta subdivision of Proteobacteria, one isolate was related to the Gama subdivision of Proteobacteria, and two isolates were related to the Firmicutes. Bacterial isolates of 6upmr, 2upmr, 19upmnr, 10upmr, and 24upmr were identified as Alcaligenes faecalis. Also, bacterial isolates of 20upmnr and 17upmnr were identified as Bacillus cereus and Vagococcus carniphilus, respectively, and bacterial isolates of 31upmr were identified as Serratia plymuthica. Molecular identification and characterization of oil palm strains as the specific phosphate solubilizer can reduce the time and cost of producing effective inoculate (biofertilizer in an oil palm field.

  16. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides.

    Science.gov (United States)

    Anzuay, María Soledad; Ciancio, María Gabriela Ruiz; Ludueña, Liliana Mercedes; Angelini, Jorge Guillermo; Barros, Germán; Pastor, Nicolás; Taurian, Tania

    2017-06-01

    The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO 4 and AlPO 4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO 4 and AlPO 4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

  18. Mechanistic Analysis of Cocrystal Dissolution as a Function of pH and Micellar Solubilization.

    Science.gov (United States)

    Cao, Fengjuan; Amidon, Gordon L; Rodriguez-Hornedo, Nair; Amidon, Gregory E

    2016-03-07

    The purpose of this work is to provide a mechanistic understanding of the dissolution behavior of cocrystals under the influence of ionization and micellar solubilization. Mass transport models were developed by applying Fick's law of diffusion to dissolution with simultaneous chemical reactions in the hydrodynamic boundary layer adjacent to the dissolving cocrystal surface to predict the pH at the dissolving solid-liquid interface (i.e., interfacial pH) and the flux of cocrystals. To evaluate the predictive power of these models, dissolution studies of carbamazepine-saccharin (CBZ-SAC) and carbamazepine-salicylic acid (CBZ-SLC) cocrystals were performed at varied pH and surfactant concentrations above the critical stabilization concentration (CSC), where the cocrystals were thermodynamically stable. The findings in this work demonstrate that the pH dependent dissolution behavior of cocrystals with ionizable components is dependent on interfacial pH. This mass transport analysis demonstrates the importance of pH, cocrystal solubility, diffusivity, and micellar solubilization on the dissolution rates of cocrystals.

  19. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores.

    Science.gov (United States)

    Yang, Fan; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2011-06-23

    We carried out femtosecond magic-angle and polarized pump-probe spectroscopies for the light-harvesting complex 2 (LH2) from Thermochromatium (Tch.) tepidum in aqueous phase and in chromatophores. To examine the effects of LH2 aggregation on the dynamics of excitation energy transfer, dominant monodispersed and aggregated LH2s were prepared by controlling the surfactant concentrations. The aqueous preparations solubilized with different concentrations of n-dodecyl-β-D-maltoside (DDM) show similar visible-to-near-infrared absorption spectra, but distinctively different aggregation states, as revealed by using dynamic light scattering. The B800 → B850 intra-LH2 energy transfer time was determined to be 1.3 ps for isolated LH2, which, upon aggregation in aqueous phase or clustering in chromatophores, shortened to 1.1 or 0.9 ps, respectively. The light-harvesting complex 1 (LH1) of this thermophilic purple sulfur bacterium contains bacteriochlorophyll a absorbing at 915 nm (B915), and the LH2(B850) → LH1(B915) intercomplex transfer time in chromatophores was found to be 6.6 ps. For chromatophores, a depolarization time of 21 ps was derived from the anisotropy kinetics of B850*, which is attributed to the migration of B850* excitation before being trapped by LH1. In addition, the B850* annihilation is accelerated upon LH2 aggregation in aqueous phase, but it is much less severe upon LH2 clustering in the intracytoplasmic membrane. These results are helpful in understanding the light-harvesting function of a bacterial photosynthetic membrane incorporating different types of antenna complexes.

  20. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut

    International Nuclear Information System (INIS)

    Pasti, M.B.; Crawford, D.L.; Pometto, A.L. III; Nuti, M.P.

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [ 14 C]lignin- and [ 14 C]cellulose-labeled phloem of Abies concolor to 14 CO 2 and 14 C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14 CO 2 evolution from [ 14 C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures. On the basis of an increase of specific peroxidase activity in the presence of lignocellulose in the medium, the actinomycetes could be placed into the same three groups

  1. Association of nutrient-dense snack combinations with calories and vegetable intake.

    Science.gov (United States)

    Wansink, Brian; Shimizu, Mitsuru; Brumberg, Adam

    2013-01-01

    With other factors such as general diet and insufficient exercise, eating non-nutrient dense snack foods such as potato chips contributes to childhood obesity. We examined whether children consumed fewer calories when offered high-nutrient dense snacks consisting of cheese and vegetables than children who were offered non-nutrient dense snacks (ie, potato chips). Two hundred one children (115 girls) entering the third to sixth grades were randomly assigned to 1 of 4 snacking conditions: (1) potato chips only, (2) cheese-only, (3) vegetables only, and (4) cheese and vegetables. Children were allowed to eat snacks freely provided while watching 45-minute TV programs. Satiety was measured before they started eating snacks, in the middle of the study, and 20 minutes after they finished eating the snacks. Parents completed a questionnaire regarding their family environment. Children consumed 72% fewer calories when eating a combined snack compared with when they were served potato chips, P snack needed significantly fewer calories to achieve satiety than those who ate potato chips, P snack conditions on caloric intake were more pronounced among overweight or obese children (P = .02) and those from low-involvement families (P = .049) The combination snack of vegetables and cheese can be an effective means for children to reduce caloric intake while snacking. The effect was more pronounced among children who were overweight or obese and children from low-involvement families.

  2. FttC-Based Fronthaul for 5G Dense/Ultra-Dense Access Network: Performance and Costs in Realistic Scenarios

    Directory of Open Access Journals (Sweden)

    Franco Mazzenga

    2017-10-01

    Full Text Available One distinctive feature of the next 5G systems is the presence of a dense/ultra-dense wireless access network with a large number of access points (or nodes at short distances from each other. Dense/ultra-dense access networks allow for providing very high transmission capacity to terminals. However, the deployment of dense/ultra-dense networks is slowed down by the cost of the fiber-based infrastructure required to connect radio nodes to the central processing units and then to the core network. In this paper, we investigate the possibility for existing FttC access networks to provide fronthaul capabilities for dense/ultra-dense 5G wireless networks. The analysis is realistic in that it is carried out considering an actual access network scenario, i.e., the Italian FttC deployment. It is assumed that access nodes are connected to the Cabinets and to the corresponding distributors by a number of copper pairs. Different types of cities grouped in terms of population have been considered. Results focus on fronthaul transport capacity provided by the FttC network and have been expressed in terms of the available fronthaul bit rate per node and of the achievable coverage.

  3. Influence of solubilizer PEG-40 hydrogenated castor oil on carbopol gels’ structural-mechanical properties

    Directory of Open Access Journals (Sweden)

    Ye. V. Gladukh

    2017-12-01

    Full Text Available Rheological properties affect all stages of the drug development – from development to production, the characteristics of the final products and stability. A lot of substances have complex rheological properties; their viscosity and elasticity can vary depending on conditions acting from the outside, such as stress, deformation, time factor and temperature. Concentration, stability and composition also significantly affect the rheological properties of drugs. One of the current trends in modern pharmacy is the development of drugs in the form of gels. The rheological properties of gels are significantly influenced by surface-active substances, stabilizers, solubilizers, stabilizing their structure. A special group of stabilizers are hydrogenated vegetable oils and their compounds with polymers, which have the ability to structure formation in interphase layers and in the volume of phases. For this purpose, PEG-40 hydrogenated castor oil is widely used. The aim of this work is to study the effect of hydrogenated castor oil, used as an emulsifier, solubilizer, viscosity modifier and solvent in the technology of semisolid dosage forms, on the structural and mechanical properties of carbopol gels. Materials and methods. 1% gel carbopol with additives PEG-40 hydrogenated castor oil in the concentration range from 1 to 5 % was investigated as experimental samples of the gel base. A 10 % propylene glycol additive was used as humectant and plasticizer. Structural and mechanical studies were carried out using a rotational viscometer «RheolabQC», Anton Paar (Austria with coaxial cylinders CCC27/SS. The graphs of the gels were automatically plotted using the computer program. Results. Analysis of the rheological parameters of the carbopol with PEG-40 hydrogenated castor oil gel base shows that the solubilizer has an active influence on the structural and mechanical properties of the base. Addition of PEG-40 GMM to the carbopol gel increases the yield

  4. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method

    Directory of Open Access Journals (Sweden)

    El-Khamsa Guechi

    2016-09-01

    Full Text Available Potato peel (PP was used as a biosorbent to remove malachite green (MG from aqueous solution under various operating conditions. The effect of the experimental parameters such as initial dye concentration, biosorbent dose, initial pH, stirring speed, temperature, ionic strength and biosorbent particle size was investigated through a number of batch sorption experiments. The sorption kinetic uptake for MG by PP at various initial dye concentrations was analyzed by non-linear method using pseudo-first, pseudo-second and pseudo-nth order models. It was found that the pseudo-nth order kinetic model was the best applicable model to describe the sorption kinetic data and the order n of sorption reaction was calculated in the range from 0.71 to 2.71. Three sorption isotherms namely the Langmuir, Freundlich and Redlich–Peterson isotherms in their non-linear forms were applied to the biosorption equilibrium data. Both the Langmuir and Redlich–Peterson models were found to fit the sorption isotherm data well, but the Redlich–Peterson model was better. Thermodynamic parameters show that the sorption process of MG is endothermic and more effective process at high temperatures. The results revealed that PP is very effective for the biosorption of MG from aqueous solutions.

  5. Thermal cell solubilization of excess sludge; Thermischer Zellaufschluss von Ueberschussschlamm

    Energy Technology Data Exchange (ETDEWEB)

    Duennebeil, A. [LIMUS Umwelttechnik GmbH, Berlin (Germany)

    1999-07-01

    Thermal cell solubilization of excess sludge has the following impact on subsequent digestion: cut in the mass of solids to be disposed of, enhancement of gas production and dewatering efficiency, stabilization of the digestion process, reduction of the tendency for foam formation. This does not require additional energy in an amount worth mentioning. (orig.) [German] Durch thermischen Zellaufschluss von Ueberschussschlamm wird in der nachfolgenden Faulung - die zu entsorgende Feststoffmasse reduziert - die Gasproduktion und - der Entwaesserungsgrad gesteigert sowie - der Faulbetrieb stabilisiert und - die Neigung zur Schaumbildung verringert. Dafuer ist keine nennenswerte, zusaetzliche Energie erforderlich. (orig.)

  6. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production.

    Science.gov (United States)

    Leaungvutiviroj, Chaveevan; Ruangphisarn, Pimtida; Hansanimitkul, Pikul; Shinkawa, Hidenori; Sasaki, Ken

    2010-01-01

    Biofertilizers that possess a high capacity for N(2) fixation (Azotobacter tropicalis), and consist of phosphate solubilizing bacteria (Burkhoderia unamae), and potassium solubilizing bacteria (Bacillus subtilis) and produce auxin (KJB9/2 strain), have a high potential for growth and yield enhancement of corn and vegetables (Chinese kale). For vegetables, the addition of biofertilizer alone enhanced growth 4 times. Moreover, an enhancement of growth by 7 times was observed due to the addition of rock phosphate and K-feldspar, natural mineral fertilizers, in combination with the biofertilizer.

  7. Non-HDL Cholesterol is a More Superior Predictor of Small-Dense LDL Cholesterol than LDL Cholesterol in Japanese Subjects with TG Levels <400 mg/dL.

