WorldWideScience

Sample records for solstice mission international

  1. Flight Path Control Design for the Cassini Solstice Mission

    Science.gov (United States)

    Ballard, Christopher G.; Ionasescu, Rodica

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn for just over 7 years, with a planned 7-year extension, called the Solstice Mission, which started on September 27, 2010. The Solstice Mission includes 205 maneuvers and 70 flybys which consist of the moons Titan, Enceladus, Dione, and Rhea. This mission is designed to use all available propellant with a statistical margin averaging 0.6 m/s per encounter, and the work done to prove and ensure the viability of this margin is highlighted in this paper.

  2. Cassini Solstice Mission Maneuver Experience: Year Two

    Science.gov (United States)

    Arrieta, Juan; Ballard, Christopher G.; Hahn, Yungsun

    2012-01-01

    The Cassini Spacecraft was launched in October 1997 on a mission to observe Saturn and its moons; it entered orbit around Saturn in July 2004 for a nominal four-year Prime Mission, later augmented by two extensions: the Equinox Mission, from July 2008 through September 2010, and the Solstice Mission, from October 2010 through September 2017. This paper provides an overview of the maneuver activities from August 2011 through June 2012 which include the design of 38 Orbit Trim Maneuvers--OTM-288 through OTM-326-- for attaining 14 natural satellite encounters: seven with Titan, six with Enceladus, and one with Dione.

  3. Cassini’s Discoveries at Saturn and the Proposed Cassini Solstice Mission

    Science.gov (United States)

    Pappalardo, R. T.; Spilker, L. J.; Mitchell, R. T.; Cuzzi, J.; Gombosi, T. I.; Ingersoll, A. P.; Lunine, J. I.

    2009-12-01

    Understanding of the Saturn system has been greatly enhanced by the Cassini-Huygens mission. Fundamental discoveries have altered our views of Saturn, Titan and the other icy satellites, the rings, and magnetosphere of the system. Key discoveries include: water-rich plumes emanating from the south pole of Enceladus; hints of possible activity on Dione and of rings around Rhea; a methane hydrological cycle on Titan complete with fluvial erosion, lakes, and seas of liquid methane and ethane; non-axisymmetric ring microstructure in all moderate optical depth rings; south polar vortices on Saturn; and a unique magnetosphere that shares characteristics with both Earth’s and Jupiter’s magnetospheres. These new discoveries are directly relevant to current Solar System science goals including: planet and satellite formation processes, formation of gas giants, the nature of organic material, the history of volatiles, habitable zones and processes for life, processes that shape planetary bodies, and evolution of exoplanets. The proposed 7-year Cassini Solstice Mission would address new questions that have arisen during the Cassini Prime and Equinox Missions, and would observe seasonal and temporal change in the Saturn system to prepare for future missions to Saturn, Titan, and Enceladus. The proposed Cassini Solstice Mission would provide new science in three ways. First, it would observe seasonally and temporally dependent processes on Saturn, Titan and other icy satellites, and within the rings and magnetosphere, in a hitherto unobserved seasonal phase from equinox to solstice. Second, it would address new questions that have arisen during the mission thus far, providing qualitatively new measurements (e.g. of Enceladus and Titan) which could not be accommodated in the earlier mission phases. Tthird, it would conduct a close-in mission phase at Saturn that would provide unique science including comparison to the Juno observations at Jupiter.

  4. CONSTRAINING SATURN'S CORE PROPERTIES BY A MEASUREMENT OF ITS MOMENT OF INERTIA-IMPLICATIONS TO THE CASSINI SOLSTICE MISSION

    International Nuclear Information System (INIS)

    Helled, R.

    2011-01-01

    Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to ∼2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertainty in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.

  5. Stability and lifetime testing of photomultiplier detectors for the Earth observing system SOLSTICE program

    Science.gov (United States)

    Hadler, Joshua A.; van de Kop, Toni; Drake, Virginia A.; McClintock, William E.; Murphy, John; Rodgers, Paul

    1998-10-01

    The primary objective of the Earth Observing System (EOS) Solar Stellar Irradiance Comparison Experiment (SOLSTICE) is to accurately measure the absolute value of the solar UV irradiance at the top of the earth's atmosphere for a minimum mission lifetime of 5 years. To meet this objective, SOLSTICE employs a unique design to determine changes in instrument performance by routinely observing a series of early-type stars and comparing the irradiances directly with the solar value. Although the comparison techniques allows us to track instrument performance, the success of the SOLSTICE experiment depends upon photomultiplier detectors which have graceful degradation properties. Therefore, we have established a laboratory program to evaluate the characteristics of photomultiplier tubes which are exposed to long term fluxes similar to those we expected to encounter in flight. Three types of Hamamatsu photomultiplier tubes were tested as candidates for use in the EOS-SOLSTICE project. The results of these studies: pulse height distribution; quantum efficiency; surface maps,; and lifetime analysis are presented in this paper.

  6. SORCE SOLSTICE FUV Level 3 Solar Spectral Irradiance Daily Means V012

    Data.gov (United States)

    National Aeronautics and Space Administration — The SORCE SOLSTICE Far-UV Solar Spectral Irradiance (SSI) data product SOR3SOLFUVD is constructed using measurements from the SOLSTICE FUV instrument, which are...

  7. UARS Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Solar-Stellar Irradiance Comparison Experiment (SOLSTICE) Level 3BS data product consists of daily, 1 nm resolution, solar spectral irradiances and selected...

  8. Business analysis: The commercial mission of the International Asteroid Mission

    Science.gov (United States)

    The mission of the International Asteroid Mission (IAM) is providing asteroidal resources to support activities in space. The short term goal is to initiate IAM by mining a near-Earth, hydrous carbonaceous chondrite asteroid to service the nearer-term market of providing cryogenic rocket fuel in low lunar orbit (LLO). The IAM will develop and contract for the building of the transportation vehicles and equipment necessary for this undertaking. The long-term goal is to expand operations by exploiting asteroids in other manners, as these options become commercially viable. The primary business issues are what revenue can be generated from the baseline mission, how much will the mission cost, and how funding for this mission can be raised. These issues are addressed.

  9. IAEA Sends International Fact-finding Expert Mission to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency will dispatch an international expert fact-finding mission to Japan. Based upon the agreement between the IAEA and the Government of Japan, the mission, comprising nearly 20 international and IAEA experts from a dozen countries, will visit Japan between 24 May and 2 June 2011. Under the leadership of Mr. Mike Weightman, HM Chief Inspector of Nuclear Installations of the United Kingdom, the mission will conduct fact-finding activities at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) site and in other locations. The expert mission will make a preliminary assessment of the safety issues linked with TEPCO's Fukushima Dai-ichi NPS accident following the Great East Japan Earthquake and Tsunami. During the mission, areas that need further exploration or assessment based on the IAEA safety standards will also be identified. In the course of the IAEA mission, the international experts will become acquainted with the Japanese lessons learned from the accident and will share their experience and expertise in their fields of competence with the Japanese authorities. Mr. Weightman will present the mission's report at the Ministerial Conference on Nuclear Safety organised by the IAEA in Vienna from 20 to 24 June 2011, as an important input in the process of reviewing and strengthening the global nuclear safety framework that will be launched by the Conference. (IAEA)

  10. Island of the Sun: Elite and Non-Elite Observations of the June Solstice

    Science.gov (United States)

    Dearborn, David S. P.; Bauer, Brian S.

    In Inca times (AD 1400-1532), two small islands in Lake Titicaca had temples dedicated to the sun and the moon. Colonial documents indicate that the islands were the focus of large-scale pilgrimages. Recent archaeoastronomical work suggests that rituals, attended by both elites and commoners, were held on the Island of the Sun to observe the setting sun on the June solstice.

  11. Academic general internal medicine: a mission for the future.

    Science.gov (United States)

    Armstrong, Katrina; Keating, Nancy L; Landry, Michael; Crotty, Bradley H; Phillips, Russell S; Selker, Harry P

    2013-06-01

    After five decades of growth that has included advances in medical education and health care delivery, value cohesion, and integration of diversity, we propose an overarching mission for academic general internal medicine to lead excellence, change, and innovation in clinical care, education, and research. General internal medicine aims to achieve health care delivery that is comprehensive, technologically advanced and individualized; instills trust within a culture of respect; is efficient in the use of time, people, and resources; is organized and financed to achieve optimal health outcomes; maximizes equity; and continually learns and adapts. This mission of health care transformation has implications for the clinical, educational, and research activities of divisions of general internal medicine over the next several decades.

  12. IAEA Coordinates International Mission on Remediation of Areas Off-site Fukushima Daiichi NPP

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency (IAEA) will dispatch an international expert mission to Japan to assist the country in its planning to remediate the areas off-site from the Fukushima Daiichi Nuclear Power Plant. Following a request by the Government of Japan, the mission, comprising 12 international and IAEA experts from several countries, will visit Japan between 7 and 15 October 2011 under the leadership of Mr. Juan Carlos Lentijo, General Director for Radiation Protection at Spain's nuclear regulatory authority. The team will go to several locations in the Fukushima Prefecture and conduct meetings in Tokyo with Japanese officials to: Provide assistance to Japan in its plans to manage remediation efforts; Review the country's remediation strategies, plans and work; and Share its findings with the international community. The IAEA mission will provide an opportunity for the international experts to exchange views with the Japanese authorities involved in the decontamination effort and other interested parties. It will also provide an opportunity for the IAEA to take stock of lessons learned from this important decontamination initiative. At the end of the mission a preliminary summary report will be provided to the Government of Japan and be made publically available. The team is also planning to hold a press briefing at the end of the mission. The final report of the mission will be presented to the Government in the month following the conclusion of the mission. Background The accident at Fukushima Daiichi Nuclear Power Plant has led to the radiological contamination of large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA organized an International Fact Finding Expert Mission Of The Fukushima Daiichi Nuclear Power Plant Accident Following The Great East Japan Earthquake And Tsunami, which was held between 24 May and 2 June 2011. The current mission is a

  13. Mission X: Train Like an Astronaut. International Fitness Challenge

    Science.gov (United States)

    Lloyd, Charles

    2011-01-01

    The Mission X, Train like an Astronaut, pilot project was a 2-year effort directed by the International Life Science Working Group. The pilot was funded by the Human Research Program and was lead by the Human Research Program Education and Outreach (HRPEO) project and supported by a group of space agencies providing in-kind resources. The aim was to identify an international educational outreach concept that would promote a life science topic utilizing the education and outreach expertise of the various space agencies working on the utilization of the International Space Station. This in turn serves as an inspiration for the younger generation to aspire to go further in school, and provides insight into the capability of a participating country to ensure the effort provided value for their communities and children. The pilot project developed the necessary tools to promote communications between the partners and to use materials and expertise from all the countries? space agencies. The Mission X Website (trainlikeanastronaut.org) provided a single repository for the educational activities as well as a place for the Challenge Teams to provide their progress in the international fitness challenge. It also added to the International flavor as different countries were able to share and learn about what was happening with all those involved in the 6-week challenge period. A point system was utilized to promote constructive, cooperative competition in which 4164 students participated. The points were used to help FitKid, Astro Charlie, "Walk-To-The-Moon". The 18 physical and educational Mission X activities were made available on the Mission X website in seven languages. The Mission X pilot project was considered a success in 1) the design, development, and implementation of the multi-language website, 2) the expansion of healthy lifestyle awareness, and 3) the concept for drawing an international educational community together to highlight global topics in association

  14. Astronomy from the Moon and International Lunar Observatory Missions

    Science.gov (United States)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  15. A Management Model for International Participation in Space Exploration Missions

    Science.gov (United States)

    George, Patrick J.; Pease, Gary M.; Tyburski, Timothy E.

    2005-01-01

    This paper proposes an engineering management model for NASA's future space exploration missions based on past experiences working with the International Partners of the International Space Station. The authors have over 25 years of combined experience working with the European Space Agency, Japan Aerospace Exploration Agency, Canadian Space Agency, Italian Space Agency, Russian Space Agency, and their respective contractors in the design, manufacturing, verification, and integration of their elements electric power system into the United States on-orbit segment. The perspective presented is one from a specific sub-system integration role and is offered so that the lessons learned from solving issues of technical and cultural nature may be taken into account during the formulation of international partnerships. Descriptions of the types of unique problems encountered relative to interactions between international partnerships are reviewed. Solutions to the problems are offered, taking into consideration the technical implications. Through the process of investigating each solution, the important and significant issues associated with working with international engineers and managers are outlined. Potential solutions are then characterized by proposing a set of specific methodologies to jointly develop spacecraft configurations that benefits all international participants, maximizes mission success and vehicle interoperability while minimizing cost.

  16. The scientific objectives of the International Solar Polar Mission

    International Nuclear Information System (INIS)

    Wenzel, K.-P.

    1980-01-01

    The International Solar Polar Mission (I.S.P.M.), originally known as the Out-of-Ecliptic Mission, will be the first spacecraft mission to explore the third dimension of the heliosphere within a few astronomical units of the Sun and to view the Sun over the full range of heliographic latitudes. Its main objectives are to investigate, as a function of solar latitude, the properties of the interplanetary medium and the solar corona. The I.S.P.M. is a two spacecraft venture jointly conducted by E.S.A. and N.A.S.A. The two spacecraft will be injected into elliptical heliocentric orbits approximately at right angles to the ecliptic plane, by using the Jupiter gravity assist method, one northwards and the other southwards. After passing nearly above the poles of the Sun, each spacecraft crosses the ecliptic plane and passes over the other solar pole. The complete mission time from launch, foreseen for February 1983, to the second polar passage is approximately 42/3 years. This paper summarizes the main scientific objectives of the instruments to be carried on this exploratory mission. It concludes with an outline of the payload, the spacecraft, the trajectory and the mission schedule. (author)

  17. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  18. Habitability constraints/objectives for a Mars manned mission: internal architecture considerations.

    Science.gov (United States)

    Winisdoerffer, F; Soulez-Larivière, C

    1992-01-01

    It is generally accepted that high quality internal environment shall strongly support crew's adaptation and acceptance to situation of long isolation and confinement. Thus, this paper is an attempt to determine to which extent the resulting stress corresponding to the anticipated duration of a trip to Mars (1 and a half years to 2 and a half years) could be decreased when internal architecture of the spacecraft is properly designed. It is assumed that artificial gravity shall be available on board the Mars spacecraft. This will of course have a strong impact on internal architecture as far as a 1-g oriented design will become mandatory, at least in certain inhabited parts of the spacecraft. The review of usual Habitability functions is performed according to the peculiarities of such an extremely long mission. A particular attention is paid to communications issues and the need for privacy. The second step of the paper addresses internal architecture issues through zoning analyses. Common, Service and Personal zones need to be adapted to the constraints associated with the extremely long duration of the mission. Furthermore, due to the nature of the mission itself (relative autonomy, communication problems, monotony) and the type of selected crew (personalities, group structure) the implementation of a "fourth zone", so-called "recreational" zone, seems to be needed. This zoning analysis is then translated into some internal architecture proposals, which are discussed and illustrated. This paper is concluded by a reflection on habitability and recommendations on volumetric requirements. Some ideas to validate proposed habitability items through simulation are also discussed.

  19. Psychosocial issues affecting crews during long-duration international space missions

    Science.gov (United States)

    Kanas, N.

    1998-01-01

    Psychosocial issues can negatively impact on crew performance and morale during long-duration international space missions. Major psychosocial factors that have been described in anecdotal reports from space and in studies from analog situations on Earth include: 1) crew heterogeneity due to gender differences, cultural issues, and work experiences and motivations; 2) language and dialect variations; and 3) task versus supportive leadership roles. All of these factors can lead to negative sequelae, such as intra-crew tension and cohesion disruptions. Specific sequelae that can result from single factors include subgrouping and scapegoating due to crew heterogeneity; miscommunication due to major or subtle language differences; and role confusion, competition, and status leveling due to inappropriate leadership role definition. It is time to conduct research exploring the impact of these psychosocial factors and their sequelae on space crews during actual long-duration international space missions.

  20. SAC-C mission, an example of international cooperation

    Science.gov (United States)

    Colomb, F.; Alonso, C.; Hofmann, C.; Nollmann, I.

    In comp liance with the objectives established in the National Space Program, Argentina in Space 1997-2008 ((Plan Espacial Nacional, Argentina en el Espacio 1997-2008), the National Commission on Space Activities (Comisión Nacional de Actividades Espaciales - CONAE) undertook the design, construction, and launching of the SAC-C satellite in close collaboration with NASA. The purpose of this Mission is to carry out observations of interest both for the USA and Argentina, thus contributing effectively to NASA's Earth Science Program and to CONAE's National Space Program. The SAC-C is an international Earth observing satellite mission conceived as a partnership between CONAE and NASA, with additional support in instrumentation and satellite development from the Danish DSRI, the Italian ASI, the French CNES and the Brazilian INPE. A Delta II rocket successfully launched it on November 21st, 2000, from Vandenberg AFB, California, USA. Ten instruments on board the SAC-C perform different studies related to the ground and sea ecosystems, the atmosphere and the geomagnetic field. There are also technological experiments for determination of the satellite attitude and velocity as well as for the studies of the influence of space radiation on advanced electronic components . The inclusion of SAC-C in the AM Constellation, jointly with NASA satellites Landsat 7, EO 1 and Terra, is another example of important international cooperation which synergies the output of any single Mission. The Constellation has been working since March 2001 as a single mission and several cooperative activities have been undertaken including several jointly sponsored technical workshops and collaborative spacecraft navigation experiments. A flight campaign of the NASA AVIRIS instrument was performed in Argentine during January and February 2001, for calibration of SAC-C and EO 1 cameras and the development of joint scientific works. In Cordoba Space Center a jointly operated ground GPS reference

  1. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Turkey

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Turkey. The IUREP Orientation Phase mission to Turkey estimates that the Speculative Resources of that country fall within the range of 21 000 to 55 000 tonnes of uranium. This potential is expected to lie in areas of Neogene and possibly other Tertiary sediments, in particular in the areas of the Menderes Massif and Central Anatolia. The mission describes a proposed exploration programme with expenditures over a five year period of between $80 million and $110 million, with nearly half of the amount being spent on drilling. (author)

  2. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Colombia

    International Nuclear Information System (INIS)

    1984-01-01

    A full report has been released describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Colombia. The Mission suggests that the speculative uranium resources of the country could be within the very wide range of 20 000 tonnes of 220 000 tonnes of uranium metal. The Mission finds that the area with the highest potential is the Llanos Orientales (Interior Zone), which has the potential of hosting quartz-pebble conglomerate deposits, Proterozoic unconformity-related deposits and sandstone deposits. The Mission recommends that approximately US$80 million should be expended in a phased ten-year exploration programme. It is likely that the majority of the funds will be needed for drilling, followed by ground surveys and airborne radiometry. It is the opinion of the Mission that the considerable funds required for the proposed programme could most suitably be raised by inviting national or foreign commercial organizations to participate under a shared production agreement. (author)

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Burundi

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Burundi. The IUREP Orientation Phase Mission to Burundi estimates that the Speculative Resources of that country fall within the range of 300 to more than 4 100 tonnes of uranium. The potential is rather evenly distributed throughout the Proterozoic of Burundi in various geological environments (unconformity, hydrothermal, fault controlled, etc.). The mission recommends that over a period of five years U.S. $ 3 to 4.5 million be spent on exploration in Burundi, with even spending on the various exploration techniques as e.g. prospecting, drilling trenching, geophysical surveys, analyses, etc. (author)

  4. The 2015 Summer Solstice Storm: One of the Major Geomagnetic Storms of Solar Cycle 24 Observed at Ground Level

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Raulin, J. P.; Tueros, E.; de Mendonça, R. R. S.; Fauth, A. C.; Vieira de Souza, H.; Kopenkin, V.; Sinzi, T.

    2018-05-01

    We report on the 22 - 23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth's magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22 - 23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured {˜} 56° degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun-Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Uganda

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Uganda. The Mission suggest that the speculative uranium resources of the country could be within the very wide range of 0 to 105 000 tonnes of uranium metal. The Mission finds that most of these speculative resources are related to Proterozoic unconformities and to Cenozoic sandstones of the Western Rift Valley. Some potential is also associated with Post-tectonic granites. The Mission recommends to rehabilitate the Geological Survey of Uganda in order to enable it to conduct and support a uranium exploration programme for unconformity related and for standstone hosted uranium deposits. Recommended exploration methods encompass geological mapping and compilation, an airborne gamma-ray spectrometer survey north of 1 deg. North latitude, stream sediment sampling, and ground scintillometric surveys in favourable areas. Follow up work should include VLF-EM surveys, emanometry and drilling. (author)

  6. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Somalia

    International Nuclear Information System (INIS)

    1985-01-01

    A full report has been compiled describing the findings of the International Uranium Resources Evaluation Project (IUREP) Orientation Phase Mission to Somalia. The Mission suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US$ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat imagery interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas. (author)

  7. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Portugal

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Portugal. The IUREP Orientation Phase mission to Portugal estimates that the Speculative Resources of that country fall within the range 20,000 to 80,000 tonnes uranium. The majority of this potential is expected to be located in intergranitic vein deposits and in pre-Ordovician schists, but other favourable geological environments include episyenites and Meso-Cainozoic continental sediments. The mission recommends that approximately US$25 million be spent on exploration in Portugal over the next 10 years. The majority of this ($18 million) would be spent on drilling, with a further $7 million on surface surveys and airborne radiometric surveys. It is the opinion of the IUREP Orientation Phase Mission that the considerable funding required for the outlined programme would most suitably be realized by inviting national or foreign commercial organisations to participate in the exploration effort under a partnership or shared production arrangements. (author)

  8. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Venezuela

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Venezuela. The IUREP Orientation Phase mission to Venezuela estimates that the Speculative Resources of that country fall within the range 2,000 to 42,000 tonnes uranium.- The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the Guayana Shield. Other potentially favorable geologic environments include Cretaceous phosphorite beds, continental sandstone and granitic rocks. The mission recommends that approximately US $18 million be spent on exploration in Venezuela over the next five years. The majority of this expenditure would be for surface surveys utilizing geologic studies, radiometric and geochemical surveys and some drilling for geologic information. Additional drilling would be required later to substantiate preliminary findings. (author)

  9. Aligning internal organizational factors with a service excellence mission: an exploratory investigation in health care.

    Science.gov (United States)

    Ford, Robert C; Sivo, Stephen A; Fottler, Myron D; Dickson, Duncan; Bradley, Kenneth; Johnson, Lee

    2006-01-01

    In today's competitive health care environment, service excellence is rapidly becoming a major differentiating advantage between health care providers. Too often, senior executives talk about their commitment to a mission statement that extols the virtues of providing world class service to their patients only to undermine those statements with what they do, write, and say. This article presents an exploratory investigation into a new application of an internal mission alignment instrument that seeks to assess the extent to which an organization's internal processes are aligned with its service mission. This instrument was sent to 250 randomly selected employees from all clinical departments of a large southeastern hospital to explore the underlying alignment factors. A factor analysis of the data revealed eight factors that predicted beneficial employee outcomes such as organizational commitment and satisfaction with the job and organization.

  10. Solar tides in the equatorial upper thermosphere: A comparison between AE-E data and the TIGCM for solstice, solar minimum conditions

    International Nuclear Information System (INIS)

    Burrage, M.D.; Storz, M.F.; Abreu, V.J.; Fesen, C.G.; Roble, R.G.

    1991-01-01

    Equatorial thermospheric tidal temperatures and densities inferred from Atmosphere Explorer E (AE-E) mass spectrometer data are compared with theoretical predictions from the National Center for Atmospheric Research Thermosphere/Ionisphere General Circulation Model (TIGCM) for solar minimum, solstice conditions. The thermospheric diurnal and semidiurnal tides are excited in situ by solar heating and by ion-neutral momentum coupling. Semidiurnal tides are also generated by upward propagating waves excited by heating in the lower atmosphere. The model calculations include all of these sources. The TIGCM reproduces the gross tidal features observed by the satellite, including the midnight temperature anomaly, and the diurnal phases are in good agreement for the densities of atomic oxygen and molecular nitrogen. However, for the neutral temperature, the predicted phases are 1-2 hours earlier than observed. In addition, the diurnal temperature and density amplitudes predicted by the model are considerably weaker than indicated by the AE-E measurements. The semidiurnal variations found in the observations agree well with the model for December solstice but not for June. The present results indicate that upward propagating tides from the lower atmosphere are responsible for at least half of the amplitude of the semidiurnal tide in the upper thermosphere

  11. Post-midnight equatorial irregularity distributions and vertical drift velocity variations during solstices

    Science.gov (United States)

    Su, S.-Y.; Liu, C. H.; Chao, C.-K.

    2018-04-01

    Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.

  12. The medical contribution to assessing allegations of torture in international fact-finding missions.

    Science.gov (United States)

    Pounder, Derrick J

    2011-05-20

    International fact-finding missions directed towards the exposure of possible ill-treatment of persons deprived of their liberty have become increasingly common within the framework of international treaties. Such country visits occur with the consent and co-operation of government, provide unfettered access to all places of detention and allow private interviews with detainees. The Committee for the Prevention of Torture of the Council of Europe, the United Nations Special Rapporteur on Torture, and the United Nations Subcommittee on Prevention of Torture all engage in such missions, and make use of a medical professional as part of the investigative team. The medical contribution to fact finding missions assessing ill-treatment of detainees includes an assessment of the conditions of detention, the regime and the medical services. Custody doctors and their records can be a rich source of information about physical ill-treatment. The interview and examination of detainees often occurs in circumstances which are far from ideal. The safety and wellbeing of the detainees, including protection from reprisals, is always paramount. A medical examination may disclose injuries corroborative of specific allegations. More often, a medical history of the effects of ill treatment and the description of resolved transient injuries provides corroboration, and also forms part of assessing the overall credibility of the detainee. Equally important is the consistency of the allegation with other evidence obtained from a wide variety of sources including the inspection of the place of alleged ill-treatment. The evolved working methods draw on the basic principles underlying police criminal investigations and crime scene examinations as well as forensic medicine. A forensic medical expert can be a useful part of the team in such international fact finding missions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Rwanda

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Rwanda. The IUREP Orientation Phase Mission to Rwanda estimates that the Speculative Resources of that country fall within the range of 500 to 5 000 tonnes of uranium. The majority of this potential is expected to be located in the Precambrian Ruzizian, especially in conjunction with tectonized pegmatoidal remobilizations of metamorphic sediments of western Rwanda. Other favourable geological environments include lamprophyric dikes and post tectonic granites of central Rwanda. The Mission recommends that over a period of five years approximately US$4.2 million be spent on exploration in Rwanda. The majority of this would be spent on airborne and ground geophysical surveys ($1.5 million) and exploration drilling ($1 million). Prospecting, trenching and tunneling and analytical work would require the remainder of the $4.2 million ($1.7 million). (author)

  14. Astrobiology: guidelines and future missions plan for the international community

    Science.gov (United States)

    French, L.; Miller, D.

    The search for extra-terrestrial life has been going on ever since humans realized there was more to the Universe than just the Earth. These quests have taken many forms including, but not limited to: the quest for understanding the biological origins of life on Earth; the deployment of robotic probes to other planets to look for microbial life; the analysis of meteorites for chemical and fossil remnants of extra - terrestrial life; and the search of the radio spectrum for signs of extra-solar intelligence. These searches so far have yielded hints, but no unambiguous proof of life with origins from off Earth. The emerging field of astrobiology studies the origin, distribution, and future of life in the Universe. Technical advances and new, though not conclusive, evidence of extinct microbial life on Mars have created a new enthusiasm for astrobiology in many nations. However, the next steps to take are not clear, and should a positive result be returned, the follow-on missions are yet to be defined. This paper reports on the results of an eight-week study by the students of the International Space University during the summer of 2002. The study created a source book that can be used by mission designers and policy makers to chart the next steps in astrobiology. In particular, the study addresses the following questions:1.What is the full set of dimensions along which we can search forextra-terrestrial life?2.What activities are currently underway by the internationalcommunity along each of these dimensions?3.What are the most effective next steps that can be taken by theinternational space community in order to further this search (from a policy,sociological and mission point of view)?4.What are the proper steps for eliminating possible contaminationof the Earth's biosphere?5.What are the issues with planetary quarantine with regards tounwanted contamination of other biospheres with terrestrial organisms? Integrating all the considerations affecting the search for

  15. Psychological characteristics of Swedish mandatory enlisted soldiers volunteering and not volunteering for international missions: an exploratory study.

    Science.gov (United States)

    Rydstedt, Leif W; Osterberg, Johan

    2013-04-01

    The purpose of this study was to assess personality traits, psychological fitness, and hardiness among conscript soldiers volunteering for international missions (n = 146), by comparing them with conscripts from the same year class and unit who did not apply for international missions (n = 275). The sample consisted of all mandatory enlisted soldiers assigned to a supply and maintenance regiment. There were no demographic differences between the groups. The volunteers reported greater stress tolerance, concern for others, extraversion, and self-confidence than the non-volunteers. There were no differences between the groups in orderliness, temper instability, or independence. Volunteers repeatedly reported greater psychological fitness for military missions and greater hardiness over the period of military service compared to the non-volunteers.

  16. Experiences in Interagency and International Interfaces for Mission Support

    Science.gov (United States)

    Dell, G. T.; Mitchell, W. J.; Thompson, T. W.; Cappellari, J. O., Jr.; Flores-Amaya, F.

    1996-01-01

    The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GFSC) provides extensive support and products for Space Shuttle missions, expendable launch vehicle launches, and routine on-orbit operations for a variety of spacecraft. A major challenge in providing support for these missions is defining and generating the products required for mission support and developing the method by which these products are exchanged between supporting agencies. As interagency and international cooperation has increased in the space community, the FDD customer base has grown and with it the number and variety of external interfaces and product definitions. Currently, the FDD has working interfaces with the NASA Space and Ground Networks, the Johnson Space Center, the White Sands Complex, the Jet propulsion Laboratory (including the Deep Space Network), the United States Air Force, the Centre National d'Etudes Spatiales, the German Spaceflight Operations Center, the European Space Agency, and the National Space Development Agency of Japan. With the increasing spectrum of possible data product definitions and delivery methods, the FDD is using its extensive interagency experience to improve its support of established customers and to provide leadership in adapting/developing new interfaces. This paper describes the evolution of the interfaces between the FDD and its customers, discusses many of the joint activities ith these customers, and summarizes key lessons learned that can be applied to current and future support.

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Bolivia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Bolivia. The IUREP Orientation Phase mission to Bolivia estimates that the Speculative Uranium Resources of that country fall within the range of 100 to 107 500 tonnes uranium. The majority of this potential is expected to be located in the Precambrian crystalline and sedimentary rocks of the southwestern part of the Central Brazilian Shield. Other potentially favourable geologic environments include Palaeozoic two mica granites and their metasedimentary hosts, Mesozoic granites and granodiorites as well as the intruded formations and finally Tertiary acid to intermediate volcanics. The mission recommends that approximately US$ 13 million be spent on exploration in Bolivia over a five-year period. The majority of this expenditure would be for airborne and surface exploration utilising geologic, magnetometric, radiometric, and geochemical methods and some pitting, trenching, tunneling and drilling to further evaluate the discovered occurrences. (author)

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Peru

    International Nuclear Information System (INIS)

    1984-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (TUREP) Mission to Peru. The IUREP Orientation Phase Mission to Peru estimates that the Speculative Resources of that country fall within the range of 6 000 to 11 000 tonnes uranium. The majority of this potential is expected to be located in Late Tertiary ignimbrites and associated sediments in the high Andes of southern Peru. Other favourable geological environments include calcretes, developed from Tertiary volcanogenic sources over the Precambrian in the Pacific Coastal desert in southern Peru, and Hercynian subvolcanic granites in the eastern Cordillera of southern Peru. The Mission recommends that over a period of five years approximately U.S. $10 million be spent on exploration in Peru. The majority of this would be spent on drilling ($5 million) and tunnelling ($2 million) with an additional $3 million on surface and airborne radiometric surveys. (author)

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Ghana

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Ghana. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of that country fall within the range of 15 000 to 40 000 tonnes of uranium. The majority of this potential is expected to be located in the Proterozoic Panafrican Mobile Belt (up to 17 000 tonnes uranium) and the Paleozoic Obosum Beds of the Voltaian basin (up to 15 000 tonnes uranium), the remainder being associated with various other geological environments. The mission recommends that over a period of three (3) years approximately U.S. $5 million) would be spent on exploration in Ghana. A major part of this (U.S $2 million) would be spent on an airborne spectrometer survey over the Voltaian basin (Obosum beds), much of the remainder being spent on ground surveys, trenching and percussion drilling. (author)

  20. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  1. A Vision for an International Multi-Sensor Snow Observing Mission

    Science.gov (United States)

    Kim, Edward

    2015-01-01

    Discussions within the international snow remote sensing community over the past two years have led to encouraging consensus regarding the broad outlines of a dedicated snow observing mission. The primary consensus - that since no single sensor type is satisfactory across all snow types and across all confounding factors, a multi-sensor approach is required - naturally leads to questions about the exact mix of sensors, required accuracies, and so on. In short, the natural next step is to collect such multi-sensor snow observations (with detailed ground truth) to enable trade studies of various possible mission concepts. Such trade studies must assess the strengths and limitations of heritage as well as newer measurement techniques with an eye toward natural sensitivity to desired parameters such as snow depth and/or snow water equivalent (SWE) in spite of confounding factors like clouds, lack of solar illumination, forest cover, and topography, measurement accuracy, temporal and spatial coverage, technological maturity, and cost.

  2. The global distribution of thermospheric odd nitrogen for solstice conditions during solar cycle minimum

    Science.gov (United States)

    Gerard, J.-C.; Roble, R. G.; Rusch, D. W.; Stewart, A. I.

    1984-01-01

    A two-dimensional model of odd nitrogen in the thermosphere and upper mesosphere is described. The global distributions of nitric oxide and atomic nitrogen are calculated for the solstice period for quiet and moderate magnetic activity during the solar minimum period. The effect of thermospheric transport by winds is investigated along with the importance of particle-induced ionization in the auroral zones. The results are compared with rocket and satellite measurements, and the sensitivity of the model to eddy diffusion and neutral winds is investigated. Downward fluxes of NO into the mesosphere are given, and their importance for stratospheric ozone is discussed. The results show that the summer-to-winter pole meridional circulation transports both NO and N(S-4) across the solar terminator into the polar night region where there is a downward vertical transport toward the mesosphere. The model shows that odd nitrogen densities at high winter latitudes are entirely controlled by particle precipitation and transport processes.

  3. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  4. Communication from the Permanent Mission of Israel to the International Atomic Energy Agency regarding nuclear export controls

    International Nuclear Information System (INIS)

    2004-01-01

    The Director General of the International Atomic Energy Agency has received a letter dated 13 July 2004 from the Permanent Mission of Israel providing information on Israel's nuclear export policies and practices. As requested by the Permanent Mission, the letter and document attached to it are reproduced herein for the information of Member States

  5. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Madagascar

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been made public which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Madagascar. The IUREP Orientation Phase Mission to Madagascar estimates the Speculative Resources of that country to be within the wide range of 4 000 to 38 000 tonnes uranium. Such resources could lie in areas with known occurrences (uranothorianite, Ft. Dauphin up to 5 000 t U, i.e. 'pegmatoids'; uranocircite, Antsirabe up to 3 000 t U in Neogene sediments; carnotiteautonite, Karoo area up to 30 000 t U in sandstones and in areas with as yet untested environments (e.g. related to unconformities and calcretes). Modifications to existing uranium exploration programmes are suggested and policy alternatives reviewed. No specific budget is proposed. (author)

  6. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  7. Bomber Deterrence Missions: Criteria To Evaluate Mission Effectiveness

    Science.gov (United States)

    2016-02-16

    international security, the practice of general deterrence usually occurs when nations feel insecure , suspicious or even hostility towards them but...both a deterrence and assurance mission even though it was not planned or advertised as such. Since the intent of this mission was partly perceived

  8. BDD-based reliability evaluation of phased-mission systems with internal/external common-cause failures

    International Nuclear Information System (INIS)

    Xing, Liudong; Levitin, Gregory

    2013-01-01

    Phased-mission systems (PMS) are systems in which multiple non-overlapping phases of operations (or tasks) are accomplished in sequence for a successful mission. Examples of PMS abound in applications such as aerospace, nuclear power, and airborne weapon systems. Reliability analysis of a PMS must consider statistical dependence across different phases as well as dynamics in system configuration, failure criteria, and component behavior. This paper proposes a binary decision diagrams (BDD) based method for the reliability evaluation of non-repairable binary-state PMS with common-cause failures (CCF). CCF are simultaneous failure of multiple system elements, which can be caused by some external factors (e.g., lightning strikes, sudden changes in environment) or by propagated failures originating from some elements within the system. Both the external and internal CCF is considered in this paper. The proposed method is combinatorial, exact, and is applicable to PMS with arbitrary system structures and component failure distributions. An example with different CCF scenarios is analyzed to illustrate the application and advantages of the proposed method. -- Highlights: ► Non-repairable phased-mission systems with common-cause failures are analyzed. ► Common-cause failures caused by internal or external factors are considered. ► A combinatorial algorithm based on binary decision diagrams is suggested

  9. Slim Battery Modelling Features

    Science.gov (United States)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  10. NASA's Planetary Science Missions and Participations

    Science.gov (United States)

    Daou, Doris; Green, James L.

    2017-04-01

    NASA's Planetary Science Division (PSD) and space agencies around the world are collaborating on an extensive array of missions exploring our solar system. Planetary science missions are conducted by some of the most sophisticated robots ever built. International collaboration is an essential part of what we do. NASA has always encouraged international participation on our missions both strategic (ie: Mars 2020) and competitive (ie: Discovery and New Frontiers) and other Space Agencies have reciprocated and invited NASA investigators to participate in their missions. NASA PSD has partnerships with virtually every major space agency. For example, NASA has had a long and very fruitful collaboration with ESA. ESA has been involved in the Cassini mission and, currently, NASA funded scientists are involved in the Rosetta mission (3 full instruments, part of another), BepiColombo mission (1 instrument in the Italian Space Agency's instrument suite), and the Jupiter Icy Moon Explorer mission (1 instrument and parts of two others). In concert with ESA's Mars missions NASA has an instrument on the Mars Express mission, the orbit-ground communications package on the Trace Gas Orbiter (launched in March 2016) and part of the DLR/Mars Organic Molecule Analyzer instruments going onboard the ExoMars Rover (to be launched in 2018). NASA's Planetary Science Division has continuously provided its U.S. planetary science community with opportunities to include international participation on NASA missions too. For example, NASA's Discovery and New Frontiers Programs provide U.S. scientists the opportunity to assemble international teams and design exciting, focused planetary science investigations that would deepen the knowledge of our Solar System. The PSD put out an international call for instruments on the Mars 2020 mission. This procurement led to the selection of Spain and Norway scientist leading two instruments and French scientists providing a significant portion of another

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Zambia

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) mission to Zambia. The IUREP Orientation Phase mission to Zambia estimates that the Speculative Resources of that country fall within the range of 33 000 and 100 000 tonnes uranium. The majority of these resources are believed to exist in the Karoo sediments. Other potentially favourable geological environments are the Precambrian Katanga sediments, as well as intrusive rocks of different chemical compositions and surficial duricrusts. Previous unofficial estimates of Zambia's Reasonably Assured Resources (RAR) and Estimated Additional Resources (EAR) are considered to be still valid: the total RAR amount to 6 000 tonnes uranium, located in Karoo (4 000 tonnes) and Katanga (2 000 tonnes) sediments, while the EAR are believed to total 4 000 tonnes being found only in Karoo sediments. The mission recommends that approximately US$ 40 million be spent on uranium exploration in Zambia over 10 years. The largest part of this expenditure would be for drilling, while the remainder should be spent on airborne and ground surveys, as well as on interpretative work on previous airborne data, Landsat imageries, etc. (author)

  12. Travelling Ionospheric Disturbances Observed During Sudden Stratospheric Warming, Equinox and Solstice Periods with Kharkiv and Millstone Hill Incoherent Scatter Radars

    Science.gov (United States)

    Goncharenko, L. P.; Panasenko, S.; Aksonova, K.; Erickson, P. J.; Domnin, I. F.

    2016-12-01

    Travelling ionospheric disturbances (TIDs) play a key role in the coupling of different ionospheric regions through momentum an energy transfer. They are thought to be mostly associated with atmospheric gravity waves and are known to strongly affect radio propagation conditions. The incoherent scatter (IS) method enables TIDs detection in such ionospheric parameters as electron density, ion and electron temperatures, and plasma velocity along radar beam, thus providing critical information needed to examine different hypothesis about association of TIDs with their sources. In 2016, several joint measuring campaigns were conducted using Kharkiv (49.6 N, 36.4 E) and Millstone Hill (42.6 N, 288.5 E) IS radars. These campaigns covered the periods of sudden stratospheric warnings (SSW) in February, vernal equinox and summer solstice. For consistency, the data acquired by radars were processed using the same data analysis methods. The results obtained show the TIDs to be detected throughout all observation intervals in February measurements. The differences found in the behavior of TIDs over Kharkiv and Millstone Hill sites may be partially explained by variations in stratospheric wind velocity vectors during SSW period. As for March equinox and June solstice, the prevailing TIDs are observed near solar terminators. Their periods vary mostly in the range of 40 - 80 minutes, relative amplitudes are about 0.05 - 0.3 of the background electron density, and the maximum values are observed at the heights of 200 - 250 km. Systematic long-term observations of wave processes in the ionosphere with multiple IS facilities can reveal interhemispheric variability in TID parameters, give better understanding the mechanisms of TID generation and propagation, and improve regional and global ionospheric models.

  13. International solar-terrestrial physics program: a plan for the core spaceflight missions

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This brochure has been prepared to describe the scope of the science problems to be investigated and the mission plan for the core International Solar-Terrestrial Physics (ISTP) Program. This information is intended to stimulate discussions and plans for the comprehensive worldwide ISTP Program. The plan for the study of the solar - terrestrial system is included. The Sun, geospace, and Sun-Earth interaction is discussed as is solar dynamics and the origins of solar winds.

