Sample records for sollicitations biaxiales application

  1. Modeling of delayed strains of concrete under biaxial loadings. Application to the reactor containment of nuclear power plants; Modelisation des deformations differees du beton sous sollicitations biaxiales. application aux enceintes de confinement de batiments reacteurs des centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Benboudjema, F


    The prediction of delayed strains is of crucial importance for durability and long-term serviceability of concrete structures (bridges, containment vessels of nuclear power plants, etc.). Indeed, creep and shrinkage cause cracking, losses of pre-stress and redistribution of stresses, and also, rarely, the ruin of the structure. The objective of this work is to develop numerical tools, able to predict the long-term behavior of concrete structures. Thus, a new hydro mechanical model is developed, including the description of drying, shrinkage, creep and cracking phenomena for concrete as a non-saturated porous medium. The modeling of drying shrinkage is based on an unified approach of creep and shrinkage. Basic and drying creep models are based on relevant chemo-physical mechanisms, which occur at different scales of the cement paste. The basic creep is explicitly related to the micro-diffusion of the adsorbed water between inter-hydrates and intra-hydrates and the capillary pores, and the sliding of the C-S-H gel at the nano-porosity level. The drying creep is induced by the micro-diffusion of the adsorbed water at different scales of the porosity, under the simultaneous effects of drying and mechanical loadings. Drying shrinkage is, therefore, assumed to result from the elastic and delayed response of the solid skeleton, submitted to both capillary and disjoining pressures. Furthermore, the cracking behavior of concrete is described by an orthotropic elastoplastic damage model. The coupling between all these phenomena is performed by using effective stresses which account for both external applied stresses and pore pressures. This model has been incorporated into a finite element code. The analysis of the long-term behavior is also performed on concrete specimens and prestressed concrete structures submitted to simultaneous drying and mechanical loadings. (author)

  2. Biaxial Texture Evolution of Nanostructured Films under Dynamic Shadowing Effect and Applications (United States)

    Chen, Liang

    texture that has the minimum energy plane (110) parallel to the substrate surface at low oblique angle deposition (0flipping rotation of the substrate, both Mo and W thin films in the range of 550 nm to 650 nm grown on amorphous substrates have (110)[11¯0] biaxial textures with a body center cubic (BCC) structure characterized by a reflection high-energy electron diffraction pole figure technique developed in house. Depending on the rotational speed in the flipping rotation, the biaxial textures can have various morphologies, such as vertical, S-shape, or C-shape nanocolumns, as observed by scanning electron microscopy. The possible growth mechanisms in the formation of various morphologies due to different degrees of shadowing effect were suggested. This is in contrast with the films grown by conventional rotation, which usually have fiber textures with different out-of-plane orientation, [111] for Mo, or even a different phase, A15 for W. The biaxial Mo(110) and W(110) thin films were used as buffer layers to grow semiconductor films of GaN for the LED applications and CdTe for the thin film photovoltaic applications. Detailed X-ray pole figure analyses show the heteroepitaxial growth of GaN/Mo, GaN/W, and CdTe/Mo. A prototype biaxial CdTe film based Schottky junction solar cell on biaxial Mo film has been fabricated and characterized. Although the open circuit voltage is small for the prototype device, the chance for successful improvements is high. The promising optical and electrical properties of these epitaxial films may offer a potential alternative strategy for the growth of high quality functional semiconductors on amorphous substrates using biaxial metal buffer layers. (Abstract shortened by UMI.).

  3. Multi-Scale Modeling the Mechanical Properties of Biaxial Weft Knitted Fabrics for Composite Applications (United States)

    Abghary, Mohammad Javad; Nedoushan, Reza Jafari; Hasani, Hossein


    In this paper a multi-scale numerical model for simulating the mechanical behavior of biaxial weft knitted fabrics produced based on 1×1 rib structure is presented. Fabrics were produced on a modern flat knitting machine using polyester as stitch yarns and nylon as straight yarns. A macro constitutive equation was presented to model the fabric mechanical behavior as a continuum material. User defined material subroutines were provided to implement the constitutive behavior in Abaqus software. The constitutive equation needs remarkable tensile tests on the fabric as the inputs. To solve this drawbacks meso scale modeling of the fabric was used to predict stress-strain curves of the fabric in three different directions (course, wale and 45°). In these simulations only the yarn properties are needed. To evaluate the accuracy of the proposed macro and meso models, fabric tensile behavior in 22.5 and 67.5° directions were simulated by the calibrated macro model and compared with experimental results. Spherical deformation was also simulated by the multi scale model and compared with experimental results. The results showed that the multi-scale modeling can successfully predict the tensile and spherical deformation of the biaxial weft knitted fabric with least required experiments. This model will be useful for composite applications.

  4. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng


    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  5. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor


    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  6. Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun; Lv, Wei; Tung, Hsiao-Ming; Yun, Di; Miao, Yinbin; Lan, Kuan-Che; Stubbins, James F.


    In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to he the primary candidate structural materials for very high-temperature reactors (VITITRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 degrees C for the effective stress range of 15-35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to he dominant over the entire creep lives of both alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form epsilon= cosh 1(1 rt) + P-sigma ntm agree well with the experimental results for both alloys at die temperatures of 850-950 degrees C.

  7. Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications (United States)

    Goyal, A.; Feenstra, R.; Paranthaman, M.; Thompson, J. R.; Kang, B. Y.; Cantoni, C.; Lee, D. F.; List, F. A.; Martin, P. M.; Lara-Curzio, E.; Stevens, C.; Kroeger, D. M.; Kowalewski, M.; Specht, E. D.; Aytug, T.; Sathyamurthy, S.; Williams, R. K.; Ericson, R. E.


    Fabrication of a biaxially textured, strengthened Ni substrate with small alloying additions of W and Fe is reported. The substrates have significantly improved mechanical properties compared to 99.99% Ni and surface characteristics which are similar to that of 99.99% Ni substrates. High quality oxide buffer layers can be deposited on these substrates without the need for any additional surface modification steps. Grain boundary misorientation distributions obtained from the substrate show a predominant fraction of low-angle grain boundaries. A high critical current density, Jc, of 1.9 MA/cm 2 at 77 K, self-field is demonstrated on this substrate using a multilayer configuration of YBCO/CeO 2/YSZ/Y 2O 3/ Ni-3at.%W-1.7at.%Fe. This translates to a Ic/width of 59 A/cm at 77 K and self-field. Jc at 0.5 T is reduced by only 21% indicating strongly-linked grain boundaries in the YBCO film on this substrate.

  8. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther


    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  9. Biaxial Fatigue Cracking from Notch (United States)


    of the central notch. BIAXIAL FATIGUE TEST The biaxial fatigue test was conducted in a MTS 793.10 Multiaxial Purpose Test-Ware with two pairs...of servo -hydraulic actuators and two pairs of load cells, arranged perpendicular to each other on a horizontal plane in a rigid frame, Figure A-1...TR-2009/12, of 19 Feb 2009. NAWCADPAX/TR-2013/32 15 APPENDIX A FIGURES 1. MTS Machine and Cruciform Specimen 2. Effect of Biaxiality

  10. Reflection of electromagnetic waves at a biaxial-isotropic interface (United States)

    Njoku, E. G.


    The reflection of electromagnetic waves at a plane boundary between isotropic and biaxial media has been investigated using the kDB approach. The general case has been considered in which the principal dielectric axes of the biaxial medium are oriented at an arbitrary angle to the normal of the plane boundary. In general, two characteristic waves propagate in the biaxial medium, leading to coupling of vertical and horizontal polarizations in the reflected waves. Some special cases are illustrated. The results have applications to problems in remote sensing and integrated optics.

  11. Stabilisation problem in biaxial platform

    Directory of Open Access Journals (Sweden)

    Lindner Tymoteusz


    Full Text Available The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  12. Stabilisation problem in biaxial platform (United States)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel


    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  13. Generalized Jones matrix method for homogeneous biaxial samples. (United States)

    Ortega-Quijano, Noé; Fade, Julien; Alouini, Mehdi


    The generalized Jones matrix (GJM) is a recently introduced tool to describe linear transformations of three-dimensional light fields. Based on this framework, a specific method for obtaining the GJM of uniaxial anisotropic media was recently presented. However, the GJM of biaxial media had not been tackled so far, as the previous method made use of a simplified rotation matrix that lacks a degree of freedom in the three-dimensional rotation, thus being not suitable for calculating the GJM of biaxial media. In this work we propose a general method to derive the GJM of arbitrarily-oriented homogeneous biaxial media. It is based on the differential generalized Jones matrix (dGJM), which is the three-dimensional counterpart of the conventional differential Jones matrix. We show that the dGJM provides a simple and elegant way to describe uniaxial and biaxial media, with the capacity to model multiple simultaneous optical effects. The practical usefulness of this method is illustrated by the GJM modeling of the polarimetric properties of a negative uniaxial KDP crystal and a biaxial KTP crystal for any three-dimensional sample orientation. The results show that this method constitutes an advantageous and straightforward way to model biaxial media, which show a growing relevance for many interesting applications.

  14. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.


    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  15. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    linearity arising from the non-linear stress-strain relationships and the cracking of the cross-section. · As a result, the systematic production of biaxial design charts necessitates the application of numerical methods that are based on iterations.

  16. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  17. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap


    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  18. Biaxial Stress Limit for ULDB Film (United States)

    Sterling, W. J.; Rand, J. L.


    The current ULDB design applies stress to the shell film biaxially to control creep in the latitudinal direction. The recent change in design paradigm, from a uniaxial to biaxial stress state basis, arose from a new perspective that the biaxial loading can control strain in both principal surface dimensions as discussed below. The current ULDB project path was thus enabled by a more thorough understanding of the nonlinear viscoelastic properties of the shell film material, linear low-density polyethylene (LLDPE). Although a very similar material is also used in NASA zero-pressure (ZPB) and long-duration balloons (LDB), the different stress state requires a new approach to shell material qualification.

  19. A Novel Biaxial Testing Apparatus for the Determination of Forming Limit under Hot Stamping Conditions. (United States)

    Shao, Zhutao; Li, Nan


    The hot stamping and cold die quenching process is increasingly used to form complex shaped structural components of sheet metals. Conventional experimental approaches, such as out-of-plane and in-plane tests, are not applicable to the determination of forming limits when heating and rapid cooling processes are introduced prior to forming for tests conducted under hot stamping conditions. A novel in-plane biaxial testing system was designed and used for the determination of forming limits of sheet metals at various strain paths, temperatures, and strain rates after heating and cooling processes in a resistance heating uniaxial testing machine. The core part of the biaxial testing system is a biaxial apparatus, which transfers a uniaxial force provided by the uniaxial testing machine to a biaxial force. One type of cruciform specimen was designed and verified for the formability test of aluminum alloy 6082 using the proposed biaxial testing system. The digital image correlation (DIC) system with a high-speed camera was used for taking strain measurements of a specimen during a deformation. The aim of proposing this biaxial testing system is to enable the forming limits of an alloy to be determined at various temperatures and strain rates under hot stamping conditions.

  20. Biaxial vasoactivity of porcine coronary artery


    Huo, Yunlong; Cheng, Yana; Zhao, Xuefeng; Lu, Xiao; Ghassan S. Kassab


    The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationsh...

  1. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  2. Design of Bioprosthetic Aortic Valves using biaxial test data. (United States)

    Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K


    Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.

  3. Design of a biaxial mechanical loading bioreactor for tissue engineering. (United States)

    Bilgen, Bahar; Chu, Danielle; Stefani, Robert; Aaron, Roy K


    We designed a loading device that is capable of applying uniaxial or biaxial mechanical strain to a tissue engineered biocomposites fabricated for transplantation. While the device primarily functions as a bioreactor that mimics the native mechanical strains, it is also outfitted with a load cell for providing force feedback or mechanical testing of the constructs. The device subjects engineered cartilage constructs to biaxial mechanical loading with great precision of loading dose (amplitude and frequency) and is compact enough to fit inside a standard tissue culture incubator. It loads samples directly in a tissue culture plate, and multiple plate sizes are compatible with the system. The device has been designed using components manufactured for precision-guided laser applications. Bi-axial loading is accomplished by two orthogonal stages. The stages have a 50 mm travel range and are driven independently by stepper motor actuators, controlled by a closed-loop stepper motor driver that features micro-stepping capabilities, enabling step sizes of less than 50 nm. A polysulfone loading platen is coupled to the bi-axial moving platform. Movements of the stages are controlled by Thor-labs Advanced Positioning Technology (APT) software. The stepper motor driver is used with the software to adjust load parameters of frequency and amplitude of both shear and compression independently and simultaneously. Positional feedback is provided by linear optical encoders that have a bidirectional repeatability of 0.1 μm and a resolution of 20 nm, translating to a positional accuracy of less than 3 μm over the full 50 mm of travel. These encoders provide the necessary position feedback to the drive electronics to ensure true nanopositioning capabilities. In order to provide the force feedback to detect contact and evaluate loading responses, a precision miniature load cell is positioned between the loading platen and the moving platform. The load cell has high accuracies of 0

  4. Biaxial tension on polymer in thermoforming range

    Directory of Open Access Journals (Sweden)

    Billon N.


    Full Text Available This paper presents an experimental characterization of mechanical properties of a polyethylene terephtalate (PET resin classically used in stretch blow moulding process. We have applied on such a material a well established experimental protocol at CEMEF, including new and relevant biaxial tensile tests. The experimental set-up relative to biaxial tension will be presented and described in a first part of the paper. Furthermore, we will focus on the experimental DMTA preliminary tests which are required to estimate the resin sensibility to temperature and strain rate in linear viscoelasticity domain. Finally, we will be interested in the material large strain behaviour: biaxial tensile results are presented and discussed. Finally, such an experimental approach should allow a relevant modelling of polymer physics and mechanics; this point will not be discussed here because of a lack of time.

  5. Ultrasonic fatigue testing device under biaxial bending

    Directory of Open Access Journals (Sweden)

    C. Brugger


    Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.

  6. Self-aligning biaxial load frame (United States)

    Ward, M.B.; Epstein, J.S.; Lloyd, W.R.


    An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

  7. A Biaxial Fatigue Specimen for Uniaxial Loading


    Bellett, Daniel; Morel, Franck; Morel, Anne; Lebrun, Jean-Lou


    International audience; The aim of this paper is to present a novel un-notched fatigue test specimen in which a biaxial stress state is achieved using a uniaxial loading condition. This allows the problem of multi-axial fatigue to be studied using relatively common one-axis servo-hydraulic testing machines. In addition the specimen presented here is very compact and can be made using a small volume of material (100x40x4.5mm). For this specimen, the degree of biaxiality, defined by the paramet...


    KAUST Repository

    Pancheri, Francesco Q.


    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  9. Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene (United States)

    Dai, Xian-Qi; Zhao, Ming-Yu; Zhao, Ru-Meng; Li, Wei


    Utilizing first-principle calculations, the biaxial tensile strain modulating magnetic states and electronic structures of transition metal (TM) (i.e., Mn, Fe, Sc, Ni and Ti) atoms doped in stanene are investigated. It shows that Mn and Fe doped stanene systems are magnetic, while the Sc, Ti and Ni doped stanene systems are nonmagnetic. When the biaxial tensile strain increases, a weaker antiferromagnetic coupling between the nearest neighbor (NN) Sn atoms and Mn (Fe, Ti) atom is observed. For Sc and Ni doped stanene systems, the biaxial strain doesn't introduce spin polarization for the TM atoms. In a word, the TM atoms doped stanene systems may manifest potential applications in nanoelectronics, spintronics and magnetic storage devices.

  10. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai


    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  11. Multiband left handed biaxial meta atom at microwave frequency (United States)

    Mehedi Hasan, Md; Faruque, Mohammad Rashed Iqbal; Tariqul Islam, Mohammad


    Left handed meta atoms are special class materials that characterized by the negative refractive index. In this paper, a left handed biaxial meta-atom is reported that has 5.81 GHz wide bandwidth and applicable for C-, X- and Ku-band applications. The meta atom is developed by an outer and the inner split ring resonator with inverse E-shape metal strips of copper, which are connected with the outer ring resonator that look like a mirror-shape structure. A finite integration technique based CST Microwave Studio is utilized to design, simulation and analysis purposes, where the Agilent N5227A vector network analyzer is utilized for measurement purpose. Measurements show that, the measured and simulated results are well complied together and negative index bandwidth from 3.27 to 6.55 GHz (bandwidth of 3.28 GHz) and 7 to 12.81 GHz (bandwidth of 5.81 GHz) along the z-axis wave propagation. The total dimensions of the designed structure are 0.2λ  ×  0.2λ  ×  0.035λ and the effective medium ratio 5, makes the proposed biaxial meta-atom is suitable for practical applications.

  12. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads


    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  13. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer


    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  14. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.


    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect.

  15. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.


    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  16. Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs (United States)

    Rubin, Leslie; Federico, Frank; Formato, Richard; Larouco, John; Slager, William


    Tubes made from biaxially oriented liquid-crystal polymers (LCPs) have been developed for use as penetrations on cryogenic tanks. ( Penetrations in this context denotes feed lines, vent lines, and sensor tubes, all of which contribute to the undesired conduction of heat into the tanks.) In comparison with corresponding prior cryogenic-tank penetrations made from stainless steels and nickel alloys, the LCP penetrations offer advantages of less weight and less thermal conduction. An additional major advantage of LCP components is that one can tailor their coefficients of thermal expansion (CTEs). The estimated cost of continuous production of LCP tubes of typical sizes is about $1.27/ft ($4.17/m) [based on 1998 prices]. LCP tubes that are compatible with liquid oxygen and that feature tailored biaxial molecular orientation and quasi-isotropic properties (including quasi-isotropic CTE) have been fabricated by a combination of proprietary and patented techniques that involve the use of counterrotating dies (CRDs). Tailoring of the angle of molecular orientation is what makes it possible to tailor the CTE over a wide range to match the CTEs of adjacent penetrations of other tank components; this, in turn, makes it possible to minimize differential-thermal expansion stresses that arise during thermal cycling. The fabrication of biaxially oriented LCP tubes by use of CRDs is not new in itself. The novelty of the present development lies in tailoring the orientations and thus the CTEs and other mechanical properties of the LCPs for the intended cryogenic applications and in modifications of the CRDs for this purpose. The LCP tubes and the 304-stainless-steel tubes that the LCP tubes were intended to supplant were tested with respect to burst strength, permeability, thermal conductivity, and CTE.

  17. Applications of 4-state nanomagnetic logic using multiferroic nanomagnets possessing biaxial magnetocrystalline anisotropy and experiments on 2-state multiferroic nanomagnetic logic (United States)

    D'Souza, Noel Michael

    Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain

  18. The elusive thermotropic biaxial nematic phase in rigid bent-core ...

    Indian Academy of Sciences (India)

    vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and .... the four peaks arise from a single domain of this biaxial nematic phase. Upon application of the electric field, no changes occur until the field strength exceeds a minimum value of 6x106 V/m at 500 Hz. Above ...

  19. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo


    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  20. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)


    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  1. Biaxial Compressive Strain Engineering in Graphene/Boron Nitride Heterostructures (United States)

    Pan, Wei; Xiao, Jianliang; Zhu, Junwei; Yu, Chenxi; Zhang, Gang; Ni, Zhenhua; Watanabe, K.; Taniguchi, T.; Shi, Yi; Wang, Xinran


    Strain engineered graphene has been predicted to show many interesting physics and device applications. Here we study biaxial compressive strain in graphene/hexagonal boron nitride heterostructures after thermal cycling to high temperatures likely due to their thermal expansion coefficient mismatch. The appearance of sub-micron self-supporting bubbles indicates that the strain is spatially inhomogeneous. Finite element modeling suggests that the strain is concentrated on the edges with regular nano-scale wrinkles, which could be a playground for strain engineering in graphene. Raman spectroscopy and mapping is employed to quantitatively probe the magnitude and distribution of strain. From the temperature-dependent shifts of Raman G and 2D peaks, we estimate the TEC of graphene from room temperature to above 1000K for the first time.

  2. Biaxial vasoactivity of porcine coronary artery. (United States)

    Huo, Yunlong; Cheng, Yana; Zhao, Xuefeng; Lu, Xiao; Kassab, Ghassan S


    The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics.

  3. Biaxially textured articles formed by powder metallurgy (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.


    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Biaxially textured articles formed by power metallurgy (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.


    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  5. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.


    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  6. Biaxial mechanical characterization of bat wing skin. (United States)

    Skulborstad, A J; Swartz, S M; Goulbourne, N C


    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance.

  7. a Technique for Biaxial Damping Measurement (United States)

    Hooker, R. J.; Foster, C. G.


    A description is given of a novel technique by means of which experimental studies may be made of the energy dissipation behaviour of materials subjected to biaxial (i.e., combined stress) loading. A specimen in the form a thin cylinder is subjected to simultaneous but separately controlled fluctuating fluid pressures internally, externally and axially. Pressure control is achieved by electro-hydraulic servo-systems and strain response is measured by miniature electrical resistance strain gauges. The apparatus is believed to be unique in its ability to apply biaxial with uniform stress distribution and uniform ratio of principal stresses over the full range -1 ≤ σ 2/σ 1≤ 1 with adequate control and accuracy and absence of means tress. Hysteresis loops in the two principal directions are recorded. The principles of the apparatus and the special features of its design are discussed. Experimental results are presented. The errors associated with operation of the apparatus correspond to loss factors of the order of 0·001-0·002 and hence the apparatus may be considered satisfactory for studies of materials of loss factor 0·01 and higher.

  8. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard


    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ......) biaxial strain process, the mechanical properties of biaxial strained tubes can be further improved. This study investigated these properties in relation to their morphology and crystal orientation. Both processes yield the same mechanical strength and modulus, yet exhibit different crystal orientation...

  9. Conductive and robust nitride buffer layers on biaxially textured substrates (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN


    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  10. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.


    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  11. Biaxial texturing of inorganic photovoltaic thin films using low energy ion beam irradiation during growth

    Energy Technology Data Exchange (ETDEWEB)

    Groves, James R [Los Alamos National Laboratory; De Paula, Raymond F [Los Alamos National Laboratory; Hayes, Garrett H [STANFORD UNIV.; Li, Joel B [STANFORD UNIV.; Hammond, Robert H [STANFORD UNIV.; Salleo, Alberto [STANFORD UNIV.; Clemens, Bruce M [STANFORD UNIV.


    We describe our efforts to control the grain boundary alignment in polycrystalline thin films of silicon by using a biaxially textured template layer of CaF{sub 2} for photovoltaic device applications. We have chosen CaF{sub 2} as a candidate material due to its close lattice match with silicon and its suitability as an ion beam assisted deposition (mAD) material. We show that the CaF{sub 2} aligns biaxially at a thickness of {approx}10 nm and, with the addition of an epitaxial CaF{sub 2} layer, has an in-plane texture of {approx}15{sup o}. Deposition of a subsequent layer of Si aligns on the template layer with an in-plane texture of 10.8{sup o}. The additional improvement of in-plane texture is similar to the behavior observed in more fully characterized IBAD materials systems. A germanium buffer layer is used to assist in the epitaxial deposition of Si on CaF{sub 2} template layers and single crystal substrates. These experiments confirm that an mAD template can be used to biaxially orient polycrystalline Si.

  12. Biaxial seismic behaviour of reinforced concrete columns = (United States)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  13. Graphene flakes under controlled biaxial deformation. (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N; Parthenios, John; Kalosakas, George; Papagelis, Konstantinos; Galiotis, Costas


    Thin membranes, such as monolayer graphene of monoatomic thickness, are bound to exhibit lateral buckling under uniaxial tensile loading that impairs its mechanical behaviour. In this work, we have developed an experimental device to subject 2D materials to controlled equibiaxial strain on supported beams that can be flexed up or down to subject the material to either compression or tension, respectively. Using strain gauges in tandem with Raman spectroscopy measurements, we monitor the G and 2D phonon properties of graphene under biaxial strain and thus extract important information about the uptake of stress under these conditions. The experimental shift over strain for the G and 2D Raman peaks were found to be in the range of 62.3 ± 5 cm(-1)/%, and 148.2 ± 6 cm(-1)/%, respectively, for monolayer but also bilayer graphenes. The corresponding Grüneisen parameters for the G and 2D peaks were found to be between 1.97 ± 0.15 and 2.86 ± 0.12, respectively. These values agree reasonably well with those obtained from small-strain bubble-type experiments. The results presented are also backed up by classical and ab initio molecular dynamics simulations and excellent agreement of Γ-E2g shifts with strains and the Grüneisen parameter was observed.

  14. Biaxial fatigue behavior of a powder metallurgical TRIP steel

    Directory of Open Access Journals (Sweden)

    S. Ackermann


    Full Text Available Multiaxial fatigue behavior is an important topic in critical structural components. In the present study the biaxial-planar fatigue behavior of a powder metallurgical TRIP steel (Transformation Induced Plasticity was studied by taking into account martensitic phase transformation and crack growth behavior. Biaxial cyclic deformation tests were carried out on a servo hydraulic biaxial tension-compression test rig using cruciform specimens. Different states of strain were studied by varying the strain ratio between the axial strain amplitudes in the range of -1 (shear loading to 1 (equibiaxial loading. The investigated loading conditions were proportional due to fixed directions of principal strains. The studied TRIP steel exhibits martensitic phase transformation from -austenite via ε-martensite into α‘- martensite which causes pronounced cyclic hardening. The α‘-martensite formation increased with increasing plastic strain amplitude. Shear loading promoted martensite formation and caused the highest α‘-martensite volume fractions at fatigue failure in comparison to uniaxial and other biaxial states of strain. Moreover, the fatigue lives of shear tests were higher than those of uniaxial and other biaxial tests. The von Mises equivalent strain hypothesis was found to be appropriate for uniaxial and biaxial fatigue, but too conservative for shear fatigue, according to literature for torsional fatigue. The COD strain amplitude which is based on crack opening displacement gave a better correlation of the investigated fatigue lives, especially those for shear loading. Different types of major cracks were observed on the sample surfaces after biaxial cyclic deformation by using electron monitoring in an electron beam universal system and scanning electron microscopy (SEM. Specimens with strain ratios of 1, 0.5, -0.1 and -0.5 showed mode I major cracks (perpendicular to the axis of maximum principal strain. Major cracks after shear fatigue

  15. Method for forming biaxially textured articles by powder metallurgy (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.


    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  16. Irreversible crumpling of graphene from hydrostatic and biaxial compression (United States)

    Wan, Jing; Jiang, Jin-Wu; Park, Harold S.


    We perform molecular dynamics simulations to investigate the irreversibility of crumpled graphene obtained by hydrostatic or biaxial compression. Our results show that there is a critical degree of crumpling, above which the crumpling is irreversible after the external force is removed. The critical degree of irreversible crumpling is closely related to the self-adhesion phenomenon of graphene, which leads to a step-like jump or decrease in the adhesion energy. We find the critical degree of crumpling is about 0.5 or 0.55 for hydrostatic or biaxial compression, which matches analytic predictions based on a competition between adhesive and bending energies in folded graphene.

  17. Tuning magnetism by biaxial strain in native ZnO. (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui


    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  18. Development of a methodology for the assessment of shallow-flaw fracture in nuclear reactor pressure vessels: Generation of biaxial shallow-flaw fracture toughness data

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W.


    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow-surface flaws. Shallow-flaw fracture toughness of RPV material has been shown to be higher than that for deep flaws, because of the relaxation of crack-tip constraint. This report describes the preliminary test results for a series of cruciform specimens with a uniform depth surface flaw. These specimens are all of the same size with the same depth flaw. Temperature and biaxial load ratio are the independent variables. These tests demonstrated that biaxial loading could have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Through that temperature range, the effect of full biaxial (1:1) loading on uniaxial, shallow-flaw toughness varied from no effect near the lower shelf to a reduction of approximately 58% at higher temperatures.

  19. evaluation of approximate design procedures for biaxially loaded ...

    African Journals Online (AJOL)

    testing the validity of the /3-n charts and presenting tbe approximate procedure for the design of biaxially loaded columns according to the ACI. For rectangular cross-sections with equal relative cover ratios and doubly symmetric reinforcement pattern, the relative uniaxial moment capacities are equal. Thus letting muy = mu, ...

  20. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    Biaxial charts for rectangular reinforced columns in accordance with the Ethiopian building code standard EBCS-2:Part1. ... Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  1. The effects of biaxial loading on the fracture characteristics of several engineering materials (United States)

    Jones, D. L.; Poulose, P. K.; Liebowitz, H.


    Using the George Washington University biaxial test system, a static fracture toughness study of two polymers (PMMA and PVC) and three aluminum alloys was performed for several variations in specimen geometry. Photoelastic experiments indicate that the applied load biaxiality has a very strong influence on the size and shape of the crack-tip stress field, and fracture toughness values for both polymers were seen to decrease with increasing load biaxiality. The load biaxiality was also found to have a strong influence on the crack growth direction in PMMA and a negligible influence on the PVC. The 7075-T6 aluminum toughness values increased with biaxiality, while intermediate peak toughness values were noted at a 0.5 biaxiality ratio for the more ductile 2024-T3 and 6061-T4 alloys. Fracture toughnesses at the highest biaxiality ratios were found to be equal to the uniaxial results.

  2. A drop in uniaxial and biaxial nonlinear extensional flows (United States)

    Favelukis, M.


    In this theoretical report, we explore small deformations of an initially spherical drop subjected to uniaxial or biaxial nonlinear extensional creeping flows. The problem is governed by the capillary number (Ca), the viscosity ratio (λ), and the nonlinear intensity of the flow (E). When the extensional flow is linear (E = 0), the familiar internal circulations are obtained and the same is true with E > 0, except that the external and internal flow rates increase with increasing E. If E 0) and oblate spheroidal drops for biaxial flows (Ca 0, the drop is more elongated than the linear case, while E 0 tends to facilitate drop breakup, while E < 0 makes drop breakup more difficult.

  3. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. (United States)

    Meinert, Christoph; Schrobback, Karsten; Hutmacher, Dietmar W; Klein, Travis J


    The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.

  4. Modelling of a Bi-axial Vibration Energy Harvester (United States)


    effect of the electrical load on the transduction, and on the mechanical dynamics. It was demonstrated that the back EMF from current flow in the...created with a permanent-magnet/ball-bearing arrangement. The mechanical oscillations of the ball-bearing in response to bi-axial vibrations in a host...system on an aircraft platform. Modelling of the mechanical dynamics and the electromechanical transduction of the harvester is undertaken by: means of

  5. Morphology of biaxially stretched triblock copolymer gels using SAXS (United States)

    Krishnan, Arjun; Ghosh, Tushar; Spontak, Richard


    Gels of styrenic triblock copolymers swollen by a low-volatility, midblock-selective oil behave as high-strain, low-field dielectric elastomers in the design of electroactive polymeric actuators. A standard configuration of such devices involves stretching, or ``prestraining,'' the elastomer film biaxially. However, little is known about the effect of biaxial prestrain on copolymer morphology. In this study, small-angle X-ray scattering (SAXS) is used to probe the nanostructure of gels composed of poly[styrene-b-(ethylene-co-butylene)-b-styrene] and mineral oil by systematically changing the concentration of polymer from 5 to 30 wt% and the biaxial prestrain from 0 to 300%. In the azimuthally integrated intensity profiles, the form factor due to scattering from polystyrene microdomains correlates strongly with polymer concentration and does not change with the applied prestrain, indicating that the polystyrene crosslinks remain as polydisperse spheres. The structure factor data correlates with prestrain, and is fitted using the Percus-Yevick approximation for interacting spheres. While a hard sphere interaction model is sufficient for unstrained gels, we resort to a square shoulder hard sphere potential for strained samples.

  6. Twisted quasiperiodic textures of biaxial nematic liquid crystals. (United States)

    Golo, V L; Kats, E I; Sevenyuk, A A; Sinitsyn, D O


    Textures (i.e., smooth space nonuniform distributions of the order parameter) in biaxial nematics turned out to be much more complex and interesting than expected. Scanning the literature we find only a very few publications on this topic. Thus, the immediate motivation of the present paper is to develop a systematic procedure to study, classify, and visualize possible textures in biaxial nematics. Based on the elastic energy of a biaxial nematic (written in the most simple form that involves the least number of phenomenological parameters) we derive and solve numerically the Lagrange equations of the first kind. It allows one to visualize the solutions and offers a deep insight into their geometrical and topological features. Performing Fourier analysis we find some particular textures possessing two or more characteristic space periods (we term such solutions quasiperiodic ones because the periods are not necessarily commensurate). The problem is not only of intellectual interest but also of relevance to optical characteristics of the liquid-crystalline textures.

  7. Biaxial mechanical properties of swine uterosacral and cardinal ligaments. (United States)

    Becker, Winston R; De Vita, Raffaella


    Mechanical alterations to pelvic floor ligaments may contribute to the development and progression of pelvic floor disorders. In this study, the first biaxial elastic and viscoelastic properties were determined for uterosacral ligament (USL) and cardinal ligament (CL) complexes harvested from adult female swine. Biaxial stress-stretch data revealed that the ligaments undergo large strains. They are orthotropic, being typically stiffer along their main physiological loading direction (i.e., normal to the upper vaginal wall). Biaxial stress relaxation data showed that the ligaments relax equally in both loading directions and more when they are less stretched. In order to describe the experimental findings, a three-dimensional constitutive law based on the Pipkin-Rogers integral series was formulated. The model accounts for incompressibility, large deformations, nonlinear elasticity, orthotropy, and stretch-dependent stress relaxation. This combined theoretical and experimental study provides new knowledge about the mechanical properties of USLs and CLs that could lead to the development of new preventive and treatment methods for pelvic floor disorders.

  8. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field. (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng


    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (Eb) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the Eb can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm(-1) electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H2 molecule when no strain or E-field is applied; however, the absorption increases to five H2 molecules under 15% biaxial strain and six H2 molecules under both 15% biaxial strain combined with a 5.14 V nm(-1)E-field. The average adsorption energies for H2 of BN-(Na-mH2) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H2)4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  9. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics (United States)

    Mucci, Domenico; Nicolodi, Lorenzo


    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  10. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala


    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  11. Biaxial shear/tension failure criteria of spectra single fibers (United States)

    Sun, Jianzhuo

    An experimental study was conducted to develop the biaxial failure surface criteria of single Spectra 130d and 100d filaments in a torsion-tension environment. The cross-sectional profiles of single Spectra fibers were investigated using scanning electron microscopy and X-ray computed tomography. A pin-gripping method to fix the ends of a polyethylene single fiber was developed. Effects of pin diameter on failure stress for both Spectra 130d and 100d were characterized. It was found that the perturbed stress field effect can be neglected when the pin diameter is larger than 0.8 mm. Additionally, the effect of the sample's gage length on fiber tensile strength was investigated. The gage length of 5.5 mm was determined as an appropriate length for single fiber samples under stress-wave loading. A twisting apparatus was built for a single fiber to achieve specific degrees of shear strains. Quasi-static experiments were conducted using an MTS servo-hydraulic system to apply tensile loads on pre-twisted Spectra fibers. A tension Kolsky bar was employed to study the biaxial shear/tensile behavior of Spectra fibers at high strain rates. A decreasing trend of tensile strength, with increasing torsional strain, for Spectra fibers was observed. Furthermore, a torsional pendulum apparatus was developed to determine the torsional shear stresses in fibers at various levels of axial loading. The relationship between apparent shear stress and axial stress was discovered. Finally, a biaxial shear/tension failure criterion envelope of each of the Spectra fibers was established. Scanning electron microscopy images revealed the specific feature on the surface of twisted fibers and fracture surface of failure fibers.

  12. Design optimization of cruciform specimens for biaxial fatigue loading

    Directory of Open Access Journals (Sweden)

    R. Baptista


    Full Text Available In order to correctly assess the biaxial fatigue material properties one must experimentally test different load conditions and stress levels. With the rise of new in-plane biaxial fatigue testing machines, using smaller and more efficient electrical motors, instead of the conventional hydraulic machines, it is necessary to reduce the specimen size and to ensure that the specimen geometry is appropriated for the load capacity installed. At the present time there are no standard specimen’s geometries and the indications on literature how to design an efficient test specimen are insufficient. The main goal of this paper is to present the methodology on how to obtain an optimal cruciform specimen geometry, with thickness reduction in the gauge area, appropriated for fatigue crack initiation, as a function of the base material sheet thickness used to build the specimen. The geometry is optimized for maximum stress using several parameters, ensuring that in the gauge area the stress is uniform and maximum with two limit phase shift loading conditions. Therefore the fatigue damage will always initiate on the center of the specimen, avoiding failure outside this region. Using the Renard Series of preferred numbers for the base material sheet thickness as a reference, the reaming geometry parameters are optimized using a derivative-free methodology, called direct multi search (DMS method. The final optimal geometry as a function of the base material sheet thickness is proposed, as a guide line for cruciform specimens design, and as a possible contribution for a future standard on in-plane biaxial fatigue tests.