    Science.gov (United States)

    Moriyama, Kengo; Takahashi, Eiko

    2016-09-01

    The Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and treatment of hyperlipidemia in Japanese adults recommend using low-density lipoprotein cholesterol (LDL-C) calculated by Friedewald formula (F_LDL-C) for subjects with triglyceride (TG) levels <400 mg/dL and non-high-density lipoprotein cholesterol (non-HDL-C) levels for subjects with TG levels ≥400 mg/dL. Because small-dense LDL particles are more atherogenic than large LDL particles, we sought the better lipid parameter which was more reflective of the high small-dense LDL-C (sdLDL-C) levels in subjects with TG levels <400 mg/dL. This study included 769 Japanese subjects who met our inclusion criteria and underwent an annual health examination, including sdLDL-C analyses. The correlation coefficient of non-HDL-C for sdLDL-C (r=0.760) was significantly higher than that of F_LDL-C (r=0.601). The area under the curve (95% confidence interval) was 0.771 (0.731, 0.811) for F_LDL-C and 0.871 (0.842, 0.901) for non HDL-C, which showed significantly higher predictive value for more than fourth quartile value of sdLDL-C (46 mg/dL). The optimal cut-off point of non-HDL-C was 158 mg/dL. Even in subjects stratified by waist circumstance, homeostasis model assessment of insulin resistance, TG, and F_LDL-C levels and non-HDL-C showed stronger relationships with sdLDL-C than F_LDL-C. Moreover, non-HDL-C showed a better relationship with sdLDL-C than total cholesterol (TC), TC/HDL-C, and non-HDL-C/HDL-C. Our data suggested that non-HDL-C is superior to F_LDL-C and one of the reliable surrogate lipid markers of sdLDL-C in Japanese subjects with TG levels <400 mg/dL.

  8. Highly-dispersed Ta-oxide catalysts prepared by electrodeposition in a non-aqueous plating bath for polymer electrolyte fuel cell cathodes

    KAUST Repository

    Seo, Jeongsuk; Cha, Dong Kyu; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2012-01-01

    The Ta-oxide cathode catalysts were prepared by electrodeposition in a non-aqueous solution. These catalysts showed excellent catalytic activity and have an onset potential of 0.92 V RHE for the oxygen reduction reaction (ORR). The highly-dispersed Ta species at the nanometer scale on the carbon black was an important contributor to the high activity. © 2012 The Royal Society of Chemistry.

  9. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-07-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  10. Quantum dense key distribution

    International Nuclear Information System (INIS)

    Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G.

    2004-01-01

    This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility

  11. Impact of sediments resuspension on metal solubilization and water quality during recurrent reservoir sluicing management

    Energy Technology Data Exchange (ETDEWEB)

    Frémion, Franck; Courtin-Nomade, Alexandra [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Bordas, François, E-mail: francois.bordas@unilim.fr [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Lenain, Jean-François [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France); Jugé, Philippe [CETU – ELMIS Ingénieries, Université François Rabelais, , 60 Rue du Plat d' Étain, 37000 Tours (France); Kestens, Tim [EDF – DPIH, Unité de Production Centre, 19 bis avenue de la Révolution, BP 406, 87012 Limoges Cedex (France); Mourier, Brice [Groupement de Recherche Eau Sol Environnement, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-08-15

    In dam contexts, sluicing operations can be performed to reestablish sediments continuity, as proposed by the EU Water Framework Directive, as well as to preserve the reservoirs' water storage capacity. Such management permits the rapid release of high quantities of reservoir sediments through the opening of dam bottom valves. This work aims to study the impact of such operation on the evolution of environmental physicochemical conditions notably changes in dissolved metallic elements concentrations (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) through field and laboratory investigations. Results were interpreted in terms of concentrations and fluxes, and compared with data collected on an annual basis regarding both suspended matter and metallic elements. The release of high quantities of sediments (4,500 tons dry weight in 24 h), with concentrations representing up to 300 times the inter-annual mean suspended sediments discharge, significantly modified water parameters, notably solid/liquid (S/L) ratio, pH and redox conditions. Despite the fact that they are mainly trapped in stable phases, a clear increase of the solubilized metals content was measured, representing up to 60 times the maximum values of current exploitation. This solubilization is related to desorption phenomena from sediments through changes in chemical equilibriums as highlighted by laboratory characterizations and experiments. These chemical modifications are mainly attributed to S/L ratio variations. Indeed, the low S/L ratios (≤ 1.3 g·L{sup −1}) measured in situ are typically the ones for which metals solubilization is the highest, as shown by laboratory experiments. Additional thermodynamic modeling highlighted that the decrease in pH measured during the operation favors the release of the free forms of metallic elements (Al and Cu), and decreases the OM complexation influence. These changes, either in term of physical conditions or speciation, increasing metals long term

  12. Phosphate solubilization and chromium (VI) remediation potential of Klebsiella sp. strain CPSB4 isolated from the chromium contaminated agricultural soil.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin; Usmani, Zeba; Rani, Rupa; Chandra, Avantika

    2018-02-01

    In this study, an effort was made to identify an efficient phosphate solubilizing bacterial strain from chromium contaminated agricultural soils. Based on the formation of a solubilized halo around the colonies on Pikovskaya's agar amended with chromium (VI), 10 strains were initially screened out. Out of 10, strain CPSB4, which showed significantly high solubilization zone at different chromium concentrations, was selected for further study. The strain CPSB4 showed significant plant growth promotion traits with chromium (VI) stress under in-vitro conditions in broth. The plant growth promotion activities of the strain decreased regularly, but were not completely lost with the increase in concentration of chromium up to 200 mg L -1 . On subjected to FT-IR analysis, the presence of the functional group, indicating the organic acid aiding in phosphate solubilization was identified. At an optimal temperature of 30  ° C and pH 7.0, the strain showed around 93% chromium (VI) reduction under in-vitro conditions in broth study. In soil condition, the maximum chromium (VI) reduction obtained was 95% under in-vitro conditions. The strain CPSB4 was identified as Klebsiella sp. on the basis of morphological, biochemical and 16S rRNA gene sequencing. This study shows that the diverse role of the bacterial strain CPSB4 would be useful in the chromium contaminated soil as a good bioremediation and plant growth promoting agent as well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Solubilization of advanced ceramic materials controlled by chemical analysis by means of atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Amarante Junior, A.

    1992-01-01

    This paper purpose is to show the techniques used in chemical analysis laboratory at Escola SENAI Mario Amato in the ceramic nucleus for opening and solubilization of Advanced Ceramic materials, where the elements in its majority are determined for atomic absorption spectroscopy. (author)

  14. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-β1 expression

    International Nuclear Information System (INIS)

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul; Han, Hyo-Kyung; Ryu, Chang Seon; Kim, Sang Kyum; Kwak, Mi Kyong; Kang, Keon Wook

    2009-01-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibited increases in the transforming growth factor-β1 (TGF-β1) mRNA and α-smooth muscle actin (α-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of α-SMA and TGF-β1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of α-SMA and TGF-β1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-β1 expression via Nrf2/ARE activation.

  15. Progress towards an ab initio real-time treatment of warm dense matter

    Science.gov (United States)

    Baczewski, Andrew; Cangi, Attila; Hansen, Stephanie; Jensen, Daniel

    2017-10-01

    Time-dependent density functional theory (TDDFT) provides an accurate description of equilibrium properties of warm dense matter, such as the dynamic structure factor (Baczewski et al., Phys. Rev. Lett., 116(11), 2016). While non-equilibrium properties, such as stopping power, have also been demonstrated to be within the grasp of TDDFT, the ultrafast isochoric heating of condensed matter into the warm dense state, enabled by recent advances in XFELs, remains beyond its capabilities. In this talk, we will describe the successes of and continuing challenges for TDDFT for warm dense matter, and present progress towards a more complete ab initio treatment of isochoric x-ray heating. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the DOE's National Nuclear Security Administration under contract DE-NA0003525.

  16. Dense image correspondences for computer vision

    CERN Document Server

    Liu, Ce

    2016-01-01

    This book describes the fundamental building-block of many new computer vision systems: dense and robust correspondence estimation. Dense correspondence estimation techniques are now successfully being used to solve a wide range of computer vision problems, very different from the traditional applications such techniques were originally developed to solve. This book introduces the techniques used for establishing correspondences between challenging image pairs, the novel features used to make these techniques robust, and the many problems dense correspondences are now being used to solve. The book provides information to anyone attempting to utilize dense correspondences in order to solve new or existing computer vision problems. The editors describe how to solve many computer vision problems by using dense correspondence estimation. Finally, it surveys resources, code, and data necessary for expediting the development of effective correspondence-based computer vision systems.   ·         Provides i...

  17. Dense module enumeration in biological networks

    Science.gov (United States)

    Tsuda, Koji; Georgii, Elisabeth

    2009-12-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  18. Dense module enumeration in biological networks

    International Nuclear Information System (INIS)

    Tsuda, Koji; Georgii, Elisabeth

    2009-01-01

    Analysis of large networks is a central topic in various research fields including biology, sociology, and web mining. Detection of dense modules (a.k.a. clusters) is an important step to analyze the networks. Though numerous methods have been proposed to this aim, they often lack mathematical rigorousness. Namely, there is no guarantee that all dense modules are detected. Here, we present a novel reverse-search-based method for enumerating all dense modules. Furthermore, constraints from additional data sources such as gene expression profiles or customer profiles can be integrated, so that we can systematically detect dense modules with interesting profiles. We report successful applications in human protein interaction network analyses.

  19. Effect of phosphate-solubilizing bacteria on phosphorus dynamics and the bacterial community during composting of sugarcane industry waste.

    Science.gov (United States)

    Estrada-Bonilla, German A; Lopes, Cintia M; Durrer, Ademir; Alves, Paulo R L; Passaglia, Nicolle; Cardoso, Elke J B N

    2017-07-01

    Sugarcane processing generates a large quantity of residues, such as filter cake and ashes, which are sometimes composted prior to their amendment in soil. However, important issues still have to be addressed on this subject, such as the description of bacterial succession that occurs throughout the composting process and the possibilities of using phosphate-solubilizing bacteria (PSB) during the process to improve phosphorus (P) availability in the compost end product. Consequently, this study evaluated the bacterial diversity and P dynamics during the composting process when inoculated with Pseudomonas aeruginosa PSBR12 and Bacillus sp. BACBR01. To characterize the bacterial community structure during composting, and to compare PSB-inoculated compost with non-inoculated compost, partial sequencing of the bacterial 16S rRNA gene and sequential P fractionation were used. The data indicated that members of the order Lactobacillales prevailed in the early stages of composting for up to 30 days, mostly due to initial changes in pH and the C/N ratio. This dominant bacterial group was then slowly replaced by Bacillales during a composting process of up to 60 days. In addition, inoculation of PSB reduced the levels of Ca-bound P by 21% and increased the labile organic P fraction. In PSB-inoculated compost, Ca-P compound solubilization occurred concomitantly with an increase of the genus Bacillus. The bacterial succession and the final community is described in compost from sugarcane residues and the possible use of these inoculants to improve P availability in the final compost is validated. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Solubilization of immune complexes in complement factor deficient sera and the influence of temperature, ionic strength and divalent cations on the solubilization reaction

    DEFF Research Database (Denmark)

    Baatrup, Gunnar; Petersen, Ivan; Svehag, Svend-Erik

    1984-01-01

    The complement-mediated solubilization (CMS) of immune complexes (IC) and the initial kinetics (IKS) of this reaction in human sera depleted of or deficient in C2, C3, C8, factors B, P and I were investigated. Sera depleted of B or P and those lacking native C3 or factor I showed virtually no CMS......M. Chelation of Ca2+ in serum by Mg2+-ethylene glycol tetraacetic acid reduced the CMS capacity by up to 50% and the IKS was markedly retarded. Varying the Zn2+ or Mn2+ ion concentrations in serum influenced neither the IKS nor the CMS capacity....

  1. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    Chirat, M.

    2012-01-01

    This study is about textile decontamination in dense CO 2 (liquid CO 2 or supercritical CO 2 ). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO 2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO 2 is achieved with an additive: a complexing CO 2 -philic/CO 2 -phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO 2 -philic groups (silicone-based or fluorinated moieties) and CO 2 -phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO 2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO 2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO 2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1

  2. Drug release from non-aqueous suspensions. II. The release of methylxanthines from paraffin suspensions

    NARCIS (Netherlands)

    Blaey, C.J. de; Fokkens, J.G.