  14. International partnership in lunar missions

    Indian Academy of Sciences (India)

    related to space science and Moon missions are being addressed in this conference. .... flight. The studies in India suggest that an 'aerobic' space transportation vehicle can indeed have a ... space from Earth at very, very low cost first before.

  15. Can the season of birth risk factor for schizophrenia be prevented by bright light treatment for the second trimester mother around the winter solstice?

    Science.gov (United States)

    Schwartz, Paul J

    2014-12-01

    The season of birth risk factor for schizophrenia exerts a pervasive effect on the global population, particularly at northerly latitudes. The winter infection hypothesis and the low vitamin D hypothesis are both compelling but lack conclusive clinical data. The present work develops a maternal-fetal chronobiological hypothesis for this season of birth risk factor and its prevention by maternal bright light treatment. Around the winter solstice, due to decreased sunlight, the chronobiological apparatus of the at-risk second trimester mother is characterized by a reduced amplitude circadian pacemaker, and a reduced maximum of her nocturnal plasma melatonin concentrations (MTmax) and an increased minimum of her nocturnal core body temperatures (Tmin)--both of which exert adverse effects on the fetal hippocampus and dorsal striatum. The consequences for the fetus include reduced volume and increased excitability of the hippocampus, ventral striatal dysfunction, increased presynaptic nigrostriatal dopamine transmission, and increased propensity for pathological nigrostriatal neuronal phasic firing. Thus, the maternal-fetal chronobiological hypothesis fully accounts for the fetal precursors of the major pathognomonic abnormalities in adults with schizophrenia. Bright light treatment for the second trimester mother around the winter solstice, by increasing maternal circadian amplitude, could possibly prevent the fetal hippocampal and striatal abnormalities and eliminate the season of birth risk factor for schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    Science.gov (United States)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Cameroon

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published which describes the findings of the International Uranium Resources Evaluation Project (IUREP) Mission to Cameroon. The IUREP Orientation Phase Mission to Cameroon estimates the Speculative Resources of that country to be in the order of 10 000 tonnes uranium for syenite-associated U-deposits in southern Cameroon, and in the order of 5 000 tonnes uranium for uranium deposits associated with albitized and desilicified late tectonic Panafrican granites (episyenite) and Paleozoic volcanics in northern Cameroon. No specific tonnage is given for Francevillian equivalents (DJA-Series) and for Mesozoic and Cenozoic sedimentary basins, which are thought to hold limited potential for sandstone hosted uranium. However the Douala basin, consisting of mixed marine and continental sequences merits some attention. No specific budget and programme for uranium exploration are proposed for Cameroon. Instead specific recommendations concerning specific potential environments and general recommendation concerning the methodology of exploration are made. (author)

  18. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  19. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  20. Communication of 15 May 1995 received from the Permanent Mission of Peru to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received the attached note verbale of 15 May 1995 from the Permanent Mission of Peru transmitting comments on statements made by the Director of the Atomic Energy Commission of the Republic of Ecuador, concerning possible diversion of Peruvian nuclear technology for non-peaceful purposes. As requested by the Permanent Mission of Peru, the text of the note verbale is circulated to the Member States

  1. Communication of 28 February 1995 from the Permanent Mission of Croatia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General has received a note verbale of 28 February 1995 from the Permanent Mission of Croatia to the International Atomic Energy Agency providing information on the nuclear export policies and practices of the Government of Croatia

  2. Ground operations and logistics in the context of the International Asteroid Mission

    Science.gov (United States)

    The role of Ground Operations and Logistics, in the context of the International Asteroid Mission (IAM), is to define the mission of Ground Operations; to identify the components of a manned space infrastructure; to discuss the functions and responsibilities of these components; to provide cost estimates for delivery of the spacecraft to LEO from Earth; to identify significant ground operations and logistics issues. The purpose of this dissertation is to bring a degree of reality to the project. 'One cannot dissociate development and set up of a manned infrastructure from its operational phase since it is this last one which is the most costly due to transportation costs which plague space station use' (Eymar, 1990). While this reference is to space stations, the construction and assembly of the proposed crew vehicle and cargo vehicles will face similar cost difficulties, and logistics complexities. The uniqueness of long duration space flight is complicated further by the lack of experience with human habitated, and non-refurbishable life support systems. These problems are addressed.

  3. International, private-public, multi-mission, next-generation lunar laser retroreflectors

    Science.gov (United States)

    Dell'Agnello, Simone

    2017-04-01

    for CNSA's Chang'E-4 mission). INRRI has been embarked on ESA's ExoMars lander "Schiaparelli" and it has been requested by NASA to ASI for the Mars 2020 Rover mission. LLR data are analized/simulated with the Planetary Ephemeris Program developed by CfA. INFN, UMD and MEI signed a private-public partnership, multi-mission agreement to deploy the big and the microreflectors on the Moon. Through existing MoUs between INFN and the Russian Academy of Sciences, international negotiations are also underway to propose the new lunar reflectors and the SCF_Lab services for the next robotic missions of the Russian space program. References: [1] Probing gravity with next-generation lunar la-ser ranging, M. Martini and S. Dell'Agnello, in R. Peron et al. (eds.), Gravity: Where Do We Stand?, DOI 10.1007/978-3-319-20224-2_5, Springer Inter-national Publishing, Switzerland (2016). [2] Formation flying, cosmology and general rel-ativity: a tribute to far-reaching dreams of Mino Freund, Currie, D.; Williams, J.; Dell'Agnello, S.; Monache, G.D.; Behr, B. and K. Zacny, in Springer Proceedings in Physics, vol. 150, ISBN-13: 978-3319022062, ISBN-10: 3319022067 (2014). [3] Williams, J. G., Turyshev, S. G., Boggs, D. H., Ratcliff, J. T., Lunar laser ranging science: Grav-itational physics and lunar interior and geodesy, Adv. Space Res. 37(1), 67-71 (2006). [4] Constraining spacetime torsion with Moon and Mercury, R. March, G. Bellettini, R. Taursaso, S. Dell'Agnello, Phys. Rev D 83, 104008 (2011). [5] Constraining nonminimally coupled gravity with laser ranging to the moon, N. Castel-Branco, J. Paramos, R. March and S. Dell'Agnello, in 3rd Euro-pean Lunar Symposium, Frascati, Italy (2014). [6] Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, S. Dell'Agnello et al, Adv. Space Res. 47, 822-842 (2011). [7] Advanced Laser Retroreflectors for Astro-physics and Space Science, Dell'Agnello, S., et al, Journal of Applied Mathematics and Physics, 3

  4. Maintaining a Twitter Feed to Advance an Internal Medicine Residency Program’s Educational Mission

    Science.gov (United States)

    Narang, Akhil; Arora, Vineet M

    2015-01-01

    Background Residency programs face many challenges in educating learners. The millennial generation’s learning preferences also force us to reconsider how to reach physicians in training. Social media is emerging as a viable tool for advancing curricula in graduate medical education. Objective The authors sought to understand how social media enhances a residency program’s educational mission. Methods While chief residents in the 2013-2014 academic year, two of the authors (PB, AN) maintained a Twitter feed for their academic internal medicine residency program. Participants included the chief residents and categorical internal medicine house staff. Results At the year’s end, the authors surveyed residents about uses and attitudes toward this initiative. Residents generally found the chief residents’ tweets informative, and most residents (42/61, 69%) agreed that Twitter enhanced their overall education in residency. Conclusions Data from this single-site intervention corroborate that Twitter can strengthen a residency program’s educational mission. The program’s robust following on Twitter outside of the home program also suggests a need for wider adoption of social media in graduate medical education. Improved use of data analytics and dissemination of these practices to other programs would lend additional insight into social media’s role in improving residents’ educational experiences. PMID:27731845

  5. Communication of 23 March 1995 received from the Permanent Mission of Ukraine to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 23 March 1995 from the Permanent Mission of Ukraine providing information on the nuclear export policies and practices of the Government of Ukraine

  6. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  7. 75 FR 43919 - Energy and Infrastructure Mission to Saudi Arabia: Third City Stop Added to the Trade Mission...

    Science.gov (United States)

    2010-07-27

    ... and Dhahran; and Networking receptions in two cities of the trade mission. Proposed Mission Timetable... Saudi Arabia: Third City Stop Added to the Trade Mission Itinerary AGENCY: International Trade... expansion at Jubail Industrial City II with around 20 petrochemical and infrastructure projects worth more...

  8. Communication of 31 March 1995 received from the Permanent Mission of South Africa to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 31 March 1995 from the Permanent Mission of South Africa providing information on the nuclear export policies and practices of the Government of South Africa

  9. Communication of 31 March 1995 received from the Permanent Mission of South Africa to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-12

    The Secretariat of the International Atomic Energy Agency has received a note verbale of 31 March 1995 from the Permanent Mission of South Africa providing information on the nuclear export policies and practices of the Government of South Africa.

  10. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    , the best management techniques will have been developed, implemented, and validated. A trained cadre of managers experienced with a large, complex program would then be available. Three other critical items of this approach are as follows: 1) International Cooperation/Collaboration. New paradigms and new techniques for international collaboration would be developed. These paradigms can be developed to include built-in metrics to allow for improvements ultimately to yield proven paradigms for application in the real mission. Note that since this approach is much lower cost than an actual flight mission, smaller countries that could not afford to participate in a program as large as the ISS can become partners. As a result, these nations--along with their citizens--become advocates for human space exploration as well. Since eventual human planetary exploration missions are likely to be truly international, the means for building the requisite working relationships are through cooperative research and technology development activities. 2) Commercial Partnering. Improved paradigms for commercial partnering would be developed - both U.S. and international commercial entities. An examination of what commercial entities would like to gain, what they would expect to contribute, and what NASA wants out of such a relationship would be determined to develop appropriate paradigms. Again, metrics would be included such that continual evaluations can be conducted and adjustments can be made to the working paradigms. Then, after these ground missions are completed, a proven set of paradigms (and a cadre of people trained and comfortable with their use) would be available for the actual mission. Again, since this is a much lower cost program (lower than an actual flight mission), smaller domestic and international commercial entities can participate. 3) Academic Partnering. Improved paradigms for academic partnering can be developed -- both U.S. and international academic

  11. Human exploration mission studies

    Science.gov (United States)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  12. 78 FR 57620 - Trade Mission to Philippines and Malaysia

    Science.gov (United States)

    2013-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Trade Mission to Philippines and Malaysia AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. SUMMARY: The... trade mission to Manila, Philippines and Kuala Lumpur, Malaysia scheduled for October 23-October 30...

  13. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Bolivia. Draft

    International Nuclear Information System (INIS)

    Leroy, Jacques; Mueller-Kahle, Eberhard

    1982-08-01

    The uranium exploration done so far in Bolivia has been carried out by COBOEN, partly with IAEA support, and AGIP S.p.A. of Italy, which between 1974 and 1978 explored four areas in various parts of Bolivia under a production sharing contract with COBOEN. The basic objective of the International Uranium Resources Evaluation Project (IUREP) is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploitation efforts which might be carried out in promising areas in collaboration with the country concerned'. Following the initial bibliographic study which formed Phase I of IUREP, it was envisaged that a further assessment in cooperation with, and within, the country concerned would provide a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country concerned and that these field missions and the resulting report would be known as the Orientation Phase of IUREP. The purpose of the Orientation Phase mission to Bolivia was a) to develop a better understanding of the uranium potential of the country, b) to make an estimate of the Speculative Resources of the country, c) to delineate areas favourable for the discovery of these uranium resources, d) to make recommendations as appropriate on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, e) to develop the logistical data required to carry out any possible further work, and f) to compile a report which would be immediately available to the Bolivian authorities. The mission reports contains information about a general introduction, non-uranium exploration and mining in Bolivia, manpower in exploration, geological review of Bolivia, past uranium

  14. NASA and international studies of the Solar Probe Mission

    Science.gov (United States)

    Randolph, James E.

    1992-01-01

    A review is presented summarizing the history and current status of the studies of the Solar Probe Mission by NASA and other space agencies. The technology and scientific challenges of the mission are addressed in these studies and can be met with current instrument and technology capabilities. The specific set of experiments recommended by a scientific advisory group to the NASA study for integration into the design concept is discussed.

  15. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-Site the Fukushima Daiichi Nuclear Power Plant, Tokyo and Fukushima Prefecture, Japan, 14-21 October 2013. Final Report

    International Nuclear Information System (INIS)

    2014-01-01

    In October 2011, the IAEA conducted an International Mission to Japan to support the remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). In response to the request made by the Government of Japan, in October 2013, the IAEA organized a follow-up International Mission on remediation of large contaminated areas off-site TEPCO's Fukushima Daiichi NPP (hereinafter referred to as the 'Follow-up Mission' or the 'Mission') with the main purpose of evaluating the progress of the on-going remediation works achieved since the previous mission in October 2011. The Follow-up Mission Team involved 13 international experts. Additionally, 3 experts of the Working Group 5 (Subgroup 5.2, Remediation) in charge of preparing the IAEA Report on TEPCO Fukushima Daiichi Accident accompanied the Mission as observers to obtain first-hand information for the report. The Follow-up Mission had the following three objectives: 1. To provide assistance to Japan in assessing the progress made with the remediation of the Special Decontamination Area (not included in the previous mission of 2011) and the Intensive Contamination Survey Areas; 2. To review remediation strategies, plans and works, in view of the advice provided by the previous mission on remediation of large contaminated off-site areas; and 3. To share its findings with the international community as lessons learned. The Mission was conducted through the assessment of information provided to the Team and by means of professional and open discussions with the relevant institutions in Japan, including national, prefectural and local institutions. The Japanese authorities provided comprehensive information on their remediation programme. The Mission Team visited the affected areas, including several sites where activities on remediation were conducted. The Team also visited some temporary storage sites for radioactive waste and soil generated in the remediation activities, as well as a

  16. Cassini-Huygens Science Highlights: Surprises in the Saturn System

    Science.gov (United States)

    Spilker, Linda; Altobelli, Nicolas; Edgington, Scott

    2014-05-01

    The Cassini-Huygens mission has greatly enhanced our understanding of the Saturn system. Fundamental discoveries have altered our views of Saturn, its retinue of icy moons including Titan, the dynamic rings, and the system's complex magnetosphere. Launched in 1997, the Cassini-Huygens spacecraft spent seven years traveling to Saturn, arriving in July 2004, roughly two years after the northern winter solstice. Cassini has orbited Saturn for 9.5 years, delivering the Huygens probe to its Titan landing in 2005, crossing northern equinox in August 2009, and completing its Prime and Equinox Missions. It is now three years into its 7-year Solstice mission, returning science in a previously unobserved seasonal phase between equinox and solstice. As it watches the approach of northern summer, long-dark regions throughout the system become sunlit, allowing Cassini's science instruments to probe as-yet unsolved mysteries. Key Cassini-Huygens discoveries include icy jets of material streaming from tiny Enceladus' south pole, lakes of liquid hydrocarbons and methane rain on giant Titan, three-dimensional structures in Saturn's rings, and curtain-like aurorae flickering over Saturn's poles. The Huygens probe sent back amazing images of Titan's surface, and made detailed measurements of the atmospheric composition, structure and winds. Key Cassini-Huygens science highlights will be presented. The Solstice Mission continues to provide new science. First, the Cassini spacecraft observes seasonally and temporally dependent processes on Saturn, Titan, Enceladus and other icy satellites, and within the rings and magnetosphere. Second, it addresses new questions that have arisen during the mission thus far, for example providing qualitatively new measurements of Enceladus and Titan that could not be accommodated in the earlier mission phases. Third, it will conduct a close-in mission at Saturn yielding fundamental knowledge about the interior of Saturn. This grand finale of the

  17. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author) [fr

  18. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Morocco

    International Nuclear Information System (INIS)

    1985-01-01

    A report has recently been published on the findings of the mission to Morocco under the International Uranium Resources Evaluation Project (IUREP) Orientation Phase. The IUREP Orientation Phase Mission estimates that the speculative resources of Morocco range from 70 000 to 180 000 tonnes of uranium, half of which could be expected to occur in the Northern Provinces, which are relatively well explored, and the other half in the little explored Southern Provinces. In the north, speculative resources are fairly evenly distributed among the various types of deposit, in particular vein deposits (intragranitic and contact) linked with Hercynian and Precambrian blocks, the sandstone type deposits linked with Mesozoic strata and the volcanogenic deposits, especially of Precambrian age. The potential for large high-grade deposits, especially for those linked with unconformities and linear albitites, has been little investigated in Morocco and is chiefly thought to lie in the Precambrian in the Anti-Atlas and Southern Provinces. Here, the presence of acid volcanic rock reinforces the uranium potential, and there is also some potential for calcrete-related deposits. Phosphate-related uranium, to be recovered shortly, constitutes by far the largest reserves in Morocco, estimated at about 7 million tonnes of recoverable uranium. Recommendations have been made for further study of known occurrences and identification of new ones, such as unconformity and albitite-related deposits. (author)

  19. Titan Orbiter Aerorover Mission

    Science.gov (United States)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  20. Real-Time Risk and Fault Management in the Mission Evaluation Room for the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Novack, S.D.

    2003-05-30

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probabilistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed tool set will be a ''Mission Success Framework'' designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  1. Real-Time Risk and Fault Management in the Mission Evaluation Room of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    William R. Nelson; Steven D. Novack

    2003-05-01

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probablistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed toolset will be a "Mission Success Framework" designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  2. Note to the Secretariat from the Permanent Mission of the Czech and Slovak Federal Republic to the International Organizations in Vienna

    International Nuclear Information System (INIS)

    1993-01-01

    The document reproduces the Note received by the Director General from the Permanent Mission of the Czech and Slovak Federal Republic to the International Organizations in Vienna in connection with the dissolution of the CSFR on 31 December 1992

  3. Internationally coordinated multi-mission planning is now critical to sustain the space-based rainfall observations needed for managing floods globally

    International Nuclear Information System (INIS)

    Reed, Patrick M; Herman, Jonathan D; Chaney, Nathaniel W; Wood, Eric F; Ferringer, Matthew P

    2015-01-01

    At present 4 of 10 dedicated rainfall observing satellite systems have exceeded their design life, some by more than a decade. Here, we show operational implications for flood management of a ‘collapse’ of space-based rainfall observing infrastructure as well as the high-value opportunities for a globally coordinated portfolio of satellite missions and data services. Results show that the current portfolio of rainfall missions fails to meet operational data needs for flood management, even when assuming a perfectly coordinated data product from all current rainfall-focused missions (i.e., the full portfolio). In the full portfolio, satellite-based rainfall data deficits vary across the globe and may preclude climate adaptation in locations vulnerable to increasing flood risks. Moreover, removing satellites that are currently beyond their design life (i.e., the reduced portfolio) dramatically increases data deficits globally and could cause entire high intensity flood events to be unobserved. Recovery from the reduced portfolio is possible with internationally coordinated replenishment of as few as 2 of the 4 satellite systems beyond their design life, yielding rainfall data coverages that outperform the current full portfolio (i.e., an optimized portfolio of eight satellites can outperform ten satellites). This work demonstrates the potential for internationally coordinated satellite replenishment and data services to substantially enhance the cost-effectiveness, sustainability and operational value of space-based rainfall observations in managing evolving flood risks. (letter)

  4. Internal Audit Service | Internal Audit Service

    Science.gov (United States)

    their internal auditing function in the areas of professional excellence, quality of service and Students and teachers Media Internal Audit Service Navbar Toggle Home About the Staff Risk Assessment and Planning Internal Audit Process Search for Search Home The mission of the Fermilab Internal Audit Service

  5. STUDY REGARDING DIFFERENT TYPES OF AUDITOR’S MISSIONS

    Directory of Open Access Journals (Sweden)

    Daniel Botez

    2013-12-01

    Full Text Available After the involvement of the audit profession in several financial scandals, the international body of the profession, International Federation of Accountants – IFAC, has developed and published a conceptual framework and reviewed most of the reference standards in auditing to provide references regarding the responsibility of the professionals and the extent of their missions. Thus was established the use of a general term for professionals, the “practitioner”, in the context of specific missions using the “auditor”, “practitioner” or “accountant”. On the other hand, have been revised professional standards establish insurance missions and non-insurance operations, with their specific missions that do not provide insurance, including the recoding. The use of these references by audit professionals constitutes one of the “keys” to their success.

  6. Diurnal Variations of Emissions of O2 singlet Delta Near Mars' Northern Summer Solstice

    Science.gov (United States)

    Nosowitz, Jonathon; Ziobron, Elijah; Novak, Robert E.

    2017-10-01

    We are presenting results of O2 singlet Delta emission, a tracer for ozone, in the Martian atmosphere for observations taken before Mars’ Northern summer solstice (Ls = 88o, February 10, 2014 ). The data were taken using CSHELL on the NASA-IRTF telescope located on Mauna Kea in Hawaii. The slit was positioned east-west on Mars and we observed diurnal variations at 20o N and 60o N. Spectral/spatial images were taken with a spectral resolution above 38,000. Mars’ relative velocity of -16 km/s enabled us to separate the Martian emission lines from the telluric absorption lines. Raw images were cleaned by removing dead and hot pixels. The images were then adjusted so that the spatial dimension was perpendicular to the spectral dimension. Extracts at 0.6 arcsec spatial resolution were taken which allowed us to measure Martian emission peaks. The Martian data were calibrated by taking similar observations from a standard star (HR4689) using the temperature, wavelength, and intensity of the star to calibrate the flux density. A Boltzmann analysis was performed on the observed emission peaks to obtain the rotational temperature of the excited O2. From this, the total emission rates were obtained. We found that at both latitudinal locations, the greatest emissions occured between 12:00- 13:00 local time on Mars. The emission intensity increases during the morning hours and then decreases towards sunset. We thank the administration and staff of the NASA-IRTF for observation time and for their assistance during operations of the telescope. We also thank Drs. M. Mumma and G. Villanueva of the NASA Goddard Space Flight Center with whom we collaborate.

  7. [Impacts on repeated common cold for the adults with different constitutions treated by acupoint application in the dog days and the three nine-day periods after the winter solstice].

    Science.gov (United States)

    Lou, Bi-Dan; Yang, Li-Bai; Zhang, Wei; Li, Jin-Xiang; Li, Xiao-Ping; Li, Wu; Yang, Shu-Quan; Huang, Xiang-Hong; Liu, Xing-Ping; Cao, Yue; Pan, Jiang

    2012-11-01

    To observe the impacts on repeated common cold for the adults with different constitutions treated by acupoint application in the dog days (the three periods of the hottest days) and the three nine-day periods after the winter solstice (the three periods of the coldest days). One hundred and fifty-two cases of repeated common cold were divided into four zones according to the body constitution. Each zone was sub-divided into a group of the dog days + the three nine-day periods of the coldest days (group A), and a simple group of the dog periods (group B). In both groups, Dazhui (GV 14), Feishu (BL 13), Tiantu (CV 22), Danzhong (CV 17), Zhongfu (LU 1) and Shenshu (BL 23) were selected. In group A, the acupoint application was given on the 1st or 2nd day of the first, second and third periods of the hottest days in 2010, as well as the 1st or 2nd day of the first, second and third periods of the coldest days in 2010 separately. In group B, the acupoint application was only given on the 1st or 2nd day of the first, second and third periods of the hottest days in 2010. The follow-up visit was conducted before the acupoint application in the three periods of the coldest days in 2010 and before the acupoint application in the three periods of the hottest days in 2011. Additionally, the frequency of disease attack and the symptom score in sickness were taken as the observation indices for the efficacy assessment in both groups. (1) In both groups, the attack frequency was reduced obviously in half a year after the three periods of the hottest days for the patients of qi deficiency constitution, yang deficiency constitution and qi stagnation constitution and the clinical symptom score were reduced apparently (all Pcoldest days for the patients of those four constitutions as compared with those before treatment (all Pcoldest days, the efficacy for reducing the attack frequency and the improvements in the clinical symptoms were better than those in group B (all P<0.01). The

  8. The OICETS mission

    Science.gov (United States)

    Jono, Takashi; Arai, Katsuyoshi

    2017-11-01

    The Optical Inter-orbit Communications Engineering Test Satellite (OICETS) was successfully launched on 23th August 2005 and thrown into a circular orbit at the altitude of 610 km. The main mission is to demonstrate the free-space inter satellite laser communications with the cooperation of the Advanced Relay and Technology Mission (ARTEMIS) geostationary satellite developed by the European Space Agency. This paper presents the overview of the OICETS and laser terminal, a history of international cooperation between Japan Aerospace Exploration Agency (JAXA) and ESA and typical results of the inter-orbit laser communication experiment carried out with ARTEMIS.

  9. IAEA Completes Nuclear Security Review Mission in Hungary

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A team of International Atomic Energy Agency (IAEA) experts today completed a mission to review nuclear security practices in Hungary. At the request of the Government of Hungary, the IAEA conducted the two-week International Physical Protection Advisory Service (IPPAS) mission that reviewed the nation's nuclear security-related legislative and regulatory framework, physical protection systems at Hungarian nuclear facilities, and security arrangements applied to the transport of nuclear and radioactive materials. The IAEA team was led by Stephen Ortiz of the United States and included nine experts from six nations and the IAEA. The team met in Budapest with officials from the Hungarian Atomic Energy Authority, Hungarian Police Headquarters, National Security Authority and other relevant agencies. They also conducted site visits to the Paks Nuclear Power Plant, the Interim Spent Fuel Storage Facility, the Budapest Research Reactor, the Budapest Training Reactor, the Radioactive Waste Treatment and Disposal Facility and several other locations where high activity radioactive sources are used for different applications. ''At a time where development of a nuclear power programme is more than ever recognised as necessitating a strong commitment to safety, security and sustainability, the example given today by Hungary strengthens the message about the value of applying the IAEA Security Guidance,'' said IAEA Deputy Director General for Nuclear Safety and Security, Denis Flory, who opened the mission. ''Indeed, IPPAS missions, carried out at the appropriate time in the development of a nuclear power programme, provide valuable insights into how best to reach that goal.'' The IPPAS team concluded that nuclear security within Hungary has been significantly enhanced in recent years. The team also identified a number of good practices at the nation's nuclear facilities, and provided some recommendations and suggestions to assist Hungary in the continuing

  10. Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission

    Science.gov (United States)

    Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.

    2013-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.

  11. The Scintillation Prediction Observations Research Task (SPORT): an International Science Mission Using a Cubesat

    Science.gov (United States)

    Spann, James; Swenson, Charles; Durao, Otavio; Loures, Luis; Heelis, Rod; Bishop, Rebecca; Le, Guan; Abdu, Mangalathayil; Krause, Linda; Fry, Craig; hide

    2017-01-01

    The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat mission to address the compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at a single site, within a single longitude sector, from Jicamarca, Peru. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to enhance understanding between geography and magnetic geometry. SPORT is an international partnership between National Aeronautics and Space Administration (NASA), the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA), and encouraged by U.S. Southern Command. This talk will present an overview of the SPORT mission, observation strategy, and science objectives to improve predictions of ionospheric disturbances that affect radio propagation of telecommunication signals. The science goals will be accomplished by a unique combination of satellite observations from a nearly circular middle inclination orbit and the extensive operation of ground based observations from South America near the magnetic equator.

  12. IAEA Completes Nuclear Security Review Mission in United States

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A team of nuclear security experts led by the International Atomic Energy Agency (IAEA) today completed a mission to review nuclear security practices of civil nuclear facilities licensed by the United States Nuclear Regulatory Commission (NRC). Conducted at the U.S. Government's request, the two-week International Physical Protection Advisory Service (IPPAS) mission reviewed the United States' nuclear security-related legislative and regulatory framework. As part of this work, the IPPAS team, led by John O'Dacre of Canada and comprising nine experts from eight IAEA Member States, met with NRC officials and reviewed the physical protection systems at the Center for Neutron Research (NCNR) at the National Institute of Standards and Technology. The IPPAS team concluded that nuclear security within the U.S. civil nuclear sector is robust and sustainable and has been significantly enhanced in recent years. The team identified a number of good practices in the nation's nuclear security regime and at the NCNR. The IPPAS team also made a recommendation and some suggestions for the continuing improvement of nuclear security overall. The mission in the United States was the 60th IPPAS mission organized by the IAEA. 'Independent international peer reviews such as IAEA IPPAS missions are increasingly being recognized for their value as a key component for exchanges of views and advice on nuclear security measures', said Khammar Mrabit, Director of the IAEA Office of Nuclear Security. 'The good practices identified during this mission will contribute to the continuous improvements of nuclear security in other Member States'. The IPPAS team provided a draft report to the NRC and will submit a final report soon. Because it contains security-related information about a specific nuclear site, IPPAS reports are not made public. 'The IPPAS programme gives us a chance to learn from the experience and perspective of our international partners', said NRC Chairman Allison M

  13. The growth of partnership in mission in global mission history during ...

    African Journals Online (AJOL)

    Partnership in mission came to be a byword for developing missionary relationships during the twentieth century. During this time its meaning and practice changed, often imperceptibly. This is seen in the regular conferences of the International Missionary Conference and its successors which had their origin in the ...

  14. International short-term medical missions: a systematic review of recommended practices.

    Science.gov (United States)

    Roche, Stephanie D; Ketheeswaran, Pavinarmatha; Wirtz, Veronika J

    2017-01-01

    To identify practices for conducting international short-term medical missions (STMMs) recommended in the literature and examine how these link STMMs to recipient countries' existing health systems. Systematic review of PubMed-indexed articles on STMMs and their bibliographies using preferred reporting items for systematic reviews and meta-analyses guidelines. Recommendations were organized using the World Health Organization Health Systems Framework. In 92 publications, 67 % offered at least one recommendation that would link STMMs to the recipient country's health system. Among these recommendations, most focused on service delivery and few on health financing and governance. There is a lack of consensus around a proper standard of care, patient selection, and trip duration. Comprehensive global standards are needed for STMM work to ensure that services are beneficial both to patients and to the broader healthcare systems of recipient countries. By providing an overview of the current recommendations and important gaps where practice recommendations are needed, this study can provide relevant input into the development of global standards for STMMs.

  15. 76 FR 7152 - ICT Trade Mission to Saudi Arabia; Application Deadline Extended

    Science.gov (United States)

    2011-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration ICT Trade Mission to Saudi Arabia; Application Deadline Extended AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Timeframe for Recruitment and Applications Mission recruitment will be conducted in an open and...

  16. INIR: Integrated Nuclear Infrastructure Review Missions. Guidance on Preparing and Conducting INIR Missions (Rev. 1)

    International Nuclear Information System (INIS)

    2011-04-01

    The IAEA's Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States, at their request, in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. Each INIR mission is coordinated and led by the IAEA and conducted by a team of international experts drawn from Member States who have experience in different aspects of developing and deploying nuclear infrastructure. The IAEA publication Milestones in the Development of a National Infrastructure for Nuclear Power (IAEA Nuclear Energy Series No. NG-G-3.1) contains a description of 19 infrastructure issues to be considered during the different stages of development of a nuclear power programme. The starting point for an INIR mission is a self-evaluation performed by the Member State against these infrastructure issues. Following the self-evaluation, the INIR mission reviews the status of the national nuclear infrastructure, identifies existing gaps in specific infrastructure-related areas and proposes recommendations to fill these gaps. The INIR mission provides Member State representatives with an opportunity to have in depth discussions with international experts about experiences and best practices in different countries. In developing its recommendations, the INIR team takes into account the comments made by the relevant national organizations. Implementation of any of the team's recommendations is at the discretion of the Member State requesting the mission. The results of the INIR mission are expected to help the Member State to develop an action plan to fill any gaps, which in turn will help the development of the national nuclear infrastructure. The IAEA stands ready to assist, as requested and appropriate, in the different steps of this action plan. This guidance publication is directed to assist in preparing and conducting the INIR missions. It was developed under the coordination of the IAEA Integrated Nuclear Infrastructure

  17. Psychosocial interactions during ISS missions

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2007-02-01

    Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.

  18. The X-ray Astronomy Recovery Mission

    Science.gov (United States)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  19. The Stellar Imager (SI) Mission Concept

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Lyon, Richard G.; Mundy, Lee G.; Allen, Ronald J.; Armstrong, Thomas; Danchi, William C.; Karovska, Margarita; Marzouk, Joe; Mazzuca, Lisa M.; hide

    2002-01-01

    The Stellar Imager (SI) is envisioned as a space-based, UV-optical interferometer composed of 10 or more one-meter class elements distributed with a maximum baseline of 0.5 km. It is designed to image stars and binaries with sufficient resolution to enable long-term studies of stellar magnetic activity patterns, for comparison with those on the sun. It will also support asteroseismology (acoustic imaging) to probe stellar internal structure, differential rotation, and large-scale circulations. SI will enable us to understand the various effects of the magnetic fields of stars, the dynamos that generate these fields, and the internal structure and dynamics of the stars. The ultimate goal of the mission is to achieve the best-possible forecasting of solar activity as a driver of climate and space weather on time scales ranging from months up to decades, and an understanding of the impact of stellar magnetic activity on life in the Universe. In this paper we describe the scientific goals of the mission, the performance requirements needed to address these goals, the "enabling technology" development efforts being pursued, and the design concepts now under study for the full mission and a possible pathfinder mission.

  20. In the footsteps of Columbus European missions to the International Space Station

    CERN Document Server

    O'Sullivan, John

    2016-01-01

    The European Space Agency has a long history of cooperating with NASA in human spaceflight, having developed the Spacelab module for carrying in the payload bay of the Space Shuttle. This book tells of the development of ESA’s Columbus microgravity science laboratory of the International Space Station and the European astronauts who work in it. From the beginning, ESA has been in close collaboration on the ISS, making a significant contribution to the station hardware. Special focus is given to Columbus and Copula as well as station resupply using the ATV. Each mission is also examined individually, creating a comprehensive picture of ESA's crucial involvement over the years. Extensive use of color photographs from NASA and ESA to depict the experiments carried out, the phases of the ISS construction, and the personal stories of the astronauts in space highlights the crucial European work on human spaceflight.

  1. 77 FR 35353 - Biotech Life Sciences Trade Mission to Australia

    Science.gov (United States)

    2012-06-13

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Sciences Trade Mission to... Commercial Service (CS) is organizing a Biotech Life Sciences trade mission to Australia, October 29-November.... biotechnology and life science firms. The goals of the trade mission to Australia are to (1) increase U.S...

  2. 76 FR 17621 - Biotech Life Science Trade Mission to China

    Science.gov (United States)

    2011-03-30

    ... DEPARTMENT OF COMMERCE International Trade Administration Biotech Life Science Trade Mission to... Commercial Service (CS) is organizing a Biotechnology Life Sciences trade mission to China on October 17-20... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. The mission...

  3. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  4. Communication received on 10 May 1999 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The document reproduces the text of a communication received on 10 May 1999 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, with regard to the resolution adopted by the 42nd Agency General Conference, entitled 'The safety of radiation sources and the security of radioactive materials' (GC(42)/RES/12), in connection with the war in Yugoslavia

  5. 77 FR 21748 - Oil and Gas Trade Mission to Israel

    Science.gov (United States)

    2012-04-11

    ... DEPARTMENT OF COMMERCE International Trade Administration Oil and Gas Trade Mission to Israel... Foreign Commercial Service (CS), is organizing an Executive-led Oil and Gas Trade Mission to Israel.... The purpose of the mission is to introduce U.S. firms to Israel's rapidly expanding oil and gas market...

  6. IAEA Expert Remediation Mission to Japan Issues Preliminary Report

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The International Atomic Energy Agency (IAEA)'s international expert mission to review remediation efforts in areas affected by the Fukushima Daiichi accident concluded today with the presentation of a Preliminary Summary Report to Japan's Senior Vice-Minister of the Environment, Shinji Inoue. The Follow-up IAEA International Mission on Remediation of Large Contaminated Areas Off-site the Fukushima Daiichi NPS recognised the huge effort and enormous resources that Japan is devoting to its remediation strategies and activities, with the aim of improving living conditions for people affected by the nuclear accident and enabling evacuees to return home. The Mission Team highlighted important progress since the first IAEA remediation mission in October 2011, noted that Japan had made good use of advice from that earlier Mission, and offered fresh advice in a number of areas where it is still possible to further improve current practices, taking into account both international standards and the experience of remediation programmes in other countries. 'Japan has done an enormous amount to reduce people's radiation exposure in the affected areas, to work towards enabling evacuees to go back to their homes and to support local communities in overcoming economic and social disruption', said team leader Juan Carlos Lentijo, Director of the Division of Fuel Cycle and Waste Technology in the IAEA Department of Nuclear Energy. 'The Mission Team has been really impressed by the involvement of a wide range of ministries, agencies and local authorities in driving these crucial remediation efforts'. Among the findings of the Mission, which was requested by the Japanese government and began on 14 October, the team welcomed the extensive provision of individual dosimeters so that residents can monitor their own radiation dose rates, helping to boost public confidence. Good progress has been made in the remediation of affected farmland, and comprehensive implementation of

  7. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  8. Communication of 27 March 1995 received from the Permanent Mission of the Republic of Cuba to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-05

    The Director General of the International Atomic Energy Agency has received a letter of 27 March 1995 from the Permanent Mission of the Republic of Cuba informing the Agency that the Government of the Republic of Cuba signed the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty) on 25 March 1995.

  9. Communication of 27 March 1995 received from the Permanent Mission of the Republic of Cuba to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General of the International Atomic Energy Agency has received a letter of 27 March 1995 from the Permanent Mission of the Republic of Cuba informing the Agency that the Government of the Republic of Cuba signed the Treaty for the Prohibition of Nuclear Weapons in Latin America and the Caribbean (Tlatelolco Treaty) on 25 March 1995

  10. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed a preliminary assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site the Fukushima Dai-ichi Nuclear Power Plant reported to have elevated levels of radiation. The IAEA dispatched the mission to Japan on 7 October following a request from the country's Government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several Ministries and institutions. ''The meetings held and visits made by the team over the last eight days gave us a first-hand appreciation of the extraordinary efforts and dedication on the part of Japanese people in their effort to remediate the areas affected by elevated levels of radiation in the Fukushima Prefecture,'' says Mr. Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. ''As Japan continues its current remediation efforts, it is our belief that this work will bring relief to the populations who are affected by the consequences of the nuclear accident at the Fukushima Dai-ichi nuclear power plant.'' In a Preliminary Summary Report delivered to Japanese authorities today, the team prepared a set of conclusions including, though not limited to, the following: - Japan developed an efficient program for remediation - allocating the necessary legal, financial and technological resources to bring relief to the people affected by the accident, with priority being given to children. The Team was impressed with the strong commitment to the remediation effort from all institutions and parties involved, including the public; - Japan has also taken practical measures to inform the public and involve residents and local institutions in the process of defining its remediation strategy; - Japan is advised to avoid

  11. Communication of 24 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Communication of 24 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, including a statement by the Ministry of Foreign Affairs of the Russian Federation in connection with the ratification by the State Duma of the Federal Assembly of the Russian Federation of the Comprehensive Nuclear Test Ban Treaty

  12. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  13. IAEA Completes Nuclear Security Review Mission in Indonesia

    International Nuclear Information System (INIS)

    2014-01-01

    A team of International Atomic Energy Agency (IAEA) experts today completed a two-week mission to review nuclear security practices in Indonesia. At the request of the Indonesian Government, the IAEA conducted an International Physical Protection Advisory Service (IPPAS) mission that reviewed the current status of the State's Physical Protection Regime of nuclear and other radioactive material, as well as associated facilities and activities in Indonesia. This included the country's nuclear security-related legislative and regulatory framework and the physical protection systems at the nuclear research sites in Serpong, Bandung and Yogyakarta, as well as radioactive facilities at Bekasi and Cibitung. The mission also reviewed how the recommendations of previous IPPAS missions in 2001 and 2007 had been implemented. The IPPAS team concluded that, since the last missions, Indonesia has improved its national security regime, especially its legislation and regulations, and had introduced new physical protection equipment. It also found that areas remained that required attention and efforts were needed to reach an overall comprehensive and effective nuclear security regime. The team made a number of new recommendations and suggestions aimed at further strengthening the overall regime

  14. 75 FR 60721 - Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications

    Science.gov (United States)

    2010-10-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Timeframe for Recruitment and Applications Mission recruitment will...

  15. Communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the communication of 14 March 2000 received from the Permanent Mission of the United States of America to the International Atomic Energy Agency including two statements of the President and the Secretary of State of the United States of America regarding the Nuclear Non-proliferation Treaty

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Republic of Burundi. Draft

    International Nuclear Information System (INIS)

    Gehrisch, W.; Chaigne, M.

    1983-06-01

    The basic objective of the International Uranium Resources Evaluation project lUREP is to 'Review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for the discovery of additional uranium resources and to suggest new exploration efforts which might be carried out in promising areas in collaboration with the countries concerned'. Therefore, the scope of the IUREP orientation phase Mission to Burundi was to review all data on past exploration in Burundi, to develop a better understanding of the uranium potential of the country, to make an estimate of the speculative resources of the country, to make recommendation as appropriate on the best methods or techniques for evaluating the resources in the favourable areas and for estimating possible costs as well, to compile a report which could be immediately available to the Burundian authorities. This mission gives a general introduction, a geological review of Burundi, information on non-uranium mining in Burundi, the history of uranium exploration, occurrences of uranium IUREP mission field reconnaissance, favourable areas for speculative potential, the uranium resources position and recommendations for future exploration. Conclusions are the following. The IUREP Orientation -phase mission to Burundi believes that the Speculative Resources of that country fall b etween 300 and 4100 tons uranium oxide but a less speculative appraisal is more likely between 0 and 1000 tons. There has been no uranium production and no official estimates of Uranium Resources in Burundi. Past exploration mainly dating from 1969 onwards and led the UNDP Mineral project has indicated a limited number of uranium occurrences and anomalies. The speculative uranium resources are thought to be possibly associated with potential unconformity related vein-like deposits of the Lower Burundian. Other speculative uranium resources could be associated with granitic or peribatholitic

  17. Female leaders in an international evangelical mission organisation: an empirical study of Youth With A Mission in Germany

    Directory of Open Access Journals (Sweden)

    F.A.S. Hornstra-Fuchs

    2010-07-01

    Full Text Available Evangelicals are frequently perceived as conservative, for instance in their perspective on women. There is indeed a widespread evangelical hierarchical or complementarian theological view which objects to women in church leadership. There is, however, a growing egalitarian counter position, sometimes also referred to as “evangelical feminism”, which supports female leadership. This article concentrates on the international missionary organisation Youth With A Mission (YWAM, which clearly endorses female leaders in formal statements. In YWAM Germany, however, women are under-represented in leadership positions. The article seeks to explain this under-representation, especially in terms of the role played by Scripture. By means of interviews with leaders in YWAM Germany, possible answers were explored. Surprisingly, for an evangelical organisation, the interpretation of Scripture proved not to be a significant factor. Factors that do play a role are church background, the lack of female role models, lower self-confidence of women, family responsibilities, and the role of incumbent leadership. The latter appears to be the most crucial factor, since the incumbent leaders, who mostly are men, select and appoint new leaders. It is likely that in this they are influenced by stereotypical conceptions of the leader as male and are inclined to appoint leaders similar to themselves.