  13. Light propagation in a magneto-optical hyperbolic biaxial crystal (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.


    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  14. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.


    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-voltage...... regulation is obtained by the flux-barrier PM combination with field (excitation) low-power control and a full-power diode rectifier in the stator. Good power/volume and superior efficiency (up to 80%) are obtained at costs comparable to those of an existing Lundell generator. The generator configuration...

  15. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.


    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  16. Biaxial flexural strength of bilayered zirconia using various veneering ceramics


    Chantranikul, Natravee; Salimee, Prarom


    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:20...

  17. Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectric Sm- C* liquid crystals


    Fukuda, Atsuo; VIJ, JAGDISH KUMAR


    PUBLISHED Article number 011709 We have studied various ferroelectric liquid crystals to find the average molecular direction of the shortest axis in the perfectly unwound state by using tilted conoscopic measurements. We find that there exist two types of temperature dependencies of the biaxiality. Some materials exhibit increasing biaxiality while others show decreasing biaxiality with increasing temperature. The former shows a temperature-induced sign reversal of biaxiality. Three di...

  18. Translucency and biaxial flexural strength of four ceramic core materials. (United States)

    Chen, Ya-Ming; Smales, Roger J; Yip, Kevin H-K; Sung, Wei-Jia


    To assess the relative translucencies and flexural strengths of four dental restorative ceramic core materials. Eight disk specimens (14 mm in diameterx 0.5+/-0.05 mm in thickness) were prepared for each group of four ceramic core materials (IPS Empress 2 dentin, VITA In-Ceram Alumina, VITA In-Ceram Zirconia, Cercon Base Zirconia), according to the manufacturers' instructions. A color meter was used to measure the relative translucencies of the specimens. The biaxial flexure test (ISO 6872) was then used to measure their flexural strengths. Data for relative translucency (0.0-1.0), fracture load (N) and biaxial flexural strength (MPa) were analyzed by one-way ANOVA, followed by Tukey's multiple comparison test for significant findings (alpha = 0.05). For relative translucency: IPS Empress 2 (0.78+/-0.03), VITA In-Ceram Alumina (0.94+/-0.01), VITA In-Ceram Zirconia (1.00+/-0.01), Cercon Base Zirconia (1.00+/-0.01), PCeram Alumina (514.0+/-49.5), VITA In-Ceram Zirconia (592.4+/-84.7), Cercon Base Zirconia (910.5+/-95.3), PCeram Alumina were significantly more translucent than the two opaque zirconia-containing core materials. IPS Empress 2 was significantly weaker, and Cercon Base Zirconia was significantly stronger, than the other two ceramic core materials.

  19. Design and Use of a Novel Bioreactor for Regeneration of Biaxially Stretched Tissue-Engineered Vessels. (United States)

    Huang, Angela Hai; Lee, Yong-Ung; Calle, Elizabeth A; Boyle, Michael; Starcher, Barry C; Humphrey, Jay D; Niklason, Laura E


    Conventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading. Therefore, to better simulate the physiological stresses acting on native arteries, we built a novel bioreactor system to enable biaxial stretching of engineered arteries during culture. This new bioreactor system allows for independent control of circumferential and axial stretching parameters, such as displacement and beat rate. The assembly and setup processes for this biaxial bioreactor system are reliable with a success rate greater than 75% for completion of long-term sterile culture. This bioreactor also supports side-by-side assessments of TEVs that are cultured under three types of mechanical conditions (static, uniaxial, and biaxial), all within the same biochemical environment. Using this bioreactor, we examined the impact of biaxial stretching on arterial wall remodeling of TEVs. Biaxial TEVs developed the greatest wall thickness compared with static and uniaxial TEVs. Unlike uniaxial loading, biaxial loading led to undulated collagen fibers that are commonly found in native arteries. More importantly, the biaxial TEVs developed the most mature elastin in the ECM, both qualitatively and quantitatively. The presence of mature extracellular elastin along with the undulated collagen fibers may contribute to the observed vascular compliance in the biaxial TEVs. The current work shows that biaxial stretching is a novel and promising means to improve TEV generation. Furthermore, this novel system allows us to optimize biomechanical conditioning by unraveling the interrelationships among the

  20. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.


    Results from a detailed numerical investigation of the post-buckling behaviour of rectangular simply supported steel plates subjected to biaxial in-plane loading are presented. The Steel plates are loaded through forced edge displacements. The effects of initial imperfections, aspect ratio, plate...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...

  1. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.


    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  2. Biaxial flexural modulus of antibiotic-impregnated orthopedic bone cement. (United States)

    Leone, James; Johnson, Amy; Ziada, Samir; Hashemi, Ata; Adili, Anthony; de Beer, Justin


    Previously reported antibiotic-impregnated cement strengths have been based on uniaxial and fatigue testing methodologies. These methods may not provide an accurate characterization of bone cement's true load-bearing capacity in total joint replacement (TJR). The present study utilized biaxial testing to report on the properties of antibiotic-impregnated cement. Test groups included: PMMA mixed with Vancomycin, Gentamicin, Tobramycin, or no antibiotic (control). In comparison to the control group, PMMA samples mixed with powdered gentamicin resulted in an increase in the mean elastic modulus by 6.50% versus a drop noted with powdered vancomycin and tobramycin by 2.65 and 1.37% respectively. The mean elastic modulus in samples containing liquid gentamicin dropped by 11.6%. This study supports the continued use of powdered antibiotics when clinically indicated, but suggest caution in the use of liquid gentamicin in TJR.



  4. Single-source mechanical loading system produces biaxial stresses in cylinders (United States)

    Flower, J. F.; Stafford, R. L.


    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  5. Fatigue of Clip connectors for offshore drilling risers under biaxial tension

    Directory of Open Access Journals (Sweden)

    Gaur Vidit


    Full Text Available Drilling riser connectors designed by IFPEN undergo cyclic in-phase biaxial tension in their critical area. This type of loading was reproduced on steel tubular specimens loaded in cyclic tension and internal pressure. The fatigue lives were substantially reduced when the load biaxiality was increased from 0 to 0.4 and then further to 1, which was not captured by existing fatigue criteria. A deeper investigation is thus in progress. Emphasis is laid on the separate evaluation of mean stress and biaxiality effects, often treated in the same way in existing criteria. The influence of load biaxiality on the resistance of the steel to fatigue-corrosion in seawater will also be investigated.

  6. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  7. Surface Modification of Anisotropic Dielectric Elastomer Actuators with Uni- and Bi-axially Wrinkled Carbon Electrodes for Wettability Control. (United States)

    Jun, Kiwoo; Kim, Donggyu; Ryu, Seunghwa; Oh, Il-Kwon


    Interest in soft actuators for next-generation electronic devices, such as wearable electronics, haptic feedback systems, rollable flexible displays, and soft robotics, is rapidly growing. However, for more practical applications in diverse electronic devices, soft actuators require multiple functionalities including anisotropic actuation in three-dimensional space, active tactile feedback, and controllable wettability. Herein, we report anisotropic dielectric elastomer actuators with uni- and bi-axially wrinkled carbon black electrodes that are formed through pre-streching and relaxation processes. The wrinkled dielectric elastomer actuator (WDEA) that shows directional actuation under electric fields is used to control the anisotropic wettability. The morphology changes of the electrode surfaces under various electric stimuli are investigated by measuring the contact angles of water droplets, and the results show that the controllable wettability has a broad range from 141° to 161° along the wrinkle direction. The present study successfully demonstrates that the WDEA under electrically controlled inputs can be used to modulate the uni- or bi-axially wrinkled electrode surfaces with continous roughness levels. The controllable wrinkled structures can play an important role in creating adaptable water repellency and tunable anisotropic wettability.

  8. Phase biaxiality in nematic liquid crystalline side-chain polymers of various chemical constitutions. (United States)

    Severing, Kirsten; Stibal-Fischer, Elke; Hasenhindl, Alfred; Finkelmann, Heino; Saalwächter, Kay


    In a previous deuterium NMR study conducted on a liquid crystalline (LC) polymer with laterally attached book-shaped molecules as the mesogenic moiety, we have revealed a biaxial nematic phase below the conventional uniaxial nematic phase (Phys. Rev. Lett. 2004, 92, 125501). To elucidate details of its formation, we here report on deuterium NMR experiments that have been conducted on different types of LC side-chain polymers as well as on mixtures with low-molar-mass mesogens. Different parameters that affect the formation of a biaxial nematic phase, such as the geometry of the attachment, the spacer length between the polymer backbone and the mesogenic unit, as well as the polymer dynamics, were investigated. Surprisingly, also polymers with terminally attached mesogens (end-on polymers) are capable of forming biaxial nematic phases if the flexible spacer is short and thus retains a coupling between the polymer backbone and the LC phase. Furthermore, the most important parameter for the formation of a biaxial nematic phase is the dynamics of the polymer backbone, as the addition of a small percentage of low molar mass LC to the biaxial nematic polymer from the original study served to shift both the glass transition and the appearance of detectable biaxiality in a very similar fashion. Plotting different parameters for the investigated systems as a function of T/Tg also reveals the crucial role of the dynamics of the polymer backbone and hence the glass transition.

  9. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model. (United States)

    Berardi, Roberto; Lintuvuori, Juho S; Wilson, Mark R; Zannoni, Claudio


    Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics. © 2011 American Institute of Physics

  10. Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension (United States)

    Jackson, Wade C.; Ratcliffe, James G.


    Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa

  11. Electronic and phononic modulation of MoS2 under biaxial strain (United States)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.


    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  12. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075-T6 Under Biaxial and Uniaxial Fatigue with Different Phases (United States)



  13. Effects of biaxial loading and residual stresses on constraint

    Energy Technology Data Exchange (ETDEWEB)

    Burdekin, F.M.; Xu, W.G


    Finite element analyses have been carried out to determine the elastic stress intensity factors, the plastic limit loads, failure assessment diagrams (FADs) and the T- and Q-stresses for each of three postulated defects. The effect of biaxial loading and residual stresses on the stress intensity factor and T and Q-stress solutions, and the effect of weld-base metal mismatch on the plastic limit load were assessed. Results have also been derived for the reduction in constraint with increasing plasticity up to the limit load. For assessments of a narrow mismatched weld of overmatching strength using standard Option 1 or 2 FADs, up to L{sub r}=1, this parameter should be determined using the lower strength base material yield strength. The decrease in constraint with increasing L{sub r} varies at different positions around the crack front of semi elliptical surface defects. Although constraint is maintained highest just under the free surface towards the ends of the crack, this is generally the region where the stress intensity factor is lowest for tension loading and thus assessments need to take account of both crack tip driving force and constraint.

  14. Large strain cruciform biaxial testing for FLC detection (United States)

    Güler, Baran; Efe, Mert


    Selection of proper test method, specimen design and analysis method are key issues for studying formability of sheet metals and detection of their forming limit curves (FLC). Materials with complex microstructures may need an additional micro-mechanical investigation and accurate modelling. Cruciform biaxial test stands as an alternative to standard tests as it achieves frictionless, in-plane, multi-axial stress states with a single sample geometry. In this study, we introduce a small-scale (less than 10 cm) cruciform sample allowing micro-mechanical investigation at stress states ranging from plane strain to equibiaxial. With successful specimen design and surface finish, large forming limit strains are obtained at the test region of the sample. The large forming limit strains obtained by experiments are compared to the values obtained from Marciniak-Kuczynski (M-K) local necking model and Cockroft-Latham damage model. This comparison shows that the experimental limiting strains are beyond the theoretical values, approaching to the fracture strain of the two test materials: Al-6061-T6 aluminum alloy and DC-04 high formability steel.

  15. Biaxially textured copper-iron alloys for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Gallistl, Bernhard; Hassel, Achim Walter [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Kirchschlager, Raimund [Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria)


    Two copper based biaxially textured alloys containing 0.37 and 0.91 wt.%-Fe have been investigated for the use as substrate material for coated conductors. Average full width at half maximum (FWHM) values of 7.3 (CuFe0.37) and 6.8 (CuFe0.91) for in-plane alignment and 7.2 (CuFe0.37, CuFe0.91) for out-of-plane are achieved. Ultimate tensile strength for the two alloys is found to be much higher compared to the values for Cu and CuFe2.35. Hysteresis losses are dramatically reduced compared to other available substrate materials. Magnetisation data for both alloys obtained at 5 K show an anticipated saturation magnetisation (M{sub s}) <0.35 {mu}Wb m kg{sup -1}, which is less than 1% of pure Ni. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H


    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  17. Research on self-calibration biaxial autocollimator based on ZYNQ (United States)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui


    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  18. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)


    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  19. Reduction of thermal models of buildings: improvement of techniques using meteorological influence models; Reduction de modeles thermiques de batiments: amelioration des techniques par modelisation des sollicitations meteorologiques

    Energy Technology Data Exchange (ETDEWEB)

    Dautin, S.


    This work concerns the modeling of thermal phenomena inside buildings for the evaluation of energy exploitation costs of thermal installations and for the modeling of thermal and aeraulic transient phenomena. This thesis comprises 7 chapters dealing with: (1) the thermal phenomena inside buildings and the CLIM2000 calculation code, (2) the ETNA and GENEC experimental cells and their modeling, (3) the techniques of model reduction tested (Marshall`s truncature, Michailesco aggregation method and Moore truncature) with their algorithms and their encoding in the MATRED software, (4) the application of model reduction methods to the GENEC and ETNA cells and to a medium size dual-zone building, (5) the modeling of meteorological influences classically applied to buildings (external temperature and solar flux), (6) the analytical expression of these modeled meteorological influences. The last chapter presents the results of these improved methods on the GENEC and ETNA cells and on a lower inertia building. These new methods are compared to classical methods. (J.S.) 69 refs.

  20. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias


    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  1. A new bi-axial cantilever beam design for biomechanics force measurements. (United States)

    Lin, Huai-Ti; Trimmer, Barry A


    The demand for measuring forces exerted by animals during locomotion has increased dramatically as biomechanists strive to understand and implement biomechanical control strategies. In particular, multi-axial force transducers are often required to capture animal limb coordination patterns. Most existing force transducers employ strain gages arranged in a Wheatstone bridge on a cantilever beam. Bi-axial measurements require duplicating this arrangement in the transverse direction. In this paper, we reveal a method to embed a Wheatstone bridge inside another to allow bi-axial measurements without additional strain gages or additional second beams. This hybrid configuration resolves two force components from a single bridge circuit and simplifies fabrication for the simultaneous assessment of normal and transverse loads. This design can be implemented with two-dimensional fabrication techniques and can even be used to modify a common full bridge cantilever force transducer. As a demonstration of the new design, we built a simple beam which achieved bi-axial sensing capability that outperformed a conventional half-bridge-per-axis bi-axial strain gage design. We have used this design to measure the ground reaction forces of a crawling caterpillar and a caterpillar-mimicking soft robot. The simplicity and increased sensitivity of this method could facilitate bi-axial force measurements for experimental biologists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.


    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  3. Biaxial flexural strength of bilayered zirconia using various veneering ceramics. (United States)

    Chantranikul, Natravee; Salimee, Prarom


    The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

  4. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic. (United States)

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C


    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (pceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (pceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Comportement des fondations et des ancrages de structures marines sous l'effet de sollicitations cycliques Behavior of Foundations and Anchors for Marine Structures under the Effect of Cyclic Stresses

    Directory of Open Access Journals (Sweden)

    Le Tirant P.


    Full Text Available L'exploration et l'exploitation des hydrocarbures en haute mer conduisent à la mise en place d'ouvrages fixes ou flottants de dimensions de plus en plus colos sales, par des profondeurs d'eau sans cesse croissantes, atteignant actuellement 200 à 300 mètres en production, un millier de mètres en exploration. Les fondations des ouvrages pétroliers de production comprennent essentiel-lement- les pieux ou groupes de pieux, battus ou forés; - les fondations superficielles à embase poids. Le comportement des fondations ou ancrages de structures sous l'action des sollicitations cycliques est étudié, en fonction de la nature des terrains, à partir - de mesures et d'observations sur des structures réelles; d'expérimentations sur des modèles en semi-grandeur ou de simulations sur modèles réduits. Les exemples donnés situent la diversité des problèmes rencontrés pour l'instal-lation des ouvrages en haute mer et! l'ampleur des travaux nécessaires pour décrire plus correctement les phénomènes d'intéraction sols-structures mannes sous l'effet des chargements cycliques et transitoires et, par suite, mieux optimiser le dimensionnement des fondations et des ancrages. Exploration and production of hydrocarbons in the high seas lead ta the installation of fixed or floating structures having more and more colossal sizes at constantly increasing water depths which now attain 200 ta 300 meters for production and 1000 meters for exploration. The foundations of ail production structures mainly consist of - pilings or groups of pilings, either driven or drilled; superficial gravity foundations the behovior of foundations or anchors for such structures under the effect of cyclic stresses is examined as a function of the nature of formations, on the basis of - measurements and observations on actual structures, experiments with semi-full-sized models or by simulations with scale models. The examples given illustrate the diversity of the problems

  6. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics. (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C


    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  7. Carbon Composites based on multiaxial multiply stitched performs, Part 3: Biaxial Tension, picture frame and compression tests of the preforms

    NARCIS (Netherlands)

    Lomov, S.V.; Barburski, M.; Stoilova, Tz.; Verpoest, I.; Akkerman, Remko; Loendersloot, Richard; ten Thije, R.H.W.


    Deformability of bi- and quadri-axial multi-axial multiply stitched preforms is studied in biaxial tension, shear (picture frame test) and compression. The results complement KES-F measurements in the low load range, reported in the Part 2 of the series (Compos A, 34, 2003, 359–70). The biaxial

  8. In situ determination of pore sizes of high density polyester woven fabrics under biaxial loading (United States)

    Türkay Kocaman, Recep; Malik, Samander Ali; Aibibu, Dilbar; Cherif, Chokri


    In this study an in situ pore size measurement method was developed to determine the pore size changes of high density polyester woven fabrics under biaxial loading. This unique method allows the non-destructive testing of the pore sizes under biaxial loading. Changes in the pore size distributions of samples were in situ determined with the newly developed method. The results show that the developed measurement method is very promising to define the pore size changes of barrier textiles in situ under loading.

  9. Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns (United States)

    Rodrigues, Hugo; Varum, Humberto; Arêde, António; Costa, Aníbal


    The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The analyses show that the global envelope response is satisfactorily represented with the three modelling strategies, but significant differences were found in the strength degradation for higher drift demands and energy dissipation.

  10. Passive biaxial mechanical response of aged human iliac arteries. (United States)

    Schulze-Bauer, Christian A J; Mörth, Christian; Holzapfel, Gerhard A


    Inflation and extension tests of arteries are essential for the understanding of arterial wall mechanics. Data for such tests of human arteries are rare. At autopsy we harvested 10 non-diseased external iliac arteries of aged subjects (52-87 yrs). Structural homogeneity was ensured by means of ultrasound imaging, and anamneses of patients were recorded. We measured the axial in situ stretches, load-free geometries and opening angles. Passive biaxial mechanical responses of preconditioned cylindrical specimens were studied in 37 degrees C calcium-free Tyrode solution under quasistatic loading conditions. Specimens were subjected to pressure cycles varying from 0 to 33.3 kPa (250 mmHg) at nine fixed axial loads, varying from 0 to 9.90N. For the description of the load-deformation behavior we employed five "two-dimensional" orthotropic strain-energy functions frequently used in arterial wall mechanics. The associated constitutive models were compared in regard to their ability of representing the experimental data. Histology showed that the arteries were of the muscular type. In contrast to animal arteries they exhibited intimal layers of considerable thickness. The average ratio of wall thickness to outer diameter was 7.7, which is much less than observed for common animal arteries. We found a clear correlation between age and the axial in situ stretch lambda is (r = -0.72, P = 0.03), and between age and distensibility of specimens, i.e. aged specimens are less distensible. Axial in situ stretches were clearly smaller (1.07 +/- 0.09, mean +/- SD) than in animal arteries. For one specimen lambda is was even smaller than 1.0, i.e. the vessel elongated axially upon excision. The nonlinear and anisotropic load-deformation behavior showed small hystereses. For the majority of specimens we observed axial stretches smaller than 1.3 and circumferential stretches smaller than 1.1 for the investigated loading range. Data from in situ inflation tests showed a significant

  11. Failure Investigation for QP Steel Sheets under uniaxial and Equal-Biaxial Tension Conditions (United States)

    Zou, Danqing; Li, Shuhui; He, Ji; Cui, Ronggao


    The Quenching and Partitioning (QP) steel sheet is new generation material to induce phase transformation for plasticity in forming vehicle parts. The phase transformation is strongly stress state dependent behavior in experiments, which should affect the failure timing and limit strain in forming processes. In this paper, Nakajima test with QP980 and DP1000 steel sheets under equal-biaxial loading condition is performed for failure behavior. X-ray diffraction (XRD) is adopted to obtain the volume fraction of retained austenite (fA). Digital Image Correlation (DIC) is used to record the surface strain field and its evolution during equal-biaxial tension deformation. The same level Dual Phase (DP) steel is also employed for the purpose of comparison. The results show that phase transformation in QP steel gives small impact on failure strain under equal biaxial tension condition which is contradicted with our understanding. It suggests that failure behavior under uniaxial tension of QP980 is strongly phase transformation dependent. But it shows almost independent under equal biaxial tension condition.

  12. Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide (United States)


    of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command in Partial Fulfillment of the...Sample Holder Orientation 1 (Left), Partially installed in Orientation 2 (Right) . . . . . . . . . . . . . . . . . . . . . . . . . 70 31. CST Model of WRWS...Electrically Biaxial Anisotropic Cube with Air Occlusions arranged in a 9 by 6 array

  13. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states

    NARCIS (Netherlands)

    Vegter, H.; van den Boogaard, Antonius H.


    An anisotropic plane stress yield function based on interpolation by second order Bézier curves is proposed. The parameters for the model are readily derived by four mechanical tests: a uniaxial, an equi-biaxial and a plane strain tensile test and a shear test. In case of planar anisotropy, this set

  14. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.


    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies.

  15. Simulation and parameter optimization of polysilicon gate biaxial strained silicon MOSFETs

    CSIR Research Space (South Africa)

    Tsague, HD


    Full Text Available the viewpoint of electronic states of carriers in inversion layers and, in particular, the sub-band structures. In addition, design and simulation of biaxial strained silicon NMOSFET (n-channel) is done using Silvaco’s Athena/Atlas simulator. From the results...

  16. Numerical Study on Biaxial Seismic Performance of Reinforced Concrete Box Piers Based on OpenSees (United States)

    Liu, Chuncheng; Lv, Chunlei; Wang, Chongyang; Yang, Geng; Huang, Dapeng; Zhang, Yiling


    In order to study the seismic performance of reinforced concrete box piers under biaxial loading, the hysteretic model of reinforced concrete box piers was established by selecting appropriate material model, constitutive relation, structural element type, and the corresponding boundary conditions and loading method based on OpenSees. The numerical simulation of the ductility of reinforced concrete box piers with different axial compression ratio, stirrup ratio and slenderness ratio under biaxial horizontal loading was conducted. The results of biaxial quasi-static tests and that of numerical simulation were compared. The analysis showed that the hysteretic behaviour of reinforced concrete box piers under biaxial loading could be well simulated and the degradation of strength and stiffness of box piers in the process of bidirectional cyclic loading could be reflected by OpenSees on the basis of the appropriate material constitutive model and structural element type. Furthermore, the influence of reinforcement ratio and concrete strength on the ductility of reinforced concrete box pier was studied by OpenSees.

  17. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo


    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  18. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li


    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  19. Experimental investigation on rectangular reinforced concrete beam subjected to bi-axial shear and torsion

    Directory of Open Access Journals (Sweden)

    Chayanon Hansapinyo


    Full Text Available This paper presents the experimental investigation on the failure mechanism and ultimate capacity of rectangular reinforced concrete beam under combined action of bi-axial shear accompanied with torsion through the test of four reinforced concrete members. The simple experimental set-up for a simply-supported beam under one point loading is introduced in this study by applying eccentric load to the tilted beam. This requires only one hydraulic jack to produce the complicated bi-axial shear and torsional loading. The main parameter is the magnitude of torsion induced to specimens which is relatively represented by the torsion-to-shear ratio. In addition, the influence of torsion on ultimate capacity of reinforced concrete with different ratio of two shears is investigated. From the experimental results, it is found that the increase in the magnitude of torsion about 69 percent drastically decreases bi-axial shear capacity as much as 12 to 39 percent according to the ratio of bi-axial shears. The experimental results are compared with the capacities calculated by the available interaction formula between uni-axial shear and torsion in the current design codes. The comparison indicates that the current design codes give quite conservative values of ultimate capacity.

  20. The elusive thermotropic biaxial nematic phase in rigid bent-core ...

    Indian Academy of Sciences (India)

    core liquid crystals. Abstract. The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture ...

  1. Large-deformation properties of wheat dough in uni- and biaxial extension. Part II. Gluten dough

    NARCIS (Netherlands)

    Sliwinski, E.L.; Hoef, van der M.; Kolster, P.; Vliet, van T.


    Glutens were isolated from flour of three European wheat cultivars which perform differently in cereal products. The rheological and fracture properties of gluten-water doughs were determined in uniaxial and biaxial extension at large deformations and small angle sinusoidal oscillation tests and

  2. Capability and recruitment patterns of trunk during isometric uniaxial and biaxial upright exertion. (United States)

    Sheikhzadeh, Ali; Parnianpour, Mohamad; Nordin, Margareta


    Work-related risk factors of low back disorders have been identified to be external moments, awkward postures, and asymmetrical dynamic lifting amongst others. The distinct role of asymmetry of load versus posture is hard to discern from the literature. Hence, the aim of this study is to measure isometric trunk exertions at upright standing posture at different exertion level and degree of asymmetry to further delineate the effects of exertion level and asymmetry on neuromuscular capability response. Fifteen healthy volunteers randomly performed trunk exertions at three levels (30%, 60%, and 100% of maximum voluntary exertion and five different angles (0 degrees , 45 degrees , 90 degrees , 135 degrees , and 180 degrees ) of normalized resultant moments. During each trial, the normalized EMG activity of 10 selected trunk muscles was quantified. The EMG activity of the 10 trunk muscles was significantly (Presultant moment, and their interactions. The controllability of the torque generation was reduced in biaxial exertions. The capability to generate and control the required trunk moments is significantly lowered during biaxial trunk exertions, while all muscles present higher EMG activity. These results suggest that the trunk muscles will be taxed higher while performing biaxial exertion tasks, increasing muscle fatigue possibly leading to a higher probability of low back injury. The prediction of biaxial trunk performance based on uniaxial data will result in an overestimation of capability and controllability of the trunk during physically demanding tasks. This study provides a better understanding of the potential mechanisms of injury during asymmetrical and biaxial trunk exertion during work-related tasks.

  3. Quantification of Shear Deformations and Corresponding Stresses in the Biaxially Tested Human Myocardium. (United States)

    Sommer, Gerhard; Haspinger, Daniel Ch; Andrä, Michaela; Sacherer, Michael; Viertler, Christian; Regitnig, Peter; Holzapfel, Gerhard A


    One goal of cardiac research is to perform numerical simulations to describe/reproduce the mechanoelectrical function of the human myocardium in health and disease. Such simulations are based on a complex combination of mathematical models describing the passive mechanical behavior of the myocardium and its electrophysiology, i.e., the activation of cardiac muscle cells. The problem in developing adequate constitutive models is the shortage of experimental data suitable for detailed parameter estimation in specific functional forms. A combination of shear and biaxial extension tests with different loading protocols on different specimen orientations is necessary to capture adequately the direction-dependent (orthotropic) response of the myocardium. In most experimental animal studies, where planar biaxial extension tests on the myocardium have been conducted, the generated shear stresses were neither considered nor discussed. Hence, in this study a method is presented which allows the quantification of shear deformations and related stresses. It demonstrates an approach for experimenters as to how the generation of these shear stresses can be minimized during mechanical testing. Experimental results on 14 passive human myocardial specimens, obtained from nine human hearts, show the efficiency of this newly developed method. Moreover, the influence of the clamping technique of the specimen, i.e., the load transmission between the testing device and the tissue, on the stress response is determined by testing an isotropic material (Latex). We identified that the force transmission between the testing device and the specimen by means of hooks and cords does not influence the performed experiments. We further showed that in-plane shear stresses definitely exist in biaxially tested human ventricular myocardium, but can be reduced to a minimum by preparing the specimens in an appropriate manner. Moreover, we showed whether shear stresses can be neglected when performing

  4. Strain rate dependent hardening of DP600 sheet metal for large strains under in-plane biaxial loadings (United States)

    Liu, W.; Guines, D.; Léotoing, L.; Ragneau, E.


    In this work, an in-plane biaxial tensile test of cruciform specimen is performed to identify the visco-plastic hardening behaviour of metallic sheets for both large strains and intermediate strain rates at room temperature. Firstly, an optimal shape of the specimen is suggested. Then, dynamic biaxial tensile tests are carried out for a dual phase DP600 steel sheet. Experimental forces on the two axes of the specimen are measured during the test and strains in the central area of the specimen are post-treated by means of Digital Image Correlation (DIC) technique. Finally, considering a Hill48 anisotropic yield criterion, two strain rate dependent hardening laws are identified thanks to an inverse procedure based on a Finite Element (FE) modelling of the biaxial tensile test and on the experimental data mentioned above. The identified biaxial flow curves are then compared with the ones from a classical uniaxial tensile test.

  5. Seismic Response Reduction of Structures Equipped with a Voided Biaxial Slab-Based Tuned Rolling Mass Damper

    National Research Council Canada - National Science Library

    Li, Shujin; Fu, Liming; Kong, Fan


    .... The hollow slabs in this context, also referred to as "voided biaxial reinforced concrete slabs," feature a large interior space of prefabricated voided modules that are necessary in the construction...

  6. Numerical simulations of failure behavior around a circular opening in a non-persistently jointed rock mass under biaxial compression

    National Research Council Canada - National Science Library

    Yang Xuxu Jing Hongwen Chen Kunfu


    .... In present study, the failure behavior in both Inner and Outer zones around a circular opening in a non-persistently jointed rock mass under biaxial compression was investigated through numerical simulations...

  7. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J


    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  8. Des migrants face aux restrictions du droit d'asile en Suisse [Ressource électronique]: analyse des ressources et stratégies des personnes frappées de non-entrée en matière en ayant sollicité l'aide d'urgence dans le canton de Genève


    Senarclens, Clément de; Dahinden, Janine


    Ce travail de mémoire de licence porte sur les stratégies mises en oeuvre par de personnes frappées d’une décision de non-entrée en matière (NEM) ayant sollicité l’aide d’urgence dans le canton de Genève. Il part du postulat que malgré la précarité de la situation dans laquelle sont placées ces migrants, ils sont néanmoins en mesures de mobiliser certaines ressources afin de faire face aux contraintes de cette situation. Cette recherche se base principalement sur trois études de cas issues d’...

  9. Influence of the microstructure and of the mode of solicitation on the irreversibility of the dislocations slip during a cycling mechanical solicitation; Influence de la microstructure et du mode de sollicitation sur l'irreversibilite du glissement des dislocations lors d'une sollicitation mecanique cyclique

    Energy Technology Data Exchange (ETDEWEB)

    Kachit, M


    The rupture of metallic pieces in fatigue can be bound to a critical density of dislocations. Indeed, during the application of a cyclic load, some of the dislocations put in motion by the stress do not disappear and increase. The quantification of the irreversibility of the dislocations motion, that is to say the dislocations density increase rate during a mechanical cycling, is then the key of forecasting of the life span. Micro-plastic characterization measurements and surface relief follow-up measurements have been determined by AFM during a mechanical cycling of metallic materials having a cfc structure. Either these two techniques correspond to a characterization of the material at two very different scales - macroscopic in the first case and local in the second case - they have been interesting for the study of the dislocations slip irreversibility. The first one is based on the characterization of the micro-plastic area with a no friction machine designed and implemented in laboratory. It allows, during a monotonous or cyclic loading, to follow in an indirect way the density of the dislocations in a material. The second technique consists to follow by AFM the height of the surface relieves during a fatigue test. This technique, more local than the preceding one, allows to measure the number of dislocations cumulated in each of the studied bands. From the measurements given by these two techniques, has been determined an irreversibility factor of the dislocations slip f* during the cycling. The effect of the cycling parameters (level and kind of the cyclic stress, character of the material) on the evolution of f* in terms of the number of N cycles is presented. (O.M.)

  10. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics. (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel


    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  11. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain (United States)

    Behzad, Somayeh


    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  12. Phase separation suppression in InGaN epitaxial layers due to biaxial strain (United States)

    Tabata, A.; Teles, L. K.; Scolfaro, L. M. R.; Leite, J. R.; Kharchenko, A.; Frey, T.; As, D. J.; Schikora, D.; Lischka, K.; Furthmüller, J.; Bechstedt, F.


    Phase separation suppression due to external biaxial strain is observed in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect is taking place in thin epitaxial layers pseudomorphically grown by molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio calculations carried out for the alloy free energy predict and Raman measurements confirm that biaxial strain suppress the formation of phase-separated In-rich quantum dots in the InxGa1-xN layers. Since quantum dots are effective radiative recombination centers in InGaN, we conclude that strain quenches an important channel of light emission in optoelectronic devices based on pseudobinary group-III nitride semiconductors.

  13. Verification of yield functions by biaxial tensile tests with rotated principal axes (United States)

    Ageba, Ryo; Ishiwtari, Akinobu; Hiramoto, Jiro


    A yield function is a critical factor contributing to the accuracy of FEM simulation of steel sheet forming. Yld2000-2d by Barlat is an anisotropic yield function for shell elements. Uniaxial and biaxial tensile test are required to identify the parameters of the Yld2000-2d function. In tests, the principal axes of stresses are normally either parallel or orthogonal to the rolling direction. However, the principal axes of stresses of the material are randomly oriented in actual press forming. Therefore the actual material behavior may not be correctly expressed by a yield function identified from tests always conducted with the same principal axes directions. In this study, the accuracy of the anisotropic yield function is verified under biaxial stress with different principal axes in tests using specimens with rotated principal axes. The results confirm that the accuracy of Yld2000-2d is adequate and the identifying tests are reasonable.

  14. Carrier transport simulation in a model liquid crystalline system with the biaxial Gay-Berne potential. (United States)

    Goto, Masanao; Takezoe, Hideo; Ishikawa, Ken


    In this paper, we performed carrier transport simulation to understand the unusual temperature dependence of the carrier mobility observed in nematic liquid crystals. For this purpose, we made a model liquid crystalline system consisting of biaxial Gay-Berne particles, and then we simulated hopping transport between these particles. The hopping rate was formulated suitably for the biaxial Gay-Berne particles based on the investigation of the electronic overlaps between actual aromatic molecules. The carrier transport simulation was performed by master equation method on the model system prepared by N-P-T ensemble Monte Carlo simulation. We reproduced gradual mobility increase in the nematic phase as a result of the change in the short range molecular order.

  15. Effects of repeated biaxial loads on the creep properties of cardinal ligaments. (United States)

    Baah-Dwomoh, Adwoa; De Vita, Raffaella


    The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between

  16. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)


    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  17. Seismic Response Reduction of Structures Equipped with a Voided Biaxial Slab-Based Tuned Rolling Mass Damper

    Directory of Open Access Journals (Sweden)

    Shujin Li


    Full Text Available This paper proposes a novel tuned mass damper (TMD embedded in hollow slabs of civil structures. The hollow slabs in this context, also referred to as “voided biaxial reinforced concrete slabs,” feature a large interior space of prefabricated voided modules that are necessary in the construction of this special structural system. In this regard, a tuned rolling mass damper system (“TRoMaDaS” is newly proposed, in combination with hollow slabs, to act as an ensemble passive damping device mitigating structural responses. The main advantage of this TMD configuration lies in its capacity to maintain architectural integrity. To further investigate the potential application of the proposed TRoMaDaS in seismic response mitigation, theoretical and numerical studies, including deterministic and stochastic analyses, were performed. They were achieved by deterministic dynamic modeling using Lagrange’s equation and the statistical linearization method. Finally, the promising control efficacy obtained from the deterministic/stochastic analysis confirmed the potential application of this newly proposed control device.