    1984-01-01

    The release of 3 methylxanthines, i.e. caffeine, theobromine and theophylline, from suspensions in liquid paraffin to an aqueous phase was determined in an in vitro apparatus. The release rates were determined as a function of the pH of the aqueous phase. It was proved that the release process was

  3. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  4. Curcumin containing monoolein aqueous dispersions: A preformulative study

    International Nuclear Information System (INIS)

    Esposito, Elisabetta; Ravani, Laura; Mariani, Paolo; Contado, Catia; Drechsler, Markus; Puglia, Carmelo; Cortesi, Rita

    2013-01-01

    The present study describes the production and characterization of monoolein aqueous dispersions (MAD) as drug delivery systems for curcumin (CR). MAD based on monoolein and different emulsifiers have been produced and characterized. Morphology and dimensional distribution have been investigated by Cryogenic Transmission Electron Microscopy (cryo-TEM), X-ray and Photon Correlation Spectroscopy (PCS). Monoolein in different mixtures with sodium cholate, sodium caseinate, bentonite and poloxamer resulted in heterogeneous dispersions constituted of unilamellar vesicles, cubosomes and sponge type phases, depending on the employed components, as found by cryo-TEM and X-ray studies. CR was encapsulated with entrapment efficiencies depending on the MAD composition, particularly the highest was reached in the case of monoolein/poloxamer/sodium cholate mixture. The same mixture was able to maintain CR stability also after 6 months. CR release modalities were in vitro investigated in order to mimic a possible subcutaneous administration of MAD. It was found that MAD constituted of monoolein/poloxamer and monoolein/poloxamer/sodium cholate mixtures were able to sustain CR release. MAD viscous vehicles were produced by xanthan gum. CR percutaneous absorption has been studied in vitro using excised human skin membranes [stratum corneum epidermis (SCE)] mounted into Franz cells. It was found that fluxes (F n ) of CR incorporated in MAD are influenced by the presence of monoolein based nanosystems. In particular xanthan gum based MAD better control CR diffusion from MAD. - Highlights: • Curcumin (CR) can be solubilized in monoolein aqueous dispersions (MAD). • Different emulsifiers result in different inner structures in the disperse phase. • Monoolein/poloxamer/sodium cholate mixture (MCP) results in the highest CR encapsulation. • MCP maintains CR stability for 6 months. • Xanthan gum based MAD better control CR fluxes with respect to plain gel and liquid MAD

  5. Curcumin containing monoolein aqueous dispersions: A preformulative study

    Energy Technology Data Exchange (ETDEWEB)

    Esposito, Elisabetta, E-mail: ese@unife.it [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Ravani, Laura [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy); Mariani, Paolo [Department of Life and Environmental Sciences and CNISM, Università Politecnica delle Marche, I-60100 Ancona (Italy); Contado, Catia [Department of Chemistry, University of Ferrara, I-44121 Ferrara (Italy); Drechsler, Markus [Macromolecular Chemistry II, University of Bayreuth (Germany); Puglia, Carmelo [Department of Drug Sciences, University of Catania, I-95125 Catania (Italy); Cortesi, Rita [Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara (Italy)

    2013-12-01

    The present study describes the production and characterization of monoolein aqueous dispersions (MAD) as drug delivery systems for curcumin (CR). MAD based on monoolein and different emulsifiers have been produced and characterized. Morphology and dimensional distribution have been investigated by Cryogenic Transmission Electron Microscopy (cryo-TEM), X-ray and Photon Correlation Spectroscopy (PCS). Monoolein in different mixtures with sodium cholate, sodium caseinate, bentonite and poloxamer resulted in heterogeneous dispersions constituted of unilamellar vesicles, cubosomes and sponge type phases, depending on the employed components, as found by cryo-TEM and X-ray studies. CR was encapsulated with entrapment efficiencies depending on the MAD composition, particularly the highest was reached in the case of monoolein/poloxamer/sodium cholate mixture. The same mixture was able to maintain CR stability also after 6 months. CR release modalities were in vitro investigated in order to mimic a possible subcutaneous administration of MAD. It was found that MAD constituted of monoolein/poloxamer and monoolein/poloxamer/sodium cholate mixtures were able to sustain CR release. MAD viscous vehicles were produced by xanthan gum. CR percutaneous absorption has been studied in vitro using excised human skin membranes [stratum corneum epidermis (SCE)] mounted into Franz cells. It was found that fluxes (F{sub n}) of CR incorporated in MAD are influenced by the presence of monoolein based nanosystems. In particular xanthan gum based MAD better control CR diffusion from MAD. - Highlights: • Curcumin (CR) can be solubilized in monoolein aqueous dispersions (MAD). • Different emulsifiers result in different inner structures in the disperse phase. • Monoolein/poloxamer/sodium cholate mixture (MCP) results in the highest CR encapsulation. • MCP maintains CR stability for 6 months. • Xanthan gum based MAD better control CR fluxes with respect to plain gel and liquid MAD.

  6. Status of determining transuranic nuclides speciation in aqueous solution with laser spectrometry

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun; Chen Xi; Long Haoqi; Zeng Jishu; Su Xiguang; Fan Xianhua

    2007-01-01

    The knowledge about speciation of transuranic nuclides in aqueous solution is a basis for understanding the chemical and migration behavior of transuranic nuclides in aqueous solution. The speciation of transuranic nuclides with trace concentration is complicated in near neutral aqueous solutions, including change of oxidation state, complexation and colloid generation, etc. The concentrations of transuranium in near neutral aqueous solution usually below the sensitivity range of method such as conventional absorption spectroscopy. The radioactive analysis method has a very low detection limits for radionuclides, however, it wouldn' t allow the direct measurement of the transuranic species. In contrast with these methods, laser spectroscopy is an ideal method with high sensitivity, and non-contact and non-destructive for determining the speciation of transuranic nuclides. This paper summarizes the status and application of LIPAS (Laser-induced Photoacoustic Spectrometry), LIBD (Laser-induced Breakdown Detection) and TRLFS (Time-resolved Laser Fluorescence Spectrometry) to determine the speciation of transuranic nuclides with trace concentration in aqueous solutions. (authors)

  7. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanping [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  8. Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.)

    NARCIS (Netherlands)

    Tahir, M.; Mirza, M.S.; Zaheer, A.; Rocha Dimitrov, M.; Smidt, H.; Hameed, S.

    2013-01-01

    The aim of the present study was to isolate phosphate solubilizing bacteria from wheat rhizosphere and investigate their potential for plant growth promotion. Three phosphate solubilizing bacterial strains were isolated by serial dilution method from the rhizosphere of wheat grown under wheat-cotton

  9. Calculation of Transport Coefficients in Dense Plasma Mixtures

    Science.gov (United States)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during

  10. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causesswelling and efficient delignification of biomass at high temperatures. The ARPprocess solubilizes abou...

  11. Changes of Phosphate Solubilizing Bacteria Population on Paddy Field with Intensive Farming became Sustainable Organic Farming System

    Directory of Open Access Journals (Sweden)

    Dermiyati

    2009-05-01

    Full Text Available The research aimed to study the change of population of phosphate solubilizing microorganisms according to the application time of bokashi which were applied continously on organic paddy rice fields since years of 2000 up to 2006. The research was conducted in a Randomized Completely Block Design in four replicates. The treatments were without bokashi (control; with intensively application of NPK fertilizers, bokashi application for 3 planting seasons (12 t ha-1, bokashi application for 4 planting seasons (16 t ha-1, bokashi application for 7 planting seasons (28 t ha-1, and bokashi application for 9 planting seasons (36 t ha-1. The results showed that the population of phosphate solubilizing microorganisms were not affected by continously applied of bokashi and did not have correlations to organic carbon, total nitrogen, ratio C/N, soil pH, and soil water content. However, the phosphate solubilizing microorganisms had played a role in the availability of the soil available-P which were shown by increasing of paddy yields year by year, although the contribution of soil phosphorus from bokashi is a relatively low. Yet, the bokashi application on the organic paddy fields did not increase the soil availble-P because most of the P which was absorbed by the plants coming from residual P fertilizers either from bokashi or SP-36 which were intensevely given before.

  12. GENETIC VARIABILITY OF SUGARCANE-ASSOCIATED DIAZOTROPHIC BACTERIA CAPABLE OF INORGANIC PHOSPHATE SOLUBILIZING

    OpenAIRE

    Lira-Cadete, Luana; Barbosa de Farias, Andreza Raquel; de Souza Ramos, Andresa Priscila; da Costa, Diogo Paes; Freire, Fernando Jose; Kuklinsky-Sobral, Julia

    2013-01-01

    The sugarcane is a culture of great importance for the Brazilian agriculture. Every year this culture consumes great amounts of nitrogen and phosphate fertilizers. However, the use of plant growth-promoting bacteria can reduce the use of the chemical fertilizers, contributing to the economy and the environment conservation. So, the goal of this study was to select sugarcane-associated diazotrophic bacteria able to solubilize inorganic phosphate and to evaluate the genetic diversity of these b...

  13. Degradation/solubilization of Chinese lignite by Penicillium sp. P6

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, H.L.; Yang, J.S.; Wang, F.Q.; Chen, W.X. [China Agricultural University, Beijing (China). Key Laboratory of Agro-Microbial Resource and Application, Ministry of Agrio, College of Biological Science

    2006-01-15

    Penicillium sp. P6, isolated from coal mine soil at the Qiantong colliery Liaoning Province, Northeast China, can degrade Chinese lignite in 36 h on a plate colony and in 48 h using a 4-day cultured cell-free filtrate. Results of elemental analysis and IR spectrometry indicated that solubilized products exhibited some alterations in comparison to the original lignite. The amount of fulvic acid extracted from the biodegraded lignite was high, and the molecular distribution of the humic acids from biodegraded lignite changed distinctively in comparison to which extracted from the control lignite, possibly due to the depolymerization associated with fungal biodegradation.

  14. Determination of heavy polycyclic aromatic hydrocarbons by non-aqueous reversed phase liquid chromatography: Application and limitation in refining streams.

    Science.gov (United States)

    Panda, Saroj K; Muller, Hendrik; Al-Qunaysi, Thunayyan A; Koseoglu, Omer R

    2018-01-19

    The heavy polycyclic aromatic hydrocarbons (HPAHs) cause detrimental effects to hydrocracker operations by deactivating the catalysts and depositing in the downstream of the reactor/ exchangers. Therefore, it is essential to continuously monitor the accumulation of HPAHs in a hydrocracker unit. To accurately measure the concentration of HPAHs, the development of a fast and reliable analytical method is inevitable. In this work, an analytical method based on non-aqueous reversed phase chromatography in combination with high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was developed. As a first step, five different types of stationary phases were evaluated for the separation of HPAHs in non-aqueous mode and the best suited phase was further used for the fractionation of HPAHs in a fractionator bottom sample obtained from a refinery hydrocracker unit. The eight major fractions or peaks obtained from the separation were further characterized by UV spectroscopy and FT-ICR MS and the compounds in the fractions were tentatively confirmed as benzoperylene, coronene, methylcoronene, naphthenocoronene, benzocoronene, dibenzoperylene, naphthocoronene and ovalene. The developed liquid chromatography method can be easily adapted in a refinery laboratory for the quantitation of HPAHs in hydrocracking products. The method was further tested to check the interference of sulfur aromatics and/or large alkylated aromatic hydrocarbons on the determination of HPAHs in hydrocracking products. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Solubilization of glycoproteins of envelope viruses by detergents

    International Nuclear Information System (INIS)

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.