  18. JOICFP included in GII mission to Ghana. Global Issues Initiative.

    Science.gov (United States)

    1996-03-01

    Among countries in West Africa, Ghana is the main focus of the Global Issues Initiative (GII) on Population and AIDS and one of twelve priority countries selected for official development assistance (ODA) under the program. A ten-member project formulation mission sent to Ghana by the Ministry of Foreign Affairs (MOFA) of Japan was in the country during January 10-18. This mission was the first of its kind to be sent to Africa. It was led by the director of the Third Project Formulation Study Division, Project Formulation Study Department, Japan International Cooperation Agency (JICA), and included representatives of MOFA, JICA, and the Ministry of Health and Welfare, and an observer from UNAIDS. The mission's chief objective was to explore possibilities for Japanese cooperation in the areas of population, child health, and HIV/AIDS in line with the Mid-Term Health Strategy (MTHS) formulated in 1995 by the government of Ghana. The mission also explored the possibility of collaboration with major donors, international organizations, international agencies, and NGOs. The mission met with representatives of NGOs from population, women, AIDS, and health-related areas on January 13, who were then briefed upon Japan's Grant Assistance for Grassroots Project for local NGOs. Views were exchanged upon NGO activities.

  19. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Somalia

    International Nuclear Information System (INIS)

    Levich, Robert A.; Muller-Kahle, Eberhard

    1983-04-01

    The IUREP Orientation Phase Mission to Somalia suggests that in addition to the reasonably assured resources (RAR) of 5 000 t uranium and estimated additional resources (EAR) of 11 000 t uranium in calcrete deposits, the speculative resources (SR) could be within the wide range of 0 - 150 000 t uranium. The majority of these speculative resources are related to sandstone and calcrete deposits. The potential for magmatic hydrothermal deposits is relatively small. The Mission recommends an exploration programme of about US $ 22 000 000 to test the uranium potential of the country which is thought to be excellent. The Mission also suggests a reorganization of the Somalia Geological Survey in order to improve its efficiency. Recommended methods include geological mapping, Landsat Imagery Interpretation, airborne and ground scintillometer surveys, and geochemistry. Follow-up radiometric surveys, exploration geophysics, mineralogical studies, trenching and drilling are proposed in favourable areas

  20. Communication of 17 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Communication of 17 April 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency, including a statement by the Acting President of the Russian Federation in connection with the ratification by the State Duma of the Federal Assembly of the Russian Federation of START-II Treaty and the package agreements on antimissile defence of 1997

  1. Mission Applications Support at NASA: Coastal Applications of SWOT Mission Data

    Science.gov (United States)

    Srinivasan, M. M.; Peterson, C. A.; Chao, Y.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) mission is an international collaboration of two scientific communities focused on a better understanding of the world's oceans and its terrestrial surface waters. SWOT will produce the first global survey of Earth's surface water by measuring sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. These coastal, lake and river measurements will be useful for monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment. NASA and their French, Canadian and the United Kingdom space agency partners are developing new wide swath altimetry technology that will cover most of the world's ocean and surface freshwater bodies, and will have the capability to make observations with unprecedented resolution compared to existing technologies and will have the capability of measuring how water bodies change over time. Along with existing altimetry datasets, simulated SWOT data sets are being planned to assess the quality and potential value of anticipated SWOT measurements to both oceanography and hydrology applications. With the surface water measurements anticipated from SWOT, a broad range of applications may inform coastal managers and marine operators of offshore conditions and currents relevant to their regions. One study proposed to the NASA ASP would highlight coastal and estuary applications potential of the future SWOT mission. This study would promote the use of remote sensing measurements to improve the understanding, monitoring and management of estuaries and deltas for a broad range of users. In addition, the AirSWOT airborne mission to demonstrate the wide swath technology of SWOT is providing preliminary data products in inland and coastal regions that may be useful for early assessment by users of the future value of SWOT. NASA's Applied Sciences Program (ASP), along with the international SWOT project teams, is supporting a program that promotes

  2. IAEA Completes Nuclear Security Advisory Mission in France

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts today completed a nuclear security advisory mission in France. The mission was carried out at the request of the French Government. The scope of the two-week International Physical Protection Advisory Service (IPPAS) follow-up mission included France’s responses to the recommendations of the initial mission in 2011, the regulatory framework for the security of nuclear material and facilities as well as computer security. The IPPAS team also reviewed the country’s implementation of the 2005 Amendment to the Convention on the Physical Protection of Nuclear Material (CPPNM). As part of the review, the team visited the Georges Besse II uranium enrichment plant at the Tricastin nuclear site in Pierrelatte, south-eastern France. The team observed that the nuclear security regime in France is robust and well-established, and incorporates the fundamental principles of the amended CPPNM. The team provided recommendations and suggestions to support France in enhancing and sustaining nuclear security. Good practices were identified that can serve as examples to other IAEA Member States to help strengthen their nuclear security activities.

  3. Communication of 4 October 1995 received from the Permanent Mission of the Republic of Korea to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    The Director General of the International Atomic Energy Agency has received a letter of 4 October 1995 from the Permanent Mission of the Republic of Korea providing information on the nuclear export policies and practices of the Government of the Republic of Korea. In the light of the request expressed in the letter, the text of the letter and its enclosure are attached hereto

  4. Communication of 22 February 1999 received from the Permanent Mission of the Republic of Belarus to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1999-01-01

    The Director General of the International Atomic Energy Agency has received a communication from the Permanent Mission of the Republic of Belarus concerning a Note of 28 January 1999 from the Ministry of Foreign Affairs of the Republic of Belarus which provides information about the nuclear export policies and practices of Belarus. In light of the wish expressed in the Note, its text is attached hereto

  5. Communication of 4 October 1995 received from the Permanent Mission of the Republic of Korea to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-19

    The Director General of the International Atomic Energy Agency has received a letter of 4 October 1995 from the Permanent Mission of the Republic of Korea providing information on the nuclear export policies and practices of the Government of the Republic of Korea. In the light of the request expressed in the letter, the text of the letter and its enclosure are attached hereto.

  6. Mission statements: selling corporate values to employees.

    Science.gov (United States)

    Klemm, M; Sanderson, S; Luffman, G

    1991-06-01

    This article investigates the reasons for the increasing use of the Company Mission Statement. Using information from a survey of U.K. companies in 1989 it looks at the types of statements issued by companies, their content, usage, and value to managers. Of particular interest is whether the mission is primarily used for the motivation of staff, or for external image building. Related issues are the value of the mission drafting process in bringing managers together to agree common objectives and the use of a hierarchy of statements to reconcile internal and external stakeholders' interests. The conclusion is that the Mission, which includes a statement of company values, is an important tool for managers to assert their leadership within the organization.

  7. Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery touches down on runway 33 at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., a senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, M.D., with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  8. Local health policies under the microscope: consultants, experts, international missions and poliomyelitis in Spain, 1950-1975.

    Science.gov (United States)

    Ballester, Rosa; Porras, María Isabel; Báguena, María José

    2015-01-01

    One of the main focuses of analysis of this paper concerns the missions of international health agency experts to Spain to report on the situation, the activities in the fight against physical disabilities in children and on the actions taken to cope with the problem. The Spain-23 Plan was the instrument used by WHO and other agencies to start the process of change in a country undergoing a period of transformation under the enduring Franco dictatorship. As key sources, the paper uses unpublished reports of WHO experts on the subject, which resulted from visits to the country between 1950 and 1975. The methodological approach consists of an analysis of discourses from primary sources within the historiographical framework.

  9. Canada and Missions for Peace: Lessons from Nicaragua ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This newest approach — peacebuilding — recognizes that the sources of violent conflict are complex and that human security and international stability will only be achieved by integrating political, military, and development efforts. Canada and Missions for Peace explores Canada's involvement in recent international ...

  10. Mission X: Train Like an Astronaut Challenge

    Science.gov (United States)

    Lloyd, Charles W.

    2016-01-01

    The Mission X: Train Like an Astronaut Challenge was developed in 2011 to encourage proper exercise and nutrition at an early age by teaching young people to live and eat like space explorers. The strong correlation between an unhealthy childhood diet and adolescent fitness, and the onset of chronic diseases as an adult is the catalyst for Mission X. Mission X is dedicated to assisting people on a global scale to live healthier lifestyles and learn about human space exploration. The Mission X: Train Like an Astronaut 2015 (MX15) International Challenge hosted almost 40,000 children on 800 teams, 28 countries affiliated with 12 space agencies. The MX15 website included 17 languages. MX15, the fifth annual international fitness challenges sponsored by the NASA Human Research Program worked with the European Space Agency and other space agencies from around the world. In comparison to MX14, MX15 expanded to include four additional new countries, increased the number of students by approximately 68% and the number of teams by 29%. Chile' and South Korea participated in the new fall Astro Charlie Walk Around the Earth Challenge. Pre-challenge training materials were made more readily available from the website. South Korea completed a prospective assessment of the usability of the MX content for improving health and fitness in 212 preschool children and their families. Mission X is fortunate to have the support of the NASA, ESA and JAXA astronaut corps. In MX15, they participated in the opening and closing events as well as while on-board the International Space Station. Italian Astronaut Samantha Cristoretti participated as the MX15 Astronaut Ambassador for health and fitness providing the opening video and other videos from ISS. United Kingdom Astronaut Tim Peake and US Astronaut Kate Rubins have agreed to be the MX Ambassadors for 2016 and 2017 respectively. The MX15 International Working Group Face-to-Face meeting and Closing Event were held at the Agenzia Spaziale

  11. CORR Guidelines. Preparing and Conducting Review Missions of Construction Project Readiness for Nuclear Power Plants

    International Nuclear Information System (INIS)

    2013-01-01

    The construction readiness review (CORR) mission for nuclear power plant projects has been established with the aim of conducting peer reviews of construction projects related to nuclear power plants. Such a mission provides a detailed assessment of readiness for construction, construction progress, readiness for turnover, as well as recommendations for improvement. Organizations in Member States, such as nuclear utilities, owners, regulators and technical support organizations, can benefit from such reviews. A team of international experts with complementing specialities will conduct the CORR mission. The review is based on appropriate IAEA publications, such as IAEA Safety Standards Series Guides and IAEA Nuclear Energy Series publications, as well as on internationally recognized project and construction management guides. Mission findings are summarized in a mission report, which includes a list of recommendations, suggestions and identified good practices. The review is not intended to be a regulatory inspection or an audit against international codes and standards. Rather, it is a peer review aimed at improving implementation processes and procedures through an exchange of technical experiences and practices at the working level. The mission is applicable at any stage of a nuclear power plant construction project, although two specific phases are targeted: (1) start of construction mission (Phase 1 mission) and (2) an in-progress mission (Phase 2 mission). Missions are initiated when official requests are submitted by Member States through the appropriate IAEA channels

  12. CEO Sites Mission Management System (SMMS)

    Science.gov (United States)

    Trenchard, Mike

    2014-01-01

    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team

  13. IAEA Completes Nuclear Security Review Mission in Republic of Korea

    International Nuclear Information System (INIS)

    2014-01-01

    Full text: A team of International Atomic Energy Agency (IAEA) experts today completed a mission to review national nuclear security practices in the Republic of Korea. At the request of the Government of the ROK, the IAEA conducted a two-week International Physical Protection Advisory Service (IPPAS) mission that reviewed the nation's nuclear security-related legislative and regulatory framework for nuclear and other radioactive material and associated facilities, as well as security arrangements applied to the transport of nuclear material and radioactive sources, and to computer systems. In addition, the team reviewed physical protection systems at the Hanbit Nuclear Power Plant (NPP), operated by Korea Hydro and Nuclear Power Company (KHNP), and at the High-Flux Advanced Neutron Application Reactor (HANARO), operated by the Korea Atomic Energy Research Institute (KAERI). The IPPAS team concluded that Korea is working well to conduct strong and sustainable nuclear security activities. Moreover, the team identified a number of good practices in the national nuclear security regime, and at the visited facilities. The team also made recommendations and suggestions for continuous improvement in nuclear security. The IAEA team was led by Joseph Sandoval, a staff member at the Sandia National Laboratories in the United States, and it included eight experts from six nations and the IAEA. The team met in Daejeon with officials from the Nuclear Safety and Security Commission (NSSC), representatives of the Korea Institute of Nuclear Non-Proliferation and Control (KINAC), the Korea Institute of Nuclear Safety (KINS), KAERI, and the Korea Electric Power Corporation Nuclear Fuel (KEPCO NF). They conducted site visits to the Hanbit NPP, the HANARO research reactor, the irradiation facility at KAERI's Advanced Radiation Technology Institute (ARTI), and the KHNP Cyber Security Center. ''Successful development of a nuclear power programme necessitates a strong commitment to

  14. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    Science.gov (United States)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  15. The medical mission and modern cultural competency training.

    Science.gov (United States)

    Campbell, Alex; Sullivan, Maura; Sherman, Randy; Magee, William P

    2011-01-01

    Culture has increasingly appreciated clinical consequences on the patient-physician relationship, and governing bodies of medical education are widely expanding educational programs to train providers in culturally competent care. A recent study demonstrated the value an international surgical mission in modern surgical training, while fulfilling the mandate of educational growth through six core competencies. This report further examines the impact of international volunteerism on surgical residents, and demonstrates that such experiences are particularly suited to education in cultural competency. Twenty-one resident physicians who participated in the inaugural Operation Smile Regan Fellowship were surveyed one year after their experiences. One hundred percent strongly agreed that participation in an international surgical mission was a quality educational experience and 94.7% deemed the experience a valuable part of their residency training. In additional to education in each of the ACGME core competencies, results demonstrate valuable training in cultural competence. A properly structured and proctored experience for surgical residents in international volunteerism is an effective instruction tool in the modern competency-based residency curriculum. These endeavors provide a unique understanding of the global burden of surgical disease, a deeper appreciation for global public health issues, and increased cultural sensitivity. A surgical mission experience should be widely available to surgery residents. Copyright © 2010 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  16. 75 FR 43939 - The Americas Business Trade Mission to Mexico

    Science.gov (United States)

    2010-07-27

    ... Mexico AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. Mission... will recruit and organize a multiple industry trade mission to Mexico City with an optional second stop... local business climate. In Mexico City, there will also be a networking reception for the delegation...

  17. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  18. The NASA X-Ray Mission Concepts Study

    Science.gov (United States)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  19. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  20. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  1. The Gaia mission

    OpenAIRE

    Prusti, T.; de Bruijne, J. H. J.; Brown, A. G. A.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C. A. L.; Bastian, U.; Biermann, M.; Evans, D. W.; Eyer, L.; Jansen, F.; Jordi, C.; Klioner, S. A.; Lammers, U.; Lindegren, L.

    2016-01-01

    Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia wa...

  2. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  3. 78 FR 42041 - Travel and Tourism Trade Mission to Taiwan, Japan, and Korea

    Science.gov (United States)

    2013-07-15

    ... DEPARTMENT OF COMMERCE International Trade Administration Travel and Tourism Trade Mission to... Foreign Commercial Service is amending notice for the Travel and Tourism Trade Mission to Taiwan, Japan... executive lead the Travel and Tourism Trade Mission to Taiwan, Japan and Korea, March 10-14, 2014, published...

  4. Discovery prepares to land after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    Orbiter Discovery prepares to land on runway 33 at the Shuttle Landing Facility. Discovery returns to Earth with its crew of seven after successfully completing mission STS-95, lasting nearly nine days and 3.6 million miles. The crew members are Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  5. SMART-1 technology, scientific results and heritage for future space missions

    Science.gov (United States)

    Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team

    2018-02-01

    ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive

  6. Report of the IPERS (International Peer Review Service) pre-review mission for the Cernavoda nuclear power plant probabilistic safety evaluation (CPSE - PHASE B) in Romania 31 October to 3 November 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report presents the results of the IAEA international peer review services pre-review mission which reviewed the status of the present version of the Cernavoda probabilistic safety evaluation, a Level 1 internal events Probabilistic Safety Assessment for the Cernavoda, Unit 1, nuclear power plant. 2 refs

  7. Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies

    Science.gov (United States)

    2004-01-01

    Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X

  8. 78 FR 34344 - Travel and Tourism Trade Mission to Taiwan, Japan and Korea

    Science.gov (United States)

    2013-06-07

    ... DEPARTMENT OF COMMERCE International Trade Administration Travel and Tourism Trade Mission to... 10 -14, 2014. The purpose of the mission is to help U.S. firms in the travel and tourism industry... targeted sector for participation in this mission is travel and tourism, including U.S.-based travel and...

  9. FY15 Gravitational-Wave Mission Activities Project

    Science.gov (United States)

    Stebbins, Robin T.

    2014-01-01

    The Gravitational-Wave (GW) team at Goddard provides leadership to both the US and international research communities through science and conceptual design competencies. To sustain the US effort to either participate in the GW mission that ESA selected for the L3 opportunity or to initiate a NASA-led mission, the Goddard team will engage in the advancement of the science and the conceptual design of a future GW mission. We propose two tasks: (1) deliver new theoretical tools to help the external research community understand how GW observations can contribute to their science and (2) explore new implementations for laser metrology systems based on techniques from time-domain reflectometry and laser communications.

  10. Third Mission Activities: University Managers' Perceptions on Existing Barriers

    Science.gov (United States)

    Koryakina, Tatyana; Sarrico, Cláudia S.; Teixeira, Pedro N.

    2015-01-01

    In the context of increased international competition and financial austerity, an economic development mission has become an important strategic and policy issue for European higher education. This paper aims to contribute to knowledge regarding universities' engagement with the external environment and its impact on internal governance and…

  11. STS-78 Mission Insignia

    Science.gov (United States)

    1996-01-01

    Delphinus recalls the dolphin, friend of ancient sailors and, now perhaps too, of the 9 space voyagers suggested by this constellation's blaze of 9 stars. The patch simultaneously celebrates international unity fostered by the Olympic spirit of sports competition at the 1996 Olympic Games in Atlanta, Georgia, U.S.A. Deliberately poised over the city of Atlanta, the Space Shuttle glows at its base with the 5 official Olympic rings in the 5 Olympic colors which can also be found throughout the patch, rings and colors which signify the 5 continents of the earth. This is an international mission and for the first time in NASA patch history, astronauts have dispensed with identifying country flags beneath their names to celebrate the spirit of international unity so characteristic of this flight.

  12. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  13. AGILE: A gamma-ray mission

    International Nuclear Information System (INIS)

    Tavani, M.; Caraveo, P.; Mereghetti, S.; Perotti, F.; Vercellone, S.; Barbiellini, G.; Budini, G.; Longo, F.; Prest, M.; Vallazza, E.; Cocco, V.; Morselli, A.; Picozza, P.; Pittori, C.; Costa, E.; Feroci, M.; Lapshov, I.; Morelli, E.; Rubini, A.; Soffitta, P.

    2000-01-01

    AGILE is an innovative, cost-effective gamma-ray mission selected by the Italian Space Agency for a Program of Small Scientific Missions. The AGILE gamma-ray imaging detector (GRID, made of a Silicon tracker and CsI Mini-Calorimeter) is designed to detect and image photons in the 30 MeV-50 GeV energy band with good sensitivity and very large field of view (FOV ∼3 sr). The X-ray detector, Super-AGILE, sensitive in the 10-40 keV band and integrated on top of the GRID gamma-ray tracker will provide imaging (1-3 arcmin) and moderate spectroscopy. For selected sky areas, AGILE might achieve a flux sensitivity (above 100 MeV) better than 5x10 -8 ph cm 2 s -1 at the completion of its scientific program. AGILE will operate as an Observatory open to the international community and is planned to be operational during the year 2002 for a nominal 2-year mission. It will be an ideal 'bridge' between EGRET and GLAST, and the only mission entirely dedicated to high-energy astrophysics above 30 MeV during that period

  14. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  15. IAEA Mission Concludes Peer Review of Pakistan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    An international team of senior nuclear safety experts today concluded a nine-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for the safety of operating nuclear power plants in the United States of America (USA). The Integrated Regulatory Review Service (IRRS) mission was a follow-up to the IRRS mission to the US Nuclear Regulatory Commission (NRC) that was conducted in 2010, with the key additional aim of reviewing whether the response of the US regulatory regime to the implications of the accident at TEPCO's Fukushima Daiichi Plant had been timely and effective. The mission team concluded that the recommendations and suggestions made by the 2010 IRRS mission have been taken into account systematically under the NRC's subsequent action plan, with significant progress in many areas and many improvements carried out. One of two recommendations and 19 out of 20 suggestions made by the 2010 IRRS mission have been effectively addressed and can therefore be considered closed. The outstanding recommendation relates to the NRC's review of its Management System, which is in the process of being finalised. The IRRS team also found that the NRC acted promptly and effectively after the Fukushima accident in the interests of public health and safety, and that the report of its Near-Term Task Force represents a sound and ample basis for taking into account the lessons learned from the accident

  16. Software Innovation in a Mission Critical Environment

    Science.gov (United States)

    Fredrickson, Steven

    2015-01-01

    Operating in mission-critical environments requires trusted solutions, and the preference for "tried and true" approaches presents a potential barrier to infusing innovation into mission-critical systems. This presentation explores opportunities to overcome this barrier in the software domain. It outlines specific areas of innovation in software development achieved by the Johnson Space Center (JSC) Engineering Directorate in support of NASA's major human spaceflight programs, including International Space Station, Multi-Purpose Crew Vehicle (Orion), and Commercial Crew Programs. Software engineering teams at JSC work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements for genuinely mission critical applications. The innovations described, including the use of NASA Core Flight Software and its associated software tool chain, can lead to software that is more affordable, more reliable, better modelled, more flexible, more easily maintained, better tested, and enabling of automation.

  17. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  18. 75 FR 28555 - Executive Green ICT & Energy Efficiency Trade Mission to Mexico City, Mexico

    Science.gov (United States)

    2010-05-21

    ... Trade Mission to Mexico City, Mexico AGENCY: International Trade Administration, Department of Commerce... Trade Mission to Mexico City from September 27-29, 2010. This Executive led mission will focus on... & Energy Efficiency conference will take place at the World Trade Center in Mexico City. Relevant issues on...

  19. Affordable Exploration of Mars: Recommendations from a Community Workshop on Sustainable Initial Human Missions

    Science.gov (United States)

    Thronson, Harley; Carberry, Chris; Cassady, R. J.; Cooke, Doug; Hopkins, Joshua; Perino, Maria A.; Kirkpatrick, Jim; Raftery, Michael; Westenberg, Artemis; Zucker, Richard

    2013-01-01

    There is a growing consensus that within two decades initial human missions to Mars are affordable under plausible budget assumptions and with sustained international participation. In response to this idea, a distinguished group of experts from the Mars exploration stakeholder communities attended the "Affording Mars" workshop at George Washington University in December, 2013. Participants reviewed and discussed scenarios for affordable and sustainable human and robotic exploration of Mars, the role of the International Space Station over the coming decade as the essential early step toward humans to Mars, possible "bridge" missions in the 2020s, key capabilities required for affordable initial missions, international partnerships, and a usable definition of affordability and sustainability. We report here the findings, observations, and recommendations that were agreed to at that workshop.

  20. 78 FR 18317 - U.S. Healthcare Trade Mission to Russia- Amendment

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Healthcare Trade Mission to Russia... Russia published at 77 FR 77032, December 31, 2012, to amend the Notice to revise the dates of the... additional time is needed to allow for additional recruitment and marketing in support of the mission...

  1. SORCE: Solar Radiation and Climate Experiment

    Science.gov (United States)

    Cahalan, Robert; Rottman, Gary; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Contents include the following: Understanding the Sun's influence on the Earth; How the Sun affect Earth's climate; By how much does the Sun's radiation very; Understanding Solar irradiance; History of Solar irradiance observations; The SORCE mission; How do the SORCE instruments measure solar radiation; Total irradiance monitor (TIM); Spectral irradiance monitor (SIM); Solar stellar irradiance comparison experiment (SOLSTICE); XUV photometer system (XPS).

  2. PREMISES FOR A MORE EFFICIENT INTERNAL AUDIT MISSION

    Directory of Open Access Journals (Sweden)

    BOGDAN RĂVAŞ

    2016-10-01

    Full Text Available The theoretical research in the fields - internal audit aims to explain why successful companies have failed to implement effective strategies and policies and effective internal audit through the application of appropriate models for assessment and analysis activities and specific processes and identifying good practices. The scientific approach was based on the analysis of the operational performance of processes and activities of internal audit and the size analysis behaviors of the organization as a component of their economic strategy, which together with marketing strategy and production, are part of a strategic plan of the company.

  3. Planetary Missions of the 20th Century*

    Science.gov (United States)

    Moroz, V. I.; Huntress, W. T.; Shevalev, I. L.

    2002-09-01

    Among of the highlights of the 20th century were flights of spacecraft to other bodies of the Solar System. This paper describes briefly the missions attempted, their goals, and fate. Information is presented in five tables on the missions launched, their goals, mission designations, dates, discoveries when successful, and what happened if they failed. More detailed explanations are given in the accompanying text. It is shown how this enterprise developed and evolved step by step from a politically driven competition to intense scientific investigations and international cooperation. Initially, only the USA and USSR sent missions to the Moon and planets. Europe and Japan joined later. The USSR carried out significant research in Solar System exploration until the end of the 1980s. The Russian Federation no longer supports robotic planetary exploration for economic reasons, and it remains to be seen whether the invaluable Russian experience in planetary space flight will be lost. Collaboration between Russian and other national space agencies may be a solution.

  4. IAEA Completes Nuclear Security Advisory Mission in Ecuador

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts today completed a nuclear security advisory mission in Ecuador. The mission was carried out at the request of the Government of Ecuador. The scope of the two-week International Physical Protection Advisory Service (IPPAS) mission included the legislative and regulatory framework for the security of radioactive material, regulatory licensing, inspection and enforcement as well as coordination among authorities and other stakeholders involved in nuclear security. In September 2017, Ecuador ratified the 2005 Amendment to the Convention on the Physical Protection of Nuclear Material (CPPNM) and its incorporation into the nuclear security regime was also included in the scope of the mission. The IPPAS team carried out a number of visits, including to a steel company that uses gamma radiography, two hospitals, the National Polytechnic University and a company that transports radioactive material. In addition, the team visited a temporary storage facility for disused radioactive sources in Alóag, a town about 50 km south of the capital, Quito. The team observed that Ecuador is making efforts towards enhancing its national nuclear security regime. The team provided recommendations and suggestions to support Ecuador in enhancing and sustaining nuclear security. Good practices were identified that can serve as examples to other IAEA Member States to help strengthen their nuclear security activities.

  5. The US planetary exploration program opportunities for international cooperation

    Science.gov (United States)

    Briggs, G. A.

    1984-01-01

    Opportunities for international participation in US-sponsored interplanetary missions are discussed on the basis of the recommendations of the Committee on Planetary and Lunar Exploration of the National Academy of Sciences Space Science Board. The initial core missions suggested are a Venus radar mapper, a Mars geoscience/climatology orbiter, a comet-rendezvous/asteroid-flyby mission, and a Titan probe/radar mapper. Subsequent core missions are listed, and the need for cooperation in planning and development stages to facilitate international participation is indicated.

  6. STS-61 mission director's post-mission report

    Science.gov (United States)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  7. STS-114: Multi-Cut Profiles and Mission Overviews

    Science.gov (United States)

    2005-01-01

    Profiles of the seven crewmembers of the STS-114 Discovery are shown. Eileen Collins, Commander, talks about her fascination with flying as a young child and her eagerness to have someone teach her to fly at age 19. Her eagerness and hard work earned her a master's in operations research from Stanford University in 1986 and a master's in space systems management from Webster University in 1989. Jim Kelly, Pilot, talks about his desire to become an astronaut at a very young age. Charles Camarda, Mission Specialist, always wanted to become an astronaut and earned a Bachelor's degree in aerospace engineering from Polytechnic Institute of Brooklyn in 1974, a Master's in engineering Science from George Washington University in 1980 and a doctorate in aerospace engineering from Virginia Polytechnic Institute and State University in 1990. Wendy Lawrence, Mission Specialist decided that she wanted to become an astronaut when she saw the first man to walk on the moon. Soichi Noguchi, Mission Specialist from JAXA expresses that people like scientists, doctors and engineers could fly and he also wanted to venture into spaceflight. Steve Robinson, Mission Specialist says that he was fascinated with things that flew as a child and wanted to make things fly. Australian born Andrew Thomas, Mission Specialist wanted to become an astronaut as a young boy but never realized that he would fulfill his dream. The crewmember profiles end with an overview of the STS-114 Discovery mission. Paul Hill, Lead Flight Director talks about the main goal of the STS-114 mission which is to demonstrate that changes to the Orbiter and flight procedures are good and the second goal is to finish construction of the International Space Station. Sergei Krikalev, Commander talks about increasing the capability of the International Space Station, Jim Kelly discusses the work that is being performed in the external tank, Andy Thomas talks about procedures done to stop foam release and Soichi Noguchi

  8. Identifying the Globalist and Internationalist Missions of International Schools.

    Science.gov (United States)

    Cambridge, James

    2003-01-01

    Discusses internationalism and globalization as contexts for international education. Argues that the values of the British-style international schools include a commitment to world peace and understanding between nations. States that the globalist perspective sees education as a product subject to global quality standards. (Contains 11…

  9. 78 FR 57619 - Architecture Services Trade Mission to Rio de Janeiro and Recife, Brazil, October 7-10, 2013

    Science.gov (United States)

    2013-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Architecture Services Trade Mission to Rio de Janeiro and Recife, Brazil, October 7-10, 2013 AGENCY: International Trade Administration... 38687, June 27, 2013, regarding the Architecture Services Trade Mission to Rio de Janeiro and Recife...

  10. Context-Sensitive Augmented Reality for Mission Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station (ISS) are heavily dependent upon ground controllers to assist crew members in performing routine operations...

  11. Context-sensitive Augmented Reality for Mission Operations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station are heavily dependent upon ground controllers to assist crew members in performing routine operations and...

  12. Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions

    Science.gov (United States)

    Whitmire, Sandra; Leveton, Lauren

    2011-01-01

    In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).

  13. Pentecostal mission spirituality: a study of the classical Pentecostal Churches in Ghana

    Directory of Open Access Journals (Sweden)

    White, Peter

    2016-03-01

    Full Text Available Mission is not just about proclaiming the gospel - it encompasses spiritual preparation of those involved in both mission activity and in converted souls. This approach is what is termed as mission spirituality in this article. Mission spirituality is the means by which churches and individual believers participate in the mission of God, through the way they live in and by the Holy Spirit, in order to know the will of God regarding what He is doing in their context and to follow His example. In view of the importance of mission spirituality in missionary activities of the church, this article explores the mission spirituality of the classical Pentecostal churches in Ghana (The church of Pentecost, Christ Apostolic Church International, The Apostolic Church Ghana and the Assemblies of God.

  14. European union mission for the rule of law in Kosovo

    Directory of Open Access Journals (Sweden)

    Dr.Sc. Bejtush Gashi

    2011-12-01

    Full Text Available Here we have studied the international circumstances that have affected the deployment of the EULEX Mission in Kosovo. The EULEX mission is the European Union Mission for the Rule of Law in Kosovo. Its main goal is to advise, assist and support the Kosovo authorities in issues of the rule of law, especially in the field of police, judiciary and customs performance. Also this mission has the responsibility to develop and further strengthen the independent multi-ethnic justice system in Kosovo, by ensuring that the rule of law institutions are not politically influenced and that they meet the known international standards and best European practices. This mission was foreseen to be deployed to Kosovo, based on the Ahtissari Comprehensive Status Proposal for Kosovo, but due to its non-approval by the UN Security Council, its full implementation was delayed until December 2008. EULEX acts within the framework of Resolution 1244 of the UN Security Council and under a single chain of command in Brussels. EULEX officials have supported Kosovo Police, the Judiciary system and Kosovo Customs, through MMA actions for achieving objectives and goals that are foreseen by the program strategy of EULEX. But in terms of efficiency, EULEX has only achieved modest results. In the northern part of Kosovo, EULEX has failed, as a result of its ambivalent mandate and incoherence of EU Foreign and Security Policy.

  15. 78 FR 57619 - Secretarial Infrastructure Business Development Mission to Mexico November 18-23, 2013

    Science.gov (United States)

    2013-09-19

    ..., 2013, regarding the Secretarial Infrastructure Business Development Mission to Mexico November 18-23... and Applications section of the Notice of the Secretarial Infrastructure Business Development Mission... DEPARTMENT OF COMMERCE International Trade Administration Secretarial Infrastructure Business...

  16. STS-95 Mission Specialist Duque suits up during TCDT

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, representing the European Space Agency, suits up in the Operations and Checkout Building prior to his trip to Launch Pad 39-B. Duque and the rest of the STS-95 crew are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT) which includes mission familiarization activities, emergency egress training, and a simulated main engine cutoff. The other crew members are Payload Specialist Chiaki Mukai (M.D., Ph.D.), representing the National Space Development Agency of Japan (NASDA), Pilot Steven W. Lindsey, Mission Specialist Scott E. Parazynski, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, and Mission Commander Curtis L. Brown. The STS-95 mission, targeted for liftoff on Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process. Following the TCDT, the crew will be returning to Houston for final flight preparations.

  17. Synthesis report about the after-mine mission; Rapport de synthese sur la mission apres-mine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The French ministry of economy finances and industry has assigned the mission of evaluating the after-mine management system to the general inspection of finances and the general council of mines. The after-mine management system encompasses all procedures of coal, iron and potash mines closing down, land reclamation and environmental remedial action and site rehabilitation. This document makes first a status of the problems generated by the stoppage of mining activities: technical aspects, costs, institutional, organisational and juridical aspects, conservation of competences, international benchmarking elements and good practices implemented in foreign countries. Then, in a second part, this report presents the recommendations of the after-mine mission about the mastery of after-mine costs in agreement with the respect of the technical and social goals, with the development of the after-mine institutional system with the scheduled disappearance of Charbonnages de France and Mines de Potasses d'Alsace companies, and with the conservation of competences in the framework of the post-mine operational structure proposed by the mission. (J.S.)

  18. Synthesis report about the after-mine mission; Rapport de synthese sur la mission apres-mine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The French ministry of economy finances and industry has assigned the mission of evaluating the after-mine management system to the general inspection of finances and the general council of mines. The after-mine management system encompasses all procedures of coal, iron and potash mines closing down, land reclamation and environmental remedial action and site rehabilitation. This document makes first a status of the problems generated by the stoppage of mining activities: technical aspects, costs, institutional, organisational and juridical aspects, conservation of competences, international benchmarking elements and good practices implemented in foreign countries. Then, in a second part, this report presents the recommendations of the after-mine mission about the mastery of after-mine costs in agreement with the respect of the technical and social goals, with the development of the after-mine institutional system with the scheduled disappearance of Charbonnages de France and Mines de Potasses d'Alsace companies, and with the conservation of competences in the framework of the post-mine operational structure proposed by the mission. (J.S.)

  19. Trust: The Key to the Success of Mission Command in the Joint Force

    Science.gov (United States)

    2015-05-18

    Malaysia , Kuala Lumpur: International Conference on ISO9000. Schmidt, Todd A. “Design, Mission Command and the Network: Enabling Organization...trust.pdf. Steele , Dennis. “Setting the Azimuth for Joint Force 2020: Globally Integrated Operations and Mission Command.” Army Magazine, November

  20. IAEA Leads Operational Safety Mission To Gravelines Nuclear Power Plant, France

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA-led international team of experts today began an in-depth operational safety review of the Gravelines Nuclear Power Plant in France. The review, conducted at the invitation of the French government, focuses on programmes and activities essential to the safe operation of the nuclear power plant. The three-week review will cover the areas of Management, Organization and Administration; Training and Qualification; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The conclusions of the review will be based on the IAEA Safety Standards and on well-established international good practices. The mission is not a regulatory inspection, a design review or a substitute for an exhaustive assessment of the plant's overall safety status. The team, led by the IAEA's Division of Nuclear Installation Safety, comprises experts from Bulgaria, China, Germany, Hungary, Japan, Romania, Slovakia, South Africa, Spain and Ukraine. The Gravelines mission is the 173rd conducted as part of the IAEA's Operational Safety Review Team programme, which began in 1982. France participates actively in the programme and the Gravelines mission is the 24th hosted by the country. General information about OSART missions can be found on the IAEA Website: OSART Missions. (IAEA)

  1. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  2. Formation flying within a constellation of nano-satellites the QB50 mission

    NARCIS (Netherlands)

    Gill, E.K.A.; Sundaramoorthy, P.; Bouwmeester, J.; Zandbergen, B.; Reinhard, R.

    2010-01-01

    QB50 is a mission establishing an international network of 50 nano-satellites for multi-point, in-situ measurements in the lower thermosphere and re-entry research. As part of the QB50 mission, the Delft University of Technology intends to contribute two nano-satellites both being equipped with a

  3. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    M. Fehringer

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  4. IntroductionThe Cluster mission

    Directory of Open Access Journals (Sweden)

    C. P. Escoubet

    2001-09-01

    Full Text Available The Cluster mission, ESA’s first cornerstone project, together with the SOHO mission, dating back to the first proposals in 1982, was finally launched in the summer of 2000. On 16 July and 9 August, respectively, two Russian Soyuz rockets blasted off from the Russian cosmodrome in Baikonour to deliver two Cluster spacecraft, each into their proper orbit. By the end of August 2000, the four Cluster satellites had reached their final tetrahedral constellation. The commissioning of 44 instruments, both individually and as an ensemble of complementary tools, was completed five months later to ensure the optimal use of their combined observational potential. On 1 February 2001, the mission was declared operational. The main goal of the Cluster mission is to study the small-scale plasma structures in three dimensions in key plasma regions, such as the solar wind, bow shock, magnetopause, polar cusps, magnetotail and the auroral zones. With its unique capabilities of three-dimensional spatial resolution, Cluster plays a major role in the International Solar Terrestrial Program (ISTP, where Cluster and the Solar and Heliospheric Observatory (SOHO are the European contributions. Cluster’s payload consists of state-of-the-art plasma instrumentation to measure electric and magnetic fields from the quasi-static up to high frequencies, and electron and ion distribution functions from energies of nearly 0 eV to a few MeV. The science operations are coordinated by the Joint Science Operations Centre (JSOC, at the Rutherford Appleton Laboratory (UK, and implemented by the European Space Operations Centre (ESOC, in Darmstadt, Germany. A network of eight national data centres has been set up for raw data processing, for the production of physical parameters, and their distribution to end users all over the world. The latest information on the Cluster mission can be found at http://sci.esa.int/cluster/.

  5. Radiation Environments and Exposure Considerations for the Multi-Mission Radioisotope Thermoelectric Generator

    International Nuclear Information System (INIS)

    Kelly, William M.; Low, Nora M.; Zillmer, Andrew; Johnson, Gregory A.; Normand, Eugene

    2006-01-01

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is the next generation (RTG) being developed by DOE to provide reliable, long-life electric power for NASA's planetary exploration programs. The MMRTG is being developed by Pratt and Whitney Rocketdyne and Teledyne Energy Systems Incorporated (TESI) for use on currently planned and projected flyby, orbital and planet landing missions. This is a significant departure from the design philosophy of the past which was to match specific mission requirements to RTG design capabilities. Undefined mission requirements provide a challenge to system designers by forcing them to put a design envelope around 'all possible missions'. These multi-mission requirements include internal and external radiation sources. Internal sources include the particles ejected by decaying Pu-238 and its daughters plus particles resulting from the interaction of these particles with other MMRTG materials. External sources include the full spectrum of charged particle radiation surrounding planets with magnetic fields and the surfaces of extraterrestrial objects not shielded by magnetic fields. The paper presents the results of investigations into the environments outlined above and the impact of radiation exposure on potential materials to be used on MMRTG and ground support personnel. Mission requirements were also reviewed to evaluate total integrated dose and to project potential shielding requirements for materials. Much of the information on mission shielding requirements was provided by NASA's Jet Propulsion Laboratory. The primary result is an ionizing radiation design curve which indicates the limits to which a particular mission can take the MMRTG in terms of ionizing radiation exposure. Estimates of personnel radiation exposure during ground handling are also provided

  6. The inner magnetosphere imager mission

    International Nuclear Information System (INIS)

    Johnson, L.; Herrmann, M.