  18. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems. (United States)

    Al-Makramani, Bandar Mohammed Abdullah; Razak, Abdul Aziz Abdul; Abu-Hassan, Mohamed Ibrahim


    Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995) were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M) Sdn Bhd, Puchong, Selangor, Malaysia)], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany) and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany), which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. The mean biaxial flexural strength values were: Turkom-Cera: 506.8 ± 87.01 MPa, In-Ceram: 347.4 ± 28.83 MPa and Vitadur-N: 128.7 ± 12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA ) at a preset significance level of 5% because of unequal group variances (Pcore ceramics (Pstrength, followed by In-Ceram and Vitadur-N. Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  19. Damage and failure behavior of metal matrix composites under biaxial loads (United States)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  20. Novel biaxial tensile test for studying aortic failure phenomena at a microscopic level

    Directory of Open Access Journals (Sweden)

    Sugita Shukei


    Full Text Available Abstract Background An aortic aneurysm is a local dilation of the aorta, which tends to expand and often results in a fatal rupture. Although larger aneurysms have a greater risk of rupture, some small aneurysms also rupture. Since the mechanism of aortic rupture is not well understood, clarification of the microstructure influencing the failure to rupture is important. Since aortic tissues are stretched biaxially in vivo, we developed a technique to microscopically observe the failure of an aortic rupture during biaxial stretch. Methods A thinly sliced porcine thoracic aortic specimen was adhered to a circular frame and pushed onto a cylinder with a smaller diameter to stretch the specimen biaxially. To induce failure to rupture at the center, the specimen was thinned at the center of the hole as follows: the specimen was frozen while being compressed with metal plates having holes, which were 3 mm in diameter at their centers; the specimen was then sliced at 50-μm intervals and thawed. Results The ratio of the thickness at the center to the peripheral area was 99.5% for uncompressed specimens. The ratio decreased with an increase in the compression ratio εc and was 47.3% for specimens with εc = 40%. All specimens could be stretched until failure to rupture. The probability for crack initiation within the cylinder was εc εc >30%, respectively. Among specimens ruptured within the cylinder, 93% of those obtained from the mid-media showed crack initiation at the thin center area. Conclusions Aortic tissues were successfully stretched biaxially until failure, and their crack initiation points were successfully observed under a microscope. This could be a very useful and powerful method for clarifying the mechanism of aortic rupture. We are planning to use this technique for a detailed investigation of events occurring at the point of failure when the crack initiates in the aortic aneurysm wall.

  1. Novel biaxial tensile test for studying aortic failure phenomena at a microscopic level (United States)


    Background An aortic aneurysm is a local dilation of the aorta, which tends to expand and often results in a fatal rupture. Although larger aneurysms have a greater risk of rupture, some small aneurysms also rupture. Since the mechanism of aortic rupture is not well understood, clarification of the microstructure influencing the failure to rupture is important. Since aortic tissues are stretched biaxially in vivo, we developed a technique to microscopically observe the failure of an aortic rupture during biaxial stretch. Methods A thinly sliced porcine thoracic aortic specimen was adhered to a circular frame and pushed onto a cylinder with a smaller diameter to stretch the specimen biaxially. To induce failure to rupture at the center, the specimen was thinned at the center of the hole as follows: the specimen was frozen while being compressed with metal plates having holes, which were 3 mm in diameter at their centers; the specimen was then sliced at 50-μm intervals and thawed. Results The ratio of the thickness at the center to the peripheral area was 99.5% for uncompressed specimens. The ratio decreased with an increase in the compression ratio εc and was 47.3% for specimens with εc = 40%. All specimens could be stretched until failure to rupture. The probability for crack initiation within the cylinder was specimens with εc 30%, respectively. Among specimens ruptured within the cylinder, 93% of those obtained from the mid-media showed crack initiation at the thin center area. Conclusions Aortic tissues were successfully stretched biaxially until failure, and their crack initiation points were successfully observed under a microscope. This could be a very useful and powerful method for clarifying the mechanism of aortic rupture. We are planning to use this technique for a detailed investigation of events occurring at the point of failure when the crack initiates in the aortic aneurysm wall. PMID:23305508

  2. Bifurcations in biaxially stretched highly non-linear materials under normal electric fields (United States)

    Diaz-Calleja, R.; Llovera-Segovia, P.; Quijano-López, A.


    A study of the effect of the combined action of mechanical and electrical force fields in biaxially stretched slabs has been carried out. Samples of VHB 4910, a dielectric elastomer whose stress-strain behaviour can be fitted well to an Ogden constitutive equation, have been chosen. The analysis show that bifurcation appearance crucially depends on both the configuration of the system sample-electrodes and the parameters of the empirical model.

  3. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew


    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  4. On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel-Gasser-Ogden Material

    Directory of Open Access Journals (Sweden)

    Narjes eMomeni Shahraki


    Full Text Available Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disc. Finite element models of a functional spinal unit (FSU that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses and strains, etc. due to the dissimilarity between the two sets of material properties (uniaxial and biaxial. Based on the analyses, the biaxial constants simulations resulted in better agreements with the in-vitro and in-vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions.

  5. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator (United States)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon


    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  6. A novel constrained H2optimization algorithm for mechatronics design in flexure-linked biaxial gantry. (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong


    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. High-accuracy biaxial optical extensometer based on 2D digital image correlation (United States)

    Zhu, Feipeng; Gong, Yan; Bai, Pengxiang; Jiang, Zhencheng; Lei, Dong


    In two-dimensional digital image correlation (2D-DIC), the optical axis of the camera must be exactly perpendicular to the object surface to avoid the generation of out-of-plane displacement, which leads to low strain accuracy. In this work, we first studied the strain accuracy of a common optical extensometer when the optical axis of the camera is not perpendicular to the specimen surface. Derivation reveals that even a very small oblique angle θ will introduce a considerable strain error and that an opposite oblique angle θ generates an opposite strain error of the same magnitude. Therefore, taking the strain average of these two optical extensometers can almost entirely eliminate such effect of non-perpendicularity, which has the same form as the optical extensometer realized by dual-reflector imaging. Because the transverse strain of a specimen is less than its axial strain, the measurement of transverse strain requires higher strain-measurement accuracy. With the aid of a self-designed right-angled apparatus, we conveniently extend this 1D extensometer to a 2D situation, which is called the biaxial optical extensometer. Uniaxial tensile tests of a stainless-steel specimen are conducted to evaluate the strain accuracy of the biaxial optical extensometer quantitatively. Experimental results show that the transverse and axial strains obtained using the proposed biaxial extensometer are in good agreement with those obtained using strain gauges and that the proposed extensometer achieves higher strain accuracy compared to the 3D-DIC extensometer.

  8. Understanding Nonlinear Dielectric Properties in a Biaxially Oriented Poly(vinylidene fluoride) Film at Both Low and High Electric Fields. (United States)

    Li, Yue; Ho, Janet; Wang, Jianchuan; Li, Zhong-Ming; Zhong, Gan-Ji; Zhu, Lei


    Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next generation high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. For fundamental nonlinear dielectric constants at low fields (dielectric spectroscopy (HVBDS) was accurate enough to measure up to the third harmonics. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ≈ 70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α → δ → β) phase transformations. By using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from that of the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude.

  9. Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer (United States)

    Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.


    In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.

  10. Nonlinear mathematical model for a biaxial MOEMS scanning mirror (United States)

    Ma, Yunfei; Davis, Wyatt O.; Ellis, Matt; Brown, Dean


    In this paper, a nonlinear mathematic model for Microvision's MOEMS scanning mirror is presented. The pixel placement accuracy requirement for scanned laser spot displays translates into a roughly 80dB signal to noise ratio, noise being a departure from the ideal trajectory. To provide a tool for understanding subtle nonidealities, a detailed nonlinear mathematical model is derived, using coefficients derived from physics, finite element analysis, and experiments. Twelve degrees of freedom parameterize the motion of a gimbal plate and a suspended micromirror; a thirteenth is the device temperature. Illustrations of the application of the model to capture subtleties about the device dynamics and transfer functions are presented.

  11. The effect of slurry preparation methods on biaxial flexural strength of dental porcelain. (United States)

    Pelaez-Vargas, Alejandro; Dussan, Jaime A; Restrepo-Tamayo, Luis F; Paucar, Carlos; Ferreira, Jorge A; Monteiro, Fernando J


    One-step and incremental mixing procedures are currently used to produce dental ceramic pastes. In the ceramic industry, high quality is obtained using one-step mixing, but in dentistry, the best method has not been yet determined. The purpose of this study is to evaluate the effects of 2 mixing techniques on the biaxial flexural strength and microstructure of dental porcelain. Feldspathic porcelain discs (2 × 15 mm in diameter) were produced and divided according to the ceramic paste preparation method, powder-liquid incremental mixing group (n=50) or one-step mixing, as a control group (n=50). Specimens were tested for biaxial flexural strength and characterized using porosimetry, relative humidity, SEM/EDS, XRD, and FT-IR analyses. Statistical analysis was conducted using Weibull statistics. The Weibull modulus, characteristic strength and relative humidity were compared between groups, using Student's t-test and Mann-Whitney U test (α=.05). The powder-liquid incremental mixing group showed significantly higher values (SD) of Weibull modulus (6.74 (0.70), P<.001) and characteristic strength (79.87 (2.01) MPa, P<.001) when compared to the one-step mixing group (4.94 (0.94) and 75.95 (2.61) MPa). Significantly lower mean (SD) relative humidity values (P=.009) were found for powder-liquid incremental mixing group (20% (0.5%)) compared to one-step mixing group (22% (1%)). XRD spectra showed that the one-step mixing group produced higher amounts of the amorphous phase. Specimens produced by the incremental mixing technique showed higher biaxial flexural strength than one-step mixing. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  12. Control of biaxial strain in single-layer Molybdenite using local thermal expansion of the substrate


    Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T; Schüller, C.; Korn, T.


    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllabl...

  13. Ferromagnetism enhanced by structural relaxation of biaxially compressed LaCoO3 films (United States)

    Mehta, Virat; Suzuki, Yuri


    Epitaxial LaCoO3 films were synthesized on LaAlO3 substrates to explore the role of epitaxial strain and structure on the ferromagnetism observed in these biaxially compressed films. Coherent strain and tetragonal structure were only achieved in thin film samples grown using higher energy densities. The strain relaxed with increasing thickness and was accompanied by increasing mosaic spread. Higher magnetization values were consistently seen in fully relaxed films grown using lower laser energy density. These results suggest that epitaxial strain is not the only factor determining the ferromagnetism and that the microstructure and defects may play a significant role.

  14. Band offsets for biaxially and uniaxially stressed silicon-germanium layers with arbitrary substrate and channel orientations

    Energy Technology Data Exchange (ETDEWEB)

    Eneman, Geert; Roussel, Philippe; Brunco, David Paul; Collaert, Nadine; Mocuta, Anda; Thean, Aaron [Imec, Kapeldreef 75, 3001 Heverlee (Belgium)


    The conduction and valence band offsets between a strained silicon-germanium layer and a silicon-germanium substrate are reported for arbitrary substrate and channel crystal orientations. The offsets are calculated both for the case of biaxial stress, corresponding approximately to the stress state of a thin strained channel in a planar field-effect transistor (FET), and for uniaxial stress, which is the approximate stress state for strained channels in a FinFET configuration. Significant orientation dependence is found for the conduction band offset, overall leading to the strongest electron quantum confinement in biaxial-tensile stressed channels on {100}-oriented substrates, and uniaxial-tensile stressed channels in the 〈100〉 and 〈110〉 directions. For biaxially stressed layers on {111} substrates, the conduction band offset is significantly smaller than for {100} or {110} directions. For the valence band offset, the dependence on crystal orientation is found to be small.

  15. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi


    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  16. Determination of optical constants of a biaxially anisotropic film by standard multiangle monochromatic ellipsometry (United States)

    Sopinskii, N. V.


    Possibilities of standard multiangle monochromatic ellipsometry in the determination of parameters of a uniform biaxially anisotropic layer are studied for the case of an arbitrary orientation of the two principal axes in the plane of incidence of the light beam and perpendicularity of the third axis to the plane of incidence. Using numerical simulation, it has been found that the measurement accuracy that is necessary in the determination of all the three principal components of the dielectric permittivity tensor ɛ and tilt angle of the axes using only angular dependences of ellipsometric parameters must be no worse than 0.0001°, which is far beyond the accuracy limits provided by present-day ellipsometers. If the tilt angle is known, standard multiangle monochromatic ellipsometry provides the determination of thickness and all three principal components of the dielectric permittivity tensor. This method allows one to determine the layer thickness and tensor component for the axis perpendicular to the plane of incidence, as well as the average value of components for the axes lying in the plane of incidence without involving the data about the tilt angle of the axes. This is demonstrated by an example of experimental data for biaxially anisotropic SiO x films obtained by oblique deposition of silicon monoxide SiO evaporated in vacuum.

  17. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin


    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  18. Time-evolving collagen-like structural fibers in soft tissues: biaxial loading and spherical inflation (United States)

    Topol, Heiko; Demirkoparan, Hasan; Pence, Thomas J.; Wineman, Alan


    This work considers a previously developed constitutive theory for the time dependent mechanical response of fibrous soft tissue resulting from the time dependent remodeling of a collagen fiber network that is embedded in a ground substance matrix. The matrix is taken to be an incompressible nonlinear elastic solid. The remodeling process consists of the continual dissolution of existing fibers and the creation of new fibers. Motivated by experimental reports on the enzyme degradation of collagen fibers, the remodeling is governed by first order chemical kinetics such that the dissolution rate is dependent upon the fiber stretch. The resulting time dependent mechanical response is sensitive to the natural configuration of the fibers when they are created, and different assumptions on the nature of the fiber's stress free state are considered here. The response under biaxial loading, a type of loading that has particular significance for the characterization of biological materials, is studied. The inflation of a spherical membrane is then analyzed in terms of the equal biaxial stretch that occurs in the membrane approximation. Different assumptions on the natural configuration of the fibers, combined with their time dependent dissolution and reforming, are shown to emulate alternative forms of creep and relaxation response. This formal similarity to viscoelastic phenomena occurs even though the underlying mechanisms are fundamentally different from the mechanism of macromolecular reconfiguration that one typically associates with viscoelastic response.

  19. Design and validation of a bi-axial loading bioreactor for mechanical stimulation of engineered cartilage. (United States)

    Yusoff, Norwahida; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda


    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Growth of YBCO films on MgO-based rolling-assisted biaxially textured substrates templates

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans; Aytug, T; Zhai, H Y; Heatherly, L; Goyal, A; Christen, D K [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)


    We have developed a simple alternative buffer layer architecture for the rolling-assisted biaxially textured substrates (RABiTS) approach. Buffer layers with both oxygen and metal diffusion barrier properties are of interest. Cube textured magnesium oxide MgO buffers were grown directly on biaxially textured Ni and Ni-W3 at.% substrates using electron beam evaporation. We have also grown epitaxial MgO layers on 2 m long textured Ni-W3 at.% tapes in a reel-to-reel e-beam evaporation. Highly textured LaMnO{sub 3} (LMO) buffers were grown on MgO-buffered Ni substrates using rf sputtering. MgO and LMO buffers have been proved to be good oxygen diffusion barriers and Ni diffusion barriers, respectively. YBCO films with a J{sub c} of 1 x 10{sup 6} A cm{sup -2} at 77 K and self-field were grown on this newly developed architecture of LMO/MgO/Ni using pulsed laser deposition.

  1. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    Directory of Open Access Journals (Sweden)

    Xue-wei Liu


    Full Text Available This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C. On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the propagation paths are affected by the loading condition obviously. Then, by adopting acoustic emission (AE location technique, AE event localization characteristics in the process of loading are investigated. The locations of AE events are in good agreement with the macroscopic fracture propagation path. Finally, the micromechanism of macroscopic fracture propagation under uniaxial and biaxial compression conditions is analyzed, and the fracture propagation can be concluded as a result of microdamage accumulation inside the material. The results of this paper are helpful for theory and engineering design of the fractured rock mass.

  2. Stochastic Response Characteristic and Equivalent Damping of Weak Nonlinear Energy Dissipation System under Biaxial Earthquake Action

    Directory of Open Access Journals (Sweden)

    Yu Xia


    Full Text Available The random response characteristic of weak nonlinear structure under biaxial earthquake excitation is investigated. The structure has a SDOF (single degree of freedom with supporting braces and viscoelastic dampers. First, it adopts integral constitutive relation and establishes a differential and integral equations of motion. Then, according to the principle of energy balance, the equation is linearized. Finally, based on the stochastic averaging method, the general analytical solution of the variance of the displacement and velocity response and the equivalent damping is deduced and derived. At the same time, the joint probability density function of the amplitude and phase and displacement and velocity of the energy dissipation structure are also given. The dynamic characteristics of a structure with viscoelastic dampers are determined as a solution to the variance of displacement response, so the equivalent damping is taken into consideration as a solution to replace the original nonlinear damping. It means it has established a unified analytical solution of stochastic response analysis and equivalent damping of a SDOF nonlinear dissipation structure with the brace under biaxial earthquake action in this paper.

  3. Fracture analysis of stiffened panels under biaxial loading with widespread cracking (United States)

    Newman, J. C., Jr.; Dawicke, D. S.


    An elastic-plastic finite-element analysis with a critical crack-tip-opening angle (CTOA) fracture criterion was used to model stable crack growth and fracture of 2024-T3 aluminum alloy (bare and clad) panels for several thicknesses. The panels had either single or multiple-site damage (MSD) cracks subjected to uniaxial or biaxial loading. Analyses were also conducted on cracked stiffened panels with single or MSD cracks. The critical CTOA value for each thickness was determined by matching the failure load on a middle-crack tension specimen. Comparisons were made between the critical angles determined from the finite-element analyses and those measured with photographic methods. Predicted load-against-crack extension and failure loads for panels under biaxial loading, panels with MSD cracks, and panels with various number of stiffeners were compared with test data, whenever possible. The predicted results agreed well with the test data even for large-scale plastic deformations. The analyses were also able to predict stable tearing behavior of a large lead crack in the presence of MSD cracks. The analyses were then used to study the influence of stiffeners on residual strength in the presence of widespread fatigue cracking. Small MSD cracks were found to greatly reduce the residual strength for large lead cracks even for stiffened panels.

  4. Biaxial-stress-driven full spin polarization in ferromagnetic hexagonal chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang-Bo; Li, Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bang-Gui, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)


    It is important to spintronics to achieve fully-spin-polarized magnetic materials that are stable and can be easily fabricated. Here, through systematical density-functional-theory investigations, we achieve high and even full spin polarization for carriers in the ground-state phase of CrTe by applying tensile biaxial stress. The resulting strain is tensile in the xy plane and compressive in the z axis. With the in-plane tensile strain increasing, the ferromagnetic order is stable against antiferromagnetic fluctuations, and a half-metallic ferromagnetism is achieved at an in-plane strain of 4.8%. With the spin-orbit coupling taken into account, the spin polarization is equivalent to 97% at the electronic transition point, and then becomes 100.0% at the in-plane strain of 6.0%. These make us believe that the full-spin-polarized ferromagnetism in this stable and easily-realizable hexagonal phase could be realized soon, and applied in spintronics. - Highlights: • Full spin polarization in the hexagonal ground-state phase of CrTe by biaxial stress. • The stress produces in-plane tensile strain and perpendicular compressive strain. • Reliable electronic structure is calculated with improved exchange functional. • Spin polarization is calculated with spin-orbit coupling taken into account.

  5. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy


    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  6. Assessment of residual ultimate strength of cracked plates under biaxial compression

    Directory of Open Access Journals (Sweden)

    LU Yabing


    Full Text Available [Objectives] Such ship hull structures as inner bottom plates always bear complex loads involving the longitudinal bending stress and transverse in-plane stress transferred from the ship's side plates under water pressure. Additionally,the cracks that are likely to occur in welded joints and local stress concentration areas degrade the load bearing capacity of ship plates,so it is very important to assess the ultimate strength of cracked plates under biaxial compression. [Methods] First,the qualitative expression of the residual ultimate strength of cracked hull plates is deduced in theory. Next,the factors that influence residual ultimate strength are investigated by carrying out a series of Finite Element Analyses,including the length and inclined angle of the crack,aspect ratio and slenderness ratio of ship plate,and ratio between transverse and longitudinal in-plane stress,and an approach for the effective projected length of an inclined crack is obtained. Based on the numerical results,a simple empirical formula is proposed to calculate the residual ultimate strength of central cracked hull plates under biaxial compression.[Results] According to a relative error analysis,the caculated results has higher accuracy by the proposed formula,[Conclusions] whick can be used to accurately calculate the longitudinal ultimate strength of inner bottom plates.

  7. Dynamic instability of dielectric elastomer actuators subjected to unequal biaxial prestress (United States)

    Sharma, Atul Kumar; Bajpayee, S.; Joglekar, D. M.; Joglekar, M. M.


    The paper presents a Hamiltonian approach for extracting the dynamic instability parameters of homogeneously deforming dielectric elastomer actuators subjected to an unequal biaxial prestress, and driven by a suddenly applied electric load. The approach relies on setting up the balance between the kinetic, strain, and electrostatic energy at the point of maximum overshoot in an oscillation cycle. The equation of the stagnation curve, obtained by invoking aforestated statement of energy-balance, is operated upon by the condition of instability to determine the instability parameters. The underlying principles of the approach are elucidated by considering the Ogden family of hyperelastic material models. The approach is however portrayed generically, and hence, can be extended to the other hyperelastic material models of interest. The estimates of the dynamic instability parameters are corroborated by examining the saddle-node bifurcation points in the time-history response obtained by integrating the equation of motion. A parametric study is conducted to bring out the effect of unequal biaxial prestress, and the trends of variation of the critical electric field and the thickness-stretch on the onset of dynamic instability are presented. A quantitative comparison with the static instability parameters reveals that the dynamic instability gets triggered for electric fields that are lower than those corresponding to the static instability. In contrast, the maximum stretch experienced by the actuator at the dynamic instability is significantly higher than that at the static instability. The crucial inferences can find their potential use in the design of DEAs subjected to a transient motion.

  8. Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery. (United States)

    Amini Khoiy, Keyvan; Abdulhai, Sophia; Glenn, Ian C; Ponsky, Todd A; Amini, Rouzbeh


    Intestinal malrotation places pediatric patients at the risk of midgut volvulus, a complication that can lead to ischemic bowel, short gut syndrome, and even death. Even though the treatments for symptomatic patients of this complication are clear, it is still a challenge to identify asymptomatic patients who are at a higher risk of midgut volvulus and decide on a suitable course of treatment. Development of an accurate computerized model of this intestinal abnormality could help in gaining a better understanding of its integral behavior. To aid in developing such a model, in the current study, we have characterized the biaxial mechanical properties of the porcine small bowel mesentery. First, the tissue stress-strain response was determined using a biaxial tensile testing equipment. The stress-strain data were then fitted into a Fung-type phenomenological constitutive model to quantify the tissue material parameters. The stress-strain responses were highly nonlinear, showing more compliance at the lower strains following by a rapid transition into a stiffer response at higher strains. The tissue was anisotropic and showed more stiffness in the radial direction. The data fitted the Fung-type constitutive model with an average R-squared value of 0.93. An averaging scheme was used to produce a set of material parameters which can represent the generic mechanical behavior of the tissue in the models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of surface treatments on the biaxial flexural strength, phase transformation, and surface roughness of bilayered porcelain/zirconia dental ceramics. (United States)

    Bankoğlu Güngör, Merve; Yılmaz, Handan; Karakoca Nemli, Seçil; Turhan Bal, Bilge; Aydın, Cemal


    Veneered zirconia restorations are widely used in prosthetic applications. However, these restorations often fail because of chipping of the veneer porcelain. Surface treatments of zirconia core materials may affect the connection between the 2 layers. The purpose of this study was to evaluate the effect of surface treatments on the biaxial flexural strength, phase transformation, and mean surface roughness of different bilayered porcelain/zirconia ceramics. Forty disk-shaped specimens were obtained for each material (Kavo and Noritake) and divided into 4 (n=10) groups (control, airborne-particle abraded, ground, and ground and airborne-particle abraded). Airborne-particle abrasion was performed with 110-μm Al2O3 particles for 15 seconds and at 400 kPa. Diamond rotary instruments with 100-μm grain size were used for grinding. The monoclinic phase transformation and surface roughness of the specimens were measured. Then, the specimens were veneered and subjected to a biaxial flexural strength test to calculate the Weibull moduli (m values) and the stresses occurring at the layers, outer surfaces of the bilayer, and interfaces of the layers. The Kavo airborne-particle abraded group showed higher strength values in both layers (Pveneer layers. According to the phase analysis, significantly higher Xm values were found in the ground and airborne-particle abraded groups for both materials (Pzirconia ceramics differently. Surface treatments increased the relative monoclinic phase content and average surface roughness. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. First principles calculations of La2O3/GaAs interface properties under biaxial strain and hydrostatic pressure (United States)

    Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan


    La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.

  11. Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting

    NARCIS (Netherlands)

    Molina, G. Fabian; Cabral, R.J.; Mazzola, I.; Lascano, L. Brain; Frencken, J.E.F.M.


    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label,

  12. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel


    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using...

  13. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test (United States)

    Kumar, Pradeep; Dutta, B. K.; Chattopadhyay, J.


    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (JIC) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine JIC using available empirical correlations. The correlations between JIC and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (εqf) and crack initiation toughness (Ji) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (εqf) and analysis of TPB specimen generated value of Ji. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in Ji for the same value of biaxial fracture strain (εqf) within a limit. Such variation in the value of Ji has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get Ji by using newly developed correlation. A reasonable

  14. Structural and electrical properties of biaxially textured YBa{sub 2}Cu{sub 3}O{sub 7-x} thin films on buffered Ni-based alloy substrates.

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Ma, B.; Jee, Y. A.; Fisher, B. L.; Balachandran, U.


    Oxide high-T{sub c} superconducting wires and tapes with high critical current density (J{sub c}) are essential in future electrical power applications. Recently, YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) thin films grown on Ni-based alloy tapes have attracted intense interest because of their promise for these applications. In order to achieve high J{sub c}, buffer layers are necessary for fabricating biaxially aligned YBCO thin films. In our studies, yttria-stabilized zirconia (YSZ) layers were deposited on Ni-based alloy substrate by ion-beam assisted deposition, and CeO{sub 2} buffer layers were subsequently deposited on the YSZ layer by pulsed laser deposition (PLD) or electron beam evaporation. In addition, MgO layers were deposited on Ni-based alloy substrates by inclined substrate deposition. Finally, biaxially textured YBCO thin films were deposited on these buffered metallic substrates by PLD under optimized conditions. The orientation and in-plane textures of YBCO and the buffer layers were characterized by X-ray diffraction {Theta}/2{Theta} scan, {phi}-scan, and pole figure analysis. The superconductive transition features were examined by measuring inductive T{sub c} and transport J{sub c}.

  15. Dielectric elastomer generator with equi-biaxial mechanical loading for energy harvesting (United States)

    Huang, Jiangshui; Shian, Samuel; Suo, Zhigang; Clarke, David R.


    Dielectric elastomer generators (DEGs) are attractive candidates for harvesting electrical energy from mechanical work since they comprise relatively few moving parts and large elastomer sheets can be mass produced. Successfully demonstrations of the DEG prototypes have been reported from a diverse of energy sources, including ocean waves, wind, flowing water and human movement. The energy densities achieved, however, are still small compared with theoretical predictions. We show that significant improvements in energy density (550 J/kg with an efficiency of 22.1%), can be achieved using an equi-biaxial mechanical loading configuration, one that produces uniform deformation and maximizes the capacitance changes. Analysis of the energy dissipations indicates that mechanical losses, which are caused by the viscous losses both within the acrylic elastomer and within the thread materials used for the load transfer assembly, limits the energy conversion efficiency of the DEG. Addressing these losses is suggested to increase the energy conversion efficiency of the DEG.

  16. Impacts of virtual substrate doping on high frequency characteristics of biaxially strained Si PMOSFET (United States)

    Khatami, Mohammad Mahdi; Shalchian, Majid; Kolahdouz, Mohammadreza


    Formation of a parasitic channel in biaxially strained Si channel p-MOSFET, degrades performance of the device. In this paper the effect of SiGe (virtual substrate) doping on formation of parasitic channel and high frequency characteristics of the strained MOSFET has been studied. Simulation results, indicate that increasing virtual substrate's doping from e.g. 4 × 1015 cm-3 to 4 × 1017 cm-3 effectively eliminates parasitic channel by reducing hole concentration from 1 × 1017 cm-3 to 1 × 1011 cm-3 in the parasitic channel. This improves MOSFET's characteristics including parasitic capacitances and channel length modulation. Also it has been demonstrated that the highest unity-gain bandwidth might be achieved at doping level of 4 × 1017 cm-3.

  17. DIC-aided biaxial fatigue tests of a 304L steel (United States)

    Poncelet, M.; Barbier, G.; Raka, B.; Courtin, S.; Desmorat, R.; Le-Roux, J. C.; Vincent, L.


    Several biaxial fatigue tests are conducted up to 106 cycles at room temperature in the context of a collaboration LMT-Cachan / EDF / AREVA / SNECMA / CEA. Malteses cross specimens of 304L steel, designed to initiate crack in the bulk, are loaded by a triaxial testing machine. A Digital Image Correlation technique is used to measure strain during loading and detect crack initiation early. A special optical assembly and a stroboscopic sampling method are set up in this purpose. Several types of loadings are performed: equibiaxial with a loading ratio R = 0.1, equibiaxial with loading ratio R = -1, pseudo uniaxial (cyclic loading at R= 0.1 in one direction and constant loading in the other). First results are commented.

  18. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning. (United States)

    Wang, Thomas D; Contag, Christopher H; Mandella, Michael J; Chan, Ning Y; Kino, Gordon S


    We present a novel confocal microscope that has dual-axis architecture and biaxial postobjective scanning for the collection of fluorescence images from biological specimens. This design uses two low-numerical-aperture lenses to achieve high axial resolution and long working distance, and the scanning mirror located distal to the lenses rotates along the orthogonal axes to produce arc-surface images over a large field of view (FOV). With fiber optic coupling, this microscope can potentially be scaled down to millimeter dimensions via microelectromechanical systems (MEMS) technology. We demonstrate a benchtop prototype with a spatial resolution < or =4.4 microm that collects fluorescence images with a high SNR and a good contrast ratio from specimens expressing GFP. Furthermore, the scanning mechanism produces only small differences in aberrations over the image FOV. These results demonstrate proof of concept of the dual-axis confocal architecture for in vivo molecular and cellular imaging.

  19. DIC-aided biaxial fatigue tests of a 304L steel

    Directory of Open Access Journals (Sweden)

    Le-Roux J.C.


    Full Text Available Several biaxial fatigue tests are conducted up to 106 cycles at room temperature in the context of a collaboration LMT-Cachan / EDF / AREVA / SNECMA / CEA. Malteses cross specimens of 304L steel, designed to initiate crack in the bulk, are loaded by a triaxial testing machine. A Digital Image Correlation technique is used to measure strain during loading and detect crack initiation early. A special optical assembly and a stroboscopic sampling method are set up in this purpose. Several types of loadings are performed: equibiaxial with a loading ratio R = 0.1, equibiaxial with loading ratio R = –1, pseudo uniaxial (cyclic loading at R= 0.1 in one direction and constant loading in the other. First results are commented.

  20. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Geandier, G. [Departement PMM, Institut Pprime, UPR 3346 CNRS, Universite de Poitiers-ENSMA, SP2MI, Teleport 2, Boulevard Marie et Pierre Curie, BP 30179-86962 Futuroscope Chasseneuil Cedex (France); Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse (France); Thiaudiere, D.; Bouaffad, A. [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Randriamazaoro, R. N.; Chiron, R.; Castelnau, O.; Faurie, D. [LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse (France); Djaziri, S.; Lamongie, B.; Diot, Y.; Le Bourhis, E.; Renault, P. O.; Goudeau, P. [Departement PMM, Institut Pprime, UPR 3346 CNRS, Universite de Poitiers-ENSMA, SP2MI, Teleport 2, Boulevard Marie et Pierre Curie, BP 30179-86962 Futuroscope Chasseneuil Cedex (France); Hild, F. [LMT Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)


    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  1. Histology and Biaxial Mechanical Behavior of Abdominal Aortic Aneurysm Tissue Samples. (United States)

    Pancheri, Francesco Q; Peattie, Robert A; Reddy, Nithin D; Ahamed, Touhid; Lin, Wenjian; Ouellette, Timothy D; Iafrati, Mark D; Luis Dorfmann, A


    Abdominal aortic aneurysms (AAAs) represent permanent, localized dilations of the abdominal aorta that can be life-threatening if progressing to rupture. Evaluation of risk of rupture depends on understanding the mechanical behavior of patient AAA walls. In this project, a series of patient AAA wall tissue samples have been evaluated through a combined anamnestic, mechanical, and histopathologic approach. Mechanical properties of the samples have been characterized using a novel, strain-controlled, planar biaxial testing protocol emulating the in vivo deformation of the aorta. Histologically, the tissue ultrastructure was highly disrupted. All samples showed pronounced mechanical stiffening with stretch and were notably anisotropic, with greater stiffness in the circumferential than the axial direction. However, there were significant intrapatient variations in wall stiffness and stress. In biaxial tests in which the longitudinal stretch was held constant at 1.1 as the circumferential stretch was extended to 1.1, the maximum average circumferential stress was 330 ± 70 kPa, while the maximum average axial stress was 190 ± 30 kPa. A constitutive model considering the wall as anisotropic with two preferred directions fit the measured data well. No statistically significant differences in tissue mechanical properties were found based on patient gender, age, maximum bulge diameter, height, weight, body mass index, or smoking history. Although a larger patient cohort is merited to confirm these conclusions, the project provides new insight into the relationships between patient natural history, histopathology, and mechanical behavior that may be useful in the development of accurate methods for rupture risk evaluation.

  2. Constitutive modeling of human femoropopliteal artery biaxial stiffening due to aging and diabetes. (United States)

    Desyatova, Anastasia; MacTaggart, Jason; Kamenskiy, Alexey


    Atherosclerotic obstructive disease of the femoropopliteal artery (Peripheral Arterial Disease, PAD) is notorious for high treatment failure rates. Older age and diabetes mellitus (DM) are among the major risk factors for PAD, and both are associated with increased arterial stiffness. Our goal was to develop a constitutive model describing multiaxial arterial stiffening, and use it to portray aging of normal and diabetic human femoropopliteal arteries (FPA). Fresh human FPAs (n=744) were obtained from 13-82-year-old donors. Arteries were tested using planar biaxial extension, and their behavior was modeled with a constitutive relation that included stiffening functions of age. FPA diameter, wall thickness, circumferential, and longitudinal opening angles increased with age, while longitudinal pre-stretch decreased. Diameter and circumferential opening angle did not change with age in subjects with DM. Younger FPAs were more compliant longitudinally but became more isotropic with age. Arteries with DM stiffened significantly faster in the circumferential direction than arteries without DM. Constitutive model accurately portrayed orthotropic stiffening with age of both normal and diabetic arteries. Constitutive description of FPA aging contributes to understanding of arterial pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in PAD repair by providing more personalized arterial properties. We have analyzed n=744 human femoropopliteal artery (FPA) specimens using biaxial tensile testing to derive constitutive description of FPA aging in diabetic and non-diabetic subjects. The proposed model allows determination of FPA mechanical properties for subjects of any given age in the range of 13-82years. These results contribute to understanding of FPA pathophysiology and can help improve fidelity of computational models investigating device-artery interaction in peripheral arterial disease repair by providing more

  3. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)


    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  4. Nuclear magnetic resonance spectroscopic investigations of phase biaxiality in the nematic glass of a shape-persistent V-shaped mesogen. (United States)

    Figueirinhas, João L; Feio, Gabriel; Cruz, Carlos; Lehmann, Matthias; Köhn, Christiane; Dong, Ronald Y


    Deuterium and carbon-13 NMR spectroscopy were used to study both the high temperature uniaxial nematic and the low temperature biaxial nematic glass of a shape-persistent V-shaped mesogen. It was found that biaxial ordering determined in the domains of the latter has symmetry lower than D(2h) and is compatible with C(2h) symmetry or lower. In particular, elements of the ordering matrix including biaxial phase order parameters were determined from (2)H NMR at two temperatures, one just below the glass transition, and the other deep inside the biaxial glass, which allowed for the characterization of the dominant molecular motions at these temperatures. (13)C NMR magic angle spinning sideband patterns, collected both in the high temperature nematic phase and in the nematic glass, clearly show the difference between them in terms of the phase symmetry.

