Solitonic Integrable Perturbations of Parafermionic Theories
Fernández-Pousa, C R; Hollowood, Timothy J; Miramontes, J L
1997-01-01
The quantum integrability of a class of massive perturbations of the parafermionic conformal field theories associated to compact Lie groups is established by showing that they have quantum conserved densities of scale dimension 2 and 3. These theories are integrable for any value of a continuous vector coupling constant, and they generalize the perturbation of the minimal parafermionic models by their first thermal operator. The classical equations-of-motion of these perturbed theories are the non-abelian affine Toda equations which admit (charged) soliton solutions whose semi-classical quantization is expected to permit the identification of the exact S-matrix of the theory.
Perturbed soliton excitations in inhomogeneous DNA
International Nuclear Information System (INIS)
Daniel, M.; Vasumathi, V.
2005-05-01
We study nonlinear dynamics of inhomogeneous DNA double helical chain under dynamic plane-base rotator model by considering angular rotation of bases in a plane normal to the helical axis. The DNA dynamics in this case is found to be governed by a perturbed sine-Gordon equation when taking into account the interstrand hydrogen bonding energy and intrastrand inhomogeneous stacking energy and making an analogy with the Heisenberg model of the Hamiltonian for an inhomogeneous anisotropic spin ladder with ferromagnetic legs and antiferromagentic rung coupling. In the homogeneous limit the dynamics is governed by the kink-antikink soliton of the sine-Gordon equation which represents the formation of open state configuration in DNA double helix. The effect of inhomogeneity in stacking energy in the form of localized and periodic variations on the formation of open states in DNA is studied under perturbation. The perturbed soliton is obtained using a multiple scale soliton perturbation theory by solving the associated linear eigen value problem and constructing the complete set of eigen functions. The inhomogeneity in stacking energy is found to modulate the width and speed of the soliton depending on the nature of inhomogeneity. Also it introduces fluctuations in the form of train of pulses or periodic oscillation in the open state configuration (author)
Moving stable solitons in Galileon theory
International Nuclear Information System (INIS)
Masoumi, Ali; Xiao Xiao
2012-01-01
Despite the no-go theorem Endlich et al. (2011) which rules out static stable solitons in Galileon theory, we propose a family of solitons that evade the theorem by traveling at the speed of light. These domain-wall-like solitons are stable under small fluctuations-analysis of perturbation shows neither ghost-like nor tachyon-like instabilities, and perturbative collision of these solitons suggests that they pass through each other asymptotically, which maybe an indication of the integrability of the theory itself.
International Nuclear Information System (INIS)
Bartlett, R.; Kirtman, B.; Davidson, E.R.
1978-01-01
After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references
International Nuclear Information System (INIS)
Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying
2013-01-01
We respectively investigate breakup and switching of the Manakov-typed bound vector solitons (BVSs) induced by two types of stochastic perturbations: the homogenous and nonhomogenous. Symmetry-recovering is discovered for the asymmetrical homogenous case, while soliton switching is found to relate with the perturbation amplitude and soliton coherence. Simulations show that soliton switching in the circularly-polarized light system is much weaker than that in the Manakov and linearly-polarized systems. In addition, the homogenous perturbations can enhance the soliton switching in both of the Manakov and non-integrable (linearly- and circularly-polarized) systems. Our results might be helpful in interpreting dynamics of the BVSs with stochastic noises in nonlinear optics or with stochastic quantum fluctuations in Bose–Einstein condensates.
Noise-induced perturbations of dispersion-managed solitons
International Nuclear Information System (INIS)
Li, Jinglai; Spiller, Elaine; Biondini, Gino
2007-01-01
We study noise-induced perturbations of dispersion-managed solitons. We do so by first developing soliton perturbation theory for the dispersion-managed nonlinear Schroedinger (DMNLS) equation, which governs the long-term behavior of optical fiber transmission systems and certain kinds of femtosecond lasers. We show that the eigenmodes and generalized eigenmodes of the linearized DMNLS equation around traveling-wave solutions can be generated from the invariances of the DMNLS equations, we quantify the perturbation-induced parameter changes of the solution in terms of the eigenmodes and the adjoint eigenmodes, and we obtain evolution equations for the solution parameters. We then apply these results to guide importance-sampled Monte Carlo (MC) simulations and reconstruct the probability density functions of the solution parameters under the effect of noise, and we compare with standard MC simulations of the unaveraged system. The comparison further validates the use of the DMNLS equation as a model for dispersion-managed systems
Basic methods of soliton theory
Cherednik, I
1996-01-01
In the 25 years of its existence Soliton Theory has drastically expanded our understanding of "integrability" and contributed a lot to the reunification of Mathematics and Physics in the range from deep algebraic geometry and modern representation theory to quantum field theory and optical transmission lines.The book is a systematic introduction to the Soliton Theory with an emphasis on its background and algebraic aspects. It is the first one devoted to the general matrix soliton equations, which are of great importance for the foundations and the applications.Differential algebra (local cons
Exact soliton-like solutions of perturbed phi4-equation
International Nuclear Information System (INIS)
Gonzalez, J.A.
1986-05-01
Exact soliton-like solutions of damped, driven phi 4 -equation are found. The exact expressions for the velocities of solitons are given. It is non-perturbatively proved that the perturbed phi 4 -equation has stable kink-like solutions of a new type. (author)
Controlled transport of solitons and bubbles using external perturbations
International Nuclear Information System (INIS)
Gonzalez, J.A.; Marcano, A.; Mello, B.A.; Trujillo, L.
2006-01-01
We investigate generalized soliton-bearing systems in the presence of external perturbations. We show the possibility of the transport of solitons using external waves, provided the waveform and its velocity satisfy certain conditions. We also investigate the stabilization and transport of bubbles using external perturbations in 3D-systems. We also present the results of real experiments with laser-induced vapor bubbles in liquids
Solitonic Dispersive Hydrodynamics: Theory and Observation
Maiden, Michelle D.; Anderson, Dalton V.; Franco, Nevil A.; El, Gennady A.; Hoefer, Mark A.
2018-04-01
Ubiquitous nonlinear waves in dispersive media include localized solitons and extended hydrodynamic states such as dispersive shock waves. Despite their physical prominence and the development of thorough theoretical and experimental investigations of each separately, experiments and a unified theory of solitons and dispersive hydrodynamics are lacking. Here, a general soliton-mean field theory is introduced and used to describe the propagation of solitons in macroscopic hydrodynamic flows. Two universal adiabatic invariants of motion are identified that predict trapping or transmission of solitons by hydrodynamic states. The result of solitons incident upon smooth expansion waves or compressive, rapidly oscillating dispersive shock waves is the same, an effect termed hydrodynamic reciprocity. Experiments on viscous fluid conduits quantitatively confirm the soliton-mean field theory with broader implications for nonlinear optics, superfluids, geophysical fluids, and other dispersive hydrodynamic media.
Developments in perturbation theory
International Nuclear Information System (INIS)
Greenspan, E.
1976-01-01
Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators
Gravitational generation of mass in soliton theory
International Nuclear Information System (INIS)
Kozhevnikov, I.R.; Rybakov, Yu.P.
1985-01-01
It is shown that in the framework of a simple scalar field model, that admits soliton solutions, with gravitational field interactions being specially included, one succeeds in ensuring for a scalar field a correct spacial asymptotics that depends on the system mass. Theory, the quantum relation of a corpuscular-wave dualism is fulfilled for soliton solutions in such a model
Investigations in gauge theories, topological solitons and string theories
International Nuclear Information System (INIS)
1993-01-01
This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies
Mean-field theory and solitonic matter
International Nuclear Information System (INIS)
Cohen, T.D.
1989-01-01
Finite density solitonic matter is considered in the context of quantum field theory. Mean-field theory, which provides a reasonable description for single-soliton properties gives rise to a crystalline description. A heuristic description of solitonic matter is given which shows that the low-density limit of solitonic matter (the limit which is presumably relevant for nuclear matter) does not commute with the mean-field theory limit and gives rise to a Fermi-gas description of the system. It is shown on the basis of a formal expansion of simple soliton models in terms of the coupling constant why one expects mean-field theory to fail at low densities and why the corrections to mean-field theory are nonperturbative. This heuristic description is tested against an exactly solvable 1+1 dimensional model (the sine-Gordon model) and found to give the correct behavior. The relevance of these results to the program of doing nuclear physics based on soliton models is discussed. (orig.)
Mathematical Theory of Dispersion-Managed Optical Solitons
Biswas, Anjan; Edwards, Matthew
2010-01-01
"Mathematical Theory of Dispersion-Managed Optical Solitons" discusses recent advances covering optical solitons, soliton perturbation, optical cross-talk, Gabitov-Turitsyn Equations, quasi-linear pulses, and higher order Gabitov-Turitsyn Equations. Focusing on a mathematical perspective, the book bridges the gap between concepts in engineering and mathematics, and gives an outlook to many new topics for further research. The book is intended for researchers and graduate students in applied mathematics, physics and engineering and also it will be of interest to those who are conducting research in nonlinear fiber optics. Dr. Anjan Biswas is an Associate Professor at the Department of Applied Mathematics & Theoretical Physics, Delaware State University, Dover, DE, USA; Dr. Daniela Milovic is an Associate Professor at the Department of Telecommunications, Faculty of Electronic Engineering, University of Nis, Serbia; Dr. Matthew Edwards is the Dean of the School of Arts and Sciences at Alabama A & M Univ...
Guo, Boling; Wang, Yu-Feng; Liu, Nan
2018-01-01
This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics.
Generalized chiral perturbation theory
International Nuclear Information System (INIS)
Knecht, M.; Stern, J.
1994-01-01
The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
String perturbation theory diverges
International Nuclear Information System (INIS)
Gross, D.J.; Periwal, V.
1988-01-01
We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence
Instantaneous stochastic perturbation theory
International Nuclear Information System (INIS)
Lüscher, Martin
2015-01-01
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
International Nuclear Information System (INIS)
Ventura, J.
1983-01-01
An introductory and partial discussion on the conceptual news and the multiple consequences which originate from the existence of solitons is presented. Preliminary calculations related with the helium superfluid theory are discussed. (L.C.) [pt
On modelling adiabatic N-soliton interactions and perturbations. Effects of external potentials
International Nuclear Information System (INIS)
Gerdjikov, V.; Baizakov, B.
2005-01-01
We analyze several perturbed versions of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation (NLS). Particular types of perturbations, including quadratic and periodic external potentials are treated by both analytical and numerical means. We show that the perturbed CTC model provides a good description for the N-soliton interactions in the presence of a weak external potential. (authors)
Nonperturbative perturbation theory
International Nuclear Information System (INIS)
Bender, C.M.
1989-01-01
In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
[Investigations in guage theories, topological solitons and string theories
International Nuclear Information System (INIS)
Chang, L.N.; Tze, C.H.
1989-01-01
This report discusses the following topics: Phases and conservation laws in parametrized systems; Time reversal symmetry in 2 + 1 dimemsional systems; Chiral symmetry breaking in QCD at high temperatures; Solitons at Tev energies; Self-Duality, conformal symmetries and hypercomplex analyticity; Hopf phase entanglements, exotic membranes and division algebras; and Non-perturbative methods. 58 refs
A simple formula for the conserved charges of soliton theories
International Nuclear Information System (INIS)
Ferreira, Luiz Agostinho; Zakrzewski, Wojtek J.
2007-01-01
We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers. The example of the mKdV equation is also given explicitly
On the theory of Langmuir solitons
International Nuclear Information System (INIS)
Gibbons, J.; Thornhill, S.G.; Wardrop, M.J.; Ter Haar, D.
1977-01-01
A Lagrangian density is found from which the equations of motion for the Langmuir solitons follow in the usual way. It is shown how this Lagrangian leads to the usual conservation laws. For the one-dimensional case a consideration of these conservation laws can help in understanding some of the results obtained in numerical experiments on the behaviour of a strongly turbulent plasma. It is shown that the situation in the three-dimensional case may be fundamentally different, and the near-sonic perturbations and Karpman's treatment of these is discussed. (U.K.)
International Nuclear Information System (INIS)
Harada, Masayasu
2009-01-01
Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)
Lectures on the soliton theory of nucleons
International Nuclear Information System (INIS)
Ripka, G.
1984-04-01
In these lectures we describe models in which the pion field or, more precisely, the chiral fields, are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians. They are not derived from QCD. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent. The description of the nucleon in these lectures may be viewed as an extension of the T.D. Lee solitons so as to include the pionic degree of freedom
A soliton perturbation scheme for 3x3 inverse scattering transform
International Nuclear Information System (INIS)
Roy Chowdhury, A.; Banerjee, R.S.; Roy, T.
1979-01-01
A perturbation method for the soliton solutions of nonlinear equations tractable using 3x3 matrix IST formalism is discussed in detait. The corresponding changes in conservation laws are also considered. (author)
Perturbation theory with instantons
International Nuclear Information System (INIS)
Carruthers, P.; Pinsky, S.S.; Zachariasen, F.
1977-05-01
''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...
A perturbation method for dark solitons based on a complete set of the squared Jost solutions
International Nuclear Information System (INIS)
Ao Shengmei; Yan Jiaren
2005-01-01
A perturbation method for dark solitons is developed, which is based on the construction and the rigorous proof of the complete set of squared Jost solutions. The general procedure solving the adiabatic solution of perturbed nonlinear Schroedinger + equation, the time-evolution equation of dark soliton parameters and a formula for calculating the first-order correction are given. The method can also overcome the difficulties resulting from the non-vanishing boundary condition
Solitons and theory of representations
International Nuclear Information System (INIS)
Kulish, P.P.
1985-01-01
Problems on the theory of group representations finding application in constructing the quantum variant of the inverse scattering problem are discussed. The multicomponent nonlinear Shroedinger equation is considered as a main example of nonlinear evolution equations (NEE)
Lattice regularized chiral perturbation theory
International Nuclear Information System (INIS)
Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.
2004-01-01
Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term
Continual integral in perturbation theory
International Nuclear Information System (INIS)
Slavnov, A.A.
1975-01-01
It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)
Perturbation Theory of Embedded Eigenvalues
DEFF Research Database (Denmark)
Engelmann, Matthias
project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...
Intermittent Switching between Soliton Dynamic States in a Perturbed Sine-Gordon Model
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Arley, N.; Christiansen, Peter Leth
1983-01-01
Chaotic intermittency between soliton dynamic states has been found in a perturbed sine-Gordon system in the absence of an external ac driving term. The system is a model of a long Josephson oscillator with constant loss and bias current in an external magnetic field. The results predict the exis......Chaotic intermittency between soliton dynamic states has been found in a perturbed sine-Gordon system in the absence of an external ac driving term. The system is a model of a long Josephson oscillator with constant loss and bias current in an external magnetic field. The results predict...
Accurate nonlocal theory for cascaded quadratic soliton compression
DEFF Research Database (Denmark)
Bache, Morten; Bang, Ole; Moses, Jeffrey
2007-01-01
We study soliton compression in bulk quadratic nonlinear materials at 800 nm, where group-velocity mismatch dominates. We develop a nonlocal theory showing that efficient compression depends strongly on characteristic nonlocal time scales related to pulse dispersion....
Superfield perturbation theory and renormalization
International Nuclear Information System (INIS)
Delbourgo, R.
1975-01-01
The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond
Large-order perturbation theory
International Nuclear Information System (INIS)
Wu, T.T.
1982-01-01
The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams
Review of chiral perturbation theory
Indian Academy of Sciences (India)
Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
Renormalized Lie perturbation theory
International Nuclear Information System (INIS)
Rosengaus, E.; Dewar, R.L.
1981-07-01
A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another
Perturbation theory of effective Hamiltonians
International Nuclear Information System (INIS)
Brandow, B.H.
1975-01-01
This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)
International Nuclear Information System (INIS)
Bullough, R.K.
1978-01-01
Two sorts of solitons are considered - the classical soliton, a solitary wave which shows great stability in collision with other solitary waves, and the quantal, that is quantised, soliton. Solitons as mathematical objects have excited theoreticians because of their wide ranging applications in physics. They appear as solutions of particular nonlinear wave equations which often have a certain universal significance. The importance of solitons in modern physics is discussed with especial reference to; nonlinearity and solitons, the nonlinear Schroedinger equation, the sine-Gordon equation, notional spins and particle physics. (U.K.)
Basics of QCD perturbation theory
International Nuclear Information System (INIS)
Soper, D.E.
1997-01-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs
Perturbation theory from stochastic quantization
International Nuclear Information System (INIS)
Hueffel, H.
1984-01-01
By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Perturbation theory in large order
International Nuclear Information System (INIS)
Bender, C.M.
1978-01-01
For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures
The theory of singular perturbations
De Jager, E M
1996-01-01
The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat
The power of perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)
2017-05-10
We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.
Perturbation theory in light-cone gauge
International Nuclear Information System (INIS)
Vianello, Eliana
2000-01-01
Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories
Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory
Directory of Open Access Journals (Sweden)
Nobuyuki Sawado
2006-01-01
Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.