    1993-01-01

    After 30 years of in situ measurements of the Earth's magnetosphere, scientists have assembled an incomplete picture of its global composition and dynamics. Imaging the magnetosphere from space will enable scientists to better understand the global shape of the inner magnetosphere, its components and processes. The proposed inner magnetosphere imager (IMI) mission will obtain the first simultaneous images of the component regions of the inner magnetosphere and will enable scientists to relate these global images to internal and external influences as well as local observations. To obtain simultaneous images of component regions of the inner magnetosphere, measurements will comprise: the ring current and inner plasma sheet using energetic neutral atoms; the plasmasphere using extreme ultraviolet; the electron and proton auroras using far ultraviolet (FUV) and x rays; and the geocorona using FUV. The George C. Marshall Space Flight Center (MSFC) is performing a concept definition study of the proposed mission. NASA's Office of Space Science and Applications has placed the IMI third in its queue of intermediate-class missions for launch in the 1990's. An instrument complement of approximately seven imagers will fly in an elliptical Earth orbit with a seven Earth Radii (R E ) altitude apogee and approximately 4,800-kin altitude perigee. Several spacecraft concepts were examined for the mission. The first concept utilizes a spinning spacecraft with a despun platform. The second concept splits the instruments onto a spin-stabilized spacecraft and a complementary three-axis stabilized spacecraft. Launch options being assessed for the spacecraft range from a Delta 11 for the single and dual spacecraft concepts to dual Taurus launches for the two smaller spacecraft. This paper will address the mission objectives, the spacecraft design considerations, the results of the MSFC concept definition study, and future mission plans

  7. 78 FR 69047 - Travel and Tourism Trade Mission to Taiwan, Japan and Korea

    Science.gov (United States)

    2013-11-18

    ... DEPARTMENT OF COMMERCE International Trade Administration Travel and Tourism Trade Mission to Taiwan, Japan and Korea AGENCY: International Trade Administration, Department of Commerce. ACTION... Foreign Commercial Service is amending notice [[Page 69048

  8. Text of communication of 14 November 2000 received from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning nuclear disarmament

    International Nuclear Information System (INIS)

    2000-01-01

    The Director General has received a communication dated 14 November 2000 from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning nuclear disarmament, attaching a statement by the President of the Russian Federation. The text of the communication and, as requested therein, the text of the President of the Russian Federation, are attached hereto for the information of Member States

  9. 75 FR 9181 - Secretarial Indonesia Clean Energy Business Development Mission: Application Deadline Extended

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Secretarial Indonesia Clean Energy.... Applications can be completed on-line at the Clean Energy Business Development Missions' Web site at http://www.trade.gov/CleanEnergyMission or can be obtained by contacting the U.S. Department of Commerce Office of...

  10. International Physical Protection Advisory Service

    International Nuclear Information System (INIS)

    Soo Hoo, M.S.; Ek, D.; Hageman, A.; Jenkin, T.; Price, C.; Weiss, B.

    1998-01-01

    Since its inception in 1996, the purpose of the International Physical Protection Advisory Service (IPPAS) has been to provide advice and assistance to International Atomic Energy Agency (IAEA) Member States on strengthening and enhancing the effectiveness of their state system of physical protection of nuclear materials and facilities. Since the protection of nuclear materials and facilities is a Member State's responsibility, participation within the IPPAS program is voluntary. At the request of a Member State, the IAEA forms a multinational IPPAS team consisting of physical protection specialists. These specialists have broad experience in physical protection system design, implementation, and regulatory oversight. The exact make-up of the team depends upon the needs of the requesting state. IPPAS missions to participating states strive to compare the domestic procedures and practices of the state against international physical protection guidelines (IAEA Information Circular 225) and internationally accepted practice. The missions utilize a top to bottom approach and begin by reviewing the legal and regulatory structure and conclude with reviews of the implementation of the state regulations and international guidelines at individual facilities. IPPAS findings are treated as IAEA Safeguards Confidential Information. To date, IPPAS missions have been concluded in Slovenia, Bulgaria, Romania, Hungary, and Poland

  11. Collaboration support system for "Phobos-Soil" space mission.

    Science.gov (United States)

    Nazarov, V.; Nazirov, R.; Zakharov, A.

    2009-04-01

    Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture

  12. Mission X: Train Like an Astronaut Pilot Study

    Science.gov (United States)

    Lloyd, Charles W.; Olivotto, C.; Boese, A.; Spiero, F.; Galoforo, G.; Niihori, M.

    2011-01-01

    Mission X: Train Like an Astronaut is an international educational challenge focusing on fitness and nutrition as we encourage students to "train like an astronaut." Teams of students (aged 8-12) learn principles of healthy eating and exercise, compete for points by finishing training modules, and get excited about their future as "fit explorers." The 18 core exercises (targeting strength, endurance, coordination, balance, spatial awareness, and more) involve the same types of skills that astronauts learn in their training and use in spaceflight. This first-of-its-kind cooperative outreach program has allowed 14 space agencies and various partner institutions to work together to address quality health/fitness education, challenge students to be more physically active, increase awareness of the importance of lifelong health and fitness, teach students how fitness plays a vital role in human performance for exploration, and inspire and motivate students to pursue careers in STEM fields. The project was initiated in 2009 in response to a request by the International Space Life Sciences Working Group. USA, Netherlands, Italy, France, Germany, Austria, Colombia, Spain, and United Kingdom hosted teams for the pilot this past spring, and Japan held a modified version of the challenge. Several more agencies provided input into the preparations. Competing on 131 teams, more than 3700 students from 40 cities worldwide participated in the first round of Mission X. OUTCOMES AND BEST PRACTICES Members of the Mission X core team will highlight the outcomes of this international educational outreach pilot project, show video highlights of the challenge, provide the working group s initial assessment of the project and discuss the future potential of the effort. The team will also discuss ideas and best practices for international partnership in education outreach efforts from various agency perspectives and experiences

  13. The Simbol-X Mission

    Science.gov (United States)

    Ferrando, P.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Clédassou, R.; Counil, J. L.; Fiore, F.; Giommi, P.; Goldwurm, A.; Lamarle, O.; Laurent, P.; Lebrun, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Piermaria, M.; Roques, J. P.; Santangelo, A.; Tagliaferri, G.

    2009-05-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ~80 keV, as well as very good characteristics in the soft X-ray domain, down to ~0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  14. IAEA Mission Concludes Peer Review of Slovenia's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an eight-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety at the Slovenian Nuclear Safety Administration (SNSA). The team reviewed measures taken to address the recommendations and suggestions made during an earlier Integrated Regulatory Review Service (IRRS) mission conducted in 2011. The IRRS team said in its preliminary findings that Slovenia had made significant progress since the review in 2011. The team identified a good practice in the country's nuclear regulatory system additional to those identified in 2011 and made new recommendations and suggestions to SNSA and the Government to strengthen the effectiveness of the country's regulatory framework in line with IAEA Safety Standards. ''By hosting a follow-up mission, Slovenia demonstrated its commitment to enhance its regulatory programmes, including by implementing the recommendations of the 2011 mission,'' said Petr Krs, mission leader and Vice Chairman of the Czech Republic's State Office for Nuclear Safety. SNSA's Director, Andrej Stritar, welcomed the progress noted by the team, while also emphasizing that the mission highlighted important future nuclear safety challenges for Slovenia. The five-member review team, comprising experts from Belgium, the Czech Republic, France and Romania, as well as four IAEA staff members, conducted the mission at the request of the Slovenian Government from 9 to 16 September 2014. The main observations of the IRRS Review team included the following: SNSA has made significant progress in addressing the findings of the 2011 IRRS mission and has demonstrated commitment to effective implementation of the IRRS programme; The economic situation in Slovenia might in the short and long term affect SNSA's ability to maintain its capacity and competence; and A radioactive waste disposal project is stalled and the licensing

  15. 78 FR 66336 - U.S. Healthcare Education Mission to New Delhi, Hyderabad, and Ahmedabad, India, January 27...

    Science.gov (United States)

    2013-11-05

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Healthcare Education Mission to New... U.S. Healthcare Education Mission to New Delhi, Hyderabad, and Ahmedabad, India to revise the date... to allow for additional recruitment and marketing in support of the mission. Applications will now be...

  16. 78 FR 68030 - U.S. Healthcare Education Mission to New Delhi, Hyderabad, and Ahmedabad, India, January 27...

    Science.gov (United States)

    2013-11-13

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Healthcare Education Mission to New... U.S. Healthcare Education Mission to New Delhi, Hyderabad, and Ahmedabad, India to revise the... above, the Contact Information section of the Notice of the U.S. Healthcare Education Mission to New...

  17. Planning for Crew Exercise for Future Deep Space Mission Scenarios

    Science.gov (United States)

    Moore, Cherice; Ryder, Jeff

    2015-01-01

    Providing the necessary exercise capability to protect crew health for deep space missions will bring new sets of engineering and research challenges. Exercise has been found to be a necessary mitigation for maintaining crew health on-orbit and preparing the crew for return to earth's gravity. Health and exercise data from Apollo, Space Lab, Shuttle, and International Space Station missions have provided insight into crew deconditioning and the types of activities that can minimize the impacts of microgravity on the physiological systems. The hardware systems required to implement exercise can be challenging to incorporate into spaceflight vehicles. Exercise system design requires encompassing the hardware required to provide mission specific anthropometrical movement ranges, desired loads, and frequencies of desired movements as well as the supporting control and monitoring systems, crew and vehicle interfaces, and vibration isolation and stabilization subsystems. The number of crew and operational constraints also contribute to defining the what exercise systems will be needed. All of these features require flight vehicle mass and volume integrated with multiple vehicle systems. The International Space Station exercise hardware requires over 1,800 kg of equipment and over 24 m3 of volume for hardware and crew operational space. Improvements towards providing equivalent or better capabilities with a smaller vehicle impact will facilitate future deep space missions. Deep space missions will require more understanding of the physiological responses to microgravity, understanding appropriate mitigations, designing the exercise systems to provide needed mitigations, and integrating effectively into vehicle design with a focus to support planned mission scenarios. Recognizing and addressing the constraints and challenges can facilitate improved vehicle design and exercise system incorporation.

  18. International cooperation for Mars exploration and sample return

    Science.gov (United States)

    Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.

    1990-01-01

    The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.

  19. Gaia Space Mission and Quasars

    Energy Technology Data Exchange (ETDEWEB)

    Zwitter, Tomaž, E-mail: tomaz.zwitter@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)

    2017-11-15

    Quasars are often considered to be point-like objects. This is largely true and allows for an excellent alignment of the optical positional reference frame of the ongoing ESA mission Gaia with the International Celestial Reference Frame. But presence of optical jets in quasars can cause shifts of the optical photo-centers at levels detectable by Gaia. Similarly, motion of emitting blobs in the jet can be detected as proper motion shifts. Gaia's measurements of spectral energy distribution for around a million distant quasars is useful to determine their redshifts and to assess their variability on timescales from hours to years. Spatial resolution of Gaia allows to build a complete magnitude limited sample of strongly lensed quasars. The mission had its first public data release in September 2016 and is scheduled to have the next and much more comprehensive one in April 2018. Here we briefly review the capabilities and current results of the mission. Gaia's unique contributions to the studies of quasars are already being published, a highlight being a discovery of a number of quasars with optical jets.

  20. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Venezuela. Draft

    International Nuclear Information System (INIS)

    Hetland, Donald L.; Obellianne, Jean-marie

    1981-04-01

    The IUREP Orientation Phase Mission to Venezuela believes that the Speculative Uranium Resources of that country fall between 2,000 and 42,000 tonnes. This assumes that a part of the Speculative Resources would be extracted as by-product uranium from wet-process phosphoric acid production. Past exploration in Venezuela has resulted in the discovery of very few uranium occurrences and radioactive anomalies except for the many airborne anomalies recorded on the Guayana Shield. To date no economic deposits or significant uranium occurrences have been found in Venezuela except for the uraniferous phosphorites in the Cretaceous Navey Formation which are very low grade. The uranium occurrences and radioactive anomalies can be divided according to host rock into: (1) Precambrian crystalline and sedimentary rocks, (2) Cretaceous phosphorite beds, (3) continental sandstone, and (4) granitic rocks. The greatest geological potential for further uranium resources is believed to exist in the crystalline and sedimentary Precambrian rocks of the Guayana Shield, but favorable geological potential also exist in younger continental sandstones. Since the Guayana Shield is the most promising for the discovery of economic uranium deposits most of the proposed exploration effort is directed toward that area. Considerable time, effort and capital will be required however, because of the severe logistical problems of exploration in this vast, rugged and inaccessable area, Meager exploration work done to date has been relatively negative suggesting the area is more of a thorium rather than a uranium province. However because of the possibility of several types of uranium deposits and because so little exploration work has been done, the Mission assigned a relatively small speculative potential to the area, i.e. 0 to 25,000 tonnes uranium. A small speculative potential (0 to 2,000 tonnes) was assigned to the El Baul area in Cojedes State, in the Llanos Province. This potential is postulated

  1. Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    Science.gov (United States)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.

  2. Experience of the United States in Hosting and Supporting IAEA Peer Review Missions

    International Nuclear Information System (INIS)

    Mamish, N.

    2016-01-01

    The International Atomic Energy Agency (IAEA) provides a number of peer review services to its Member States. The United States has strongly supported these peer reviews since their inception. In 2010, the United States hosted an Integrated Regulatory Review Service (IRRS) mission, with a follow-up mission completed in 2014. The missions provided valuable recommendations and suggestions, identified a number of best practices, and acknowledged the prompt and effective actions taken by the NRC following the Fukushima Daiichi accident. Through hosting an International Physical Protection Advisory Service (IPPAS) mission in 2013, the United States benefited both from the insights provided by the team, as well as the U.S. Government’s gap analyses and preparatory efforts in advance of the mission. The United States strongly supports the IAEA’s Operational Safety Review Team (OSART) program, inviting a peer review mission to a U.S. nuclear power plant every 3 years. Although OSART is an operational, not regulatory, peer review, the NRC provides funding for the mission and gives inspection credit to operators that host them. The United States also contributes significant technical expertise to IAEA peer review missions hosted by other Member States. With the IRRS and IPPAS reaching their 10th and 20th anniversaries respectively, these programs have improved as they have matured. However, it remains critical for Member States to continue to support these programs, and provide feedback to the IAEA Secretariat on their effectiveness and areas where IAEA might enhance them. Doing so will ensure peer reviews remain an effective tool for strengthening nuclear safety and security worldwide. (author)

  3. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  4. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  5. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding the export of nuclear material and of certain categories of equipment and other material

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of a letter received by the Director general of the IAEA from Permanent Mission of the Russian Federation to the International Atomic Energy Agency concerning the export of nuclear material and of certain categories of equipment and other material

  6. IAEA completes third mission to Kashiwazaki-Kariwa nuclear power plant

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: An IAEA-led team of international experts has completed its third mission, at the invitation of the Government of Japan. This follow-up mission continued to share the lessons learned from the effects of the July 2007 earthquake of the Kashiwazaki- Kariwa nuclear power plant. The mission received further evidence confirming the findings of previous missions regarding the safe performance of the plant during and after the earthquake. The mission found that there is consensus in the scientific community about the causes of the unexpectedly large ground motions experienced at the plant site during the July 2007 earthquake and, consequently, it has been possible to identify the precautions needed to be taken in relation to possible future events. These precautions were based on extensive studies and assessments conducted by a number of specialized institutions and experts in different fields. The necessary upgrades and actions were consequently defined and are being implemented by the Japanese utility for both safety and non-safety related components at the nuclear power plant. The lessons learned from the Kashiwazaki-Kariwa experience has also contributed to the development of IAEA Safety Standards related to seismic safety. These standards are expected to be released shortly. The mission's report will be provided to the Japanese Nuclear and Industrial Safety Agency (NISA) and will be made publicly available in January 2009. The IAEA conducted two previous missions to the Kashiwazaki-Kariwa NPP in August 2007 and January/February 2008. The experience from recent strong seismic events and the lessons learned through the missions to Kashiwazaki-Kariwa NPP have led to the establishment of an International Seismic Safety Centre (ISSC) at the IAEA that is working as a focal point for seismic safety- related information about nuclear installations. Related Resources: (1) January 2008 IAEA Report: Follow-up IAEA Mission in Relation to the Findings and Lessons

  7. Optimal Mission Abort Policy for Systems Operating in a Random Environment.

    Science.gov (United States)

    Levitin, Gregory; Finkelstein, Maxim

    2018-04-01

    Many real-world critical systems, e.g., aircrafts, manned space flight systems, and submarines, utilize mission aborts to enhance their survivability. Specifically, a mission can be aborted when a certain malfunction condition is met and a rescue or recovery procedure is then initiated. For systems exposed to external impacts, the malfunctions are often caused by the consequences of these impacts. Traditional system reliability models typically cannot address a possibility of mission aborts. Therefore, in this article, we first develop the corresponding methodology for modeling and evaluation of the mission success probability and survivability of systems experiencing both internal failures and external shocks. We consider a policy when a mission is aborted and a rescue procedure is activated upon occurrence of the mth shock. We demonstrate the tradeoff between the system survivability and the mission success probability that should be balanced by the proper choice of the decision variable m. A detailed illustrative example of a mission performed by an unmanned aerial vehicle is presented. © 2017 Society for Risk Analysis.

  8. Biological life-support systems for Mars mission.

    Science.gov (United States)

    Gitelson, J I

    1992-01-01

    Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.

  9. Multi-mission space science data processing systems - Past, present, and future

    Science.gov (United States)

    Stallings, William H.

    1990-01-01

    Packetized telemetry that is consistent with the international Consultative Committee for Space Data Systems (CCSDS) has been baselined for future NASA missions such as Space Station Freedom. Some experiences from past and present multimission systems are examined, including current experiences in implementing a CCSDS standard packetized data processing system, relative to the effectiveness of the multimission approach in lowering life cycle cost and the complexity of meeting new mission needs. It is shown that the continued effort toward standardization of telemetry and processing support will permit the development of multimission systems needed to meet the increased requirements of future NASA missions.

  10. Simulation and debriefing in neonatology 2016: Mission incomplete.

    Science.gov (United States)

    Halamek, Louis P

    2016-11-01

    Simulation can be an effective tool to facilitate the acquisition and maintenance of the cognitive, technical and behavioral skills necessary to carry out our mission in neonatology: the delivery of safe, effective and efficient care to our patients. Prominent examples of successful implementation of simulation within neonatology include the Neonatal Resuscitation Program, the International Pediatric Simulation Society, and the International Network for Simulation-Based Pediatric Innovation, Research and Education. Despite these successes much remains to be accomplished. Expanding simulation beyond technical skill acquisition, using simulated environments to conduct research into human and system performance, incorporating simulation into high-stakes skill assessments, embracing the expertise of the more extensive modeling and simulation community and, in general, applying simulation to healthcare with the same degree of gravitas with which it is deployed in other high-risk industries are all tasks that must be completed in order to achieve our mission. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The Application of LENR to Synergistic Mission Capabilities

    Science.gov (United States)

    Wells, Douglas P.; Mavris, Dimitri N.

    2014-01-01

    This paper presents an overview of several missions that exploit the capabilities of a Low Energy Nuclear Reaction (LENR) aircraft propulsion system. LENR is a form of nuclear energy and potentially has over 4,000 times the energy density of chemical energy sources. It does not have any harmful emissions or radiation which makes it extremely appealing. The global reliance on crude oil for aircraft energy creates the opportunity for a revolutionary change with LENR. LENR will impact aircraft performance capabilities, military capabilities, the environment, the economy, and society. Although there is a lot of interest in LENR, there is no proven theory that explains it. Some of the technical challenges are thermal runaway and start-up time. This paper does not explore the feasibility of LENR and assumes that a system is available. A non-dimensional aircraft mass (NAM) ratio diagram is used to explore the aircraft system design space. The NAM ratio diagram shows that LENR can enable long range and high speed missions. The design space exploration led to the conclusion that LENR aircraft would be well suited for high altitude long endurance (HALE) missions, including communications relay and scientific missions for hurricane tracking and other weather phenomena, military intelligence, surveillance, and reconnaissance (ISR) and airspace denial missions, supersonic passenger transport aircraft, and international cargo transport. This paper describes six of those missions.

  12. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  13. The Comet Radar Explorer Mission

    Science.gov (United States)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and

  14. Darfur: the various Missions of a complex conflict.

    Directory of Open Access Journals (Sweden)

    Wellington Pereira Carneiro

    2013-07-01

    Full Text Available The conflict in Darfur represents the worst humanitarian crisis of the new millennium and took place at an extremely introspective time in the UN when all aspects of the peace missions were reviewed and reassessed. Mainly upon release of the Brahimi report published in the year 2000, when the failures in Rwanda, Somalia and Bosnia were conducive to the reassessment of the exaggerated optimism from end of the cold war. However, the complexity of the Darfur conflict demanded again a massive deployment of resources and troops in complex and daring peace missions. This article explores the gradual return to complex operations, first by missions led by regional actors, like AMIS (African Union and EUFOR (European Union. In this context the complex and multifunctional missions led by the UN return, incorporating the protection of populations at risk, human rights and governance, among other components. That way the hybrid UNAMID and MINURCAT appear with ambitious mandates. The UNAMID has to operate along with the display of the International Criminal Court jurisdiction over an ongoing conflict which will entail new developments and challenges.

  15. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Ghana. Draft

    International Nuclear Information System (INIS)

    Guelpa, Jean-Paul; Vogel, Wolfram

    1982-12-01

    The Republic of Ghana has no claimed uranium resources in the categories Reasonably Assured and Estimated Additional. The only occurrences known are within pegmatites and are of no economic importance. The IUREP Orientation Phase Mission to Ghana estimates that the Speculative Resources of the country fall between 15,000 and 40,000 tonnes uranium. The IUREP Orientation Phase Mission to Ghana believes that the Panafrican Mobile Belt has the highest uranium potential of all geological units of the country. The Obosum beds are the priority number two target. A three years exploration programme is recommended for a total cost of US $ 5,000,000. The Ghana Atomic Energy Commission and the Ghana Geological Survey provide a basic infrastructure for uranium exploration. Any future uranium development in Ghana should be embedded in a well defined national uranium policy. It is recommended that such a policy be draw, up by the Ghanaian authorities

  16. Conformity visa-vi transformational conversion in mission: Towards ...

    African Journals Online (AJOL)

    In this article, the author discusses the concept of conversion as opposed to conformity to a religious tradition without internal self-assertiveness. A transcendental mission understanding as opposed to an immanent agenda for liberation is proposed as an alternative solution. He analyses the role played and the ...

  17. Communication from the Permanent Mission of Cyprus to the International Atomic Energy Agency regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    2001-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of Cyprus providing information on the export policies and practices of the Government of Cyprus with respect to the export of nuclear material, equipment and technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/254/Rev. 4/Part 1

  18. The role of cross-cultural factors in long-duration international space missions: lessons from the SFINCSS-99 study.

    Science.gov (United States)

    Tomi, Leena M; Rossokha, Katherine; Hosein, Janette

    2002-01-01

    The role of cross-cultural factors in long-duration international space missions was examined during an isolation study that simulated many of the conditions aboard the International Space Station. Interactions involving two heterogeneous crews and one homogeneous crew staying in isolation from 110 to 240 days were studied. Data consisted of post-isolation interviews with crewmembers, ground support personnel and management, observational data, and public statements by crewmembers. Data was analyzed using the techniques of linguistic anthropology and ethnography. Sub-cultural (organizational and professional) differences played a larger role than national differences in causing misunderstandings in this study. Conversely, some misunderstandings and conflicts were escalated by participants falsely assuming cultural differences or similarities. Comparison between the two heterogeneous crews showed the importance of training, personality factors, and commander and language skills in preventing and alleviating cultural misunderstandings. The study revealed a number of ways that cultural differences, real as well as assumed, can play a role and interact with other, non-cultural, factors in causing and/or precipitating conflict situations. It is postulated that such difficulties can be avoided by selecting culturally adaptive crewmembers and by cross-cultural and language training. Also the crew composition and role of commander were found to be important in mitigating conflict situations. c2002 Lister Science.

  19. The Stellar Imager (SI)"Vision Mission"

    Science.gov (United States)

    Carpenter, Ken; Danchi, W.; Leitner, J.; Liu, A.; Lyon, R.; Mazzuca, L.; Moe, R.; Chenette, D.; Karovska, M.; Allen, R.

    2004-01-01

    The Stellar Imager (SI) is a "Vision" mission in the Sun-Earth Connection (SEC) Roadmap, conceived for the purpose of understanding the effects of stellar magnetic fields, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best possible forecasting of solar/stellar magnetic activity and its impact on life in the Universe. The science goals of SI require an ultra-high angular resolution, at ultraviolet wavelengths, on the order of 100 micro-arcsec and thus baselines on the order of 0.5 km. These requirements call for a large, multi-spacecraft (less than 20) imaging interferometer, utilizing precision formation flying in a stable environment, such as in a Lissajous orbit around the Sun-Earth L2 point. SI's resolution will make it an invaluable resource for many other areas of astrophysics, including studies of AGN s, supernovae, cataclysmic variables, young stellar objects, QSO's, and stellar black holes. ongoing mission concept and technology development studies for SI. These studies are designed to refine the mission requirements for the science goals, define a Design Reference Mission, perform trade studies of selected major technical and architectural issues, improve the existing technology roadmap, and explore the details of deployment and operations, as well as the possible roles of astronauts and/or robots in construction and servicing of the facility.

  20. 76 FR 76382 - Executive-Led Business Development Mission to Kabul, Afghanistan; February 2012* Dates Are Withheld

    Science.gov (United States)

    2011-12-07

    ... sector and lead to increased productivity and greater technical skills for Afghan citizens. International... DEPARTMENT OF COMMERCE International Trade Administration Executive-Led Business Development... Commerce's International Trade Administration is organizing a business development trade mission to Kabul...

  1. 75 FR 56509 - Multi-Sector Trade Mission to Nigeria

    Science.gov (United States)

    2010-09-16

    ... Administration granted Nigeria Category 1 status under the international aviation safety assessment program... culture relies heavily on the strength of personal contacts to consummate deals. This trade mission offers... aviation industries. The transport ministry (aviation division) is planning to fix, purchase and install...

  2. [Mission statements of Dutch mental health institutions; the quality of communication with stakeholders].

    Science.gov (United States)

    Krol, D G H; de Kruif, J

    2013-01-01

    As a result of recent reforms in Dutch health care, healthcare providers are having to operate more and more like commercial organisations and adopt some of the rules prevailing in the profit sector. Because missions statements can be an efficient means of useful communication with internal and external stakeholders they can make a useful contribution to the way healthcare institutions are managed and to their status and reputation. Research shows that in view of this the quality of the messages conveyed via mission statements is important. To ascertain which stakeholders are mentioned in the mission statements of Dutch mental healthcare providers and to quantify the quality of the messages conveyed to them via mission statements. We examined the mission statements of 34 mental health providers to find out which stakeholders were included. The message conveyed to the stakeholders was quantified by means of a validated measuring instrument devised specifically for this purpose. Patients were referred to in all mission statements and the quality of the messages conveyed was of higher quality than the messages conveyed to other stakeholders. Other important stakeholders on whom the institutions depended were referred to much less frequently and the quality of sections of text referring to them was definitely inferior. Mission statements frequently serve as management tool for Dutch mental healthcare providers. The potential benefits that these statements could bestow on the providers are not being fully exploited because the standard of communication with several internal and external stakeholders is of poor quality.

  3. International Uranium Resources Evaluation Project (IUREP) orientation phase mission summary report: Thailand

    International Nuclear Information System (INIS)

    1985-01-01

    The IURBP Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1 500 to 38 500 tonnes U. Geological environments which are considered by the Mission to be favourable for uranium occurrences include the following: sandstones of Jurassic to Triassic age; Tertiary sedimentary basins (northern Thailand); Tertiary sedimentary basins (southern Thailand); associated with fluorite deposits; granitic rocks; black shales and graphitic slates of the Palaeozoic; associated with sedimentary phosphate deposits; and associated with monazite sands. Physical conditions in Thailand, including a wet tropical climate, dense forest growth and rugged terrain in some areas and relative inaccessibility, make exploration difficult and costly. There is currently no ready accessibility to detailed topographic and geological maps and other basic data. This lack of availability is a severe constraint to systematic exploration. The lack of skilled personnel experienced in uranium studies and the low level of technical support is a serious hindrance to exploration in Thailand. (author)

  4. [The mission].

    Science.gov (United States)

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense.

  5. The Simbol-X Mission

    International Nuclear Information System (INIS)

    Ferrando, P.; Goldwurm, A.; Laurent, P.; Lebrun, F.; Arnaud, M.; Briel, U.; Cavazzuti, E.; Giommi, P.; Piermaria, M.; Cledassou, R.; Counil, J. L.; Lamarle, O.; Fiore, F.; Malaguti, G.; Mereghetti, S.; Micela, G.; Pareschi, G.; Tagliaferri, G.; Roques, J. P.; Santangelo, A.

    2009-01-01

    The elucidation of key questions in astrophysics, in particular those related to black hole physics and census, and to particle acceleration mechanisms, necessitates to develop new observational capabilities in the hard X-ray domain with performances several orders of magnitude better than presently available. Relying on two spacecrafts in a formation flying configuration, Simbol-X will provide the world-wide astrophysics community with a single optics long focal length telescope. This observatory will have unrivaled performances in the hard X-ray domain, up to ∼80 keV, as well as very good characteristics in the soft X-ray domain, down to ∼0.5 keV. The Simbol-X mission has successfully passed a phase A study, jointly conducted by CNES and ASI, with the participation of German laboratories. It is now entering phase B studies with the participation of new international partners, for a launch in 2015. We give in this paper a general overview of the mission, as consolidated at the start of phase B.

  6. 29 November 2013 - U. Humphrey Orjiako Nigerian Ambassador Extraordinary and Plenipotentiary Permanent Mission to the United Nations Office and other international organisations in Geneva signing the Guest Book with Head of International Relations R. Voss, visiting the LHC tunnel at Point 2 and the ALICE cavern with ALICE Collaboration Deputy Spokesperson Y. Schutz.

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    29 November 2013 - U. Humphrey Orjiako Nigerian Ambassador Extraordinary and Plenipotentiary Permanent Mission to the United Nations Office and other international organisations in Geneva signing the Guest Book with Head of International Relations R. Voss, visiting the LHC tunnel at Point 2 and the ALICE cavern with ALICE Collaboration Deputy Spokesperson Y. Schutz.

  7. Communications dated 2 and 6 June 1994 received from the Permanent Mission of the Democratic People's Republic of Korea to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1994-01-01

    The texts of two telex communications, dated 2 and 6 June 1994, which the International Atomic Energy Agency received from the General Department of Atomic Energy of the Democratic People's Republic of Korea are being circulated to all Member States of the Agency at the request of the Permanent Mission of the Democratic People's Republic of Korea. These texts were received by the Secretariat before the withdrawal of the Democratic People's Republic of Korea from the Agency

  8. Landsat Data Continuity Mission (LDCM) space to ground mission data architecture

    Science.gov (United States)

    Nelson, Jack L.; Ames, J.A.; Williams, J.; Patschke, R.; Mott, C.; Joseph, J.; Garon, H.; Mah, G.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a scientific endeavor to extend the longest continuous multi-spectral imaging record of Earth's land surface. The observatory consists of a spacecraft bus integrated with two imaging instruments; the Operational Land Imager (OLI), built by Ball Aerospace & Technologies Corporation in Boulder, Colorado, and the Thermal Infrared Sensor (TIRS), an in-house instrument built at the Goddard Space Flight Center (GSFC). Both instruments are integrated aboard a fine-pointing, fully redundant, spacecraft bus built by Orbital Sciences Corporation, Gilbert, Arizona. The mission is scheduled for launch in January 2013. This paper will describe the innovative end-to-end approach for efficiently managing high volumes of simultaneous realtime and playback of image and ancillary data from the instruments to the reception at the United States Geological Survey's (USGS) Landsat Ground Network (LGN) and International Cooperator (IC) ground stations. The core enabling capability lies within the spacecraft Command and Data Handling (C&DH) system and Radio Frequency (RF) communications system implementation. Each of these systems uniquely contribute to the efficient processing of high speed image data (up to 265Mbps) from each instrument, and provide virtually error free data delivery to the ground. Onboard methods include a combination of lossless data compression, Consultative Committee for Space Data Systems (CCSDS) data formatting, a file-based/managed Solid State Recorder (SSR), and Low Density Parity Check (LDPC) forward error correction. The 440 Mbps wideband X-Band downlink uses Class 1 CCSDS File Delivery Protocol (CFDP), and an earth coverage antenna to deliver an average of 400 scenes per day to a combination of LGN and IC ground stations. This paper will also describe the integrated capabilities and processes at the LGN ground stations for data reception using adaptive filtering, and the mission operations approach fro- the LDCM

  9. 76 FR 67416 - Executive-led Business Development Mission to Kabul, Afghanistan, September 2011 (Dates Are...

    Science.gov (United States)

    2011-11-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Executive-led Business Development... Commerce's International Trade Administration is organizing a business development trade mission to Kabul... sectors include: construction (including engineering, architecture, transportation and logistics, and...

  10. The human story of Crew 173- capturing a Mars analog mission

    Science.gov (United States)

    Shaw, Niamh; Musilova, Michaela; Pons Lorente, Arnau; Sisaid, Idriss; Naor, Roy; Blake, Richard

    2017-04-01

    An international crew of six scientists, engineers, artists and entrepreneurs with different space specialisations were selected by the Mars Society to take part in a Martian simulation in January 2017. An ambitious outreach and media strategy was developed, aimed at communicating the benefits of missions to Mars to the public and to capture the public's interest by telling the human story of the crew's mission. Entitled Crew 173 Team PRIMA, they entered the Mars Desert Research Station in the Utah Desert and conducted research in 3D printing, hydroponics, geology and astronomy. Both the scientific and community experience of this mission was documented through still image, video, audio, diary and daily journalling by the resident artist of the mission, Niamh Shaw. The full experience of the crew was documented (before, during and after the expedition), to capture each individual experience of the crew and the human experience of isolation of future human space missions.

  11. Communication from the Permanent Mission of Australia to the International Atomic Energy Agency regarding Guidelines for the Export of Nuclear Material, Equipment and Technology

    International Nuclear Information System (INIS)

    2002-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of Australia, dated 31 August 2001, providing information on the export policies and practices of the Government of Australia with respect to the export of nuclear material, equipment and technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment referenced in the Note Verbale was issued previously as INFCIRC/254/Rev. 5/Part 1

  12. Canada and Missions for Peace: Lessons from Nicaragua ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... recommendations to guide future policy and programing in peacebuilding. Perhaps it is too early to tell if a concern for international security can be combined with a concern for human security and well-being to form a new peacebuilding "architecture." The lessons and insight contained in Canada and Missions for Peace, ...

  13. Sensor assignment to mission in AI-TECD

    Science.gov (United States)

    Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan

    2016-05-01

    Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.

  14. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  15. The SOLAR-C Mission

    Science.gov (United States)

    Suematsu, Y.

    2015-12-01

    The Solar-C is a Japan-led international solar mission planned to be launched in mid2020. It is designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and also to develop an algorithm for predicting short and long term solar evolution. Since it has been revealed that the different parts of the magnetized solar atmosphere are essentially coupled, the SOLAR-C should tackle the spatial scales and temperature regimes that need to be observed in order to achieve a comprehensive physical understanding of this coupling. The science of Solar-C will greatly advance our understanding of the Sun, of basic physical processes operating throughout the universe. To dramatically improve the situation, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1-0.3 arcsec), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. In addition, Solar-C will contribute to our understanding on the influence of the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions. Some leading science objectives and the mission concept, including designs of the three instruments aboard SOLAR-C will be presented.

  16. STS-95 Mission Highlights Resources Tape

    Science.gov (United States)

    1999-01-01

    The STS-95 flight crew, Commander Curtis L. Brown, Pilot Steven W. Lindsey, Mission Specialists Scott E. Parazynski, Stephen K. Robinson, and Pedro Duque, and Payload Specialists Chiaki Mukai and John H. Glenn present a video overview of their space flight. They are seen performing pre-launch activities such as eating the traditional breakfast, crew suit-up, and the ride out to the launch pad. Also, included are various panoramic views of the shuttle on the pad. The crew is readied in the 'white room' for their mission. After the closing of the hatch and arm retraction, launch activities are shown including countdown, engine ignition, launch, and the separation of the Solid Rocket Boosters. Once on-orbit the primary objectives include conducting a variety of science experiments in the pressurized SPACEHAB module, the deployment and retrieval of the Spartan free-flyer payload, and operations with the Hubble Space Telescope (HST) Orbiting Systems Test (HOST) and the International Extreme Ultraviolet Hitchhiker (IEH) payloads being carried in the payload bay. Throughout the presentation, the astronauts take turns narrating particular aspects of the mission with which they were involved.

  17. Planning a pharmacy-led medical mission trip, part 4: an exploratory study of student experiences.

    Science.gov (United States)

    Brown, Dana A; Fairclough, Jamie L; Ferrill, Mary J

    2012-09-01

    At the Gregory School of Pharmacy (GSOP), pharmacy students routinely participate in domestic and international medical mission trips. Participation can be for academic credit as part of final-year Advanced Pharmacy Practice Experiences (APPEs) or as required community service hours. These mission experiences could potentially result in both professional and personal transformations for participating students. To evaluate data collected from GSOP pharmacy students regarding their experiences on the medical mission field in 2011 and how that participation has impacted the students professionally and personally. GSOP students participating in an international or domestic medical mission trip in the summer of 2011 were asked to voluntarily complete pre- and posttrip surveys. Of the 68 final-year APPE students and student volunteers who participated in a summer 2011 GSOP medical mission trip, 36 (53%) completed pre- and posttrip surveys. The mission trips significantly impacted students' beliefs regarding better preparation to care for the medical needs of patients, identification of others' needs, understanding team dynamics, perceptions about the value of patient care, and comfort level with the provision of medical and pharmaceutical care in a foreign country. However, there were no statistically significant improvements in students' perceptions of their ability to care for the emotional needs of patients, the importance of team unity, and their level of respect for team members; their ability to lead or participate in future trips; and their belief that participating preceptors and faculty serve as effective role models of servant leaders. Based on the findings from this exploratory study, participation in a domestic or international medical mission trip as a student volunteer or APPE student appears to have a positive impact on some of the beliefs and perceptions of GSOP students. By continuing to follow these particular students and similar cohorts of students in

  18. IAEA Mission Says France Committed to Safe, Responsible Management of Radioactive Waste

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said France demonstrated a comprehensive commitment to safety with a responsible approach to the management of radioactive waste and spent nuclear fuel. The team also made suggestions aimed at further enhancements and noted several good practices. The Integrated Review Service for Radioactive Waste and Spent Fuel Management, Decommissioning and Remediation (ARTEMIS) team concluded an 11-day mission to France on 24 January. The mission, requested by the Government of France, was hosted by the Directorate General of Energy and Climate (DGEC), with the participation of officials from several relevant organizations including the French National Radioactive Waste Agency (ANDRA) and the Nuclear Safety Authority (ASN), which is responsible for nuclear and radiation safety regulation in the country. ARTEMIS missions provide independent expert advice from an international team of specialists convened by the IAEA. Reviews are based on the IAEA safety standards as well as international good practices. The mission to France aimed to help the country meet European Union obligations that require an independent peer review of national programmes for the safe and responsible management of spent fuel and radioactive waste. Nuclear power currently generates more than 70 percent of France’s electricity. The country has 58 operating nuclear power reactors, which will require the continuing safe management of radioactive waste and spent fuel. France operates facilities for the disposal of very low-level and low-level wastes, and is developing a deep geological repository for the disposal of high-level waste.

  19. The ESA Scientific Exploitation of Operational Missions element

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Zehner, Claus; Mathieu, Pierre-Philippe; Bojkov, Bojan; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Goryl, Philippe; Pinnock, Simon

    2015-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS,ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan has been established and is approved every year by ESA Members States. The 2015 SEOM work plan is covering the organisation of three Science users consultation workshops for Sentinel1/3/5P , the launch of new R&D studies for scientific exploitation of the Sentinels, the development of open-source multi-mission scientific toolboxes, the organisation of advanced international training courses, summer schools and educational materials, as well as activities for promoting the scientific use of EO data. The first SEOM projects have been tendered since 2013 including the development of Sentinel toolboxes, advanced INSAR algorithms for Sentinel-1 TOPS data exploitation, Improved Atmospheric Spectroscopic data-base (IAS), as well as grouped studies for Sentinel-1, -2, and -3 land and ocean applications and studies for exploiting the synergy between the Sentinels. The status and first results from these SEOM projects will be presented and an outlook for upcoming SEOM studies will be given.

  20. Synthesis report about the after-mine mission

    International Nuclear Information System (INIS)

    2003-07-01

    The French ministry of economy finances and industry has assigned the mission of evaluating the after-mine management system to the general inspection of finances and the general council of mines. The after-mine management system encompasses all procedures of coal, iron and potash mines closing down, land reclamation and environmental remedial action and site rehabilitation. This document makes first a status of the problems generated by the stoppage of mining activities: technical aspects, costs, institutional, organisational and juridical aspects, conservation of competences, international benchmarking elements and good practices implemented in foreign countries. Then, in a second part, this report presents the recommendations of the after-mine mission about the mastery of after-mine costs in agreement with the respect of the technical and social goals, with the development of the after-mine institutional system with the scheduled disappearance of Charbonnages de France and Mines de Potasses d'Alsace companies, and with the conservation of competences in the framework of the post-mine operational structure proposed by the mission. (J.S.)

  1. 75 FR 21597 - Business Development Trade Mission to Baghdad, Iraq

    Science.gov (United States)

    2010-04-26

    ... large projects relating to construction, highways, railways, telecommunications, and security and... DEPARTMENT OF COMMERCE International Trade Administration Business Development Trade Mission to... October 2010* and has been created to assist U.S. firms find business partners and sell equipment and...

  2. 76 FR 65498 - Executive-led Business Development Mission to Kabul, Afghanistan

    Science.gov (United States)

    2011-10-21

    ... DEPARTMENT OF COMMERCE International Trade Administration Executive-led Business Development... is organizing a business development trade mission to Kabul, Afghanistan in September 2012. This... (including engineering, architecture, transportation and logistics, and infrastructure); mining (including...

  3. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  4. Planetary protection implementation on future Mars lander missions

    Science.gov (United States)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing

  5. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  6. Portable Diagnostics Technology Assessment for Space Missions. Part 2; Market Survey

    Science.gov (United States)

    Nelson, Emily S.; Chait, Arnon

    2010-01-01

    A mission to Mars of several years duration requires more demanding standards for all onboard instruments than a 6-month mission to the Moon or the International Space Station. In Part 1, we evaluated generic technologies and suitability to NASA needs. This prior work considered crew safety, device maturity and flightworthiness, resource consumption, and medical value. In Part 2, we continue the study by assessing the current marketplace for reliable Point-of-Care diagnostics. The ultimate goal of this project is to provide a set of objective analytical tools to suggest efficient strategies for reaching specific medical targets for any given space mission as program needs, technological development, and scientific understanding evolve.