    1986-01-01

    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-β-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines

  16. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14

    Directory of Open Access Journals (Sweden)

    Selvaraj eKrithika

    2016-04-01

    Full Text Available Zinc (Zn deficiency in major food crops has been considered as an important factor affecting the crop production and subsequently the human health. Rice (Oryza sativa is sensitive to Zn deficiency and thereby causes malnutrition to most of the rice-eating Asian populations. Application of zinc solubilizing bacteria (ZSB could be a sustainable agronomic approach to increase the soil available Zn which can mitigate the yield loss and consequently the nutritional quality of rice. Understanding the molecular interactions between rice and unexplored ZSB is useful for overcoming Zn deficiency problems. In the present study, the role of zinc solubilizing bacterial strain Enterobacter cloacae strain ZSB14 on regulation of Zn-regulated transporters and iron (Fe-regulated transporter-like protein (ZIP genes in rice under iron sufficient and deficient conditions was assessed by quantitative real-time reverse transcription PCR. The expression patterns of OsZIP1, OsZIP4 and OsZIP5 in root and shoot of rice were altered due to the Zn availability as dictated by Zn sources and ZSB inoculation. Fe sufficiency significantly reduced the root and shoot OsZIP1 expression, but not the OsZIP4 and OsZIP5 levels. Zinc oxide in the growth medium up-regulated all the assessed ZIP genes in root and shoot of rice seedlings. When ZSB was inoculated to rice seedlings grown with insoluble zinc oxide in the growth medium, the expression of root and shoot OsZIP1, OsZIP4 and OsZIP5 was reduced. In the absence of zinc oxide, ZSB inoculation up-regulated OsZIP1 and OsZIP5 expressions. Zinc nutrition provided to the rice seedling through ZSB-bound zinc oxide solubilization was comparable to the soluble zinc sulphate application which was evident through the ZIP genes’ expression and the Zn accumulation in root and shoot of rice seedlings. These results demonstrate that zinc solubilizing bacteria could play a crucial role in zinc fertilization and fortification of rice.

  17. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification.

    NARCIS (Netherlands)

    Daamen, W.F.; Nillesen, S.T.M.; Wismans, P.G.P.; Reinhardt, D.; Hafmans, T.G.M.; Veerkamp, J.H.; Kuppevelt, A.H.M.S.M. van

    2008-01-01

    Elastin is the prime protein in elastic tissues that contributes to elasticity of, for example, lung, aorta, and skin. Upon injury, elastic fibers are not readily replaced, which hampers tissue regeneration. Incorporation of solubilized elastin (hydrolyzed insoluble elastin fibers or elastin

  18. Characterization of Phosphate Solubilizing Bacteria in Sediments from a Shallow Eutrophic Lake and a Wetland: Isolation, Molecular Identification and Phosphorus Release Ability Determination

    Directory of Open Access Journals (Sweden)

    Jie Tang

    2010-11-01

    Full Text Available The transformation of phosphorus (P is a major factor of lake eutrophication, and phosphate releasing bacteria play an important role in the release process. Experiments were conducted to investigate P content and characterize phosphate solubilizing bacterial composition at the molecular level in a shallow eutrophic lake and a wetland. Results showed that P concentrations were relatively high and derived from agricultural runoff and domestic or industrial pollution. Enumeration and molecular identification of these strains indicated that these bacterial groups were abundant in the ecosystem and various kinds of bacteria participated in the phosphorus release process. Twelve phosphate solubilizing bacteria, including eight organic P-solubilizing bacteria (OPBs and four inorganic P-solubilizing bacteria (IPBs, which belonged to three different families, were isolated and identified. Cupriavidus basilensis was found for the first time to have the ability to mineralize organic P (OP. Laboratory tests on P release ability revealed that IPBs were more effective at releasing P than OPBs. The most efficient IPB strain could accumulate over 170 mg·L-1 orthophosphate, while the equivalent OPB strain only liberated less than 4 mg·L-1 orthophosphate in liquid culture. The results obtained from this investigation should help clarify the roles of microorganisms in aquatic systems and the mechanisms of eutrophication.

  19. Isolation of plant Photosystem II complexes by fractional solubilization

    Directory of Open Access Journals (Sweden)

    Patrycja eHaniewicz

    2015-12-01

    Full Text Available PSII occurs in different forms and supercomplexes in thylakoid membranes. Using a transplastomic strain of Nicotiana tabacum histidine tagged on the subunit PsbE, we have previously shown that a mild extraction protocol with β-dodecylmaltoside enriches PSII characteristic of lamellae and grana margins. Here, we characterize residual granal PSII that is not extracted by this first solubilization step. Using affinity purification, we demonstrate that this PSII fraction consists of PSII-LHCII mega- and supercomplexes, PSII dimers and PSII monomers, which were separated by gel filtration and functionally characterized. Our findings represent an alternative demonstration of different PSII populations in thylakoid membranes, and they make it possible to prepare PSII-LHCII supercomplexes in high yield.

  20. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    OpenAIRE

    Jing Guo; Keming Fang; Hanjie Guo; Yiwa Luo; Shengchao Duan; Xiao Shi; Wensheng Yang

    2018-01-01

    The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to deter...

  1. Knudsen thermogravimetry approach to the thermodynamics of aqueous solutions

    International Nuclear Information System (INIS)

    Schiraldi, Alberto; Signorelli, Marco; Fessas, Dimitrios

    2013-01-01

    Highlights: ► Knudsen cells were designed to replace standard TG pans for desorption experiments. ► The Knudsen effusion data allow determination of water activity of aqueous solutions. ► This methods can replace the traditional isopiestic approach for aqueous solutions. ► The Gibbs–Duhem relationship was used to fit the experimental data. -- Abstract: The use of isothermal TGA with Knudsen-like cells allows determination of the thermodynamic activity of water, a W . The typical experiment implies a slow dehydration of the aqueous solution at constant temperature in dynamic vacuum conditions. The method is alternative to the classical isopiestic approach and offers the advantage of a continuous record on increasing the solute concentration. These data can be directly treated according to the classical thermodynamic relationships drawn from the Gibbs–Duhem expression to evaluate the activity and osmotic coefficient of the aqueous solutions of electrolytes and non-electrolytes, and, in the case of electrolytes, allow determination of solubility of the solute. Discrepancies with respect to the literature data are observed when the viscosity of the systems becomes too high, as in the case of sugars with a very large solubility. Such a mismatch may however be accounted for either slowing the dehydration rate with use of a narrower Knudsen orifice, or correcting the experimental a W with a calibration curve. The same approach can be applied to non-aqueous solutions

  2. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  3. Non-impact modeling of electron broadening of hydrogen spectral lines in dense but relatively cold plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Buescher, S.; Wrubel, Th.; Kunze, H.-J.; Calisti, A.; Stamm, R.; Talin, B.

    2001-01-01

    The standard static-ion/impact-electron theory of line broadening is assessed with calculations of hydrogen lines over a broad range of plasma conditions. In most cases, discrepancies between results from theory and experiments are explained by the neglect of ion-dynamics effects. Nevertheless, recent experiments involving high density but low temperature plasmas indicate that ion-dynamics/impact-electron models may seriously overestimate the broadening for such conditions. We show that the observed discrepancies are not due to the ion modeling but due to the impact approximation of the electrons in the Original Frequency Fluctuation Model (FFM). This situation arises for plasma conditions where the interactions with the electrons are a major broadening mechanism and quasi-static, i.e. non-binary, electron effects are important. An alternative approach to a binary collision operator is therefore proposed by means of the FFM code generalized to the two components (ions and electrons) of the plasma. Accurate simulations accounting for the electron plus ion field dynamics have been used to corroborate the FFM as applied to both ion and electron perturbers, and good agreement is found with recent experiments on H α and P α for dense but relatively cold plasmas

  4. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  5. Phase i study of 'dose-dense' pemetrexed plus carboplatin/radiotherapy for locally advanced non-small cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Treat Joseph

    2011-02-01

    Full Text Available Abstract Background This phase I study investigates the feasibility of carboplatin plus dose-dense (q2-week pemetrexed given concurrently with radiotherapy (XRT for locally advanced and oligometastatic non-small cell lung cancer (NSCLC. Methods Eligible patients had Stage III or IV (oligometastatic NSCLC. Patients received XRT to 63 Gy in standard fractionation. Patients received concurrent carboplatin (AUC = 6 during weeks 1 and 5 of XRT, and pemetrexed during weeks 1, 3, 5, and 7 of XRT. The starting dose level (level 1 of pemetrexed was 300 mg/m2. Following the finding of dose limiting toxicity (DLT in dose level 1, an amended dose level (level 1A continued pemetrexed at 300 mg/m2, but with involved field radiation instead of extended nodal irradiation. Consolidation consisted of carboplatin (AUC = 6 and pemetrexed (500 mg/m2 q3 weeks × 2 -3 cycles. Results Eighteen patients were enrolled. Fourteen patients are evaluable for toxicity analysis. Of the initial 6 patients treated on dose level 1, two experienced DLTs (one grade 4 sepsis, one prolonged grade 3 esophagitis. There was one DLT (grade 5 pneumonitis in the 8 patients treated on dose level 1A. In 16 patients evaluable for response (4 with oligometastatic stage IV disease and 12 with stage III disease, the median follow-up time is 17.8 months. Thirteen of 16 patients had in field local regional response. The actuarial median survival time was 28.6 months in all patients and 34.7 months (estimated in stage III patients. Conclusions Concurrent carboplatin with dose-dense (q2week pemetrexed at 300 mg/m2 with involved field XRT is feasible and encouraging in patients with locally advanced and oligometastatic NSCLC. Trial Registration ClinicalTrials.gov NCT00330044

  6. DNAPL Source Depletion During In Situ Chemical Oxidation (ISCO): Experimental and Modeling Studies (CD-ROM)

    National Research Council Canada - National Science Library

    Heiderscheidt, Jeffrey L

    2005-01-01

    ... contaminated by chlorinated solvents present as dense non-aqueous phase liquids (DNAPLs). However, there remain gaps in knowledge about ISCO effects on mass depletion from complex DNAPL source MnO2...

  7. Creating Drug Solubilization Compartments via Phase Separation in Multicomponent Buccal Patches Prepared by Direct Hot Melt Extrusion-Injection Molding.

    Science.gov (United States)

    Alhijjaj, Muqdad; Bouman, Jacob; Wellner, Nikolaus; Belton, Peter; Qi, Sheng

    2015-12-07

    Creating in situ phase separation in solid dispersion based formulations to allow enhanced functionality of the dosage form, such as improving dissolution of poorly soluble model drug as well as being mucoadhesive, can significantly maximize the in vitro and in vivo performance of the dosage form. This formulation strategy can benefit a wide range of solid dosage forms for oral and alternative routes of delivery. This study using buccal patches as an example created separated phases in situ of the buccal patches by selecting the excipients with different miscibility with each other and the model drug. The quaternary dispersion based buccal patches containing PEG, PEO, Tween 80, and felodipine were prepared by direct hot melt extrusion-injection molding (HME-IM). The partial miscibility between Tween 80 and semicrystalline PEG-PEO led to the phase separation after extrusion. The Tween phases acted as drug solubilization compartments, and the PEG-PEO phase had the primary function of providing mucoadhesion and carrier controlled dissolution. As felodipine was preferably solubilized in the amorphous regions of PEG-PEO, the high crystallinity of PEG-PEO resulted in an overall low drug solubilizing capacity. Tween 80 was added to improve the solubilization capacity of the system as the model drug showed good solubility in Tween. Increasing the drug loading led to the supersaturation of drug in Tween compartments and crystalline drug dispersed in PEG-PEO phases. The spatial distribution of these phase-separated compartments was mapped using X-ray micro-CT, which revealed that the domain size and heterogeneity of the phase separation increased with increasing the drug loading. The outcome of this study provides new insights into the applicability of in situ formed phase separation as a formulation strategy for the delivery of poorly soluble drugs and demonstrated the basic principle of excipient selection for such technology.

  8. Dense Non-Aqueous Phase Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies

    National Research Council Canada - National Science Library

    2000-01-01

    Because of the mounting interest from ITRC member states in addressing DNAPL contaminant problems, ITRC was asked for input on several sampling and analysis plans commissioned by the Interagency DNAPL Consortium (IDC...

  9. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  10. Artificial Citrate Operon Confers Mineral Phosphate Solubilization Ability to Diverse Fluorescent Pseudomonads

    Science.gov (United States)

    Adhikary, Hemanta; Sanghavi, Paulomi B.; Macwan, Silviya R.; Archana, Gattupalli; Naresh Kumar, G.