Perturbative coherence in field theory
International Nuclear Information System (INIS)
Aldrovandi, R.; Kraenkel, R.A.
1987-01-01
A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt
Non-topological solitons in field theories with kinetic self-coupling
International Nuclear Information System (INIS)
Diaz-Alonso, Joaquin; Rubiera-Garcia, Diego
2007-01-01
We investigate some fundamental features of a class of non-linear relativistic Lagrangian field theories with kinetic self-coupling. We focus our attention upon theories admitting static, spherically symmetric solutions in three space dimensions which are finite-energy and stable. We determine general conditions for the existence and stability of these non-topological soliton solutions. In particular, we perform a linear stability analysis that goes beyond the usual Derrick-like criteria. On the basis of these considerations we obtain a complete characterization of the soliton-supporting members of the aforementioned class of non-linear field theories. We then classify the family of soliton-supporting theories according to the central and asymptotic behaviors of the soliton field, and provide illustrative explicit examples of models belonging to each of the corresponding sub-families. In the present work we restrict most of our considerations to one and many-components scalar models. We show that in these cases the finite-energy static spherically symmetric solutions are stable against charge-preserving perturbations, provided that the vacuum energy of the model vanishes and the energy density is positive definite. We also discuss briefly the extension of the present approach to models involving other types of fields, but a detailed study of this more general scenario will be addressed in a separate publication
Domain wall solitons and Hopf algebraic translational symmetries in noncommutative field theories
International Nuclear Information System (INIS)
Sasai, Yuya; Sasakura, Naoki
2008-01-01
Domain wall solitons are the simplest topological objects in field theories. The conventional translational symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and induces a massless moduli field which propagates along a domain wall. We study similar issues in braided noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete example, we discuss a domain wall soliton in the scalar φ 4 braided noncommutative field theory in Lie-algebraic noncommutative space-time, [x i ,x j ]=2iκε ijk x k (i,j,k=1,2,3), which has a Hopf algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of Derrick's theorem, and construct explicitly a one-parameter family of solutions in perturbation of the noncommutativity parameter κ. We then find the massless moduli field which propagates on the domain wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry
Status of chiral perturbation theory
International Nuclear Information System (INIS)
Ecker, G.
1996-10-01
A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)
Principles of chiral perturbation theory
International Nuclear Information System (INIS)
Leutwyler, H.
1995-01-01
An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)
A study on relativistic lagrangian field theories with non-topological soliton solutions
International Nuclear Information System (INIS)
Diaz-Alonso, J.; Rubiera-Garcia, D.
2009-01-01
We perform a general analysis of the dynamic structure of two classes of relativistic lagrangian field theories exhibiting static spherically symmetric non-topological soliton solutions. The analysis is concerned with (multi-) scalar fields and generalized gauge fields of compact semi-simple Lie groups. The lagrangian densities governing the dynamics of the (multi-) scalar fields are assumed to be general functions of the kinetic terms, whereas the gauge-invariant lagrangians are general functions of the field invariants. These functions are constrained by requirements of regularity, positivity of the energy and vanishing of the vacuum energy, defining what we call 'admissible' models. In the scalar case we establish the general conditions which determine exhaustively the families of admissible lagrangian models supporting this kind of finite-energy solutions. We analyze some explicit examples of these different families, which are defined by the asymptotic and central behaviour of the fields of the corresponding particle-like solutions. From the variational analysis of the energy functional, we show that the admissibility constraints and the finiteness of the energy of the scalar solitons are necessary and sufficient conditions for their linear static stability against small charge-preserving perturbations. Furthermore, we perform a general spectral analysis of the dynamic evolution of the small perturbations around the statically stable solitons, establishing their dynamic stability. Next, we consider the case of many-components scalar fields, showing that the resolution of the particle-like field problem in this case reduces to that of the one-component case. The study of these scalar models is a necessary step in the analysis of the gauge fields. In this latter case, we add the requirement of parity invariance to the admissibility constraints. We determine the general conditions defining the families of admissible gauge-invariant models exhibiting finite
Cosmological perturbation theory and quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)
2016-08-04
It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.
Soliton solutions of the two-dimensional KdV-Burgers equation by homotopy perturbation method
International Nuclear Information System (INIS)
Molabahrami, A.; Khani, F.; Hamedi-Nezhad, S.
2007-01-01
In this Letter, the He's homotopy perturbation method (HPM) to finding the soliton solutions of the two-dimensional Korteweg-de Vries Burgers' equation (tdKdVB) for the initial conditions was applied. Numerical solutions of the equation were obtained. The obtained solutions, in comparison with the exact solutions admit a remarkable accuracy. The results reveal that the HPM is very effective and simple
Soliton annihilation in the perturbed sine-Gordon system
DEFF Research Database (Denmark)
Pedersen, Niels Falsig; Samuelsen, Mogens Rugholm; Welner, D.
1984-01-01
Fluxon-antifluxon annihilation in the perturbed sine-Gordon equation with loss and driving terms is investigated. For the infinite line we find a simple analytic expression for the threshold driving term corresponding to annihilation. With the application of the results to a Josephson junction...
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
Energy Technology Data Exchange (ETDEWEB)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu, Thiruvarur 610 101 (India); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Lavanya, C.; Senthil Kumar, V. [Department of Physics, Periyar University, Salem, Tamil Nadu 636 011 (India); Gopi, D. [Department of Chemistry, Periyar University, Salem 636 011 (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem, Tamil Nadu 636 011 (India); Pasqua, A. [Department of Physics, University of Trieste, Trieste (Italy)
2016-04-15
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales much shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.
Solitons, gauge theories and the 'great Einstein theorem'
International Nuclear Information System (INIS)
Dresden, M.; Chen, S.F.
1976-01-01
A field theory is said to be of 'Einstein type' if it has the property that the field equations imply the equations of motion. It is known that general relativity is of Einstein type, it is demonstrated here that the Yang-Mills gauge theory is of Einstein type. The relationship between the singularities in the solutions of the field equations and soliton type is analyzed. (Auth.)
Geometric Hamiltonian structures and perturbation theory
International Nuclear Information System (INIS)
Omohundro, S.
1984-08-01
We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging
Lombardi, G.; Van Alphen, W.; Klimin, S. N.; Tempere, J.
2017-09-01
In the present article the snake instability mechanism for dark solitons in superfluid Fermi gases is studied in the context of a recently developed effective field theory [S. N. Klimin et al., Eur. Phys. J. B 88, 122 (2015), 10.1140/epjb/e2015-60213-4]. This theoretical treatment has proven to be suitable to study stable dark solitons in quasi-one-dimensional setups across the BEC-BCS crossover. In this paper the nodal plane of the stable soliton solution is perturbed by adding a transverse modulation. The numerical solution of the system of coupled nonlinear differential equations describing the amplitude of the perturbation leads to an estimate of the growth rate and characteristic length scale of the instability, which are calculated for a wide range of interaction regimes and compared to other theoretical predictions. The behavior of the maximum transverse size that the atomic cloud can have in order to preserve the stability is described across the BEC-BCS crossover. The analysis of the effects of spin imbalance on this critical length reveals a stabilization of the soliton with increasing imbalance and therefore provides the experimental community with a method to achieve the realization of stable solitons in real three-dimensional configurations, without reducing the system dimensionality.
"Phonon" scattering beyond perturbation theory
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Perturbation theory for Alfven wave
International Nuclear Information System (INIS)
Yoshida, Z.; Mahajan, S.M.
1995-01-01
The Alfven wave is the dominant low frequency transverse mode of a magnetized plasma. The Alfven wave propagation along the magnetic field, and displays a continuous spectrum even in a bounded plasma. This is essentially due to the degeneracy of the wave characteristics, i.e. the frequency (ω) is primarily determined by the wave number in the direction parallel to the ambient magnetic field (k parallel ) and is independent of the perpendicular wavenumbers. The characteristics, that are the direction along which the wave energy propagates, are identical to the ambient magnetic field lines. Therefore, the spectral structure of the Alfven wave has a close relationship with the geometric structure of the magnetic field lines. In an inhomogeneous plasma, the Alfven resonance constitutes a singularity for the defining wave equation; this results in a singular eigenfunction corresponding to the continuous spectrum. The aim of this review is to present an overview of the perturbation theory for the Alfven wave. Emphasis is placed on those perturbations of the continuous spectrum which lead to the creation of point spectra. Such qualitative changes in the spectrum are relevant to many plasma phenomena
International Nuclear Information System (INIS)
Sun Zhiyuan; Yu Xin; Liu Ying; Gao Yitian
2012-01-01
We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.
Sun, Zhi-Yuan; Gao, Yi-Tian; Yu, Xin; Liu, Ying
2012-12-01
We investigate the dynamics of the bound vector solitons (BVSs) for the coupled nonlinear Schrödinger equations with the nonhomogenously stochastic perturbations added on their dispersion terms. Soliton switching (besides soliton breakup) can be observed between the two components of the BVSs. Rate of the maximum switched energy (absolute values) within the fixed propagation distance (about 10 periods of the BVSs) enhances in the sense of statistics when the amplitudes of stochastic perturbations increase. Additionally, it is revealed that the BVSs with enhanced coherence are more robust against the perturbations with nonhomogenous stochasticity. Diagram describing the approximate borders of the splitting and non-splitting areas is also given. Our results might be helpful in dynamics of the BVSs with stochastic noises in nonlinear optical fibers or with stochastic quantum fluctuations in Bose-Einstein condensates.
Experimental Investigation of Trapped Sine-Gordon Solitons
DEFF Research Database (Denmark)
Davidson, A.; Dueholm, B.; Kryger, B.
1985-01-01
We have observed for the first time a single sine-Gordon soliton trapped in an annular Josephson junction. This system offers a unique possibility to study undisturbed soliton motion. In the context of perturbation theory, the soliton may be viewed as a relativistic particle moving under a uniform...
Soliton supermultiplets and Kaluza-Klein theory
International Nuclear Information System (INIS)
Gibbons, G.W.; Perry, M.J.
1984-01-01
We show that the monopoles of five-dimensional Kaluza-Klein theory, considered as solutions of the N=8 supergravity theory in five dimensions, fit into the same supermultiplets as the original fields in that theory. We show that there is an electric-magnetic duality between these magnetic monopoles and the electrically charged antigravitating objects anticipated by Scherk. We formulate a Bogomolny inequality for N=8 supergravity, and we speculate on the wider significance of these monopoles. (orig.)
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Trullinger, SE; Pokrovsky, VL
1986-01-01
In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experime
Perturbative spacetimes from Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)
2017-04-12
The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.
Tunnelling instability via perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)
1984-10-21
The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.
Perturbation theory of quantum resonances
Czech Academy of Sciences Publication Activity Database
Durand, P.; Paidarová, Ivana
2016-01-01
Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry
Discrete state perturbation theory via Green's functions
International Nuclear Information System (INIS)
Rubinson, W.
1975-01-01
The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on
On perturbation theory for distance dependent statistics.
Energy Technology Data Exchange (ETDEWEB)
Mashkevich, S V
1994-12-31
It is known that perturbation theory for anyons has to be modified near Bose statistics in order to get correct finite results. For ``distance dependent statistics`` or anyons with smeared flux tubes, perturbation theory is in principle applicable directly but gives results which hold for too small values of the statistical parameter and, in particular, are not valid as the flux tube radius tends to zero. In this paper we discuss the way to modify perturbation theory for this situation, which allows to obtain the appropriate results. (author). 6 refs.
Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah
2018-06-01
This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Massive states in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)
1995-08-01
It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)
Scalar Quantum Electrodynamics: Perturbation Theory and Beyond
International Nuclear Information System (INIS)
Bashir, A.; Gutierrez-Guerrero, L. X.; Concha-Sanchez, Y.
2006-01-01
In this article, we calculate scalar propagator in arbitrary dimensions and gauge and the three-point scalar-photon vertex in arbitrary dimensions and Feynman gauge, both at the one loop level. We also discuss constraints on their non perturbative structure imposed by requirements of gauge invariance and perturbation theory
Transport perturbation theory in nuclear reactor analysis
International Nuclear Information System (INIS)
Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.
1985-01-01
Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)
Inflation and the theory of cosmological perturbations
International Nuclear Information System (INIS)
Riotto, A.
2003-01-01
These lectures provide a pedagogical introduction to inflation and the theory of cosmological perturbations generated during inflation which are thought to be the origin of structure in the universe. (author)
't Hooft loops and perturbation theory
De Forcrand, Philippe; Noth, D; Forcrand, Philippe de; Lucini, Biagio; Noth, David
2005-01-01
We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny deviations from the ratio of Casimirs, down to nearly T_c. In contrast, individual tensions differ markedly from the perturbative expression. In all cases, the required precision Monte Carlo measurements are made possible by a simple but powerful modification of the 'snake' algorithm.
Rogue waves, rational solitons and wave turbulence theory
International Nuclear Information System (INIS)
Kibler, Bertrand; Hammani, Kamal; Michel, Claire; Finot, Christophe; Picozzi, Antonio
2011-01-01
Considering a simple one-dimensional nonlinear Schroedinger optical model, we study the existence of rogue wave events in the highly incoherent state of the system and compare them with the recently identified hierarchy of rational soliton solutions. We show that rogue waves can emerge in the genuine turbulent regime and that their coherent deterministic description provided by the rational soliton solutions is compatible with an accurate statistical description of the random wave provided by the wave turbulence theory. Furthermore, the simulations reveal that even in the weakly nonlinear regime, the nonlinearity can play a key role in the emergence of an individual rogue wave event in a turbulent environment. -- Highlights: → Rogue wave events are studied in the highly incoherent regime of interaction. → We show that rogue waves can emerge in the genuine turbulent regime. → Their coherent deterministic description is provided by the rational solutions. → It coexists with a statistical description provided of the random wave. → The nonlinearity plays a key role even in a turbulent environment.
Supersymmetry restoration in superstring perturbation theory
International Nuclear Information System (INIS)
Sen, Ashoke
2015-01-01
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
Supersymmetry restoration in superstring perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)
2015-12-14
Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.
International Nuclear Information System (INIS)
Nishiyama, Seiya; Providencia, Joao da; Komatsu, Takao
2007-01-01
To go beyond perturbative method in terms of variables of collective motion, using infinite-dimensional fermions, we have aimed to construct the self-consistent-field (SCF) theory, i.e., time dependent Hartree-Fock theory on associative affine Kac-Moody algebras along the soliton theory. In this paper, toward such an ultimate goal we will reconstruct a theoretical frame for a υ (external parameter)-dependent SCF method to describe more precisely the dynamics on the infinite-dimensional fermion Fock space. An infinite-dimensional fermion operator is introduced through Laurent expansion of finite-dimensional fermion operators with respect to degrees of freedom of the fermions related to a υ-dependent and a Υ-periodic potential. As an illustration, we derive explicit expressions for the Laurent coefficients of soliton solutions for sl n and for su n on infinite-dimensional Grassmannian. The associative affine Kac-Moody algebras play a crucial role to determine the dynamics on the infinite-dimensional fermion Fock space
International Nuclear Information System (INIS)
Fewo, S I; Kenfack-Jiotsa, A; Kofane, T C
2006-01-01
With the help of the one-dimensional quintic complex Ginzburg-Landau equation (CGLE) as perturbations of the nonlinear Schroedinger equation (NLSE), we derive the equations of motion of pulse parameters called collective variables (CVs), of a pulse propagating in dispersion-managed (DM) fibre optic links. The equations obtained are investigated numerically in order to view the evolution of pulse parameters along the propagation distance, and also to analyse effects of initial amplitude and width on the propagating pulse. Nonlinear gain is shown to be beneficial in stabilizing DM solitons. A fully numerical simulation of the one-dimensional quintic CGLE as perturbations of NLSE finally tests the results of the CV theory. A good agreement is observed between both methods
Geometric perturbation theory and plasma physics
International Nuclear Information System (INIS)
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations
The use of perturbation theory in density-functional theory
International Nuclear Information System (INIS)
Goerling, A.
1996-01-01
Perturbation theory with respect to the electron-electron interaction leads to expressions for the exchange and correlation energies and potentials in terms of Kohn-Sham orbitals and Kohn-Sham eigenvalues. An exact open-quote exchange-only close-quote procedure for solids is introduced. Results for several semiconductors are presented. Perturbation theory expansions for the hardness of molecules and the bad gap of solids are given. Density-functional exchange and correlation energies for excited states are defined and a perturbation theory based Kohn-Sham formalism to treat excited states within density-functional theory is introduced
Operator Decomposition Framework for Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Abdel-Khalik, Hany S.; Wang, Congjian; Bang, Young Suk [North Carolina State University, Raleigh (United States)
2012-05-15
This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies
Perturbative and global anomalies in supergravity theories
International Nuclear Information System (INIS)
Sezgin, E.