  7. IAEA Mission Says Chile Committed to Enhancing Safety, Sees Regulatory Challenges

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said Chile is committed to strengthening its regulatory framework for nuclear and radiation safety. To help achieve this aim, the team said the country should address challenges in some areas, including the need to ensure effective independence in regulatory decision-making. The Integrated Regulatory Review Service (IRRS) team today concluded a 12-day mission to assess the regulatory safety framework in Chile. The mission was conducted at the request of the Government and hosted by the Chilean Nuclear Energy Commission (CCHEN), which is responsible for regulatory supervision together with the Ministry of Health (MINSAL). The review mission covered all civilian nuclear and radiation source facilities and activities regulated in Chile.

  8. The International Association for Promoting Geoethics: Mission, Organization, and Activities

    Science.gov (United States)

    Kieffer, S. W.; Peppoloni, S.; Di Capua, G.

    2017-12-01

    The International Association for Promoting Geoethics (IAPG) was founded in 2012, during the 34th IGC in Brisbane (Australia), to provide a multidisciplinary platform for widening the discussion and creating awareness about principles and problems of ethics as applied to the geosciences. It is a scientific, non-governmental, non-political, non-profit, non-party institution, headquartered at the Italian Institute of Geophysics and Volcanology in Rome, Italy. IAPG focuses on behaviors and practices where human activities interact with the Earth system, and deals with the ethical, social and cultural implications of geoscience knowledge, education, research, practice and communication. Its goal is to enhance awareness of the social role and responsibility of geoscientists in conducting their activities such as geoeducation, sustainability, and risk prevention. IAPG is a legally recognized non-profit association with members in 115 countries on 5 continents, and currently has 26 national sections. As of the date of this abstract, IAPG has been involved with approximately 70 international meetings (scientific conferences, symposia, seminars, workshops, expositions, etc.). Other activities range from exchanging information with newsletters, blogs, social networks and publications; promoting the creation of working groups and encouraging the participation of geoscientists within universities and professional associations for the development of geoethics themes; and cooperating with national and international organizations whose aims are complementary, e.g., International Union of Geological Sciences (IUGS), American Geosciences Institute (AGI), Geological Society of America (GSA), Geological Society of London (GSL), Geoscience Information in Africa - Network (GIRAF), American Geophysical Union (AGU), International Association for Engineering Geology and the Environment (IAEG), International Association of Hydrogeologists (IAH), Association of Environmental & Engineering

  9. Mission operations management

    Science.gov (United States)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  10. 75 FR 54087 - Education Trade Mission to Indonesia and Vietnam

    Science.gov (United States)

    2010-09-03

    ... Description The United States Department of Commerce, International Trade Administration, U.S. and Foreign... institutional accreditors in the United States. The mission will introduce participants to potential students..., and improving the education system will be crucial to sustaining long-term growth. Education has...

  11. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  12. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  13. June Solstice Equatorial Spread F in the American Sector: A Numerical Assessment of Linear Stability Aided by Incoherent Scatter Radar Measurements

    Science.gov (United States)

    Zhan, Weijia; S. Rodrigues, Fabiano

    2018-01-01

    Previous studies have suggested that weakening downward plasma drifts can produce favorable conditions for the ionospheric Generalized Rayleigh-Taylor (GRT) instability and explain the occurrence of postmidnight equatorial spread F (ESF). We evaluated this hypothesis using numerical simulations aided by measurements and attempted to explain ESF events observed in the American sector during June solstice, low solar flux conditions. We analyzed plasma drifts and ESF measurements made by the incoherent scatter radar of the Jicamarca Radio Observatory (11.95° S, 76.87° W, ˜1° dip). We found adequate measurements during a prototypical, quiet time event on 4-5 June 2008 when the downward drifts weakened and a fully developed ESF appeared. The measured drifts were used as input for the SAMI2 model. SAMI2 reproduced an "apparent" uplift of the ionosphere based on h'F measurements that was consistent with expectations and observations. SAMI2 also provided parameters for estimation of the flux tube linear growth rates of GRT instability associated with the weakening drift event. We found that the weakening drifts did produce unstable conditions with positive growth rates. The growth rates, however, were slower than those obtained for typical, premidnight ESF events and those obtained for similar drift conditions in other longitude sectors. We show, however, that departures in the wind pattern, from climatological model predictions, can produce favorable conditions for instability development. Following the hypothesis of Huba and Krall (2013) and using SAMI2 simulations, we show that equatorward winds, when combined with weakening drifts, could have contributed to the unstable conditions responsible for the postmidnight ESF events.

  14. STS-95 Mission Specialist Pedro Duque suits up for launch

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Pedro Duque of Spain, with the European Space Agency, is helped with his flight suit by suit tech Tommy McDonald in the Operations and Checkout Building. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  15. Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions

    Science.gov (United States)

    Hastrup, R.; Cesarone, R.; Miller, A.

    1993-01-01

    Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...

  16. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  17. Sun-Earth Day: Growth and Impact of NASA E/PO Program

    Science.gov (United States)

    Hawkins, I.; Thieman, J.

    2004-12-01

    Over the past six years, the NASA Sun-Earth Connection Education Forum has sponsored and coordinated education public outreach events to highlight NASA Sun-Earth Connection research and discoveries. Our strategy involves using celestial phenomena, such as total solar eclipses and the Transit of Venus to celebrate Sun-Earth Day, a popular Education and Public Outreach international program. Sun-Earth Day also focuses attention on Equinoxes and Solstices to engage K-12 schools and the general public in space science activities, demonstrations, and interactions with space scientists. In collaboration with partners that include the Exploratorium, Maryland Science Center, NASA Connect, Sun-Earth Connection missions, Ideum, and others, we produce webcasts, other multi-media, and print resources for use by school and informal educators nation-wide. We provide training and professional development to K-12 educators, museum personnel, amateur astronomers, Girl Scout leaders, etc., so they can implement their own outreach programs taking advantage of our resources. A coordinated approach promotes multiple programs occurring each year under a common theme. We will report lessons learned from several years of experience, and strategies for growth and sustainability. We will also share our plans for "Ancient Observatories - Timeless Knowledge" our theme for Sun-Earth Day 2005, which will feature solar alignments at ancient sites that mark the equinoxes and/or solstices. The video and webcast programming will feature several sites including: Chaco Canyon (New Mexico), Hovenweep (Utah), and Chichen Itza (Mexico). Many of these sites present unique opportunities to develop authentic cultural connections to Native Americans, highlighting the importance of the Sun across the ages.

  18. International Youth Nuclear Congress

    International Nuclear Information System (INIS)

    Fern, A.

    2017-01-01

    International Youth Nuclear Congress (IYNC) was Initiated by an international YG group of enthusiasts in 1997. Mission statement developed at ENC1998 in Nice, France Growth in enthusiasm and support: IAEA, Nuclear Societies, companies. IYNC run by the Young Generation with full support of experienced advisors, nuclear societies and companies. First came to African continent when IYNC 2010 was hosted by South Africa

  19. Multicultural factors for international spaceflight.

    Science.gov (United States)

    Kring, J P

    2001-06-01

    Spaceflight operations, including the International Space Station (ISS) and a mission to Mars, depend on international cooperation. Accordingly, safety, performance, and mission success rely on how well crews and operational personnel with different cultural backgrounds operate together. This paper outlines 10 areas related to spaceflight that are influenced by the national culture and backgrounds of personnel: (a) Communication, (b) Cognition and Decision Making, (c) Technology Interfacing, (d) Interpersonal Interactions, (e) Work, Management, and Leadership Style, (f) Personal Hygiene and Clothing, (g) Food Preparation and Meals, (h) Religion and Holidays, (i) Recreation, and (j) Habitat Aesthetics. Research findings and recommendations are presented, as well as a multicultural training approach to reduce potential challenges for long-duration spaceflight.

  20. Integrated Nuclear Infrastructure Review (INIR) Missions: The First Six Years

    International Nuclear Information System (INIS)

    2015-12-01

    IAEA Integrated Nuclear Infrastructure Review (INIR) missions are designed to assist Member States in evaluating the status of their national infrastructure for the introduction of a nuclear power programme. INIR missions are conducted upon request from the Member State. Each INIR mission is coordinated and led by the IAEA and conducted by a team of IAEA staff and international experts drawn from Member States which have experience in different aspects of developing and deploying nuclear infrastructure. INIR missions cover the 19 infrastructure issues described in Milestones in the Development of a National Infrastructure for Nuclear Power, IAEA Nuclear Energy Series No. NG-G-3.1, published in 2007 and revised in 2015, and the assessment is based on an analysis of a self-evaluation report prepared by the Member State, a review of the documents it provides and interviews with its key officials. Phase 1 INIR missions evaluate the status of the infrastructure to achieve Milestone 1 (Ready to make a knowledgeable commitment to a nuclear power programme). Phase 2 INIR missions evaluate the status of the infrastructure to achieve Milestone 2 (Ready to invite bids/negotiate a contract for the first nuclear power plant). From 2009 to 2014, 14 IAEA INIR missions and follow-ups were conducted in States embarking on a nuclear power programme and one State expanding its programme. During this time, considerable experience was gained by the IAEA on the conduct of INIR missions, and this feedback has been used to continually improve the overall INIR methodology. The INIR methodology has thus evolved and is far more comprehensive today than in 2009. Despite the limited number of INIR missions conducted, some common findings were identified in Member States embarking on nuclear power programmes. This publication summarizes the results of the missions and highlights the most significant areas in which recommendations were made

  1. Recommendations and Suggestions of the IRRS Mission in Croatia

    International Nuclear Information System (INIS)

    Novosel, N.

    2016-01-01

    According to the Act on Radiological and Nuclear Safety, Director General of the State Office for Radiological and Nuclear Safety (SORNS) is obliged to conduct self-assessment of the national legislative framework and of the competent authorities and to provide for international audit of important segments of the national legislative framework and competent authorities with the purpose of continuous improvement of radiological and nuclear safety. SORNS as a state administration body competent for activities pertaining to radiological and nuclear safety, submitted in April 2013 the request to the International Atomic Energy Agency (IAEA) to conduct an Integrated Regulatory Review Service (IRRS) mission. SORNS conducted a self-assessment in preparation for the mission and prepared a preliminary action plan. The results of SORNS self-assessment and supporting documentation were provided to the IRRS review team as advance reference material for the mission. IRRS mission took place in Zagreb from 7 to 17 Jun 2015. The IRRS team carried out the review in the following areas: responsibilities and functions of the government; the global nuclear safety regime; responsibilities and functions of the regulatory body; the management system of the regulatory body; the activities of the regulatory body including authorization, review and assessment, inspection and enforcement processes; development and content of regulations and guides; emergency preparedness and response; occupational radiation protection, patient protection, public and environmental exposure control, waste management and decommissioning. The IRRS team identified a number of recommendations and suggestions where improvements in the area of radiological and nuclear safety are necessary or desirable. Those recommendations and suggestions were translated and approved by the Government in the form of the Governmental conclusion. This conclusion presents the action plan for the SORNS and other governmental bodies and

  2. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2016-07-01

    The IERICS (Independent Engineering Review of Instrumentation and Control Systems) mission is a comprehensive engineering review service directly addressing strategy and the key elements for implementation of modern instrumentation and control (I&C) systems, noting in applicable cases, specific concerns related to the implementation of advanced digital I&C systems and the use of software and/or digital logic in safety applications of a nuclear power plant. The guidelines outlined in this publication provide a basic structure, common reference and checklist across the various areas covered by an IERICS mission. Publications referenced in these guidelines could provide additional useful information for the counterpart while preparing for the IERICS mission. A structure for the mission report is given in the Appendix. In 2016, this publication was revised by international experts who had participated in previous IERICS missions. The revision reflects experiences and lessons learned from the preparation and conduct of those missions

  3. Advanced concept for a crewed mission to the martian moons

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Budzyń, Dorota; Burgoyne, Hayden; Fries, Dan; Grulich, Maria; Heizmann, Sören; Jethani, Henna; Lapôtre, Mathieu; Roos, Tobias; Castillo, Encarnación Serrano; Schermann, Marcel; Vieceli, Rhiannon; Wilson, Lee; Wynard, Christopher

    2017-10-01

    This paper presents the conceptual design of the IMaGInE (Innovative Mars Global International Exploration) Mission. The mission's objectives are to deliver a crew of four astronauts to the surface of Deimos and perform a robotic exploration mission to Phobos. Over the course of the 343 day mission during the years 2031 and 2032, the crew will perform surface excursions, technology demonstrations, In Situ Resource Utilization (ISRU) of the Martian moons, as well as site reconnaissance for future human exploration of Mars. This mission design makes use of an innovative hybrid propulsion concept (chemical and electric) to deliver a relatively low-mass reusable crewed spacecraft (approximately 100 mt) to cis-martian space. The crew makes use of torpor which minimizes launch payload mass. Green technologies are proposed as a stepping stone towards minimum environmental impact space access. The usage of beamed energy to power a grid of decentralized science stations is introduced, allowing for large scale characterization of the Martian environment. The low-thrust outbound and inbound trajectories are computed through the use of a direct method and a multiple shooting algorithm that considers various thrust and coast sequences to arrive at the final body with zero relative velocity. It is shown that the entire mission is rooted within the current NASA technology roadmap, ongoing scientific investments and feasible with an extrapolated NASA Budget. The presented mission won the 2016 Revolutionary Aerospace Systems Concepts - Academic Linkage (RASC-AL) competition.

  4. Objectives and Model Payload Definition for NEO Human Mission Studies

    Science.gov (United States)

    Carnelli, I.; Galvez, A.; Carpenter, J.

    2011-10-01

    ESA has supported studies on NEO threat assessment systems and deflection concepts in the context of the General Studies Programme and in close cooperation with the directorates of Technical and Quality Management and of the Scientific Programme. This work has made it possible to identify a project for Europe to make a significant - yet realistic - contribution to the international efforts in this field: the Don Quijote NEO technology demonstration mission. This paper describes what such a small mission can do to prepare future human exploration and what is the in-situ data that can be obtained through such a project.

  5. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    International Nuclear Information System (INIS)

    Barklay, C.D.

    1995-01-01

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. copyright 1995 American Institute of Physics

  6. Evolution of Orion Mission Design for Exploration Mission 1 and 2

    Science.gov (United States)

    Gutkowski, Jeffrey P.; Dawn, Timothy F.; Jedrey, Richard M.

    2016-01-01

    The evolving mission design and concepts of NASA’s next steps have shaped Orion into the spacecraft that it is today. Since the initial inception of Orion, through the Constellation Program, and now in the Exploration Mission frame-work with the Space Launch System (SLS), each mission design concept and pro-gram goal have left Orion with a set of capabilities that can be utilized in many different mission types. Exploration Missions 1 and 2 (EM-1 and EM-2) have now been at the forefront of the mission design focus for the last several years. During that time, different Design Reference Missions (DRMs) were built, analyzed, and modified to solve or mitigate enterprise level design trades to ensure a viable mission from launch to landing. The resulting DRMs for EM-1 and EM-2 were then expanded into multi-year trajectory scans to characterize vehicle performance as affected by variations in Earth-Moon geometry. This provides Orion’s subsystems with stressing reference trajectories to help design their system. Now that Orion has progressed through the Preliminary and Critical Design Reviews (PDR and CDR), there is a general shift in the focus of mission design from aiding the vehicle design to providing mission specific products needed for pre-flight and real time operations. Some of the mission specific products needed include, large quantities of nominal trajectories for multiple monthly launch periods and abort options at any point in the mission for each valid trajectory in the launch window.

  7. Computer graphics aid mission operations. [NASA missions

    Science.gov (United States)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  8. 75 FR 33763 - Beauty and Cosmetics Trade Mission to India

    Science.gov (United States)

    2010-06-15

    ... brands, especially luxury labels. During the trade mission participants will receive: (A) Briefings on... increase in the number of working women increase looking for lifestyle-oriented and luxury products is the... international brands as lifestyle enhancement products. The total size of the Indian retail beauty and cosmetics...

  9. 75 FR 21595 - Beauty and Cosmetics Trade Mission to India

    Science.gov (United States)

    2010-04-26

    ... brands, especially luxury labels. During the trade mission participants will receive: (A) Briefings on... increase in the number of working women increase looking for lifestyle-oriented and luxury products is the... international brands as lifestyle enhancement products. The total size of the Indian retail beauty and cosmetics...

  10. MoonNEXT: A European Mission to the Moon

    Science.gov (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    preparation and technology demonstration for future exploration activities MoonNEXT will advance our understanding of the origin, structure and evolution of the Moon. These advances in understanding will come about through a range of geophysical and geochemical investigations. MoonNEXT will also assess the value of the lunar surface as a future site for performing science from the Moon, using radio astronomy as an example. The scientific objectives are: • To study the geophysics of the Moon, in particular the origin, differentiation, internal structure and early geological evolution of the Moon. • To obtain in-situ geochemical data from, within the Aitken Basin, where material from the lower crust and possibly the upper mantle may be found. • To investigate the nature of volatiles implanted into the lunar regolith at the South Pole and identify their species. • To study the environment at the lunar South pole, in particular to measure the radiation environment, the dust flux due to impact ejecta and micrometeoroids, and a possibly the magnetic field. • To study the effect of the lunar environment on biological systems. • To further our understanding of the ULF/VLF background radiation of the universe. • Investigate the electromagnetic environment of the moon at radio wavelengths with the potential to perform astronomical radio observations. Various mission scenarios are currently under study, incorporating options for a lander-only configuration or a lander with the possible addition of a rover. The working experimental payload includes cameras, broad band and short period seismometers, a radiation monitor, instruments to measure dust transport and micrometeoroid fluxes, instruments to provide elemental and mineralogical analyses of surface rocks, a mole for subsurface heat flow and regolith properties measurements, a radio antenna and a package containing a self sustaining biological system to observe the effects of the lunar environment. The addition of a

  11. Toward an International Lunar Polar Volatiles Strategy

    Science.gov (United States)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2015-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range human space exploration strategy. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars. Space agencies agree that human space exploration will be most successful as an international endeavor, given the challenges of these missions. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public.

  12. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-04

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology.

  13. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2000-01-01

    The document reproduces the text of the Note Verbale received by the Director General of the IAEA from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology

  14. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    Science.gov (United States)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  15. The IAEA Integrated Regulatory Review Service Mission to Sweden in February 2012

    International Nuclear Information System (INIS)

    2012-01-01

    The Swedish Government decided on January 22, 2009 to mandate the Swedish Radiation Safety Authority, SSM, to apply for an international review of the Authority and its areas of supervision, an 'IRRS' (Integrated Regulatory Review Service) carried out by the International Atomic Energy Agency (IAEA). On February 25, 2009, SSM made a formal request to the IAEA for an IRRS in Sweden. The time period for the IRRS mission was later agreed to be 6-17 February, 2012. This report summarises the project's progress immediately prior to the IRRS mission in February 2012. The report contains the findings from the self assessment performed by SSM staff. It also contains a plan to implement measures to remedy deficiencies that have been identified and to improve the radiation safety work of the Authority

  16. The European Union’s Aviation Security Mission in South Sudan

    DEFF Research Database (Denmark)

    Højstrup Christensen, Gitte; Kammel, Arnold; Rodt, Annemarie Peen

    of the security situation in the country, all EU personnel were evacuated in January 2014, and the mission was (informally) terminated after fulfilling its mandated deployment period. Even though the mission had succeeded in training 350 personnel prior to the evacuation, its contribution to the overall security......When South Sudan gained independence in 2011, the new country needed assistance from external actors during the transition to prevent the security situation from deteriorating. In 2012 the EU launched its Aviation Security Mission (EUAVSEC) in South Sudan as part of its Common Security and Defence...... Policy. This came in response to a South Sudanese request for EU support and assistance in strengthening the security in Juba International Airport, as it had proven difficult for South Sudan to establish a fully operational transport hub. The EU estimated that an improvement of the airport security...

  17. IAEA Leads Operational Safety Mission to Armenian Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear installation safety experts, led by the International Atomic Energy Agency (IAEA), has reviewed the Armenian Nuclear Power Plant (ANPP) near Metsamor for its safety practices and has noted a series of good practices, as well as recommendations to reinforce them. The IAEA assembled an international team of experts at the request of the Government of the Republic of Armenia to conduct an Operational Safety Review (OSART) of the NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 16 May to 2 June 2011. The team was made up of experts from Finland, France, Lithuania, Hungary, Netherlands, Slovakia, UK, USA, EC and the IAEA. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational Safety of Nuclear Power Plants (NPP) reviewed the experience of the OSART programme and concluded: In OSART missions NPPs are assessed against IAEA safety standards which reflect the current international consensus on what constitutes a high level of safety; and OSART recommendations and suggestions are of utmost importance for operational safety improvement of NPPs. Armenia is commended for openness to the international nuclear community and for actively inviting IAEA safety review missions to submit their activities to international scrutiny. Examples of IAEA safety reviews include: Design Safety Review in 2003; Review of Probabilistic Safety Assessment in 2007; and Assessment of Seismic Safety Re-Evaluation in 2009. The team at ANPP conducted an in-depth review of the aspects essential to the safe operation of the plant, which is largely under the control of the site management

  18. Accompanied by the Shuttle Training Aircraft, Discovery touches down after successful mission STS-95

    Science.gov (United States)

    1998-01-01

    The Shuttle Training Aircraft (top) seems to chase orbiter Discovery as it touches down at the Shuttle Landing Facility after a successful mission of nearly nine days and 3.6 million miles. Main gear touchdown was at 12:04 p.m. EST, landing on orbit 135. In the background, right, is the Vehicle Assembly Building. The STS-95 crew consists of Mission Commander Curtis L. Brown Jr.; Pilot Steven W. Lindsey; Mission Specialist Scott E. Parazynski; Mission Specialist Stephen K. Robinson; Payload Specialist John H. Glenn Jr., senator from Ohio; Mission Specialist Pedro Duque, with the European Space Agency (ESA); and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA). The mission included research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  19. Beyond the Strait: PLA Missions Other Than Taiwan

    Science.gov (United States)

    2009-04-01

    PLA Logistics and Command College, “China’s Peaceful Development and the PLA’s Historical Mission,” Junshi Jingji Yanjiu (Military Economics...Chubanshe, 2005, pp. 117-126, 163-172; Zhu Tingzhang, Zhongguo Zhoubian Anquan Huanjing yu Zhanlue (China’s Peripheral Security Environment and...on the Construction of Gas Pipelines in Central Asia”), Guoji Shiyou Jingji (International Petroleum Economics), Vol. 16, No. 2, 2008, www.cnki.net

  20. The SOLAR-C Mission: Plan B Payload Concept

    Science.gov (United States)

    Shimizu, T.; Sakao, T.; Katsukawa, Y.; Group, J. S. W.

    2012-08-01

    The telescope concepts for the SOLAR-C Plan B mission as of the time of the Hinode-3 meeting were briefly presented for having comments from the international solar physics community. The telescope candidates are 1) near IR-visible-UV telescope with 1.5m aperture and enhanced spectro-polarimetric capability, 2) UV/EUV high throughput spectrometer, and 3) next generation X-ray telescope.

  1. [Myanmar mission].

    Science.gov (United States)

    Alfandari, B; Persichetti, P; Pelissier, P; Martin, D; Baudet, J

    2004-06-01

    The authors report the accomplishment of humanitarian missions in plastic surgery performed by a small team in town practice in Yangon, about their 3 years experience in Myanmar with 300 consultations and 120 surgery cases. They underline the interest of this type of mission and provide us their reflexion about team training, the type of relation with the country where the mission is conducted and the type of right team.

  2. The UFFO (Ultra Fast Flash Observatory) Pathfinder: Science and Mission

    DEFF Research Database (Denmark)

    Chen, P.; Ahmad, S.; Ahn, K.

    in a more rigorous test of current internal shock models, probe the extremes of bulk Lorentz factors, provide the first early and detailed measurements of fast-rise GRB optical light curves, and help verify the prospect of GRB as a new standard candle. We will describe the science and the mission...

  3. Preparing and Conducting Review Missions of Instrumentation and Control Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    2011-06-01

    The mission for Independent Engineering Review of Instrumentation and Control (I and C) Systems (IERICS) in Nuclear Power Plants (NPPs) has been established with the aim of conducting peer reviews of I and C design documents, implementation processes, prototype I and C systems, and actual systems already deployed in operating NPPs. Organizations in IAEA Member States, such as nuclear utilities, regulators, and technical support organizations can benefit from I and C technical reviews through requesting IERICS missions that provide a detailed technical assessment on I and C systems, as well as recommendations for improvement. The IERICS mission is conducted by a team of international subject matter experts from various complementing technical areas. The review is based on appropriate IAEA documents, such as Safety Guides and Nuclear Energy Series, and the mission's findings are summarized in a mission report, including a list of recommendations, suggestions, and identified good practices. The review is not intended to be a regulatory inspection or an audit against international codes and standards. Rather, it is a peer review aimed at improving design and implementation procedures through an exchange of technical experiences and practices at the working level. The IERICS mission is applicable at any stages of the life cycle of I and C systems in NPPs and it is initiated based on a formal request through official IAEA channels from an organization of a Member State. The formation of the IERICS mission is based on the recommendation of the IAEA Technical Working Group on Nuclear Power Plant Instrumentation and Control (TWG-NPPIC). The recommendation came from the recognition that the IAEA can play an important role in the independent assessment and review of NPP I and C systems in terms of their compliance with IAEA safety guides and technical documents.

  4. Variation of GPS-TEC in a low latitude Indian region during the year 2012 and 2013

    Science.gov (United States)

    Patel, Nilesh C.; Karia, Sheetal P.; Pathak, Kamlesh N.

    2018-05-01

    The paper is based on the ionospheric variations in terms of vertical total electron content (VTEC) for the period from January 2012 to December 2013 based on the analysis of dual frequency signals from the Global Positioning System (GPS) satellites recorded at ground stations Surat (21.16°N, 72.78°E Geog.), situated under the northern crest of the equatorial ionization anomaly region (EIA) and other three International GNSS Service (IGS) stations Bangalore (13.02°N, 77.57°E Geog.), Hyderabad (17.25°N, 78.30°E Geog.), and Lucknow (26.91°N, 80.95°E Geog.) in India. We describe the diurnal and seasonal characteristics. It was observed that GPS-TEC reaches its maximum value between 12:00 and 16:00 IST. Further, Seasonal variations of GPS-TEC is categorized into four seasons, i.e., March equinox (February, March, and April), June solstice (May, June, and July), September equinox (August, September, and October) and December solstice (November, December and January). The forenoon rate of production in Lucknow (beyond EIA crest) is faster than Bangalore, Hyderabad and Surat station. It is found that September equinox shows GPS-TEC slightly higher than the March equinox, followed by June solstice and the lowest GPS-TEC are in winter solstice at four stations. The equinoctial asymmetry clearly observed in the current study. Also GPS-TEC shows a semiannual variation.

  5. GeoLab: A Geological Workstation for Future Missions

    Science.gov (United States)

    Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi

    2014-01-01

    The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample

  6. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  7. Human-robot collaboration for a shared mission

    OpenAIRE

    Karami , Abir-Beatrice; Jeanpierre , Laurent; Mouaddib , Abdel-Illah

    2010-01-01

    International audience; We are interested in collaboration domains between a robot and a human partner, the partners share a common mission without an explicit communication about their plans. The decision process of the robot agent should consider the presence of its human partner. Also, the robot planning should be flexible to human comfortability and all possible changes in the shared environment. To solve the problem of human-robot collaborationwith no communication, we present a model th...

  8. [Medicine on mission: The international health reform of Seventh-Day Adventists and their health care facilities in Sweden].

    Science.gov (United States)

    Eklöf, Motzi

    2008-01-01

    The international non-conformist denomination, Seventh-day Adventists, have since their foundation in 1863, had a distinctive health care model for their members. The life-style has included vegetarian diet, abstinence from alcohol, tobacco and other drugs and the observance of a day of rest once a week. The health policy has striven to care for God's creation in the hope of resurrection at the Day of Judgment and to reform the conventional medical practice. The Adventists have pursued an extensive international health care system--from the start based on dietary and physical treatment methods, such as hydrotherapy, massage and physiotherapy--in line with the Christian mission. Health care establishments have been inaugurated around the world as a vehicle for enabling the Christian health care message to reach the upper classes. With Adventist and Doctor, John Harvey Kellogg's Battle Creek Sanatorium in Michigan as both inspirational source and educational institution, the health care mission--including a vegetarian health food industry, following in the footsteps of cornflakes--spread to the Nordic countries by the turn of the century, 1900. Skodsborgs Badesanatorium near Copenhagen became the model institution for several health care establishments in Sweden during the 1900's, such as Hultafors Sanatorium. The American-Nordic link has manifested itself through co-publication of papers, exchange of health care personnel and reporting to the central Adventist church. The American non-conformist domain as well as a private sphere of activity, aiming mainly from the outset at society's upper classes, has encountered certain difficulties in maintaining this distinction in Sweden's officially increasing secularised society, and in relation to a state health insurance and a publicly financed health care system. With the passing of time, the socioeconomic composition of patients at Hultafors became more heterogeneous, and conventional medical procedures were increasingly

  9. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Turkey. September to November 1980

    International Nuclear Information System (INIS)

    Ziehr, H.; Komura, A.

    1985-02-01

    The IUREP Orientation Phase Mission to Turkey estimates the Speculative Resources of the country to lie between 21 000 and 55 000 tonnes uranium. Past exploration in Turkey, dating from 1953, has indicated a very high number of uranium occurrences and radioactive anomalies, but ore deposits of significant size and grade have not been found. Present reserves amount to 4 600 tonnes uranium which can be allocated to approximately 15 sandstone type deposits in Neogene continental sediments. Several hundreds of other occurrences and radioactive anomalies exist where ore reserves have not been delineated. The uranium occurrences and radioactive anomalies can be divided according to host rock into (a) crystalline massif and (b) Tertiary continental sediment. The greatest geological potential for further resources is estimated to exist in the above mentioned two geological terrains. The most favourable geological potential exists in Neogene continental sedimentary basins near the crystalline massifs. Because surface exploration in the known favourable areas such as the Koepruebasi Basin has been so systematic, extensive, and successful, it is improbable that additional surface work will have much effect in increasing the number of new radioactive anomalies or uranium occurrences detected at the surface in these areas. Surface survey work in these areas should be mainly designed to assist the understanding of structures at depth. Surface reconnaissance survey work is, however, required in other parts of the above mentioned two geological terrains in this country. Before starting such a reconnaissance survey in new areas, the Mission suggests that a careful and extensive library study be conducted in close co-operation with sedimentologists, petrologists, and remote sensing specialists. The Mission suggests that in the medium term, 8 to 10 years, some 85 - 110 million U.S. Dollars be spent on airborne and ground surveys, including geological, radiometric, geochemical, and

  10. A mission to Mercury and a mission to the moons of Mars

    Science.gov (United States)

    1993-07-01

    Two Advanced Design Projects were completed this academic year at Penn State - a mission to the planet Mercury and a mission to the moons of Mars (Phobos and Deimos). At the beginning of the fall semester the students were organized into six groups and given their choice of missions. Once a mission was chosen, the students developed conceptual designs. These designs were then evaluated at the end of the fall semester and combined into two separate mission scenarios. To facilitate the work required for each mission, the class was reorganized in the spring semester by combining groups to form two mission teams. An integration team consisting of two members from each group was formed for each mission team so that communication and exchange of information would be easier among the groups. The types of projects designed by the students evolved from numerous discussions with Penn State faculty and mission planners at the Lewis Research Center Advanced Projects Office. Robotic planetary missions throughout the solar system can be considered valuable precursors to human visits and test beds for innovative technology. For example, by studying the composition of the Martian moons, scientists may be able to determine if their resources may be used or synthesized for consumption during a first human visit.

  11. Endeavour blasts-off on ambitious mission

    Science.gov (United States)

    1993-12-01

    "I am delighted to see the servicing mission off to such a beautiful start", said Roger Bonnet, ESA's Director of Science, who watched the launch from the Kennedy Space Center, Florida. "We are anxious to see the Hubble Space Telescope restored to its full capability so astronomers world- wide can take advantage of this unique observatory". During the eight and a half minute climb to orbit ESA astronaut Claude Nicollier helped the shuttle commander and pilot monitor the cockpit displays. Nicollier is the first international astronaut to serve as a shuttle's flight engineer. He will perform the same task at the end of the mission for reentry and landing. The European Space Agency has a major role in the telescope servicing mission. In addition to the presence of its astronaut, the agency is supplying new, improved power generating solar arrays and helped NASA test the Costar system of corrective optics. Nicollier will be responsible for operation of the shuttle's robot arm during the 11-day mission. He will use the arm to pluck the telescope from orbit and move astronauts and equipment around the payload bay during the mission's five spacewalks. The astronauts are spending their first hours in space setting up equipment in the orbiter's crew cabin. They will fire the shuttle's manoeuvring jets before going to bed to begin the two-day pursuit of the orbiting telescope. There will be three orbital manoeuvres tomorrow to further close the gap. The shuttle is due to reach the telescope Saturday and repair work will begin Sunday. Checkouts of the four space suits and the robot arm will occupy the crew tomorrow. Nicollier will use the arm to inspect the equipment in the cargo bay and later practise the manoeuvre he will use on Saturday to capture the telescope. Hubble Space Telescope science operations will be suspended at midnight tonight EST (06h00 a.m. CET tomorrow) and the HST aperture door closed at 07h30 a.m. EST (01h30 p.m. CET).

  12. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Sudan. February-March 1981

    International Nuclear Information System (INIS)

    Kneupper, G.; Scivetti, N.

    1981-01-01

    The IUREP Orientation Phase Mission to the Democratic Republic of the Sudan believes that the Speculative Resources of the country might fall between 20,000 and 40,000 tonnes uranium and more. This indicates that the Speculative Resources of the Sudan could be significantly higher than previously estimated (7,500 tonnes uranium) by the NEA/IAEA Steering Group on the Uranium Resources - IUREP Phase I. The Government is willing to consider valid exploration programmes presented by prospective partners as long as they serve the interests of both parties. Within the general six-year (1977/78-1982/83) plan for development of the country's mineral resources, the Ministry of Energy and Mining has set up certain priorities which it would like to see expeditiously implemented: uranium exploration and production stands high on the list of priorities. On the basis of very limited information on regional geology and on previous exploration which was available to the Mission, it is estimated that the greatest potential for the Speculative Resources of possible economic significance will prove to occur in the following geological environments of the Sudan (Red Sea Hills area is not included): precambrian basement complex, palaeozoic-mesozoic-tertiary sedimentary basins and the tertiary to recent calcretes. The IUREP Orientation Phase Mission believes that some 20 Million US$ (very rough estimate) will be needed to (1) check the validity of the basic geological concepts formulated on the uranium potential of the selected areas, (2) accumulate diagnostic geological, geophysical, geochemical data indicative of a true uranium potential there, (3) study the basement complex rocks and the sedimentary formations at least on a broad structural-stratigraphic reconnaissance basis (a tremendous amount of valuable water drilling data has accumulated over the last years for some of the selected sedimentary basins) and (4) determine the most appropriate investigation techniques to be utilized

  13. MIT Project Apophis: Surface Evaulation & Tomography (SET) Mission Study for the April 2029 Earth Encounter

    Science.gov (United States)

    Binzel, R. P.; Earle, A. M.; Vanatta, M.; Miller, D. W.

    2017-12-01

    Nature is providing a once-per-thousand year opportunity to study the geophysical outcome induced on an unprecedentedly large (350 meter) asteroid making an extremely close passage by the Earth (inside the distance of geosynchronous satellites) on Friday April 13, 2029. The aircraft carrier-sized (estimated 20 million metric ton) asteroid is named Apophis. While many previous spacecraft missions have studied asteroids, none has ever had the opportunity to study "live" the outcome of planetary tidal forces on their shapes, spin states, surface geology, and internal structure. Beyond the science interest directly observing this planetary process, the Apophis encounter provides an invaluable opportunity to gain knowledge for any eventuality of a known asteroid found to be on a certain impact trajectory. MIT's Project Apophis [1] is our response to nature's generous opportunity by developing a detailed mission concept for sending a spacecraft to orbit Apophis with the objectives of surveying its surface and interior structure before, during, and after its 2029 near-Earth encounter. The Surface Evaluation & Tomography (SET) mission concept we present is designed toward accomplishing three key science objectives: (1) bulk physical characterization, (2) internal structure, and (3) long-term orbit tracking. For its first mission objective, SET will study Apophis' bulk properties, including: shape, size, mass, volume, bulk density, surface geology, and composition, rotation rate, and spin state. The second mission objective is to characterize Apophis' internal structure before and after the encounter to determine its strength and cohesion - including tidally induced changes. Finally, the third objective studies the process of thermal re-radiation and consequential Yarkovsky drift, whose results will improve orbit predictions for Apophis as well as other potentially hazardous asteroids. [1] https://eapsweb.mit.edu/mit-project-apophis

  14. A Model of Internal Communication in Adaptive Communication Systems.

    Science.gov (United States)

    Williams, M. Lee

    A study identified and categorized different types of internal communication systems and developed an applied model of internal communication in adaptive organizational systems. Twenty-one large organizations were selected for their varied missions and diverse approaches to managing internal communication. Individual face-to-face or telephone…

  15. Concepts of Operations for Asteroid Rendezvous Missions Focused on Resources Utilization

    Science.gov (United States)

    Mueller, Robert P.; Sibille, Laurent; Sanders, Gerald B.; Jones, Christopher A.

    2014-01-01

    Several asteroids are the targets of international robotic space missions currently manifested or in the planning stage. This global interest reflects a need to study these celestial bodies for the scientific information they provide about our solar system, and to better understand how to mitigate the collision threats some of them pose to Earth. Another important objective of these missions is providing assessments of the potential resources that asteroids could provide to future space architectures. In this paper, we examine a series of possible mission operations focused on advancing both our knowledge of the types of asteroids suited for different forms of resource extraction, and the capabilities required to extract those resources for mission enhancing and enabling uses such as radiation protection, propulsion, life support, shelter and manufacturing. An evolutionary development and demonstration approach is recommended within the framework of a larger campaign that prepares for the first landings of humans on Mars. As is the case for terrestrial mining, the development and demonstration approach progresses from resource prospecting (understanding the resource, and mapping the 'ore body'), mining/extraction feasibility and product assessment, pilot operations, to full in-situ resource utilization (ISRU). Opportunities to gather specific knowledge for ISRU via resource prospecting during science missions to asteroids are also examined to maximize the pace of development of needed ISRU capabilities and technologies for deep space missions.

  16. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Madagascar. September-October 1981

    International Nuclear Information System (INIS)

    Meyer, John H.; Brinck, Johan W.

    1981-01-01

    This study, resulting from the IUREP Orientation Mission to Madagascar, includes the reported information on infrastructure, mining regulations and conditions made available to the Mission. Within the structure of the centrally planned economic system, uranium exploration and mining is considered the exclusive activity of OMNIS, an organization founded by the State for that purpose (Office Militaire National pour les Industries Strategiques). Madagascar has a long history of prospection and small-scale exploitation of uranium (thorium and radium). Some of this activity dates back to 1909, culminating in significant production of both uranium and thorium (in excess of 5900 tonnes of uranothorianite) by the CEA and private contractors in the Fort Dauphin area from 1955 to 1968. Past exploration and development work in a number of areas, notably by the CEA, OMNIS and the IAEA/UNDP, is reviewed and the uranium resources and mineral indications reported. The areas rated at present as the more important and which continue to be investigated (by OMNIS, in conjunction with IAEA/UNDP projects) in the order of priority are: the Fort Dauphin area, the Karroo formation and the Neogene lacustrine basin at Antsirabe. The Mission estimates that Madagascar has a moderate potential for undiscovered resources; it is estimated that such speculative resources could lie within the range of 4000 - 38000 tonnes U. In addition there are areas with as yet untested environments and with no known occurrences which may be favourable but which will require prospection. Modifications to existing programmes and new programmes are suggested. Policy alternatives are reviewed

  17. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  18. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  19. The Impact of Mission Duration on a Mars Orbital Mission

    Science.gov (United States)

    Arney, Dale; Earle, Kevin; Cirillo, Bill; Jones, Christopher; Klovstad, Jordan; Grande, Melanie; Stromgren, Chel

    2017-01-01

    Performance alone is insufficient to assess the total impact of changing mission parameters on a space mission concept, architecture, or campaign; the benefit, cost, and risk must also be understood. This paper examines the impact to benefit, cost, and risk of changing the total mission duration of a human Mars orbital mission. The changes in the sizing of the crew habitat, including consumables and spares, was assessed as a function of duration, including trades of different life support strategies; this was used to assess the impact on transportation system requirements. The impact to benefit is minimal, while the impact on cost is dominated by the increases in transportation costs to achieve shorter total durations. The risk is expected to be reduced by decreasing total mission duration; however, large uncertainty exists around the magnitude of that reduction.

  20. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  1. 77 FR 60966 - Executive-Led Trade Mission to South Africa and Zambia

    Science.gov (United States)

    2012-10-05

    ... Africa and Zambia AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice...- Led Trade Mission to South Africa and Zambia scheduled for November 26- 30, 2012, to revise the dates... and scheduling constraints permit), interested U.S. agriculture, mining, transportation, water, energy...

  2. The International Planetary Data Alliance

    Science.gov (United States)

    Stein, T.; Arviset, C.; Crichton, D. J.