    2014-01-01

    Citric acid is a strong acid with good cation chelating ability and can be very efficient in solubilizing mineral phosphates. Only a few phosphate solubilizing bacteria and fungi are known to secrete citric acids. In this work, we incorporated artificial citrate operon containing NADH insensitive citrate synthase (gltA1) and citrate transporter (citC) genes into the genome of six-plant growth promoting P. fluorescens strains viz., PfO-1, Pf5, CHAO1, P109, ATCC13525 and Fp315 using MiniTn7 transposon gene delivery system. Comprehensive biochemical characterization of the genomic integrants and their comparison with plasmid transformants of the same operon in M9 minimal medium reveals the highest amount of ∼7.6±0.41 mM citric and 29.95±2.8 mM gluconic acid secretion along with ∼43.2±3.24 mM intracellular citrate without affecting the growth of these P. fluorescens strains. All genomic integrants showed enhanced citric and gluconic acid secretion on Tris-Cl rock phosphate (TRP) buffered medium, which was sufficient to release 200–1000 µM Pi in TRP medium. This study demonstrates that MPS ability could be achieved in natural fluorescent pseudomonads by incorporation of artificial citrate operon not only as plasmid but also by genomic integration. PMID:25259527

  11. Field studies on two rock phosphate solubilizing actinomycete isolates as biofertilizer sources

    Science.gov (United States)

    Mba, Caroline C.

    1994-03-01

    Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.

  12. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers.

    Directory of Open Access Journals (Sweden)

    Guosheng Su

    Full Text Available Non-additive genetic variation is usually ignored when genome-wide markers are used to study the genetic architecture and genomic prediction of complex traits in human, wild life, model organisms or farm animals. However, non-additive genetic effects may have an important contribution to total genetic variation of complex traits. This study presented a genomic BLUP model including additive and non-additive genetic effects, in which additive and non-additive genetic relation matrices were constructed from information of genome-wide dense single nucleotide polymorphism (SNP markers. In addition, this study for the first time proposed a method to construct dominance relationship matrix using SNP markers and demonstrated it in detail. The proposed model was implemented to investigate the amounts of additive genetic, dominance and epistatic variations, and assessed the accuracy and unbiasedness of genomic predictions for daily gain in pigs. In the analysis of daily gain, four linear models were used: 1 a simple additive genetic model (MA, 2 a model including both additive and additive by additive epistatic genetic effects (MAE, 3 a model including both additive and dominance genetic effects (MAD, and 4 a full model including all three genetic components (MAED. Estimates of narrow-sense heritability were 0.397, 0.373, 0.379 and 0.357 for models MA, MAE, MAD and MAED, respectively. Estimated dominance variance and additive by additive epistatic variance accounted for 5.6% and 9.5% of the total phenotypic variance, respectively. Based on model MAED, the estimate of broad-sense heritability was 0.506. Reliabilities of genomic predicted breeding values for the animals without performance records were 28.5%, 28.8%, 29.2% and 29.5% for models MA, MAE, MAD and MAED, respectively. In addition, models including non-additive genetic effects improved unbiasedness of genomic predictions.

  13. Interference Coordination for Dense Wireless Networks

    DEFF Research Database (Denmark)

    Soret, Beatriz; Pedersen, Klaus I.; Jørgensen, Niels T.K.

    2015-01-01

    and dense deployment in Tokyo are compared. Evolution to DenseNets offers new opportunities for further development of downlink interference cooperation techniques. Various mechanisms in LTE and LTE-Advanced are revisited. Some techniques try to anticipate the future in a proactive way, whereas others......The promise of ubiquitous and super-fast connectivity for the upcoming years will be in large part fulfilled by the addition of base stations and spectral aggregation. The resulting very dense networks (DenseNets) will face a number of technical challenges. Among others, the interference emerges...... as an old acquaintance with new significance. As a matter of fact, the interference conditions and the role of aggressor and victim depend to a large extent on the density and the scenario. To illustrate this, downlink interference statistics for different 3GPP simulation scenarios and a more irregular...

  14. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    Directory of Open Access Journals (Sweden)

    Amber Broch

    2013-12-01

    Full Text Available Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA. Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC of whole and lipid extracted algal (Spirulina maxima feedstocks in order to produce a solid biofuel (hydrochar and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase.

  15. Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514

    Directory of Open Access Journals (Sweden)

    Sreethar Swaathy

    2014-12-01

    Full Text Available The present study emphasizes the biosurfactant mediated anthracene degradation by a marine alkaliphile Bacillus licheniformis (MTCC 5514. The isolate, MTCC 5514 degraded >95% of 300 ppm anthracene in an aqueous medium within 22 days and the degradation percentage reduced significantly when the concentration of anthracene increased to above 500 ppm. Naphthalene, naphthalene 2-methyl, phthalic acid and benzene acetic acid are the products of degradation identified based on thin layer chromatography, high performance liquid chromatography, gas chromatography and mass analyses. It has been observed that the degradation is initiated by the biosurfactant of the isolate for solubilization through micellation and then the alkali pH and intra/extra cellular degradative enzymes accomplish the degradation process. Encoding of genes responsible for biosurfactant production (licA3 as well as catabolic reactions (C23O made with suitable primers designed. The study concludes in situ production of biosurfactant mediates the degradation of anthracene by B. licheniformis.

  16. Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-aspartate-activated cation channels from brain synaptic membranes

    International Nuclear Information System (INIS)

    Ly, A.M.; Michaelis, E.K.

    1991-01-01

    L-Glutamate-activated cation channel proteins from rat brain synaptic membranes were solubilized, partially purified, and reconstituted into liposomes. Optimal conditions for solubilization and reconstitution included treatment of the membranes with nonionic detergents in the presence of neutral phospholipids plus glycerol. Quench-flow procedures were developed to characterize the rapid kinetics of ion flux induced by receptor agonists. [ 14 C]Methylamine, a cation that permeates through the open channel of both vertebrate and invertebrate glutamate receptors, was used to measure the activity of glutamate receptor-ion channel complexes in reconstituted liposomes. L-Glutamate caused an increase in the rate of [ 14 C]methylamine influx into liposomes reconstituted with either solubilized membrane proteins or partially purified glutamate-binding proteins. Of the major glutamate receptor agonists, only N-methyl-D-aspartate activated cation fluxes in liposomes reconstituted with glutamate-binding proteins. In liposomes reconstituted with glutamate-binding proteins, N-methyl-D-aspartate- or glutamate-induced influx of NA + led to a transient increase in the influx of the lipid-permeable anion probe S 14 CN - . These results indicate the functional reconstitution of N-methyl-D-aspartate-sensitive glutamate receptors and the role of the ∼69-kDa protein in the function of these ion channels

  17. Studies of the reactions of uranium pentabromide and hexabromouranate(V) in non-aqueous solvents

    International Nuclear Information System (INIS)

    Dehos, R.F.

    1984-01-01

    With the help of IR and electron spectra, the behaviour of uranium pentabromide and hexabromo uranate in non-aqueous nitromethane, nitroethane, bromine, dichlormethane, dibromomethane and acetonitrile was studied. By comparison of the spectra of the solutions in nitromethane with the solutions using other solvents on one side, and on the other side with the solids spectra of the end products, the redox reactions of the uranium V in nitromethane solutions could be more than clarified. Studies were also carried out on the time-dependency of the uranium IV and uranium V contents of the solutions at room temperature and at -20 0 C. The existence of the HUBr 6 which probably appears as an intermediate product was tested in another experiment. First evidence for the existence of UBr 6 as a disproportionation product of UBr 5 were achieved by tests in solutions of acetonitrile at -47 0 C. (RB) [de

  18. A Study on Solubilization of Poorly Soluble Drugs by Cyclodextrins and Micelles: Complexation and Binding Characteristics of Sulfamethoxazole and Trimethoprim

    Directory of Open Access Journals (Sweden)

    Sinem Göktürk

    2012-01-01

    > α-CD. With taking into consideration of solubilization capacity of SDS micelles, it has been found that the solubility enhancement of TMP is much higher than that of SMX in the presence of SDS micelles. The binding constants of SMX and TMP obtained from the Benesi-Hildebrand equation are also confirmed by the estimated surface properties of SDS, employing the surface tension measurements. In order to elucidate the solubilization characteristics the surface tension measurements were also performed for nonionic surfactant Triton X-100. Polarity of the microenvironment and probable location of SMX and TMP were also discussed in the presence of various organic solvents.

  19. Preparation of Activated and Non-Activated Carbon from Conocarpus Pruning Waste as Low-Cost Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ahmed H. El-Naggar

    2015-12-01

    Full Text Available Conocarpus pruning waste, an agricultural byproduct, was converted into low-cost activated and non-activated carbons and used for the remediation of Cd2+, Cu2+, and Pb2+ from aqueous solutions. The carbonization was carried out at 400 °C, while the activation was carried out in the presence of KOH and ZnCl2. Batch single-solute and multi-solute equilibrium and kinetic experiments were carried out to determine the adsorption capacities of the prepared activated and non-activated carbons, and these were further compared with commercially available activated carbon. The results showed that KOH-activated carbon (CK outperformed the other activated and non-activated carbons in terms of adsorption efficiency. CK removed >50% of the applied Cd2+ and Cu2+ and 100% of Pb2+ at the initial concentration of 40 mg L-1. Interestingly, the performance of Conocarpus-derived non-activated carbon was better than that of the commercial activated carbon, as observed from the Langmuir maximum adsorption capacities of 65.61, 66.12, and 223.05 µmol g-1 for Cd2+, Cu2+, and Pb2+, respectively. The Pb2+ was the metal most easily removed from aqueous solution because of its large ionic radius. The kinetic dynamics were well described by the pseudo-second order and Elovich models.

  20. Novel composite membrane coated with a poly(diallyldimethylammonium chloride)/urushi semi-interpenetrating polymer network for non-aqueous redox flow battery application

    Science.gov (United States)

    Cho, Eunhae; Won, Jongok

    2016-12-01

    Novel composite membranes of a semi-interpenetrating network (semi-IPN) coated on the surfaces of a porous Celgard 2400 support are prepared and investigate for application in a non-aqueous redox flow battery (RFB). A natural polymer, urushi, is used for the matrix because of its high mechanical robustness, and poly(diallyldimethylammonium chloride) (PDDA) provides anionic exchange sites. The PDDA/urushi (P/U) semi-IPN film is prepared by the photo polymerization of urushiol in the presence of PDDA. The thin layer composed of the P/U semi-IPN on the porous support provides selectivity while maintaining the ion conductivity. The coulombic and energy efficiencies increase with increasing amounts of PDDA in the P/U semi-IPN layer, and the values reach 69.5% and 42.5%, respectively, for the one containing 40 wt% of PDDA. These values are substantially higher than those of the Neosepta AHA membrane and the Celgard membrane, indicating that the selective layer reduces the crossover of the redox active species through the membrane. This result implies that the formation of composite membranes using semi-IPN selective layers on the dimensionally stable porous membrane enable the successful use of a non-aqueous RFB for future energy storage systems.

  1. Interaction Effects of Phosphate Solubilizing Bacteria and Mycorrhiza on the Growth and Phosphorus uptakeof Sorghum

    Directory of Open Access Journals (Sweden)

    Abdolhossein ziaeyan

    2017-01-01

    Full Text Available Introduction: The most abundant of agricultural soils in Iran, are calcareous. In calcareous soils, phosphorus fertilizers use efficiency is low. The usage of soil microorganisms is one of the effective ways to increment the uptake of phosphorus in calcareous soils. This microorganisms using various mechanisms, including the production of plant hormones or the production of organic and inorganic acids to dissolve the insoluble phosphorous compounds. Mycorrhizal symbiosis is also one of the most recognized and important symbiosis relationship found in the world. In a mycorrhizal symbiosis,plants can be able to absorb more nutrients and water from soil and fungus plays a protective role as a growth enhancer and make the plants more tolerable to biotic (pathogens and abiotic (drought, cold and salinity stresses .This research conducted to study phosphate solubilizing bacteria and mycorrhiza roles on sorghum growth and phosphorus availability to this plant. Materials and methods: To achieve the desired goals, a pot experiment was conducted as a factorial in completely randomized design with sixteen treatments in three replications. The treatments were combination of four P levels of zero, 25, 50, and 75 mg kg-1 P2O5 from triple super phosphate source, the two treatments of inoculation and without inoculation of phosphate solubilizing bacteria and the two treatments of inoculation and no inoculation of mycorrizal fungus. Required fertilizers based on initial soil test results were supplied. Accordingly, the same amount of nitrogen, 80 mg kg-1 (30 mg kg-1 before planting and 50 mg kg-1 after planting twice as urea source, 10 mg Zn kg-1 and 5 mg kg-1 Cu per kg soil as the forms of Zinc sulphate (ZnSO4.7H2O and copper sulphate (CuSO4.H2O were added to each soil sample. Required Phosphorus also was calculated based on treatments and added to potting soil. Each pot size was 5 kg. every sample was thoroughly mixed and then were placed in pots. At the same

  2. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging

    KAUST Repository

    Xiong, Jinhui

    2017-07-21

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. In this work we tackle this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a

  3. Effect of LOS/NLOS Propagation on 5G Ultra-Dense Networks

    DEFF Research Database (Denmark)

    Galiotto, Carlo; Pratas, Nuno; Doyle, Linda

    2017-01-01

    The combined presence of Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) components in the radio propagation environment can severely degrade the Ultra-Dense Networks (UDNs) performance. Backed by a stochastic geometry model, we show that when the LOS/NLOS propagation components are taken into a...... and to take advantage of extreme cell densification in the upcoming 5G wireless networks....