1986-09-01
Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)
Perturbation theory for continuous stochastic equations
International Nuclear Information System (INIS)
Chechetkin, V.R.; Lutovinov, V.S.
1987-01-01
The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)
On the theory of ultracold neutrons scattering by Davydov solitons
International Nuclear Information System (INIS)
Brizhik, L.S.
1984-01-01
Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain
Infrared problems in field perturbation theory
International Nuclear Information System (INIS)
David, Francois.
1982-12-01
The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr
Soliton excitations in polyacetylene and relativistic field theory models
International Nuclear Information System (INIS)
Campbell, D.K.; Bishop, A.R.; Los Alamos Scientific Lab., NM
1982-01-01
A continuum model of a Peierls-dimerized chain, as described generally by Brazovskii and discussed for the case of polyacetylene by Takayama, Lin-Liu and Maki (TLM), is considered. The continuum (Bogliubov-de Gennes) equations arising in this model of interacting electrons and phonons are shown to be equivalent to the static, semiclassical equations for a solvable model field theory of self-coupled fermions - the N = 2 Gross-Neveu model. Based on this equivalence we note the existence of soliton defect states in polyacetylene that are additional to, and qualitatively different from, the amplitude kinks commonly discussed. The new solutions do not have the topological stability of kinks but are essentially conventional strong-coupling polarons in the dimerized chain. They carry spin (1/2) and charge (+- e). In addition, we discuss further areas in which known field theory results may apply to a Peierls-dimerized chain, including relations between phenomenological PHI 4 and continuuum electron-phonon models, and the structure of the fully quantum versus mean field theories. (orig.)
On the domain of string perturbation theory
International Nuclear Information System (INIS)
Davis, S.
1989-06-01
For a large class of effectively closed surfaces, it is shown that the only divergences in string scattering amplitudes at each order in perturbation theory are those associated with the coincidence of vertex operators and the boundary of moduli space. This class includes all closed surfaces of finite genus, and infinite-genus surfaces which can be uniformized by a group of Schottky type. While the computation is done explicitly for bosonic strings in their ground states, it can also be extended to excited states and to superstrings. The properties of these amplitudes lead to a definition of the domain of perturbation theory as the set of effectively closed surfaces. The implications of the restriction to effectively closed surfaces on the behavior of the perturbation series are discussed. (author). 20 refs, 6 figs
Quenched Chiral Perturbation Theory to one loop
Colangelo, G.; Pallante, E.
The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-01-01
these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing
Geometric perturbation theory and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Geometric perturbation theory and plasma physics
International Nuclear Information System (INIS)
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
Hadasz, Leszek; Lindström, Ulf; Roček, Martin; von Unge, Rikard
2004-05-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space.
Time dependent solitons of noncommutative Chern-Simons theory coupled to scalar fields
International Nuclear Information System (INIS)
Hadasz, Leszek; Lindstroem, Ulf; Rocek, Martin; Unge, Rikard von
2004-01-01
We study one- and two-soliton solutions of noncommutative Chern-Simons theory coupled to a nonrelativistic or a relativistic scalar field. In the nonrelativistic case, we find a tower of new stationary time-dependent solutions, all with the same charge density, but with increasing energies. The dynamics of these solitons cannot be studied using traditional moduli space techniques, but we do find a nontrivial symplectic form on the phase space indicating that the moduli space is not flat. In the relativistic case we find the metric on the two soliton moduli space
Effective field theory of cosmological perturbations
International Nuclear Information System (INIS)
Piazza, Federico; Vernizzi, Filippo
2013-01-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu–Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy. (paper)
Where does cosmological perturbation theory break down?
International Nuclear Information System (INIS)
Armendariz-Picon, Cristian; Fontanini, Michele; Penco, Riccardo; Trodden, Mark
2009-01-01
It is often assumed that initial conditions for the evolution of a cosmological mode should be set at the time its physical wavelength reaches a cut-off of the order of the Planck length. Beyond that scale, trans-Planckian corrections to the dispersion relation are supposed to become dominant, leading to the breakdown of cosmological perturbation theory. In this paper, we apply the effective field theory approach to the coupled metric-inflaton system in order to calculate the corrections to the power spectrum of scalar and tensor perturbations induced by higher-dimension operators at short wavelengths. These corrections can be interpreted as modifications of the dispersion relation, and thus open a window to probe the validity of cosmological perturbation theory. Both for scalars and tensors, the modifications become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length at which such a breakdown occurs is finite, but much smaller than the Planck length.
Effective field theory of cosmological perturbations
Piazza, Federico; Vernizzi, Filippo
2013-11-01
The effective field theory of cosmological perturbations stems from considering a cosmological background solution as a state displaying spontaneous breaking of time translations and (adiabatic) perturbations as the related Nambu-Goldstone modes. With this insight, one can systematically develop a theory for the cosmological perturbations during inflation and, with minor modifications, also describe in full generality the gravitational interactions of dark energy, which are relevant for late-time cosmology. The formalism displays a unique set of Lagrangian operators containing an increasing number of cosmological perturbations and derivatives. We give an introductory description of the unitary gauge formalism for theories with broken gauge symmetry—that allows us to write down the most general Lagrangian—and of the Stückelberg ‘trick’—that allows to recover gauge invariance and to make the scalar field explicit. We show how to apply this formalism to gravity and cosmology and we reproduce the detailed analysis of the action in the ADM variables. We also review some basic applications to inflation and dark energy.
A primer for Chiral Perturbative Theory
International Nuclear Information System (INIS)
Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
New perturbative approach to renormalizable field theories
International Nuclear Information System (INIS)
Dhar, A.; Gupta, V.
1984-01-01
A new method for obtaining perturbative predictions in quantum field theory is developed. Our method gives finite predictions, which are free from scheme ambiguities, for any quantity of interest (like a cross section or a Green's function) starting directly from the bare regularized Lagrangian. The central idea in our approach is to incorporate directly the consequences of dimensional transmutation for the predictions of the theory. We thus completely bypass the conventional renormalization procedure and the ambiguities associated with it. The case of massless theories with a single dimensionless coupling constant is treated in detail to illustrate our approach
Glimpses of soliton theory the algebra and geometry of nonlinear PDEs
Kasman, Alex
2010-01-01
Solitons are explicit solutions to nonlinear partial differential equations exhibiting particle-like behavior. This is quite surprising, both mathematically and physically. Waves with these properties were once believed to be impossible by leading mathematical physicists, yet they are now not only accepted as a theoretical possibility but are regularly observed in nature and form the basis of modern fiber-optic communication networks. Glimpses of Soliton Theory addresses some of the hidden mathematical connections in soliton theory which have been revealed over the last half-century. It aims to convince the reader that, like the mirrors and hidden pockets used by magicians, the underlying algebro-geometric structure of soliton equations provides an elegant and surprisingly simple explanation of something seemingly miraculous. Assuming only multivariable calculus and linear algebra as prerequisites, this book introduces the reader to the KdV Equation and its multisoliton solutions, elliptic curves and Weierstr...
Gravitational perturbation theory and synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik
1975-01-01
This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.
Gribov ambiguity, perturbation theory, and confinement
International Nuclear Information System (INIS)
Greensite, J.P.
1978-01-01
The generating functional proposed for gauge theories by Bender, Eguchi, and Pagels (BEP) is shown to be equivalent to a truncated form of the functional integral, in which only one field configuration from each gauge-equivalent Gribov set contributes to the functional integration. The standard perturbation technique provides a method of realizing this truncation condition. It is shown that any gauge-covariant quantity (such as the quark N-point functions), evaluated by perturbating around a field configuration gauge-equivalent to A = 0, is related by a gauge transformation to the same quantity evaluated perturbatively around the trivial vacuum. It follows that, contrary to the conclusion of BEP, the existence of degeneracies in the Coulomb gauge-fixing condition (the Gribov ambiguity) is not directly related to the physics of confinement
Methods and applications of analytical perturbation theory
International Nuclear Information System (INIS)
Kirchgraber, U.; Stiefel, E.
1978-01-01
This monograph on perturbation theory is based on various courses and lectures held by the authors at the ETH, Zurich and at the University of Texas, Austin. Its principal intention is to inform application-minded mathematicians, physicists and engineers about recent developments in this field. The reader is not assumed to have mathematical knowledge beyond what is presented in standard courses on analysis and linear algebra. Chapter I treats the transformations of systems of differential equations and the integration of perturbed systems in a formal way. These tools are applied in Chapter II to celestial mechanics and to the theory of tops and gyroscopic motion. Chapter III is devoted to the discussion of Hamiltonian systems of differential equations and exposes the algebraic aspects of perturbation theory showing also the necessary modifications of the theory in case of singularities. The last chapter gives the mathematical justification for the methods developed in the previous chapters and investigates important questions such as error estimations for the solutions and asymptotic stability. Each chapter ends with useful comments and an extensive reference to the original literature. (HJ) [de
Perturbative quantum field theory via vertex algebras
International Nuclear Information System (INIS)
Hollands, Stefan; Olbermann, Heiner
2009-01-01
In this paper, we explain how perturbative quantum field theory can be formulated in terms of (a version of) vertex algebras. Our starting point is the Wilson-Zimmermann operator product expansion (OPE). Following ideas of a previous paper (S. Hollands, e-print arXiv:0802.2198), we consider a consistency (essentially associativity) condition satisfied by the coefficients in this expansion. We observe that the information in the OPE coefficients can be repackaged straightforwardly into 'vertex operators' and that the consistency condition then has essentially the same form as the key condition in the theory of vertex algebras. We develop a general theory of perturbations of the algebras that we encounter, similar in nature to the Hochschild cohomology describing the deformation theory of ordinary algebras. The main part of the paper is devoted to the question how one can calculate the perturbations corresponding to a given interaction Lagrangian (such as λφ 4 ) in practice, using the consistency condition and the corresponding nonlinear field equation. We derive graphical rules, which display the vertex operators (i.e., OPE coefficients) in terms of certain multiple series of hypergeometric type.
Acoustic anisotropic wavefields through perturbation theory
Alkhalifah, Tariq Ali
2013-09-01
Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Baryon form factors in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Kubis, B.; Meissner, U.G. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Kernphysik
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the {sigma}{sup -} charge radius and the {lambda}-{sigma}{sup 0} transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory. (orig.)
Solitons and the energy-momentum tensor for affine Toda theory
Olive, D. I.; Turok, N.; Underwood, J. W. R.
1993-07-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moody algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy—momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g.
Solitons and the energy-momentum tensor for affine Toda theory
International Nuclear Information System (INIS)
Olive, D.I.; Turok, N.; Underwood, J.W.R.
1993-01-01
Following Leznov and Saveliev, we present the general solution to Toda field theories of conformal, affine or conformal affine type, associated with a simple Lie algebra g. These depend on a free massless field and on a group element. By putting the former to zero, soliton solutions to the affine Toda theories with imaginary coupling constant result with the soliton data encoded in the group element. As this requires a reformulation of the affine Kac-Moodyy algebra closely related to that already used to formulate the physical properties of the particle excitations, including their scattering matrices, a unified treatment of particles and solitons emerges. The physical energy-momentum tensor for a general solution is broken into a total derivative plus a part dependent only on the derivatives of the free field. Despite the non-linearity of the field equations and their complex nature the energy and momentum of the N-soliton solution is shown to be real, equalling the sum of contributions from the individual solitons. There are rank-g species of soliton, with masses given by a generalisation of a formula due to Hollowood, being proportional to the components of the left Perron-Frobenius eigenvector of the Cartan matrix of g. (orig.)
Perturbation theory for arbitrary coupling strength?
Mahapatra, Bimal P.; Pradhan, Noubihary
2018-03-01
We present a new formulation of perturbation theory for quantum systems, designated here as: “mean field perturbation theory” (MFPT), which is free from power-series-expansion in any physical parameter, including the coupling strength. Its application is thereby extended to deal with interactions of arbitrary strength and to compute system-properties having non-analytic dependence on the coupling, thus overcoming the primary limitations of the “standard formulation of perturbation theory” (SFPT). MFPT is defined by developing perturbation about a chosen input Hamiltonian, which is exactly solvable but which acquires the nonlinearity and the analytic structure (in the coupling strength) of the original interaction through a self-consistent, feedback mechanism. We demonstrate Borel-summability of MFPT for the case of the quartic- and sextic-anharmonic oscillators and the quartic double-well oscillator (QDWO) by obtaining uniformly accurate results for the ground state of the above systems for arbitrary physical values of the coupling strength. The results obtained for the QDWO may be of particular significance since “renormalon”-free, unambiguous results are achieved for its spectrum in contrast to the well-known failure of SFPT in this case.
Application of linear and higher perturbation theory in reactor physics
International Nuclear Information System (INIS)
Woerner, D.
1978-01-01
For small perturbations in the material composition of a reactor according to the first approximation of perturbation theory the eigenvalue perturbation is proportional to the perturbation of the system. This assumption is true for the neutron flux not influenced by the perturbance. The two-dimensional code LINESTO developed for such problems in this paper on the basis of diffusion theory determines the relative change of the multiplication constant. For perturbations varying the neutron flux in the space of energy and position the eigenvalue perturbation is also influenced by this changed neutron flux. In such cases linear perturbation theory yields larger errors. Starting from the methods of calculus of variations there is additionally developed in this paper a perturbation method of calculation permitting in a quick and simple manner to assess the influence of flux perturbation on the eigenvalue perturbation. While the source of perturbations is evaluated in isotropic approximation of diffusion theory the associated inhomogeneous equation may be used to determine the flux perturbation by means of diffusion or transport theory. Possibilities of application and limitations of this method are studied in further systematic investigations on local perturbations. It is shown that with the integrated code system developed in this paper a number of local perturbations may be checked requiring little computing time. With it flux perturbations in first approximation and perturbations of the multiplication constant in second approximation can be evaluated. (orig./RW) [de
Perturbation theories for the dipolar fluids
International Nuclear Information System (INIS)
Lee, L.L.; Chung, T.H.
1983-01-01
We derive here four different perturbation equations for the calculation of the angular pair correlation functions of dipolar fluids; namely, the first order y-expansion, the modified Percus--Yevik (MPY) expansion, the modified hypernetted chain (MHNC) expansion, and the modified linearized hypernetted chain (MLHNC) equation. Both the method of the functional expansion and the method of the cluster integrals are utilized. Comparison with other perturbation theories (e.g., the Melnyk--Smith equation) is made. While none of the theories is exact, as shown by the cluster diagrams, the MLHNC and the MHNC contain more diagrams than, say, the MPY and y-expansion. The y-expansion equation can be improved by including the correction terms to the Kirkwood superposition approximation for the triplet correlation function. For example, the inclusion of the correction term rho∫d4h(14)h(24)h(34) in a formula given by Henderson, is shown to improve substantially the y-expansion equation. We examine the performance of two of the theories: the y-expansion and the MLHNC equation for a Stockmayer (dipolar) fluid with a reduced dipole moment μ/sup asterisk2/ [ = μ 2 /(epsilonsigma 3 )] = 1.0. Comparison with Monte Carlo simulation results of Adams et al. and with other theories (e.g., the QHNC equation) shows that our results are reasonable. Further improvements of the equations are also pointed out
Thermal gluons beyond pure perturbation theory
International Nuclear Information System (INIS)
Reinbach, J.
2000-01-01
The perturbative treatment of non-abelian gauge theory at high temperature leads to a threshold in calculation because of chromomagnetic effects. Infinitely many terms of the same order of magnitude arise. The numerical series to be summed is contained in the part of the theory reduced on 3D, which was recently treated non-perturbative as 2+1D Yang-Mills theory at T=0 by Karabali, Kim and Nair. In the thesis in question the exact 3D results are combined with the thermal 4D diagrammatic. In particular the splitting of the space-part of the transverse self-energy in the static limit is treated. As expected, the 3D subsystem can separate as regularized 3D Yang-Mills theory from the 4D structure. In 1-loop order the regulators are received explicit. For 2-loop order it can be shown amongst other things, that the generic contribution with hard inner momenta vanishes. It is examined, how the magnetic mass could follow. Under pressure it is possible to separate the 3D part in 1- and 2-loop order and to receive regulators [de
Factorization theorems in perturbative quantum field theory
International Nuclear Information System (INIS)
Date, G.D.