  5. Biaxially Textured Copper and Copper-Iron Alloy Substrates for Use in YBa2Cu3O7-x Coated Conductors

    National Research Council Canada - National Science Library

    Varanasi, Chakrapani V; Barnes, Paul N; Yust, Nicholas A


    Copper and Cu?Fe (Fe ̃ 2.35 wt%) alloy substrates were thermo-mechanically processed and the biaxial texture development, magnetic properties, yield strength, and electrical resistivity were studied and compared to determine...

  6. Limited thermal transport in rippled graphene induced by bi-axial strain for thermoelectric applications (United States)

    Park, Kyeong Hyun; Ravaioli, Umberto


    Among efforts made to improve thermoelectric efficiency, the use of structurally modified graphene nanomaterials as thermoelectric matter are one of the promising strategies owing to their fascinating physical and electrical properties, and these materials are anticipated to be less thermally conductive than regular graphene structures, as a result of an additional phonon scattering introduced at the modified surfaces. In this study, we explore the thermal conductivity behaviors of strain-induced rippled graphene sheets by varying the ripple amplitude, periodicity, and dimensions of the structure. We introduce a technique which enables creation of a graphene sheet with evenly distributed ripples in molecular dynamics simulation, and the Green-Kubo linear response theory is used to calculate the thermal conductivity of the structures of interest. The results reveal the reduction of thermal conductivity with the greater degree of strain, the smaller system dimension, and the shorter ripple wavelength, which, in turn, could lead to the thermoelectric efficiency enhancement. This work has significance in that it presents the capability of generating repeated and controllable patterns in molecular dynamics, and so, it enables the atomic-level transport study in the regularly patterned two-dimensional surface or in any structures with a specified degree of strain.

  7. Band gap modulation of mono and bi-layer hexagonal ZnS under transverse electric field and bi-axial strain: A first principles study (United States)

    Rai, D. P.; Kaur, Sumandeep; Srivastava, Sunita


    Density functional theory has been employed to study the electronic and mechanical properties of the monolayer and bilayer ZnS. AB stacked ZnS bilayer is found to be energetically more favorable over the AA stacked ZnS bilayer. The electronic bandgap decreases on moving from monolayer to bilayer. Application of positive transverse electric field in AA/AB stacked bilayers leads to a semiconductor to metal transition at 1.10 V/Å. Reversed polarity of electric field, on the other hand, leads to an asymmetric behavior of the bandgap for AB stacking while the behavior of the bandgap in AA stacking is polarity independent. The strong dependency of bandgap on polarity of electric field in AB stacked ZnS bilayer is due to the balancing of external field with the induced internal field which arises due the electronegativity and heterogeneity in the arrangements of atoms. The electronic structure varies with the variation of applied biaxial strain (compression/tensile). We report an increase in band gap in both single and double layers under compression up to -8.0%, which can be attributed to greater superposition of atomic orbitals (Zn-d and S-p hybridization). We expect that our results may stimulate more theoretical and experimental work on hexagonal multi-layers of ZnS employing external field (temperature, pressure, field etc.) for future applications of our present work.

  8. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios (United States)


    33]. Aluminum alloy is used in this study and it is most common metals that being used in the aircraft industries , because of its light weight...focus of this research, using fracture mechanics approach. A specimen of 7075-T6 aluminum alloy was examined under in-plane biaxial loading in...because CF is the mechanical breakdown of the materials like the aluminum alloys used in the construction of the structures when they are in a

  9. A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading


    Hugo Rodrigues; Humberto Varum; Antonio Arede; Anibal Costa


    The hysteretic behaviour of RC columns has been object of many experimental studies over the past years. However, the majority of these studies are focused on unidirectional loading. An experimental program was carried out where 24 columns were tested for different loading histories, under uniaxial and biaxial conditions. The experimental results are presented in this paper and are discussed in terms of global column behaviour, and particularly with regards to energy dissipation and damping c...

  10. Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations

    Directory of Open Access Journals (Sweden)

    Jacques M. Huyghe


    Full Text Available The in vivo mechanics of the annulus fibrosus of the intervertebral disc is one of biaxial rather than uniaxial loading. The material properties of the annulus are intimately linked to the osmolarity in the tissue. This paper presents biaxial relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. The force tracings show that stresses are strongly dependent on time, salt concentration and orientation. The force tracing signature of are sponse to a change instrain, is one of a jumpin stress that relaxes partly as the new strain is maintained. The force tracing signature of a stepwise change in salt concentration is a progressive monotonous change in stress towards a new equilibrium value. Although the number of samples does not allow any definitive quantitative conclusions, the trends may shed light on the complex interaction among the directionality of forces, strains and fiber orientation on one hand, and on the other hand, the osmolarity of the tissue. The dual response to a change in strain is understood as an immediate response before fluid flows in or out of the tissue, followed by a progressive readjustment of the fluid content in time because of the gradient in fluid chemical potential between the tissue and the surrounding solution.A mecânica in vivo do anel fibroso do disco intervertebral é baseada em carregamento biaxial ao invés de uniaxial. As propriedades materiais do anel estão intimamente ligadas à osmolaridade no tecido. O artigo apresenta experimentos de relaxação biaxiais do anel fibroso de um tecido canino sob mudanças abruptas na concentração externa de sal. A assinatura da força devido à mudança brusca de salinidade resulta em uma progressiva e monótona mudança na tensão em direção a um novo valor de equilíbrio. Embora o número de amostras não permita nenhuma conclusão quantitativa, as tendências podem abrir uma luz no entendimento das intera

  11. PZT-Actuated and -Sensed Resonant Micromirrors with Large Scan Angles Applying Mechanical Leverage Amplification for Biaxial Scanning

    Directory of Open Access Journals (Sweden)

    Shanshan Gu-Stoppel


    Full Text Available This article presents design, fabrication and characterization of lead zirconate titanate (PZT-actuated micromirrors, which enable extremely large scan angle of up to 106° and high frequency of 45 kHz simultaneously. Besides the high driving torque delivered by PZT actuators, mechanical leverage amplification has been applied for the micromirrors in this work to reach large displacements consuming low power. Additionally, fracture strength and failure behavior of poly-Si, which is the basic material of the micromirrors, have been studied to optimize the designs and prevent the device from breaking due to high mechanical stress. Since comparing to using biaxial micromirror, realization of biaxial scanning using two independent single-axial micromirrors shows considerable advantages, a setup combining two single-axial micromirrors for biaxial scanning and the results will also be presented in this work. Moreover, integrated piezoelectric position sensors are implemented within the micromirrors, based on which closed-loop control has been developed and studied.

  12. Biaxially textured Mo films with diverse morphologies by substrate-flipping rotation (United States)

    Chen, L.; Lu, T.-M.; Wang, G.-C.


    A class of nanostructured Mo thin films was grown by DC magnetron sputtering using a robust substrate rotation mode called 'flipping rotation'. In this rotation mode, the substrate is arranged to rotate continuously at a fixed speed around an axis lying within and parallel to the substrate. The incident flux is perpendicular to the rotational axis, and the incident flux angle changes continuously. Mo nanostructured films, grown under different rotation speeds with three orders of magnitude spread (ranging from 0.008 to 24 rotation min - 1), different flipping directions (clockwise and counter-clockwise), and different ending deposition angles, were characterized using scanning electron microscopy (SEM) and reflection high energy electron diffraction (RHEED) surface-pole-figure techniques. Despite their very different morphologies, such as 'C'-shaped, 'S'-shaped, and vertically aligned nanorods, the same (110)[1\\bar {1}0] biaxial texture with an average out-of-plane dispersion of ~ 15° was observed. In contrast, we showed that only a fiber-textured Mo film was obtained by using the conventional rotation mode where the oblique incident flux angle was fixed with the substrate rotating around the surface normal.


    Directory of Open Access Journals (Sweden)

    Olha Sushchenko


    Full Text Available Purpose: Operation of attitude and heading reference systems in conditions of autonomy and high accuracy requires usage of gimballed platforms. The goal of the paper is detailed research of such systems kinematics and control moments. As result the full mathematical model of the precision attitude and heading reference system with the biaxial horizontal platform was derived. Methods: Obtaining of the mathematical model is based on the theory of gyros in general and corrected gyro compasses and theory of dynamically tuned gyros in particular. The basic laws of theoretical mechanics including concepts of Euler angles and directional cosines were taken into consideration. Results: The full mathematical model of the attitude and heading reference system is developed. The mathematical models of the vertical gyro and directional gyro as components of the researched system are given.  The simulation results based on the developed models are presented. Conclusions: The mathematical model of the gimballed attitude and heading reference system including the vertical gyro and directional gyro is derived. The detailed expressions for control (correction moments are obtained. The full analysis of the researched system kinematics was carried out. The obtained results can also be useful for design of inertial navigation systems of the wide class.

  14. Design of a Novel Equi-Biaxial Stretcher for Live Cellular and Subcellular Imaging.

    Directory of Open Access Journals (Sweden)

    Jasmin Imsirovic

    Full Text Available Cells in the body experience various mechanical stimuli that are often essential to proper cell function. In order to study the effects of mechanical stretch on cell function, several devices have been built to deliver cyclic stretch to cells; however, they are generally not practical for live cell imaging. We introduce a novel device that allows for live cell imaging, using either an upright or inverted microscope, during the delivery of cyclic stretch, which can vary in amplitude and frequency. The device delivers equi-biaxial strain to cells seeded on an elastic membrane via indentation of the membrane. Membrane area strain was calibrated to indenter depth and the device showed repeatable and accurate delivery of strain at the scale of individual cells. At the whole cell level, changes in intracellular calcium were measured at different membrane area strains, and showed an amplitude-dependent response. At the subcellular level, the mitochondrial network was imaged at increasing membrane area strains to demonstrate that stretch can lead to mitochondrial fission in lung fibroblasts. The device is a useful tool for studying transient as well as long-term mechanotransduction as it allows for simultaneous stretching and imaging of live cells in the presence of various chemical stimuli.

  15. Comparisons of planar and tubular biaxial tensile testing protocols of the same porcine coronary arteries (United States)

    Keyes, Joseph T; Lockwood, Danielle R; Utzinger, Urs; Montilla, Leonardo G; Witte, Russell S; Vande Geest, Jonathan P


    To identify the orthotropic biomechanical behavior of arteries, researchers typically perform stretch-pressure-inflation tests on tube-form arteries or planar biaxial testing of splayed sections. We examined variations in finite element simulations (FESs) driven from planar or tubular testing of the same coronary arteries to determine what differences exist when picking one testing technique versus another. Arteries were tested in tube-form first, then tested in planar-form, and fit to a Fung-type strain energy density function. Afterwards, arteries were modeled via finite element analysis looking at stress and displacement behavior in different scenarios (e.g., tube FESs with tube- or planar-driven constitutive models). When performing FESs of tube inflation from a planar-driven constitutive model, pressure-diameter results had an error of 12.3% compared to pressure-inflation data. Circumferential stresses were different between tube- and planar-driven pressure-inflation models by 50.4% with the planar-driven model having higher stresses. This reduced to 3.9% when rolling the sample to a tube first with planar-driven properties, then inflating with tubular-driven properties. Microstructure showed primarily axial orientation in the tubular and opening-angle configurations. There was a shift towards the circumferential direction upon flattening of 8.0 . There was also noticeable collagen uncrimping in the flattened tissue. PMID:23132151

  16. Low-temperature microwave properties of biaxial YAlO3 (United States)

    Carvalho, N. C.; Goryachev, M.; Krupka, J.; Bushev, P.; Tobar, M. E.


    Low-loss crystals with defects due to paramagnetic or rare earth impurity ions are a major area of investigation for quantum hybrid systems at both optical and microwave frequencies. In this work we examine the single-crystal yttrium aluminium perovskite YAlO3 using the whispering gallery mode technique. Multiple resonant microwave modes were measured from room temperature to 20 mK allowing precise characterization of the permittivity tensor at microwave frequencies. We show that it is biaxial and characterize the tensor as a function of temperature with estimated uncertainties below 0.26%. Electron spin resonance spectroscopy was also performed at 20 mK, with transitions identified with zero-field splittings of 16.72 and 9.92 GHz. Spin-photon couplings of order 4.2 and 8.4 MHz were observed for residual levels of concentration, which are stronger than the photon cavity linewidths of 116 kHz but of the same order as the linewidths of the discovered spin transitions.

  17. Four-state straintronics: Ultra low-power collective nanomagnetic computing using multiferroics with biaxial anisotropy (United States)

    D'Souza, Noel; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo


    Two-phase multiferroic nanomagnets, consisting of elastically coupled magnetostrictive/piezoelectric layers, can be endowed with four stable magnetization states by introducing biaxial magnetocrystalline anisotropy in the magnetostrictive layer. These states can encode four logic bits. We show through extensive modeling that dipole coupling between such 4-state magnets, combined with stress sequences that appropriately modulate the energy barriers between the stable states through magnetoelastic coupling, can be used to realize 4-state NOR logic (J. Phys. D: Appl. Phys. 44, 265001 (2011)) as well as unidirectional propagation of logic bits along a ``wire'' of nanomagnets (arXiv:1105.1818). As very little energy is consumed to ``compute'' in such a system, this could emerge as an ultra-efficient computing paradigm with high logic density. We show, by solving the Landau-Lifshitz-Gilbert (LLG) equation, that such nanomagnet arrays can be used for ultrafast image reconstruction and pattern recognition that go beyond simple Boolean logic. The image processing attribute is derived from the thermodynamic evolution in time, without involving any software. This work is supported by the NSF under grant ECCS-1124714 and VCU under PRIP.

  18. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading (United States)

    Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; Li, Jianlin; Simunovic, Srdjan; Turner, John A.; Gorney, Phillip


    Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. The critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. The results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.

  19. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. (United States)

    Peña, Juan A; Martínez, Miguel A; Peña, Estefanía


    In this paper we hypothesize that the layer-separated residual stresses and mechanical properties of layer-separated thoracic aorta arteries may be dependent on arterial location of the vessel. To demonstrate any possible position differences, we measured the axial pre-stretch and opening angle and performed uniaxial and biaxial tests under physiological loads to study the mechanical behavior of both intact and layer-separated porcine aortic samples taken from thoracic region. In addition, we also provided constitutive parameters for each layer that can be used by biomedical engineers for investigating better therapies and developing artery-specific devices. We found that the opening angle for whole artery and adventitia layer are smaller and intima greater for proximal segments than for the distal thoracic ones. For the axial pre-stretch, our results showed significant increased values of the stretch ratios with location. We found that lower thoracic samples are stiffer than upper ones with the most important differences corresponding to those between the proximal and distal behaviors in the circumferential direction. The anisotropy represented by the different circumferential and longitudinal response is more remarkable in lower thoracic aorta. Finally, adventitia and intima samples present a tendency to be stiffer and more isotropic than the corresponding media samples in both directions for upper thoracic aorta and to be more anisotropic for lower thoracic aorta. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device. (United States)

    Bell, B J; Nauman, E; Voytik-Harbin, S L


    Mechanical signals transferred between a cell and its extracellular matrix play an important role in regulating fundamental cell behavior. To further define the complex mechanical interactions between cells and matrix from a multiscale perspective, a biaxial testing device was designed and built. Finite element analysis was used to optimize the cruciform specimen geometry so that stresses within the central region were concentrated and homogenous while minimizing shear and grip effects. This system was used to apply an equibiaxial loading and unloading regimen to fibroblast-seeded tissue equivalents. Digital image correlation and spot tracking were used to calculate three-dimensional strains and associated strain transfer ratios at macro (construct), meso, matrix (collagen fibril), cell (mitochondria), and nuclear levels. At meso and matrix levels, strains in the 1- and 2-direction were statistically similar throughout the loading-unloading cycle. Interestingly, a significant amplification of cellular and nuclear strains was observed in the direction perpendicular to the cell axis. Findings indicate that strain transfer is dependent upon local anisotropies generated by the cell-matrix force balance. Such multiscale approaches to tissue mechanics will assist in advancement of modern biomechanical theories as well as development and optimization of preconditioning regimens for functional engineered tissue constructs. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel


    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  2. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading (United States)

    Cheng, Ron-Bin; Hsu, Su-Yuen


    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  3. The Design of Cruciform Test Specimens for Planar Biaxial Testing of Fabrics for Inflatable Aerodynamic Decelerators (United States)

    Corbin, Cole K.


    A preliminary analytical study was conducted to investigate the effects of cruciform test specimen geometries on strain distribution uniformity in the central gage section under biaxial loads. Three distinct specimen geometries were considered while varying the applied displacements in the two orthogonal directions. Two sets of woven fabric material properties found in literature were used to quantify the influence of specimen geometries on the resulting strain distributions. The uniformity of the strain distribution is quantified by taking the ratio between the two orthogonal strain components and characterizing its gradient across the central area of the gage section. The analysis results show that increasing the specimen s length relative to its width promotes a more uniform strain distribution in the central section of the cruciform test specimen under equibiaxial enforced tensile displacements. However, for the two sets of material properties used in this study, this trend did not necessary hold, when the enforced tensile displacements in the two orthogonal directions were not equal. Therefore, based on the current study, a tail length that is 1.5 times that of the tail width is recommended to be the baseline/initial specimen design.

  4. Analysis of physical, chemical e mechanical properties of wood-particle boards containing biaxially oriented polypropylene

    Directory of Open Access Journals (Sweden)

    Luciana Cristina Soto Herek Rezende


    Full Text Available Considering the increased generation of solid waste and the difficulty of proper final disposal, it is of utmost importance to study the reuse of solid waste, seeking a beneficial alternative for the population and the environment. This study aimed to produce wood particle boards incorporated with different percentage of waste from the manufacture of labels and tags, commonly known as paper shavings, containing biaxially oriented polypropylene (BOPP, aiming its reuse. Physical, chemical and mechanical tests were performed. The difference in density between the materials used to manufacture the boards influenced the production process as well as the amount of waste added. Values of moisture content and thickness swelling remained within the range set by the regulations. The results for water absorption analysis are in agreement with those in the literature on the incorporation of different types of waste in the boards. According to our findings, it was observed the importance of a homogeneous mixture of the materials, and pH control. The incorporation of waste containing BOPP into particle boards may be a promising disposal alternative for this waste, given the development of a by-product that encourages sustainable development.

  5. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.


    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  6. Effect of shallow angles on compressive strength of biaxial and triaxial laminates. (United States)

    Jia, Hongli; Yang, Hyun-Ik


    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  7. Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and Testing (United States)

    D'Alessandro, Kacie Caple

    Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative

  8. Catalytic surface modification of roll-milled poly({epsilon}-caprolactone) biaxially stretched to ultra-thin dimension

    Energy Technology Data Exchange (ETDEWEB)

    Foo, H.L. [Graduate Programme in Bioengineering, National University of Singapore (Singapore); Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Taniguchi, A. [Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Yu, H. [Graduate Programme in Bioengineering, National University of Singapore (Singapore); Department of Physiology, National University of Singapore (Singapore); Okano, T. [Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Institute of Biomedical Engineering, Tokyo Women' s Medical University (Japan); Teoh, S.H. [Graduate Programme in Bioengineering, National University of Singapore (Singapore) and Department of Mechanical Engineering, National University of Singapore (Singapore)]. E-mail:


    A novel roll-milling polymer processing technique along with biaxial stretching was used to fabricate 10 {mu}m thick poly({epsilon}-caprolactone) films. A less invasive collagen surface modification was used, involving a reaction between corona-preactivated membranes and ferrous-containing acrylic acid solution at the low temperature of 42 {sup o}C. Successful modified films were characterized by Toluidine Blue O assay and X-ray photoelectron spectroscopy. Human umbilical vein endothelial cells also showed both higher proliferation rate and differentiated cobblestone morphology on these collagen-immobilized substrates.

  9. Seismic Response Reduction of Structures Equipped with a Voided Biaxial Slab-Based Tuned Rolling Mass Damper


    Shujin Li; Liming Fu; Fan Kong


    This paper proposes a novel tuned mass damper (TMD) embedded in hollow slabs of civil structures. The hollow slabs in this context, also referred to as “voided biaxial reinforced concrete slabs,” feature a large interior space of prefabricated voided modules that are necessary in the construction of this special structural system. In this regard, a tuned rolling mass damper system (“TRoMaDaS”) is newly proposed, in combination with hollow slabs, to act as an ensemble passive damping device mi...

  10. Effect of crosslinking density on biaxial relaxation of SBR by using reduced variables. [Styrene-Butadiene Rubber (United States)

    Arenz, R. J.


    The use of reduced variables to account for the effect of crosslinking density in a styrene-butadiene rubber (SBR) system is demonstrated for general biaxial stress states. Recently published results from stress relaxation tests on five SBR vulcanizates crosslinked to different degrees by tetramethylthiuram disulfide were superposed by using the crosslinking density as a reduction variable. The equilibrium shear modulus calculated from the master relaxation curve at long reduced times was in satisfactory agreement with other results for SBR. The time-axis shifts were related in a linear logarithmic manner to the crosslinking density but had a slope slightly less than values previously reported for elastomer systems.

  11. Biaxial flexural strength and phase transformation of Ce-TZP/Al2O3 and Y-TZP core materials after thermocycling and mechanical loading. (United States)

    Bankoğlu Güngör, Merve; Yılmaz, Handan; Aydın, Cemal; Karakoca Nemli, Seçil; Turhan Bal, Bilge; Tıraş, Tülay


    The purpose of the present study was to evaluate the effect of thermocycling and mechanical loading on the biaxial flexural strength and the phase transformation of one Ce-TZP/Al2O3 and two Y-TZP core materials. Thirty disc-shaped specimens were obtained from each material. The specimens were randomly divided into three groups (control, thermocycled, and mechanically loaded). Thermocycling was subjected in distilled water for 10000 cycles. Mechanical loading was subjected with 200 N loads at a frequency of 2 Hz for 100000 times. The mean biaxial flexural strength and phase transformation of the specimens were tested. The Weibull modulus, characteristic strength, 10%, 5% and 1% probabilities of failure were calculated using the biaxial flexural strength data. The characteristic strengths of Ce-TZP/Al2O3 specimens were significantly higher in all groups compared with the other tested materials (Pstrength of the tested materials.

  12. Complex free-energy landscapes in biaxial nematic liquid crystals and the role of repulsive interactions: A Wang-Landau study (United States)

    Kamala Latha, B.; Murthy, K. P. N.; Sastry, V. S. S.


    General quadratic Hamiltonian models, describing the interaction between liquid-crystal molecules (typically with D2 h symmetry), take into account couplings between their uniaxial and biaxial tensors. While the attractive contributions arising from interactions between similar tensors of the participating molecules provide for eventual condensation of the respective orders at suitably low temperatures, the role of cross coupling between unlike tensors is not fully appreciated. Our recent study with an advanced Monte Carlo technique (entropic sampling) showed clearly the increasing relevance of this cross term in determining the phase diagram (contravening in some regions of model parameter space), the predictions of mean-field theory, and standard Monte Carlo simulation results. In this context, we investigated the phase diagrams and the nature of the phases therein on two trajectories in the parameter space: one is a line in the interior region of biaxial stability believed to be representative of the real systems, and the second is the extensively investigated parabolic path resulting from the London dispersion approximation. In both cases, we find the destabilizing effect of increased cross-coupling interactions, which invariably result in the formation of local biaxial organizations inhomogeneously distributed. This manifests as a small, but unmistakable, contribution of biaxial order in the uniaxial phase. The free-energy profiles computed in the present study as a function of the two dominant order parameters indicate complex landscapes. On the one hand, these profiles account for the unusual thermal behavior of the biaxial order parameter under significant destabilizing influence from the cross terms. On the other, they also allude to the possibility that in real systems, these complexities might indeed be inhibiting the formation of a low-temperature biaxial order itself—perhaps reflecting the difficulties in their ready realization in the laboratory.

  13. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and biodentine. (United States)

    Alhodiry, W; Lyons, M F; Chadwick, R G


    This study evaluated the effect of contamination with saliva and blood on the bi-axial flexural strength and setting time of pure gray Portland cement and Biodentine (Septodont, Allington, UK). A one-way ANOVA showed that contamination caused no significant difference between the cements in bi-axial flexural strength (P> 0.05). However there was a significant difference in setting time (PBiodentine, regardless of the contaminant, and contamination with blood increased the setting time of both materials. Biodentine was similar in strength to Portland cement, but had a shorter setting time for both contaminated and non-contaminated samples.

  14. Planar biaxial testing of heart valve cusp replacement biomaterials: Experiments, theory and material constants. (United States)

    Labrosse, Michel R; Jafar, Reza; Ngu, Janet; Boodhwani, Munir


    Aortic valve (AV) repair has become an attractive option to correct aortic insufficiency. Yet, cusp reconstruction with various cusp replacement materials has been associated with greater long-term repair failures, and it is still unknown how such materials mechanically compare with native leaflets. We used planar biaxial testing to characterize six clinically relevant cusp replacement materials, along with native porcine AV leaflets, to ascertain which materials would be best suited for valve repair. We tested at least six samples of: 1) fresh autologous porcine pericardium (APP), 2) glutaraldehyde fixed porcine pericardium (GPP), 3) St Jude Medical pericardial patch (SJM), 4) CardioCel patch (CC), 5) PeriGuard (PG), 6) Supple PeriGuard (SPG) and 7) fresh porcine AV leaflets (PC). We introduced efficient displacement-controlled testing protocols and processing, as well as advanced convexity requirements on the strain energy functions used to describe the mechanical response of the materials under loading. The proposed experimental and data processing pipeline allowed for a robust in-plane characterization of all the materials tested, with constants determined for two Fung-like hyperelastic, anisotropic strain energy models. Overall, CC and SPG (respectively PG) patches ranked as the closest mechanical equivalents to young (respectively aged) AV leaflets. Because the native leaflets as well as CC, PG and SPG patches exhibit significant anisotropic behaviors, it is suggested that the fiber and cross-fiber directions of these replacement biomaterials be matched with those of the host AV leaflets. The long-term performance of cusp replacement materials would ideally be evaluated in large animal models for AV disease and cusp repair, and over several months or more. Given the unavailability and impracticality of such models, detailed information on stress-strain behavior, as studied herein, and investigations of durability and valve dynamics will be the best surrogates

  15. Domain walls and anchoring transitions mimicking nematic biaxiality in the oxadiazole bent-core liquid crystal C7. (United States)

    Kim, Young-Ki; Cukrov, Greta; Xiang, Jie; Shin, Sung-Tae; Lavrentovich, Oleg D


    We investigate the origin of "secondary disclinations" that were recently described as new evidence of a biaxial nematic phase in an oxadiazole bent-core thermotropic liquid crystal C7. Using an assortment of optical techniques such as polarizing optical microscopy, LC PolScope, and fluorescence confocal polarizing microscopy, we demonstrate that the secondary disclinations represent non-singular domain walls formed in a uniaxial nematic phase during the surface anchoring transition, in which surface orientation of the director changes from tangential (parallel to the bounding plates) to tilted. Each domain wall separates two regions with the director tilted in opposite azimuthal directions. At the centre of the wall, the director remains parallel to the bounding plates. The domain walls can be easily removed by applying a moderate electric field. The anchoring transition is explained by the balance of (a) the intrinsic perpendicular surface anchoring produced by the polyimide aligning layer and (b) tangential alignment caused by ionic impurities forming electric double layers. The model is supported by the fact that the temperature of the tangentially tilted anchoring transition decreases as the cell thickness increases and as the concentration of ionic species (added salt) increases. We also demonstrate that the surface alignment is strongly affected by thermal degradation of the samples. This study shows that C7 exhibits only a uniaxial nematic phase and demonstrates yet another mechanism (formation of "secondary disclinations") by which a uniaxial nematic phase can mimic a biaxial nematic behaviour.

  16. Asymptotic nonlocal elasticity theory for the buckling analysis of embedded single-layered nanoplates/graphene sheets under biaxial compression (United States)

    Wu, Chih-Ping; Li, Wei-Chen


    A three-dimensional (3D) asymptotic formulation is developed for the buckling analysis of simply-supported, single-layered nanoplates/graphene sheets (SLNP and SLGS) embedded in an elastic medium and under biaxial compressive loads. In the formulation, the Eringen nonlocal elasticity theory is used to capture the small length scale effect, and the interaction between the SLNP/SLGS and its surrounding medium is simulated using a Pasternak-type foundation. After performing the mathematical processes of nondimensionalization, asymptotic expansion and successive integration, we finally obtain recursive sets of governing equations for various order problems. The nonlocal classical plate theory (CPT) is derived as a first-order approximation of the 3D nonlocal elasticity theory, and the governing equations for higher-order problems retain the same differential operators as those of nonlocal CPT, although with different nonhomogeneous terms. Some accurate nonlocal elasticity solutions of the critical load parameters of simply-supported, biaxially-loaded SLNP/SLGS with and without being embedded in the elastic medium are given to demonstrate the performance of the 3D asymptotic nonlocal elasticity theory.

  17. Tuning the Exciton Binding Energies in Single Self-Assembled InGaAs/GaAs Quantum Dots by Piezoelectric-Induced Biaxial Stress

    NARCIS (Netherlands)

    Ding, F.; Singh, R.; Plumhof, J.D.; Zander, T.; K?ápek, V.; Chen, Y.H.; Benyoucef, M.; Zwiller, V.; Dörr, K.; Bester, G.; Rastelli, A.; Schmidt, O.G.


    We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral

  18. First- and second-order phase transitions between quantum and classical regimes for the escape rate of a biaxial spin system

    CERN Document Server

    Kim, G H


    The particle Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field is investigated. We apply the Hamiltonian to the quantum-classical escape rate transition in small magnets. It is found that the phase boundary separating the first- and second-order transition is greatly influenced by the transverse anisotropy constant as well as the external magnetic field.

  19. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis. (United States)

    Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P


    Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described

  20. Large-Scale Biaxial Friction Experiments with an Assistance of the NIED Shaking Table (United States)

    Fukuyama, E.; Mizoguchi, K.; Yamashita, F.; Togo, T.; Kawakata, H.; Yoshimitsu, N.; Shimamoto, T.; Mikoshiba, T.; Sato, M.; Minowa, C.


    We constructed a large-scale biaxial friction apparatus using a large shaking table working at NIED (table dimension is 15m x 15m). The actuator of the shaking table becomes the engine of the constant speed loading. We used a 1.5m long rock sample overlaid on a 2m one. Their height and width are both 0.5m. Therefore, the slip area is 1.5m x 0.5m. The 2m long sample moves with the shaking table and the 1.5m sample is fixed to the basement of the shaking table. Thus, the shaking table displacement controls the dislocation between two rock samples. The shaking table can generate 0.4m displacement with a velocity ranging between 0.0125mm/s and 1m/s. We used Indian gabbro for the rock sample of the present experiments. Original flatness of the sliding surface was formed less than 0.024mm undulation using a large-scale plane grinder. Surface roughness evolved as subsequent experiments were done. Wear material was generated during each experiment, whose grain size becomes bigger as the experiments proceed. This might suggest a damage evolution on the sliding surface. In some experiments we did not remove the gouge material before sliding to examine the effect of gouge layer. Normal stress can be applied up to 1.3MPa. The stiffness of this apparatus was measured experimentally and was of the order of 0.1GN/m. We first measured the coefficient of friction at low sliding velocity (0.1~1mm/s) where the steady state was achieved after the slip of ~5mm. The coefficient of friction was about 0.75 under the normal stress between 0.13 and 1.3MPa. This is consistent with those estimated by previous works using smaller rock samples. We observed that the coefficient of friction decreased gradually with increasing slip velocity, but simultaneously the friction curves at the higher velocities are characterized by stick-slip vibration. Our main aim of the experiments is to understand the rupture propagation from slow nucleation to fast unstable rupture during the loading of two contact

  1. Rupture propagation speed during earthquake faulting reproduced by large-scale biaxial friction experiments (United States)

    Mizoguchi, K.; Fukuyama, E.; Yamashita, F.; Takizawa, S.; Kawakata, H.


    Earthquakes are generated by unstable frictional slip along pre-existing faults. Both laboratory experiments and numerical simulations have shown that the rupture process involves an initial quasi-static phase, a subsequent accelerating phase and a main dynamic rupture phase. During the main phase, the rupture front propagates at either subshear or supershear velocity, which affects the seismic wave radiation pattern. An examination on what controls the speed is crucial for improvement of earthquake hazard mitigation. Thus We conducted stick-slip experiments on meter-scale Indian gabbro rocks to observe the rupture process of the unstable periodic slip events and to measure the rupture speed along the fault. The simulated fault plane is 1.5m in length and 0.1m in width and ground by #200-300. The fault is applied at a constant normal stress of 6.7MPa and sheared parallel to the longitudinal direction of the fault at a slip rate of 0.1mm/s and up to a displacement of 40cm. The long, narrow fault geometry leads to in-plane shear rupture (mode II). in which the rupture front propagates in the direction of slip, which mimics large strike-slip earthquake faulting. Compressional-(Vp) and shear-(Vs) wave velocities of the rock sample are calculated to be 6.92km/s and 3.62km/s, respectively, based on the elastic properties (Young's modulus, 103GPa; Poisson's ratio, 0.331; Shear modulus, 38GPa). 32 biaxial strain gauges for shear strain and 16 single-axis strain gauges for normal strain were attached along the longitudinal direction of the fault at intervals of 5cm and 10cm, respectively. The local strain data were recorded at a sampling rate of 1MHz within 16 bit resolution. Load calls attached outside the fault plane measured the whole normal and shear forces applied on the fault plane, which was recorded by the same recording system. We have confirmed that the rupture process of unstable slip events consistsing of 1) an initial quasi-static phase where the slipped area

  2. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing.

    Directory of Open Access Journals (Sweden)

    Dae Woo Park

    Full Text Available Mechanical and structural changes of right ventricular (RV in response to pulmonary hypertension (PH are inadequately understood. While current standard biaxial testing provides information on the mechanical behavior of RV tissues using surface markers, it is unable to fully assess structural and mechanical properties across the full tissue thickness. In this study, the mechanical and structural properties of normotensive and pulmonary hypertension right ventricular (PHRV myocardium through its full thickness were examined using mechanical testing combined with 3D ultrasound speckle tracking (3D-UST. RV pressure overload was induced in Sprague-Dawley rats by pulmonary artery (PA banding. The second Piola-Kirchhoff stress tensors and Green-Lagrangian strain tensors were computed in the RV myocardium using the biaxial testing combined with 3D-UST. A previously established non-linear curve-fitting algorithm was applied to fit experimental data to a Strain Energy Function (SEF for computation of myofiber orientation. The fiber orientations obtained by the biaxial testing with 3D-UST compared well with the fiber orientations computed from the histology. In addition, the re-orientation of myofiber in the right ventricular free wall (RVFW along longitudinal direction (apex-to-outflow-tract direction was noticeable in response to PH. For normotensive RVFW samples, the average fiber orientation angles obtained by 3D-UST with biaxial test spiraled from 20° at the endo-cardium to -42° at the epi-cardium (Δ = 62°. For PHRV samples, the average fiber orientation angles obtained by 3D-UST with biaxial test had much less spiral across tissue thickness: 3° at endo-cardium to -7° at epi-cardium (Δ = 10°, P<0.005 compared to normotensive.

  3. Study on Stretching Methods of Biaxially Stretched Co-polyester Film with Has Uniaxially Heat Shrinkage Properties (United States)

    Haruta, Masayuki; Mukouyama, Yukinobu; Tabota, Norimi; Ito, Katsuya; Nonomura, Chisato

    Heat shrinkable film made of stretched film is widely used for decorative labels by attaching on PET bottles with heat shrinkage by steam or dry heating. Trouble cancellation in the installation process of the PET bottle is necessary. The purpose of this study is development of uniaxially heat shrinkable co-polyester film that has strength both in the machine direction (MD) and transverse direction (TD). The film production was performed using sequential biaxial stretched process that combined roll stretching with TD stretching. Cast film was processed in the order of TD stretching-Anneal 1-MD stretching-Anneal 2. As a result, the heat shrinkable film that shrunk only in MD got high tensile strength both in MD and TD. The anneal 1 temperature over Tg (Glass transition temperature) of material resin was needed to obtain the heat shrinkable film shrunk in MD after TD stretching.

  4. Impact of biaxial compressive strain on the heterostructures of paraelectrics KTaO3 and SrTiO3

    Directory of Open Access Journals (Sweden)

    Yi Yang


    Full Text Available We have performed density functional theory calculations to explore the impact of biaxial compressive strain on the heterostructures of paraelectrics KTaO3 and SrTiO3. We find that the strain induces strong ferroelectric distortion in KTaO3/SrTiO3 heterostructures and it stabilizes the heterostructures in ferroelectric states.The strain influences the distribution of doped holes and leads to the localization of holes in TiO2 layer. It is very interesting that ferroelectricity and ferromagnetism simultaneously present in the strained heterostructures formed by the paraelectrics KTaO3 and SrTiO3. The reversal of ferroelectric polarization changes the interface magnetization and thus results in magnetoelectric coupling effect in the heterostructures.