    2017-12-01

    The International Planetary Data Alliance (IPDA) is an association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of projects and coordinates international collaboration. The IPDA conducts a number of focused projects to enable interoperability, construction of compatible archives, and the operation of the IPDA as a whole. These projects have helped to establish the IPDA and to move the collaboration forward. A key project that is currently underway is the implementation of the PDS4 data standard. Given the international focus, it has been critical that the PDS and the IPDA collaborate on its development. Also, other projects have been conducted successfully, including developing the IPDA architecture and corresponding requirements, developing shared registries for data and tools across international boundaries, and common templates for supporting agreements for archiving and sharing data for international missions. Several projects demonstrating interoperability across

  3. Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation (ADONIS mission proposal

    Directory of Open Access Journals (Sweden)

    Hettrich Sebastian

    2015-01-01

    Full Text Available The Atmospheric Drag, Occultation ‘N’ Ionospheric Scintillation mission (ADONIS studies the dynamics of the terrestrial thermosphere and ionosphere in dependency of solar events over a full solar cycle in Low Earth Orbit (LEO. The objectives are to investigate satellite drag with in-situ measurements and the ionospheric electron density profiles with radio occultation and scintillation measurements. A constellation of two satellites provides the possibility to gain near real-time data (NRT about ionospheric conditions over the Arctic region where current coverage is insufficient. The mission shall also provide global high-resolution data to improve assimilative ionospheric models. The low-cost constellation can be launched using a single Vega rocket and most of the instruments are already space-proven allowing for rapid development and good reliability. From July 16 to 25, 2013, the Alpbach Summer School 2013 was organised by the Austrian Research Promotion Agency (FFG, the European Space Agency (ESA, the International Space Science Institute (ISSI and the association of Austrian space industries Austrospace in Alpbach, Austria. During the workshop, four teams of 15 students each independently developed four different space mission proposals on the topic of “Space Weather: Science, Missions and Systems”, supported by a team of tutors. The present work is based on the mission proposal that resulted from one of these teams’ efforts.

  4. Overview of an Integrated Medical System for Exploration Missions

    Science.gov (United States)

    Watkins, Sharmila; Rubin, David

    2013-01-01

    The Exploration Medical Capability (ExMC) element of the NASA Human Research Program (HRP) is charged with addressing the risk of unacceptable health and mission outcomes due to limitations of inflight medical capabilities. The Exploration Medical System Demonstration (EMSD) is a project within the ExMC element aimed at reducing this risk by improving the medical capabilities available for exploration missions. The EMSD project will demonstrate, on the ground and on ISS, the integration of several components felt to be essential to the delivery of medical care during long ]duration missions outside of low Earth orbit. The components of the EMSD include the electronic medical record, assisted medical procedure software, medical consumables tracking technology and RFID ] tagged consumables, video conferencing capability, ultrasound device and probes (ground demonstration only), peripheral biosensors, and the software to allow communication among the various components (middleware). This presentation seeks to inform our international partners of the goals and objectives of the EMSD and to foster collaboration opportunities related to this and future projects.

  5. Communication of 20 October received from the Permanent Mission of France to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 23 October 1995, the Director General received a letter dated 20 October 1995 from the Permanent Mission of France transmitting a joint Statement of 20 October 1995 by France, the United Kingdom of Great Britain and Northern Ireland and the United States of America about their intention to sign the Protocols to the Treaty of Rarotonga. As requested by the Permanent Mission of France, the text of the Statement is being circulated for the information of Member States

  6. Mission Engineering of a Rapid Cycle Spacecraft Logistics Fleet

    Science.gov (United States)

    Holladay, Jon; McClendon, Randy (Technical Monitor)

    2002-01-01

    The requirement for logistics re-supply of the International Space Station has provided a unique opportunity for engineering the implementation of NASA's first dedicated pressurized logistics carrier fleet. The NASA fleet is comprised of three Multi-Purpose Logistics Modules (MPLM) provided to NASA by the Italian Space Agency in return for operations time aboard the International Space Station. Marshall Space Flight Center was responsible for oversight of the hardware development from preliminary design through acceptance of the third flight unit, and currently manages the flight hardware sustaining engineering and mission engineering activities. The actual MPLM Mission began prior to NASA acceptance of the first flight unit in 1999 and will continue until the de-commission of the International Space Station that is planned for 20xx. Mission engineering of the MPLM program requires a broad focus on three distinct yet inter-related operations processes: pre-flight, flight operations, and post-flight turn-around. Within each primary area exist several complex subsets of distinct and inter-related activities. Pre-flight processing includes the evaluation of carrier hardware readiness for space flight. This includes integration of payload into the carrier, integration of the carrier into the launch vehicle, and integration of the carrier onto the orbital platform. Flight operations include the actual carrier operations during flight and any required real-time ground support. Post-flight processing includes de-integration of the carrier hardware from the launch vehicle, de-integration of the payload, and preparation for returning the carrier to pre-flight staging. Typical space operations are engineered around the requirements and objectives of a dedicated mission on a dedicated operational platform (i.e. Launch or Orbiting Vehicle). The MPLM, however, has expanded this envelope by requiring operations with both vehicles during flight as well as pre-launch and post

  7. Communication of 10 June 2009 received from the Permanent Mission of the United Kingdom with regard to the International Nuclear Fuel Supply Conference: Securing safe access to peaceful power

    International Nuclear Information System (INIS)

    2009-01-01

    The Secretariat has received a communication dated 10 June 2009 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland, attaching a note from the United Kingdom and the final remarks of the Chairman of the International Nuclear Fuel Supply Conference: Securing safe access to peaceful power, held in London on 17 and 18 March 2009. As requested in that communication, the note and final remarks are herewith circulated for the information of Member States

  8. The flyby of Rosetta at asteroid Šteins - mission and science operations

    Science.gov (United States)

    Accomazzo, Andrea; Wirth, Kristin R.; Lodiot, Sylvain; Küppers, Michael; Schwehm, Gerhard

    2010-07-01

    The international Rosetta mission, a cornerstone mission of the european space agency scientific Programme, was launched on 2nd March 2004 on its 10 years journey towards a rendezvous with comet Churyumov-Gerasimenko ( Gardini et al., 1999). During its interplanetary flight towards its target Rosetta crosses the asteroid belt twice with the opportunity to observe at close quarters two asteroids: (2867)-Šteins in 2008 and (21)-Lutetia in 2010. The spacecraft design was such that these opportunities could be fully exploited to deliver valuable data to the scientific community. The mission trajectory was controlled such that Rosetta would fly next to asteroid Šteins on the 5th of September 2008 with a relative speed of 8.6 km/s at a minimum distance of 800 km. Mission operations have been carefully planned to achieve the best possible flyby scenario and scientific outcome. The flyby scenario, the optical navigation campaign, and the planning of the scientific observations had to be adapted by the Mission and the Science Operations Centres to the demanding requirements expressed by the scientific community. The flyby was conducted as planned with a large number of successful observations.

  9. The Development of International Programs in a School of Social Work

    Directory of Open Access Journals (Sweden)

    Frank B. Raymond

    2014-04-01

    Full Text Available During the last decade increasing numbers of schools of social work have adopted an international mission and have developed a variety of activities to reflect their global perspective. In earlier years, however, relatively few schools expressed a global mission, offered coursework on international social work, provided field placements or other opportunities to expose students to international learning, or extended components of their academic programs to other countries. An early leader in doing such things was the College of Social Work at the University of South Carolina (COSW, where the author was privileged to serve as dean for 22 years (1980-2002 when many of these developments occurred. This paper will discuss how this school acquired an international mission and developed various programs to manifest this commitment. The paper will describe, in particular, the college’s signature achievement in international social work education – the development and implementation of a Korea-based MSW program. The COSW was the first school of social work in the US to offer a master’s degree in its entirety in a foreign country. It is hoped that the recounting of this school’s experiences will offer guidance to other social work education programs that are exploring ways of expanding their international initiatives.

  10. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    Science.gov (United States)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  11. The missions of medical schools: the pursuit of health in the service of society

    Directory of Open Access Journals (Sweden)

    Lewkonia Ray M

    2001-10-01

    Full Text Available Abstract Mission statements and role documents of medical schools in the United Kingdom, United States, Canada and Australia have been examined on their Internet Web sites and categorised in purpose, content and presentation. The format and content are highly variable, but there is a common vision of three integral roles, namely, education, advancement of knowledge and service to society. Other frequent themes include tradition and historical perspective, service for designated communities, and benchmarking to accreditation standards. Differences in content reflect variable interpretation of the notion of "mission", and local or national characteristics such as institutional affiliations, the types, levels and organisation of medical education, relationships with health systems, and extent of multi-professional education. Outcomes data and measures of medical school performance referenced to the institution's stated missions are rarely encountered. Mission documents placed on the Internet are in the public domain. These Web sites and documents and linked information constitute a valuable new resource for international exchange of approaches and ideas in medical education and generally in academic medicine. Routine inclusion of outcome or performance data could help to demonstrate the community roles and social accountability of medical schools This paper proposes that partial standardisation of these Web documents could enhance their value both internally and for external readers. A generic descriptive statement template is offered.

  12. STS-93 Mission Specialist Tognini talks with Goldin, Ratie, and Plattard

    Science.gov (United States)

    1999-01-01

    At the Shuttle Landing Facility (from left to right), STS-93 Mission Specialist Michel Tognini of France, representing the Centre National d'Etudes Spatiales (CNES), and NASA Administrator Daniel Goldin talk with Jacques Ratie, Astronaut Director, CNES, and Serge Plattard, International Relations, CNES. Landing occurred on runway 33 with main gear touchdown at 11:20:35 p.m. EDT on July 27. The mission's primary objective was to deploy the Chandra X-ray Observatory, which will allow scientists from around the world to study some of the most distant, powerful and dynamic objects in the universe. This was the 95th flight in the Space Shuttle program and the 26th for Columbia. The landing was the 19th consecutive Shuttle landing in Florida and the 12th night landing in Shuttle program history. On this mission, Eileen Collins became the first woman to serve as a Shuttle commander.

  13. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  14. Communication of 29 April 1996 received from the permanent mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for the export of nuclear material, equipment and technology

    International Nuclear Information System (INIS)

    1996-01-01

    The Director General of the International Atomic Energy Agency has received a note verbale of 29 April 1996 from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to nuclear transfers. In light of the request expressed in the note verbale, the text of the note verbale and its attachment is being circulated

  15. Communication of 29 April 1996 received from the permanent mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for the export of nuclear material, equipment and technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-07

    The Director General of the International Atomic Energy Agency has received a note verbale of 29 April 1996 from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to nuclear transfers. In light of the request expressed in the note verbale, the text of the note verbale and its attachment is being circulated.

  16. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  17. Communication of 30 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-11

    On 1 September 1995, the Director General received a communication dated 30 August 1995 from the Permanent Mission of Australia transmitting a Declaration of 17 August 1995 by South Pacific Environment Ministers concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the text of the Declaration is being circulated for the information of Member States of the Agency.

  18. Communication of 30 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 1 September 1995, the Director General received a communication dated 30 August 1995 from the Permanent Mission of Australia transmitting a Declaration of 17 August 1995 by South Pacific Environment Ministers concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the text of the Declaration is being circulated for the information of Member States of the Agency

  19. Communication of 26 June 1995 received from the Permanent Mission of Ecuador to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 27 June 1995, the Director General received a communication dated 26 June 1995 from the Permanent Mission of Ecuador transmitting a Statement of 22 June 1995 issued by the Rio Group concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Ecuador, the text of the Statement is being circulated for the information of Member States of the Agency

  20. Communication of 31 October 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 2 November 1995, the Director General received a communication dated 31 October 1995 from the Permanent Mission of Australia transmitting a Statement of 28 October 1995 by the Prime Minister of Australia on ''The Third French Nuclear Test''. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency

  1. 76 FR 42682 - China Biotech Life Sciences Trade Mission-Clarification and Amendment

    Science.gov (United States)

    2011-07-19

    ... DEPARTMENT OF COMMERCE International Trade Administration China Biotech Life Sciences Trade... Life Science Trade Mission to China, 76 FR 17,621, Mar. 30, 2011, to clarify eligibility and amend the... representatives from a variety of U.S. biotechnology and life science firms and trade organizations. In response...

  2. 77 FR 55186 - Executive-Led Indonesia Vietnam Infrastructure Business Development Mission Statement...

    Science.gov (United States)

    2012-09-07

    ..., International Trade Administration, U.S. and Foreign Commercial Service (CS) is publishing this supplement to... Recruitment for this Mission began in July 2012. Due to summer holidays, it has been determined that an... trade media, direct mail, notices by industry trade associations and other multiplier groups, and...

  3. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  4. The Director-General receives the "150 Years of Romanian Diplomacy" Honorary Award from H.E. Mrs. Maria Ciobanu, Ambassador Extraordinary and Plenipotentiary, Permanent Representative, Permanent Mission of Romania to the United Nations Office and other international organizations in Geneva.

    CERN Multimedia

    Samuel Morier-Genoud

    2012-01-01

    The Director-General receives the "150 Years of Romanian Diplomacy" Honorary Award from H.E. Mrs. Maria Ciobanu, Ambassador Extraordinary and Plenipotentiary, Permanent Representative, Permanent Mission of Romania to the United Nations Office and other international organizations in Geneva.

  5. Development of autonomous multirotor platform for exploration missions

    International Nuclear Information System (INIS)

    Czyba, Roman; Janik, Marcin; Kurgan, Oliver; Niezabitowski, Michał; Nocoń, Marek

    2016-01-01

    This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.

  6. Development of autonomous multirotor platform for exploration missions

    Energy Technology Data Exchange (ETDEWEB)

    Czyba, Roman; Janik, Marcin; Kurgan, Oliver; Niezabitowski, Michał; Nocoń, Marek

    2016-06-08

    This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.

  7. [Ontario Hydro International Inc.]. Annual report 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Ontario Hydro International Inc. is the international representative of Ontario Hydro. OHII operates as a global utility that markets Ontario Hydro's services and products. Its mission is to be the leader in energy efficiency and sustainable development in the international marketplace. This report describes the year's activities in the following areas: Energy management and environment, hydroelectric generation, nuclear products and services, fossil generation, grid (transmission) business, utility management, Asia Power Group Inc. The document also includes financial highlights and international and customer contracts

  8. Risk assessment in international operations

    International Nuclear Information System (INIS)

    Stricklin, Daniela L.

    2008-01-01

    During international peace-keeping missions, a diverse number of non-battle hazards may be encountered, which range from heavily polluted areas, endemic disease, toxic industrial materials, local violence, traffic, and even psychological factors. Hence, elevated risk levels from a variety of sources are encountered during deployments. With the emphasis within the Swedish military moving from national defense towards prioritization of international missions in atypical environments, the risk of health consequences, including long term health effects, has received greater consideration. The Swedish military is interested in designing an optimal approach for assessment of health threats during deployments. The Medical Intelligence group at FOI CBRN Security and Defence in Umea has, on request from and in collaboration with the Swedish Armed Forces, reviewed a variety of international health threat and risk assessment models for military operations. Application of risk assessment methods used in different phases of military operations will be reviewed. An overview of different international approaches used in operational risk management (ORM) will be presented as well as a discussion of the specific needs and constraints for health risk assessment in military operations. This work highlights the specific challenges of risk assessment that are unique to the deployment setting such as the assessment of exposures to a variety of diverse hazards concurrently

  9. Mission science value-cost savings from the Advanced Imaging Communication System (AICS)

    Science.gov (United States)

    Rice, R. F.

    1984-01-01

    An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.

  10. A Multithreaded Missions And Means Framework (MMF) Concept Report

    Science.gov (United States)

    2012-03-01

    Vasconcelos , W.; Gibson, C.; Bar-Noy, A.; Borowiecki, K.; La Porta, T.; Pizzocaro, D.; Rowaihy, H.; Pearson, G.; Pham, T. An Ontology Centric...M.; de Mel, G.; Vasconcelos , W.; Sleeman, D.; Colley, S.; La Porta, T. An Ontology-Based Approach to Sensor-Mission Assignment. Proceedings of the...1st Annual Conference of the International Technology Alliance (ACITA 2007), 2007. Preece, A.; Gomez, M.; de Mel, G.; Vasconcelos , W.; Sleeman, D

  11. Synthesis of the report from the IRRS evaluation mission performed at the ASN in April 2009 by 12 international experts under the IAEA coordination

    International Nuclear Information System (INIS)

    2009-01-01

    At the request of the Government authorities of France, an international team of 24 experts visited the Autorite de Surete Nucleaire (ASN), the French regulatory authority for nuclear and radiation safety, in November 2006 to conduct the first full scope Integrated Regulatory Review Service (IRRS) mission. The purpose of the mission was to undertake a peer review of the regulatory body of France against the IAEA Safety Standards and to exchange information and experience on safety regulation. In March 2008 the Government authorities of France requested a follow-up mission to review the measures undertaken following the recommendations and suggestions presented in the report of the November 2006 IRRS mission. The scope of the IRRS follow-up mission covered the regulatory aspects of the facilities and practices regulated by ASN, nuclear power plants, research reactors, fuel cycle facilities, medical practices with further review of radiotherapy, industrial and research activities, waste facilities, decommissioning, remediation, public information and communication and, in addition, it was also extended to cover the application of the Code of Conduct of Safety and Security of Radioactive Sources. The review was conducted from March 29 to April 3 2009 by an IRRS team consisting of 12 senior regulatory experts from 11 Member States, two staff members from the IAEA, one IAEA observer and an IAEA administrative assistant. During the review the team recognized that ASN has taken a number of initiatives to improve its effectiveness and efficiency and that ASN faces new challenges. ASN supplied a package of documentation and a well prepared self-assessment, in advance of the mission, including a status report and an action plan to improve its regulatory effectiveness. Both regulatory technical and policy issues were addressed. The policy issues discussed were: regulatory independence, the relationship between ASN and IRSN and medical issues. The IRRS follow-up mission

  12. The UN Interim Administration Mission in Kosovo (UNMIK

    Directory of Open Access Journals (Sweden)

    Alfonso J. Iglesias Velasco

    2001-12-01

    Full Text Available The current situation in the Province of Kosovo in the Republic of Serbia within the Yugoslav State became unsustainable in the late 1990´s as a result of the repressive policies of the Serbian authorities toward the Kosovar Albanians. International efforts tofind a peaceful solution to the conflict were unsuccessful, in large measure on account of Serbian intransigence, and the intensification of the conflict with tragic consequences for the Kosovar civilian population led the Atlantic Alliance in the spring of 1999 to a carryout a military intervention of, to say the least, dubious legality under international law, which in turn forced Serbian leaders to bow to the application of the solution worked out by the international community in the Rambouillet Accords and set down in UN Security Council Resolution 1244 (1999 of June 10, 1999. This resolution provided for two international entities in the province, one a security force (KFOR and the other civilian, the UN Interim Administration Mission (UNMIK. This paper analyzes the mission’s mandate and structure as well as the evolution of the peace process.

  13. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  14. Evaluating the feasibility of biological waste processing for long term space missions

    Science.gov (United States)

    Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)

    1998-01-01

    Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.

  15. The STEREO Mission

    CERN Document Server

    2008-01-01

    The STEREO mission uses twin heliospheric orbiters to track solar disturbances from their initiation to 1 AU. This book documents the mission, its objectives, the spacecraft that execute it and the instruments that provide the measurements, both remote sensing and in situ. This mission promises to unlock many of the mysteries of how the Sun produces what has become to be known as space weather.

  16. Habitability Assessment of International Space Station

    Science.gov (United States)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  17. Life Support and Environmental Monitoring International System Maturation Team Considerations

    Science.gov (United States)

    Anderson, Molly; Gatens, Robyn; Ikeda, Toshitami; Ito, Tsuyoshi; Hovland, Scott; Witt, Johannes

    2016-01-01

    Human exploration of the solar system is an ambitious goal. Future human missions to Mars or other planets will require the cooperation of many nations to be feasible. Exploration goals and concepts have been gathered by the International Space Exploration Coordination Group (ISECG) at a very high level, representing the overall goals and strategies of each participating space agency. The Global Exploration Roadmap published by ISECG states that international partnerships are part of what drives the mission scenarios. It states "Collaborations will be established at all levels (missions, capabilities, technologies), with various levels of interdependency among the partners." To make missions with interdependency successful, technologists and system experts need to share information early, before agencies have made concrete plans and binding agreements. This paper provides an overview of possible ways of integrating NASA, ESA, and JAXA work into a conceptual roadmap of life support and environmental monitoring capabilities for future exploration missions. Agencies may have immediate plans as well as long term goals or new ideas that are not part of official policy. But relationships between plans and capabilities may influence the strategies for the best ways to achieve partner goals. Without commitments and an organized program like the International Space Station, requirements for future missions are unclear. Experience from ISS has shown that standards and an early understanding of requirements are an important part of international partnerships. Attempting to integrate systems that were not designed together can create many problems. Several areas have been identified that could be important to discuss and understand early: units of measure, cabin CO2 levels, and the definition and description of fluids like high purity oxygen, potable water and residual biocide, and crew urine and urine pretreat. Each of the partners is exploring different kinds of technologies

  18. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  19. International co-operation

    International Nuclear Information System (INIS)

    1997-01-01

    In 1996, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) ensured the Slovak Republic (SR) obligations with relation to the international agreements and with the SR membership in the IAEA.International co-operation has been ensured on the basis of the bilateral international agreements. With the Ministry of Foreign Affairs co-operation, the SR fulfilled its financial obligations to this organization in due time and in the full scope. Representing Central and Eastern Europe interest in the Board of Governors, the SR participation in the highest executive in the highest executive authority was finished in 1996.The Board of Governors Vice-chairman position was executed by NRA SR Chairman. 5 national and 6 regional technical co-operation and assistance projects were realized in 1996. 12 organizations participated in these projects and accordingly 104 experts took part in training programmes, scientific visits or as the mission members abroad. Besides, Slovak experts participated at work of technical advisory and consultation groups with the significant assistance. In the framework of IAEA co-operation, the SR was visited by 11 expert missions formed by 28 experts from 19 countries including IAEA. Slovak organizations, namely institutes of the Academy of Sciences, Slovak research centres and universities participated in IAEA scientific and research activities through NRA SR. 15 scientific contracts in total were approved and realized and these contracts are utilized as supplementary financing of the own scientific and research projects. Other international co-operation and regional co-operation activities of the NRA SR in 1996 are reviewed

  20. VEGA Space Mission

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2000-11-01

    VEGA (mission) is a combined spacecraft mission to VENUS and COMET HALLEY. It was launched in the USSR at the end of 1984. The mission consisted of two identical spacecraft VEGA 1 and VEGA 2. VEGA is an acronym built from the words `Venus' and `Halley' (`Galley' in Russian spelling). The basic design of the spacecraft was the same as has been used many times to deliver Soviet landers and orbiter...

  1. Communication of 7 September 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-15

    On 8 September 1995, the Director General received a communication dated 7 September 1995 from the Permanent Mission of Australia transmitting two Statements by the Prime Minister of Australia, one issued in his capacity as Chairman of the South Pacific Forum, concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency.

  2. Communication of 7 September 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 8 September 1995, the Director General received a communication dated 7 September 1995 from the Permanent Mission of Australia transmitting two Statements by the Prime Minister of Australia, one issued in his capacity as Chairman of the South Pacific Forum, concerning the resumption of nuclear testing by France. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency

  3. Communication of 13 June 1995 received from the Permanent Mission of France to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 16 June, the Director General received a letter dated 13 June 1995 from the Permanent Mission of France transmitting the text of a Statement of the European Union on the occasion of Chile's becoming a party to the Treaty on the Non-Proliferation of Nuclear Weapons. As requested by the Permanent Mission of France, the text of the Statement is being circulated for the information of Member States of the Agency

  4. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Colombia. February - March 1980

    International Nuclear Information System (INIS)

    Cameron, J.; Meunier, A.R.; Tauchid, M.

    1980-01-01

    The basic objective of IUREP is to 'review the present body of knowledge pertinent to the existence of uranium resources, to review and evaluate the potential for discovery of additional uranium resources, and to suggest new exploration efforts which might be carried out in promising new areas in collaboration with the countries concerned'. Following the initial bibliographic study, which formed Phase I of IUREP, it was envisaged that a further assessment in co-operation with the country in question would lead to a better delineation of areas of high potential and a more reliable estimate as to the degree of favourability for the discovery of additional uranium resources. It was planned that such work would be accomplished through field missions to the country and that these field missions and the resulting report would constitute the IUREP Orientation Phase. The purpose of the Orientation Mission to Colombia was (i) to develop a better understanding of the uranium potential of the country, (ii) to delineate areas favourable for the discovery of speculative uranium resources, (iii) to make recommendations, as appropriate, on the best methods for evaluating the favourable areas, operating procedures and estimated possible costs, (iv) to develop the logistical data required to carry out any possible further work, and (v) to compile a report that would be immediately available to the Colombian authorities. Uranium exploration in Colombia is of very recent date, with the majority of activities getting under way only after 1970. In spite of the limited work that has been done, however, over 1300 radioactive anomalies have been recorded. The total number of uranium mineral occurrences resulting from follow-up work is still very small, and some are unusual in world terms. Topographic and geographic conditions in Colombia make geological and exploration work very difficult and costly, especially in the Cordilleras and the Interior Zone (Llanos Orientales). There are, at

  5. ENSI international strategy

    International Nuclear Information System (INIS)

    2014-07-01

    This brochure issued by the Swiss Federal Nuclear Safety Inspectorate ENSI discusses ENSI’s role in international cooperation in the nuclear safety area. Questions looked at include to what degree ENSI should engage itself at an international level, especially in certain IAEA missions, which topics should be addressed, which results should be aimed for and how current scientific and technical state-of-the-art should be monitored. Strategic targets are discussed, main areas of action are examined and ENSI’s position with respect to safety, transparency, independence and competence is declared. The various implementation instances within ENSI are looked at

  6. An integrated radar model solution for mission level performance and cost trades

    Science.gov (United States)

    Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia

    2017-05-01

    A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.

  7. 77 FR 48498 - Executive-Led Trade Mission to South Africa and Zambia

    Science.gov (United States)

    2012-08-14

    ... that are interested in doing business in Zambia and is therefore amending the mission statement for the... functioning basic water services and to a functioning basic sanitation facility by 2010. Today, 88% of..., Senior International Trade Specialist, Global Trade Programs. [FR Doc. 2012-19818 Filed 8-13-12; 8:45 am...

  8. 76 FR 55347 - Aerospace Executive Service Trade Mission at Singapore Air Show

    Science.gov (United States)

    2011-09-07

    .... Commercial Setting The Singapore Air Show (SAS) is Asia's largest aerospace and defense event and one of the... growth, with Asia being one of the major hubs of the air freight business. Also, the rising GDP rates... Mission at Singapore Air Show AGENCY: International Trade Administration, Department of Commerce. ACTION...

  9. ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    ESA astronaut (and former physicist at CERN) Christer Fuglesang returning a symbolic neutralino particle to CERN Director for research Sergio Bertolucci. Fuglesang flew the neutralino to the International Space Station on the occasion of his STS128 mission in 2009.

  10. 76 FR 57956 - Renewable Energy and Energy Efficiency Executive Business Development Mission; Clarification and...

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF COMMERCE International Trade Administration Renewable Energy and Energy Efficiency... the Notice of the Renewable Energy and Energy Efficiency Executive Business Development Mission, 76 FR... for Recruitment and Applications section of the Notice of the Renewable Energy and Energy Efficiency...

  11. Parker Solar Probe: A NASA Mission to Touch the Sun: Mission Status Update

    Science.gov (United States)

    Fox, N. J.

    2017-12-01

    The newly renamed, Parker Solar Probe (PSP) mission will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Parker Solar Probe mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. PSP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the science objectives. In this presentation, we provide an update on the progress of the Parker Solar Probe mission as we prepare for the July 2018 launch.

  12. IAEA concludes follow-up mission to Kashiwazaki-Kariwa nuclear power plant

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: An IAEA follow-up fact-finding mission to the Kashiwazaki-Kariwa nuclear power plant in Japan has concluded from the examination of the plant's key safety areas that there was no significant damage to safety equipment from a strong earthquake last year. 'The first objective of the team has been to confirm that there appears to be no significant damage to the integrity of the plant,' said Phillipe Jamet, whose team was able to view key internal components in the plant inaccessible during their first visit in August last year. The IAEA team's site visit followed three days of open and constructive discussions with Japanese regulatory officials, the plant's operators, and other experts. The mission concluded that significant data about the earthquake has been gathered and efforts to obtain remaining information are underway. Overall interpretation of all the data will still be necessary to reach a full understanding of the 16 July 2007 earthquake and to assess the possibility of future ones. The team recommended an international cooperative effort which could expand on-going Japanese studies and make a contribution to the evolution of international safety standards. Last year's earthquake significantly exceeded the level of seismic activity for which the Kashiwazaki-Kariwa plant, in the coastal prefecture of Niigata, north-west of Tokyo, was designed. The Director General of the IAEA, Mohamed ElBaradei, said today that an international response to the earthquake is appropriate because of its relevance to other nuclear plants worldwide. He welcomed Japan's continued cooperation with the effort. The earthquake also caused fractures on the surface of the site. Before the reactors at the Tokyo Electric Power Company (TEPCO) owned plant started up, between 1985 and 1997, it was acknowledged that geological faults ran deep beneath the site but were considered stable, the team said. Geologists are investigating if surface fractures caused by the earthquake

  13. Human Behaviour in Long-Term Missions

    Science.gov (United States)

    1997-01-01

    In this session, Session WP1, the discussion focuses on the following topics: Psychological Support for International Space Station Mission; Psycho-social Training for Man in Space; Study of the Physiological Adaptation of the Crew During A 135-Day Space Simulation; Interpersonal Relationships in Space Simulation, The Long-Term Bed Rest in Head-Down Tilt Position; Psychological Adaptation in Groups of Varying Sizes and Environments; Deviance Among Expeditioners, Defining the Off-Nominal Act in Space and Polar Field Analogs; Getting Effective Sleep in the Space-Station Environment; Human Sleep and Circadian Rhythms are Altered During Spaceflight; and Methodological Approach to Study of Cosmonauts Errors and Its Instrumental Support.

  14. The ACES mission: scientific objectives and present status

    Science.gov (United States)

    Cacciapuoti, L.; Dimarcq, N.; Salomon, C.

    2017-11-01

    "Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.

  15. IAEA Expert Team Concludes Mission to Onagawa NPP

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA team of international experts today delivered its initial report at the end of a two-week mission to gather information about the effects of the Great East Japan Earthquake on the Onagawa Nuclear Power Station (NPS), saying the plant was 'remarkably undamaged'. Findings from the visual investigation will be added to an IAEA data base being compiled by its International Seismic Safety Centre (ISSC) to provide knowledge for Member States about the impact of external hazards on nuclear power plants. The ISSC data bank makes an important contribution to the IAEA's Action Plan on Nuclear Safety, which was unanimously endorsed by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi NPS. Onagawa, facing the Pacific Ocean on Japan's north-east coast, was the nuclear power plant closest to the epicentre of the 11 March 2011 magnitude 9.0 earthquake that struck Japan and resulted in a devastating tsunami. The plant experienced very high levels of ground shaking - among the strongest of any plant affected by the earthquake - and some flooding from the tsunami that followed, but was able to shut down safely. In its draft report the team said that 'the structural elements of the NPS were remarkably undamaged given the magnitude of ground motion experienced and the duration and size of this great earthquake'. The mission's objective was to observe how structures, systems and components with significance to the safety of the plant responded to the earthquake and heavy shaking. At the damaged Fukushima Daiichi NPS, nearly 120 km south of Onagawa NPS, the effects of the earthquake, tsunami and hydrogen explosions make it impossible to single out the impact of external hazards on safety-related parts of the power station. The Government of Japan and the IAEA therefore agreed to deploy a mission to the three-unit Onagawa NPS. The team's 19 members from six countries, including IAEA staff, held discussions with the operators of the

  16. International Physical Protection Advisory Service (IPPAS) Guidelines

    International Nuclear Information System (INIS)

    2014-01-01

    The International Physical Protection Advisory Service (IPPAS) was established by the IAEA in 1995 and is a fundamental part of the IAEA’s efforts to assist States, upon request, to establish and maintain an effective national nuclear security regime to protect against the unauthorized removal of nuclear and other radioactive material, and against the sabotage of nuclear and other associated facilities, as well as material during transport, while recognizing that the ultimate responsibility for physical protection lies with the State. IPPAS provides peer review on implementing relevant international instruments, in particular the Convention on the Physical Protection of Nuclear Material (CPPNM), together with the 2005 Amendment, and on implementing the IAEA Nuclear Security Series of guidance publications, in particular Fundamentals and Recommendations. IPPAS missions compare (insofar as this is possible) the procedures and practices employed by a State with the obligations specified under the CPPNM and the 2005 Amendment, as well as with the existing international consensus guidelines provided in relevant IAEA Nuclear Security Series publications. Since 1996, 63 IPPAS missions have been conducted in 40 countries, including 15 follow-up missions, as well as the recent mission to the IAEA Office of Safeguards Analytical Services laboratories, in Seibersdorf. More than 140 experts from 34 Member States have participated in the conduct of IPPAS missions as IPPAS team members or team leaders. The updated IPPAS guidelines reflect a modular approach to make them more flexible and responsive to the needs of States. The modular approach is an innovation of great value, ensuring the degree of flexibility required to fit individual national contexts, practices and objectives as expressed by the requesting States. In particular, it also offers States the opportunity to expand the scope of a requested IPPAS mission to embrace its nuclear security regime for the protection of

  17. Live Webcast from CERN - Mission Impossible 3?

    CERN Document Server

    2000-01-01

    It is a beautiful sunny autumn day, 21 November 2000. The place is CERN's Microcosm exhibition where around 50 pupils from the International School in Geneva and the Collège du Leman have gathered to dive into the mystery of antimatter production and take part in CERN's second Live Webcast of the series 'The Antimatter Factory'. The first was broadcast on 18 November. The webcast is played in the mood of Mission Impossible with music and teasers from this famous television and cinema series. The mission here is not to save the planet but to understand how and why antimatter is produced at CERN. In the Webcast studio, Paola Catapano, Rolf Landua and Mick Storr answer questions posed by students in Italy and Finland thanks to video-conferencing. Paola Catapano, Visit and Exhibitions group leader, dressed like a Bond girl Rolf Landua, spokesman of the ATHENA experiment and Mick Storr Head of Technical Training lead the show. The place starts buzzing and we peep into the antimatter factory (AD) and a...

  18. Communicating the Science from NASA's Astrophysics Missions

    Science.gov (United States)

    Hasan, Hashima; Smith, Denise A.

    2015-01-01

    Communicating science from NASA's Astrophysics missions has multiple objectives, which leads to a multi-faceted approach. While a timely dissemination of knowledge to the scientific community follows the time-honored process of publication in peer reviewed journals, NASA delivers newsworthy research result to the public through news releases, its websites and social media. Knowledge in greater depth is infused into the educational system by the creation of educational material and teacher workshops that engage students and educators in cutting-edge NASA Astrophysics discoveries. Yet another avenue for the general public to learn about the science and technology through NASA missions is through exhibits at museums, science centers, libraries and other public venues. Examples of the variety of ways NASA conveys the excitement of its scientific discoveries to students, educators and the general public will be discussed in this talk. A brief overview of NASA's participation in the International Year of Light will also be given, as well as of the celebration of the twenty-fifth year of the launch of the Hubble Space Telescope.

  19. NASA's Space Launch System: An Enabling Capability for International Exploration

    Science.gov (United States)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  20. AFRREV STECH: An International Journal of Science and Technology

    African Journals Online (AJOL)

    STECH: An International Journal of Science and Technology is a peer-reviewed journal of interdisciplinary scientific research, theories, and observations. STECH is a semi-annual publication of International Association of African Researchers and Reviewers (IAARR). The mission of this journal is to provide a platform for ...

  1. 75 FR 9181 - Secretarial China Clean Energy Business Development Mission; Application Deadline Extended

    Science.gov (United States)

    2010-03-01

    ... DEPARTMENT OF COMMERCE International Trade Administration Secretarial China Clean Energy Business... completed on-line at the Clean Energy Business Development Missions' Web site at http://www.trade.gov/Clean... (202-482-1360 or CleanEnergy[email protected] ). The application deadline has been extended to Friday...

  2. Communication of 24 November 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 27 November 1995, the Director General received a communication dated 24 November 1995 from the Permanent Mission of Australia transmitting Statements of 22 November 1995 by the Prime Minister of Australia, by the Minister for Foreign Affairs of Australia and by the Secretary-General of the South Pacific Forum on ''The Fourth French Nuclear Test''. As requested by the Permanent Mission of Australia, the texts of the Statements are being circulated for the information of Member States of the Agency

  3. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  4. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    International Nuclear Information System (INIS)

    Christensen-Dalsgaard, Joergen; Carpenter, Kenneth G; Schrijver, Carolus J; Karovska, Margarita

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  5. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  6. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Science.gov (United States)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  7. Soviet Robots in the Solar System Mission Technologies and Discoveries

    CERN Document Server

    Huntress, JR , Wesley T

    2011-01-01

    The Soviet robotic space exploration program began in a spirit of bold adventure and technical genius. It ended after the fall of the Soviet Union and the failure of its last mission to Mars in 1996. Soviet Robots in the Solar System chronicles the scientific and engineering accomplishments of this enterprise from its infancy to its demise. Each flight campaign is set into context of national politics and international competition with the United States. Together with its many detailed illustrations and images, Soviet Robots in the Solar System presents the most detailed technical description of Soviet robotic space flights provides a unique insight into programmatic, engineering, and scientific issues covers mission objectives, spacecraft engineering, flight details, scientific payload and results describes in technical depth Soviet lunar and planetary probes

  8. Near-term hybrid vehicle program, phase 1. Appendix A: Mission analysis and performance specification studies report

    Science.gov (United States)

    1979-01-01

    Results of a study leading to the preliminary design of a five passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis are presented. The study methodology is described. Vehicle characterizations, the mission description, characterization, and impact on potential sales, and the rationale for the selection of the reference internal combustion engine vehicle are presented. Conclusions and recommendations of the mission analysis and performance specification report are included.

  9. Logistics Needs for Potential Deep Space Mission Scenarios Post Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Lopez, Pedro, Jr.; Shultz, Eric; Mattfeld, Bryan; Stromgren, Chel; Goodliff, Kandyce

    2015-01-01

    The Asteroid Redirect Mission (ARM) is currently being explored as the next step towards deep space human exploration, with the ultimate goal of reaching Mars. NASA is currently investigating a number of potential human exploration missions, which will progressively increase the distance and duration that humans spend away from Earth. Missions include extended human exploration in cis-lunar space which, as conceived, would involve durations of around 60 days, and human missions to Mars, which are anticipated to be as long as 1000 days. The amount of logistics required to keep the crew alive and healthy for these missions is significant. It is therefore important that the design and planning for these missions include accurate estimates of logistics requirements. This paper provides a description of a process and calculations used to estimate mass and volume requirements for crew logistics, including consumables, such as food, personal items, gasses, and liquids. Determination of logistics requirements is based on crew size, mission duration, and the degree of closure of the environmental control life support system (ECLSS). Details are provided on the consumption rates for different types of logistics and how those rates were established. Results for potential mission scenarios are presented, including a breakdown of mass and volume drivers. Opportunities for mass and volume reduction are identified, along with potential threats that could possibly increase requirements.

  10. Mitigation-relevant science with Don Quijote - a European-led mission to a near-Earth asteroid

    Science.gov (United States)

    Harris, A. W.; Galvez, A.; Benz, W.; Fitzsimmons, A.; Green, S. F.; Michel, P.; Valsecchi, G.; Paetzold, M.; Haeusler, B.; Carnelli, I.

    The Don Quijote concept includes a rendezvous spacecraft and an impactor vehicle The main aim of the mission is to carry out an experiment to demonstrate the modification of a near-Earth asteroid s orbit in a controlled way as a first step in establishing mitigation measures against an eventual hazardous object In particular the spacecraft would study the physical properties of the target asteroid and the effects of a kinetic impact on its dynamical state It is also expected that some spacecraft resources will be available for more general solar-system science investigations The Don Quijote mission is currently at the phase-A stage during which a number of European consortia of industrial and scientific partners will study its technical feasibility and potential scientific return The basic mission concept current scientific issues and the possibilities for international participation in the mission will be discussed

  11. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    Science.gov (United States)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross

  12. An Informational Analysis and Communications Squadron Survey of Cyberspace Mission Assurance

    Science.gov (United States)

    2010-06-01

    such things as fraud, 11 business ethics, financial reporting, internal controls, and enterprise risk management . COSO is an organization...recognized world-wide and is highly respected. In 1992, COSO published a framework for risk management . It reopened the framework for modification to...The enterprise risk management facet of the COSO framework is pertinent to the cyber mission assurance discussion. COSO recognized the importance

  13. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  14. Communication of 23 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-11

    On 25 August 1995, the Director General received a communication dated 23 August 1995 from the Permanent Mission of Australia transmitting a Statement of 22 August 1995 by the Prime Minister of Australia made as Chairman of the South Pacific Forum concerning the second test of a nuclear weapon by China since the 1995 NPT Review and Extension Conference. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency.

  15. Communication of 23 August 1995 received from the Permanent Mission of Australia to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1995-01-01

    On 25 August 1995, the Director General received a communication dated 23 August 1995 from the Permanent Mission of Australia transmitting a Statement of 22 August 1995 by the Prime Minister of Australia made as Chairman of the South Pacific Forum concerning the second test of a nuclear weapon by China since the 1995 NPT Review and Extension Conference. As requested by the Permanent Mission of Australia, the text of the Statement is being circulated for the information of Member States of the Agency

  16. Operationalizing Mobile Applications for Humanitarian Assistance/Disaster Relief Missions

    Science.gov (United States)

    2014-03-01

    the Samsung Galaxy SII (i9100) if it is the Unlocked GSM International Version that runs Gingerbread 2.3.4 OS; the 8 Samsung Nexus S if it is the...runs Gingerbread 2.3.4 OS (Naval Postgraduate School, 2013). Likewise he software can also be run on tablets, including the Samsung Galaxy Tab 7...Concept of FIST The FIST application was created to function in numerous diverse environments to support various possible missions, such as

  17. End of mission report on seismic safety review mission for Belene NPP site

    International Nuclear Information System (INIS)

    Gurpinar, A.; Mohammadioun, B.; Schneider, H.; Serva, L.