  4. Potassium solubilizing bacteria-assisted phytoextraction of radiocesium on pechay plants grown in cesium contaminated Fukushima Soils

    International Nuclear Information System (INIS)

    Rallos, R.V.; Yokoyama, T.

    2015-01-01

    Increasing the efficiency of metal uptake by plants is important to achieve successful phytoremediation of metal-polluted soils. The presence of potassium solubilizing bacteria (KSB) increases the solubilization of K-containing minerals thereby enhancing the availability of potassium (K+) and other cations including radicesium (137Cs+) for plant uptake. In this study, five KSB isolates were obtained from soybean rhizosphere in Fukushima radiocesium contaminated soils. Based on biochemical and 16S rRNA gene sequence analysis, the bacteria were identified as Bacillus megaterium, Pseudomonas putida, P. frederiksbergensis, Burkholderia sabiae, and P. mandelii. The KSB isolates were evaluated for plant growth promotion, potassium (K) uptake and radiocesium phytoextraction of pechay in three different cesium-contaminated Fukushima soils. Inoculation with KSB showed beneficial effects on plant growth and increased the phytoextraction of radiocesium, with much greater magnitude in roots than in shoots. The results indicated that KSB inoculation may be essential in managing radiocesium-contaminated soils and manipulating the transfer from soils to plants.(author)

  5. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores.

    Science.gov (United States)

    Wang, Yunqiang; Shao, Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had significant effects on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density could reduce oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective stratage to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good stratage to improve the accuracy of experimental results. Our results revealed that crude and diesel oils, rather than their components, have a practical value for remediation of contaminated loessal soils.

  6. Transmission of epi-alleles with MET1-dependent dense methylation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Michael Watson

    Full Text Available DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T. Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2, and maintenance DNA METHYLTRANSFERASE1 (MET1 being responsible for faithful propagation of CG methylation. Here we report an unusual 'dense methylation' pattern under the control of MET1, with methylation in all three sequence contexts. We identified epi-alleles of dense methylation at a non coding RNA locus (At4g15242 in Arabidopsis ecotypes, with distinct dense methylation and expression characteristics, which are stably maintained and transmitted in genetic crosses and which can be heritably altered by depletion of MET1. This suggests that, in addition to its classical CG maintenance function, at certain loci MET1 plays a role in creating transcriptional diversity based on the generation of independent epi-alleles. Database inspection identified several other loci with MET1-dependent dense methylation patterns. Arabidopsis ecotypes contain distinct epi-alleles of these loci with expression patterns that inversely correlate with methylation density, predominantly within the transcribed region. In Arabidopsis, dense methylation appears to be an exception as it is only found at a small number of loci. Its presence does, however, highlight the potential for MET1 as a contributor to epigenetic diversity, and it will be interesting to investigate the representation of dense methylation in other plant species.

  7. Layered double hydroxide nanosheet as a two-dimensional support of dense platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyo Gyoung; Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, R and D center, Bucheon (Korea, Republic of); Lee, Jong Hyeon [Dept. of Chemistry, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2017-02-15

    Transition metal nanoparticles (NPs) with a narrow size distribution have been intensively synthesized on various solid supports for anti-agglomeration, and high catalytic activity and selectivity. Layered double hydroxides (LDH) are currently attracting intense interest in the field of heterogeneous catalysis as catalyst supports. In order to obtain a well-crystallized LDH nanosheet, the as-synthesize d carbonate form of LDH was hydrothermally treated according to a reported procedure, and further reacted by anion-exchange with an aqueous solution of NaNO{sub 3} and acetate buffer to give the nitrate form of LDH. Dense and uniform Pt NPs were synthesized on the exfoliated LDH nanosheets through precursor exchange and thermal reduction of the precursor ions. In this nanocomposite, the Pt Nps were uniformly grown on the surface of the LDH nano sheet and the average size of Pt Nps was 2nm.

  8. 18F-fluorination by crown ether-metal fluoride

    International Nuclear Information System (INIS)

    Irie, T.; Fukushi, K.; Ido, T.; Kasida, Y.; Nozaki, T.

    1984-01-01

    For non-carrier-added 18 F-labeling of organic compounds, details were studied concerning the previously developed KF-crown ether method. In the modified method, a minute amount of KOH instead of carrier KF is added for the preparation of the anhydrous 18 F from aqueous carrier-free 18 F. The following factors were examined in order to determine optimum conditions for the preparation of the anhydrous non-carrier-added 18 F and the labeling synthesis with it: effects of the vessel on the evaporation of the 18 F-KOH solution and the amount of added KOH for the conversion of aqueous 18 F to anhydrous 18 F, the solubilized activity of the 18 F obtained by the evaporation in organic solutions containing 18-Crown-6 and the labeling reaction, as exemplified by the synthesis of 21-fluoroprogesterone. (author)

  9. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal

    NARCIS (Netherlands)

    Postma, J.; Nijhuis, E.H.; Sommeus, E.

    2010-01-01

    Bacteria with the ability to solubilize phosphorus (P) and to improve plant health were selected and tested for growth and survival in P-rich animal bone charcoal (ABC). ABC is suggested to be suitable as a carrier for biocontrol agents, offering them a protected niche as well as delivering

  10. Dynamical theory of dense groups of galaxies

    Science.gov (United States)

    Mamon, Gary A.

    1990-01-01

    It is well known that galaxies associate in groups and clusters. Perhaps 40% of all galaxies are found in groups of 4 to 20 galaxies (e.g., Tully 1987). Although most groups appear to be so loose that the galaxy interactions within them ought to be insignificant, the apparently densest groups, known as compact groups appear so dense when seen in projection onto the plane of the sky that their members often overlap. These groups thus appear as dense as the cores of rich clusters. The most popular catalog of compact groups, compiled by Hickson (1982), includes isolation among its selection critera. Therefore, in comparison with the cores of rich clusters, Hickson's compact groups (HCGs) appear to be the densest isolated regions in the Universe (in galaxies per unit volume), and thus provide in principle a clean laboratory for studying the competition of very strong gravitational interactions. The $64,000 question here is then: Are compact groups really bound systems as dense as they appear? If dense groups indeed exist, then one expects that each of the dynamical processes leading to the interaction of their member galaxies should be greatly enhanced. This leads us to the questions: How stable are dense groups? How do they form? And the related question, fascinating to any theorist: What dynamical processes predominate in dense groups of galaxies? If HCGs are not bound dense systems, but instead 1D change alignments (Mamon 1986, 1987; Walke & Mamon 1989) or 3D transient cores (Rose 1979) within larger looser systems of galaxies, then the relevant question is: How frequent are chance configurations within loose groups? Here, the author answers these last four questions after comparing in some detail the methods used and the results obtained in the different studies of dense groups.

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  12. Dense Output for Strong Stability Preserving Runge–Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2016-12-10

    We investigate dense output formulae (also known as continuous extensions) for strong stability preserving (SSP) Runge–Kutta methods. We require that the dense output formula also possess the SSP property, ideally under the same step-size restriction as the method itself. A general recipe for first-order SSP dense output formulae for SSP methods is given, and second-order dense output formulae for several optimal SSP methods are developed. It is shown that SSP dense output formulae of order three and higher do not exist, and that in any method possessing a second-order SSP dense output, the coefficient matrix A has a zero row.

  13. Nanolipoprotein particles and related methods and systems for protein capture, solubilization, and/or purification

    Energy Technology Data Exchange (ETDEWEB)

    Chromy, Brett A.; Henderson, Paul; Hoeprich, Jr, Paul D.

    2016-10-04

    Provided herein are methods and systems for assembling, solubilizing and/or purifying a membrane associated protein in a nanolipoprotein particle, which comprise a temperature transition cycle performed in presence of a detergent, wherein during the temperature transition cycle the nanolipoprotein components are brought to a temperature above and below the gel to liquid crystalling transition temperature of the membrane forming lipid of the nanolipoprotein particle.

  14. Sludge disintegration techniques - assessment of their impacts on solubilization of organic carbon and methane production

    OpenAIRE

    Fatoorehchi, Elham

    2016-01-01

    In the present thesis, ozone, sodium hydroxide and ultrasound were conducted to disintegrate the excess sludge prior to anaerobic digestion with the aim of improving methane production. The impacts of different sludge disintegration methods on the molecular size distribution of DOC solubilized after disintegration were investigated using size exclusion chromatography with online organic carbon detection (SEC-OCD).

  15. Comparison of Yeast Cell Protein Solubilization Procedures for Two-dimensional Electrophoresis

    DEFF Research Database (Denmark)

    Harder, A; Wildgruber, R; Nawrocki, A

    1999-01-01

    Three different procedures for the solubilization of yeast (S. cerevisiae) cell proteins were compared on the basis of the obtained two-dimensional (2-D) polypeptide patterns. Major emphasis was laid on minimizing handling steps, protein modification or degradation, and quantitative loss of high...... with sodium dodecyl sulfate (SDS) buffer, consisting of 1% SDS and 100 mM tris(hydroxymethyl)aminomethane (Tris)-HCl, pH 7.0, followed by dilution with "standard" lysis buffer, and (iii) boiling the sample with SDS during cell lysis, followed by dilution with thiourea/urea lysis buffer (2 M thiourea/ 7 M urea...

  16. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil.

    Science.gov (United States)

    Park, Ki-Hyun; Lee, O-Mi; Jung, Ho-Il; Jeong, Jin-Ha; Jeon, Young-Dong; Hwang, Dae-Youn; Lee, Chung-Yeol; Son, Hong-Joo

    2010-04-01

    We isolated and characterized novel insoluble phosphate (P)-solubilizing bacteria tolerant to environmental factors like high salt, low and high pHs, and low temperature. A bacterium M6 was isolated from a ginseng rhizospheric soil and confirmed to belong to Burkholderia vietnamiensis by BIOLOG system and 16S rRNA gene analysis. The optimal cultural conditions for the solubilization of P were 2.5% (w/v) glucose, 0.015% (w/v) urea, and 0.4% (w/v) MgCl(2).6H(2)O along with initial pH 7.0 at 35 degrees C. High-performance liquid chromatography analysis showed that B. vietnamiensis M6 produced gluconic and 2-ketogluconic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with P solubilization. Insoluble P solubilization in the optimal medium was about 902 mg l(-1), which was approximately 1.6-fold higher than the yield in NBRIP medium (580 mg l(-1)). B. vietnamiensis M6 showed resistance against different environmental stresses like 10-45 degrees C, 1-5% (w/v) salt, and 2-11 pH range. The maximal concentration of soluble P produced by B. vietnamiensis M6 from Ca(3)(PO(4))(2), CaHPO(4), and hydroxyapatite was 1,039, 2,132, and 1,754 mg l(-1), respectively. However, the strain M6 produced soluble P with 20 mg l(-1) from FePO(4) after 2 days and 100 mg l(-1) from AlPO(4) after 6 days, respectively. Our results indicate that B. vietnamiensis M6 could be a potential candidate for the development of biofertilizer applicable to environmentally stressed soil.