1982-01-01
This dissertation deals with factorization properties of Green functions and cross-sections in perturbation theory. It consists of two parts. Part I deals with the factorization theorem for the Drell-Yan cross-section. The new approach developed for this purpose is based upon a renormalization group equation with a generalized anomalous dimension. Using an alternate form of factorization for the Drell-Yan cross-section, derived in perturbation theory, a corresponding generalized anomalous dimension is defined, and explicit Feynman rules for its calculation are given. The resultant renormalization group equation is solved by a formal solution which is exhibited explicitly. Simple, explicit calculations are performed which verify Mueller's conjecture for the recovery of the usual parton model results for the Drell-Yan cross-section. The approach developed in this work offers a general framework to analyze the role played by the group factors in the cancellation of the soft divergences, and study their influence on the asymptotic behavior. Part II deals with factorization properties of the Green functions in position space. In this part, a Landau equation analysis is carried out for the singularities of the position space Green fucntions, in perturbation theory with the theta 4 interaction Lagrangian. A physical picture interpretation is given for the corresponding Landau equations. It is used to suggest a light-cone expansion. Using a power counting method, a formal derivation of the light-cone expansion for the two point function, the three point function and a product of two currents, is given without assuming a short distance expansion. Possible extensions to other theories is also considered
Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
International Nuclear Information System (INIS)
Zhang Zhijie; Jiang Dongguang; Wang Wei
2011-01-01
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Perturbation theory for plasmonic modulation and sensing
Raman, Aaswath
2011-05-25
We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Solitons in bosonic effective theories versus underlying fermions
International Nuclear Information System (INIS)
Jayaraman, T.; Sharatchandra, H.S.
1984-11-01
We argue, using the Gross-Neveu model as an example, for the following picture: a baryon of baryon number B occasionally looks like a configuration of 3(B-W) quarks bound to a soliton (of the pionic condensate) with an integer winding number W. The Skyrmion picture in the original form is relevant if the lowest lying level of baryon number B is dominantly a soliton instead of a configuration of 3B quarks. Our techniques do not depend upon semi-classical or adiabatic approximations. (author)
Zero-modes of non-Abelian solitons in three-dimensional gauge theories
International Nuclear Information System (INIS)
Eto, Minoru; Gudnason, Sven Bjarke
2011-01-01
We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.
Homological Perturbation Theory for Nonperturbative Integrals
Johnson-Freyd, Theo
2015-11-01
We use the homological perturbation lemma to produce explicit formulas computing the class in the twisted de Rham complex represented by an arbitrary polynomial. This is a non-asymptotic version of the method of Feynman diagrams. In particular, we explain that phenomena usually thought of as particular to asymptotic integrals in fact also occur exactly: integrals of the type appearing in quantum field theory can be reduced in a totally algebraic fashion to integrals over an Euler-Lagrange locus, provided this locus is understood in the scheme-theoretic sense, so that imaginary critical points and multiplicities of degenerate critical points contribute.
Inflationary perturbations in no-scale theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [CERN, Theoretical Physics Department, Geneva (Switzerland)
2017-04-15
We study the inflationary perturbations in general (classically) scale-invariant theories. Such scenario is motivated by the hierarchy problem and provides natural inflationary potentials and dark matter candidates. We analyse in detail all sectors (the scalar, vector and tensor perturbations) giving general formulae for the potentially observable power spectra, as well as for the curvature spectral index n{sub s} and the tensor-to-scalar ratio r. We show that the conserved Hamiltonian for all perturbations does not feature negative energies even in the presence of the Weyl-squared term if the appropriate quantisation is performed and argue that this term does not lead to phenomenological problems at least in some relevant setups. The general formulae are then applied to a concrete no-scale model, which includes the Higgs and a scalar, ''the planckion'', whose vacuum expectation value generates the Planck mass. Inflation can be triggered by a combination of the planckion and the Starobinsky scalar and we show that no tension with observations is present even in the case of pure planckion inflation, if the coefficient of the Weyl-squared term is large enough. In general, even quadratic inflation is allowed in this case. Moreover, the Weyl-squared term leads to an isocurvature mode, which currently satisfies the observational bounds, but it may be detectable with future experiments. (orig.)
Canonical perturbation theory in linearized general relativity theory
International Nuclear Information System (INIS)
Gonzales, R.; Pavlenko, Yu.G.
1986-01-01
Canonical perturbation theory in linearized general relativity theory is developed. It is shown that the evolution of arbitrary dynamic value, conditioned by the interaction of particles, gravitation and electromagnetic fields, can be presented in the form of a series, each member of it corresponding to the contribution of certain spontaneous or induced process. The main concepts of the approach are presented in the approximation of a weak gravitational field
Perturbation theory in nuclear fuel management optimization
International Nuclear Information System (INIS)
Ho, L.W.; Rohach, A.F.
1982-01-01
Perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations and, hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time and obtain better power peaking factors. The code also has a burnup capability that can be used to check power peaking throughout the core life
SMD-based numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Dalla Brida, Mattia [Universita di Milano-Bicocca, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano-Bicocca (Italy); Luescher, Martin [CERN, Theoretical Physics Department, Geneva (Switzerland); AEC, Institute for Theoretical Physics, University of Bern (Switzerland)
2017-05-15
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
SMD-based numerical stochastic perturbation theory
International Nuclear Information System (INIS)
Dalla Brida, Mattia; Luescher, Martin
2017-01-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schroedinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit. (orig.)
SMD-based numerical stochastic perturbation theory
Dalla Brida, Mattia; Lüscher, Martin
2017-05-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.
Adiabatic perturbation theory in quantum dynamics
Teufel, Stefan
2003-01-01
Separation of scales plays a fundamental role in the understanding of the dynamical behaviour of complex systems in physics and other natural sciences. A prominent example is the Born-Oppenheimer approximation in molecular dynamics. This book focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.
Advances in heuristically based generalized perturbation theory
International Nuclear Information System (INIS)
Gandini, A.
1994-01-01
A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs
Dissipative motion perturbation theory and exact solutions
International Nuclear Information System (INIS)
Lodder, J.J.
1976-06-01
Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion
New Approaches and Applications for Monte Carlo Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano
2017-02-01
This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.
Perturbation Theory of the Cosmological Log-Density Field
DEFF Research Database (Denmark)
Wang, Xin; Neyrinck, Mark; Szapudi, István
2011-01-01
, motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor...
Algebraic quantum field theory, perturbation theory, and the loop expansion
International Nuclear Information System (INIS)
Duetsch, M.; Fredenhagen, K.
2001-01-01
The perturbative treatment of quantum field theory is formulated within the framework of algebraic quantum field theory. We show that the algebra of interacting fields is additive, i.e. fully determined by its subalgebras associated to arbitrary small subregions of Minkowski space. We also give an algebraic formulation of the loop expansion by introducing a projective system A (n) of observables ''up to n loops'', where A (0) is the Poisson algebra of the classical field theory. Finally we give a local algebraic formulation for two cases of the quantum action principle and compare it with the usual formulation in terms of Green's functions. (orig.)
Soliton condensation in some self-dual Chern-Simons theories
International Nuclear Information System (INIS)
Olesen, P.
1991-05-01
We show that the gauged non-linear Schroedinger equation has a closely packed soliton-condensate as a solution. We also show that the abelian Chern-Simons Higgs theory has a vortex condensate as an approximate solution whent he vortex cells are very small. (orig.)
Nucleon parton distributions in chiral perturbation theory
International Nuclear Information System (INIS)
Moiseeva, Alena
2013-01-01
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .
Perturbative analysis in higher-spin theories
Energy Technology Data Exchange (ETDEWEB)
Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2016-07-28
A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.
International Nuclear Information System (INIS)
Walliser, Hans
2000-01-01
Chiral Lagrangians as effective field theories of QCD are successfully applied to meson physics in the framework of chiral perturbation theory. Because of their nonlinear structure these Lagrangians allow for static soliton solutions interpreted as baryons. Their semiclassical quantization, which provides the leading order in an 1/N C expansion with N C the number of colors, turned out to be insufficient to obtain satisfactory agreement with empirical baryon observables. However with N C =3, large corrections are expected in the next-to-leading order carried by mesonic fluctuations around the soliton background, which require renormalization to 1-loop. In contrast to chiral perturbation theory, the low-energy Lagrangian proves inapt and terms with an arbitrary number of gradients may in principle contribute. Assumptions about the a priori unknown higher chiral orders are tested by the scale-dependence of the results. For example, in the simple Sine-Gordon model with 1 scalar field in 1+1 dimensions, knowledge of the low-energy behavior together with the mere existence of an underlying 1-loop renormalizable scale-independent solitonic theory is sufficient to regain the full solution. Baryonic observables calculated within that framework generally lead to better agreement with experiment except for the axial quantities. For these quantities the 1/N C expansion does not converge sufficiently fast because the current algebra mixes different N C orders
Classical solutions in quantum field theory solitons and instantons in high energy physics
Weinberg, Erick J
2012-01-01
Classical solutions play an important role in quantum field theory, high energy physics and cosmology. Real-time soliton solutions give rise to particles, such as magnetic monopoles, and extended structures, such as domain walls and cosmic strings, that have implications for early universe cosmology. Imaginary-time Euclidean instantons are responsible for important nonperturbative effects, while Euclidean bounce solutions govern transitions between metastable states. Written for advanced graduate students and researchers in elementary particle physics, cosmology and related fields, this book brings the reader up to the level of current research in the field. The first half of the book discusses the most important classes of solitons: kinks, vortices and magnetic monopoles. The cosmological and observational constraints on these are covered, as are more formal aspects, including BPS solitons and their connection with supersymmetry. The second half is devoted to Euclidean solutions, with particular emphasis on ...
Collective coordinates theory for discrete soliton ratchets in the sine-Gordon model
Sánchez-Rey, Bernardo; Quintero, Niurka R.; Cuevas-Maraver, Jesús; Alejo, Miguel A.
2014-10-01
A collective coordinate theory is developed for soliton ratchets in the damped discrete sine-Gordon model driven by a biharmonic force. An ansatz with two collective coordinates, namely the center and the width of the soliton, is assumed as an approximated solution of the discrete nonlinear equation. The dynamical equations of these two collective coordinates, obtained by means of the generalized travelling wave method, explain the mechanism underlying the soliton ratchet and capture qualitatively all the main features of this phenomenon. The numerical simulation of these equations accounts for the existence of a nonzero depinning threshold, the nonsinusoidal behavior of the average velocity as a function of the relative phase between the harmonics of the driver, the nonmonotonic dependence of the average velocity on the damping, and the existence of nontransporting regimes beyond the depinning threshold. In particular, it provides a good description of the intriguing and complex pattern of subspaces corresponding to different dynamical regimes in parameter space.
Baryon mass splittings in chiral perturbation theory
International Nuclear Information System (INIS)
Banerjee, M.K.; Milana, J.
1995-01-01
Baryon masses are calculated in chiral perturbation theory at the one-loop O(p 3 ) level in chiral expansion and to leading order in the heavy baryon expansion. Ultraviolet divergences occur requiring the introduction of counterterms. Despite this necessity, no knowledge of the counterterms is required to determine the violations of the Gell-Mann--Okubo mass relation for the baryon octet or of the decuplet equal-mass-spacing rule, as all divergences cancel exactly at this order. For the same reason all references to an arbitrary scale μ are absent. Neither of these features continue to higher powers in the chiral expansion. We also discuss critically the absolute necessity of simultaneously going beyond the leading-order heavy baryon expansion, if one goes beyond the one-loop O(p 3 ) level. We point out that these corrections in 1/M B generate new divergences ∝m 4 /M 10 . These divergences together with the divergences occurring in one-loop O(p 4 ) graphs of chiral perturbation theory are taken care of by the same set of counterterms. Because of these unknown counterterms one cannot predict the baryon mass splittings at the one-loop O(p 4 ) level even if the parameters of all scrL 1 πN terms are known. We point out another serious problem of going to the one-loop O(p 4 ) level. When the decuplet is off its mass shell there are additional πNΔ and πΔΔ interaction terms. These interactions contribute to the divergent terms ∝(m 4 /M 10 ), and also to nonanalytic terms such as ∝(m 4 /M 10 )ln(m/M 10 ). Without knowledge of the coupling constants appearing in these interactions, one cannot carry out a consistent one-loop O(p 4 ) level calculation
Energy Technology Data Exchange (ETDEWEB)
Faisal, F H.M. [Bielefeld Univ. (Germany, F.R.). Fakultaet fuer Physik
1976-06-11
In this work the perturbation theory for multiphoton processes at high intensities is investigated and it is described an analytical method of summing the perturbation series to extract the contribution from all terms that give rise to the absorption of N photons by an atomic system. The method is first applied to the solution of a simple model problem and the result is confirmed by direct integration of the model Schroedinger equation. The usual lowest (nonvanishing)-order perturbation-theoretical calculation is also carried out for this model to demonstrate explicitly that the full result correctly reproduces that of the lowest-order theory in the limit of low intensity. The method is then extended to the case of an atomic system with well-developed spectrum (e.g. H atom) and the N-photon T-matrix is derived in terms of a ''photon matrix'' asub(N), for which a three-term recurrence relation is established. Next, from the vantage point of the general result obtained here, A probe is made into the nature of several approximate nonperturbative solutions that have appeared in the literature in the past. It is shown here that their applicability is severely restricted by the requirement of the essential spectral degeneracy of the atomic system. Finally, appendix A outlines a prescription of computing the photon matrix asub(N), which (as in the usual lowest-order perturbation-theoretical calculation)requires a knowledge of the eigenfunctions and eigenvalues of the atomic Hamiltonian only.
Fedosov quantization and perturbative quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Collini, Giovanni
2016-12-12
Fedosov has described a geometro-algebraic method to construct in a canonical way a deformation of the Poisson algebra associated with a finite-dimensional symplectic manifold (''phase space''). His algorithm gives a non-commutative, but associative, product (a so-called ''star-product'') between smooth phase space functions parameterized by Planck's constant ℎ, which is treated as a deformation parameter. In the limit as ℎ goes to zero, the star product commutator goes to ℎ times the Poisson bracket, so in this sense his method provides a quantization of the algebra of classical observables. In this work, a generalization of Fedosov's method is developed which applies to the infinite-dimensional symplectic ''manifolds'' that occur in Lagrangian field theories. We show that the procedure remains mathematically well-defined, and we explain the relationship of the method to more standard perturbative quantization schemes in quantum field theory.
Perturbation theory in nuclear fuel management optimization
International Nuclear Information System (INIS)
Ho, L.W.
1981-01-01
Nuclear in-core fuel management involves all the physical aspects which allow optimal operation of the nuclear fuel within the reactor core. In most nuclear power reactors, fuel loading patterns which have a minimum power peak are economically desirable to allow the reactors to operate at the highest power density and to minimize the possibility of fuel failure. In this study, perturbation theory along with a binary fuel shuffling technique is applied to predict the effects of various core configurations, and hence, the optimization of in-core fuel management. The computer code FULMNT has been developed to shuffle the fuel assemblies in search of the lowest possible power peaking factor. An iteration approach is used in the search routine. A two-group diffusion theory method is used to obtain the power distribution for the iterations. A comparison of the results of this method with other methods shows that this approach can save computer time. The code also has a burnup capability which can be used to check power peaking throughout the core life
Stringent limitations on reductive perturbation studies of nonplanar acoustic solitons in plasmas
Energy Technology Data Exchange (ETDEWEB)
Verheest, Frank [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Hellberg, Manfred A. [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)
2016-06-15
More than fifty years ago, the Korteweg-de Vries equation was shown to describe not only solitary surface waves on shallow water, but also nonlinear ion-acoustic waves. Because of the algorithmic ease of using reductive perturbation theory, intensive research followed on a wide range of wave types. Soon, the formalism was extended to nonplanar modes by introducing a stretching designed to accommodate spherically and cylindrically symmetric ion-acoustic waves. Over the last two decades many authors followed this approach, but almost all have ignored the severe restrictions in parameter space imposed by the Ansatz. In addition, for other steps in the formalism, the justification is often not spelled out, leading to effects that are physically undesirable or ambiguous. Hence, there is a need to critically assess this approach to nonplanar modes and to use it with the utmost care, respecting the restrictions on its validity. Only inward propagation may be meaningfully studied and respect for weak nonlinearities of at most 1/10 implies that one cannot get closer to the axis or centre of symmetry than about 30 Debye lengths. Thus, one is in a regime where the modes are quasi-planar and not particularly interesting. Most papers disregard these constraints and hence reach questionable conclusions.
de Sitter limit of inflation and nonlinear perturbation theory
DEFF Research Database (Denmark)
R. Jarnhus, Philip; Sloth, Martin Snoager
2007-01-01
We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...
Very high order lattice perturbation theory for Wilson loops
International Nuclear Information System (INIS)
Horsley, R.
2010-10-01
We calculate perturbativeWilson loops of various sizes up to loop order n=20 at different lattice sizes for pure plaquette and tree-level improved Symanzik gauge theories using the technique of Numerical Stochastic Perturbation Theory. This allows us to investigate the behavior of the perturbative series at high orders. We observe differences in the behavior of perturbative coefficients as a function of the loop order. Up to n=20 we do not see evidence for the often assumed factorial growth of the coefficients. Based on the observed behavior we sum this series in a model with hypergeometric functions. Alternatively we estimate the series in boosted perturbation theory. Subtracting the estimated perturbative series for the average plaquette from the non-perturbative Monte Carlo result we estimate the gluon condensate. (orig.)
The Schroedinger equation and canonical perturbation theory
International Nuclear Information System (INIS)
Graffi, S.; Paul, T.