    1995-01-01

    Upon the invitation of the Bulgarian government through the Committee for the Peaceful Uses of Atomic Energy and within the framework of the implementation of the Technical Cooperation project BUL/9/012 related to site and seismic of NPPs, a mission visited Sofia 3 - 7 July 1995. The mission constituted a follow-up of the interim review of subjects related to tectonic stability and seismic hazard characterization of the site which was performed in September 1993. The main objective of the mission was the final review of the subjects already reviewed in September 1993 as well as issues related to geotechnical engineering and foundation safety. The main terms of reference of the present mission was to verify the implementation of the recommendations of the Site Safety Review Mission of June 1990. This document gives findings on geology-tectonics, seismology and foundation safety. In the end conclusions and recommendations of the mission are presented

  18. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Science.gov (United States)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  19. Exploring Cognition Using Software Defined Radios for NASA Missions

    Science.gov (United States)

    Mortensen, Dale J.; Reinhart, Richard C.

    2016-01-01

    NASA missions typically operate using a communication infrastructure that requires significant schedule planning with limited flexibility when the needs of the mission change. Parameters such as modulation, coding scheme, frequency, and data rate are fixed for the life of the mission. This is due to antiquated hardware and software for both the space and ground assets and a very complex set of mission profiles. Automated techniques in place by commercial telecommunication companies are being explored by NASA to determine their usability by NASA to reduce cost and increase science return. Adding cognition the ability to learn from past decisions and adjust behavior is also being investigated. Software Defined Radios are an ideal way to implement cognitive concepts. Cognition can be considered in many different aspects of the communication system. Radio functions, such as frequency, modulation, data rate, coding and filters can be adjusted based on measurements of signal degradation. Data delivery mechanisms and route changes based on past successes and failures can be made to more efficiently deliver the data to the end user. Automated antenna pointing can be added to improve gain, coverage, or adjust the target. Scheduling improvements and automation to reduce the dependence on humans provide more flexible capabilities. The Cognitive Communications project, funded by the Space Communication and Navigation Program, is exploring these concepts and using the SCaN Testbed on board the International Space Station to implement them as they evolve. The SCaN Testbed contains three Software Defined Radios and a flight computer. These four computing platforms, along with a tracking antenna system and the supporting ground infrastructure, will be used to implement various concepts in a system similar to those used by missions. Multiple universities and SBIR companies are supporting this investigation. This paper will describe the cognitive system ideas under consideration and

  20. The International Planetary Data Alliance (IPDA)

    Science.gov (United States)

    Stein, Thomas; Gopala Krishna, Barla; Crichton, Daniel J.

    2016-07-01

    The International Planetary Data Alliance (IPDA) is a close association of partners with the aim of improving the quality of planetary science data and services to the end users of space based instrumentation. The specific mission of the IPDA is to facilitate global access to, and exchange of, high quality scientific data products managed across international boundaries. Ensuring proper capture, accessibility and availability of the data is the task of the individual member space agencies. The IPDA is focused on developing an international standard that allows discovery, query, access, and usage of such data across international planetary data archive systems. While trends in other areas of space science are concentrating on the sharing of science data from diverse standards and collection methods, the IPDA concentrates on promoting governing data standards that drive common methods for collecting and describing planetary science data across the international community. This approach better supports the long term goal of easing data sharing across system and agency boundaries. An initial starting point for developing such a standard will be internationalization of NASA's Planetary Data System's (PDS) PDS4 standard. The IPDA was formed in 2006 with the purpose of adopting standards and developing collaborations across agencies to ensure data is captured in common formats. It has grown to a dozen member agencies represented by a number of different groups through the IPDA Steering Committee. Member agencies include: Armenian Astronomical Society, China National Space Agency (CNSA), European Space Agency (ESA), German Aerospace Center (DLR), Indian Space Research Organization (ISRO), Italian Space Agency (ASI), Japanese Aerospace Exploration Agency (JAXA), National Air and Space Administration (NASA), National Centre for Space Studies (CNES), Space Research Institute (IKI), UAE Space Agency, and UK Space Agency. The IPDA Steering Committee oversees the execution of

  1. B plant mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report further develops the mission for B Plant originally defined in WHC-EP-0722, ''System Engineering Functions and Requirements for the Hanford Cleanup Mission: First Issue.'' The B Plant mission analysis will be the basis for a functional analysis that breaks down the B Plant mission statement into the necessary activities to accomplish the mission. These activities are the product of the functional analysis and will then be used in subsequent steps of the systems engineering process, such as identifying requirements and allocating those requirements to B Plant functions. The information in this mission analysis and the functional and requirements analysis are a part of the B Plant technical baseline

  2. Missions to Venus

    Science.gov (United States)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  3. The SOLAR-C Mission: Science Objectives and Current Status

    Science.gov (United States)

    Suematsu, Y.; Solar-C Working Group

    2016-04-01

    The SOLAR-C is a Japan-led international solar mission for mid-2020s designed to investigate the magnetic activities of the Sun, focusing on the study in heating and dynamical phenomena of the chromosphere and corona, and to advance algorithms for predicting short and long term solar magnetic activities. For these purposes, SOLAR-C will carry three dedicated instruments; the Solar UV-Vis-IR Telescope (SUVIT), the EUV Spectroscopic Telescope (EUVST) and the High Resolution Coronal Imager (HCI), to jointly observe the entire visible solar atmosphere with essentially the same high spatial resolution (0.1"-0.3"), performing high resolution spectroscopic measurements over all atmospheric regions and spectro-polarimetric measurements from the photosphere through the upper chromosphere. SOLAR-C will also contribute to understand the solar influence on the Sun-Earth environments with synergetic wide-field observations from ground-based and other space missions.

  4. 77 FR 18215 - U.S. Education Mission to Brazil; Brasilia, Rio de Janeiro and São Paulo, Brazil, August 30...

    Science.gov (United States)

    2012-03-27

    ... DEPARTMENT OF COMMERCE International Trade Administration U.S. Education Mission to Brazil; Brasilia, Rio de Janeiro and S[atilde]o Paulo, Brazil, August 30-September 6, 2012 AGENCY: International Trade Administration, Department of Commerce. ACTION: Notice. SUMMARY: The United States Department of...

  5. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    Science.gov (United States)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would

  6. Enhancing Hubble's vision service missions that expanded our view of the universe

    CERN Document Server

    Shayler, David J

    2016-01-01

    After a 20-year struggle to place a large, sophisticated optical telescope in orbit the Hubble Space Telescope was finally launched in 1990, though its primary mirror was soon found to be flawed. A dramatic mission in 1993 installed corrective optics so that the intended science program could finally begin. Those events are related in a companion to this book, The Hubble Space Telescope: From Concept to Success.   Enhancing Hubble’s Vision: Service Missions That Expanded Our View of the Universe tells the story of the four missions between 1997 and 2009 that repaired, serviced and upgraded the instruments on the telescope to maintain its state-of-the-art capabilities. It draws on first hand interviews with those closely involved in the project. The spacewalking skills and experiences gained from maintaining and upgrading Hubble had direct application to the construction of the International Space Station and help with its maintenance. These skills can be applied to future human and robotic satellite servic...

  7. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions

    Science.gov (United States)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.

    2006-01-01

    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  8. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    Science.gov (United States)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately

  9. Instrument demonstration effort for the CLARREO mission

    Science.gov (United States)

    Grandmont, Frédéric; Moreau, Louis; Bourque, Hugo; Taylor, Joe; Girard, Frédéric; Larouche, Martin; Veilleux, James

    2017-11-01

    NASA and other national agencies ask the National Research Council (NRC) once every decade to look out ten or more years into the future and prioritize research areas, observations, and notional missions to make those observations. The latest such scientific community consultation referred to as the Decadal Survey (DS), was completed in 2007 [1]. DS thematic panels developed 35 missions from more than 100 missions proposed, from which the DS Executive Committee synthesized 17 missions, with suggested order presented in three time-phased blocks. The first block with aim for near term launch (2010-2013) included four missions. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is one of them. The CLARREO mission was classified as a Small Mission to be contained in a 300 M US$ budgetary envelope. CLARREO will provide a benchmark climate record that is global, accurate in perpetuity, tested against independent strategies that reveal systematic errors, and pinned to international standards. The long term objective thus suggests that NOAA or NASA will fly the CLARREO instrument suite on an operational basis following the first scientific experiment The CLARREO missions will conduct the following observations: 1. Absolute spectrally-resolved measurements of terrestrial thermal emission with an absolute accuracy of 0.1 K in brightness temperature (3σ or 99% confidence limits.) The measurements should cover most of the thermal spectrum. 2. Absolute spectrally-resolved measurements of the solar radiation reflected from Earth. The measurements should cover the part of the solar spectrum most important to climate, including the near-ultraviolet, visible, and near-infrared. 3. Independent measurements of atmospheric temperature, pressure, and humidity using Global Positioning System (GPS) occultation measurements of atmospheric refraction. 4. Serve as a high accuracy calibration standard for use by the broadband CERES instruments on-orbit. Following

  10. “If you have no moon light, use the stars”: The Dynamics of Transnational State building Between the UN Mission, Politicians, and Elders in Somalia

    DEFF Research Database (Denmark)

    Farah, Abdulkadir Osman

    2018-01-01

    The United Nations Mission in Somalia (UNSOM) implements Security Council resolutions. The mission supports the Somali Federal Government (SFG) and combines formality with informality in facilitating transnational power and legitimacy claims. While informal interactions sustain internal legitimac...

  11. Mission Risk Reduction Regulatory Change Management

    Science.gov (United States)

    Scroggins, Sharon

    2007-01-01

    NASA Headquarters Environmental Management Division supports NASA's mission to pioneer the future in space exploration, scientific discovery, and aeronautics research by integrating environmental considerations into programs and projects early-on, thereby proactively reducing NASA's exposure to institutional, programmatic and operational risk. As part of this effort, NASA established the Principal Center for Regulatory Risk Analysis and Communication (RRAC PC) as a resource for detecting, analyzing, and communicating environmental regulatory risks to the NASA stakeholder community. The RRAC PC focuses on detecting emerging environmental regulations and other operational change drivers that may pose risks to NASA programs and facilities, and effectively communicating the potential risks. For example, regulatory change may restrict how and where certain activities or operations may be conducted. Regulatory change can also directly affect the ability to use certain materials by mandating a production phase-out or restricting usage applications of certain materials. Regulatory change can result in significant adverse impacts to NASA programs and facilities due to NASA's stringent performance requirements for materials and components related to human-rated space vehicles. Even if a regulation does not directly affect NASA operations, U.S. and international regulations can pose program risks indirectly through requirements levied on manufacturers and vendors of components and materials. For example, manufacturers can change their formulations to comply with new regulatory requirements. Such changes can require time-consuming and costly requalification certification for use in human spaceflight programs. The RRAC PC has implemented a system for proactively managing regulatory change to minimize potential adverse impacts to NASA programs and facilities. This presentation highlights the process utilized by the RRACPC to communicate regulatory change and the associated

  12. Development and evaluation of bioregenerative menus for Mars habitat missions

    Science.gov (United States)

    Cooper, Maya R.; Catauro, Patricia; Perchonok, Michele

    2012-12-01

    Two 10-day menus were developed in preparation for a Mars habitat mission. The first was built on the assumption, as in previous menu development efforts for closed ecological systems, that the food system would be vegetarian, whereas the second menu introduced shelf-stable, prepackaged meat and entrée items from the current International Space Station (ISS) food system. Both menus delivered an average of 3000 cal daily but the macronutrient proportions resulted in an excess of carbohydrates and dietary fiber per mission nutritional recommendations. Generally, the individual recipes comprising both menus were deemed acceptable by internal sensory panel (average overall acceptability=7.4). The incorporation of existing ISS entrée items did not have a significant effect on the acceptability of the menus. In a final comparison, the food system upmass, or the amount of food that is shipped from the Earth, increased by 297 kg with the addition of prepackaged entrées to the menu. However, the addition of the shipped massed was counterbalanced by a 864 kg reduction in required crops. A further comparison of the crew time required for meal preparation and farming, food system power requirements, and food processing equipment mass is recommended to definitively distinguish the menus.

  13. OSIRIS-REx Asteroid Sample Return Mission Image Analysis

    Science.gov (United States)

    Chevres Fernandez, Lee Roger; Bos, Brent

    2018-01-01

    NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding

  14. Solar Probe Plus: A NASA Mission to Touch the SunMission Status Update

    Science.gov (United States)

    Fox, N. J.

    2016-12-01

    Solar Probe Plus (SPP), currently in Phase D, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives. In this presentation, we provide an update on the progress of the Solar Probe Plus mission as we prepare for the July 2018 launch.

  15. Psyche Mission: Scientific Models and Instrument Selection

    Science.gov (United States)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  16. Fluxgate Magnetometry on the Experimental Albertan Satellite #1 (Ex-Alta-1) CubeSat Mission: Steps Toward a Magnetospheric Constellation Mission

    Science.gov (United States)

    Mann, I. R.; Miles, D.; Nokes, C.; Cupido, C.; Elliott, D.; Ciurzynski, M.; Barona, D.; Narod, B. B.; Bennest, J.; Pakhotin, I.; Kale, A.; Bruner, B.; Haluza-DeLay, T.; Forsyth, C.; Rae, J.; Lange, C.; Sameoto, D.; Milling, D. K.

    2017-12-01

    Making low noise magnetic measurements is a significant challenge to the use of cube-satellite (CubeSat) platforms for scientific constellation class missions for studies of geospace. We describe the design, validation, and test, and initial on-orbit results from a miniature, low-mass, low-power, and low-magnetic noise boom-mounted fluxgate magnetometer flown on the University of Alberta Experimental Albertan Satellite #1 (Ex-Alta-1) Cube Satellite, launched in 2017 from the International Space Station as part of the QB50 constellation mission. The miniature instrument achieves a magnetic noise floor of 150-200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three-unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities are being demonstrated and validated in space with flight on Ex-Alta-1. We present on-orbit data from the boom-deployment and initial operations of the fluxgate sensor and illustrate the potential scientific returns and utility of using CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation mission. We further illustrate the value of scientific constellations using example data from the low-Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere-ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude. This indicates the likely energetic significance of Alfven wave dynamics, and we use Swarm measurements to illustrate the value of satellite constellations for diagnosing magnetosphere-ionosphere coupling even in low-Earth orbit.

  17. Evolution of Requirements and Assumptions for Future Exploration Missions

    Science.gov (United States)

    Anderson, Molly; Sargusingh, Miriam; Perry, Jay

    2017-01-01

    NASA programs are maturing technologies, systems, and architectures to enabling future exploration missions. To increase fidelity as technologies mature, developers must make assumptions that represent the requirements of a future program. Multiple efforts have begun to define these requirements, including team internal assumptions, planning system integration for early demonstrations, and discussions between international partners planning future collaborations. For many detailed life support system requirements, existing NASA documents set limits of acceptable values, but a future vehicle may be constrained in other ways, and select a limited range of conditions. Other requirements are effectively set by interfaces or operations, and may be different for the same technology depending on whether the hard-ware is a demonstration system on the International Space Station, or a critical component of a future vehicle. This paper highlights key assumptions representing potential life support requirements and explanations of the driving scenarios, constraints, or other issues that drive them.

  18. IAEA Mission Concludes Peer Review of Jordan's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an 11-day International Atomic Energy Agency (IAEA) Integrated Regulatory Review Service (IRRS) mission to review the regulatory framework for nuclear and radiation safety in Jordan. The mission team said in its preliminary findings that Jordan's nuclear regulator, the Energy and Minerals Regulatory Commission (EMRC), faces challenges because it is a relatively new body that handles a high workload while also working to recruit, train and keep competent staff. The team also noted that a recent merger provided the regulator with more of the resources it needs to perform its duty. The team made recommendations and suggestions to the regulatory body and the Government to help them strengthen the effectiveness of Jordan's regulatory framework and functions in line with IAEA Safety Standards. The main observations of the IRRS Review team comprised the following: The regulatory body, founded in 2007 and merged with other regulators in April 2014 to form EMRC, faces large challenges in terms of its regulatory workload, management system building and staff recruitment and training; The new EMRC structure and revision of the radiation and nuclear safety law represents an important opportunity to strengthen Jordan's radiation and nuclear safety infrastructure; The Government has shown commitment to radiation and nuclear safety through measures including becoming party to international conventions. It could further demonstrate its commitment by adopting a formal national policy and strategy for safety that defines the role of the Minister of Energy in relation to EMRC and protects the independence of regulatory decision-making

  19. CFI funded icebreaker sets sail on its first international mission

    CERN Multimedia

    2003-01-01

    Today was the official inauguration ceremony of a Canadian research icebreaker. The ship, which received $27.7 million from the CFI in April 2003, provides Canadian and international researchers with a world-class facility to undertake a variety of environmental and marine science projects (1/2 page).

  20. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  1. Communication received from the permanent mission of Austria regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The Director General received a note verbale of 13 June 1996 from Permanent Mission of Austria regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material. In the light of the request expressed at the end of the note verbale, the text of the note verbale is being circulated

  2. Communication received from the permanent mission of Finland regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The Director General received a note verbale of 8 February 1996 from Permanent Mission of Finland regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material. In the light of the request expressed at the and of the note verbale, the text of the note verbale is being circulated

  3. Synergies Between the Kepler, K2 and TESS Missions with the PLATO Mission (Revised)

    Science.gov (United States)

    Jenkins, Jon M.

    2017-01-01

    Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument

  4. EUCLID mission design

    Science.gov (United States)

    Wallner, Oswald; Ergenzinger, Klaus; Tuttle, Sean; Vaillon, L.; Johann, Ulrich

    2017-11-01

    EUCLID, a medium-class mission candidate of ESA's Cosmic Vision 2015-2025 Program, currently in Definition Phase (Phase A/B1), shall map the geometry of the Dark Universe by investigating dark matter distributions, the distance-redshift relationship, and the evolution of cosmic structures. EUCLID consists of a 1.2 m telescope and two scientific instruments for ellipticity and redshift measurements in the visible and nearinfrared wavelength regime. We present a design concept of the EUCLID mission which is fully compliant with the mission requirements. Preliminary concepts of the spacecraft and of the payload including the scientific instruments are discussed.

  5. Mars Comm/Nav MicroSat Network Using the Multi-Mission Bus Launched Piggyback by Ariane 5

    Science.gov (United States)

    Hastrup, R. C.; Cesarone, R. J.; Morabito, D. D.

    1999-01-01

    Recently, NASA's Jet Propulsion Laboratory completed a Mars Exploration Program Architecture Definition Study with strong international participation. The recommendations of this study include establishment of a low cost in-situ communications and navigation satellite network to provide enabling and enhancing support for the international exploration of Mars. This would be the first step toward establishing a "virtual presence throughout the solar system" as called for in NASA's Strategic Plan. Response to the proposed comm/nav satellite network has been very favorably received, as reflected by the inclusion of a line item in NASA's budget submittal to Congress, which provides funding for implementation of the network with first launch in the 2003 opportunity. Funding has already been provided for a phase A study being conducted this year. This paper presents the planned implementation of the comm/nav network, which will utilize microsats based on a multi-mission spacecraft bus being designed for launch by the Ariane 5 as a secondary payload. A companion paper at this conference, entitled "The Multi-Purpose Mars Micro-Mission System Design Utilizing Ariane 5 Piggyback Launch", describes the multimission bus design. This paper addresses the application of the multi-mission bus to the comm/nav microsat mission. Following an introduction, which provides the background that has led to the proposed comm/nav network, the paper discusses the projected user needs with emphasis on the various possible robotic missions (landers, rovers, ascent vehicles, balloons, aircraft, etc.) progressing toward eventual piloted missions. Next, the paper describes the concept for an evolving network of comm/nav microsats and the expected capability to satisfy the user needs. Results of communications and navigation performance analysis are summarized for attractive satellite constellation configurations. The important comm/nav microsat functional requirements on the multi-mission

  6. Surgical and Teaching Mission to Mongolia: Experience and Lessons.

    Science.gov (United States)

    Haranhalli, Neil; Gelfand, Yaroslav; Abramowicz, Apolonia E; Siyez, Abai; Elahi, Ebby; Yassari, Reza

    2017-06-01

    For decades, the disparity in medical care across the world along with the fundamental essence of medicine as service has laid the foundation for the global medical mission. Mongolia, a country often overlooked as an area in need of medical aid, harbors a fertile environment for long-term change. In the last 15-20 years, after the fall of the Union of Soviet Socialist Republics, Mongolia has turned to a free-market healthcare model and has been struggling with the transition from the formally state-run system. These changes have slowed the original progress noted among surgical specialties, namely neurosurgery, in Mongolia. A lack of resources, a desire for international interaction, and a need for technical mentorship remain a real struggle for local neurosurgeons. Under the auspices of the Virtue Foundation (www.virtuefoundation.org), we report on our 3-year experiences during our surgical and teaching mission to Mongolia and look towards long-term improvements in Mongolian neurosurgery. A total of 15 operations were performed and more than 50 patients seen in clinic during the 3-year experience. Patients ranged from 1 to 77 years of age. No patients encountered any significant peri- or postoperative complications. In our experience with the surgical and teaching mission to Mongolia, when directed appropriately, medical missions can serve as the perfect medium in fostering that environment, providing local healthcare professionals with the knowledge, skills, and motivation to create self-sustaining improvement in their own country, hence promoting intellectual and technological advancement and raising the standard of care. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mission operations technology

    Science.gov (United States)

    Varsi, Giulio

    In the last decade, the operation of a spacecraft after launch has emerged as a major component of the total cost of the mission. This trend is sustained by the increasing complexity, flexibility, and data gathering capability of the space assets and by their greater reliability and consequent longevity. The trend can, however, be moderated by the progressive transfer of selected functions from the ground to the spacecraft and by application, on the ground, of new technology. Advances in ground operations derive from the introduction in the mission operations environment of advanced microprocessor-based workstations in the class of a few million instructions per second and from the selective application of artificial intelligence technology. In the last few years a number of these applications have been developed, tested in operational settings and successfully demonstrated to users. Some are now being integrated in mission operations facilities. An analysis of mission operations indicates that the key areas are: concurrent control of multiple missions; automated/interactive production of command sequences of high integrity at low cost; automated monitoring of spacecraft health and automated aides for fault diagnosis; automated allocation of resources; automated processing of science data; and high-fidelity, high-speed spacecraft simulation. Examples of major advances in selected areas are described.

  8. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-10

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/2541Rev. 4/Part 2.

  9. Communication from the Permanent Mission of the Russian Federation to the International Atomic Energy Agency regarding guidelines for transfers of nuclear-related dual-use equipment, materials, software and related technology

    International Nuclear Information System (INIS)

    2001-01-01

    The Director General of the International Atomic Energy Agency has received a Note Verbale from the Permanent Mission of the Russian Federation providing information on the export policies and practices of the Government of the Russian Federation with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of the Note Verbale, the text of the Note Verbale is attached. The attachment to the Note Verbale was issued previously as INFCIRC/2541Rev. 4/Part 2

  10. Activities of UNIDO-ICHET: On a Mission to Convert the World to Hydrogen Economy

    International Nuclear Information System (INIS)

    Barbir, Frano; Veziroglu, T. Nejat; Ture, Engin; Dziedzic, Gregory

    2006-01-01

    United Nations Industrial Development Organization - International Centre for Hydrogen Energy Technologies (UNIDO-ICHET) is an autonomous technological institution within the auspices of UNIDO, located in Istanbul Turkey. UNIDO-ICHET''s mission is to act as a bridge between developed and developing countries in spanning the gap between research and development organizations, innovative enterprises and the market-place, by stimulating appropriate applications of hydrogen energy technologies and the hydrogen energy related industrial development throughout the world in general, and in the developing countries in particular. The activities of UNIDO-ICHET include initiation of demonstration and pilot projects worldwide, establishment of a database on hydrogen energy technology and R and D activities, applied research and development, testing services, and education and training. UNIDO-ICHET is also assisting developing countries in adopting their Hydrogen Road-maps, by working with local governments, universities and industries, with other international organizations having similar mission, and with the leading technology and energy companies. (authors)

  11. Liquid Effluents Program mission analysis

    International Nuclear Information System (INIS)

    Lowe, S.S.

    1994-01-01

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ''capstone'' team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan

  12. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Christensen-Dalsgaard, Joergen [Department of Physics and Astronomy, Aarhus University (Denmark); Carpenter, Kenneth G [Code 667 NASA-GSFC, Greenbelt, MD 20771 (United States); Schrijver, Carolus J [LMATC 3251 Hanover St., Bldg. 252, Palo Alto, CA 94304 (United States); Karovska, Margarita, E-mail: jcd@phys.au.d, E-mail: Kenneth.G.Carpenter@nasa.gov, E-mail: schryver@lmsal.com, E-mail: karovska@head.cfa.harvard.edu [60 Garden St., Cambridge, MA 02138 (United States)

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a 'Landmark/Discovery Mission' in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  13. Lunar Exploration Missions Since 2006

    Science.gov (United States)

    Lawrence, S. J. (Editor); Gaddis, L. R.; Joy, K. H.; Petro, N. E.

    2017-01-01

    The announcement of the Vision for Space Exploration in 2004 sparked a resurgence in lunar missions worldwide. Since the publication of the first "New Views of the Moon" volume, as of 2017 there have been 11 science-focused missions to the Moon. Each of these missions explored different aspects of the Moon's geology, environment, and resource potential. The results from this flotilla of missions have revolutionized lunar science, and resulted in a profoundly new emerging understanding of the Moon. The New Views of the Moon II initiative itself, which is designed to engage the large and vibrant lunar science community to integrate the results of these missions into new consensus viewpoints, is a direct outcome of this impressive array of missions. The "Lunar Exploration Missions Since 2006" chapter will "set the stage" for the rest of the volume, introducing the planetary community at large to the diverse array of missions that have explored the Moon in the last decade. Content: This chapter will encompass the following missions: Kaguya; ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun); Chang’e-1; Chandrayaan-1; Moon Impact Probe; Lunar Reconnaissance Orbiter (LRO); Lunar Crater Observation Sensing Satellite (LCROSS); Chang’e-2; Gravity Recovery and Interior Laboratory (GRAIL); Lunar Atmosphere and Dust Environment Explorer (LADEE); Chang’e-3.

  14. 78 FR 39712 - Critical Infrastructure Protection and Cyber Security Trade Mission to Saudi Arabia and Kuwait...

    Science.gov (United States)

    2013-07-02

    ... DEPARTMENT OF COMMERCE International Trade Administration Critical Infrastructure Protection and Cyber Security Trade Mission to Saudi Arabia and Kuwait Clarification and Amendment AGENCY... cyber-security firms and trade organizations which have not already submitted an application are...

  15. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  16. GRACE Status at Mission End

    Science.gov (United States)

    Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.

    2017-12-01

    The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.

  17. Covenant model of corporate compliance. "Corporate integrity" program meets mission, not just legal, requirements.

    Science.gov (United States)

    Tuohey, J F

    1998-01-01

    Catholic healthcare should establish comprehensive compliance strategies, beyond following Medicare reimbursement laws, that reflect mission and ethics. A covenant model of business ethics--rather than a self-interest emphasis on contracts--can help organizations develop a creed to focus on obligations and trust in their relationships. The corporate integrity program (CIP) of Mercy Health System Oklahoma promotes its mission and interests, educates and motivates its employees, provides assurance of systemwide commitment, and enforces CIP policies and procedures. Mercy's creed, based on its mission statement and core values, articulates responsibilities regarding patients and providers, business partners, society and the environment, and internal relationships. The CIP is carried out through an integrated network of committees, advocacy teams, and an expanded institutional review board. Two documents set standards for how Mercy conducts external affairs and clarify employee codes of conduct.

  18. Exploration of Icy Moons in the Outer Solar System: Updated Planetary Protection Requirements for Missions to Enceladus and Europa

    Science.gov (United States)

    Rummel, J. D.; Race, M. S.

    2016-12-01

    Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.

  19. Maintaining outer space for peaceful purposes through international cooperation

    Science.gov (United States)

    Reese, George E.; Thacher, David J.; Kupperman, Helen S.

    1988-01-01

    NASA activities in support of international cooperation in space exploration and exploitation are briefly reviewed, with a focus on their compatibility with UN treaties. Particular attention is given to the provisions of the National Aeronautics and Space Act of 1958 and other applicable legislation, the over 1000 bilateral and international agreements NASA has entered into since 1958, international participation in currently ongoing NASA projects (Hubble Space Telescope, Galileo, Ulysses, Rosat, the D-2 Spacelab mission), and plans for the International Space Station.

  20. Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Mazanek, Daniel D.; Abell, Paul; Reeves, David M.; NASA Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST)

    2016-10-01

    The Formulation Assessment and Support Team (FAST) for the Asteroid Redirect Mission (ARM) was a two-month effort, chartered by NASA, to provide timely inputs for mission requirement formulation in support of the Asteroid Redirect Robotic Mission (ARRM) Requirements Closure Technical Interchange Meeting held December 15-16, 2015. Additionally, the FAST was tasked with developing an initial list of potential mission investigations and providing input on potential hosted payloads and partnerships. The FAST explored several aspects of potential science benefits and knowledge gain from the ARM. Expertise from the science, engineering, and technology communities was represented in exploring lines of inquiry related to key characteristics of the ARRM reference target asteroid (2008 EV5) for engineering design purposes. Specific areas of interest included target origin, spatial distribution and size of boulders, surface geotechnical properties, boulder physical properties, and considerations for boulder handling, crew safety, and containment. In order to increase knowledge gain potential from the mission, opportunities for partnerships and accompanying payloads that could be provided by domestic and international partners were also investigated. The ARM FAST final report was publicly released on February 18, 2016 and represents the FAST's final product. The report and associated public comments are being used to support mission requirements formulation and serve as an initial inquiry to the science and engineering communities relating to the characteristics of the ARRM reference target asteroid. This report also provides a suggested list of potential investigations sorted and grouped based on their likely benefit to ARM and potential relevance to NASA science and exploration goals. These potential investigations could be conducted to reduce mission risks and increase knowledge return in the areas of science, planetary defense, asteroid resources and in-situ resource

  1. Overview of Mission Design for NASA Asteroid Redirect Robotic Mission Concept

    Science.gov (United States)

    Strange, Nathan; Landau, Damon; McElrath, Timothy; Lantoine, Gregory; Lam, Try; McGuire, Melissa; Burke, Laura; Martini, Michael; Dankanich, John

    2013-01-01

    Part of NASA's new asteroid initiative would be a robotic mission to capture a roughly four to ten meter asteroid and redirect its orbit to place it in translunar space. Once in a stable storage orbit at the Moon, astronauts would then visit the asteroid for science investigations, to test in space resource extraction, and to develop experience with human deep space missions. This paper discusses the mission design techniques that would enable the redirection of a 100-1000 metric ton asteroid into lunar orbit with a 40-50 kW Solar Electric Propulsion (SEP) system.

  2. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  3. Management experience of an international venture in space The Ulysses mission

    Science.gov (United States)

    Yoshida, Ronald Y.; Meeks, Willis G.

    1986-01-01

    The management of the Ulysses project, a probe which will fly a solar polar orbit, is described. The 5-yr mission will feature a flyby of Jupiter to deflect the spacecraft into a high-inclination orbit. Data on the solar corona, solar wind, the sun-wind interface, the heliospheric magnetic field, solar and nonsolar cosmic rays, etc., will be gathered as a function of the solar latitude. NASA will track and control the probe with the Deep Space Network. JPL provides project management for NASA while the Directorate of Scientific Programs performs ESA management functions. The DOE will provide a radioisotope thermoelectric generator while NASA and ESA each supply half the scientific payload. A NASA-ESA Joint Working Group meets about twice per year to monitor the project and discuss the technical and scientific requirements. Safety issues and measures which are being addressed due to the presence of the Pu-238 heat source for the RTG are discussed.

  4. Mission requirements for a manned earth observatory. Task 2: Reference mission definition and analyiss, volume 2

    Science.gov (United States)

    1973-01-01

    The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.

  5. Report of the peer review mission of national operational safety experience feedback process to the Ukraine 11-15 November 1996 Kiev

    International Nuclear Information System (INIS)

    1996-01-01

    At the invitation of the Nuclear Regulatory Administration of Ukraine (NRA), the IAEA carried out a Peer review mission of national operational safety experience feedback process at Kiev from 11 to 15 November 1996. The objective of this mission was to provide the host country, represented by the regulatory body, with independent and comprehensive review of current status of operational safety experience feedback (OSEF) process with respect to the IAEA's recommendations and international practices. The mission concluded that principal arrangements of operational feedback process in Ukraine are, at present, in force and brought positive results since their introduction. The mission also noted several good practices in these activities. 1 tab

  6. Dried Colony in Cyanobacterium, Nostoc sp. HK-01 — Several high Space Environment Tolerances for ``Tanpopo'' Mission

    Science.gov (United States)

    Tomita-Yokotani, K.; Kimura, S.; Kimura, Y.; Igarashi, Y.; Ajioka, R.; Sato, S.; Katoh, H.; Baba, K.

    2013-11-01

    A cyanobacterium, Nostoc sp. HK-01, has high several space environmental tolerance. Nostoc sp HK-01 would have high contribution for the “Tanpopo” mission in Japan Experimental Module of the International Space Station.

  7. High energy particle experiment for the GEOTAIL mission

    International Nuclear Information System (INIS)

    1989-09-01

    The high energy particle experiment for GEOTAIL mission was designed to understand the particle acceleration mechanism, energy flow, boundary dynamics and magnetic reconnection mechanism in the geotail region, solar flare particle acceleration mechanism, the propagation mechanism through interplanetary space, and the origin, lifetime and propagation mechanism of cosmic ray heavy ions. In order to achieve these objectives, particle detectors, burst detectors, medium energy isotope telescopes and a high energy isotope telescope will be placed in the spacecraft which will be launched in 1992 as one of the spacecraft missions in the International Solar Terrestrial Physics program. With these detectors, electrons, protons and helium, carbon, silicon and iron particles will be detected. The characteristics and the main technique used for each instrument to observe high energy particles are summarized. The details of the scientific objectives, the basic principle of particle identification, the electronic system and data processing system, key parameter information, telemetry data formats, preflight and in-flight calibration method and data an analysis plan are described in this report. (K.I.)

  8. Examples of Sentinel-2A Mission Exploitation Results

    Science.gov (United States)

    Koetz, Benjamin; Hoersch, Bianca; Gascon, Ferran; Desnos, Yves-Louis; Seifert, Frank Martin; Paganini, Marc; Ramoino, Fabrizio; Arino, Olivier

    2017-04-01

    The Sentinel-2 Copernicus mission will bring significant breakthrough in the exploitation of space borne optical data. Sentinel-2 time series will transform land cover, agriculture, forestry, in-land water and costal EO applications from mapping to monitoring, from snapshot to time series data analysis, from image-based to pixel-based processing. The 5-days temporal revisiting of the Sentinel-2 satellites, when both units will be operated together, will usher us in a new era for time series analysis at high spatial resolutions (HR) of 10-20 meters. The monitoring of seasonal variations and processes in phenology and hydrology are examples of the many R&D areas to be studied. The mission's large swath and systematic acquisitions will further support unprecedented coverage at the national scale addressing information requirements of national to regional policies. Within ESA programs, such as the Data User Element (DUE), Scientific Exploitation of Operational Missions (SEOM) and Climate Change Initiative (CCI), several R&D activities are preparing the exploitation of the Sentinel-2 mission towards reliable measurements and monitoring of e.g. Essential Climate Variables and indicators for the Sustainable Development Goals. Early Sentinel-2 results will be presented related to a range of applications and scientific domains such as agricultural monitoring at national scale (DUE Sen2Agri), wetland extent and condition over African Ramsar sites (DUE GlobWetland-Africa), land cover mapping for climate change (CCI Land Cover), national land monitoring (Cadaster-Env), forest degradation (DUE ForMoSa), urban mapping (DUE EO4Urban), in-land water quality (DUE SPONGE), map of Mediterranean aquaculture (DUE SMART) and coral reef habitat mapping (SEOM S2-4Sci Coral). The above-mentioned activities are only a few examples from the very active international land imaging community building on the long-term Landsat and Spot heritage and knowledge.

  9. Community College Mission: A '60s Mission Looking at a Y2K World.

    Science.gov (United States)

    Levin, Bernard H.

    Although the world has changed considerably in the past three decades, community colleges and their guiding missions have largely not adapted to changing conditions. College mission statements tend to be unfocused documents that provide overly broad goals. In the business world, the mission statements of effective companies are brief, crisp, and…

  10. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  11. Data Management Coordinators Monitor STS-78 Mission at the Huntsville Operations Support Center

    Science.gov (United States)

    1996-01-01

    Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents Data Management Coordinators monitoring the progress of the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC. Pictured are assistant mission scientist Dr. Dalle Kornfeld, Rick McConnel, and Ann Bathew.

  12. IAEA Mission Concludes Peer Review of UK's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Senior international nuclear safety and radiation protection experts today concluded a ten-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety in the United Kingdom (UK). The Integrated Regulatory Review Service (IRRS) mission team said in its preliminary findings that the UK had made considerable progress since reviews in 2006 and 2009. It also identified good practices in the country's nuclear regulatory system. In addition to following up previous missions, a key objective was to review the effectiveness of the role of the Office of Nuclear Regulation (ONR), the UK's nuclear regulator, in ensuring the safety of radioactive waste management and decommissioning, occupational radiation protection, and public and environmental exposures, including emergency planning and response. The mission also considered the response of the UK's regulatory regime to the implications of the Fukushima Daichi accident had been timely and effective. Recommendations and suggestions were made to the ONR and the Government aimed at strengthening the effectiveness of the country's regulatory framework and functions in line with IAEA Safety Standards, the control of radioactive discharges and environmental monitoring. 'The staff of ONR is clearly dedicated to their mission to secure the protection of people and society from the hazards of the nuclear industry. I am confident that ONR will use the results of this mission to further enhance their regulatory programs', said Bill Borchardt, mission leader and former Executive Director of the United States Nuclear Regulatory Commission (NRC). 'The staff were open and cooperative in their discussions; they provided the fullest practicable assistance, and accepted advice from the Team for continuous improvement in their regulatory work'. ONR's Chief Executive, John Jenkins, said that the full report of the IRRS mission will enhance regulatory effectiveness in the UK

  13. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency today concluded a review of the safety practices at the Muehleberg Nuclear Power Plant (NPP) near Bern in Switzerland. The team noted a series of good practices and made recommendations and suggestions to reinforce them. The IAEA assembled the Operational Safety Review Team at the request of the Swiss government. The team, led by the IAEA's Division of Nuclear Installation Safety, performed an in-depth operational safety review from 8 to 25 October 2012. The team comprised experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Slovakia, Sweden, the United Kingdom and the United States as well as experts from the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Muehleberg NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry, Emergency Planning and Preparedness, Severe Accident Management and Long-Term Operation. The OSART team made 10 recommendations and 11 suggestions related to areas where operations of Muehleberg NPP could be further improved, for example: - Plant management could improve the operating experience program and methods throughout the plant to ensure corrective actions are taken in a timely manner; - In the area of Long-Term Operation, the ageing management review for some systems and components is not complete and the environmental qualification of originally installed safety cables has not yet been revalidated for long-term operation; and - The plant provisions for the protection of persons on the site during an emergency with radioactive release can be improved to minimize health risks to plant personnel. The team also identified 10 good

  14. Revival of the "Sun Festival": An educational and outreach project

    Science.gov (United States)

    Montabone, Luca

    2016-10-01

    In ancient times, past civilisations used to celebrate both the winter and summer solstices, which represented key moments in the periodical cycle of seasons and agricultural activities. In 1904, the French astronomer Camille Flammarion, the engineer Gustave Eiffel, the science writer Wilfrid de Fonvielle and the Spanish astronomer Josep Comas i Solà decided to celebrate the summer solstice with a festival of science, art and astronomical observations opened to the public at the Eiffel tower in Paris. For ten consecutive years (1904-1914) on the day of the summer solstice, the "Sun Festival" (Fête du Soleil in French) included scientific and technological lectures and demostrations, celestial observations, music, poetry, danse, cinema, etc. This celebration was interrupted by the First World War, just to resume in Barcelona, Spain, between 1915 and 1937, and in Marseille, France, in the 1930s. It was the founders' dream to extend this celebration to all cities in France and elsewhere.It is only during the International Year of Astronomy in 2009, to our knowledge, that the "Sun Festival" was given another chance in France, thanks to the joint effort of several scientific and cultural centers (Centres de Culture Scientifique, Technique et Industrielle, CCSTI) and the timely support of the European Space Agency (ESA). In this occasion again, the festival was characterized by the combination of science, art and technological innovation around a common denominator: our Sun!We have recently revived the idea of celebrating the summer solstice with a "Sun Festival" dedicated to scientific education and outreach about our star and related topics. This project started last year in Aix-les-Bains, France, with the "Sun and Light Festival" (2015 was the International Year of Light), attended by about 100 people. This year's second edition was in Le Bourget-du-Lac, France. Following the COP21 event, the specific theme was the "Sun and Climate Festival", and we had about 250

  15. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    its history. Astronomers are requesting five times more observing time than that available to them” says Bob Fosbury, Head of the HST European Coordinating Facility. “The new instruments will open completely new windows on the universe. Extraordinary observations are planned over the coming years, including some of the most fascinating physical phenomena ever seen: investigation of planets around other stars, digging deeper into the ancestry of our Milky Way and above all gaining a much deeper insight into the evolution of the universe.” Around the same time that the Shuttle lifts off for the Servicing Mission, ESA will launch Herschel, the orbiting telescope with the largest mirror ever deployed in space. Herschel will complement Hubble in the infrared part of the spectrum and is an ESA mission with NASA participation. Instead of being left at the mercy of its aging instruments, the Hubble Space Telescope will now be given the new lease of life it deserves. In the hope that more discoveries from Hubble will help explain more of the mysteries of the universe, astronauts will make this fifth trip to the world’s most powerful visual light observatory and increase its lifespan and scientific power. Hubble’s direct successor, the James Webb Space Telescope - a collaborative project being undertaken by NASA, ESA and the Canadian Space Agency - is scheduled for launch in 2013. The Servicing Mission just decided on will reduce the gap between the end of the HST mission and the start of the JWST mission. Notes for editors The Hubble Space Telescope project is being carried out by ESA and NASA on the basis of international cooperation.

  16. Radioactivity observed in scintillation counters during the HEAO-1 mission

    Science.gov (United States)

    Gruber, D. E.; Jung, G. V.; Matteson, J. L.