  5. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia. (United States)

    Oh, Ju-Won; Song, Kwang-Yeob; Ahn, Seung-Geun; Park, Ju-Mi; Lee, Min-Ho; Seo, Jae-Min


    The purpose of this study was to assess the impact of the core materials, thickness and fabrication methods of veneering porcelain on prosthesis fracture in the porcelain fused to metal and the porcelain veneered zirconia. Forty nickel-chrome alloy cores and 40 zirconia cores were made. Half of each core group was 0.5 mm-in thickness and the other half was 1.0 mm-in thickness. Thus, there were four groups with 20 cores/group. Each group was divided into two subgroups with two different veneering methods (conventional powder/liquid layering technique and the heat-pressing technique). Tensile strength was measured using the biaxial flexural strength test based on the ISO standard 6872:2008 and Weibull analysis was conducted. Factors influencing fracture strength were analyzed through three-way ANOVA (α≤.05) and the influence of core thickness and veneering method in each core materials was assessed using two-way ANOVA (α≤.05). The biaxial flexural strength test showed that the fabrication method of veneering porcelain has the largest impact on the fracture strength followed by the core thickness and the core material. In the metal groups, both the core thickness and the fabrication method of the veneering porcelain significantly influenced on the fracture strength, while only the fabrication method affected the fracture strength in the zirconia groups. The fabrication method is more influential to the strength of a prosthesis compared to the core character determined by material and thickness of the core.

  6. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers; Contraintes, microstructure et sollicitation sous irradiation aux ions de films minces elabores par pulverisation ionique: modelisation et application a l'etude des effets interfaciaux dans des multicouches metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Debelle, A


    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress ({approx} 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a{sub 0}, solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a{sub 0} values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  7. Investigation of the interaction of alkali ions with surfactant head groups for the formation of lyotropic biaxial nematic phase via optical birefringence measurements (United States)

    Akpinar, Erol; Reis, Dennys; Figueiredo Neto, Antonio Martins


    Lyotropic liquid crystals exhibiting nematic phases were obtained from the mixtures potassium laurate/alkali sulfate salts (M2SO4)/1-undecanol (UndeOH)/water and sodium dodecyl sulfate (SDS)/M2SO4/1-dodecanol (DDeOH)/water, where M2SO4 represents the alkali sulfate salts being Li2SO4, Na2SO4, K2SO4, Rb2SO4 or Cs2SO4. The birefringences measurements were performed via laser conoscopy. Our results indicated that cosmotropic and chaotropic behaviors of both ions and head groups are very important to obtain lyotropic biaxial nematic phase. To obtain the biaxial nematic phase, surfactant head group and ion present in lyotropic mixture have relatively opposite behavior, e.g. one more cosmotropic (more chaotropic) other less cosmotropic (less chaotropic) or vice versa.

  8. Tuning the electronic and optical properties of XP(X = Al,Ga) monolayer semiconductors using biaxial strain effect: Modified Becke-Johnson calculations (United States)

    Akbari, Ahmad; Naseri, Mosayeb; Jalilian, Jaafar


    In this paper, based on full potential density functional theory calculations, the electronic and optical properties of aluminium and gallium phosphide (AlP and GaP) graphene-like structures are investigated under different biaxial compressive and tensile strain loads. One of the fascinating properties of these new monolayers is their high stretch-ability and high mechanosensitivity of their electronic and optical features. The electronic calculations display that the energy gap of materials versus the exerted strain can be estimated by a second order polynomial equation. Furthermore, the optical calculations indicate that the electronic and optical gap of AlP and GaP monolayers can be tuned by biaxial strain loads.

  9. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering. (United States)

    Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L


    The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.

  10. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)


    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  11. A Biaxial-Bending Test to Observe the Growth of Interacting Delaminations in a Composite Laminate Plate (United States)

    McElroy, Mark; Jackson, Wade; Pankow, Mark


    It is not easy to isolate the damage mechanisms associated with low-velocity impact in composites using traditional experiments. In this work, a new experiment is presented with the goal of generating data representative of progressive damage processes caused by low-velocity impact in composite materials. Carbon fiber reinforced polymer test specimens were indented quasi-statically such that a biaxial-bending state of deformation was achieved. As a result, a three-dimensional damage process, involving delamination and delamination-migration, was observed and documented using ultrasonic and x-ray computed tomography. Results from two different layups are presented in this paper. Delaminations occurred at up to three different interfaces and interacted with one another via transverse matrix cracks. Although this damage pattern is much less complex than that of low-velocity impact on a plate, it is more complex than that of a standard delamination coupon test and provides a way to generate delamination, matrix cracking, and delamination-migration in a controlled manner. By limiting the damage process in the experiment to three delaminations, the same damage mechanisms seen during impact could be observed but in a simplified manner. This type of data is useful in stages of model development and validation when the model is capable of simulating simple tests, but not yet capable of simulating more complex and realistic damage scenarios.

  12. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)


    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  13. Electronic band structure of wurtzite InN around the fundamental gap in the presence of biaxial strain

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Jayeeta; Ghosh, Sandip [Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)


    We present results of a theoretical study of the electronic band structure of wurtzite InN films under biaxial strain in the C-plane (0001) and in planes that correspond to non-polar orientations such as the A-plane (11 anti 20) and the M-plane (1 anti 100). The calculations are performed under the k.p perturbation theory approach using the Bir-Pikus Hamiltonian. The results show that the fundamental bandgap of InN shifts by 30 meV (14 meV) for isotropic tensile (compressive) strain in the C -plane with out-of-plane contraction (dilation) of 0.2%. For films of non-polar orientations, the c-axis lies in the film plane and the strain is expected to be different between directions parallel and perpendicular to c. Such anisotropic strain give rise to valence band mixing which results in dramatic changes in the optical polarization properties as evidenced by the calculated oscillator strengths of the interband transitions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Evaluation of biaxial flexural strength and modulus of filled and unfilled adhesive systems = Avaliação da resistência flexural biaxial e módulo de flexão de sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Liberti, Michele Santana


    Full Text Available Objetivo: O objetivo deste estudo foi avaliar a resistência flexural e o módulo de flexão de dois sistemas adesivos, através de ensaio de resistência flexural biaxial. Metodologia: Os adesivos (Pentron Clinical Technologies estudados foram: Bond 1 (B1 e NanoBond (NB. Treze discos de cada adesivo foram preparados com dimensões aproximadas de 6,1 mm de diâmetro e 0,6 mm de espessura. Os discos de adesivos foram confeccionados utilizando-se moldes de teflon e fotopolimerizados com aparelho XL 3000 (3M ESPE. Após armazenamento por 10 dias, os discos foram testados em máquina universal de ensaio (Instron 5844, com velocidade de 1,27 mm/min. Os dados foram submetidos à análise de variância (1 fator ao nível de significância de 0,05. Resultados: Os valores médios (±DP de resistência flexural para os adesivos foram (em MPa: B1- 89,7±7,6 e NB- 131,1±9,5. Os valores médios de módulo flexural (±DP foram (em MPa: B1- 1999,9±258,4 e NB- 2314,5±271,0. Conclusão: O adesivo contendo partículas de carga (NB mostrou maiores valores de resistência flexural e módulo de flexão que o adesivo B1

  15. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading; Plasticite cyclique d'un acier inoxydable austeno-ferritique sous chargement biaxial non-proportionnel

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, V


    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10{sup -5}) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  16. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)


    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  17. Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting. (United States)

    Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E


    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm(2) for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm(2) for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm(2) during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  18. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting (United States)

    Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E.


    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times. PMID:23841095

  19. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  20. Catastrophic biaxial proximal sesamoid bone fractures in UK Thoroughbred races (1999-2004): horse characteristics and racing history. (United States)

    Kristoffersen, M; Parkin, T D H; Singer, E R


    Catastrophic biaxial proximal sesamoid bone fractures (PSBF) have not yet been described in detail in the UK racing population. To determine the incidence and relative risk (RR) of PSBF in different types of racing in the UK; and to describe horse-level characteristics and racing histories of horses sustaining these injuries. Distal limbs were collected from all racehorses suffering catastrophic fractures during racing at all 59 racecourses in the UK, in a prospective study from February 1999 to December 2004. Post mortem investigation identified the anatomical location and type of fracture. Horse, racing history, race and racecourse details were obtained. Characteristics of the horses that sustained PSBF were described. The incidence and RR of PSBF in the different types of racing in the UK were calculated. Thirty-one horses suffered PSBF during the study period. The incidence of PSBF in all types of race was 0.63 per 10,000 starts (31/494,744). The incidence was highest in flat races on all weather surfaces (1.63 per 10,000 starts: 12/73,467; RR = 4.4 when compared to turf flat racing). Affected horses had an average age of 5.6 years and had started a mean of 28 races at the time of fracture. There is a strong association between type of racing surface and PSBF. Horses competing in flat races on all weather surfaces have an increased risk of PSBF. These fractures appear to happen in experienced horses with several starts, with few fractures occurring within the first season of racing. Further research should focus on identification of underlying pathology of these fractures. Epidemiological studies aimed at the identification of risk factors for PSBF in the UK racing population would require a large number of cases acquired over many years given the relatively low incidence of PSBF.

  1. Effect of Ceramic Surface Treatments after Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Hossein Bagheri


    Full Text Available Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS of machinable dental ceramics with different crystalline phases.Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness of machinable ceramic cores (two silica-based and one zirconia-based ceramics were prepared. Each type of the ceramic surfaces was then randomly treated (n=15 with different treatments as follows: 1 machined finish as control, 2 machined finish and sandblasting with alumina, and 3 machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1 machined finish and post-sintered as control, 2 machined finish, post-sintered, and sandblasting, and 3 machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05.Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001 and acid etched surfaces (P=0.005. A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (P<0.05. Sandblasting significantly increased the BFS for the zirconia (P<0.05, but the BFS was significantly decreased after laser irradiation (P<0.05.    Conclusions: The BFS of the machinable ceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia. 

  2. Biaxial Flexural Strength of High-Viscosity Glass-Ionomer Cements Heat-Cured with an LED Lamp during Setting

    Directory of Open Access Journals (Sweden)

    Gustavo Fabián Molina


    Full Text Available Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n=30: without heating (Group 1, heated with LED lamp of 1400 mW/cm2 for 30 s while setting (Group 2, and heated with LED lamp of 1400 mW/cm2 for 60 s while setting (Group 3. Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α=0.05. Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm2 during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  3. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I Theory

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-Gutiérrez


    Full Text Available An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load at the ends (causing a single or double curvature under uniaxial or biaxial bending is presented. The proposed method, which is an extension of a method previously developed by the authors, is capable of predicting not only the complete load-rotation and load-deflection curves (both the ascending and descending parts but also the maximum load capacity. The columns that can be analyzed include solid and hollow (rectangular, circular, oval, C-, T-, L-, or any arbitrary shape cross sections and columns made of circular and rectangular steel tubes filled with HSC. The fiber method is used to calculate the moment-curvature diagrams at different levels of the applied axial load (i.e., the M-P-φ curves, and the Gauss method of integration (for the sum of the contributions of the fibers parallel to the neutral axis is used to calculate the lateral rotations and deflections along the column span. Long-term effects, such as creep and shrinkage of the concrete, are also included. However, the effects of the shear deformations and torsion along the member are not included. The validity of the proposed method is presented in a companion paper and compared against the experimental results for over seventy column specimens reported in the technical literature by different researchers.

  4. A fast real time measurement system to track in and out of plane optical retardation/ birefringence, true stress, and true strain during biaxial stretching of polymer films (United States)

    Cakmak, M.; Hassan, M.; Unsal, E.; Martins, C.


    An instrumented and highly integrated biaxial stretching system was designed and constructed to obtain true stress, true strain, and optical behavior of polymeric films during biaxial stretching. With programmable drive motors, any form of temporally varying biaxial deformation profiles, including linear, exponential, logarithmic as well as cyclic, can be applied to a square-shaped films. This machine allows the investigation of mechano-optical behavior of films under profiles captured in industrial processes. To overcome the edge effects, the samples are painted with a dot pattern that is imaged using a high speed video capture system. This system accurately determines the locations of the each dot matrix in subsequent images acquired and calculates the true strains in both directions. The in-plane optical retardation is determined using spectral birefringence method that uses polarized white light and optical spectrometer in the optical train. This is carried out automatically at less than 10 nm in retardation resolution with the light beam passing through the symmetry center of the sample. Out of plane retardation is measured with an identical optical train tilted 45° to the plane of the film with its light beam going through the same spot on the sample as 0° beam. The true stress and birefringences are calculated with the determined instantaneous thickness of the film. With this system, the stress optical behavior of PET's is determined up to very large deformation levels at moderate to high deformation rates. Beyond the initial linear stress optical behavior, these films exhibit sudden positive deviation from linearity and this start of nonlinearity was directly associated with the stress induced crystallization.

  5. Refractive index measurements of films with biaxial symmetry. 2. Determination of film thickness and refractive indices using polarized transmission spectra in the transparent wavelength range. (United States)

    Diao, Jie; Hess, Dennis W


    A technique is formulated to determine both thickness and refractive indices of free-standing films with biaxial symmetry from polarized transmission spectra. The films must be transparent and show little dispersion in refractive indices in the wavelength range where the transmission spectra are collected. Methods are proposed to correct the errors caused by imperfect polarization of incident radiation and thickness variation across the sampling area. Anisotropic refractive indices and thickness of poly(biphenyl dianhydride-p-phenylenediamine) films which exhibit uniaxial optical anisotropy are determined from polarized transmission spectra. The refractive index and thickness values compare well to those obtained from waveguide prism coupler and profilometer measurements.

  6. Efectos de los esfuerzos cortantes biaxiales en la respuesta sísmica de columnas de hormigón armado


    Osorio Bustamante, Edison


    Durante un terremoto, las columnas de hormigón armado pueden verse sometidas a movimientos bidireccionales que pueden afectar su capacidad resistente y ductilidad. Sin embargo, las normas de diseño y evaluación sísmica no aportan recomendaciones explícitas para cuantificar el comportamiento de las columnas bajo dichas cargas. Esta investigación busca contribuir al análisis y cuantificación de los efectos de los esfuerzos cortantes biaxiales en la respuesta sísmica de columnas de hormigón arma...

  7. Investigation of transient friction in rock at low to high slip-rates using a new biaxial machine (United States)

    Saber, O.; Chester, F. M.; Alvarado, J. L.; Barbery, M. R.


    Rate-and-state friction (RSF) constitutive relations were developed from experiments on rock that incorporated step-changes in sliding rate at low velocity (rotary shear experiments demonstrate pronounced reduction in friction during sustained sliding at high rates (> 0.1 m/s) that appears distinct from RSF. Developing constitutive relations that can describe the transient friction response during a change from sliding at low rates to high rates is necessary to model earthquake nucleation, rupture propagation, and the diversity in modes of fault slip; however, experimental documentation of transient friction between low and high rates is not generally available. We report the results of experiments using a high-speed biaxial apparatus that achieves velocity-steps from low to high rates with high acceleration (up to 100 G) to investigate transient friction behavior and the viability of RSF relations at intermediate and high sliding velocity. Double-direct (unconfined rock-on-rock) shear experiments on granite (Westerly) and quartz sandstone (Tennessee) were conducted at constant normal stresses of 1-20 MPa. Most experiments involve steady-state frictional sliding at 1 mm/s for several mm of slip followed by a velocity step to constant slip rates of 10 to 1000 mm/s for a total displacement of 4 cm. The experiments demonstrate that a high acceleration step to high velocity under moderate normal stress can lead to rapid dynamic weakening (i.e., a weakening distance of ~1 mm). In granite, the magnitude of steady state friction at high rates is proportional to the rate of frictional work done on the surface, consistent with a flash heating mechanism. In contrast, for the sandstone, steps to high sliding rates resulted in strengthening and a change from stick-slip to stable sliding. The observations are qualitatively consistent with RSF type behaviors; i.e., transient friction consists of an instantaneous increase in friction followed by an exponential decay to a new

  8. Effect of surface and heat treatments on the biaxial flexural strength and phase transformation of a Y-TZP ceramic. (United States)

    Fonseca, Renata Garcia; Abi-Rached, Filipe de Oliveira; da Silva, Filipe Samuel Correia Pereira; Henriques, Bruno Alexandre Pacheco de; Pinelli, Ligia Antunes Pereira


    To evaluate the effect of grinding and airborne-particle abrasion on the biaxial flexural strength (BFS) and phase transformation of a Y-TZP ceramic, and examine whether sintering the veneering porcelain renders the previous heat treatment recommended by the manufacturer unnecessary. Lava zirconia specimens (N = 108) were obtained with the following dimensions: 14.0 mm diameter × 1.3 mm thickness (n = 36) and 14.0 mm × 1.6 mm (n = 72). The thicker specimens were ground with diamond burs under irrigation and received (heat-treated groups) or not (non-heat-treated groups) a heat treatment (1000°C for 30 min) prior to the four firing cycles applied to simulate the sintering of the veneering porcelain. All specimens were air abraded as follows (n = 12): 1) 30-μm silica-modified Al₂O₃particles (Rocatec Soft); 2) 110-μm silica-modified Al₂O₃particles (Rocatec Plus); and 3) 120-μm Al₂O₃particles, followed by Rocatec Plus. Three specimens of each group were analyzed by x-ray diffraction (XRD) to assess the monoclinic phase content (%). The BFS test was performed in a mechanical testing machine (Instron 8874). Data (MPa) were analyzed by two-way ANOVA (grinding × airborne-particle abrasion and heat treatment × airborne-particle abrasion) and Tukey's post-hoc test (α = 0.05). The strength reliability was analyzed using the Weibull distribution. Grinding significantly decreased the BFS of the non-heat-treated groups (p heat treatment did not influence the BFS (p > 0.05). Air abrasion only influenced the BFS of the ground/heat-treated groups (p heat-treated groups, the grinding did not decrease the Weibull modulus (m), but it did decrease the characteristic strength (σ0). For Rocatec Soft and 120-μm Al₂O₃particles + Rocatec Plus, the heat-treated groups presented lower m and higher σ0 than the ground/non-heat-treated groups. The independent variables did not seem to influence phase transformation. Air-abraded surfaces presented higher monoclinic

  9. Numerical Investigations on the Influence of Superimposed Double-Sided Pressure on the Formability of Biaxially Stretched AA6111-T4 Sheet Metal (United States)

    Liu, Jianguang; Wang, Zhongjin; Meng, Qingyuan


    Lightweight materials have been widely used in aerospace, automobile industries to meet the requirement of structural weight reduction. Due to their limited plasticity at room temperature, however, lightweight materials always exhibit distinctly poor forming capability in comparison with conventional deep drawing steels. Based on the phenomenon that the superimposed hydrostatic pressure can improve the plasticity of metal, many kinds of double-sided pressure forming processes have been proposed. In the present study, the Gurson-Tvergaard-Needleman (GTN) damage model combined with finite element method is used to investigate the influence of double-sided pressure on the deformation behavior of biaxially stretched AA6111-T4 sheet metal, including nucleation and growth of microvoids, evaluation of stress triaxiality, and so forth. The Marciniak-Kuczynski (M-K) localized necking model is used to predict the right-hand side of the forming limit diagram (FLD) of sheet metal under superimposed double-sided pressure. It is found that the superimposed double-sided pressure has no obvious effect on the nucleation of microvoids. However, the superimposed double-sided pressure can suppress the growth and coalescence of microvoids. The forming limit curve (FLC) of the biaxially stretched AA6111-T4 sheet metal under the superimposed double-sided pressure is improved and the fracture locus shifts to the left. Furthermore, the formability increase value is sensitive to the strain path.

  10. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang


    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  11. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink


    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  12. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)


    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  13. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean


    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p veneered ZirCAD groups showed greater flexural strength than the monolithic Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had

  14. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins. (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang


    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N


    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  16. Applications (United States)

    Stern, Arthur M.


    Economic incentives have spurred numerous applications of genetically engineered organisms in manufacture of pharmaceuticals and industrial chemicals. These successes, involving a variety of methods of genetic manipulation, have dispelled early fears that genetic engineering could not be handled safely, even in the laboratory. Consequently, the potential for applications in the wider environment without physical containment is being considered for agriculture, mining, pollution control, and pest control. These proposed applications range from modest extensions of current plant breeding techniques for new disease-resistant species to radical combinations of organisms (for example, nitrogen-fixing corn plants). These applications raise concerns about potential ecological impacts (see chapter 5), largely because of adverse experiences with both deliberate and inadvertent introductions of nonindigenous species.

  17. Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- b ]thiophene) Films

    KAUST Repository

    Cho, Eunkyung


    We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl) thieno[3,2-b]thiophene) (PBTTT-C 14) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C 12 to C 14 and C 16 are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films. © 2012 American Chemical Society.

  18. The impact of endodontic access on the biaxial flexure strength of dentine-bonded crown substrates - an in vitro study. (United States)

    Kelly, R D; Palin, W M; Tomson, P L; Addison, O


    To investigate how preparation of a simulated access cavity into ceramic materials suitable for the manufacture of dentine-bonded crowns (DBCs) impacted on biaxial flexural strength (BFS) determined as a monolithic structure and in a more clinically representative resin-cemented form. One hundred and twenty feldspathic and 120 leucite-reinforced ceramic disc-shaped specimens were divided into eight groups (n = 30). All groups received 'fit' surface treatments representative of pre-cementation modifications and of cementation prior to preparation of a representative endodontic access cavity through the sample. BFS was determined for both 'intact' and the 'annular' disc-shaped specimens which had received simulated endodontic access. Newly reported analytical solutions were used to calculate BFS of the 'annular' specimens. Statistical analysis included two-way anovas (α = 0.05) and Weibull analysis. Fractographic examination provided insight into the fracture mechanisms. A two-way anova identified a significant impact of material (P preparation modified the critical defect population of the all-ceramic restorative materials investigated. The strength of a predominantly glassy ceramic following endodontic access can be maintained if adhesive cementation was used; however, the beneficial effects of adhesive cementation on ceramic reinforcement were lost on leucite-reinforced ceramics following access cavity preparation. Replacement restoration for these materials would be recommended clinically following endodontic access as opposed to repair of the access cavity using a direct restorative material. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Are bi-axial proximal sesamoid bone fractures in the British Thoroughbred racehorse a bone fatigue related fracture? A histological study. (United States)

    Kristoffersen, M; Hetzel, U; Parkin, T D H; Singer, E R


    To investigate whether microfractures and alterations in the trabecular bone area are associated with catastrophic bi-axial proximal sesamoid bone fractures (PSBF). Proximal sesamoid bones (PSB) from 10 racehorses with PSBF and from 10 control racehorses without musculoskeletal injury were examined using the bulk basic fuchsin method. Bone histomorphometric and microfracture analysis was performed, and cases and controls compared using two-sample t-test, paired t-test, and Mann-Whitney U test. There was no significant difference in the microfracture density and the trabecular bone area between bones from case and control horses, and between fractured and non-fractured bones in case horses. Microfracture density was low in the areas of the PSB examined. Microfracture density was not significantly different between groups, indicating that propagation of micro-cracks is an unlikely predisposing pathologic alteration in PSBF in British racehorses. There was no significant difference in the bone surface area between groups, which one would expect if modelling, adaptation and an increase in bone density were associated with PSBF fracture in the case horses. Therefore, PSBF in the British racehorse does not appear to be associated with microfractures of the trabecular bone of the PSB. The PSB fractures might represent an acute monotonic fracture; however, the aetiology of the fractures remains unknown with additional research required.

  20. Optimisation des proprietes fonctionnelles des alliages a memoire de forme suite a l'application de traitements thermomecaniques (United States)

    Demers, Vincent

    L'objectif de ce projet est de determiner les conditions de laminage et la temperature de traitement thermique maximisant les proprietes fonctionnelles de l'alliage a memoire de forme Ti-Ni. Les specimens sont caracterises par des mesures de calorimetrie, de microscopie optique, de gene ration de contrainte, de deformation recuperable et des essais mecaniques. Pour un cycle unique, l'utilisation d'un taux d'ecrouissage e=1.5 obtenu avec l'application d'une force de tension FT = 0.1sigma y et d'une huile minerale resulte en un echantillon droit, sans microfissure et qui apres un recuit a 400°C, produit un materiau nanostructure manifestant des proprietes fonctionnelles deux fois plus grandes que le meme materiau ayant une structure polygonisee. Pour des cycles repetes, les memes conditions de laminage sont valables mais le niveau de deformation optimal est situe entre e=0.75-2, et depend particulierement du mode de sollicitation, du niveau de stabilisation et du nombre de cycles a la rupture requis par l'application.

  1. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage


    Meinert, Christoph; Schrobback, Karsten; Hutmacher, Dietmar W.; Klein, Travis J.


    The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying ...

  2. The Investigation of 6mu Biaxially Oriented Polyethylene 2, 6, -Naphthalate As a Possible Dielectric For Pulse Power Capacitors (United States)

    Yen, S. P. S.; Lowry, L.; Cygan, P. J.; Jow, T. R.


    The introduction of polythylene -2, 6-Naphthalate (PEN) semicrystalline film with thicknesses of 0.9mu, 1.5mu, 4.0Mu and community. Its unique chemical and high temparterure stability, as well as superior thermo-mechanical properties allow ultra thin ( 2mu) PEN film to be processed into miniature multilayer chip capacitors for surface mount technology (SMT) application that can be used with standard soldering techniques.

  3. Ceramic high temperature superconductors for high current applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.


    Composite Reaction Texturing (CRT) is a technique which uses a fine distribution of pre-aligned seeds as nucleating sites for texturing oxide superconductors. It has successfully been applied to the texturing of Bi-2212 compounds. A furhter application of CRT is reported in which Y-123 is biaxially textured using seeds of other Rare Earth-123 compounds with higher melting points as nucleating sites. The resultant textured microstructure exhibits mainly low angle grain boundaries (up to 5 deg. misorientation). Results will be presented on the seed alignment techniques, the development of microstructure during reaction of the composite preform and preliminary measurements of electromagnetic properties. (au). 111 refs.

  4. Caracterización mecánica de aleaciones Ti-Nb mediante ensayos de flexión biaxial

    Directory of Open Access Journals (Sweden)

    Amigó, V.


    Full Text Available Nowadays titanium and titanium alloys are increasingly being used in the industry. Particularly β-Ti alloys that stand out for having great strength properties and low elastic modulus compared to Ti c.p. or Ti-6Al-4V. Among Ti alloys, Ti-Nb alloys with high contents of alloying elements are widely used. In this work Ti-Nb alloys have been obtained using conventional powdermetallurgy. It has been studied the evolution of properties of these alloys as a function of the percentage of niobium. It can be noted the ball on three balls test used in order to characterize the samples.

    En la actualidad, cada vez, son más importantes en la industria las aleaciones de titanio. En especial las aleaciones tipo-β, que destacan por tener buenas propiedades resistentes y bajos módulos elásticos, en comparación con el Ti c.p. o el Ti-6Al-4V. Dentro de estas aleaciones cabe destacar las Ti-Nb con altos contenidos en elementos aleantes. En este trabajo se han obtenido, mediante pulvimetalurgia convencional, una serie de aleaciones Ti-Nb, en el rango del 20-40 % de niobio. Se ha obtenido la evolución de las propiedades de dichas aleaciones en función del porcentaje de niobio, mediante la utilización del ensayo de flexión biaxial con tres apoyos (three ball test.

  5. Growth of thin Al{sub 2}O{sub 3} films on biaxially oriented polymer films by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vaehae-Nissi, Mika, E-mail: [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Kauppi, Emilia, E-mail: [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Sahagian, Khoren, E-mail: [Anasys Instruments, 121 Gray Avenue, Suite 100, Santa Barbara, CA 93101 (United States); Johansson, Leena-Sisko, E-mail: [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O. Box 16100, FI-00076 AALTO (Finland); Peresin, Maria Soledad; Sievaenen, Jenni; Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)


    The effects of thin film nucleation and initial growth on roughness, chemistry and thermomechanical properties of polymer film surfaces were studied. Al{sub 2}O{sub 3} was deposited onto commercial biaxially oriented polypropylene and polylactic acid films at 80 Degree-Sign C by using atomic layer deposition technique. Both substrates, especially the more hydrophobic polypropylene, showed initial growth through Al{sub 2}O{sub 3} clusters. There was a faster deposition of Al{sub 2}O{sub 3} on polylactic acid film than on polypropylene at the early stages of the Al{sub 2}O{sub 3} deposition. There were also indications of chemical interactions between polylactic acid and trimethyl aluminum used as a precursor for Al{sub 2}O{sub 3}. Changes in the thermo-mechanical properties of the polymer surfaces with Al{sub 2}O{sub 3} also evidenced the differences between the substrate polymer films. The near surface interphase formed in polylactic acid probably contributed to the strong increase and scattering in the softening temperature during the early thin film growth. - Highlights: Black-Right-Pointing-Pointer Growth of atomic layer deposited Al{sub 2}O{sub 3} at 80 Degree-Sign C was studied on commercial films. Black-Right-Pointing-Pointer Both substrate films showed early Al{sub 2}O{sub 3} growth through clusters. Black-Right-Pointing-Pointer Initial growth rate depends on the nature of the substrate film surface. Black-Right-Pointing-Pointer There were indications of chemical interactions between substrate and precursor. Black-Right-Pointing-Pointer Film thickness and chemical interactions affect thermo-mechanical properties.

  6. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments (United States)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo


    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  7. Silicene for Na-ion battery applications

    KAUST Repository

    Zhu, Jiajie


    Na-ion batteries are promising candidates to replace Li-ion batteries in large scale applications because of the advantages in natural abundance and cost of Na. Silicene has potential as the anode in Li-ion batteries but so far has not received attention with respect to Na-ion batteries. In this context, freestanding silicene, a graphene-silicene-graphene heterostructure, and a graphene-silicene superlattice are investigated for possible application in Na-ion batteries, using first-principles calculations. The calculated Na capacities of 954mAh/g for freestanding silicene and 730mAh/g for the graphenesilicene superlattice (10% biaxial tensile strain) are highly competitive and potentials of >0.3 V against the Na/Na potential exceed the corresponding value of graphite. In addition, the diffusion barriers are predicted to be <0.3 eV.

  8. New Lyotropic Mixtures with Non-Chiral N-Acylamino Acid Surfactants Presenting the Biaxial Nematic Phase Investigated by Laser Conoscopy, Polarized Optical Microscopy and X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Erol Akpinar


    Full Text Available Amino acid-based surfactants were used as the main surfactants to prepare new lyotropic mixtures presenting three nematic phases. One of them is biaxial (NB, and the two others are uniaxial, discotic (ND and calamitic (NC. These surfactants were the non-chiral molecules, potassium N-dodecanoyl-DL-alaninate (DL-KDDA, potassium N-dodecanoyl-DL-serinate (DL-KDDS, disodium N-dodecanoyl-DL-aspartate (DL-NaDDAs and potassium N-dodecanoyl-glycinate (KDDGly. Measurements of the optical birefringences and X-ray diffraction analysis were used to characterize the nematic phases and phase transitions. Mixtures with DL-KDDS exhibited the largest biaxial phase domain (~9 °C with respect to the other mixtures in this study. The results obtained with the KDDGly mixture showed that the existence of hydrogen bonding between the head groups of the surfactant molecules seems to hinder the orientation of the micelles under the action of an external magnetic field.

  9. Biaxial prestressing of brittle materials (United States)

    Greszczuk, L.; Miller, R.; Netter, W.


    Strengthening of chemically consolidated zirconia with tungsten fibers, graphite fibers, sapphire whiskers, and silicon carbide whiskers is investigated. Addition of silicon carbide whiskers gives the highest increase in strength of zirconia at room and elevated temperatures. Prestressing with tungsten cables increases tensile strength and ductility

  10. Green's function solution and applications for cracks emanating from a circular hole in an infinite sheet (United States)

    Shivakumar, V.; Forman, R. G.; Rosencranz, R., Jr.


    Stress-intensity factors are obtained for point loaded equal length cracks emanating from a circular hole in an infinite plate. A series approach and the Muskhelishvili formulation in the two-dimensional theory of elasticity are used to derive the solution. The applicability of the solution is demonstrated by using it as a Green's function to obtain stress-intensity factors in the case of (1) biaxial tension and pure shear of an infinite plate and (2) tension and pin loading of a plate with cracks emanating from one hole in a row of holes.

  11. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping. (United States)

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo


    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga1-x N layer releases through surface roughening and the 3D growth-mode.

  12. Industrial fiber lidar: some applications (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario; Roy, Gilles


    In recent years, INO has developed an eye-safe, transportable industrial fiber lidar (IFL) for industrial applications of pollution control during handling of loose materials'2. However, it can also be used for other applications like urban particulates monitoring, cloud mapping, and unattended surveillance. The IPL is a compact and direct scanning lidar. It is based on 1140's diode pumped Erbium doped fiber laser, which delivers an energy of 1 .5microJoules in l2ns pulses with a high repetition rate of 10kHz at an eye-safe wavelength of 1.5microns. 1140's lidar system is composed of a lidar head containing the transmitter-receiver optics in a biaxial configuration mounted on a scanning platform. The lidar head is connected to the laser source and detector via optical fibers. A computer controls the scanning platform via an optical RS- 232 communication link. This allows remote operation since sensitive equipment like the laser and the computer can be located away from the surveillance site in an environmentally controlled room. The TEL characteristics and results obtained from monitoring in an urban area and field trials on surveillance of hard targets and transmission through obscurants will be detailed.

  13. Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications (United States)

    Liu, Jiayu; Wang, Yanjie; Zhao, Dongxu; Zhang, Chi; Chen, Hualing; Li, Dichen


    Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First, according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube. The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator. Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed. Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.

  14. Fracture strength and Weibull analysis of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} oxygen transport membranes evaluated by biaxial and uniaxial bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li, E-mail: [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Technology and Engineering Centre for Space Utilisation, Chinese Academy of Science, Beijing 10094 (China); Dou, Rui; Wang, Gong [Technology and Engineering Centre for Space Utilisation, Chinese Academy of Science, Beijing 10094 (China); Li, Yizhe; Bai, Mingwen; Hall, David [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Chen, Ying, E-mail: [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom)


    The present study evaluates the fracture strengths and the Weibull modulus of Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3−δ} (BSCF) oxygen transport membranes by means of biaxial and uniaxial bending tests at both room temperature (RT) and 800 °C. The fracture strengths obtained from the biaxial bending tests are much lower than those obtained from the uniaxial bending tests while Weibull moduli (m) are similar. By utilising Weibull statistics the uniaxial strengths can be predicted from the biaxial values at both RT and 800 °C. Fracture surfaces at both RT and 800 °C show only a transgranular fracture mode. Failure origins are also determined by scanning electron microscope (SEM) based on the fractographic principles. Most defects determining the fracture strength of this particular material are found to be pores with a relatively large size.

  15. Composite biaxially textured substrates using ultrasonic consolidation (United States)

    Blue, Craig A; Goyal, Amit


    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than in all directions, the second sheet remaining untextured, to form a composite sheet.

  16. Testing panels in shear and biaxial compression (United States)

    Neary, J. K.


    Hydraulic jacks simultaneously apply torsion, axial compression, and lateral compression to structural panels. Jacks are suitable for testing large panels used in aircraft, lightweight trucks, and buses.

  17. Bi-axial Vibration Energy Harvesting (United States)


    impedance measurement are presented in Section 4, however it is noted that the measured capacitance of ME transducer (i.e. the bonded PZT element...two wire ligaments), connected to a 75 N vibration shaker (TIRA S 511 75 N). Host accelerations were measured using an accelerometer (PCB 333B40... capacitance of the ME transducer was 1.86 nF (see above), resulting in a capacitive reactance at 10 Hz of, XC = 1/(2  f C) ~ 8.6 MΩ . (6

  18. Spin Superfluidity in Biaxial Antiferromagnetic Insulators (United States)

    Qaiumzadeh, Alireza; Skarsvâg, Hans; Holmqvist, Cecilia; Brataas, Arne


    Antiferromagnets may exhibit spin superfluidity since the dipole interaction is weak. We seek to establish that this phenomenon occurs in insulators such as NiO, which is a good spin conductor according to previous studies. We investigate nonlocal spin transport in a planar antiferromagnetic insulator with a weak uniaxial anisotropy. The anisotropy hinders spin superfluidity by creating a substantial threshold that the current must overcome. Nevertheless, we show that applying a high magnetic field removes this obstacle near the spin-flop transition of the antiferromagnet. Importantly, the spin superfluidity can then persist across many micrometers, even in dirty samples.