1987-01-01
Let T 0 (ℎ,ω)+εV be the Schroedinger operator corresponding to the classical Hamiltonian H 0 (ω)+εV, where H 0 (ω) is the d-dimensional harmonic oscillator with non-resonant frequencies ω=(ω 1 ..., ω d ) and the potential V(q 1 , ..., q d ) is an entire function of order (d+l) -1 . We prove that the algorithm of classical, canonical perturbation theory can be applied to the Schroedinger equation in the Bargmann representation. As a consequence, each term of the Rayleigh-Schroedinger series near any eigenvalue of T 0 (ℎ,ω) admits a convergent expansion in powers of ℎ of initial point the corresponding term of the classical Birkhoff expansion. Moreover if V is an even polynomial, the above result and the KAM theorem show that all eigenvalues λ n (ℎ,ε) of T 0 +εV such that nℎ coincides with a KAM torus are given, up to order ε ∞ , by a quantization formula which reduces to the Bohr-Sommerfeld one up to first order terms in ℎ. (orig.)
The classification of diagrams in perturbation theory
International Nuclear Information System (INIS)
Phillips, D.R.; Afnan, I.R.
1995-01-01
The derivation of scattering equations connecting the amplitudes obtained from diagrammatic expansions is of interest in many branches of physics. One method for deriving such equations is the classification-of-diagrams technique of Taylor. However, as we shall explain in this paper, there are certain points of Taylor's method which require clarification. First, it is not clear whether Taylor's original method is equivlant to the simpler classification-of-diagrams scheme used by Thomas, Rinat, Afnan, and Blankleider (TRAB). Second, when the Taylor method is applied to certain problems in a time-dependent perturbation theory it leads to the over-counting of some diagrams. This paper first restates Taylor's method, in the process uncovering reasons why certain diagrams might be double-counted in the Taylor method. In then explores how far Taylor's method is equivalent to the simpler TRAB method. Finally, it examines precisely why the double-counting occurs in Taylor's method and derives corrections which compensate for this double-counting. copyright 1995 Academic Press, Inc
Kato expansion in quantum canonical perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Nikolaev, Andrey, E-mail: Andrey.Nikolaev@rdtex.ru [Institute of Computing for Physics and Technology, Protvino, Moscow Region, Russia and RDTeX LTD, Moscow (Russian Federation)
2016-06-15
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
Kato expansion in quantum canonical perturbation theory
International Nuclear Information System (INIS)
Nikolaev, Andrey
2016-01-01
This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson’s ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.
The tension as perturbative parameter in string theory
International Nuclear Information System (INIS)
Gamboa, J.
1990-01-01
We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
In previous work solitons of N = 2 supergravity were described as test particles in an external supergravity field. In the present paper we derive the effective interaction of two solitons by inserting a classical soliton configuration for the background into the Lagrangian and apply a slow-motion and large-distance approximation. We obtain the interaction potential to lowest order that incorporates the effect of the supercharge. The resulting classical system is quantized and, as a final step, an effective quantum field theory is formulated. (Author)
Divergence of perturbation theory in large scale structures
Pajer, Enrico; van der Woude, Drian
2018-05-01
We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.
Cumulants in perturbation expansions for non-equilibrium field theory
International Nuclear Information System (INIS)
Fauser, R.
1995-11-01
The formulation of perturbation expansions for a quantum field theory of strongly interacting systems in a general non-equilibrium state is discussed. Non-vanishing initial correlations are included in the formulation of the perturbation expansion in terms of cumulants. The cumulants are shown to be the suitable candidate for summing up the perturbation expansion. Also a linked-cluster theorem for the perturbation series with cumulants is presented. Finally a generating functional of the perturbation series with initial correlations is studied. We apply the methods to a simple model of a fermion-boson system. (orig.)
International Nuclear Information System (INIS)
Friedberg, R.
1977-01-01
It is pointed out that the study of solitons offers a new departure for the problem of handling bound states in relativistic quantum field theory which has hampered development of a simple conventional model of hadrons. The principle is illustrated by the case of a quantum mechanical particle moving in two dimensions under the centrally symmetric and quasi-harmonic potential. Restriction is made to nontopological solitons. These ideas are applied to a model of hadrons. 10 references
Perturbative Gravity and Gauge Theory Relations: A Review
Directory of Open Access Journals (Sweden)
Thomas Søndergaard
2012-01-01
Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.
Renormalization scheme-invariant perturbation theory
International Nuclear Information System (INIS)
Dhar, A.
1983-01-01
A complete solution to the problem of the renormalization scheme dependence of perturbative approximants to physical quantities is presented. An equation is derived which determines any physical quantity implicitly as a function of only scheme independent variables. (orig.)
Solitons in plasma and other dispersive media
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Wadati, Miki.
1977-03-01
A review is given to recent development of extensive studies of nonlinear waves with purpose of showing methods of systematic analysis of nonlinear phenomena has been now established on the basis of new concept ''soliton''. Firstly, characteristic properties of various kinds of solitons are discussed with illustration of typical nonlinear evolution equations. Brief discussions are also given to basic mechanisms which ensure the remarkable stability and individuality of solitons. The reductive perturbation theory is a key method to reduce a given nonlinear system to a soliton system. Introductory survey is presented for an example of ionic mode in plasmas, although the method can be applied to any dispersive medium. Central subject of the present review is the analytical methods of solving nonlinear evolution equations. The inverse method, the Beacklund transformation and the conservation laws are discussed to emphasize that very firm analytical basis is now available to disentangle the nonlinear problems. Finally, a notion of ''dressed'' solitons is introduced on basis of the higher order analysis of the reductive perturbation theory. In spite of the fact that success is restricted so far only for the one dimensional system, the achievement of soliton physics encourages us to face dawn of nonlinear physics with a confident expectation for forthcoming break through in the field. (auth.)
Wilson loops in very high order lattice perturbation theory
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Nakamura, Y.; Perlt, H.; Schiller, A.; Rakow, P.E.L.; Schierholz, G.; Regensburg Univ.
2009-10-01
We calculate Wilson loops of various sizes up to loop order n=20 for lattice sizes of L 4 (L=4,6,8,12) using the technique of Numerical Stochastic Perturbation Theory in quenched QCD. This allows to investigate the behaviour of the perturbative series at high orders. We discuss three models to estimate the perturbative series: a renormalon inspired fit, a heuristic fit based on an assumed power-law singularity and boosted perturbation theory. We have found differences in the behavior of the perturbative series for smaller and larger Wilson loops at moderate n. A factorial growth of the coefficients could not be confirmed up to n=20. From Monte Carlo measured plaquette data and our perturbative result we estimate a value of the gluon condensate left angle (α)/(π)GG right angle. (orig.)
International Nuclear Information System (INIS)
Kneipp, Marco A.C.
1999-10-01
Soliton time delays and the semiclassical limit for soliton S-matrices are calculated for non-simply laced Affine Toda Field Theories. The phase shift is written as a sum over bilinears on the soliton conserved charges. The results apply to any two solitons of any Affine Toda Field Theory. As a by-product, a general expression for the number of bound states and the values of the coupling in which the S-matrix can be diagonal are obtained. In order to arrive at these results, a vertex operator is constructed, in the principal gradation, for non-simply laced affine Lie algebras, extending the previous constructions for simply laced and twisted affine Lie algebras. (author)
Higher order perturbation theory - An example for discussion
International Nuclear Information System (INIS)
Lewins, J.D.; Parks, G.; Babb, A.L.
1986-01-01
Higher order perturbation theory is developed in the form of a Taylor series expansion to third order to calculate the thermal utilization of a nonuniform cell. The development takes advantage of the self-adjoint property of the diffusion operator to provide a simple development of this illustration of generalized perturbation theory employing scalar perturbation parameters. The results show how a designer might employ a second-order theory to quantify proposed design improvements, together with the limitations of second- and third-order theory. The chosen example has an exact optimization solution and thus provides a clear understanding of the role of perturbation theory at its various orders. Convergence and the computational advantages and disadvantages of the method are discussed
Coupling-parameter expansion in thermodynamic perturbation theory.
Ramana, A Sai Venkata; Menon, S V G
2013-02-01
An approach to the coupling-parameter expansion in the liquid state theory of simple fluids is presented by combining the ideas of thermodynamic perturbation theory and integral equation theories. This hybrid scheme avoids the problems of the latter in the two phase region. A method to compute the perturbation series to any arbitrary order is developed and applied to square well fluids. Apart from the Helmholtz free energy, the method also gives the radial distribution function and the direct correlation function of the perturbed system. The theory is applied for square well fluids of variable ranges and compared with simulation data. While the convergence of perturbation series and the overall performance of the theory is good, improvements are needed for potentials with shorter ranges. Possible directions for further developments in the coupling-parameter expansion are indicated.
Numerical stochastic perturbation theory in the Schroedinger functional
International Nuclear Information System (INIS)
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk; Dalla Brida, Mattia; Sint, Stefan; Deutsches Elektronen-Synchrotron
2013-11-01
The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Numerical stochastic perturbation theory in the Schroedinger functional
Energy Technology Data Exchange (ETDEWEB)
Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2013-11-15
The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.
Application of depletion perturbation theory to fuel cycle burnup analysis
International Nuclear Information System (INIS)
White, J.R.
1979-01-01
Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems
Cosmological Perturbation Theory Using the Schrödinger Equation
Szapudi, István; Kaiser, Nick
2003-01-01
We introduce the theory of nonlinear cosmological perturbations using the correspondence limit of the Schrödinger equation. The resulting formalism is equivalent to using the collisionless Boltzmann (or Vlasov) equations, which remain valid during the whole evolution, even after shell crossing. Other formulations of perturbation theory explicitly break down at shell crossing, e.g., Eulerean perturbation theory, which describes gravitational collapse in the fluid limit. This Letter lays the groundwork by introducing the new formalism, calculating the perturbation theory kernels that form the basis of all subsequent calculations. We also establish the connection with conventional perturbation theories, by showing that third-order tree-level results, such as bispectrum, skewness, cumulant correlators, and three-point function, are exactly reproduced in the appropriate expansion of our results. We explicitly show that cumulants up to N=5 predicted by Eulerian perturbation theory for the dark matter field δ are exactly recovered in the corresponding limit. A logarithmic mapping of the field naturally arises in the Schrödinger context, which means that tree-level perturbation theory translates into (possibly incomplete) loop corrections for the conventional perturbation theory. We show that the first loop correction for the variance is σ2=σ2L+(-1.14- n)σ4L for a field with spectral index n. This yields 1.86 and 0.86 for n=-3 and -2, respectively, to be compared with the exact loop order corrections 1.82 and 0.88. Thus, our tree-level theory recovers the dominant part of first-order loop corrections of the conventional theory, while including (partial) loop corrections to infinite order in terms of δ.
Perturbation theory and coupling constant analyticity in two-dimensional field theories
International Nuclear Information System (INIS)
Simon, B.
1973-01-01
Conjectural material and results over a year old are presented in the discussion of perturbation theory and coupling constant analyticity in two-dimensional field theories. General properties of perturbation series are discussed rather than questions of field theory. The question is interesting for two reasons: First, one would like to understand why perturbation theory is such a good guide (to show that perturbation theory determines the theory in some way). Secondly, one hopes to prove that some or all of the theories are nontrivial. (U.S.)
Application of generalized perturbation theory to flux disadvantage factor calculations
International Nuclear Information System (INIS)
Sallam, O.H.; Akimov, I.S.; Naguib, K.; Hamouda, I.
1979-01-01
The possibility of using the generalized perturbation theory to calculate the perturbation of the flux disadvantage factors of reactor cell, resulting from the variation of the cell parameters, is studied. For simplicity the one-group diffusion approximation is considered. All necessary equations are derived for variations both of the cell dimensions. Numerical results are presented in the paper
Non-perturbative Heavy Quark Effective Theory
DEFF Research Database (Denmark)
Della Morte, Michele; Heitger, Jochen; Simma, Hubert
2015-01-01
We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...
Energy momentum tensor in local causal perturbation theory
International Nuclear Information System (INIS)
Prange, D.
2001-01-01
We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)
Quasipotential in the fourth order of perturbation theory
International Nuclear Information System (INIS)
Bojkova, N.A.; Dvoeglazov, V.V.; Tyukhtyaev, Yu.N.; Faustov, R.N.
1992-01-01
The quasipotential in the fourth order of perturbation theory is calculated in the Coulomb gauge for the unequal mass particles. It could be used for the future calculations of energy spectra in two-body systems. 15 refs.; 1 fig
Perturbation theory instead of large scale shell model calculations
International Nuclear Information System (INIS)
Feldmeier, H.; Mankos, P.
1977-01-01
Results of large scale shell model calculations for (sd)-shell nuclei are compared with a perturbation theory provides an excellent approximation when the SU(3)-basis is used as a starting point. The results indicate that perturbation theory treatment in an SU(3)-basis including 2hω excitations should be preferable to a full diagonalization within the (sd)-shell. (orig.) [de
Perturbation theory and collision probability formalism. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Nasr, M [National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, Cairo (Egypt)
1996-03-01
Perturbation theory is commonly used in evaluating the activity effects, particularly those resulting from small and localized perturbation in multiplying media., e.g. in small sample reactivity measurements. The Boltzmann integral transport equation is generally used for evaluating the direct and adjoint fluxes in the heterogenous lattice cells to be used in the perturbation equations. When applying perturbation theory in this formalism, a term involving the perturbation effects on the special transfer kernel arises. This term is difficult to evaluate correctly, since it involves an integration all over the entire system. The main advantage of the perturbation theory which is the limitation of the integration procedure on the perturbation region is found to be of no practical use in such cases. In the present work, the perturbation equation in the collision probability formalism is analyzed. A mathematical treatment of the term in question is performed. A new mathematical expression for this term is derived. The new expression which can be estimated easily is derived.
On the meaning of perturbation expansions in quantum field theory
International Nuclear Information System (INIS)
Burdik, C.; Chyla, J.
1987-01-01
We reformulate perturbation expansions in renormalized quantum field theories in a way that allows straightforward handling of situations when in the conventional approach (i.e. in fixed renormalization scheme) these expansions are divergent. In our approach the results of perturbation calculations of physical quantities appear in the form of (under certain circumstances) convergent expansions in powers of a free parameter χ, characterising the procedure involved. This inherent ambiguity of perturbative calculations is conjectures to be an expression of the underlaying ambiguity in the separation of the full theory into its perturbative and nonperturbative parts. The close connection of our results with the Borel summation technique is demonstrated and their relation to conventional perturbation expansions in fixed renormalization scheme is clarified
Theory of cosmological perturbations with cuscuton
Energy Technology Data Exchange (ETDEWEB)
Boruah, Supranta S.; Kim, Hyung J.; Geshnizjani, Ghazal, E-mail: ssarmabo@uwaterloo.ca, E-mail: h268kim@uwaterloo.ca, E-mail: ggeshniz@uwaterloo.ca [Department of Applied Mathematics, University of Waterloo, 200 University Ave W., Waterloo, ON N2L 3G1 (Canada)
2017-07-01
This paper presents the first derivation of the quadratic action for curvature perturbations, ζ, within the framework of cuscuton gravity. We study the scalar cosmological perturbations sourced by a canonical single scalar field in the presence of cuscuton field. We identify ζ as comoving curvature with respect to the source field and we show that it retains its conservation characteristic on super horizon scales. The result provides an explicit proof that cuscuton modification of gravity around Friedmann-Lemaitre-Robertson-Walker (FLRW) metric is ghost free. We also investigate the potential development of other instabilities in cuscuton models. We find that in a large class of these models, there is no generic instability problem. However, depending on the details of slow-roll parameters, specific models may display gradient instabilities.
Perturbing the ground ring of 2D string theory
Barbón, José L F
1992-01-01
We use free field techniques in D=2 string theory to calculate the perturbation of the special state algebras when the cosmologi- cal constant is turned on. In particular, we find that the "ground cone" preserved by the ring structure is promoted to a three dimen- sional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) a three dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical inter- pretation is found. We also quote some facts concerning the Liouville/matrix model dictio- nary in this class of theories.
Growth rate, population entropy, and perturbation theory.
Demetrius, L.
1989-01-01
This paper is concerned with the connection between two classes of population variables: measures of population growth rate—the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity—population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce...
Convergent perturbation expansions for Euclidean quantum field theory
International Nuclear Information System (INIS)
Mack, G.; Pordt, A.
1984-09-01
Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi 4 -theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda 4 if 4k-3<=n<=4k. (orig.)
Wilson loops to 20th order numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-05-15
We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.
Perturbation theory for water with an associating reference fluid
Marshall, Bennett D.