    1989-01-01

    Results are reported from an analysis of radioactivity induced in the NaI medium-energy detector of the hard X-ray and low-energy gamma-ray experiment during the HEAO-1 satellite mission (1977-1978). Consideration is given to the instrument characteristics, the origin and variability of background, and the separation of cosmic-ray activity from the internal activity due to South Atlantic Anomaly trapped protons. Energy spectra and tables listing the nuclide identifications are provided.

  17. Assessment of Utilization of Food Variety on the International Space Station

    Science.gov (United States)

    Cooper, M. R.; Paradis, R.; Zwart, S. R.; Smith, S. M.; Kloeris, V. L.; Douglas, G. L.

    2018-01-01

    Long duration missions will require astronauts to subsist on a closed food system for at least three years. Resupply will not be an option, and the food supply will be older at the time of consumption and more static in variety than previous missions. The space food variety requirements that will both supply nutrition and support continued interest in adequate consumption for a mission of this duration is unknown. Limited food variety of past space programs (Gemini, Apollo, International Space Station) as well as in military operations resulted in monotony, food aversion, and weight loss despite relatively short mission durations of a few days up to several months. In this study, food consumption data from 10 crew members on 3-6-month International Space Station missions was assessed to determine what percentage of the existing food variety was used by crew members, if the food choices correlated to the amount of time in orbit, and whether commonalities in food selections existed across crew members. Complete mission diet logs were recorded on ISS flights from 2008 - 2014, a period in which space food menu variety was consistent, but the food system underwent an extensive reformulation to reduce sodium content. Food consumption data was correlated to the Food on Orbit by Week logs, archived Data Usage Charts, and a food list categorization table using TRIFACTA software and queries in a SQL SERVER 2012 database.

  18. 75 FR 56506 - Beauty and Cosmetics Trade Mission to India; Application Deadline Extended and Acceptance To...

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF COMMERCE International Trade Administration Beauty and Cosmetics Trade Mission to..., direct mail, notices by industry trade associations and other multiplier groups, and publicity at industry meetings, symposia, conferences, and trade shows. The application deadline has been extended to...

  19. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  20. Intelligent Mission Controller Node

    National Research Council Canada - National Science Library

    Perme, David

    2002-01-01

    The goal of the Intelligent Mission Controller Node (IMCN) project was to improve the process of translating mission taskings between real-world Command, Control, Communications, Computers, and Intelligence (C41...

  1. Communication from the Permanent Missions of Brazil and Romania to the International Atomic Energy Agency Regarding Guidelines for the Transfers of Nuclear-Related Dual-Use Equipment, Materials, Software and Related Technology

    International Nuclear Information System (INIS)

    2003-01-01

    The Director General of the International Atomic Energy Agency has received Notes Verbale from the Permanent Missions of Brazil and Romania, dated 28 February 2003, providing information on the export policies and practices of the Governments of Brazil and Romania with respect to the export of nuclear-related dual-use equipment, materials, software and related technology. In the light of the wish expressed at the end of each Note Verbale, the text of the Notes Verbale is attached. The attachment referenced in the Note Verbale was issued previously as INFCIRC/254/Rev.5/Part 2

  2. Life support approaches for Mars missions

    Science.gov (United States)

    Drysdale, A. E.; Ewert, M. K.; Hanford, A. J.

    Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.

  3. IAEA Mission Sees Significant Progress in Georgia’s Regulatory Framework, Challenges Ahead

    International Nuclear Information System (INIS)

    2018-01-01

    An International Atomic Energy Agency (IAEA) team of experts said Georgia has made significant progress in strengthening its regulatory framework for nuclear and radiation safety. The team also pointed to challenges ahead as Georgia seeks to achieve further progress. The Integrated Regulatory Review Service (IRRS) team concluded a 10-day mission on 28 February to assess the regulatory safety framework in Georgia. The mission was conducted at the request of the Government and hosted by the Agency of Nuclear and Radiation Safety (ANRS), which is responsible for regulatory oversight in the country. IRRS missions are designed to strengthen the effectiveness of the national safety regulatory infrastructure, while recognizing the responsibility of each State to ensure nuclear and radiation safety. Georgia uses radioactive sources in medicine and industry and operates radioactive waste management facilities. It has decommissioned its only research reactor and has no nuclear power plants. In recent years, the Government and ANRS, with assistance from the IAEA, introduced new safety regulations and increased the number of regulatory inspections.

  4. Mission of Mercy.

    Science.gov (United States)

    Humenik, Mark

    2014-01-01

    Some dentists prefer solo charity work, but there is much to be said for collaboration within the profession in reaching out to those who are dentally underserved. Mission of Mercy (MOM) programs are regularly organized across the country for this purpose. This article describes the structure, reach, and personal satisfaction to be gained from such missions.

  5. The European Union Building Peace Near and Afar: Monitoring the Implementation of International Peace Agreements

    Directory of Open Access Journals (Sweden)

    Máire Braniff

    2013-11-01

    Full Text Available The European Union’s (EU support and contribution to international peace and security continues to develop with involvement in the Balkans, South Caucasus, Africa, Middle East and South Asia (Council of the European Union 2005. Within the broad range of civilian and military interventions under the Common Security and Defence policy (CSDP there have been two monitoring missions that have emerged from peace agreements, in Aceh (2005-2006 and in Georgia (2008 to date. This article maps the evolution EU’s role in international peace building by focusing on how this role is increasingly constructed by the scope of monitoring missions which it has embarked upon outside of its borders. A thematic analysis of literature is used to explore how the EU’s monitoring role has evolved regarding the different degrees of intervention, time-frame and size of the monitoring mission which have resulted in a multi-level impact regarding societal transition. The article finds that political will, shadows of past and future missions and intergovernmental concerns dominates how the EU’s monitoring missions unfurl, affecting the practice of monitors and other EU actors in local conflict settings and contemplates scenarios for future monitoring missions.

  6. IAEA International Peer Review Mission on Mid-and-Long-Term Roadmap Towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4, Tokyo and Fukushima Prefecture, Japan, 15-22 April 2013. Mission Report

    International Nuclear Information System (INIS)

    2013-01-01

    Following the accident at TEPCO's Fukushima Daiichi Nuclear Power Station (NPS) on 11 March 2011, the ''Mid-and-Long-Term Roadmap towards the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Station Units 1-4'' was adopted by the Government of Japan and TEPCO Council on Mid-to-Long-Term Response for Decommissioning in December 2011 and revised in July 2012. The Roadmap, which is scheduled for an additional update in June 2013, describes the main steps and activities to be implemented for the decommissioning of the Fukushima Daiichi NPS through the combined efforts of the Government of Japan and TEPCO. Within the framework of the IAEA Action Plan on Nuclear Safety, the Government of Japan invited the IAEA to conduct an independent peer review of the Roadmap with two main objectives: - To improve the decommissioning planning and the implementation of pre-decommissioning activities at TEPCO's Fukushima Daiichi NPS; and - To share with the international community the good practices and lessons learned by the review. The review has been organized in two steps, and the IAEA conducted the first part in Japan from 15 to 22 April 2013. The objective of the first mission was to undertake an initial review of the Roadmap, including assessments of decommissioning strategy, planning and timing of decommissioning phases and a review of several specific short-term issues and recent challenges. Specifically, it covered the assessment of current reactor conditions, assessment of management of radioactive releases and associated doses, control of radioactive exposure of employees and decontamination within the site for improvement of working environment, structural integrity of reactor buildings and other constructions. The incidents recently experienced at the site, related with failures of the power supply and leakages of water from the underground reservoirs, were also included in the review of the specific short-term issues. The Government of Japan and TEPCO have

  7. The NASA Commercial Crew Program (CCP) Mission Assurance Process

    Science.gov (United States)

    Canfield, Amy

    2016-01-01

    In 2010, NASA established the Commercial Crew Program in order to provide human access to the International Space Station and low earth orbit via the commercial (non-governmental) sector. A particular challenge to NASA has been how to determine the commercial providers transportation system complies with Programmatic safety requirements. The process used in this determination is the Safety Technical Review Board which reviews and approves provider submitted Hazard Reports. One significant product of the review is a set of hazard control verifications. In past NASA programs, 100 percent of these safety critical verifications were typically confirmed by NASA. The traditional Safety and Mission Assurance (SMA) model does not support the nature of the Commercial Crew Program. To that end, NASA SMA is implementing a Risk Based Assurance (RBA) process to determine which hazard control verifications require NASA authentication. Additionally, a Shared Assurance Model is also being developed to efficiently use the available resources to execute the verifications. This paper will describe the evolution of the CCP Mission Assurance process from the beginning of the Program to its current incarnation. Topics to be covered include a short history of the CCP; the development of the Programmatic mission assurance requirements; the current safety review process; a description of the RBA process and its products and ending with a description of the Shared Assurance Model.

  8. U.S.--Canada international mobility and trade corridor

    Science.gov (United States)

    2002-05-01

    Public and private stakeholders in Washington State and British Columbia established the international mobility and trade corridor (IMTC) partnership. The IMTC is a coalition of over 60 U.S. and Canadian business and government entities whose mission...

  9. A Saturn Ring Observer Mission Using Multi-Mission Radioisotope Power Systems

    International Nuclear Information System (INIS)

    Abelson, Robert D.; Spilker, Thomas R.; Shirley, James H.

    2006-01-01

    Saturn remains one of the most fascinating planets within the solar system. To better understand the complex ring structure of this planet, a conceptual Saturn Ring Observer (SRO) mission is presented that would spend one year in close proximity to Saturn's A and B rings, and perform detailed observations and measurements of the ring particles and electric and magnetic fields. The primary objective of the mission would be to understand ring dynamics, including the microphysics of individual particles and small scale (meters to a few kilometers) phenomena such as particle agglomeration behavior. This would be accomplished by multispectral imaging of the rings at multiple key locations within the A and B rings, and by ring-particle imaging at an unprecedented resolution of 0.5 cm/pixel. The SRO spacecraft would use a Venus-Earth-Earth-Jupiter Gravity Assist (VEEJGA) and be aerocaptured into Saturn orbit using an advanced aeroshell design to minimize propellant mass. Once in orbit, the SRO would stand off from the ring plane 1 to 1.4 km using chemical thrusters to provide short propulsive maneuvers four times per revolution, effectively causing the SRO vehicle to 'hop' above the ring plane. The conceptual SRO spacecraft would be enabled by the use of a new generation of multi-mission Radioisotope Power Systems (RPSs) currently being developed by NASA and DOE. These RPSs include the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and Stirling Radioisotope Generator (SRG). The RPSs would generate all necessary electrical power (≥330 We at beginning of life) during the 10-year cruise and 1-year science mission (∼11 years total). The RPS heat would be used to maintain the vehicle's operating and survival temperatures, minimizing the need for electrical heaters. Such a mission could potentially launch in the 2015-2020 timeframe, with operations at Saturn commencing in approximately 2030

  10. Adding a Mission to the Joint Polar Satellite System (JPSS) Common Ground System (CGS)

    Science.gov (United States)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions: 1) Command and control and mission management for the Suomi National Polar-orbiting Partnership (S-NPP) mission today, expanding this support to the JPSS-1 satellite and the Polar Free Flyer mission in 2017 2) Data acquisition via a Polar Receptor Network (PRN) for S-NPP, the Japan Aerospace Exploration Agency's (JAXA) Global Change Observation Mission - Water (GCOM-W1), POES, and the Defense Meteorological Satellite Program (DMSP) and Coriolis/WindSat for the Department of Defense (DoD) 3) Data routing over a global fiber Wide Area Network (WAN) for S-NPP, JPSS-1, Polar Free Flyer, GCOM-W1, POES, DMSP, Coriolis/WindSat, the NASA Space Communications and Navigation (SCaN, which includes several Earth Observing System [EOS] missions), MetOp for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the National Science Foundation (NSF) 4) Environmental data processing and distribution for S-NPP, GCOM-W1 and JPSS-1 With this established infrastructure and existing suite of missions, the CGS

  11. Exploring the Limits of High Altitude GPS for Future Lunar Missions

    Science.gov (United States)

    Ashman, Benjamin W.; Parker, Joel J. K.; Bauer, Frank H.; Esswein, Michael

    2018-01-01

    An increasing number of spacecraft are relying on the Global Positioning System (GPS) for navigation at altitudes near or above the GPS constellation itself - the region known as the Space Service Volume (SSV). While the formal definition of the SSV ends at geostationary altitude, the practical limit of high-altitude space usage is not known, and recent missions have demonstrated that signal availability is sufficient for operational navigation at altitudes halfway to the moon. This paper presents simulation results based on a high-fidelity model of the GPS constellation, calibrated and validated through comparisons of simulated GPS signal availability and strength with flight data from recent high-altitude missions including the Geostationary Operational Environmental Satellite 16 (GOES-16) and the Magnetospheric Multiscale (MMS) mission. This improved model is applied to the transfer to a lunar near-rectilinear halo orbit (NRHO) of the class being considered for the international Deep Space Gateway concept. The number of GPS signals visible and their received signal strengths are presented as a function of receiver altitude in order to explore the practical upper limit of high-altitude space usage of GPS.

  12. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    Science.gov (United States)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  13. Writing the History of Space Missions: Rosetta and Mars Express

    Science.gov (United States)

    Coradini, M.; Russo, A.

    2011-10-01

    Mars Express is the first planetary mission accomplished by the European Space Agency (ESA). Launched in early June 2003, the spacecraft entered Mars's orbit on Christmas day of that year, demonstrating the new European commitment to planetary exploration. Following a failed attempt in the mid-­-1980s, two valid proposals for a European mission to Mars were submitted to ESA's decision-­-making bodies in the early 1990s, in step with renewed international interest in Mars exploration. Both were rejected, however, in the competitive selection process for the agency's Science Programme. Eventually, the Mars Express proposal emerged during a severe budgetary crisis in the mid-­-1990s as an exemplar of a "flexible mission" that could reduce project costs and development time. Its successful maneuvering through financial difficulties and conflicting scientific interests was due to the new management approach as well as to the public appeal of Mars exploration. In addition to providing a case study in the functioning of the ESA's Science Programme, the story of Mars Express discussed in this paper provides a case study in the functioning of the European Space Agency's Science Programme and suggests some general considerations on the peculiar position of space research in the general field of the history of science and technology.

  14. Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations

    Science.gov (United States)

    White, W. J.

    1977-01-01

    The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.

  15. A decision model for planetary missions

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Brigadier, W. L.

    1976-01-01

    Many techniques developed for the solution of problems in economics and operations research are directly applicable to problems involving engineering trade-offs. This paper investigates the use of utility theory for decision making in planetary exploration space missions. A decision model is derived that accounts for the objectives of the mission - science - the cost of flying the mission and the risk of mission failure. A simulation methodology for obtaining the probability distribution of science value and costs as a function spacecraft and mission design is presented and an example application of the decision methodology is given for various potential alternatives in a comet Encke mission.

  16. Advancing mission in the marketplace. Integrated strategic planning and budgeting helps a system remain accountable.

    Science.gov (United States)

    Smessaert, A H

    1992-10-01

    In the late 1980s Holy Cross Health System (HCHS), South Bend, IN, began to implement a revised strategic planning and budgeting process to effectively link the system's mission with its day-to-day operations. Leaders wanted a process that would help system employees internalize and act on the four major elements articulated in the HCHS mission statement: fidelity, excellence, empowerment, and stewardship. Representatives from mission, strategic planning, and finance from the corporate office and subsidiaries examined planning and budgeting methods. From the beginning, HCHS leaders decided that the process should be implemented gradually, with each step focusing on refining methodology and improving mission integration. As the process evolved. HCHS developed a sequence in which planning preceded budgeting. The system also developed a variety of educational and collaborative initiatives to help system employees adapt to the organization's change of direction. One critical aspect of HCHS's ongoing education is an ethical reflection process that helps participants balance ethical considerations by viewing an issue from three perspectives: social vision, multiple responsibility, and self-interest.

  17. Critical Robotic Lunar Missions

    Science.gov (United States)

    Plescia, J. B.

    2018-04-01

    Perhaps the most critical missions to understanding lunar history are in situ dating and network missions. These would constrain the volcanic and thermal history and interior structure. These data would better constrain lunar evolution models.

  18. Global Precipitation Measurement Mission: Architecture and Mission Concept

    Science.gov (United States)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  19. Communication received from the Permanent Mission of Sweden regarding the provision of certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material

    International Nuclear Information System (INIS)

    1996-01-01

    The document reproduces the text of a note verbale dated 28 June 1996 received by the Director General of IAEA from the Permanent Mission of Sweden through which the Government of Sweden provides, on a voluntary basis, certain additional information on production, inventories and international transfers of nuclear material and on exports of certain relevant equipment and non-nuclear material, in order to assist the Agency in the discharge of its safeguards responsibilities

  20. Women's oral and dental health aspects in humanitarian missions and disasters: Jordanian experience.

    Science.gov (United States)

    Smadi, Leena; Sumadi, Aiman Al

    2016-01-01

    The study aimed to review oral and dental health aspects in female patients presented to Jordanian Royal Medical Services (RMS) international humanitarian missions over a 3-year period. Analysis of humanitarian missions of RMS data and records over a 3-year period (2011-2013) in regard to women's oral and dental health issues was done. The data were analyzed in regard to the number of women seen, the presenting conditions, and the prevalence of oral and dental diseases and procedures in these cases. During the 3-year period, 72 missions were deployed in four locations (Gaza, Ram Allah-West Bank, Jeneen-West Bank, and Iraq). The total number of females seen in this period was 86,436 women, accounting for 56 percent of adult patients seen by RMS humanitarian missions. Dental Clinics were deployed to only two missions (Iraq and Gaza), during which they received 13,629 visits; of these, 41 percent were females (5,588 patients), 29 percent were males, and 30 percent were in the pediatric age group. Trauma accounts for only 7 percent of the cases, while nonacute dental problems (caries and gingivitis) were responsible for the majority of cases (31.6 and 28.7 percent, respectively). RMS dental services during humanitarian mission deployment are a vital part of comprehensive healthcare. Women usually seek more dental care than men, with the majority of treatments for nonacute conditions. RMS experiences demonstrate the tremendous need for a well-defined preparedness plan for deployment of humanitarian missions that considers the contributions of all types of health professionals, the appropriate mobile technology to respond to emergent health risks, and a competent workforce ready and able to respond. Such preparation will require our dental education programs to develop disaster preparedness competencies to achieve the desired level of understanding.

  1. A review of Spacelab mission management approach

    Science.gov (United States)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  2. 8 February 2017 - Sri Lanka Hon. Minister of Science, Technology and Research A. D. S. Premajayantha signing the International Cooperation Agreement concerning Scientific and Technical Cooperation in High-Energy Physics 2017 with CERN Director for International Relations C. Warakaulle.

    CERN Multimedia

    Brice, Maximilien

    2017-01-01

    Were present: Hon. A. D. Susil Premajayantha, Minister of Science, Technology and Research, Democratic Socialist Republic of Sri Lanka; H.E. Mr Ravinatha Aryasinha, Ambassador, Permanent Representative of Sri Lanka to the UN in Geneva; Mrs Samantha Jayasuriya, Deputy Permanent Representative, Permanent Mission of Sri Lanka to the UN in Geneva; Ms Shashika Somaratne, Counsellor, Permanent Mission of Sri Lanka to the UN in Geneva; Mr Gihan Indragupta, Member of Sri Lanka Foreign service and Head of the G15 Secretariat; Ms Dilini Gunasekera, Second Secretary, Permanent Mission of Sri Lanka to the UN in Geneva; Mr Prageeth Herath , Supporting staff, Permanent Mission of Sri Lanka. CERN: Mr Andrzej Charkiewicz, CMS Ressources Manager; Ms Sofia Intoudi, Legal Officer; Dr Rüdiger Voss, Senior Adviser, International Relations; Ms Charlotte Warakaulle, Director for International Relations

  3. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    Kouklik, I.

    1996-01-01

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  4. Dukovany ASSET mission preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [NPP Dukovany (Czech Republic)

    1997-12-31

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future.

  5. Behavioral and biological effects of autonomous versus scheduled mission management in simulated space-dwelling groups

    Science.gov (United States)

    Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.

    2011-05-01

    Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.

  6. International Data Centre (IDC)

    International Nuclear Information System (INIS)

    Johansson, P.

    2002-01-01

    The presentation outlines the International Data Centre (Indc) mission, objective and historical background. The Indc progressive commissioning and organizational plans are presented on charts. The IMS stations providing data to Indc operations and the global communication infrastructure are plotted on world maps. The various types of IMS data are thus listed as seismic, hydroacoustic, infrasound and radionuclide. Finally Indc products and services together with its main achievements are listed

  7. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  8. IAEA Issues Report on Mission to Review Japan's Nuclear Power Plant Safety Assessment Process

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A team of international nuclear safety experts has delivered its report on a mission it conducted from 21-31 January 2012 to review Japan's process for assessing nuclear safety at the nation's nuclear power plants. International Atomic Energy Agency (IAEA) officials delivered the IAEA Mission Report to Japanese officials yesterday and made it publicly available today. Following the 11 March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station, Japan's Nuclear and Industrial Safety Agency (NISA) announced the development of a revised safety assessment process for the nation's nuclear power reactors. At the request of the Government of Japan, the IAEA organized a team of five IAEA and three international nuclear safety experts and visited Japan to review NISA's approach to the Comprehensive Assessments for the Safety of Existing Power Reactor Facilities and how NISA examines the results submitted by nuclear operators. A Preliminary Summary Report was issued on 31 January. 'The mission report provides additional information regarding the team's recommendations and overall finding that NISA's instructions to power plants and its review process for the Comprehensive Safety Assessments are generally consistent with IAEA Safety Standards', said team leader James Lyons, Director of the IAEA's Nuclear Installation Safety Division. National safety assessments and their peer review by the IAEA are a key component of the IAEA Action Plan on Nuclear Safety, which was approved by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi Nuclear Power Station. The IAEA safety review mission held meetings in Tokyo with officials from NISA, the Japanese Nuclear Energy Safety Organization (JNES), and the Kansai Electric Power Company (KEPCO), and the team visited the Ohi Nuclear Power Station to see an example of how Japan's Comprehensive Safety Assessment is being implemented by nuclear operators. In its report delivered today

  9. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  10. IAEA Leads Operational Safety Mission to Smolensk Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    2008 and Rostov NPP in 2005. General information about OSART missions can be found on the IAEA Website. Background An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational Safety of Nuclear Power Plants (NPP) reviewed the experience of the OSART programme and concluded: In OSART missions NPPs are assessed against IAEA Safety Standards which reflect the current international consensus on what constitutes a high level of safety; and OSART recommendations and suggestions are of utmost importance for operational safety improvement of NPPs. (IAEA)

  11. Technology Readiness Level Assessment Process as Applied to NASA Earth Science Missions

    Science.gov (United States)

    Leete, Stephen J.; Romero, Raul A.; Dempsey, James A.; Carey, John P.; Cline, Helmut P.; Lively, Carey F.

    2015-01-01

    Technology assessments of fourteen science instruments were conducted within NASA using the NASA Technology Readiness Level (TRL) Metric. The instruments were part of three NASA Earth Science Decadal Survey missions in pre-formulation. The Earth Systematic Missions Program (ESMP) Systems Engineering Working Group (SEWG), composed of members of three NASA Centers, provided a newly modified electronic workbook to be completed, with instructions. Each instrument development team performed an internal assessment of its technology status, prepared an overview of its instrument, and completed the workbook with the results of its assessment. A team from the ESMP SEWG met with each instrument team and provided feedback. The instrument teams then reported through the Program Scientist for their respective missions to NASA's Earth Science Division (ESD) on technology readiness, taking the SEWG input into account. The instruments were found to have a range of TRL from 4 to 7. Lessons Learned are presented; however, due to the competition-sensitive nature of the assessments, the results for specific missions are not presented. The assessments were generally successful, and produced useful results for the agency. The SEWG team identified a number of potential improvements to the process. Particular focus was on ensuring traceability to guiding NASA documents, including the NASA Systems Engineering Handbook. The TRL Workbook has been substantially modified, and the revised workbook is described.

  12. Sustainable, Reliable Mission-Systems Architecture

    Science.gov (United States)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  13. 308 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  14. 309 Building deactivation mission analysis report

    International Nuclear Information System (INIS)

    Lund, D.P.

    1995-01-01

    This report presents the results of the 309 Building (Plutonium Fuels Utilization Program) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process

  15. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    Science.gov (United States)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  16. Prospective Ukrainian lunar orbiter mission

    Science.gov (United States)

    Shkuratov, Y.; Litvinenko, L.; Shulga, V.; Yatskiv, Y.; Kislyuk, V.

    Ukraine has launch vehicles that are able to deliver about 300 kg to the lunar orbit. Future Ukrainian lunar program may propose a polar orbiter. This orbiter should fill principal information gaps in our knowledge about the Moon after Clementine and Lunar Prospector missions and the future missions, like Smart-1, Lunar-A, and Selene. We consider that this can be provided by radar studies of the Moon with supporting optical polarimetric observations from lunar polar orbit. These experiments allow one to better understand global structure of the lunar surface in a wide range of scales, from microns to kilometers. We propose three instruments for the prospective lunar orbiter. They are: a synthetic aperture imaging radar (SAR), ground-penetrating radar (GPR), and imaging polarimeter (IP). The main purpose of SAR is to study with high resolution (50 m) the permanently shadowed sites in the lunar polar regions. These sites are cold traps for volatiles, and have a potential of resource utilization. Possible presence of water ice in the regolith in the sites makes them interesting for permanent manned bases on the Moon. Radar imaging and mapping of other interesting regions could be also planned. Multi-frequencies multi-polarization soun d ing of the lunar surface with GPR can provide information about internal structure of the lunar surface from meters to several hundred meters deep. GPR can be used for measuring the megaregolith layer properties, detection of cryptomaria, and studies of internal structure of the largest craters. IP will be a CCD camera with an additional suite of polarizers. Modest spatial resolution (100 m) should provide a total coverage or a large portion of the lunar surface in oblique viewing basically at large phase angles. Polarization degree at large (>90°) phase angles bears information about characteristic size of the regolith particles. Additional radiophysical experiments are considered with the use of the SAR system, e.g., bistatic radar

  17. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  18. Improving the Operations of the Earth Observing One Mission via Automated Mission Planning

    Science.gov (United States)

    Chien, Steve A.; Tran, Daniel; Rabideau, Gregg; Schaffer, Steve; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We describe the modeling and reasoning about operations constraints in an automated mission planning system for an earth observing satellite - EO-1. We first discuss the large number of elements that can be naturally represented in an expressive planning and scheduling framework. We then describe a number of constraints that challenge the current state of the art in automated planning systems and discuss how we modeled these constraints as well as discuss tradeoffs in representation versus efficiency. Finally we describe the challenges in efficiently generating operations plans for this mission. These discussions involve lessons learned from an operations model that has been in use since Fall 2004 (called R4) as well as a newer more accurate operations model operational since June 2009 (called R5). We present analysis of the R5 software documenting a significant (greater than 50%) increase in the number of weekly observations scheduled by the EO-1 mission. We also show that the R5 mission planning system produces schedules within 15% of an upper bound on optimal schedules. This operational enhancement has created value of millions of dollars US over the projected remaining lifetime of the EO-1 mission.

  19. International Laboratory of Marine Radioactivity. Biennial report 1983-1984

    International Nuclear Information System (INIS)

    1986-06-01

    The report contains the results of the scientific tasks carried out in 1983-1984 by the International Laboratory of Marine Radioactivity at Monaco. The methods development and analytical quality assurance for radionuclide measurements, studies for evaluating environmental impacts of radionuclide releases into the sea, contribution to international marine pollution monitoring and research including special missions are presented. The 47 papers are published in summary form

  20. Astronaut Prepares for Mission With Virtual Reality Hardware

    Science.gov (United States)

    2001-01-01

    Astronaut John M. Grunsfeld, STS-109 payload commander, uses virtual reality hardware at Johnson Space Center to rehearse some of his duties prior to the STS-109 mission. The most familiar form of virtual reality technology is some form of headpiece, which fits over your eyes and displays a three dimensional computerized image of another place. Turn your head left and right, and you see what would be to your sides; turn around, and you see what might be sneaking up on you. An important part of the technology is some type of data glove that you use to propel yourself through the virtual world. This technology allows NASA astronauts to practice International Space Station work missions in advance. Currently, the medical community is using the new technologies in four major ways: To see parts of the body more accurately, for study, to make better diagnosis of disease and to plan surgery in more detail; to obtain a more accurate picture of a procedure during surgery; to perform more types of surgery with the most noninvasive, accurate methods possible; and to model interactions among molecules at a molecular level.

  1. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  2. Leadership issues with multicultural crews on the international space station: Lessons learned from Shuttle/Mir

    Science.gov (United States)

    Kanas, Nick; Ritsher, Jennifer

    2005-05-01

    In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.

  3. Temporal evolution of the EIA along 95°E as obtained from GNSS TEC measurements and SAMI3 model

    Science.gov (United States)

    Kakoti, Geetashree; Kalita, Bitap Raj; Hazarika, Rumajyoti; Bhuyan, Pradip Kumar; Sharma, Sanjay; Tiwari, Ramesh Chandra

    2018-06-01

    The total electron content (TEC) derived from GNSS measurements at a trans-hemispheric meridional chain of ground stations around 95°E longitude are used to study the quiet time inter-hemispheric structure and dynamics of the equatorial ionization anomaly (EIA) during the period March 2015 to February 2016. The stations are Dibrugarh (27.5°N, 95°E, 43° dip), Kohima (25.6°N, 94.1°E, 39° dip), Aizawl (23.7°N, 92.8°E, 36° dip), Port Blair (11.63°N, 92.71°E, 9° dip) and Cocos Islands (12.2°S, 96.8°E, 43° dip). The observation shows that the northern crest of the EIA lies in the south of 23°N (Aizawl) in all seasons but recedes further south towards the equator during December solstice. The largest poleward expansion of the northern (southern) EIA is observed in the March equinox (December solstice). The equinoctial and hemispherical asymmetry of TEC is noted. The winter anomaly is observed in the northern hemisphere but not in the southern hemisphere. The highest midday TEC over any station is observed in the March equinox. The TEC in southern summer (December solstice) is significantly higher than that in the northern summer (June solstice). The observed northern EIA contracts equatorward in the postsunset period of solstice but the southern EIA persists late into the midnight in the December solstice. The asymmetry may be attributed to the different geographic location of the magnetically conjugate stations. The SAMI3 simulations broadly capture the EIA structure and the inter-hemispheric asymmetry during solstices. The difference between observations and the SAMI3 is higher in March equinox and December solstice. The higher E × B vertical drift in the 90-100°E sector and the large geographic-geomagnetic offset in observing stations may have contributed to the observed differences.

  4. The Bible and mission in faith perspective: J.Hudson Taylor and the early China Inland Mission

    NARCIS (Netherlands)

    Wigram, C.E.M.

    2007-01-01

    The thesis 'The Bible and Mission in Faith Perspective: J.Hudson Taylor and the Early China Inland Mission' by Christopher E.M. Wigram analysis the hermeneutical assumptions that underlay Hudson Taylor's approach to biblical interpretation, and the significance of his approach for the mission which

  5. Ionospheric Peak Electron Density and Performance Evaluation of IRI-CCIR Near Magnetic Equator in Africa During Two Extreme Solar Activities

    Science.gov (United States)

    Adebesin, B. O.; Rabiu, A. B.; Obrou, O. K.; Adeniyi, J. O.

    2018-03-01

    The F2 layer peak electron density (NmF2) was investigated over Korhogo (Geomagnetic: 1.26°S, 67.38°E), a station near the magnetic equator in the African sector. Data for 1996 and 2000 were, respectively, categorized into low solar quiet and disturbed and high solar quiet and disturbed. NmF2 prenoon peak was higher than the postnoon peak during high solar activity irrespective of magnetic activity condition, while the postnoon peak was higher for low solar activity. Higher NmF2 peak amplitude characterizes disturbed magnetic activity than quiet magnetic condition for any solar activity. The maximum peaks appeared in equinox. June solstice noontime bite out lagged other seasons by 1-2 h. For any condition of solar and magnetic activities, the daytime NmF2 percentage variability (%VR) measured by the relative standard deviation maximizes/minimizes in June solstice/equinox. Daytime variability increases with increasing magnetic activity. The highest peak in the morning time NmF2 variability occurs in equinox, while the highest evening/nighttime variability appeared in June solstice for all solar/magnetic conditions. The nighttime annual variability amplitude is higher during disturbed than quiet condition regardless of solar activity period. At daytime, variability is similar for all conditions of solar activities. NmF2 at Korhogo is well represented on the International Reference Ionosphere-International Radio Consultative Committee (IRI-CCIR) option. The model/observation relationship performed best between local midnight and postmidnight period (00-08 LT). The noontime trough characteristics is not prominent in the IRI pattern during high solar activity but evident during low solar conditions when compared with Korhogo observations. The Nash-Sutcliffe coefficients revealed better model performance during disturbed activities.

  6. The PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael

    2012-01-01

    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  7. Orbit determination for ISRO satellite missions

    Science.gov (United States)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  8. Composable Mission Framework for Rapid End-to-End Mission Design and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here is the Composable Mission Framework (CMF) a model-based software framework that shall enable seamless continuity of mission design and...

  9. The International Criminal Court and the construction of International Public Order

    Directory of Open Access Journals (Sweden)

    Sofia Santos

    2014-11-01

    Full Text Available Envisioning an international public order means envisioning an order sustained by a legal and institutional framework that ensures effective collective action with a view to defending fundamental values of the international community and to solving common global problems, in line with the universalist vision of international law. Envisioning the construction of an international public order means considering that this framework, which embraces and promotes the respect for human rights focused particularly on human dignity, is consolidating and evolving based on the International Criminal Court (ICC. The establishment of the ICC added an international punitive perennial facet to international humanitarian law and international human rights law and linked justice to peace, to security and to the well-being of the world, reaffirming the principles and objectives of the Charter of the United Nations (UN. Nevertheless, the affirmation process of an international criminal justice by punishing those responsible for the most serious crimes of concern to the international community as a whole, faces numerous obstacles of political and normative character. This article identifies the central merits of the Rome Statute and ICC’s practice and indicates its limitations caused by underlying legal-political tensions and interpretive questions relating to the crime of aggression and crimes against humanity. Finally, the article argues for the indispensability of rethinking the jurisdiction of the ICC, defending the categorization of terrorism as an international crime, and of articulating its mission with the "responsibility to protect", which may contribute to the consolidation of the ICC and of international criminal law and reinforce its role in the construction of an effective international public order.

  10. International cooperation in the commercial era of space

    Science.gov (United States)

    Allnutt, R. F.

    1984-01-01

    NASA plans permitting international participation in space activities are reviewed, with an emphasis on the increasing commercialization of these endeavors. The potential indicated by the recent success of the STS, long-term and large-scale Soviet missions, and the Ariane launcher is discussed; the development of the Space Station concept is traced; the increasing use of remote-sensing and telecommunications satellites is documented; currently planned space science missions are listed; and the NASA policy on international cooperation (full payment by the second nation, clean payload-spacecraft interfaces to prevent technology transfer, and open availability of scientific results) is outlined. It is argued that space activity, having passed through first and second phases dominated by exploration and military goals, respectively, will now soon enter a primarily commercial phase, with competition in telecommunications and remote-sensing services and private investment in space processing, manufacturing, and even launchers.

  11. International Uranium Resources Evaluation Project (IUREP) orientation phase mission report: Thailand. February-March 1981

    International Nuclear Information System (INIS)

    Inazumi, Satoru; Meyer, John H.

    1981-01-01

    The I.U.R.E.P. Orientation Phase Mission assesses the Speculative Uranium Resources in Thailand to be within the range of 1,500 to 38,500 tonnes U. This range is higher than the previous assessment in Phase I because the Mission recognizes additional favourable geological environments. At the same time, the untested and therefore the unknown degree of mineralization in some of these environments is acknowledged. Past exploration, dating from 1977, has been mainly confined to ground surveys of a small mineralized area and to airborne gamma-ray surveys of two small test areas. Ground reconnaissance work and prospecting has recognized some mineralization in several different host rocks and environments. Geological environments considered by the Mission to be favourable for uranium occurrences include sandstone of Jurassic to Triassic age, tertiary sedimentary basins (northern Thailand), tertiary sedimentary basins (southern Thailand), associated with fluorite deposits, granitic rocks, black shales and graphitic slates of the Paleozoic, associated with sedimentary phosphate deposits and associated with monazite sands. It is recommended that exploration for uranium resources in Thailand should continue. Planners of future exploration programmes should take the following activities into consideration. Rapid extension of carborne surveys to cover, without excessive overburdening, all areas having sufficient road density. Airborne gamma-ray surveys should be carried out in certain selected areas. In the selection of such areas, the considerable higher cost factor attendant on this method of surveying dictates that airborne surveys should only be carried out where carborne surveys prove ineffective (lack of adequate road network.) and where the topography is sufficiently even to assure a low but safe clearance and meaningful results. In certain areas, including the Khorat Plateau and the Tertiary Basins in northern and southern Thailand, there is a need for widely spaced

  12. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    Science.gov (United States)

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  13. The ESA Scientific Exploitation of Operational Missions element, first results

    Science.gov (United States)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio

    2016-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first

  14. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    Science.gov (United States)

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  15. International Earth Science Constellation (ESC) Introduction

    Science.gov (United States)

    Guit, William J.; Machado, Michael J.

    2016-01-01

    This is the Welcome and Introduction presentation for the International Earth Science Constellation (ESC) Mission Operations Working Group (MOWG) meeting held in Albuquerque NM from September 27-29. It contains an org chart, charter, history, significant topics to be discussed, AquaAura 2017 inclination adjust maneuver calendar, a-train long range plans, upcoming events, and action items.

  16. Communication of 3 December 1996 received from the Permanent Mission of Belarus to the International Atomic Energy Agency

    International Nuclear Information System (INIS)

    1996-01-01

    The document reproduces the text of a press release received by the Secretariat on 4 December 1996 from the Permanent Mission of Belarus about the withdrawal of the last inter-continental ballistic missile from Belarus

  17. Spacelab Mission Implementation Cost Assessment (SMICA)

    Science.gov (United States)

    Guynes, B. V.

    1984-01-01

    A total savings of approximately 20 percent is attainable if: (1) mission management and ground processing schedules are compressed; (2) the equipping, staffing, and operating of the Payload Operations Control Center is revised, and (3) methods of working with experiment developers are changed. The development of a new mission implementation technique, which includes mission definition, experiment development, and mission integration/operations, is examined. The Payload Operations Control Center is to relocate and utilize new computer equipment to produce cost savings. Methods of reducing costs by minimizing the Spacelab and payload processing time during pre- and post-mission operation at KSC are analyzed. The changes required to reduce costs in the analytical integration process are studied. The influence of time, requirements accountability, and risk on costs is discussed. Recommendation for cost reductions developed by the Spacelab Mission Implementation Cost Assessment study are listed.

  18. Candidate functions for advanced technology implementation in the Columbus mission planning environment

    Science.gov (United States)

    Loomis, Audrey; Kellner, Albrecht

    1988-01-01

    The Columbus Project is the European Space Agency's contribution to the International Space Station program. Columbus is planned to consist of three elements (a laboratory module attached to the Space Station base, a man-tended freeflyer orbiting with the Space Station base, and a platform in polar orbit). System definition and requirements analysis for Columbus are underway, scheduled for completion in mid-1990. An overview of the Columbus mission planning environment and operations concept as currently defined is given, and some of the challenges presented to software maintainers and ground segment personnel during mission operators are identified. The use of advanced technologies in system implementation is being explored. Both advantages of such solutions and potential problems they present are discussed, and the next steps to be taken by Columbus before targeting any functions for advanced technology implementation are summarized. Several functions in the mission planning process were identified as candidates for advanced technology implementation. These range from expert interaction with Columbus' data bases through activity scheduling and near-real-time response to departures from the planned timeline. Each function is described, and its potential for advanced technology implementation briefly assessed.

  19. Spacelab life sciences 2 post mission report

    Science.gov (United States)

    Buckey, Jay C.

    1994-01-01

    Jay C. Buckey, M.D., Assistant Professor of Medicine at The University of Texas Southwestern Medical Center at Dallas served as an alternate payload specialist astronaut for the Spacelab Life Sciences 2 Space Shuttle Mission from January 1992 through December 1993. This report summarizes his opinions on the mission and offers suggestions in the areas of selection, training, simulations, baseline data collection and mission operations. The report recognizes the contributions of the commander, payload commander and mission management team to the success of the mission. Dr. Buckey's main accomplishments during the mission are listed.

  20. IAEA Completes Expert Mission to Kori 1 Nuclear Power Plant in the Republic of Korea

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) has completed a review of safety practices at the Kori 1 Nuclear Power Plant (NPP) near Busan in the Republic of Korea. The IAEA assembled the team at the request of Korea Hydro and Nuclear Power Co., Ltd. (KHNP) following a station blackout event on 9 February 2012. The team - comprised of experts from Belgium, France, Sweden, United Kingdom and the IAEA - conducted its mission from 4 to 11 June 2012 under the leadership of the IAEA's Division of Nuclear Installation Safety. The expert mission applied the methodology of the IAEA's Operational Safety Review (OSART) missions and covered the areas of Management, Organization and Administration; Operations; Maintenance and Operating Experience. The conclusions of the review are based on the IAEA's Safety Standards, which are developed by the Agency to help nations improve their nuclear safety practices, which are the responsibility of every nation that undertakes nuclear-related activities. Throughout the review, the exchange of information between the experts and plant personnel was very open, professional and productive. Prior to the mission, Korea's Nuclear Safety and Security Commission completed an interim investigation, and it continues to perform additional investigations and technical reviews. The Commission identified corrective actions for the plant concerning reinforcing safety culture, emergency diesel generator reliability, configuration control and risk management during refueling outage, test and maintenance procedures and emergency action level declaration. The expert mission confirmed that some corrective actions have already been completed and others are in progress. The expert mission found the management and staff of Kori 1 NPP to be committed and working hard to complete all improvements. The root cause analysis of the event at Kori 1 NPP is still in progress and is expected to lead to