    Directory of Open Access Journals (Sweden)

    K. I. Mazanik


    Full Text Available The article describes the questions of braking of trolleybus by working braking system with connected and disconnected electric drive motor. Main constructive differences of trolleybuses are shown including characteristics of electric drive motor in the mode of braking. Methods of road test are given. Comparison of the theoretical and experimental  research has analyzed. 

  20. Influence of irradiation, load history, and stress bi-axiality on initiation and propagation of stress corrosion cracks induced by iodine in zirconium alloys; Influence de l'irradiation, de l'historique de chargement et de la biaxialite des contraintes sur l'amorcage et le debut de la propagation des fissures de corrosion sous contrainte par l'iode des alliages de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Mozzani, N.; Auzoux, Q.; Le Boulch, D. [CEA Saclay, DEN, SEMI, 91 - Gif-sur-Yvette (France); Andrieu, E.; Blanc, Ch. [Universite de Toulouse, CIRIMAT, UPS/CNRS/INPT, ENSIACET, 31 - Toulouse (France); Trocellier, P. [CEA Saclay, DEN, SRMP, 91 - Gif-sur-Yvette (France)


    The authors present a research study aimed at the modelling of iodine-induced stress corrosion cracking of zirconium alloys. The aim is to develop a damage model coupled with the material mechanical behaviour, and which takes irradiation effects, load history and stress bi-axiality into account. The study comprises iodine-induced stress corrosion cracking tests of a non irradiated material and of a proton-irradiated material, a study of the mechanical behaviour and of the stress corrosion cracking behaviour of the irradiated material, and then the numerical modelling

  1. Titanium Sheet Fabricated from Powder for Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peter, William H [ORNL; Muth, Thomas R [ORNL; Chen, Wei [ORNL; Yamamoto, Yukinori [ORNL; Jolly, Brian C [ORNL; Stone, Nigel [CSIRO ICT Center, Australia; Cantin, G.M.D. [CSIRO ICT Center, Australia; Barnes, John [CSIRO ICT Center, Australia; Paliwal, Muktesh [Ametek, Inc.; Smith, Ryan [Ametek, Inc.; Capone, Joseph [Ametek, Inc.; Liby, Alan L [ORNL; Williams, James C [Ohio State University; Blue, Craig A [ORNL


    In collaboration with Ametek and Commonwealth Scientific and Industrial Research Organization (CSIRO), Oak Ridge National Laboratory has evaluated three different methods for converting titanium hydride-dehydride (HDH) powder into thin gauge titanium sheet from a roll compacted preform. Methodologies include sintering, followed by cold rolling and annealing; direct hot rolling of the roll-compacted sheet; and hot rolling of multiple layers of roll compacted sheet that are encapsulated in a steel can. All three methods have demonstrated fully consolidated sheet, and each process route has the ability to produce sheet that meets ASTM B265 specifications. However, not every method currently provides sheet that can be highly formed without tearing. The degree of sintering between powder particles, post processing density, and the particle to particle boundary layer where compositional variations may exist, have a significant effect on the ability to form the sheet into useful components. Uniaxial tensile test results, compositional analysis, bend testing, and biaxial testing of the titanium sheet produced from hydride-dehydride powder will be discussed. Multiple methods of fabrication and the resulting properties can then be assessed to determine the most economical means of making components for industrial applications.

  2. Modelling of dielectric polymers for energy scavenging applications (United States)

    Jean-Mistral, C.; Basrour, S.; Chaillout, J.-J.


    An increasing number of scavenging applications use dielectric polymers: for instance, on the heel of a shoe, behind the knee, on a navy buoy, etc. This emerging technology has the potential to be an alternative to traditional, well-known solutions using piezoelectricity or electromagnetism. Indeed, dielectric polymers are suitable for creating flexible and innovative structures working in a quasi-static range. Nevertheless, current analytical models of dielectric polymers in generator mode are too simple and not sufficiently predictive. This paper reports a more reliable method for modelling dielectric generators. This method is a tool for designing any plane structure. It can be used to calculate performance or to optimize a given structure. Moreover, it is modular and can be adapted to any kind of dielectric material and any plane structure. The method is illustrated on a biaxial plane generator comprising 3M's VHB 4910 polymer and conductive silver grease electrodes. Experiment data are provided to validate the analytical model and thus the whole method.

  3. Synthesis, characterization and applications of graphene architectures (United States)

    Thomas, Abhay Varghese

    Graphene, a two--dimensional sheet of sp2 hybridized carbon atoms arranged in a honeycomb lattice structure, has garnered tremendous interest from the scientific community for its unique combination of properties. It has interesting electrical, thermal, optical and mechanical properties that scientists and engineers are trying to understand and harness to improve current products as well as focus on disruptive technologies that can be made possible by this next generation material. In this thesis the synthesis, characterization and applications of various graphene architectures were explored from the context of a bottom--up and top--down synthesis approach. The work is divided into three main chapters and each one deals with a unique architecture of graphene as well as its properties and an application to a real world problem. In Chapter 2, we focus on bottom--up synthesis of graphene sheets by chemical vapor deposition. We then studied the wetting properties of graphene coated surfaces. More specifically the wetting properties of single and multilayer graphene films on flat and nanoscale rough surfaces are explored and the insights gained are used in improving heat transfer performance of copper surfaces. Single layer graphene, on certain flat surfaces, was shown to exhibit `wetting transparency' as a result of its sheer thinness and this property is of interest in various wetting related applications. Surface protection from corrosion and/or oxidation without change in wetting properties is tremendously useful in multiple fields and we looked to apply this property to dehumidification of copper surfaces. The short time scales results demonstrated that graphene indeed served to prevent oxidation of the surface which in turn promoted increased heat transfer co--efficients with respect to the oxidized copper surfaces. Closer inspection of the surface over long time scales however revealed that the oxide layer changed the wetting properties and this was detrimental

  4. Comportement des poteaux mixtes acier-béton soumis aux sollicitations de type monotone. Étude expérimentale

    Directory of Open Access Journals (Sweden)

    Cristina Câmpian


    Full Text Available For more than one hundred years the construction system based on steel or composite steel -- concrete frames became one of the more utilized types of building in civil engineering domain. For an optimal dimensioning of the structure, the engineers had to found a compromise between the structural exigency for the resistance, stiffness and ductility, on one side, and architectural exigency on the other side. Three monotonic tests and nine cyclic tests according to ECCS loading procedure were carried out in Cluj Laboratory of Concrete. The tested composite columns of fully encased type were subject to a variable transverse load at one end while keeping a constant value of the axial compression force into them. An analytical interpretation is given for the calculus of column stiffness for the monotonic tests, making a comparation with the latest versions of the Eurocode 4 stiffness formula.

  5. Effets de l'humidite sur la propagation du delaminage dans un composite carbone/epoxy sollicite en mode mixte I/II (United States)

    LeBlanc, Luc R.

    In industries such as aerospace, motorsports, and even sporting equipment, composite materials are used more than ever, primarily due to their high stiffness and strength to weight ratios. Studies have shown that moisture exposure on carbon/epoxy composite materials can affect their delamination toughness, initiation and growth rate. Of these studies, only a few demonstrated the effects of moisture on delamination toughness and initiation with mixed mode I/II loadings, while none have investigated the effects of moisture exposure of composites on delamination growth rate with mixed mode I/II loadings. The first part of this thesis studies the effects of moisture exposure on delamination growth in a carbon/epoxy composite using mixed mode I/II loadings. Coupons were cut from plates of unidirectional carbon/epoxy (040-800/5276-1) and were submerged in a 70°C distilled water bath until they reached saturation. Quasi -static experimental tests were performed using a range of mode mixities (0%, 25%, 50%, 75% and 1 00%) on dry and conditioned coupons to determine the effects of humidity on delamination toughness. Fatigue tests with the same mode mixities were performed to determine the effects of moisture on delamination initiation and growth rate. Results from tests with quasi-static loadings demonstrated that delamination toughness decreased for all loading modes studied except for mode I after composites are exposed to moisture. When a conditioned composite is subject to mode I loadings, its delamination toughness increases compared to non-conditioned composites. Composites exposed to moisture showed accelerated delamination initiation and growth rates for all mixed mode I/II fatigue loadings. Experimental data was used to determine which fracture criterion and growth rate model for mixed mode I/II delamination better represented the studied composite. A regression curve and regression surface was used to fit the experimental data to the delamination fracture criteria and growth rate models, respectively. The best fit for the delamination fracture criteria was the B-K criterion and the best fit for the growth rate model was the Kenane-Benzeggagh model. In order to predict delamination behaviour when designing complex parts, numerical models are used. Being able to predict the delamination length during fatigue loadings is important to assure that the crack will not progress until failure of the affected part occurs. According to recent trends, these models are usually based on the cohesive zone approach with a finite element formulation. In the work presented in this thesis, the fatigue delamination growth model by Landry & LaPlante (2012) was improved by adding the ability to simulate mixed mode I/II loadings and by modifying the maximum delamination driving force algorithm. A calibration of the cohesive zone parameters was done with experimental quasi-static mode I and II tests. Numerical simulations of mixed mode I/II quasi-static and fatigue tests were executed for both dry and conditioned coupons. The results were then compared with experimental data and good agreement was shown between the two for delamination toughness and delamination growth rate.



    Maquin, François


    The use of the temperature as state variable in the studies of materials behavior, although promising, is seldom adopted. The experimental metrological difficulties which appear, in particular in the context of high cycle fatigue, explain this renunciation partly. The objective of this thesis is to develop an accurate experimental methodology able to detect the variations of thermal energy dissipated during cyclic deformation of a material at stress level lower than the macroscopic yield stre...

  7. Development of Flax Fibre based Textile Reinforcements for Composite Applications (United States)

    Goutianos, S.; Peijs, T.; Nystrom, B.; Skrifvars, M.


    Most developments in the area of natural fibre reinforced composites have focused on random discontinuous fibre composite systems. The development of continuous fibre reinforced composites is, however, essential for manufacturing materials, which can be used in load-bearing/structural applications. The current work aims to develop high-performance natural fibre composite systems for structural applications using continuous textile reinforcements like UD-tapes or woven fabrics. One of the main problems in this case is the optimisation of the yarn to be used to manufacture the textile reinforcement. Low twisted yarns display a very low strength when tested dry in air and therefore they cannot be used in processes such as pultrusion or textile manufacturing routes. On the other hand, by increasing the level of twist, a degradation of the mechanical properties is observed in impregnated yarns (e.g., unidirectional composites) similar to off-axis composites. Therefore, an optimum twist should be used to balance processability and mechanical properties. Subsequently, different types of fabrics (i.e., biaxial plain weaves, unidirectional fabrics and non-crimp fabrics) were produced and evaluated as reinforcement in composites manufactured by well established manufacturing techniques such as hand lay-up, vacuum infusion, pultrusion and resin transfer moulding (RTM). Clearly, as expected, the developed materials cannot directly compete in terms of strength with glass fibre composites. However, they are clearly able to compete with these materials in terms of stiffness, especially if the low density of flax is taken into account. Their properties are however very favourable when compared with non-woven glass composites.

  8. Influence of tube spinning on formability of friction stir welded aluminum alloy tubes for hydroforming application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.S. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hu, Z.L., E-mail: [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China); State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology (China); Yuan, S.J. [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Hua, L. [Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070 (China)


    Due to economic and ecological reasons, the application of tailor-welded blanks of aluminum alloy has gained more and more attention in manufacturing lightweight structures for automotives and aircrafts. In the study, the research was aimed to highlight the influence of spinning on the formability of FSW tubes. The microstructural characteristics of the FSW tubes during spinning were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The formability of the FSW tubes with different spinning reduction was assessed by hydraulic bulge test. It is found that the spinning process shows a grain refinement of the tube. The grains of the FSW tube decrease with increasing thickness reduction, and the effect of grain refinement is more obvious for the BM compared to that of the weld. The difference of grain size and precipitates between the weld and BM leads to an asymmetric W-type microhardness distribution after spinning. The higher thickness reduction of the tube, the more uniform distribution of grains and precipitates it shows, and consequently results in more significant increase of strength. As compared with the result of tensile test, the tube after spinning shows better formability when the stress state changes from uniaxial to biaxial stress state.

  9. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications (United States)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak


    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  10. Polymeric endoaortic paving: Mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications. (United States)

    Ashton, J H; Mertz, J A M; Harper, J L; Slepian, M J; Mills, J L; McGrath, D V; Vande Geest, J P


    Polymeric endoaortic paving (PEAP) is a process by which a polymer is endovascularly delivered and thermoformed to coat or "pave" the lumen of the aorta. This method may offer an improvement to conventional endoaortic therapy in allowing conformal graft application with reduced risk of endoleak and customization to complex patient geometries. Polycaprolactone (PCL)/polyurethane (PU) blends of various blend ratios were assessed as a potential material for PEAP by characterizing their mechanical, thermoforming and degradation properties. Biaxial tension testing revealed that the blends' stiffness is similar to that of aortic tissue, is higher for blends with more PCL content, and may be affected by thermoforming and degradation. Tubes of blends were able to maintain a higher diameter increase after thermoforming at higher PCL content and higher heating temperatures; 50/50 blend tubes heated to 55 °C were able to maintain 90% of the diameter increase applied. Delamination forces of the blends ranged from 41 to 235 N m⁻². In a Pseudomonas lipase solution, the 50/50 blend had a 94% lower degradation rate than pure PCL, and the 10/90 blend exhibited no degradation. These results indicate that PEAP, consisting of a PCL/PU blend, may be useful in developing the next generation of endoaortic therapy. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Alternative methods for ray tracing in uniaxial media. Application to negative refraction (United States)

    Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo


    In previous papers [C. Bellver-Cebreros, M. Rodriguez-Danta, Eikonal equation, alternative expression of Fresnel's equation and Mohr's construction in optical anisotropic media, Opt. Commun. 189 (2001) 193; C. Bellver-Cebreros, M. Rodriguez-Danta, Internal conical refraction in biaxial media and graphical plane constructions deduced from Mohr's method, Opt. Commun. 212 (2002) 199; C. Bellver-Cebreros, M. Rodriguez-Danta, Refraccion conica externa en medios biaxicos a partir de la construccion de Mohr, Opt. Pura AppliE 36 (2003) 33], the authors have developed a method based on the local properties of dielectric permittivity tensor and on Mohr's plane graphical construction in order to study the behaviour of locally plane light waves in anisotropic media. In this paper, this alternative methodology is compared with the traditional one, by emphasizing the simplicity of the former when studying ray propagation through uniaxial media (comparison is possible since, in this case, traditional construction becomes also plane). An original and simple graphical method is proposed in order to determine the direction of propagation given by the wave vector from the knowledge of the extraordinary ray direction (given by Poynting vector). Some properties of light rays in these media not described in the literature are obtained. Finally, two applications are considered: a description of optical birefringence under normal incidence and the study of negative refraction in uniaxial media.

  12. LCA Applications

    DEFF Research Database (Denmark)

    Owsianiak, Mikołaj; Bjørn, Anders; Laurent, Alexis


    in policy formulation, implementation and evaluation, present different purposes of LCA application in industry at both product and corporate levels, and discuss challenges for LCA applications in small- and medium-sized enterprises. Our synthesis demonstrates the importance of LCA as a tool to quantify......The chapter gives examples of applications of LCA by the central societal actors in government, industry and citizens, and discusses major motivations and challenges for the use of LCA to support science-based decision-making from their respective perspectives. We highlight applications of LCA...

  13. Final Report: Biaxiality in Nematic and Smectic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satyendra; Quan, Li; Srinivasarao, Mohan; Agra-Kooijman, Dena; Rey, Alejandro


    During the award period, the project team explored several phenomena in a diverse group of soft condensed matter systems. These include understanding of the structure of the newly discovered twist-bend nematic phase, solving the mystery of de Vries smectic phases, probing of interesting associations and defect structures in chromonic liquid crystalline systems, dispersions of ferroelectric nanoparticles in smectic liquid crystals, investigations of newly synthesized light sensitive and energy harvesting materials with highly desirable transport properties. Our findings are summarized in the following report followed by a list of 36 publications and 37 conference presentations. We achieved this with the support of Basic Sciences Division of the US DOE for which we are thankful.

  14. evaluation of approximate design procedures for biaxially loaded ...

    African Journals Online (AJOL)

    mples: Example! Gjven: - Geometry and material data hlb = 400/400 mm ..... [5] ACJ Design Hand Book, Design of Structural. Reinforced Concrete Elements in Accordance with the Strength Design Method of ACl3 l 8-. 395, American Concrete ...

  15. Biaxial nematic liquid crystals theory, simulation and experiment

    CERN Document Server

    Luckhurst, Geoffrey R


    Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soaps and detergents, depends on the type of solvent they are mixed with. Since the accidental discovery of the chiral nematic (ordered) phase in 1888 many liquid crystal phases have been found, sometimes by chance and sometimes by design. The existence of one such phase was predicted by Freiser in 197

  16. Measurement of refractive index of biaxial potassium titanyl ...

    Indian Academy of Sciences (India)

    ny at different wavelengths along with their corresponding anisotropic absorption coefficients are summarized in table 1. The calculations in detail are discussed in the thesis of Molla [19]. 736. Pramana – J. Phys., Vol. 73, No. 4, October 2009 ...

  17. Measurement of refractive index of biaxial potassium titanyl ...

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... Author Affiliations. A K Chaudhary1 2 A Molla2 A Asfaw2. Advanced Centre of Research in High Energy Materials, P-002, Science Complex, University of Hyderabad, Hyderabad 500 046, India; Department of Physics, Addis Ababa University, P.O. Box 1176, Arat Kilo, Addis Ababa, Ethiopia ...

  18. SEMICONDUCTOR DEVICES: Characteristics of a novel biaxial capacitive MEMS accelerometer (United States)

    Linxi, Dong; Yongjie, Li; Haixia, Yan; Lingling, Sun


    A novel MEMS accelerometer with grid strip capacitors is developed. The mechanical and electrical noise can be reduced greatly for the novel structure design. ANSOFT-Maxwell software was used to analyze the fringing electric field of the grid strip structure and its effects on the designed accelerometer. The effects of the width, thickness and overlapping width of the grid strip on the sensing capacitance are analyzed by using the ANSOFT-Maxwell software. The results show that the parameters have little effect on the characteristics of the presented accelerometer. The designed accelerometer was fabricated based on deep RIE and silicon-glass bonding processes. The preliminary tested sensitivities are 0.53 pF/g and 0.49 pF/g in the x and y axis directions, respectively. A resonator with grid strip structure was also fabricated whose tested quality factor is 514 in air, which proves that the grid strip structure can reduce mechanical noise.

  19. Buckling analysis and small scale effect of biaxially compressed ...

    Indian Academy of Sciences (India)

    Duan & Wang (2007) reported bending analysis of circular graphene sheets based on non-local elasticity theory. Some research works have been reported on the thermal effect on buckling of nanotubes (Ghorbanpour Arani et al. 2011), vibration of nanotubes (Ghorbanpour Arani et al 2010), multilayered graphene sheets.

  20. Remaining Strength of Corroded Pipe Under Secondary (Biaxial) Loading (United States)


    Corrosion metal-loss is one of the major damage mechanisms to transmission pipelines worldwide. Several methods have been developed for assessment of corrosion defects, such as ASME B31G, RSTRENG and LPC. These methods were derived based on experimen...

  1. Spectroscopic ellipsometry characterization of coatings on biaxially anisotropic polymeric substrates (United States)

    Hilfiker, James N.; Pietz, Brandon; Dodge, Bill; Sun, Jianing; Hong, Nina; Schoeche, Stefan


    Spectroscopic ellipsometry characterization of coatings on polymeric substrates can be challenging due to the substrate optical anisotropy. We compare four characterization strategies for thin coating layers on anisotropic polymeric substrates with regard to accuracy of the resulting layer thickness and coating optical constants. Each strategy differs in measured data type, model construction, implementation complexity, and inherent capabilities and sensitivity to the coating properties. Best practices and limitations are discussed for each strategy.

  2. LCA Applications

    DEFF Research Database (Denmark)

    Owsianiak, Mikołaj; Bjørn, Anders; Laurent, Alexis


    The chapter gives examples of applications of LCA by the central societal actors in government, industry and citizens, and discusses major motivations and challenges for the use of LCA to support science-based decision-making from their respective perspectives. We highlight applications of LCA in...

  3. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A.; Tomov, R.; Huehne, R.; Glowacki, B.A.; Everts, J.E.; Tuissi, A.; Villa, E.; Holzapfel, B


    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  4. Polymeric Endoaortic Paving (PEAP): Mechanical, Thermoforming, and Degradation Properties of Polycaprolactone/Polyurethane Blends for Cardiovascular Applications (United States)

    Ashton, John H.; Mertz, James A. M.; Harper, John L.; Slepian, Marvin J.; Mills, Joseph L.; McGrath, Dominic V.; Vande Geest, Jonathan P.


    Polymeric endoaortic paving (PEAP) is a process by which a polymer is endovascularly delivered and thermoformed to coat or “pave” the lumen of the aorta. This method may offer an improvement to conventional endoaortic therapy in allowing conformal graft application with reduced risk of endoleak and customization to complex patient geometries. Polycaprolactone (PCL)/polyurethane (PU) blends of various blend ratios were assessed as a potential material for PEAP by characterizing their mechanical, thermoforming, and degradation properties. Biaxial tension testing revealed that the blends' stiffness is similar to that of aortic tissue, is higher for blends with more PCL content, and may be affected by thermoforming and degradation. Tubes of blends were able to maintain a higher diameter increase after thermoforming at higher PCL content and higher heating temperatures; 50/50 blend tubes heated to 55°C were able to maintain 90% of the diameter increase applied. Delamination forces of the blends ranged from 41 to 235 N/m2. In a Pseudomonas lipase solution, the 50/50 blend had a 94% lower degradation rate than pure PCL, and the 10/90 blend exhibited no degradation. These results indicate that PEAP, consisting of a PCL/PU blend, may be useful in developing the next generation of endoaortic therapy. PMID:20832506

  5. A numerical-experimental protocol to characterize corneal tissue with an application to predict astigmatic keratotomy surgery. (United States)

    Ariza-Gracia, M Á; Ortillés, Á; Cristóbal, J Á; Rodríguez Matas, J F; Calvo, B


    Tonometers are intended to determine the intraocular pressure (IOP) and the quality of corneal tissue. In contrast to the physiological state of stress of the cornea, tonometers induce non-physiological bending stress. Recently, the use of a single experiment to calibrate a set of corneal mechanical properties was suggested to be an ill-posed problem. Thus, we propose a numerical-experimental protocol that uses inflation and indentation experiments simultaneously, restricting the optimization space to circumvent the ambiguity of the fitting. For the first time, both corneal behaviors, i.e., biaxial tension (physiological) and bending (non-physiological), are taken into account. The experimental protocol was performed using an animal model (New Zealand rabbit's cornea). The patient-specific geometry and IOP were registered using a MODI topographer (CSO, Italy) and an applanation tonometer, respectively. The mechanical response was evaluated using inflation and indentation experiments. Subsequently, the optimal set of material properties is identified via an inverse finite element method. To validate the methodology, an in vivo incisional refractive surgery (astigmatic keratotomy, AK) is performed on four animals. The optical outcomes showed a good agreement between the real and simulated surgeries, indicating that the protocol can provide a reliable set of mechanical properties that enables further applications and simulations. After a reliable ex vivo database of inflation experiments is built, our protocol could be extended to humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Medical Applications

    CERN Document Server

    Biscari, C.


    The use of accelerators for medical applications has evolved from initial experimentation to turn-key devices commonly operating in hospitals. New applications are continuously being developed around the world, and the hadrontherapy facilities of the newest generation are placed at the frontier between industrial production and advanced R&D. An introduction to the different medical application accelerators is followed by a description of the hadrontherapy facilities, with special emphasis on CNAO, and the report closes with a brief outlook on the future of this field.

  7. Highly compliant guided-mode resonance nanogratings: From theory to application in mechanical strain sensing (United States)

    Foland, Steven J.

    This work reports the theory, design, fabrication, and characterization of highly-compliant polymer-based guided-mode resonance (GMR) grating devices. GMR devices have been widely researched in recent years for their applications in telecommunications and biosensing. The vast majority of GMR-based sensors are fabricated and characterized on rigid transparent substrates, and are designed to respond to changes in the optical properties of their surrounding media. While useful in a number of conventional sensing configurations, the applications of rigid gratings for mechanical sensing are extremely limited. To enable a GMR sensor to respond to mechanical stimuli, both the grating and its substrate must be compliant, a property inherent to the devices presented herein. An extensive toolset is required for the design of such resonant optical devices; this dissertation defines the theoretical and simulations models used for the analysis of these dynamic grating devices, and provides a clear understanding of both their strengths and limitations. These tools include a waveguide-theory based theoretical model for rapid approximation of grating resonance conditions, and finite element method (FEM) simulation for full-field solutions to Maxwell's equations. A number of challenges which arise when attempting to fabricate nanostructures on a thin polymer are also addressed, and a fabrication process is developed to enable a practical embodiment of the proposed devices. The results of this process are subwavelength titanium dioxide (TiO2) gratings embedded at the surface of compliant polydimethylsiloxane (PDMS) structures. Both a one-dimensional, membrane-embedded GMR grating for local measurement of microfluidic channel pressure, and a two-dimensional, slab-embedded GMR grating for biaxial strain detection are discussed, demonstrated, and evaluated. Additionally, potential improvements to the devices' performance and suggestions for future work are provided.

  8. Applicability and Safety of Skin Expansion Using a Skin Bioreactor: A Clinical Trial

    Directory of Open Access Journals (Sweden)

    Cheol Jeong


    Full Text Available BackgroundTissue expansion is an effective and valuable technique for the reconstruction of large skin lesions and scars. This study aimed to evaluate the applicability and safety of a newly designed skin expanding bioreactor system for maximizing the graft area and minimizing the donor site area.MethodsA computer-controlled biaxial skin bioreactor system was used to expand skin in two directions while the culture media was changed daily. The aim was to achieve an expansion speed that enabled the skin to reach twice its original area in two weeks or less. Skin expansion and subsequent grafting were performed for 10 patients, and each patient was followed for 6 months postoperatively for clinical evaluation. Scar evaluation was performed through visual assessment and by using photos.ResultsThe average skin expansion rate was 10.54%±6.25%; take rate, 88.89%±11.39%; and contraction rate, 4.2%±2.28% after 6 months. Evaluation of the donor and recipient sites by medical specialists resulted in an average score of 3.5 (out of a potential maximum of 5 at 3 months, and 3.9 at 6 months. The average score for patient satisfaction of the donor site was 6.2 (out of a potential maximum of 10, and an average score of 5.2 was noted for the recipient site. Histological examination performed before and after the skin expansion revealed an increase in porosity of the dermal layer.ConclusionsThis study confirmed the safety and applicability of the in vitro skin bioreactor, and further studies are needed to develop methods for increasing the skin expansion rate.

  9. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center


    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  10. Technology applications (United States)

    Anuskiewicz, T.; Johnston, J.; Leavitt, W.; Zimmerman, R. R.


    A summary of NASA Technology Utilization programs for the period of 1 December 1971 through 31 May 1972 is presented. An abbreviated description of the overall Technology Utilization Applications Program is provided as a background for the specific applications examples. Subjects discussed are in the broad headings of: (1) cancer, (2) cardiovascular disease, (2) medical instrumentation, (4) urinary system disorders, (5) rehabilitation medicine, (6) air and water pollution, (7) housing and urban construction, (8) fire safety, (9) law enforcement and criminalistics, (10) transportation, and (11) mine safety.

  11. Application format

    Indian Academy of Sciences (India)

    INDIAN ACADEMY OF SCIENCES. BENGALURU. Application for the Position of Copy Editor on Contract Basis. 1. Name in full (in block letters). 2. Parent's / Spouse Name. 3. a) Date of Birth : DATE. MONTH. YEAR b) Age in completed years. 4. (i) Address for correspondence. (in BLOCK LETTERS). Telephone No.: Office :.

  12. Application format

    Indian Academy of Sciences (India)

    Passport Size. Photograph. INDIAN ACADEMY OF SCIENCES. BENGALURU. Application for the Position of Copy Editor. 1. Name in full (in block letters). 2. Parent's / Spouse Name. 3. a) Date of Birth : DATE. MONTH. YEAR b) Age in completed years. 4. (i) Address for correspondence. (in BLOCK LETTERS). Telephone No ...

  13. Application note :

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Thomas V.


    The development of the XyceTM Parallel Electronic Simulator has focused entirely on the creation of a fast, scalable simulation tool, and has not included any schematic capture or data visualization tools. This application note will describe how to use the open source schematic capture tool gschem and its associated netlist creation tool gnetlist to create basic circuit designs for Xyce, and how to access advanced features of Xyce that are not directly supported by either gschem or gnetlist.

  14. Photography applications (United States)

    Cochran, Susan A.; Goodman, James A.; Purkis, Samuel J.; Phinn, Stuart R.


    Photographic imaging is the oldest form of remote sensing used in coral reef studies. This chapter briefly explores the history of photography from the 1850s to the present, and delves into its application for coral reef research. The investigation focuses on both photographs collected from low-altitude fixed-wing and rotary aircraft, and those collected from space by astronauts. Different types of classification and analysis techniques are discussed, and several case studies are presented as examples of the broad use of photographs as a tool in coral reef research.

  15. Determination Application

    Directory of Open Access Journals (Sweden)

    Paula Cristiane Pinto Mesquita Pardal


    Full Text Available The paper aims at discussing techniques for administering one implementation issue that often arises in the application of particle filters: sample impoverishment. Dealing with such problem can significantly improve the performance of particle filters and can make the difference between success and failure. Sample impoverishment occurs because of the reduction in the number of truly distinct sample values. A simple solution can be to increase the number of particles, which can quickly lead to unreasonable computational demands, which only delays the inevitable sample impoverishment. There are more intelligent ways of dealing with this problem, such as roughening and prior editing, procedures to be discussed herein. The nonlinear particle filter is based on the bootstrap filter for implementing recursive Bayesian filters. The application consists of determining the orbit of an artificial satellite using real data from the GPS receivers. The standard differential equations describing the orbital motion and the GPS measurements equations are adapted for the nonlinear particle filter, so that the bootstrap algorithm is also used for estimating the orbital state. The evaluation will be done through convergence speed and computational implementation complexity, comparing the bootstrap algorithm results obtained for each technique that deals with sample impoverishment.

  16. Modélisation et caractérisation du comportement hyper-visco-plastique d'un élastomère sous sollicitations multi-harmoniques et à différentes températures


    Martinez, Jean-Marc


    Cette thèse a été supportée par EUROCOPTER France; The rheological models generalized to finite deformation are classically used to characterize the hyper-visco-elastic behavior of filled elastomers. However, the simple rheological models, such as the model of Zener or that of Poynting-Thomson, suitably reflect the behavior in a limited domain of frequency of loading. Consequently, the use of the generalized Maxwell model (with a high number of branches) can be necessary to cover a wide frequ...

  17. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding; Contribution a l`etude des mecanismes d`amorphisation par sollicitation mecanique de composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Galy, D.


    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr{sub 2} compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr{sub 2} compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr{sub 2} has been elucidated. In the second part of this work, the microstructure of NiZr{sub 2} in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs.

  18. Apprentissage d'une langue et interaction verbale. Sollicitation, transmission et construction de connaissances linguistiques en situation exolingue (Language Learning and Verbal Interaction. Appeal, Transmission and Construction of Linguistic Knowledge in a Foreign-Language Situation). (United States)

    Matthey, Marinette

    The discussion of the role of verbal interaction in second language learning focuses on the process the learner undergoes in acquiring linguistic knowledge in a second- or foreign-language (L2) situation. The introductory section provides a general discussion of language learning and the acquisition of both linguistic and non-linguistic knowledge.…



    Ion Ivan; Alin Zamfiroiu; Dragoş Palaghiţă3


    Mobile applications and their particularities are analyzed. Mobile application specific characteristics are defined. Types of applications are identified and analyzed. The paper established differences between mobile applications and mobile application categories. For each identified type the specific structures and development model are identified.

  20. Evaluation of methods for application of epitaxial buffer and superconductor layers

    Energy Technology Data Exchange (ETDEWEB)



    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  1. Learning Android application testing

    CERN Document Server

    Blundell, Paul


    If you are an Android developer looking to test your applications or optimize your application development process, then this book is for you. No previous experience in application testing is required.

  2. Connected vehicle applications : environment. (United States)


    The U.S. Department of Transportation has developed a number of connected vehicle environmental : applications, including the Applications for the Environment Real-Time Information Synthesis (AERIS) : research program applications and road weather ap...

  3. Sight Application Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The scale and complexity of scientific applications makes it very difficult to optimize, debug and extend them to support new capabilities. We have developed a tool that supports developers’ efforts to understand the logical flow of their applications and interactions between application components and hardware in a way that scales with application complexity and parallelism.

  4. Photorefractive Materials and Their Applications 3 Applications

    CERN Document Server

    Günter, Peter


    In this third volume a series of applications on photorefractive nonlinear optics and optical data storage are presented. This and the other two volumes on photorefractive effects, materials and applications have been prepared mainly for researchers in the field, but also for physics, engineering and materials science students. Several chapters contain sufficient introductory material for those not so familiar with the topic to obtain a thorough understanding of the photorefractive effect. We hope that researchers active in the field will find these books to be a very valuable reference source. The other two volumes are: Photorefractive Materials and Their Applications 1: Basic Effects Photorefractive Materials and Their Applications 2: Materials

  5. Robust control and linear parameter varying approaches application to vehicle dynamics

    CERN Document Server

    Gaspar, Peter; Bokor, József


    Vehicles are complex systems (non-linear, multi-variable) where the abundance of embedded controllers should ensure better security. This book aims at emphasizing the interest and potential of Linear Parameter Varying methods within the framework of vehicle dynamics, e.g.   ·          proposed control-oriented model, complex enough to handle some system non linearities but still simple for control or observer design,   ·          take into account the adaptability of the vehicle's response to driving situations, to the driver request and/or to the road sollicitations,   ·          manage interactions between various actuators to optimize the dynamic behavior of vehicles.   This book results from the 32th International Summer School in Automatic that held in Grenoble, France, in September 2011, where recent methods (based on robust control and LPV technics), then applied to the control of vehicle dynamics, have been presented. After some theoretical background and a view on so...

  6. Wapice News Mobile Application


    Söylemez, Ilke


    Since the mobile phones started to have an increasingly significant role in daily life, the mobile application development also started to be an important area in the software industry. The problem for mobile application developers is to develop a mobile application which supports all the devices and platforms on the market. This issue created a need for cross platform mobile applications. The cross platform mobile development refers to the development of mobile applications that could be use...

  7. Validation of Internet Applications


    Lalani, Nisar


    Today, testing applications for Internet (web sites and other applications) is being verified using proprietary test solutions. An application is developed and another application is developed to test the first one. Test Competence Centre at Ericsson AB has expertise on testing telecom applications using TTCN-2 and TTCN-3 notations. These notations have lot of potential and are being used for testing in various areas. So far, not much work has been done on using TTCN notations for testing Int...

  8. Criteria for Social Applications

    DEFF Research Database (Denmark)

    Atzenbeck, Claus; Tzagarakis, Manolis


    Social networks are becoming increasingly important for a wide number of applications. This is in particular true in the context of the Web 2.0 movement where a number of Web-based applications emerged - termed social networking applications or services - that allow the articulation of social...... relationships between individuals thus creating social networks. Although Web 2.0 applications are a popular and characteristic class of such applications they are not the only representatives that permit such functionality. Applications in the Personal Information Management domain exhibit similar...... to represent a community.  In this paper we outline a framework for analyzing applications that permit the construction of social networks. Our main focus is on the abstractions and mechanisms that a number of applications provide to facilitate the building of such networks....

  9. EPA Geospatial Applications (United States)

    EPA has developed many applications that allow users to explore and interact with geospatial data. This page highlights some of the flagship geospatial web applications but these represent only a fraction of the total.

  10. Applicant Satisfaction Survey (United States)

    Office of Personnel Management — The Chief Human Capital Officers developed 3 surveys that asks applicants to assess their satisfaction with the application process on a 1-10 point scale, with 10...