2017-11-01
The theoretical description of the thermodynamics of water is challenged by the structural transition towards tetrahedral symmetry at ambient conditions. As perturbation theories typically assume a spherically symmetric reference fluid, they are incapable of accurately describing the liquid properties of water at ambient conditions. In this paper we address this problem by introducing the concept of an associated reference perturbation theory (APT). In APT we treat the reference fluid as an associating hard sphere fluid which transitions to tetrahedral symmetry in the fully hydrogen bonded limit. We calculate this transition in a theoretically self-consistent manner without appealing to molecular simulations. This associated reference provides the reference fluid for a second order Barker-Henderson perturbative treatment of the long-range attractions. We demonstrate that this approach gives a significantly improved description of water as compared to standard perturbation theories.
Evolution of curvature perturbation in generalized gravity theories
International Nuclear Information System (INIS)
Matsuda, Tomohiro
2009-01-01
Using the cosmological perturbation theory in terms of the δN formalism, we find the simple formulation of the evolution of the curvature perturbation in generalized gravity theories. Compared with the standard gravity theory, a crucial difference appears in the end-boundary of the inflationary stage, which is due to the non-ideal form of the energy-momentum tensor that depends explicitly on the curvature scalar. Recent study shows that ultraviolet-complete quantum theory of gravity (Horava-Lifshitz gravity) can be approximated by using a generalized gravity action. Our paper may give an important step in understanding the evolution of the curvature perturbation during inflation, where the energy-momentum tensor may not be given by the ideal form due to the corrections from the fundamental theory.
Perturbation theory and importance functions in integral transport formulations
International Nuclear Information System (INIS)
Greenspan, E.
1976-01-01
Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory
Mercier Franco, Luís Fernando; Castier, Marcelo; Economou, Ioannis G
2017-12-07
We show that the Zwanzig first-order perturbation theory can be obtained directly from a truncated Taylor series expansion of a two-body perturbation theory and that such truncation provides a more accurate prediction of thermodynamic properties than the full two-body perturbation theory. This unexpected result is explained by the quality of the resulting approximation for the fluid radial distribution function. We prove that the first-order and the two-body perturbation theories are based on different approximations for the fluid radial distribution function. To illustrate the calculations, the square-well fluid is adopted. We develop an analytical expression for the two-body perturbed Helmholtz free energy for the square-well fluid. The equation of state obtained using such an expression is compared to the equation of state obtained from the first-order approximation. The vapor-liquid coexistence curve and the supercritical compressibility factor of a square-well fluid are calculated using both equations of state and compared to Monte Carlo simulation data. Finally, we show that the approximation for the fluid radial distribution function given by the first-order perturbation theory provides closer values to the ones calculated via Monte Carlo simulations. This explains why such theory gives a better description of the fluid thermodynamic behavior.
Calculations in perturbative string field theory
International Nuclear Information System (INIS)
Thorn, C.B.
1987-01-01
The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules
International Nuclear Information System (INIS)
Rybakov, Yu.P.; Chakrabarti, S.
1981-01-01
Stability by the form of scalar charged solitons with account of electromagnetic field is studied by the Lyapunov method. Conditions of stability for the Sing model are investigated. The model is shown to admit the existence of pointless spherically-symmetric solitons in the absence of the electromagnetic field. Perturbation theory by a non-dimensional parameter is applied for evaluating the effect of electromagnetic field on the stability of pointless solitons [ru
Quark disconnected diagrams in chiral perturbation theory
Della Morte, Michele
2010-01-01
We show how quark-disconnected and quark-connected contributions to hadronic n-point functions can be written as independent correlators for which one can derive expressions in partially quenched chiral effective theory. As an example we apply the idea to the case of the hadronic vacuum polarisation. In particular, we consider the cases of the Nf = 2 theory without and with a partially quenched strange quark and also the Nf = 2 + 1 theory. In the latter two cases a parameter-free prediction for the disconnected contribution at NLO in the effective theory is given. Finally we show how twisted boundary conditions can then be used in lattice QCD to improve the q^2 resolution in the connected contributions even when flavour singlet operators are considered.
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
Analysis of observables in Chern-Simons perturbation theory
International Nuclear Information System (INIS)
Alvarez, M.; Labastida, J.M.F.
1993-01-01
Chern-Simons theory with gauge group SU(N) is analyzed from a perturbation theory point of view. Computations up to order g 6 of the vacuum expectation value of the unknot are carried out and it is shown that agreement with the exact result by Witten implies no quantum correction at two loops for the two-point function. In addition, it is shown from a perturbation theory point of view that the framing dependence of the vacuum expectation value of an arbitrary knot factorizes in the form predicted by Witten. (orig.)
Implementation of static generalized perturbation theory for LWR design applications
International Nuclear Information System (INIS)
Byron, R.F.; White, J.R.
1987-01-01
A generalized perturbation theory (GPT) formulation is developed for application to light water reactor (LWR) design. The extensions made to standard generalized perturbation theory are the treatment of thermal-hydraulic and fission product poisoning feedbacks, and criticality reset. This formulation has been implemented into a standard LWR design code. The method is verified by comparing direct calculations with GPT calculations. Data are presented showing that feedback effects need to be considered when using GPT for LWR problems. Some specific potential applications of this theory to the field of LWR design are discussed
Scheme (in?) dependence in perturbative Lagrangian quantum field theory
International Nuclear Information System (INIS)
Slavnov, D.A.
1995-01-01
A problem of renormalization - scheme ambiguity in perturbation quantum field theory is investigated. A procedure is described that makes it possible to express uniquely all observable quantities in terms of a set base observables. Renormalization group equations for the base observable are constructed. The case of mass theory is treated. 9 refs
Perturbation Theory of Massive Yang-Mills Fields
Veltman, M.
1968-08-01
Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.
Perturbation theory via Feynman diagrams in classical mechanics
Penco, R.; Mauro, D.
2006-01-01
In this paper we show how Feynman diagrams, which are used as a tool to implement perturbation theory in quantum field theory, can be very useful also in classical mechanics, provided we introduce also at the classical level concepts like path integrals and generating functionals.
The SU(3) beta function from numerical stochastic perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G.; Schiller, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-09-15
The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.
Perturbative algebraic quantum field theory at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Lindner, Falk
2013-08-15
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Perturbative algebraic quantum field theory at finite temperature
International Nuclear Information System (INIS)
Lindner, Falk
2013-08-01
We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.
Degenerate R-S perturbation theory
Hirschfelder, J. O.; Certain, P. R.
1973-01-01
A concise, systematic procedure is given for determining the Rayleigh-Schrodinger energies and wave functions of degenerate states to arbitrarily high orders even when the degeneracies of the various states are resolved in arbitrary orders. The procedure is expressed in terms of an iterative cycle in which the energy through the (2n+1)st order is expressed in terms of the partially determined wave function through the n-th order. Both a direct and an operator derivation are given. The two approaches are equivalent and can be transcribed into each other. The direct approach deals with the wave functions (without the use of formal operators) and has the advantage that it resembles the usual treatment of nondegenerate perturbations and maintains close contact with the basic physics. In the operator approach, the wave functions are expressed in terms of infinite order operators which are determined by the successive resolution of the space of the zeroth order functions.
Solitons in relativistic cosmologies
International Nuclear Information System (INIS)
Pullin, J.
1988-08-01
The application to the construction of solitonic cosmologies in General Relativity of the Inverse Scattering Technique of Belinskii an Zakharov is analyzed. Three improvements to the mentioned technique are proposed: the inclusion of higher order poles in the scattering matrix, a new renormalization technique for diagonal metrics and the extension of the technique to include backgrounds with material content by means of a Kaluza-Klein formalism. As a consequence of these improvements, three new aspects can be analyzed: a) The construction of anisotropic and inhomogeneous cosmological models which can mimic the formation of halos and voids, due to the presence of a material content. The new renormalization technique allows to construct an exact perturbation theory. b) The analysis of the dynamics of models with cosmological constant (inflationary models) and their perturbations. c) The study of interaction of gravitational solitonic waves on material backgrounds. Moreover, some additional works, connected with the existance of 'Crack of doom' type singularities in Kaluza-Klein cosmologies, stochastic perturbations in inflationary universes and inflationary phase transitions in rotating universes are described. (Author) [es
Perturbative Quantum Gravity from Gauge Theory
Carrasco, John Joseph
In this dissertation we present the graphical techniques recently developed in the construction of multi-loop scattering amplitudes using the method of generalized unitarity. We construct the three-loop and four-loop four-point amplitudes of N = 8 supergravity using these methods and the Kawaii, Lewellen and Tye tree-level relations which map tree-level gauge theory amplitudes to tree-level gravity theory amplitudes. We conclude by extending a tree-level duality between color and kinematics, generic to gauge theories, to a loop level conjecture, allowing the easy relation between loop-level gauge and gravity kinematics. We provide non-trivial evidence for this conjecture at three-loops in the particular case of maximal supersymmetry.
Conformal theories, grassmannians and soliton hierarchies. Pt. 1
International Nuclear Information System (INIS)
De Concini, C.; Fucito, F.; Tirozzi, B.
1989-01-01
We formulate conformal field theories on the infinite-dimensional grassmannian manifold. Besides recovering the known results for the central charge and correlation functions of the b-c system this formalism immediately lends itself to further generalization. The grassmannian manifold is in fact an ad hoc model for the geometrical interpretation of the irreducible representations of an infinite-dimensional Kac-Moody algebra which, in turn, admit an intertwining action of a Virasoro algebra. We further give a proof of bosonization from a purely grassmannian point of view. (orig.)
Non-perturbative heavy quark effective theory. Introduction and status
International Nuclear Information System (INIS)
Sommer, Rainer; Humboldt-Universitaet, Berlin
2015-01-01
We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.
Perturbation theory around the Wess-Zumino-Witten model
International Nuclear Information System (INIS)
Hasseln, H. v.
1991-05-01
We consider a perturbation of the Wess-Zumino-Witten model in 2D by a current-current interaction. The β-function is computed to third order in the coupling constant and a nontrivial fixedpoint is found. By non-abelian bosonization, this perturbed WZW-model is shown to have the same β-function (at least to order g 2 ) as the fermionic theory with a four-fermion interaction. (orig.) [de
Generalized perturbation theory (GPT) methods. A heuristic approach
International Nuclear Information System (INIS)
Gandini, A.
1987-01-01
Wigner first proposed a perturbation theory as early as 1945 to study fundamental quantities such as the reactivity worths of different materials. The first formulation, CPT, for conventional perturbation theory is based on universal quantum mechanics concepts. Since that early conception, significant contributions have been made to CPT, in particular, Soodak, who rendered a heuristic interpretation of the adjoint function, (referred to as the GPT method for generalized perturbation theory). The author illustrates the GPT methodology in a variety of linear and nonlinear domains encountered in nuclear reactor analysis. The author begins with the familiar linear neutron field and then generalizes the methodology to other linear and nonlinear fields, using heuristic arguments. The author believes that the inherent simplicity and elegance of the heuristic derivation, although intended here for reactor physics problems might be usefully adopted in collateral fields and includes such examples
String perturbation theory and effective Lagrangians
International Nuclear Information System (INIS)
Klebanov, I.
1987-09-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string
Perturbed period-doubling bifurcation. I. Theory
DEFF Research Database (Denmark)
Svensmark, Henrik; Samuelsen, Mogens Rugholm
1990-01-01
-defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....
The accuracy of QCD perturbation theory at high energies
Dalla Brida, Mattia; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer
2016-01-01
We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Quasi-degenerate perturbation theory using matrix product states
International Nuclear Information System (INIS)
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost
Quasi-degenerate perturbation theory using matrix product states
Energy Technology Data Exchange (ETDEWEB)
Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2016-01-21
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Quasi-degenerate perturbation theory using matrix product states
Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali
2016-01-01
In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.
Perturbing the ground ring of 2D string theory
International Nuclear Information System (INIS)
Barbon, J.L.F.
1992-01-01
In this paper, the authors use free field techniques in D = 2 string theory t calculate the perturbation of the special state algebras when the cosmological constant is turned on. In particular, the authors find that the 'ground cone' preserved by the ring structure is promoted to a three-dimensional hyperboloid as conjectured by Witten. On the other hand, the perturbed (1,1) current algebra of moduli deformations is computed completely, and no simple geometrical interpretation is found. The authors also quote some facts concerning the Liouville matrix a model dictionary in this class of theories
Lie transforms and their use in Hamiltonian perturbation theory
International Nuclear Information System (INIS)
Cary, J.R.
1978-06-01
A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here
Phase noise of dispersion-managed solitons
International Nuclear Information System (INIS)
Spiller, Elaine T.; Biondini, Gino
2009-01-01
We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber communications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear Schroedinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equations confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the increased robustness of DMS with respect to noise-induced phase jitter.
Perturbative string theory in BRST invariant formalism
International Nuclear Information System (INIS)
Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.
1988-01-01
In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)
An ambiguity in fermionic string perturbation theory
International Nuclear Information System (INIS)
Atick, J.J.; Rabin, J.M.
1988-01-01
Recent investigation by Verlinde and Verlinde has shown that the fermionic string loop amplitudes change by a total derivative term in the moduli space under a change of basis of the supermoduli. This ambiguity is addressed in the context of the heterotic string theory, and shown to be a consequence of an inherent ambiguity in defining integration over the variables of a Grassmann algebra - in this case the Grassmann-valued coordinates of the supermoduli space. A resolution of this ambiguity in genus-two within this formalism is also presented. (orig.)
Perturbation theory for quantized string fields
International Nuclear Information System (INIS)
Thorn, C.B.; Florida Univ., Gainesville
1987-01-01
We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)
Some global issues in string perturbation theory
International Nuclear Information System (INIS)
Atick, J.J.; Moore, G.; Sen, Ashoke
1988-01-01
Calculations of type II string vacuum amplitude using the picture changing prescription have been shown to lead, in general, to a positive cosmological constant. We show that there is a global obstruction to the choices of gauge slice for super-Teichmueller space that lead to such measures. We discuss the general restrictions on gauge slices appropriate for use in explicit fermionic string calculations. We also discuss the relation of the functional determinant and conformal field theory versions of the path integral measure, and show that, at arbitrary genus and in arbitrary backgrounds preserving tree level N=1 supersymmetry, the measure is an exact differential. We evaluate the boundary integrals of this total derivative at genus two in two ways for target space R 10 to show that the integrals are zero. Finally, we use the factorization hypothesis to show that in appropriate compactified spacetimes the boundary integrals continue to vanish. (orig.)
Non-perturbative aspects of string theory from elliptic curves
International Nuclear Information System (INIS)
Reuter, Jonas
2015-08-01
We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.
Perturbative Quantum Gravity and its Relation to Gauge Theory
Directory of Open Access Journals (Sweden)
Bern Zvi
2002-01-01
Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.
An improved thermodynamic perturbation theory for Mercedes-Benz water.
Urbic, T; Vlachy, V; Kalyuzhnyi, Yu V; Dill, K A
2007-11-07
We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.
Dynamical affine symmetry and covariant perturbation theory for gravity
International Nuclear Information System (INIS)
Pervushin, V.N.
1975-01-01
The covariant perturbation theory for gravity with the simplest reduction properties is formulated. The main points are as follows: fundamental fields are the normal coordinates of ten-dimensional space of the gravitational field, and the fields are separated into the classical (background) and quantum ones in the generating functional along geodesics of this space
The precession of mercury's perihelion via perturbation theory
International Nuclear Information System (INIS)
Rosales, M.H.; Castro-Quilantan, J.L.
1984-01-01
Perturbation theory is used to solve the problem of the precession of Mercury's perihelion, this phenomenon being a relativistic effect. The expansion parameter appears naturally when the orbit equation is written in an appropriate form and it completely justifies the use of the first order approximation. (author)
Renormalization and scaling behaviour of eikonal perturbation theories. [Eikonal approximation
Energy Technology Data Exchange (ETDEWEB)
Din, A M [Chalmers Tekniska Hoegskola, Goeteborg (Sweden). Institutionen foer Teoretisk Fysik; Nielsen, N K [Aarhus Univ. (Denmark)
1975-01-04
Some observations on the renormalization and scaling behaviour of the charged-particle propagator in scalar quantum electrodynamics, in the ordinary eikonal approximation as well as in the eikonal perturbation theory, are reported. The conclusions indicate that scaling behaviour is not realized in the simple sense.
Improved Fluid Perturbation Theory: Equation of state for Fluid Xenon
Li, Qiong; Liu, Hai-Feng; Zhang, Gong-Mu; Zhao, Yan-Hong; Tian, Ming-Feng; Song, Hai-Feng
2016-01-01
The traditional fluid perturbation theory is improved by taking electronic excitations and ionizations into account, in the framework of average ion spheres. It is applied to calculate the equation of state for fluid Xenon, which turns out in good agreement with the available shock data.
Perturbation theory for Markov chains via Wasserstein distance
Rudolf, Daniel; Schweizer, Nikolaus
2017-01-01
Perturbation theory for Markov chains addresses the question of how small differences in the transition probabilities of Markov chains are reflected in differences between their distributions. We prove powerful and flexible bounds on the distance of the nth step distributions of two Markov chains
Finite volume at two-loops in chiral perturbation theory
International Nuclear Information System (INIS)
Bijnens, Johan; Rössler, Thomas
2015-01-01
We calculate the finite volume corrections to meson masses and decay constants in two and three flavour Chiral Perturbation Theory to two-loop order. The analytical results are compared with the existing result for the pion mass in two-flavour ChPT and the partial results for the other quantities. We present numerical results for all quantities.