  17. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    Science.gov (United States)

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  18. Assessing in vitro solubilization potential of different zinc solubilizing bacterial (zsb isolates Avaliação in vitro do potencial de solubilização de diferentes bactérias solubilizadoras de zinco (zsb

    Directory of Open Access Journals (Sweden)

    Venkatakrishnan Sivaraj Saravanan

    2004-06-01

    Full Text Available Zinc solubilizing ability of Bacillus sp. and Pseudomonas sp. was assessed using zinc oxide, zinc sulphide (sphalerite and zinc carbonate in both plate and broth assays. ZSB-O-1 (Bacillus sp. showed highest dissolution in the zinc sulphide (Sphalerite ore, with 2.80 cm of dissolution zone and 14.50 cm² of area in the plate assay and 13.60 mg kg-1 of zinc in the broth assay on the 15th day after inoculation. The ZSB-S-2 (Pseudomonas sp. showed more solubilizing ability in the zinc oxide, with 3.30 cm clearing zone and 20.43 cm² area in the plate assay and 16.40 mg kg-1 of zinc in the broth assay over the same inoculation period. The isolate ZSB-S-4 (Pseudomonas sp. has highest solubilizing potential in zinc carbonate with 6.20 cm of dissolution zone and 13.40 cm² area in the plate assay and 13.40 mg kg-1 of zinc in the broth assay. Thus, the solubilization potential varies among different cultures. The solubilization might be due to production of acids by the culture, since the pH of the culture broth has been shifted form 7.0-7.3 to 4.8-6.5 after 15 days of inoculation. The zinc tolerance limit for two cultures (ZSB-O-1 and ZSB-S-2 was studied and determined to be upto 100 mg kg-1 of zinc in the in vitro broth assay.A capacidade de Bacillus sp. e Pseudomonas sp. solubilizar zinco foi avaliada usando óxido de zinco, sulfeto de zinco e carbonato de zinco, em ensaios em placas e em caldo. A cultura ZSB-O-1 (Bacillus sp. apresentou maior dissolução no sulfeto de zinco, com 2,80 cm de zona de dissolução e 14,50 cm² de área no ensaio em placa e 13,60 mg kg-1 de zinco no ensaio em caldo, no 15º dia de incubação. A cultura ZSB-S-2 (Pseudomonas sp. apresentou maior capacidade de dissolução no óxido de zinco, com 3,30 cm de zona de dissolução e 20,43 cm² de área no ensaio em placa e 16,40 mg kg-1 de zinco no ensaio em caldo no mesmo período de inoculação. A cultura ZSB-S-4 (Pseudomonas sp. apresentou maior potencial de solubiliza

  19. Preparation and characterization of nanostructured ZrO2 coatings on dense and porous substrates

    International Nuclear Information System (INIS)

    Shi Jingyu; Verweij, Henk

    2008-01-01

    Nanostructured ZrO 2 coatings are prepared on both dense and porous substrates by wet-chemical deposition of non-agglomerated 5 nm precursor particle dispersions, followed by thermal processing. The precursor particle dispersions are made by modified emulsion precipitation and a purification treatment to remove reaction products and additives. The coatings are formed by depositing the precursor nanoparticle dispersion directly onto the substrate, followed by drying and heating at 600 deg. C. Scanning electron microscopy and cross-sectional transmission electron microscopy observations of the heat-treated coatings indicate that the ZrO 2 coating on dense Si wafer substrate has a homogeneous, dense particle packing structure with shallow meniscus-shaped depressions in the surface, and microcracks below the meniscus surface. On the other hand, coatings formed on a meso-porous γ-alumina membrane substrate are free of defects, but with a lower packing density. The mechanism of the substrate effect on the particle packing behavior and defect formation during coating deposition is discussed. It is expected that by using a thin porous substrate with reduced capillary force, a defect-free, homogenously dense-packed coating structure can be achieved

  20. Evolution of dense spatially modulated electron bunches

    Science.gov (United States)

    Balal, N.; Bratman, V. L.; Friedman, A.

    2018-03-01

    An analytical theory describing the dynamics of relativistic moving 1D electron pulses (layers) with the density modulation affected by a space charge has been revised and generalized for its application to the formation of dense picosecond bunches from linear accelerators with laser-driven photo injectors, and its good agreement with General Particle Tracer simulations has been demonstrated. Evolution of quasi-one-dimensional bunches (disks), for which the derived formulas predict longitudinal expansion, is compared with that for thin and long electron cylinders (threads), for which the excitation of non-linear waves with density spikes was found earlier by Musumeci et al. [Phys. Rev. Lett. 106(18), 184801 (2011)] and Musumeci et al. [Phys. Rev. Spec. Top. -Accel. Beams 16(10), 100701 (2013)]. Both types of bunches can be used for efficiency enhancement of THz sources based on the Doppler frequency up-shifted coherent spontaneous radiation of electrons. Despite the strong Coulomb repulsion, the periodicity of a preliminary modulation in dense 1D layers persists during their expansion in the most interesting case of a relatively small change in particle energy. However, the period of modulation increases and its amplitude decreases in time. In the case of a large change in electron energy, the uniformity of periodicity is broken due to different relativistic changes in longitudinal scales along the bunch: the "period" of modulation decreases and its amplitude increases from the rear to the front boundary. Nevertheless, the use of relatively long electron bunches with a proper preliminary spatial modulation of density can provide a significantly higher power and a narrower spectrum of coherent spontaneous radiation of dense bunches than in the case of initially short single bunches with the same charge.

  1. Effect of microwaves on solubilization of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shahriari, H.; Warith, M.; Kennedy, K.J. [Ottawa Univ., Ottawa, ON (Canada). Dept. of Civil Engineering

    2009-07-01

    Landfilling is the most common method for disposing of municipal solid waste (MSW) in North America. MSW consists of nonbiodegradable fractions as well as biodegradable fractions known as the organic fraction of municipal solid waste (OFMSW). Because of its high moisture content, OFMSW produces large amounts of leachate in landfills. If not treated properly, leachates can pollute groundwater and negatively affect health and the environment. This paper reported on a study that was conducted to determine the effects of microwave (MW) irradiation on the solubilization of organic fraction of municipal solid waste (OFMSW) at different temperatures, MW ramp times, and supplemental water addition (SWA). The objective was to enhance solubilization before anaerobic digestion (AD). MW pretreatment resulted in higher soluble chemical oxygen demand (sCOD), proteins and sugars in the supernatant phase. The highest increase in sCOD was achieved at 175 degrees C. For the same condition, the free liquid volume from bound water released from OFMSW into the supernatant was about 1.39 times higher than the control. The increase in potentially bio-available sCOD increased significantly to more than 200 per cent after microwaving at high temperature. It was concluded that microwaving of OFMSW at high temperature with SWA provides the best conditions for waste solubilisation in preparation for anaerobic digestion. The actual effect of MW pre-treatment on the anaerobic digestion process has yet to be determined. 49 refs., 5 tabs., 3 figs.

  2. Hydrotropic solubilization of lipophilic drugs for oral delivery: The effects of urea and nicotinamide on carbamazepine solubility-permeability interplay

    Directory of Open Access Journals (Sweden)

    Avital Beig

    2016-10-01

    Full Text Available Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs' permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility-permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility-permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ~30-fold. A concomitant permeability decrease was evident both in-vitro and in-vivo (~17-fold for nicotinamide and ~9-fold for urea, revealing a solubility-permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility-permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility-permeability balance may promote the overall goal of the formulation to maximize oral drug exposure.

  3. Hydrotropic Solubilization of Lipophilic Drugs for Oral Delivery: The Effects of Urea and Nicotinamide on Carbamazepine Solubility–Permeability Interplay

    Science.gov (United States)

    Beig, Avital; Lindley, David; Miller, Jonathan M.; Agbaria, Riad; Dahan, Arik

    2016-01-01

    Hydrotropy refers to increasing the water solubility of otherwise poorly soluble compound by the presence of small organic molecules. While it can certainly increase the apparent solubility of a lipophilic drug, the effect of hydrotropy on the drugs’ permeation through the intestinal membrane has not been studied. The purpose of this work was to investigate the solubility–permeability interplay when using hydrotropic drug solubilization. The concentration-dependent effects of the commonly used hydrotropes urea and nicotinamide, on the solubility and the permeability of the lipophilic antiepileptic drug carbamazepine were studied. Then, the solubility–permeability interplay was mathematically modeled, and was compared to the experimental data. Both hydrotropes allowed significant concentration-dependent carbamazepine solubility increase (up to ∼30-fold). A concomitant permeability decrease was evident both in vitro and in vivo (∼17-fold for nicotinamide and ∼9-fold for urea), revealing a solubility–permeability tradeoff when using hydrotropic drug solubilization. A relatively simplified simulation approach based on proportional opposite correlation between the solubility increase and the permeability decrease at a given hydrotrope concentration allowed excellent prediction of the overall solubility–permeability tradeoff. In conclusion, when using hydrotropic drug solubilization it is prudent to not focus solely on solubility, but to account for the permeability as well; achieving optimal solubility–permeability balance may promote the overall goal of the formulation to maximize oral drug exposure. PMID:27826241

  4. The effect of a fictitious peer on young children's choice of familiar v. unfamiliar low- and high-energy-dense foods.

    Science.gov (United States)

    Bevelander, Kirsten E; Anschütz, Doeschka J; Engels, Rutger C M E

    2012-09-28

    The present experimental study was the first to investigate the impact of a remote (non-existent) peer on children's food choice of familiar v. unfamiliar low- and high-energy-dense food products. In a computer task, children (n 316; 50·3 % boys; mean age 7·13 (SD 0·75) years) were asked to choose between pictures of familiar and unfamiliar foods in four different choice blocks using the following pairs: (1) familiar v. unfamiliar low-energy-dense foods (fruits and vegetables), (2) familiar v. unfamiliar high-energy-dense foods (high sugar, salt and/or fat content), (3) familiar low-energy-dense v. unfamiliar high-energy-dense foods and (4) unfamiliar low-energy-dense v. familiar high-energy-dense foods. Participants who were not in the control group were exposed to the food choices (either always the familiar or always the unfamiliar food product) of a same-sex and same-age fictitious peer who was supposedly completing the same task at another school. The present study provided insights into children's choices between (un)familiar low- and high-energy-dense foods in an everyday situation. The findings revealed that the use of fictitious peers increased children's willingness to try unfamiliar foods, although children tended to choose high-energy-dense foods over low-energy-dense foods. Intervention programmes that use peer influence to focus on improving children's choice of healthy foods should take into account children's strong aversion to unfamiliar low-energy-dense foods as well as their general preference for familiar and unfamiliar high-energy-dense foods.

  5. The radiation-induced inactivation of microorganisms in non-aqueous suspension: The effect of selective alcohols and paraffins on the radiation sensitivity of aerated Bacillus pumilus spores

    International Nuclear Information System (INIS)

    Jacobs, G.P.

    1981-01-01

    The effect of model compounds comprising alcohols and paraffins on the radiation sensitivity of B. pumilus spores has been studied with the aim of understanding the radiation-induced inactivation of microorganisms when suspended in non-aqueous medium. This study is a prerequisite to the undertaking of radiation sterilization of non-aqueous pharmaceuticals. Spores of B. pumilus E601 mounted on kaolin powder were suspended in the appropriate organic agent and gamma irradiated under oxic conditions. Spores suspended in paraffins displayed increased radiation response over that for aerated buffered suspensions. Values of inactivation constant ranged between 2 x and 5 x that for buffer. Less pronounced modification of response was obtained for the alcohols. The results reveal a marked tendency for response to increase with decreasing polarity of the supending fluid. The partial miscibility of the alcohols in water enabled the examining of the transition from the response characteristic of aerated buffered suspensions to those of the spores in pure organic liquids. (orig./MG) [de

  6. Estudo eletroquímico do azul de metileno adsorvido sobre sílica gel quimicamente modificada com óxido de nióbio

    Directory of Open Access Journals (Sweden)

    Schiavo Débora de Almeida

    2000-01-01

    Full Text Available Methylene blue (AM was immobilised on surface of the silica gel modified with niobium oxide. This material was incorporated in a carbon paste electrode, which showed a redox couple in a potential of E= -113 mV vs SCE in KCl solution at pH 7.0. The formal potential, in 0.5 mol L-1 KCl at pH 7.0, shifted about 290 mV towards more positive values compared to those observed for AM solubilized in aqueous solution. The dependence on the formal potential with solution pH between 2 and 7 was much lower than those observed for AM solubilized in aqueous solution.