  11. Nanoplasmonics advanced device applications

    CERN Document Server

    Chon, James W M


    Focusing on control and manipulation of plasmons at nanometer dimensions, nanoplasmonics combines the strength of electronics and photonics, and is predicted to replace existing integrated circuits and photonic devices. It is one of the fastest growing fields of science, with applications in telecommunication, consumer electronics, data storage, medical diagnostics, and energy.Nanoplasmonics: Advanced Device Applications provides a scientific and technological background of a particular nanoplasmonic application and outlines the progress and challenges of the application. It reviews the latest

  12. Biomedical Applications of Graphene (United States)

    Shen, He; Zhang, Liming; Liu, Min; Zhang, Zhijun


    Graphene exhibits unique 2-D structure and exceptional phyiscal and chemical properties that lead to many potential applications. Among various applications, biomedical applications of graphene have attracted ever-increasing interests over the last three years. In this review, we present an overview of current advances in applications of graphene in biomedicine with focus on drug delivery, cancer therapy and biological imaging, together with a brief discussion on the challenges and perspectives for future research in this field. PMID:22448195

  13. Commercial applications of ferrofluids (United States)

    Raj, K.; Moskowitz, R.


    Ferrofluids have been in the commercial arena for over two decades. In this paper, the most advanced, successful commercial applications of ferrofluids are discussed. These applications center around the tribological characteristics of ferrofluids, e.g., sealing, damping and hydrodynamic bearings. Also, an account of some lesser known applications is presented.

  14. SIMS applications workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)



    The first ANSTO/AINSE SIMS Workshop drew together a mixture of Surface Analysis experts and Surface Analysis users with the concept that SIMS analysis has to be enfolded within the spectrum of surface analysis techniques and that the user should select the technique most applicable to the problem. With this concept in mind the program was structured as sessions on SIMS Facilities; Applications to Mineral Surfaces; Applications to Biological Systems, Applications to Surfaces as Semi- conductors, Catalysts and Surface Coatings; and Applications to Ceramics

  15. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva


    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  16. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva


    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  17. Applications of Photocatalytic Disinfection

    Directory of Open Access Journals (Sweden)

    Joanne Gamage


    Full Text Available Due to the superior ability of photocatalysis to inactivate a wide range of harmful microorganisms, it is being examined as a viable alternative to traditional disinfection methods such as chlorination, which can produce harmful byproducts. Photocatalysis is a versatile and effective process that can be adapted for use in many applications for disinfection in both air and water matrices. Additionally, photocatalytic surfaces are being developed and tested for use in the context of “self-disinfecting” materials. Studies on the photocatalytic technique for disinfection demonstrate this process to have potential for widespread applications in indoor air and environmental health, biological, and medical applications, laboratory and hospital applications, pharmaceutical and food industry, plant protection applications, wastewater and effluents treatment, and drinking water disinfection. Studies on photocatalytic disinfection using a variety of techniques and test organisms are reviewed, with an emphasis on the end-use application of developed technologies and methods.

  18. Technical applications of aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Hrubesh, L.W.


    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.


    Directory of Open Access Journals (Sweden)

    Yana Qomariana


    Full Text Available This paper presents applicative constructions found in Javanese spoken in Malang, East Java. It shows that applicative constructions in Malang are marked by suffixes attached to verbs. Suffix –i is used with location and recipient, while suffix –na is used with benefactive and instrumental. This agrees with applicative in Javanese spoken in Semarang with suffix –i and -ake respectively.

  20. REST based mobile applications (United States)

    Rambow, Mark; Preuss, Thomas; Berdux, Jörg; Conrad, Marc


    Simplicity is the major advantage of REST based webservices. Whereas SOAP is widespread in complex, security sensitive business-to-business aplications, REST is widely used for mashups and end-user centric applicatons. In that context we give an overview of REST and compare it to SOAP. Furthermore we apply the GeoDrawing application as an example for REST based mobile applications and emphasize on pros and cons for the use of REST in mobile application scenarios.

  1. Microprocessors principles and applications

    CERN Document Server

    Debenham, Michael J


    Microprocessors: Principles and Applications deals with the principles and applications of microprocessors and covers topics ranging from computer architecture and programmed machines to microprocessor programming, support systems and software, and system design. A number of microprocessor applications are considered, including data processing, process control, and telephone switching. This book is comprised of 10 chapters and begins with a historical overview of computers and computing, followed by a discussion on computer architecture and programmed machines, paying particular attention to t

  2. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A


    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  3. Assignment Tracking Android Application


    Akanni, Feranmi Timothy


    One of the common ways of checking that knowledge is impacted into students at every level of education is by giving various tasks to students and part of the responsibilities of the teacher is to give assignments to students and check the solution provided by the students. Increase in technology development involves a number of mobile applications that are being developed and released on a daily basis, out of which Android operating application is one of the dominant mobile application. T...

  4. Refrigeration systems and applications

    CERN Document Server

    Dincer, Ibrahim


    Refrigeration Systems and Applications, 2nd edition offers a comprehensive treatise that addresses real-life technical and operational problems, enabling the reader to gain an understanding of the fundamental principles and the practical applications of refrigeration technology. New and unique analysis techniques (including exergy as a potential tool), models, correlations, procedures and applications are covered, and recent developments in the field are included - many of which are taken from the author's own research activities in this area. The book also includes so

  5. Applications of combinatorial optimization

    CERN Document Server

    Paschos, Vangelis Th


    Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aims to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. "Applications of Combinatorial Optimization" is presenting a certain number among the most common and well-known applications of Combinatorial Optimization.

  6. Hardening Azure applications

    CERN Document Server

    Gaurav, Suraj


    Learn what it takes to build large scale, mission critical applications -hardened applications- on the Azure cloud platform. This 208 page book covers the techniques and engineering principles that every architect and developer needs to know to harden their Azure/.NET applications to ensure maximum reliability and high availability when deployed at scale. While the techniques are implemented in .NET and optimized for Azure, the principles here will also be valuable for users of other cloud-based development platforms. Applications come in a variety of forms, from simple apps that can be bui

  7. Mongoose for application development

    CERN Document Server

    Holmes, Simon


    This book is a mini tutorial full of code examples and strategies to give you plenty of options when building your own applications with MongoDB.This book is ideal for people who want to develop applications on the Node.js stack quickly and efficiently. Prior knowledge of the stack is not essential as the book briefly covers the installation of the core components and builds all aspects of the example application. The focus of the book is on what Mongoose adds to you applications, so experienced Node.js developers will also benefit.

  8. Application Technology Research Unit (United States)

    Federal Laboratory Consortium — To conduct fundamental and developmental research on new and improved application technologies to protect floricultural, nursery, landscape, turf, horticultural, and...

  9. Application Coherency Manager Project (United States)

    National Aeronautics and Space Administration — This proposal describes an Application Coherency Manager that implements and manages the interdependencies of simulation, data, and platform information. It will...

  10. Nanomaterials for Defense Applications (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  11. Expert Oracle application express

    CERN Document Server

    Scott, John Edward


    Expert Oracle Application Express brings you groundbreaking insights into developing with Oracle's enterprise-level, rapid-development tool from some of the best practitioners in the field today. Oracle Application Express (APEX) is an entirely web-based development framework that is built into every edition of Oracle Database. The framework rests upon Oracle's powerful PL/SQL language, enabling power users and developers to rapidly develop applications that easily scale to hundreds, even thousands of concurrent users. The 13 authors of Expert Oracle Application Express build their careers aro

  12. Electrical applications 2

    CERN Document Server

    Tyler, David W


    Electrical Applications 2 covers the BTEC NII level objectives in Electrical Applications U86/330. To understand the applications, a knowledge of the underlying principles is needed and these are covered briefly in the text. Key topics discussed are: the transmission and distribution of electrical energy; safety and regulations; tariffs and power factor correction; materials and their applications in the electrical industry; transformers; DC machines; illumination; and fuse protection. Included in each chapter are worked examples which should be carefully worked through before progressing to t

  13. Plate Deformation Behavior of Polymer Matrix Composite-Ti Honeycomb-Metal Sandwiches for Pressurized Propulsion Component Applications (United States)

    Bertelsen, William D.; Shin, E. eugene; Thesken, John C.; Sutter, James K.; Martin, Rich


    THe objectives are: 1. To experimentally validate bi-axial plate flexural performance of PMC-Ti H/C-A286 sandwich panels for the internally pressurized RBCC combustion chamber support structure. 2. To explore ASTM 2-D plate flexure test (D 6416) to simulate the internal pressure loading and to correlate the results with analytical and FE modeling based on 2-D flexure properties.

  14. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.


    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  15. Applications of Solubility Data (United States)

    Tomkins, Reginald P. T.


    This article describes several applications of the use of solubility data. It is not meant to be exhaustive but rather to show that knowledge of solubility data is required in a variety of technical applications that assist in the design of chemical processes. (Contains 3 figures and 1 table.)

  16. Progressive Web applications

    CERN Multimedia

    CERN. Geneva


    Progressive Web Applications are native-like applications running inside of a browser context. In my presentation I would like describe their characteristics, benchmarks and building process using a quick and simple case study example with focus on Service Workers api.

  17. Advertising on mobile applications


    Sobolevsky, Alexandr


    The article analyzes the new method of mobile advertising. Advertising in mobile applications - a subspecies of mobile marketing, where advertising is distributed using mobile phones and smartphones. Ad placement is going on inside of applications and games for smartphones. It has a high potential due to the large number of mobile phone users (over 6.5 billion in 2013).

  18. Application Security Automation (United States)

    Malaika, Majid A.


    With today's high demand for online applications and services running on the Internet, software has become a vital component in our lives. With every revolutionary technology comes challenges unique to its characteristics; for online applications, security is one huge concern and challenge. Currently, there are several schemes that address…

  19. MEET ISOLDE - Medical applications

    CERN Multimedia


    Meet ISOLDE - Medical applications. For most physics experiments, the applications and impact that science research has on people’s lives is years in the future. But at ISOLDE the work being done with medical researchers is making a difference today.

  20. Engineering Adaptive Applications

    DEFF Research Database (Denmark)

    Dolog, Peter

    for a domain.In this book, we propose a new domain engineering framework which extends a development process of Web applications with techniques required when designing such adaptive customizable Web applications. The framework is provided with design abstractions which deal separately with information served...

  1. GPU computing and applications

    CERN Document Server

    See, Simon


    This book presents a collection of state of the art research on GPU Computing and Application. The major part of this book is selected from the work presented at the 2013 Symposium on GPU Computing and Applications held in Nanyang Technological University, Singapore (Oct 9, 2013). Three major domains of GPU application are covered in the book including (1) Engineering design and simulation; (2) Biomedical Sciences; and (3) Interactive & Digital Media. The book also addresses the fundamental issues in GPU computing with a focus on big data processing. Researchers and developers in GPU Computing and Applications will benefit from this book. Training professionals and educators can also benefit from this book to learn the possible application of GPU technology in various areas.

  2. Mobile Learning Applications Audit

    Directory of Open Access Journals (Sweden)



    Full Text Available While mobile learning (m-learning applications have proven their value in educational activities, there is a need to measure their reliability, accessibility and further more their trustworthiness. Mobile devices are far more vulnerable then classic computers and present inconvenient interfaces due to their size, hardware limitations and their mobile connectivity. Mobile learning applications should be audited to determine if they should be trusted or not, while multimedia contents like automatic speech recognition (ASR can improve their accessibility. This article will start with a brief introduction on m-learning applications, then it will present the audit process for m-learning applications, it will iterate their specific security threats, it will define the ASR process, and it will elaborate how ASR can enhance accessibility of these types of applications.

  3. Applications of ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)



    Developments in standard applications and brand new nuclear technologies, with high impact on the future of the agriculture, medicine, industry and the environmental preservation. The Radiation Technology Center (CTR) mission is to apply the radiation and radioisotope technologies in Industry, Health, Agriculture, and Environmental Protection, expanding the scientific knowledge, improving human power resources, transferring technology, generating products and offering services for the Brazilian society. The CTR main R and D activities are in consonance with the IPEN Director Plan (2011-2013) and the Applications of Ionizing Radiation Program, with four subprograms: Irradiation of Food and Agricultural Products; Radiation and Radioisotopes Applications in Industry and Environment; Radioactive Sources and Radiation Applications in Human Health; and Radioactive Facilities and Equipment for the Applications of Nuclear Techniques.

  4. Geometry and its applications

    CERN Document Server

    Meyer, Walter J


    Meyer''s Geometry and Its Applications, Second Edition, combines traditional geometry with current ideas to present a modern approach that is grounded in real-world applications. It balances the deductive approach with discovery learning, and introduces axiomatic, Euclidean geometry, non-Euclidean geometry, and transformational geometry. The text integrates applications and examples throughout and includes historical notes in many chapters. The Second Edition of Geometry and Its Applications is a significant text for any college or university that focuses on geometry''s usefulness in other disciplines. It is especially appropriate for engineering and science majors, as well as future mathematics teachers.* Realistic applications integrated throughout the text, including (but not limited to): - Symmetries of artistic patterns- Physics- Robotics- Computer vision- Computer graphics- Stability of architectural structures- Molecular biology- Medicine- Pattern recognition* Historical notes included in many chapters...

  5. 40 CFR 194.15 - certification application(s). (United States)


    ... 40 PROTECTION OF ENVIRONMENT 12 1996-07-01 1996-07-01 false certification application(s). 194.15 Sec. 194.15 Content of compliance re PROTECTION OF ENVIRONMENT ENVIRONMENTAL PROTECTION AGENCY... and Re-certification Applications Sec. 194.15 Content of compliance re-certification application(s...

  6. Elaboration of an Elasto-Plastic Model for High Porosity Chalks. Application to the Compaction of Petroleum Reservoirs Elaboration d'un modèle de comportement élasto-plastique pour les craies très poreuses. Application à la compaction des réservoirs pétroliers

    Directory of Open Access Journals (Sweden)

    Shahrour I.


    Full Text Available This paper presents a study of the compaction of petroleum reservoirs applied to very porous carbonate rocks such as chalk. In production estimates made in reservoir engineering, the processing of the mechanical problem is often greatly simplified. Good modelling of how materials behave gives special consideration to the influence of mechanical deformations on fluid recovery. After an analysis of the mechanical behaviour of very porous chalks, an elastoplastic behaviour model is derived so as to reproduce the principal experimental observations. This behaviour model can then be used to perform local simulations of the mechanical behaviour of a reservoir under- going depletion and thus to demonstrate the importance of the stress path and the initial stress state on the deformation of materials and hence on the recovery rate. Dans les applications pétrolières, les études de la compaction des roches réservoirs interviennent dans l'estimation des quantités de fluide récupérables et de la subsidence induite par la déplétion du champ de production. Dans la première partie du travail, nous montrons qu'à partir de l'équation linéarisée de la conservation de la masse de fluide, il est possible d'exprimer un taux de récupération distinguant les contributions respectives du fluide et de la roche. En ingénierie de réservoirs, l'hypothèse d'un chemin de contrainte prépondérant dans le milieu de production permet d'exprimer la contribution de la déformation de la roche au moyen de la compressibilité volumique des pores selon ce chemin. Le taux de récupération obtenu est alors dépendant du chemin de contrainte. Lorsque le chemin de contrainte dans le réservoir n'est pas homogène, il est alors nécessaire de connaître la loi de comportement mécanique du matériau étudié. Dans le cas des carbonates très poreux, nous désirons montrer l'influence liée au choix du chemin de contrainte sur les estimations obtenues par une m

  7. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G


    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  8. Biomaterials and therapeutic applications (United States)

    Ferraro, Angelo


    A number of organic and inorganic, synthetic or natural derived materials have been classified as not harmful for the human body and are appropriate for medical applications. These materials are usually named biomaterials since they are suitable for introduction into living human tissues of prosthesis, as well as for drug delivery, diagnosis, therapies, tissue regeneration and many other clinical applications. Recently, nanomaterials and bioabsorbable polymers have greatly enlarged the fields of application of biomaterials attracting much more the attention of the biomedical community. In this review paper I am going to discuss the most recent advances in the use of magnetic nanoparticles and biodegradable materials as new biomedical tools.

  9. Distributed Parameter Modelling Applications

    DEFF Research Database (Denmark)

    Sales-Cruz, Mauricio; Cameron, Ian; Gani, Rafiqul


    and the development of a short-path evaporator. The oil shale processing problem illustrates the interplay amongst particle flows in rotating drums, heat and mass transfer between solid and gas phases. The industrial application considers the dynamics of an Alberta-Taciuk processor, commonly used in shale oil and oil......Here the issue of distributed parameter models is addressed. Spatial variations as well as time are considered important. Several applications for both steady state and dynamic applications are given. These relate to the processing of oil shale, the granulation of industrial fertilizers...

  10. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  11. Android Applications Security

    Directory of Open Access Journals (Sweden)



    Full Text Available The use of smartphones worldwide is growing very fast and also the malicious attacks have increased. The mobile security applications development keeps the pace with this trend. The paper presents the vulnerabilities of mobile applications. The Android applications and devices are analyzed through the security perspective. The usage of restricted API is also presented. The paper also focuses on how users can prevent these malicious attacks and propose some prevention measures, including the architecture of a mobile security system for Android devices.

  12. Professional Tizen application development

    CERN Document Server

    Jaygarl, HoJun; Kim, YoonSoo; Choi, Eunyoung; Bradwick, Kevin; Lansdell


    Create powerful, marketable applications with Tizen for the smartphone and beyond  Tizen is the only platform designed for multiple device categories that is HTML5-centric and entirely open source. Written by experts in the field, this comprehensive guide includes chapters on both web and native application development, covering subjects such as location and social features, advanced UIs, animations, sensors and multimedia. This book is a comprehensive resource for learning how to develop Tizen web and native applications that are polished, bug-free and ready to sell on a range of smart dev

  13. Professional mobile application development

    CERN Document Server

    McWherter, Jeff


    Create applications for all major smartphone platforms Creating applications for the myriad versions and varieties of mobile phone platforms on the market can be daunting to even the most seasoned developer. This authoritative guide is written in such as way that it takes your existing skills and experience and uses that background as a solid foundation for developing applications that cross over between platforms, thereby freeing you from having to learn a new platform from scratch each time. Concise explanations walk you through the tools and patterns for developing for all the mobile platfo

  14. Building Social Web Applications

    CERN Document Server

    Bell, Gavin


    Building a web application that attracts and retains regular visitors is tricky enough, but creating a social application that encourages visitors to interact with one another requires careful planning. This book provides practical solutions to the tough questions you'll face when building an effective community site -- one that makes visitors feel like they've found a new home on the Web. If your company is ready to take part in the social web, this book will help you get started. Whether you're creating a new site from scratch or reworking an existing site, Building Social Web Applications

  15. Developing Large Web Applications

    CERN Document Server

    Loudon, Kyle


    How do you create a mission-critical site that provides exceptional performance while remaining flexible, adaptable, and reliable 24/7? Written by the manager of a UI group at Yahoo!, Developing Large Web Applications offers practical steps for building rock-solid applications that remain effective even as you add features, functions, and users. You'll learn how to develop large web applications with the extreme precision required for other types of software. Avoid common coding and maintenance headaches as small websites add more pages, more code, and more programmersGet comprehensive soluti

  16. Professional Cocoa Application Security

    CERN Document Server

    Lee, Graham J


    The first comprehensive security resource for Mac and iPhone developers. The Mac platform is legendary for security, but consequently, Apple developers have little appropriate security information available to help them assure that their applications are equally secure. This Wrox guide provides the first comprehensive go-to resource for Apple developers on the available frameworks and features that support secure application development.: While Macs are noted for security, developers still need to design applications for the Mac and the iPhone with security in mind; this guide offers the first

  17. Beginning Android Application Development

    CERN Document Server

    Lee, Wei-Meng


    Create must-have applications for the latest Android OSThe Android OS is a popular and flexible platform for many of today's most in-demand mobile devices. This full-color guide offers you a hands-on introduction to creating Android applications for the latest mobile devices. Veteran author Wei Meng Lee accompanies each lesson with real-world examples to drive home the content he covers. Beginning with an overview of core Android features and tools, he moves at a steady pace while teaching everything you need to know to successfully develop your own Android applications.Explains what an activi

  18. Lift application development cookbook

    CERN Document Server

    Garcia, Gilberto T


    Lift Application Development Cookbook contains practical recipes on everything you will need to create secure web applications using this amazing framework.The book first teaches you basic topics such as starting a new application and gradually moves on to teach you advanced topics to achieve a certain task. Then, it explains every step in detail so that you can build your knowledge about how things work.This book is for developers who have at least some basic knowledge about Scala and who are looking for a functional, secure, and modern web framework. Prior experience with HTML and JavaScript

  19. Wind energy applications guide

    Energy Technology Data Exchange (ETDEWEB)



    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  20. Express web application development

    CERN Document Server

    Yaapa, Hage


    Express Web Application Development is a practical introduction to learning about Express. Each chapter introduces you to a different area of Express, using screenshots and examples to get you up and running as quickly as possible.If you are looking to use Express to build your next web application, ""Express Web Application Development"" will help you get started and take you right through to Express' advanced features. You will need to have an intermediate knowledge of JavaScript to get the most out of this book.

  1. User Types in Online Applications

    Directory of Open Access Journals (Sweden)

    Ion IVAN


    Full Text Available Online applications are presented in the context of information society. Online applications characteristics are analyzed. Quality characteristics are presented in relation to online applications users. Types of users for AVIO application are presented. Use cases for AVIO application are identified. The limitations of AVIO application are defined. Types of users in online applications are identified. The threedimensional matrix of access to the online application resources is built. The user type-oriented database is structured. Access management of the fields related to the database tables is analyzed. The classification of online applications users is done.

  2. Food Applications and Regulation (United States)

    Gálvez, Antonio; Abriouel, Hikmate; Omar, Nabil Ben; Lucas, Rosario

    This chapter deals with food applications of bacteriocins. Regulatory issues on the different possibilities for incorporating bacteriocins as bioprotectants are discussed. Specific applications of bacteriocins or bacteriocin-producing strains are described for main food categories, including milk and dairy products, raw meats, ready-to-eat meat and poultry products, fermented meats, fish and fish products or fermented fish. The last section of the chapter deals with applications in foods and beverages derived from plant materials, such as raw vegetable foods, fruits and fruit juices, cooked food products, fermented vegetable foods and ­fermented beverages. Results obtained for application of bacteriocins in combination with other hurdles are also discussed for each specific case, with a special emphasis on novel food packaging and food-processing technologies, such as irradiation, pulsed electric field treatments or high hydrostatic pressure treatment.

  3. Thermodynamics foundations and applications

    CERN Document Server

    Gyftopoulos, Elias P


    Designed by two MIT professors, this authoritative text discusses basic concepts and applications in detail, emphasizing generality, definitions, and logical consistency. More than 300 solved problems cover realistic energy systems and processes.

  4. Pedagogical Applications of Telematics. (United States)

    Verloove, George


    Discusses the primary educational applications of telematics, defined as a fusion of information and communications technologies. Electronic mail, teleconferencing, electronic bulletin boards, and databanks are described and their uses by teachers and students are noted. (KRN)

  5. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)


    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  6. Herbicide application records (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains records of pesticide applications on Neal Smith National Wildlife Refuge (Walnut Creek National Wildlife Refuge) between 1995 and 2006.

  7. Applications of Orlicz spaces

    CERN Document Server

    Rao, MM


    Presents previously unpublished material on the fundumental pronciples and properties of Orlicz sequence and function spaces. Examines the sample path behavior of stochastic processes. Provides practical applications in statistics and probability.

  8. Industrial applications of nanoparticles. (United States)

    Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A


    Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.

  9. Special functions & their applications

    CERN Document Server

    Lebedev, N N


    Famous Russian work discusses the application of cylinder functions and spherical harmonics; gamma function; probability integral and related functions; Airy functions; hyper-geometric functions; more. Translated by Richard Silverman.

  10. Designing Adaptive Web Applications

    DEFF Research Database (Denmark)

    Dolog, Peter


    The unique characteristic of web applications is that they are supposed to be used by much bigger and diverse set of users and stakeholders. An example application area is e-Learning or business to business interaction. In eLearning environment, various users with different background use the eLearning......-based applications aim to leave some of their features at the design stage in the form of variables which are dependent on several criteria. The resolution of the variables is called adaptation and can be seen from two perspectives: adaptation by humans to the changed requirements of stakeholders and dynamic system...... adaptation to the changed parameters of environments, user or context. Adaptation can be seen as an orthogonal concern or viewpoint in a design process. In this paper I will discuss design abstractions which are employed in current design methods for web applications. I will exemplify the use...


    A review, with 19 references, is given on challenges and possible opportunities for the development of biosensors for environmental monitoring applications. The high cost and slow turnaround times typically associated with the measurement of regulated pollutants clearly indicates...

  12. Wordpress web application development

    CERN Document Server

    Ratnayake, Rakhitha Nimesh


    This book is intended for WordPress developers and designers who want to develop quality web applications within a limited time frame and for maximum profit. Prior knowledge of basic web development and design is assumed.

  13. Capital Projects Application (CPA) (United States)

    General Services Administration — Capital Projects application (CPA) provides users with the ability to maintain project related financial data for Budget Activity (BA) 51, 55, 64, 01, 02, 03, 04....

  14. Condom application - slideshow (United States)

    ... page: // Condom application - series—Procedure, part 1 To use the sharing ... by URAC, also known as the American Accreditation HealthCare Commission ( URAC's accreditation program is ...

  15. Telemetry Applications Handbook (United States)


    modulation cps Cycles per second CRC Cyclical redundancy check Telemetry Applications Handbook, RCC 119-06, May 2006 xviii -D- D/A, DAC Digital...code for recording GHz Gigahertz GPS Global Positioning System G/T Gain/noise temperature Telemetry Applications Handbook, RCC 119-06, May 2006 xix...amplitude, and impedance match to subsequent stages in the circuitry of the system. Most signal conditioners consist of resistors, capacitors , and

  16. Applications Of Artificial Intelligence (United States)

    Trivedi, Mohan M.; Gilmore, John F.


    Intelligence evolves out of matter, so said the Sankhya philosophers of ancient India. The discipline of artificial intelligence (Al), which was established some 30 years ago, has confirmed the validity of the above assertion. Recently, a number of AI applications have been successfully demonstrated, generating a great deal of excitement and interest in scientific and technical circles. In this special issue of Optical Engineering a representative set of applications that incorporate Al principles is presented.

  17. Mathematical statistics with applications

    CERN Document Server

    Wackerly, Dennis D; Scheaffer, Richard L


    In their bestselling MATHEMATICAL STATISTICS WITH APPLICATIONS, premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps you discover the nature of statistics and understand its essential role in scientific research.

  18. Spectroradiometric Instruments And Applications (United States)

    Walker, Richard A.; Miller, Kenneth A.; Bulpitt, Thomas H.


    This paper discusses spectroradiometric instruments and applications. Multiple-detector spectroradiometers and single-detector scanning spectroradiometers are described, with particular emphasis on current state-of-the-art integrated systems. Applications discussed include: color measurement (colorimetry); photometry and colorimetry of cathode-ray-tubes , light-emitting-diodes and other displays; photometry and colorimetry of light sources and flash lamps; and colorimetry of reflective and transmissive materials. Future trends are also discussed.

  19. Industrial Robot Label Applicator


    Kukasch, Kai


    The thesis deals with a project carried out for developing and setting up a robot label applicator system. The requirement was that RFID tracking labels can be applied on flexible positions, without manual effort and rearrangement, via programming. The purpose of the robot label applicator system is to increase the efficiency in production sites, where the RFID label position can change, depending on product or other reasons. New label positions should be programmed easily with a human-m...

  20. Formal groups and applications

    CERN Document Server

    Hazewinkel, Michiel


    This book is a comprehensive treatment of the theory of formal groups and its numerous applications in several areas of mathematics. The seven chapters of the book present basics and main results of the theory, as well as very important applications in algebraic topology, number theory, and algebraic geometry. Each chapter ends with several pages of historical and bibliographic summary. One prerequisite for reading the book is an introductory graduate algebra course, including certain familiarity with category theory.

  1. Photovoltaic systems and applications

    Energy Technology Data Exchange (ETDEWEB)


    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  2. Applications for alliform carbon

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury; Mochalin, Vadym; McDonough, IV, John Kenneth; Simon, Patrice; Taberna, Pierre Louis


    This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.

  3. Applications of immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Jeyapradha Duraiyan


    Full Text Available Immunohistochemistry (IHC is an important application of monoclonal as well as polyclonal antibodies to determine the tissue distribution of an antigen of interest in health and disease. IHC is widely used for diagnosis of cancers; specific tumor antigens are expressed de novo or up-regulated in certain cancers. This article deals with the various applications of IHC in diagnosis of diseases, with IHC playing an important role in diagnostic and research laboratories.

  4. Applications of Nuclear Physics


    Hayes, Anna C.


    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that und...

  5. Applications of Genetic Programming

    DEFF Research Database (Denmark)

    Gaunholt, Hans; Toma, Laura


    In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc.......In this report a study of genetic programming (GP) has been performed with respect to a number of applications such as Symbolic function regression, Solving Symbolic Differential Equations, Image encoding, the ant problem etc....

  6. Industrial enzyme applications. (United States)

    Kirk, Ole; Borchert, Torben Vedel; Fuglsang, Claus Crone


    The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.

  7. Technology Applications Team: Applications of aerospace technology (United States)


    Highlights of the Research Triangle Institute (RTI) Applications Team activities over the past quarter are presented in Section 1.0. The Team's progress in fulfilling the requirements of the contract is summarized in Section 2.0. In addition to our market-driven approach to applications project development, RTI has placed increased effort on activities to commercialize technologies developed at NASA Centers. These Technology Commercialization efforts are summarized in Section 3.0. New problem statements prepared by the Team in the reporting period are presented in Section 4.0. The Team's transfer activities for ongoing projects with the NASA Centers are presented in Section 5.0. Section 6.0 summarizes the status of four add-on tasks. Travel for the reporting period is described in Section 7.0. The RTI Team staff and consultants and their project responsibilities are listed in Appendix A. The authors gratefully acknowledge the contributions of many individuals to the RTI Technology Applications Team program. The time and effort contributed by managers, engineers, and scientists throughout NASA were essential to program success. Most important to the program has been a productive working relationship with the NASA Field Center Technology Utilization (TU) Offices. The RTI Team continues to strive for improved effectiveness as a resource to these offices. Industry managers, technical staff, medical researchers, and clinicians have been cooperative and open in their participation. The RTI Team looks forward to continuing expansion of its interaction with U.S. industry to facilitate the transfer of aerospace technology to the private sector.

  8. Novel electrode-elastomer combinations for improved performance and application of dielectric elastomers (United States)

    Yuan, Wei

    Dielectric elastomers are the most promising technology for mimicking human muscles in terms of strain, stress, and work density, etc. Actuators have been fabricated based on different design concepts and configurations for applications in robotics, prosthetic devices, medical implants, pumps, and valves. However, to date these actuators have experienced high rates of failure caused by electrical shorting of the compliant electrodes through the elastomer film during electrical breakdown, which has prevented their practical application. In this thesis, single walled carbon nanotube (SWNT) thin films were employed as compliant electrodes for dielectric elastomers to reduce the rate of failure. Thanks to the high aspect ratio of the SWNTs, the electrodes maintain substantial conductance at high biaxial strains. 3M VHB acrylics can be actuated up to 200% area strain with SWNT electrodes, this matches the performance of actuators with carbon grease electrodes. During uni-directional stretching, SWNT electrodes can maintain surface conductivity up to 700% linear strain. SWNT electrodes can experience a self-clearing process under high voltage discharging and electrically isolate the electrodes around the breakdown sites when breakdown events happen. With conventional dielectric elastomer electrode materials such as carbon grease and carbon black, a single breakdown event results in a permanent loss in the actuator's functionality. In contrast, for SWNT electrodes, the SWNTs around the breakdown site will be degraded and become non-conductive. The non-conductive area expands outward until the high voltage discharging stops. As such, the opposing electrodes are prevented from coming into contact with each other and forming an electrical short and the breakdown site is electrically isolated from the remainder of the active area. Despite the existence of the breakdown sites, the dielectric elastomer will resume its functionality and avoid permanent failure. Thus, dielectric

  9. Web application user interface technologies


    Pohja, Mikko


    The World Wide Web has expanded from a huge information storage repository into a worldwide application platform. Web applications have several benefits compared to desktop applications. An application can be used anywhere from any system and device, which means that only one version is needed, they do not need to be installed and developers can modify running applications. Despite all the benefits of the Web, web applications are suffering because they are developed using the same technologi...

  10. Quality attributes for mobile applications


    Fernandes, João M.; Ferreira, André Leite


    A mobile application is a type of software application developed to run on a mobile device. The chapter discusses the main characteristics of mobile devices, since they have a great impact on mobile applications. It also presents the classification of mobile applications according to two main types: native and web-based applications. Finally, this chapter identifies the most relevant types of quality attributes for mobile applications. It shows that the relevant quality attributes for mobile ...

  11. Artificial DNA : methods and applications

    National Research Council Canada - National Science Library

    Khudyakov, Yury E; Fields, Howard A


    ... applications of synthetic oligonucleotideso Covers applications for synthetic DNA in various fields and industrieso Includes historical aspects, comprehensive review, trend analysis, and future developments...

  12. Retirement Applicant Satisfaction Survey Results (United States)

    Social Security Administration — This dataset contains information about the Retirement Applicant Survey (RAS). The survey measured satisfaction results with the retirement application process. The...

  13. Design and optimization of a bi-axial vibration-driven electromagnetic generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin, E-mail:; Yu, Qiangmo; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping; Qiu, Jing [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)


    To scavenge energy from ambient vibrations with arbitrary in-plane motion directions and over a wide frequency range, a novel electromagnetic vibration energy harvester is designed and optimized. In the harvester, a circular cross-section elastic rod, not a traditional thin cantilever beam, is used to extract ambient vibration energy because of its capability to collect vibration from arbitrary in-plane motion directions. The magnetic interaction between magnets and the iron core contributes to a nonlinear oscillation of the rod with increased frequency bandwidth. The influences of the structure configurations on the electrical output and the working bandwidth of the harvester are investigated using Ansoft's Maxwell 3D to achieve optimal performance. The experimental results show that the harvester is sensitive to vibrations from arbitrary in-plane directions and it exhibits a bandwidth of 5.7 Hz and a maximum power of 13.4 mW at an acceleration of 0.6 g (with g=9.8 ms⁻²).

  14. Identification of Deformation Mechanisms During Bi-Axial Straining of Superplastic AA5083 Material

    National Research Council Canada - National Science Library

    Fowler, Rebecca M


    .... Orientation Imaging Microscopy was utilized to determine texture development, grain size and grain-to-grain misorientation angle distributions for locations located along a line of latitude of the dome samples...

  15. Method and Apparatus for Precisely Applying Large Planar Equi-Biaxial Strains to a Circular Membrane (United States)


    milling machine . vi INTENTIONALLY LEFT BLANK. 1 1. Introduction The apparatus described herein was designed and constructed as an aid to the...printing machine . • Mr. Christopher Kroninger (ARL/VTD) for his helpful suggestion of using coaxially aligned rods to produce the useful clamp-head...discussions, and for his attention to detail and quality in the manufacture of components using a laser cutter, Objet 3-D printer, lathe, and Haas CNC

  16. Intergranular Strain Evolution During Biaxial Loading: A Multiscale FE-FFT Approach (United States)

    Upadhyay, M. V.; Capek, J.; Van Petegem, S.; Lebensohn, R. A.; Van Swygenhoven, H.


    Predicting the macroscopic and microscopic mechanical response of metals and alloys subjected to complex loading conditions necessarily requires a synergistic combination of multiscale material models and characterization techniques. This article focuses on the use of a multiscale approach to study the difference between intergranular lattice strain evolution for various grain families measured during in situ neutron diffraction on dog bone and cruciform 316L samples. At the macroscale, finite element simulations capture the complex coupling between applied forces and gauge stresses in cruciform geometries. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale full-field elasto-viscoplastic fast Fourier transform crystal plasticity model. The results highlight the role of grain neighborhood on the intergranular strain evolution under uniaxial and equibiaxial loading.

  17. Influence of damage and texture evolution on limit strain in biaxially stretched aluminum alloy sheets

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jianguo; Jonas, J.J.; Zhou Youdong [McGill Univ., Montreal, PQ (Canada). Dept. of Metallurgical Engineering; Ishikawa, T. [Department of Materials Processing, School of Engineering, Nagoya University, Nagoya 464-8603 (Japan)


    A numerical code has been developed to calculate limit strains of textured aluminum alloy sheets. This code is based on the Marciniak-Kuczynski (M-K) model, but allows for void nucleation and growth so that both limit strain and fracture strain can be predicted. The strain induced void nucleation model was employed together with the Cocks and Ashby`s void growth model. The influences of initial texture, texture evolution, and void nucleation and growth during deformation on the limit strains of an Al-Mg alloy were all investigated. Satisfactory agreement was obtained between the predictions and measured data. It was also shown that the introduction of void damage into the old M-K model can lead to more reasonable and accurate predictions. (orig.) 31 refs.