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Hydrodynamic optical soliton tunneling
Sprenger, P.; Hoefer, M. A.; El, G. A.
2018-03-01
A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.
Introduction to solitons and their applications in physics and biology
International Nuclear Information System (INIS)
Peyrard, M.
1995-01-01
The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs
Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation
Directory of Open Access Journals (Sweden)
Samuel Friot
2010-10-01
Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.
Singular perturbation theory for interacting fermions in two dimensions
International Nuclear Information System (INIS)
Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.
2004-11-01
We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)
Nonperturbative Quantum Physics from Low-Order Perturbation Theory.
Mera, Héctor; Pedersen, Thomas G; Nikolić, Branislav K
2015-10-02
The Stark effect in hydrogen and the cubic anharmonic oscillator furnish examples of quantum systems where the perturbation results in a certain ionization probability by tunneling processes. Accordingly, the perturbed ground-state energy is shifted and broadened, thus acquiring an imaginary part which is considered to be a paradigm of nonperturbative behavior. Here we demonstrate how the low order coefficients of a divergent perturbation series can be used to obtain excellent approximations to both real and imaginary parts of the perturbed ground state eigenenergy. The key is to use analytic continuation functions with a built-in singularity structure within the complex plane of the coupling constant, which is tailored by means of Bender-Wu dispersion relations. In the examples discussed the analytic continuation functions are Gauss hypergeometric functions, which take as input fourth order perturbation theory and return excellent approximations to the complex perturbed eigenvalue. These functions are Borel consistent and dramatically outperform widely used Padé and Borel-Padé approaches, even for rather large values of the coupling constant.
Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations
International Nuclear Information System (INIS)
Orlenko, E. V.; Evstafev, A. V.; Orlenko, F. E.
2015-01-01
A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated
Cosmological perturbation theory at three-loop order
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-09-15
We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.
Cosmological perturbation theory at three-loop order
International Nuclear Information System (INIS)
Blas, Diego; Garny, Mathias; Konstandin, Thomas
2013-09-01
We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.
Alien calculus and non perturbative effects in Quantum Field Theory
Bellon, Marc P.
2016-12-01
In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.
A general-model-space diagrammatic perturbation theory
International Nuclear Information System (INIS)
Hose, G.; Kaldor, U.
1980-01-01
A diagrammatic many-body perturbation theory applicable to arbitrary model spaces is presented. The necessity of having a complete model space (all possible occupancies of the partially-filled shells) is avoided. This requirement may be troublesome for systems with several well-spaced open shells, such as most atomic and molecular excited states, as a complete model space spans a very broad energy range and leaves out states within that range, leading to poor or no convergence of the perturbation series. The method presented here would be particularly useful for such states. The solution of a model problem (He 2 excited Σ + sub(g) states) is demonstrated. (Auth.)
Convergence and analytic properties of manifestly finite perturbation theory
International Nuclear Information System (INIS)
Mtingwa, S.K.
1979-01-01
The author discusses more carefully the ultraviolet convergence properties of Feynman diagrams in recently proposed manifestly finite perturbation expansions. Speccifically, he refines one of the constraints on the γ's-the noncanonical dimensions-such that, when satisfied, any general product-type interaction of massive scalar, fermion and vector fields yields finite perturbation expansions requiring no conventional renormalization procedure. Moreover, the analytic properties of the Feynman integrals in the theory are discussed and concluded with remarks on the necessity of a modified Kaellen-Lehmann representation
Variational configuration interaction methods and comparison with perturbation theory
International Nuclear Information System (INIS)
Pople, J.A.; Seeger, R.; Krishnan, R.
1977-01-01
A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory
S-matrices for perturbations of certain conformal field theories
International Nuclear Information System (INIS)
Freund, P.G.O.; Klassen, T.R.; Melzer, E.; Chicago Univ., IL
1989-01-01
We present a family of factorizable S-matrix theories in 1+1 dimensions with an arbitrary number N of particles of distinct masses, and find the conservation laws of these theories. An analysis of the conservation laws of the family of nonunitary CFTs with central charge c=c 2,2N+3 =-2N(6N+5)/(2N+3) perturbed by the φ (1,3) operator, leads us to conjecture the identification of these perturbed CFTs with the S-matrix theories we found. The case N=1 was treated by Cardy and Mussardo. We also present the S-matrix of an E 7 -related unitary model. (orig.)
Nucleon and delta masses in twisted mass chiral perturbation theory
International Nuclear Information System (INIS)
Walker-Loud, Andre; Wu, Jackson M.S.
2005-01-01
We calculate the masses of the nucleons and deltas in twisted mass heavy baryon chiral perturbation theory. We work to quadratic order in a power counting scheme in which we treat the lattice spacing, a, and the quark masses, m q , to be of the same order. We give expressions for the mass and the mass splitting of the nucleons and deltas both in and away from the isospin limit. We give an argument using the chiral Lagrangian treatment that, in the strong isospin limit, the nucleons remain degenerate and the delta multiplet breaks into two degenerate pairs to all orders in chiral perturbation theory. We show that the mass splitting between the degenerate pairs of the deltas first appears at quadratic order in the lattice spacing. We discuss the subtleties in the effective chiral theory that arise from the inclusion of isospin breaking
A finite element formulation for perturbation theory calculations
International Nuclear Information System (INIS)
Ozgener, B.; Kaluc, S.
2004-01-01
Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (K eff ) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two K eff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new K eff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and
Introduction to non-perturbative heavy quark effective theory
International Nuclear Information System (INIS)
Sommer, R.
2010-08-01
My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it
Introduction to non-perturbative heavy quark effective theory
Energy Technology Data Exchange (ETDEWEB)
Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-08-15
My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it
Probing non-perturbative effects in M-theory
International Nuclear Information System (INIS)
Hatsuda, Yasuyuki; Okuyama, Kazumi
2014-07-01
The AdS/CFT correspondence enables us to probe M-theory on various backgrounds from the corresponding dual gauge theories. Here we investigate in detail a three-dimensional U(N) N=4 super Yang-Mills theory coupled to one adjoint hypermultiplet and N f fundamental hypermultiplets, which is large N dual to M-theory on AdS 4 x S 7 /Z N f . Using the localization and the Fermi-gas formulation, we explore non-perturbative corrections to the partition function. As in the ABJM theory, we find that there exists a non-trivial pole cancellation mechanism, which guarantees the theory to be well-defined, between worldsheet instantons and membrane instantons for all rational (in particular, physical or integral) values of N f .
Modified potentials in many-body perturbation theory
International Nuclear Information System (INIS)
Silver, D.M.; Bartlett, R.J.
1976-01-01
Many-body perturbation-theory calculations of the pair-correlation energy within the regime of various finite expansions in two-center Slater-type basis sets are performed using a wide variety of modified potentials for the determination of unoccupied orbitals. To achieve meaningful convergence, it appears that the perturbation series must be carried through third order, using shifted denominators to include contributions from various higher-order diagrams. Moreover, certain denominator shifts are found necessary to ensure that a negative-definite resolvent accompanies the perturbation scheme when an arbitrary modified potential is employed. Through third order with denominator shifts, well-behaved modified potentials are found to give results that are equivalent, within 1 kcal/mole, to those obtained for pair-correlation energies with the standard self-consistent-field-V/sup N/ potential
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Inverse scattering and solitons in An-1 affine Toda field theories
International Nuclear Information System (INIS)
Beggs, E.J.; Johnson, P.R.
1997-01-01
We implement the inverse scattering method in the case of the A n affine Toda field theories, by studying the space-time evolution of simple poles in the underlying loop group. We find the known single-soliton solutions, as well as additional solutions with non-linear modes of oscillation around the standard solution, by studying the particularly simple case where the residue at the pole is a rank-one projection. We show that these solutions with extra modes have the same mass and topological charges as the standard solutions, so we do not shed any light on the missing topological charge problem in these models. From the monodromy matrix it is shown that these solutions have the same higher conserved charges as the standard solutions. We also show that the integrated energy-momentum density can be calculated from the central extension of the loop group. (orig.)
Aspects of solitons in noncommutative field theories. The modified Ward model
International Nuclear Information System (INIS)
Petersen, S.
2006-01-01
In this thesis several aspects of solutions to the equations of motions to noncommutative field theories are investigated in detail. The main focus of the analysis is on the integrable chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its noncommutative extension where the above mentioned new solutions arise. Of particular interest in this context are to us the question of stability of static solitons and the applicability of the so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic motion in the moduli space of static solutions. After some introductory remarks we proceed to present the Ward model together with its noncommutative extension and give a unified exposition of its known static solutions. This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions, has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing for powerful, well developed, techniques to generate soliton solutions. At the same time these feature interaction among them. Furthermore, the commutative counterpart of the Ward model has been investigated in great detail such that many results are available for comparison. Next, the question of stability for the present static solutions is considered. This stability is governed by the quadratic form of the fluctuations, which, upon concentrating on the case of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are stable within a certain subsector of possible configurations, namely the grassmannian ones, and become unstable upon embedding them into the full unitary sigma model. Finally, we remark on some possible generalization of these results. This subject is followed, after a brief review of time-dependent Ward model solutions, by the application of the adiabatic approach, as proposed by Manton, to the static solutions. (orig.)
Driven similarity renormalization group: Third-order multireference perturbation theory.
Li, Chenyang; Evangelista, Francesco A
2017-03-28
A third-order multireference perturbation theory based on the driven similarity renormalization group (DSRG-MRPT3) approach is presented. The DSRG-MRPT3 method has several appealing features: (a) it is intruder free, (b) it is size consistent, (c) it leads to a non-iterative algorithm with O(N 6 ) scaling, and (d) it includes reference relaxation effects. The DSRG-MRPT3 scheme is benchmarked on the potential energy curves of F 2 , H 2 O 2 , C 2 H 6 , and N 2 along the F-F, O-O, C-C, and N-N bond dissociation coordinates, respectively. The nonparallelism errors of DSRG-MRPT3 are consistent with those of complete active space third-order perturbation theory and multireference configuration interaction with singles and doubles and show significant improvements over those obtained from DSRG second-order multireference perturbation theory. Our efficient implementation of the DSRG-MRPT3 based on factorized electron repulsion integrals enables studies of medium-sized open-shell organic compounds. This point is demonstrated with computations of the singlet-triplet splitting (Δ ST =E T -E S ) of 9,10-anthracyne. At the DSRG-MRPT3 level of theory, our best estimate of the adiabatic Δ ST is 3.9 kcal mol -1 , a value that is within 0.1 kcal mol -1 from multireference coupled cluster results.
Generalized perturbation theory using two-dimensional, discrete ordinates transport theory
International Nuclear Information System (INIS)
Childs, R.L.
1979-01-01
Perturbation theory for changes in linear and bilinear functionals of the forward and adjoint fluxes in a critical reactor has been implemented using two-dimensional discrete ordinates transport theory. The computer program DOT IV was modified to calculate the generalized functions Λ and Λ*. Demonstration calculations were performed for changes in a reaction-rate ratio and a reactivity worth caused by system perturbations. The perturbation theory predictions agreed with direct calculations to within about 2%. A method has been developed for calculating higher lambda eigenvalues and eigenfunctions using techniques similar to those developed for generalized functions. Demonstration calculations have been performed to obtain these eigenfunctions
Generalized perturbation theory in DRAGON: application to CANDU cell calculations
International Nuclear Information System (INIS)
Courau, T.; Marleau, G.
2001-01-01
Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)
Dimensional perturbation theory for the two-electron atom
International Nuclear Information System (INIS)
Goodson, D.Z.
1987-01-01
Perturbation theory in δ = 1/D, where D is the dimensionality of space, is applied to the two-electron atom. In Chapter 1 an efficient procedure for calculating the coefficients of the perturbation series for the ground-state energy is developed using recursion relations between the moments of the coordinate operators. Results through tenth order are presented. The series is divergent, but Pade summation gives results comparable in accuracy to the best configuration-interaction calculations. The singularity structure of the Pade approximants confirms the hypothesis that the energy as a function of δ has an infinite sequence of poles on the negative real axis that approaches an essential singularity at δ = O. The essential singularity causes the divergence of the perturbation series. There are also two poles at δ = 1 that slow the asymptotic convergence of the low-order terms. In Chapter 2, various techniques are demonstrated for removing the effect of these poles, and accurate results are thereby obtained, even at very low order. In Chapter 3, the large D limit of the correlation energy (CE) is investigated. In the limit D → infinity it is only 35% smaller than at D = 3. It can be made to vanish in the limit by modifying the Hartree-Fock (HF) wavefunction. In Chapter 4, perturbation theory is applied to the Hooke's-law model of the atom. Prospects for treating more-complicated systems are briefly discussed
Perturbative algebraic quantum field theory an introduction for mathematicians
Rejzner, Kasia
2016-01-01
Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...
Regular perturbation theory for two-electron atoms
International Nuclear Information System (INIS)
Feranchuk, I.D.; Triguk, V.V.
2011-01-01
Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.
Algebraic perturbation theory for dense liquids with discrete potentials
Adib, Artur B.
2007-06-01
A simple theory for the leading-order correction g1(r) to the structure of a hard-sphere liquid with discrete (e.g., square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic and surprisingly accurate expression for g1(r) . The structure of a discrete “core-softened” model for liquids with anomalous thermodynamic properties is reproduced as an application.
Perturbation theory and nonperturbative effects: a happy marriage?
International Nuclear Information System (INIS)
Chyla, J.
1992-01-01
Perturbation expansions in renormalized quantum theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Z k (a,χ) of the couplant and the free parameter χ specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. A close connection of this procedure to the Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated. (author) 3 figs., 17 refs
Non-perturbative Green functions in quantum gauge theories
International Nuclear Information System (INIS)
Shabanov, S.V.
1991-01-01
Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs
Hyperon decay form factors in chiral perturbation theory
International Nuclear Information System (INIS)
Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.
2007-01-01
We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )
Calibrated geometries and non perturbative superpotentials in M-theory
International Nuclear Information System (INIS)
Hernandez, R.
1999-12-01
We consider non perturbative effects in M-theory compactifications on a seven-manifold of G 2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimensional Anti-de Sitter spacetime, of eleven dimensional supergravity with non vanishing expectation value of the four-form field strength. (author)
Modified perturbation theory for strongly correlated electron systems
International Nuclear Information System (INIS)
Takagi, Osamu; Saso, Tetsuro
1999-01-01
We propose a modified scheme for calculating the single-particle excitation spectrum of the impurity Anderson model. It is based on the second order perturbation theory, but modifies the self-energy so as to reproduce the correct atomic limit and to fulfill the Friedel sum rule. Therefore, it offers a simple scheme valid over wide range of excitation energy and parameters, and would be useful also for potential application to the lattice problems. (author)
Convergence of perturbation theory expansion for the Yukawa interaction
International Nuclear Information System (INIS)
Basuev, A.G.
1975-01-01
It is shown that the perturbation theory series in the translational-invariant case and upon removal of the boson propagator cut-off for euclidian Green's functions converges when gsup(2)/2 2 is the mass of the boson and Δ(o) is the fermion propagator in the zero of kappa-space. This problem was previously considered by other methods in respect of pseudo-euclidian functions (for the S-matrix) and of euclidian Green's functions. (author)
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Three-nucleon scattering by using chiral perturbation theory potential
International Nuclear Information System (INIS)
Kamata, Hiroyuki
2003-01-01
Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the A y puzzle. It seems, however, too hasty to conclude that A y puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)
Matsubara, Takahiko
2003-02-01
We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.
Foundations of quantum chromodynamics: Perturbative methods in gauge theories
International Nuclear Information System (INIS)
Muta, T.
1986-01-01
This volume develops the techniques of perturbative QCD in great detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge field theories. Examples and exercises are provided to amplify the discussions on important topics. Contents: Introduction; Elements of Quantum Chromodynamics; The Renormalization Group Method; Asymptotic Freedom; Operator Product Expansion Formalism; Applications; Renormalization Scheme Dependence; Factorization Theorem; Further Applications; Power Corrections; Infrared Problem. Power Correlations; Infrared Problem
An Introduction to Perturbative Methods in Gauge Theories
International Nuclear Information System (INIS)
T Muta
1998-01-01
This volume develops the techniques of perturbative QCD in great pedagogical detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge theories. Examples and exercises are provided to amplify the discussions on important topics. This is an ideal textbook on the subject of quantum chromodynamics and is essential for researchers and graduate students in high energy physics, nuclear physics and mathematical physics
Including the Δ(1232) resonance in baryon chiral perturbation theory
International Nuclear Information System (INIS)
Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.