  7. Method of removing niobium from uranium-niobium alloy

    International Nuclear Information System (INIS)

    Pollock, E.N.; Schlier, D.S.; Shinopulos, G.

    1992-01-01

    This patent describes a method of removing niobium from a uranium-niobium alloy. It comprises dissolving the uranium-niobium alloy metal pieces in a first aqueous solution containing an acid selected from the group consisting of hydrochloric acid and sulfuric acid and fluoboric acid as a catalyst to provide a second aqueous solution, which includes uranium (U +4 ), acid radical ions, the acids insolubles including uranium oxides and niobium oxides; adding nitric acid to the insolubles to oxidize the niobium oxides to yield niobic acid and to complete the solubilization of any residual uranium; and separating the niobic acid from the nitric acid and solubilized uranium

  8. Mesopore- and Macropore-Dominant Nitrogen-Doped Hierarchically Porous Carbons for High-Energy and Ultrafast Supercapacitors in Non-Aqueous Electrolytes.

    Science.gov (United States)

    Shao, Rong; Niu, Jin; Liang, Jingjing; Liu, Mengyue; Zhang, Zhengping; Dou, Meiling; Huang, Yaqin; Wang, Feng

    2017-12-13

    Non-aqueous electrolytes (e.g., organic and ionic liquid electrolytes) can undergo high working voltage to improve the energy densities of supercapacitors. However, the large ion sizes, high viscosities, and low ionic conductivities of organic and ionic liquid electrolytes tend to cause the low specific capacitances, poor rate, and cycling performance of supercapacitors based on conventional micropore-dominant activated carbon electrodes, limiting their practical applications. Herein, we propose an effective strategy to simultaneously obtain high power and energy densities in non-aqueous electrolytes via using a cattle bone-derived porous carbon as an electrode material. Because of the unique co-activation of KOH and hydroxyapatite (HA) within the cattle bone, nitrogen-doped hierarchically porous carbon (referred to as NHPC-HA/KOH) is obtained and possesses a mesopore- and macropore-dominant porosity with an ultrahigh specific surface area (2203 m 2 g -1 ) of meso- and macropores. The NHPC-HA/KOH electrodes exhibit superior performance with specific capacitances of 224 and 240 F g -1 at 5 A g -1 in 1.0 M TEABF 4 /AN and neat EMIMBF 4 electrolyte, respectively. The symmetric supercapacitor using NHPC-HA/KOH electrodes can deliver integrated high energy and power properties (48.6 W h kg -1 at 3.13 kW kg -1 in 1.0 M TEABF 4 /AN and 75 W h kg -1 at 3.75 kW kg -1 in neat EMIMBF 4 ), as well as superior cycling performance (over 89% of the initial capacitance after 10 000 cycles at 10 A g -1 ).

  9. Mining connected global and local dense subgraphs for bigdata

    Science.gov (United States)

    Wu, Bo; Shen, Haiying

    2016-01-01

    The problem of discovering connected dense subgraphs of natural graphs is important in data analysis. Discovering dense subgraphs that do not contain denser subgraphs or are not contained in denser subgraphs (called significant dense subgraphs) is also critical for wide-ranging applications. In spite of many works on discovering dense subgraphs, there are no algorithms that can guarantee the connectivity of the returned subgraphs or discover significant dense subgraphs. Hence, in this paper, we define two subgraph discovery problems to discover connected and significant dense subgraphs, propose polynomial-time algorithms and theoretically prove their validity. We also propose an algorithm to further improve the time and space efficiency of our basic algorithm for discovering significant dense subgraphs in big data by taking advantage of the unique features of large natural graphs. In the experiments, we use massive natural graphs to evaluate our algorithms in comparison with previous algorithms. The experimental results show the effectiveness of our algorithms for the two problems and their efficiency. This work is also the first that reveals the physical significance of significant dense subgraphs in natural graphs from different domains.

  10. Transport properties of dense matter

    International Nuclear Information System (INIS)

    Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo

    1983-01-01

    Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)

  11. Finding dense locations in indoor tracking data

    DEFF Research Database (Denmark)

    Ahmed, Tanvir; Pedersen, Torben Bach; Lu, Hua

    2014-01-01

    for semi-constrained indoor movement, and then uses this to map raw tracking records into mapping records representing object entry and exit times in particular locations. Then, an efficient indexing structure, the Dense Location Time Index (DLT-Index) is proposed for indexing the time intervals...... of the mapping table, along with associated construction, query processing, and pruning techniques. The DLT-Index supports very efficient aggregate point queries, interval queries, and dense location queries. A comprehensive experimental study with real data shows that the proposed techniques can efficiently......Finding the dense locations in large indoor spaces is very useful for getting overloaded locations, security, crowd management, indoor navigation, and guidance. Indoor tracking data can be very large and are not readily available for finding dense locations. This paper presents a graph-based model...

  12. Stable Non-Abelian Semi-Superfluid Vortices in Dense QCD

    Science.gov (United States)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    Color superconductivity is expected to be formed in high density quark matter where color symmetry is spontaneously broken in the presence of di-quark condensate. Stable non-Abelian vortices or color magnetic flux tubes exist in the color-flavor locked phase at asymptotically high density. CP2 Nambu-Goldstone (NG) bosons and Majorana fermions belonging to the triplet representation are localized around a non-Abelian vortex. We discuss the zero mode analysis and the low-energy effective world sheet theory of a non-Abelian vortex. We determine the interactions of these bosonic and fermionic modes by using the nonlinear realization method. We also discuss the Aharanov-Bohm (AB) phases of charged particles, such as, electrons, muons, and color-flavor locked mesons made of tetra-quarks encircling around a non-Abelian vortex in the presence of electro-magnetic fields. This is a review based on our recent works [1-3].

  13. Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion.

    Science.gov (United States)

    Park, Seyong; Yoon, Young-Man; Han, Seong Kuk; Kim, Daegi; Kim, Ho

    2017-06-01

    This study is an assessment of the hydrothermal pre-treatment (HTP) of poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. This assessment was carried out to ascertain the optimal HTP temperature. The solubilization and physical properties efficacy was investigated by capillary suction time (CST), time to filter (TTF), and particle size. In addition, the anaerobic digestion was investigated through biochemical methane potential (BMP) tests and subsequent statistical analysis using the modified Gompertz model. HTP was found to have improved the solubilization of the PSW sludge with increasing HTP temperature. In addition, the results of the CST, TTF, and particle size decreased with increasing HTP temperature. These results of the assessment that was conducted in this study confirm that the HTP process indeed modifies the physical properties of PSWs to enhance the solubilization of organic solids. Nevertheless, the results of the BMP tests and the modified Gompertz model analysis show that the optimal HTP temperature of PSWs for anaerobic digestion is 190°C. These findings show that to achieve high conversion efficiency, an accurately designed pre-treatment step must be included in the overall anaerobic digestion process for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium.

    Science.gov (United States)

    Gupta, Pratishtha; Kumar, Vipin

    2017-01-01

    The presence of heavy metals in the soil is a matter of growing concern due to their toxic and non-biodegradable nature. Lack of effectiveness of various conventional methods due to economic and technical constraints resulted in the search for an eco-friendly and cost-effective biological techniques for heavy metal removal from the environment. Until now, phytoremediation has emerged as an innovative technique to address the problem. However, the efficiency of phytoremediation process is hindered under the high metal concentration conditions. Hence, phosphate solubilizing microbes (PSM) assisted phytoremediation technique is gaining more insight as it can reduce the contamination load even under elevated metal stressed conditions. These microbes convert heavy metals into soluble and bioavailable forms, which consequently facilitate phytoremediation. Several studies have reported that the use of microbial consortium for remediation is considered more effective as compared to single strain pure culture. Therefore, this review paper focuses on the current trends in research related to PSM mediated uptake of heavy metal by plants. The efficiency of PSM consortia in enhancing the phytoremediation process has also been reviewed. Moreover, the role of phosphatase enzymes in the mineralization of organic forms of phosphate in soil is further discussed. Biosurfactant mediated bioremediation of metal polluted soils is a matter of extensive research nowadays. Hence, the recent advancement of using biosurfactants in enhanced phytoremediation of metal stressed soils is also described.

  15. Structure and characteristics of acid and pepsin-solubilized collagens from the skin of cobia (Rachycentron canadum).

    Science.gov (United States)

    Zeng, Shaokui; Yin, Juanjuan; Yang, Shuqi; Zhang, Chaohua; Yang, Ping; Wu, Wenlong

    2012-12-01

    Acid-solubilized collagen (ASC) and pepsin-solubilized collagen (PSC) were extracted from the skin of cobia (Rachycentron canadum). The yields of ASC and PSC were 35.5% and 12.3%, respectively. Based on the protein patterns and carboxymethyl-cellulose chromatography, ASC and PSC were composed of α1α2α3 heterotrimers and were characterised as type I collagen with no disulfide bond. Their amounts of imino acids were 203 and 191 residues per 1000 residues, respectively. LC-MS/MS analysis demonstrated the high sequences similarities of ASC and PSC. Fourier transform infrared spectroscopy spectra showed that the amide I, II and III peaks of PSC were obtained at a lower wave number compared with ASC. The thermal denaturation temperatures of ASC and PSC, as measured by viscometry, were 34.62 and 33.97°C, respectively. The transition temperatures (T(max)) were 38.17 and 36.03°C, respectively, as determined by differential scanning calorimetry (DSC). Both collagens were soluble at acidic pH and below 2% (w/v) NaCl concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Dense Breasts: Answers to Commonly Asked Questions

    Science.gov (United States)

    ... Cancer Prevention Genetics of Breast & Gynecologic Cancers Breast Cancer Screening Research Dense Breasts: Answers to Commonly Asked Questions What are dense breasts? Breasts contain glandular, connective, and fat tissue. Breast density is a term that describes the ...

  17. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jian [State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019 (United States); Sengupta, Mrinal K. [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019 (United States); Thermo Fisher Scientific, Dionex Products, 445 Lakeside Drive, Sunnyvale, CA, 94085 (United States); Yuan, Dongxing [State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019 (United States)

    2014-06-01

    Highlights: • Compilation of principal official documents and major review articles, including the toxicology and chemistry of As. • Review of non-atomic spectrometric methods for speciation and detection of arsenic in aqueous samples (2005–2013) of the performance of field-usable methods. - Abstract: Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005–2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been

  18. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods

    International Nuclear Information System (INIS)

    Ma, Jian; Sengupta, Mrinal K.; Yuan, Dongxing; Dasgupta, Purnendu K.

    2014-01-01

    Highlights: • Compilation of principal official documents and major review articles, including the toxicology and chemistry of As. • Review of non-atomic spectrometric methods for speciation and detection of arsenic in aqueous samples (2005–2013) of the performance of field-usable methods. - Abstract: Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005–2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been

  19. Infiltration characteristics of non-aqueous phase liquids in undisturbed loessal soil cores

    Institute of Scientific and Technical Information of China (English)

    WANG Yunqiang; SHAO Ming'an

    2009-01-01

    The widespread contamination of soils and aquifers by non-aqueous phase liquids (NAPL), such as crude oil, poses serious environmental and health hazards globally. Understanding the infiltration characteristics of NAPL in soil is crucial in mitigating or remediating soil contamination. The infiltration characteristics of crude and diesel oils into undisturbed loessal soil cores, collected in polymethyl methacrylate cylindrical columns, were investigated under a constant fluid head (3 cm) of either crude oil or diesel oil. The infiltration rate of both crude and diesel oils decreased exponentially as wetting depth increased with time. Soil core size and bulk density both had a significant effect on NAPL infiltration through the undisturbed soil cores; a smaller core size or a greater bulk density both reduced oil penetration to depth. Compacting soil in areas susceptible to oil spills may be an effective way to reduce contamination. The infiltration of NAPL into soil cores was spatially anisotropic and heterogeneous, thus recording the data at four points on the soil core is a good way to improve the accuracy of experimental results. Our results provided information about crude and diesel oils, rather than their components, and may have practical value for remediation of contaminated loessal soils.

  20. Non-Ideal Behavior in Solvent Extraction

    International Nuclear Information System (INIS)

    Zalupski, Peter

    2011-01-01

    This report presents a summary of the work performed to meet FCR and D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR and D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.