  18. Electronic transport anisotropy of 2D carriers in biaxial compressive strained germanium (United States)

    Morrison, C.; Myronov, M.


    The anisotropic nature of carrier mobility in simple cubic crystalline semiconductors, such as technologically important silicon and germanium, is well understood as a consequence of effective mass anisotropy arising from a change in band structure along non-identical surface crystal directions. In contrast to this, we show experimentally that this type of anisotropy is not the dominant contribution. Recent advances in epitaxial growth of high quality germanium enabled the appearance of high mobility 2D carriers suitable for such an experiment. A strong anisotropy of 2D carrier mobility, effective mass, quantum, and transport lifetime has been observed, through measurements of quantum phenomena at low temperatures, between the ⟨110⟩ and ⟨100⟩ in-plane crystallographic directions. These results have important consequences for electronic devices and sensor designs and suggest similar effects could be observed in technologically relevant and emerging materials such as SiGe, SiC, GeSn, GeSnSi, and C (Diamond).

  19. Biaxially oriented poly(ethylene-2,6 naphthalate) under discharge activity at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Danikas, M. [Democritus Univ. of Thrace, Xanthi (Greece). Dept. of Electrical and Computer Engineering; Guastavino, J.; Krause, E.; Mayoux, C. [Univ. Paul Sabatier, Toulouse (France). Lab. de Genie Electrique


    This paper deals with a polymer quite new in the domain of electrical insulation and its behavior under corona discharge activity. Results on the stability of discharge regime, all along of two hours of experiments, under three different temperatures are presented. A FTIR analysis gives the evolution of the polymer structure and the bulk conductivity measurements reveal the threshold of electrical properties modifications, likely related to trapped charges. It is found that PEN is more sensible to temperature than to chemical modification due to discharge species.

  20. Biaxial fatigue tests of notched specimens for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    G. Beretta


    Full Text Available High cycle fatigue tests were conducted for stainless steel AISI 304L. The geometry was a thin walled tube with a passing through hole. The tests were axial, torsional and in-phase axial-torsional, all of them under load control with R = −1. The S-N curves were constructed following the ASTM E739 standard and the fatigues limits were calculated following the method of maximum likelihood proposed by Bettinelli. The crack direction along the surface was analysed, with especial attention to the crack initiation zones. The notch fatigue limits for different hole diameters were compared with the predictions done with a microstructural fracture mechanics model.

  1. Powder flow testing with 2D and 3D biaxial and triaxial simulations

    NARCIS (Netherlands)

    David, Ciprian; Garcia-Rojo, Ramon; Herrmann, Hans J.; Luding, Stefan


    The mechanical response of frictional powders under quasi-static loading is studied by means of two- and three-dimensional discrete element methods, compared directly with each other. The response of the system is characterized by elastic behavior for very small deformations, softening, plastic

  2. Kalman Filter Based Data Fusion for Bi-Axial Neutral Axis Tracking in Wind Turbine Towers

    DEFF Research Database (Denmark)

    Soman, Rohan; Malinowski, Pawel; Schmidt Paulsen, Uwe


    demonstrates a methodology for the selection of threshold for damage detection based on qualitative data acquired from several damage scenarios of a 10 MW wind turbine. The damage indicator is the change of neutral axis (NA) which is tracked using Kalman Filter (KF). Based on the level of damage to be detected...

  3. Buffer architecture for biaxially textured structures and method of fabricating same (United States)

    Norton, David P.; Park, Chan; Goyal, Amit


    The invention relates to an article with an improved buffer layer architecture comprising a substrate having a metal surface, and an epitaxial buffer layer on the surface of the substrate. The epitaxial buffer layer comprises at least one of the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of ZrO.sub.2 and/or HfO.sub.2. The article can also include a superconducting layer deposited on the epitaxial buffer layer. The article can also include an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article comprises providing a substrate with a metal surface, depositing on the metal surface an epitaxial buffer layer comprising at least one material selected from the group consisting of ZrO.sub.2, HfO.sub.2, and compounds having at least one of Ca and a rare earth element stabilizing cubic phases of at least one of ZrO.sub.2 and HfO.sub.2. The epitaxial layer depositing step occurs in a vacuum with a background pressure of no more than 1.times.10.sup.-5 Torr. The method can further comprise depositing a superconducting layer on the epitaxial layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  4. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin


    material behaviour. Experimental strain release measurements and the analytical solution determine the residual stress state present in the material. A demonstration on neat epoxy is conducted and residual stress predictions of high accuracy and repeatability have been achieved. The precise determination...

  5. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard


    their Tg for improvement of their strength, in a two-step process (sequential straining). Mechanical properties and crystal morphology were investigated as a function of processing strain rate and temperature. DSC revealed that a low processing strain rate allows molecular chain relaxation in the direction...... of strain and the crystallization is suppressed. Faster strain rates on the other hand suppress chain relaxation, and results in crystalline tubes. The mechanical properties are influenced by both processing strain rate and temperature. Low strain rates allow chain relaxation resulting in the lowest...... strength and stiffness, whereas a larger stiffness and strength is achieved by increasing strain rate and temperature. Isotropic mechanical properties are only observed at high processing strain rates....

  6. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B


    Full Text Available . Fracture propagation is thought to depend, amongst other factors, on the crack orientation, the residual friction angle, the dilation angle, and the confining pressure. To obtain a more precise understanding of the influence of these properties on the crack...

  7. Biaxial (Tension-Torsion) Testing of an Oxide/Oxide Ceramic Matrix Composite (United States)


    calibration and finally balance of the strain gages immediately prior to testing. Calibration was done with a Vishay Wheatstone - Bridge Simulator model 1550A...wire connection using a true quarter Wheatstone Bridge (internal dummy) setup, pictured in Figure 4.18. The internal dummy setup was used due to the...inches) . . . . . . . . . . . . . . . . . . . 49 4.17 Bank of Vishay 2310 rack-mounted strain gage signal conditioning amplifiers . 50 4.18 Quarter- bridge

  8. Graphite/Polyimide Composites Subjected to Biaxial Loads at Elevated Temperatures (United States)

    Kumosa, Maciej S.; Sutter, J. K.


    First, we will review our most important research accomplishments from a five year study concerned with the prediction of mechanical properties of unidirectional and woven graphite/polyimide composites based on T650-35, M40J and M60J fibers embedded in either PMR-15 or PMR-II-50 polyimide resins. Then, an aging model recently developed for the composites aged in nitrogen will be proposed and experimentally verified on an eight harness satin (8HS) woven T650-35/PMR-15 composite aged in nitrogen at 315 C for up to 1500 hours. The study was supported jointly between 1999 and 2005 by the AFOSR, the NASA Glenn Research Center, and the National Science Foundation.

  9. Tracking Damage Nucleation and Propagation in Metallic Materials Using a Planar Biaxial Test System (United States)


    large amount of high- energy acoustic bursts were released as damage occurred. In Fig. 27, the number of counts, amplitude and time are shown. Note...y(m) Figure 2. Block diagram for fast scale t ransfer function. The trans fer function is an instantane ous represen- tation of the time d egrading

  10. Applications of Cell Microencapsulation. (United States)

    Opara, Emmanuel C


    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  11. Batteries for terrestrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulin, T.M.


    Extensive research has been conducted in the design and manufacture of very long life vented and sealed maintenance free nickel-cadmium aircraft batteries. These batteries have also been used in a number of terrestrial applications with good success. This study presents an overview of the Ni-Cd chemistry and technology as well as detailed analysis of the advantages and disadvantages of the Ni-Cd couple for terrestrial applications. The performance characteristics of both sealed and vented Ni-Cd's are presented. Various charge algorithms are examined and evaluated for effectiveness and ease of implementation. Hardware requirements for charging are also presented and evaluated. The discharge characteristics of vented and sealed Ni-Cd's are presented and compared to other battery chemistries. The performance of Ni-Cd's under extreme environmental conditions is also compared to other battery chemistries. The history of various terrestrial applications is reviewed and some of the lessons learned are presented. Applications discussed include the NASA Middeck Payload Battery, Raytheon Aegis Missile System Battery, THAAD Launcher battery, and the Titan IV battery. The suitability of the Ni-Cd chemistry for other terrestrial applications such as electric vehicles and Uninterruptible Power Supply is discussed.

  12. Nonlinear Optics and Applications (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)


    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.


    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N; Tarasow, T; Tok, J


    Nucleic acid aptamers have found steadily increased utility and application steadily over the last decade. In particular, aptamers have been touted as a valuable complement to and in some cases replacement for antibodies due to their structural and functional robustness as well as their ease in generation and synthesis. They are thus attractive for biosecurity applications, e.g. pathogen detection, and are especially well suited since their in vitro generation process does not require infection of any host systems. Herein we provide a brief overview of the aptamers generated against biopathogens over the last few years. In addition, a few recently described detection platforms using aptamers (aptasensors) and potentially suitable for biosecurity applications will be discussed.

  14. Optimized packings with applications

    CERN Document Server

    Pintér, János


    This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...

  15. Practical applications of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime


    Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescen...

  16. Recent applications of THERMUS (United States)

    Wheaton, S.; Hauer, M.


    Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.

  17. Recent applications of THERMUS

    CERN Document Server

    Wheaton, S


    Some of the most recent applications of the statistical-thermal model package, THERMUS, are reviewed. These applications focus on fluctuation and correlation observables in an ideal particle and anti-particle gas in limited momentum space segments, as well as in a hadron resonance gas. In the case of the latter, a Monte Carlo event generator, utilising THERMUS functionality and assuming thermal production of hadrons, is discussed. The system under consideration is sampled grand canonically in the Boltzmann approximation. A re-weighting scheme is then introduced to account for conservation of charges (baryon number, strangeness, electric charge) and energy and momentum, effectively allowing for extrapolation of grand canonical results to the micro canonical limit. The approach utilised in this and other applications suggests improvements to existing THERMUS calculations.

  18. Lie algebras and applications

    CERN Document Server

    Iachello, Francesco


    This course-based primer provides an introduction to Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. In the first part, it concisely presents the basic concepts of Lie algebras, their representations and their invariants. The second part includes a description of how Lie algebras are used in practice in the treatment of bosonic and fermionic systems. Physical applications considered include rotations and vibrations of molecules (vibron model), collective modes in nuclei (interacting boson model), the atomic shell model, the nuclear shell model, and the quark model of hadrons. One of the key concepts in the application of Lie algebraic methods in physics, that of spectrum generating algebras and their associated dynamic symmetries, is also discussed. The book highlights a number of examples that help to illustrate the abstract algebraic definitions and includes a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators...

  19. Applications Of Holography (United States)

    Huff, Lloyd


    Over the past several years, considerable progress has been made in the art and science of hologram recording and in the application of this technique to a variety of problems. Commercial display holography at long last appears to be securing a firm footing with the recent success of embossed holography and impressive sales activity in large-scale reflection and rainbow holograms, particularly in Europe and Japan. Technical, scientific, and industrial applications in special optical systems and in metrology have been holography's mainstay for several years, however. This side of holography often does not have the glamour of the display hologram, but the value of holography in a great variety of technical applications is widely recognized, and innovative techniques are being developed at a significant rate.

  20. Applications of interval computations

    CERN Document Server

    Kreinovich, Vladik


    Primary Audience for the Book • Specialists in numerical computations who are interested in algorithms with automatic result verification. • Engineers, scientists, and practitioners who desire results with automatic verification and who would therefore benefit from the experience of suc­ cessful applications. • Students in applied mathematics and computer science who want to learn these methods. Goal Of the Book This book contains surveys of applications of interval computations, i. e. , appli­ cations of numerical methods with automatic result verification, that were pre­ sented at an international workshop on the subject in EI Paso, Texas, February 23-25, 1995. The purpose of this book is to disseminate detailed and surveyed information about existing and potential applications of this new growing field. Brief Description of the Papers At the most fundamental level, interval arithmetic operations work with sets: The result of a single arithmetic operation is the set of all possible results as the o...

  1. Discrete mathematics with applications

    CERN Document Server

    Koshy, Thomas


    This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects*...

  2. Optical application of electrowetting (United States)

    He, Mei; Peng, Runling; Chen, Jiabi


    Since electrowetting has been proposed, researchers began to apply eletrowetting into different fields, such as lab-on-chip systems, display technologies, printings and optics etc. This paper mainly introduced structure, theory and application of optical devices based on electrowetting. The optical devices include liquid optical prism, liquid optical lens and display. The paper introduced their principle, specific application and many advantages in optical applications. When they are applied to optical system, production and experiment, they can reduce mechanical moving parts, simplify the structure, operate easily, decrease manufacturing cost and energy consumption, improve working efficiency, and so on. We learn and research them in detail that will contribute to research and develop optical eletrowetting in the future.

  3. Pump characteristics and applications

    CERN Document Server

    Volk, Michael


    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  4. Plasmonics theory and applications

    CERN Document Server

    Shahbazyan, Tigran V


    This contributed volume summarizes recent theoretical developments in plasmonics and its applications in physics, chemistry, materials science, engineering, and medicine. It focuses on recent advances in several major areas of plasmonics including plasmon-enhanced spectroscopies, light scattering, many-body effects, nonlinear optics, and ultrafast dynamics. The theoretical and computational methods used in these investigations include electromagnetic calculations, density functional theory calculations, and nonequilibrium electron dynamics calculations. The book presents a comprehensive overview of these methods as well as their applications to various current problems of interest.

  5. Modular Mobile Application Design

    Directory of Open Access Journals (Sweden)

    Jim Hahn


    Full Text Available This article describes the development of the Minrva library app for Android phones. The decisions to build a native application with Java and use a modular design are discussed. The application includes five modules: catalog search, in-building navigation, a barcode scanning feature, and up to date notifications of circulating technology availability. A sixth module, Amazon recommendations, that is not included in the version of the app that was released is also discussed. The article also reports on the findings of two rounds of usability testing and the plans for future development of the app.

  6. Laravel application development blueprints

    CERN Document Server

    Kiliçdagi, Arda


    Follow along as we work together to build 10 different applications using Laravel 4. Since each chapter is devoted to the design of a different application, there is no need to read the book in any particular order. Instead, you can pick and choose the blueprints that are of most interest to you and dive right in.This book is for intermediate to advanced level PHP programmers who want to master Laravel. It's assumed that you will have some experience with PHP already. This book is also for those who are already using a different PHP framework and are looking for better solutions.

  7. Experimental approaches and applications

    CERN Document Server

    Crasemann, Bernd


    Atomic Inner-Shell Processes, Volume II: Experimental Approaches and Applications focuses on the physics of atomic inner shells, with emphasis on experimental aspects including the use of radioactive atoms for studies of atomic transition probabilities. Surveys of modern techniques of electron and photon spectrometry are also presented, and selected practical applications of inner-shell processes are outlined. Comprised of six chapters, this volume begins with an overview of the general principles underlying the experimental techniques that make use of radioactive isotopes for inner-sh

  8. Optimization : insights and applications

    CERN Document Server

    Brinkhuis, Jan


    This self-contained textbook is an informal introduction to optimization through the use of numerous illustrations and applications. The focus is on analytically solving optimization problems with a finite number of continuous variables. In addition, the authors provide introductions to classical and modern numerical methods of optimization and to dynamic optimization. The book's overarching point is that most problems may be solved by the direct application of the theorems of Fermat, Lagrange, and Weierstrass. The authors show how the intuition for each of the theoretical results can be s

  9. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R


    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  10. Nanoelectronic device applications handbook

    CERN Document Server

    Morris, James E


    Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal-oxide-semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world.These include: Nanoscale advance

  11. Medical applications of microwaves (United States)

    Vrba, Jan; Lapes, M.


    Medical applications of microwaves (i.e. a possibility to use microwave energy and/or microwave technique and technology for therapeutical purposes) are a quite new and a very rapidly developing field. Microwave thermotherapy is being used in medicine for the cancer treatment and treatment of some other diseases since early eighties. In this contribution we would like to offer general overview of present activities in the Czech Republic, i.e. clinical applications and results, technical aspects of thermo therapeutic equipment and last but not least, prospective diagnostics based on microwave principals ant technology and instrumentation.

  12. Gas solubilities widespread applications

    CERN Document Server

    Gerrard, William


    Gas Solubilities: Widespread Applications discusses several topics concerning the various applications of gas solubilities. The first chapter of the book reviews Henr's law, while the second chapter covers the effect of temperature on gas solubility. The third chapter discusses the various gases used by Horiuti, and the following chapters evaluate the data on sulfur dioxide, chlorine data, and solubility data for hydrogen sulfide. Chapter 7 concerns itself with solubility of radon, thoron, and actinon. Chapter 8 tackles the solubilities of diborane and the gaseous hydrides of groups IV, V, and

  13. Diffusion formalism and applications

    CERN Document Server

    Dattagupta, Sushanta


    Within a unifying framework, Diffusion: Formalism and Applications covers both classical and quantum domains, along with numerous applications. The author explores the more than two centuries-old history of diffusion, expertly weaving together a variety of topics from physics, mathematics, chemistry, and biology. The book examines the two distinct paradigms of diffusion-physical and stochastic-introduced by Fourier and Laplace and later unified by Einstein in his groundbreaking work on Brownian motion. The author describes the role of diffusion in probability theory and stochastic calculus and

  14. Tunable laser applications

    CERN Document Server

    Duarte, FJ


    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  15. Graphs Theory and Applications

    CERN Document Server

    Fournier, Jean-Claude


    This book provides a pedagogical and comprehensive introduction to graph theory and its applications. It contains all the standard basic material and develops significant topics and applications, such as: colorings and the timetabling problem, matchings and the optimal assignment problem, and Hamiltonian cycles and the traveling salesman problem, to name but a few. Exercises at various levels are given at the end of each chapter, and a final chapter presents a few general problems with hints for solutions, thus providing the reader with the opportunity to test and refine their knowledge on the

  16. Mixtures Estimation and Applications

    CERN Document Server

    Mengersen, Kerrie; Titterington, Mike


    This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject

  17. Developing Web Applications

    CERN Document Server

    Moseley, Ralph


    Building applications for the Internet is a complex and fast-moving field which utilizes a variety of continually evolving technologies. Whether your perspective is from the client or server side, there are many languages to master - X(HTML), JavaScript, PHP, XML and CSS to name but a few. These languages have to work together cleanly, logically and in harmony with the systems they run on, and be compatible with any browsers with which they interact. Developing Web Applications presents script writing and good programming practice but also allows students to see how the individual technologi

  18. Engineering Web Applications

    DEFF Research Database (Denmark)

    Casteleyn, Sven; Daniel, Florian; Dolog, Peter

    Nowadays, Web applications are almost omnipresent. The Web has become a platform not only for information delivery, but also for eCommerce systems, social networks, mobile services, and distributed learning environments. Engineering Web applications involves many intrinsic challenges due...... to their distributed nature, content orientation, and the requirement to make them available to a wide spectrum of users who are unknown in advance. The authors discuss these challenges in the context of well-established engineering processes, covering the whole product lifecycle from requirements engineering through...

  19. Galois connections and applications

    CERN Document Server

    Erné, M; Wismath, S


    This book presents the main ideas of General Galois Theory as a generalization of Classical Galois Theory It sketches the development of Galois connections through the last three centuries Examples of Galois connections as powerful tools in Category Theory and Universal Algebra are given Applications of Galois connections in Linguistic and Data Analysis are presented

  20. Petri Nets-Applications

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Petri Nets - Applications. Y Narahari. General Article Volume 4 Issue 9 September 1999 pp 44-52. Fulltext. Click here to view fulltext PDF. Permanent link: Author Affiliations. Y Narahari ...

  1. Mobile Agents Applications. (United States)

    Martins, Rosane Maria; Chaves, Magali Ribeiro; Pirmez, Luci; Rust da Costa Carmo, Luiz Fernando


    Discussion of the need to filter and retrieval relevant information from the Internet focuses on the use of mobile agents, specific software components which are based on distributed artificial intelligence and integrated systems. Surveys agent technology and discusses the agent building package used to develop two applications using IBM's Aglet…

  2. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.


    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  3. Applications Using AIRS Data (United States)

    Ray, S. E.; Pagano, T. S.; Fetzer, E. J.; Lambrigtsen, B.; Olsen, E. T.; Teixeira, J.; Licata, S. J.; Hall, J. R.; Thompson, C. K.


    The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS data can play a role in applications that fall under many of the NASA Applied Sciences focus areas. For vector-borne disease, research is underway using AIRS near surface retrievals to assess outbreak risk, mosquito incubation periods and epidemic potential for dengue fever, malaria, and West Nile virus. For drought applications, AIRS temperature and humidity data are being used in the development of new drought indicators and improvement in the understanding of drought development. For volcanic hazards, new algorithms using AIRS data are in development to improve the reporting of sulfur dioxide concentration, the burden and height of volcanic ash and dust, all of which pose a safety threat to aircraft. In addition, anomaly maps of many of AIRS standard products are being produced to help highlight "hot spots" and illustrate trends. To distribute it's applications imagery, AIRS is leveraging existing NASA data frameworks and organizations to facilitate archiving, distribution and participation in the BEDI. This poster will communicate the status of the applications effort for the AIRS Project and provide examples of new maps designed to best communicate the AIRS data.

  4. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon


    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  5. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel


    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  6. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown


    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  7. Business Applications of WAP. (United States)

    van Steenderen, Margaret


    Explains the development of WAP (wireless application protocol), how it works, and what the major advantages and disadvantages are, especially when applied to the use of information. Topics include standardization; mobile communications; the effect of WAP on business tools, electronic commerce, and information services; consumers; corporate users;…

  8. Clinical Application of Electrocardiography. (United States)

    Brammell, H. L.; Orr, William

    The scalar electrocardiogram (ECG) is one of the most important and commonly used clinical tools in medicine. A detailed description of the recordings of cardiac electrical activity made by the ECG is presented, and the vast numbers of uses made with the data provided by this diagnostic tool are cited. Clinical applications of the ECG are listed.…

  9. Zirconia in biomedical applications. (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C


    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  10. Star Products and Applications


    Iida, Mari; Yoshioka, Akira


    Star products parametrized by complex matrices are defined. Especially commutative associative star products are treated, and star exponentials with respect to these star products are considered. Jacobi's theta functions are given as infinite sums of star exponentials. As application, several concrete identities are obtained by properties of the star exponentials.

  11. Microcontroller for automation application (United States)

    Cooper, H. W.


    The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.

  12. VCSEL Applications and Simulation (United States)

    Cheung, Samson; Goorjian, Peter; Ning, Cun-Zheng; Li, Jian-Zhong


    This viewgraph presentation gives an overview of Vertical Cavity Surface Emitting Laser (VCSEL) simulation and its applications. Details are given on the optical interconnection in information technology of VCSEL, the formulation of the simulation, its numeric algorithm, and the computational results.

  13. Photo management applications

    NARCIS (Netherlands)

    Peters, M.A.; Fonseca, P.M.F.


    This report describes basic technology developed for higher-level photo management applications. Based on the visual comparison of photos, distance measures are defined to yield a numerical value indicating how similar (or dissimilar) photos or groups of photos are. This enables a series of

  14. Permit application modifications

    Energy Technology Data Exchange (ETDEWEB)



    This document contains the Permit Application Modifications for the Y-12 Industrial Landfill V site on the Oak Ridge Reservation. These modifications include the assessment of stability of the proposed Landfill V under static and loading conditions. Analyses performed include the general slope stability, veneer stability of the bottom liner and cover system, and a liquefaction potential assessment of the foundation soils.

  15. Knotoids, Braidoids and Applications

    Directory of Open Access Journals (Sweden)

    Neslihan Gügümcü


    Full Text Available This paper is an introduction to the theory of braidoids. Braidoids are geometric objects analogous to classical braids, forming a counterpart theory to the theory of knotoids. We introduce these objects and their topological equivalences, and we conclude with a potential application to the study of proteins.

  16. Automated Web Applications Testing

    Directory of Open Access Journals (Sweden)

    Alexandru Dan CĂPRIŢĂ


    Full Text Available Unit tests are a vital part of several software development practicesand processes such as Test-First Programming, Extreme Programming andTest-Driven Development. This article shortly presents the software quality andtesting concepts as well as an introduction to an automated unit testingframework for PHP web based applications.

  17. Process intensification : Industrial applications

    NARCIS (Netherlands)

    Kiss, Anton A.


    The chapter presents process intensification technologies used in industrial applications, for increasing the eco-efficiency of the chemical equipment with the benefit of lower capital costs, substantial energy saving, reduced footprint, and safety by design. The key topics cover compact heat

  18. Remifentanil: applications in neonates. (United States)

    Kamata, Mineto; Tobias, Joseph D


    Remifentanil is a synthetic opioid derivative that was introduced into clinical practice in the United States in 1996. The unique modification of its chemical structure to include a methyl-ester ring allows its hydrolysis by non-specific plasma and tissue esterases. This molecular configuration results in its rapid metabolism thereby providing a rapid onset, easy titration by continuous infusion, and a short context-sensitive half-life with rapid elimination. These principles are stable and consistent across all age groups regardless of the infusion characteristics. Owing to these pharmacokinetic characteristics, it is an effective agent in the neonatal population allowing the provision of intense analgesia and anesthesia with a rapid recovery profile in various clinical scenarios. Here, we review the pharmacokinetics of remifentanil in neonates, discuss its clinical applications including intraoperative administration for anesthetic care, unique applications for procedural sedation including endotracheal intubation, and its potential use for sedation in the Intensive Care Unit setting during mechanical ventilation.

  19. Biophotonics concepts to applications

    CERN Document Server

    Keiser, Gerd


    This book is designed to introduce senior-level and postgraduate students to the principles and applications of biophotonics. It also will serve well as a working reference to practicing physicians, clinicians, biomedical researchers, and biomedical engineers dealing with photonics-based tools and instruments. The book topics include the fundamentals of optics and photonics, the optical properties of biological tissues, various types of light-tissue interactions, microscopy for visualizing tissue components, spectroscopy for optically analyzing the properties of healthy and diseased tissue, and optical biomedical imaging. The tools and techniques described in the book include laser and LED optical sources, photodetectors, optical fibers, bioluminescent probes for labeling cells, optical-based biosensors, nanophotonics, surface plasmon resonance, and lab-on-a-chip technologies. Among the applications are optical coherence tomography (OCT), flow cytometery, photodynamic therapy (PDT), low-level light therapy (L...

  20. Metagraphs and their applications

    CERN Document Server

    Basu, Amit


    The graph is a critical and useful concept in designing many information processing systems. Systems such as transaction processing systems, decision support systems, and workflow systems are all helped immensely by a graphical structure. Simple graphs and digraphs allow for the construction of a variety of system design tools that provide a convenient and appealing format for illustrating information infrastructures, while allowing any subsequent analyses to be performed by the user. However, the metagraph, a new graphical structure that is developed in this book, goes beyond the representational and provides Information Systems with a robust, analytical modeling graphic tool. METAGRAPHS AND THEIR APPLICATIONS is a presentation of metagraph theory and its applications that begins by defining a metagraph and its uses. They are more complex than a simple graph structure, but they allow for representation and analysis of more complex systems. The material contained in this book is presented in two parts. The fi...

  1. Quality Control Applications

    CERN Document Server

    Chorafas, Dimitris N


    Quality control is a constant priority in electrical, mechanical, aeronautical, and nuclear engineering – as well as in the vast domain of electronics, from home appliances to computers and telecommunications. Quality Control Applications provides guidance and valuable insight into quality control policies; their methods, their implementation, constant observation and associated technical audits. What has previously been a mostly mathematical topic is translated here for engineers concerned with the practical implementation of quality control. Once the fundamentals of quality control are established, Quality Control Applications goes on to develop this knowledge and explain how to apply it in the most effective way. Techniques are described and supported using relevant, real-life, case studies to provide detail and clarity for those without a mathematical background. Among the many practical examples, two case studies dramatize the importance of quality assurance: A shot-by-shot analysis of the errors made ...

  2. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A


    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  3. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio


    Top space experts from around the world have collaborated to produce this comprehensive, authoritative, and clearly illustrated reference guide to the fast growing, multi-billion dollar field of satellite applications and space communications. This handbook, done under the auspices of the International Space University based in France, addresses not only system technologies but also examines market dynamics, technical standards and regulatory constraints. The handbook is a completely multi-disciplinary reference book that covers, in an in-depth fashion, the fields of satellite telecommunications, Earth observation, remote sensing, satellite navigation, geographical information systems, and geosynchronous meteorological systems. It covers current practices and designs as well as advanced concepts and future systems. It provides a comparative analysis of the common technologies and design elements for satellite application bus structures, thermal controls, power systems, stabilization techniques, telemetry, com...

  4. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner


    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  5. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet


    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  6. Quantum mechanics with applications

    CERN Document Server

    Beard, David B


    This introductory text emphasizes Feynman's development of path integrals and its application to wave theory for particles. Suitable for undergraduate and graduate students of physics, the well-written, clear, and rigorous text was written by two of the nation's leading authorities on quantum physics. A solid foundation in quantum mechanics and atomic physics is assumed. Early chapters provide background in the mathematical treatment and particular properties of ordinary wave motion that also apply to particle motion. The close relation of quantum theory to physical optics is stressed. Subsequent sections emphasize the physical consequences of a wave theory of material properties, and they offer extensive applications in atomic physics, nuclear physics, solid state physics, and diatomic molecules. Four helpful Appendixes supplement the text.

  7. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia


    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  8. Laravel application development cookbook

    CERN Document Server

    Matula, Terry


    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks.A short and precise guide to get you started with EaselJS , helping you to create some cool applications and games.EaselJS greatly simplifies application development in HTML5 Canvas using a syntax and an architecture very similar to the ActionScript 3.0 language. As a result, Flash / Flex developers will immediately feel at home but it's very easy to learn even if you've never opened Flash in your life. The book targets Web designers, animators,

  9. Nattokinase: production and application. (United States)

    Dabbagh, Fatemeh; Negahdaripour, Manica; Berenjian, Aydin; Behfar, Abdolazim; Mohammadi, Fatemeh; Zamani, Mozhdeh; Irajie, Cambyz; Ghasemi, Younes


    Nattokinase (NK, also known as subtilisin NAT) (EC is one of the most considerable extracellular enzymes produced by Bacillus subtilis natto. The main interest about this enzyme is due to its direct fibrinolytic activity. Being stable enough in the gastrointestinal tract makes this enzyme a useful agent for the oral thrombolytic therapy. Thus, NK is regarded as a valuable dietary supplement or nutraceutical. Proven safety and ease of mass production are other advantages of this enzyme. In addition to these valuable advantages, there are other applications attributed to NK including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. This review tends to bring a brief description about this valuable enzyme and summarizes the various biotechnological approaches used in its production, recovery, and purification. Some of the most important applications of NK, as well as its future prospects, are also discussed.

  10. Multifractals theory and applications

    CERN Document Server

    Harte, David


    Although multifractals are rooted in probability, much of the related literature comes from the physics and mathematics arena. Multifractals: Theory and Applications pulls together ideas from both these areas using a language that makes them accessible and useful to statistical scientists. It provides a framework, in particular, for the evaluation of statistical properties of estimates of the Renyi fractal dimensions.The first section provides introductory material and different definitions of a multifractal measure. The author then examines some of the various constructions for describing multifractal measures. Building from the theory of large deviations, he focuses on constructions based on lattice coverings, covering by point-centered spheres, and cascades processes. The final section presents estimators of Renyi dimensions of integer order two and greater and discusses their properties. It also explores various applications of dimension estimation and provides a detailed case study of spatial point patte...

  11. Mechanisms, Transmissions and Applications

    CERN Document Server

    Corves, Burkhard


    The first Workshop on Mechanisms, Transmissions and Applications -- MeTrApp-2011 was organized by the Mechatronics Department at the Mechanical Engineering Faculty, “Politehnica” University of Timisoara, Romania, under the patronage of the IFToMM Technical Committees Linkages and Mechanical Controls and Micromachines. The workshop brought together researchers and students who work in disciplines associated with mechanisms science and offered a great opportunity for scientists from all over the world to present their achievements, exchange innovative ideas and create solid international links, setting the trend for future developments in this important and creative field. The topics treated in this volume are mechanisms and machine design, mechanical transmissions, mechatronic and biomechanic applications, computational and experimental methods, history of mechanism and machine science and teaching methods.

  12. Nanotechnology applications in osteodistraction

    Directory of Open Access Journals (Sweden)

    Adam E Singleton


    Full Text Available Most current strategies for bone regeneration have relatively satisfactory results. However, there are drawbacks and limitations associated with their use and availability, and even controversial reports about their efficacy and cost-effectiveness. The induction of new bone formation through distraction osteogenesis (DO is widespread clinical application in the treatment of bone defects, limb deformities, and fracture nonunions. However, a lengthy period of external fixation is usually needed to allow the new bone to consolidate, and complications such as refracture at the distraction gap often occur. Although various biomaterials have been used as injectable delivery systems in DO models, little has been reported on the use of nanobiomaterials as carrier materials for the sustained release of growth factors in bone regeneration. One area of focus in nanotechnology is the delivery of osteogenic factors in an attempt to modulate the formation of bone. This review article seeks to demonstrate the potential of nanobiomaterials to improve biological applications pertinent to osteodistraction.

  13. Engineering Adaptive Web Applications

    DEFF Research Database (Denmark)

    Dolog, Peter


    Information and services on the web are accessible for everyone. Users of the web differ in their background, culture, political and social environment, interests and so on. Ambient intelligence was envisioned as a concept for systems which are able to adapt to user actions and needs. With the gr......Information and services on the web are accessible for everyone. Users of the web differ in their background, culture, political and social environment, interests and so on. Ambient intelligence was envisioned as a concept for systems which are able to adapt to user actions and needs...... suit the user profile the most. This paper summarizes the domain engineering framework for such adaptive web applications. The framework provides guidelines to develop adaptive web applications as members of a family. It suggests how to utilize the design artifacts as knowledge which can be used...

  14. Information Engineering and Applications

    CERN Document Server

    Ma, Yan; International Conference on Information Engineering and Applications (IEA) 2011


    The International Conference on Information Engineering and Applications (IEA) 2011 will be held on October 21-24, 2011, in Chongqing, China. It is organized by Chongqing Normal University, Chongqing University, Shanghai Jiao Tong University, Nanyang Technological University, the University of Michigan, Chongqing University of Arts and Sciences, and sponsored by the National Natural Science Foundation of China. The objective of IEA 2011 is to facilitate an exchange of information on best practices for the latest research advances in the area of information engineering and intelligence applications, which mainly includes computer science and engineering, informatics, communications and control, electrical engineering, information computing, business intelligence and management. IEA 2011 will provide a forum for engineers and scientists in academia, industry, and government to address the most innovative research and development including technical challenges, social and economic issues, and to present and disc...

  15. Advanced Welding Applications (United States)

    Ding, Robert J.


    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  16. Nanotechnology and cancer applications


    Gökdeniz, Mehmet; Akbaba, Muhsin; Nazlıcan, Ersin


    Applicationsof nanotechnology in various disciplines of medicine particularly cancer careare becoming increasingly popular so much so that the process of replacingtraditional health‑care by nanomedicine had already begun. Nanomedicine focuseson the formulations of imaging, diagnostic and therapeutic agents, which can becarried by biocompatible nanoparticles, for the purpose of cancer/ diseasemanagement.Common nanomaterials and devices applicable in cancer medicine are liposomes,polymeric‑mice...

  17. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg


    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  18. Personal Network (PN) Applications

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Skouby, K.


    The applications of PN will be realised under many scenarios where users can have access to their personal network all the time. This network will enable the user to share critical information, play games, control their home remotely, etc. All this will be achieved with seamless interworking...... and handover between networks and user devices. This paper presents an array of use case scenarios that validates the ubiquitous usage of PN....

  19. Personal network (PN) applications

    DEFF Research Database (Denmark)

    Prasad, R.; Skouby, Knud Erik


    The applications of PN will be realised under many scenarios where users can have access to their personal network all the time. This network will enable the user to share critical information, play games, control their home remotely, etc. All this will be achieved with seamless interworking...... and handover between networks and user devices. This paper presents an array of use case scenarios that validates the ubiquitous usage of PN....

  20. Android application security essentials

    CERN Document Server

    Rai, Pragati


    Android Application Security Essentials is packed with examples, screenshots, illustrations, and real world use cases to secure your apps the right way.If you are looking for guidance and detailed instructions on how to secure app data, then this book is for you. Developers, architects, managers, and technologists who wish to enhance their knowledge of Android security will find this book interesting. Some prior knowledge of development on the Android stack is desirable but not required.