2005-01-01
Baryon chiral perturbation theory with explicit Δ(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and Δ consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon σ term, and the pole of the Δ propagator
Efficient perturbation theory to improve the density matrix renormalization group
Tirrito, Emanuele; Ran, Shi-Ju; Ferris, Andrew J.; McCulloch, Ian P.; Lewenstein, Maciej
2017-02-01
The density matrix renormalization group (DMRG) is one of the most powerful numerical methods available for many-body systems. It has been applied to solve many physical problems, including the calculation of ground states and dynamical properties. In this work, we develop a perturbation theory of the DMRG (PT-DMRG) to greatly increase its accuracy in an extremely simple and efficient way. Using the canonical matrix product state (MPS) representation for the ground state of the considered system, a set of orthogonal basis functions {| ψi> } is introduced to describe the perturbations to the ground state obtained by the conventional DMRG. The Schmidt numbers of the MPS that are beyond the bond dimension cutoff are used to define these perturbation terms. The perturbed Hamiltonian is then defined as H˜i j= ; its ground state permits us to calculate physical observables with a considerably improved accuracy compared to the original DMRG results. We benchmark the second-order perturbation theory with the help of a one-dimensional Ising chain in a transverse field and the Heisenberg chain, where the precision of the DMRG is shown to be improved O (10 ) times. Furthermore, for moderate L the errors of the DMRG and PT-DMRG both scale linearly with L-1 (with L being the length of the chain). The linear relation between the dimension cutoff of the DMRG and that of the PT-DMRG at the same precision shows a considerable improvement in efficiency, especially for large dimension cutoffs. In the thermodynamic limit we show that the errors of the PT-DMRG scale with √{L-1}. Our work suggests an effective way to define the tangent space of the ground-state MPS, which may shed light on the properties beyond the ground state. This second-order PT-DMRG can be readily generalized to higher orders, as well as applied to models in higher dimensions.
Analytic perturbation theory in analyzing some QCD observables
International Nuclear Information System (INIS)
Shirkov, D.V.
2001-01-01
The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of α s 3 ) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π 2 term in the π 2 coefficient is not adequate at s ≤ 2 GeV 2 . In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s (2) values. Our physical conclusion is that the α bar s (M Z 2 ) value averaged over the f = 5 data s (M Z 2 )> APT; f= 5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)
Superconvergent perturbation theory for euclidean scalar field theories
International Nuclear Information System (INIS)
Ushveridze, A.G.
1984-01-01
It is shown that the bare (unrenormalized) correlation functions in the euclidean scalar field theories can be expanded in a series whose terms, being computable in a relatively simple way, are free from ultraviolet and infrared divergencies. This series is convergent (divergent) for finite (infinite) values of the correlation functions. (orig.)
Sensitivity calculations of integral parameters by a generalyzed perturbation theory
International Nuclear Information System (INIS)
Santo, A.C.F. de.
1981-12-01
In this work, we first revise some concepts, concerning the neutron transport in nuclear systems. We derive the balance and importance equation. Then we discuss the neutron importance in subcritical, critical and supercritical systems. The adjoint flux is estabilished as the neutron importance for the fission process. The conventional perturbation theory is later presented. We developed a sistematic perturbative formulation in the first order variation in the distribution functions calculate the reactivity due to a system perturbation. We present in detail the flux difference and generalized functions methos. The above formulation is then extended for altered systems. We consider integral parameters of the type ratio of bilinear functionals (for which the reactivity is a particular case). We define sensitivity coeficients, for any integral parameter, corresponding to a especific system alterations. Possible aplication of the method are also discussed. In the last part of this work, we apply the perturbative formulation to the doppler reacitivity sensibility calculation, utilizing the generalized functions method. We describe in detail the compiler program written for this and some other possible aplications. (Author) [pt
A simple extrapolation of thermodynamic perturbation theory to infinite order
International Nuclear Information System (INIS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2015-01-01
Recent analyses of the third and fourth order perturbation contributions to the equations of state for square well spheres and Lennard-Jones chains show trends that persist across orders and molecular models. In particular, the ratio between orders (e.g., A 3 /A 2 , where A i is the ith order perturbation contribution) exhibits a peak when plotted with respect to density. The trend resembles a Gaussian curve with the peak near the critical density. This observation can form the basis for a simple recursion and extrapolation from the highest available order to infinite order. The resulting extrapolation is analytic and therefore cannot fully characterize the critical region, but it remarkably improves accuracy, especially for the binodal curve. Whereas a second order theory is typically accurate for the binodal at temperatures within 90% of the critical temperature, the extrapolated result is accurate to within 99% of the critical temperature. In addition to square well spheres and Lennard-Jones chains, we demonstrate how the method can be applied semi-empirically to the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT)
Communication: Random phase approximation renormalized many-body perturbation theory
International Nuclear Information System (INIS)
Bates, Jefferson E.; Furche, Filipp
2013-01-01
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations
Effect of scalar field mass on gravitating charged scalar solitons and black holes in a cavity
Energy Technology Data Exchange (ETDEWEB)
Ponglertsakul, Supakchai, E-mail: supakchai.p@gmail.com; Winstanley, Elizabeth, E-mail: E.Winstanley@sheffield.ac.uk
2017-01-10
We study soliton and black hole solutions of Einstein charged scalar field theory in cavity. We examine the effect of introducing a scalar field mass on static, spherically symmetric solutions of the field equations. We focus particularly on the spaces of soliton and black hole solutions, as well as studying their stability under linear, spherically symmetric perturbations of the metric, electromagnetic field, and scalar field.
Fermi interaction. Conservation of vector current and modified perturbation theory
International Nuclear Information System (INIS)
Rochev, V.E.
1983-01-01
The Fermi interaction (anti psi ysub(n) psi)sup(2) is investigated with the method of auxilary field. The analogues of the Ward-Takahashi electrodynamical identities and the gauge transformations of Green functions, that are the consequence of the conservation of vector current, have been obtained. The gauge function for the spinor propagator is the exponential superpropagator. The arguments are given in favour of the existence of a modified perturbation theory, which is finite in every order and non-analytical over its coupling constant, for the four-fermion interaction. The non-analytical part is defined unambiguously, and the analytical part contains a set of finite dimensionless constants to define which non-perturbative information is needed. The simplest model (the chain approximation) for the non-stable vector bound state is considered
A non-perturbative analysis in finite volume gauge theory
International Nuclear Information System (INIS)
Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook
1988-01-01
We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)
Interacting fermions in two dimensions: Beyond the perturbation theory
International Nuclear Information System (INIS)
Gangadharaiah, S.; Maslov, D.L.; Chubukov, A.V.; Glazman, L.I.
2005-05-01
We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T 2 -part of the specific heat. (author)
Renewal theory for perturbed random walks and similar processes
Iksanov, Alexander
2016-01-01
This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters fou...
Adiabaticity and gravity theory independent conservation laws for cosmological perturbations
Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao
2016-04-01
We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.
International Nuclear Information System (INIS)
Rajasekaran, G.
1978-01-01
Recent developments in the theory of solitons and related objects in the fields of high energy physics and nuclear physics are reviewed. The aim is to concentrate on the physical aspects and explain why these objects have awakened the interest of physicists. The physics of solitons is discussed with the help of a simple one-dimensional soliton. Then the physically more interesting monopole-soliton is considered and its connection with the original Dirac monopole is pointed out. The ''revolutionary'' possibility of making fermions as composites of bosons is indicated. Both the one-dimensional solitons and the monopole-soliton are examples of ''topological solitons'' and the role of topology in the physics of solitons is explained. The possible importance of topological quantum numbers in providing a fundamental understanding of the basic conservation laws of physics is pointed out. Two examples of non-topological solitons namely, the nucleon as a bag of almost-massless quarks and the abnormal nucleons as a bag of almost massless nucleons is discussed. (auth.)
Solving the open bosonic string in perturbation theory
International Nuclear Information System (INIS)
Samuel, S.
1990-01-01
The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)
A non-perturbative study of massive gauge theories
DEFF Research Database (Denmark)
Della Morte, Michele; Hernandez, Pilar
2013-01-01
and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....
S-duality invariant perturbation theory improved by holography
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Abhishek [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Honda, Masazumi [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 7610001 (Israel); Thakur, Somyadip [Tata Institute of Fundamental Research,Mumbai 400005 (India)
2017-04-26
We study anomalous dimensions of unprotected low twist operators in the four-dimensional SU (N)N=4 supersymmetric Yang-Mills theory. We construct a class of interpolating functions to approximate the dimensions of the leading twist operators for arbitrary gauge coupling τ. The interpolating functions are consistent with previous results on the perturbation theory, holographic computation and full S-duality. We use our interpolating functions to test a recent conjecture by the N=4 superconformal bootstrap that upper bounds on the dimensions are saturated at one of the duality-invariant points τ=i and τ=e{sup iπ/3}. It turns out that our interpolating functions have maximum at τ=e{sup iπ/3}, which are close to the conjectural values by the conformal bootstrap. In terms of the interpolating functions, we draw the image of conformal manifold in the space of the dimensions. We find that the image is almost a line despite the conformal manifold is two-dimensional. We also construct interpolating functions for the subleading twist operator and study level crossing phenomenon between the leading and subleading twist operators. Finally we study the dimension of the Konishi operator in the planar limit. We find that our interpolating functions match with numerical result obtained by Thermodynamic Bethe Ansatz very well. It turns out that analytic properties of the interpolating functions reflect an expectation on a radius of convergence of the perturbation theory.
Semiclassical perturbation theory for diffraction in heavy atom surface scattering.
Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli
2012-05-28
The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.
Soliton motion in a parametrically ac-driven damped Toda lattice
International Nuclear Information System (INIS)
Rasmussen, K.O.; Malomed, B.A.; Bishop, A.R.; Groenbech-Jensen, N.
1998-01-01
We demonstrate that a staggered parametric ac driving term can support stable progressive motion of a soliton in a Toda lattice with friction, while an unstaggered driving force cannot. A physical context of the model is that of a chain of anharmonically coupled particles adsorbed on a solid surface of a finite size. The ac driving force is generated by a standing acoustic wave excited on the surface. Simulations demonstrate that the state left behind the moving soliton, with the particles shifted from their equilibrium positions, gradually relaxes back to the equilibrium state that existed before the passage of the soliton. The perturbation theory predicts that the ac-driven soliton exists if the amplitude of the drive exceeds a certain threshold. The analytical prediction for the threshold is in reasonable agreement with that found numerically. Collisions between two counterpropagating solitons is also simulated, demonstrating that the collisions are, effectively, fully elastic. copyright 1998 The American Physical Society
In-core fuel management via perturbation theory
International Nuclear Information System (INIS)
Mingle, J.O.
1975-01-01
A two-step procedure is developed for the optimization of in-core nuclear fuel management using perturbation theory to predict the effects of various core configurations. The first procedure is a cycle cost minimization using linear programming with a zoned core and discrete burnup groups. The second program utilizes an individual fuel assembly shuffling sequence to minimize the maldistribution of power generation. This latter quantity is represented by a figure of merit or by an assembly power peaking factor. A pressurized water reactor example calculation is utilized. 24 references
Applications of perturbation theory to the study of CANDU reactors
International Nuclear Information System (INIS)
Rozon, D.; Beaudet, M.
1990-01-01
The use of Generalized Perturbation Theory (GPT) in the computer code OPTEX-4 is described. This code can be used to simultaneously optimize the fuel management and the control absorber distribution in a CANDU reactor at equilibrium refueling. The gradient of the characteristic functionals are obtained using two independent approaches, requiring the solution of a fixed source eigenvalue problem (direct for the explicit approach. adjoint for the implicit approach). These solutions, as well as the solution of the diffusion problem is obtained in 3D by calling the diffusion module TRIVAC-2. The equivalence of the two approaches is demonstrated [fr
Is there a signal of quark confinement from perturbation theory
International Nuclear Information System (INIS)
Poggio, E.C.
1977-01-01
The question of whether the presence of the large infrared logarithms affects in any sense the determination of physical amplitudes involving quarks and gluons is considered in a report of results from previous investigations. Global impressions of their nature and of what they mean as far as the confinement issue is concerned. A comparison is made with analogous quantum electrodynamic processes, where the corresponding infrared aspects are completely understood. Quark form factor behavior, quark-antiquark scattering, the weak and the strong KLN theorems, and perturbation theory and confinement are treated. 26 references
Nonlinear PI control of chaotic systems using singular perturbation theory
International Nuclear Information System (INIS)
Wang Jiang; Wang Jing; Li Huiyan
2005-01-01
In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit
Ferromagnetism in the Hubbard model: a modified perturbation theory
International Nuclear Information System (INIS)
Gangadhar Reddy, G.; Ramakanth, A.; Nolting, W.
2005-01-01
We study the possibility of ferromagnetism in the Hubbard model using the modified perturbation theory. In this approach an Ansatz is made for the self-energy of the electron which contains the second order contribution developed around the Hartree-Fock solution and two parameters. The parameters are fixed by using a moment method. This self energy satisfies several known exact limiting cases. Using this self energy, the Curie temperature T c as a function of band filling n is investigated. It is found that T c falls off abruptly as n approaches half filling. The results are in qualitative agreement with earlier calculations using other approximation schemes. (author)
Wavefunction of the Universe and Chern-Simons perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soo Chopin [Department of Physics, National Cheng Kung University Tainan 70101, Taiwan (China)
2002-03-21
The Chern-Simons exact solution of four-dimensional quantum gravity with nonvanishing cosmological constant is presented in metric variables as the partition function of Chern-Simons theory with nontrivial source. The perturbative expansion is given, and the wavefunction is computed to the lowest order of approximation for the Cauchy surface which is topologically a 3-sphere. The state is well-defined even at degenerate and vanishing values of the dreibein. Reality conditions for the Ashtekar variables are also taken into account, and remarkable features of the Chern-Simons state and their relevance to cosmology are pointed out.
Fuel management optimization based on generalized perturbation theory
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1986-01-01
A general methodology for optimization of assembly shuffling and burnable poison (BP) loadings for LWR reload design has been developed. The uniqueness of this approach lies in the coupling of Generalized Perturbation Theory (GPT) methods and standard Integer Programming (IP) techniques. An IP algorithm can simulate the discrete nature of the fuel shuffling and BP loading problems, and the use of GPT sensitivity data provides an efficient means for modeling the behavior of the important core performance parameters. The method is extremely flexible since the choice of objective function and the number and mix of constraints depend only on the ability of GPT to determine the appropriate sensitivity functions
Zeeman effect: new outlook on old perturbation theory
International Nuclear Information System (INIS)
Turbiner, A.V.
1980-01-01
The problem of hydrogen atom placed in constant external magnetic field is studied. The properties of ordinary perturbation theory (in powers of the field) in the framework of a new approach proposed earlier are investigated. The ground state are considered in detailed while the excited states are discussed only in brief. It is shown that the ''wave function corrections'' with in this approach are simpler than within ordinary one and contain a finite number of harmonics with polynomial coefficients. Some coefficients of these polynomials are found explicitly
An integral for second-order multiple scattering perturbation theory
International Nuclear Information System (INIS)
Hoffman, G.G.
1997-01-01
This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs
Adler function for light quarks in analytic perturbation theory
International Nuclear Information System (INIS)
Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.
2001-01-01
The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale
Bound-state perturbation theory and annihilation effects in positronium
International Nuclear Information System (INIS)
Abbasabadi, A.; Repko, W.W.
1987-01-01
Working in Coulomb gauge and using the lowest-order equation proposed by Barbieri and Remiddi it is calculated, in the one-loop order of perturbation theory, the decay rate and the energy shift of the ground states of parapositronium and orthopositronium, respectively. Our result for the decay rate agrees with that of Harris and Brown. For contribution of one-photon-annihilation channel to the energy shift, it is confirmed the result of Karplus and Klein. These results are derived completely within the bound-state formalism and avoid the necessity of performing on-mass-shell wave function and vertex renormalization subtractions
Nf=2 Lattice QCD and Chiral Perturbation Theory
International Nuclear Information System (INIS)
Scorzato, L.; Farchioni, F.; Hofmann, P.; Jansen, K.; Montvay, I.; Muenster, G.; Papinutto, M.; Scholz, E.E.; Shindler, A.; Ukita, N.; Urbach, C.; Wenger, U.; Wetzorke, I.
2006-01-01
By employing a twisted mass term, we compare recent results from lattice calculations of N f =2 dynamical Wilson fermions with Wilson Chiral Perturbation Theory (WChPT). The final goal is to determine some com- binations of Gasser-Leutwyler Low Energy Constants (LECs). A wide set of data with different lattice spacings (a ∼ 0.2 - 0.12 fm), different gauge actions (Wilson plaquette, DBW2) and different quark masses (down to the lowest pion mass allowed by lattice artifacts and including negative quark masses) provide a strong check of the applicability of WChPT in this regime and the scaling behaviours in the continuum limit
Gluon cascades and amplitudes in light-front perturbation theory
International Nuclear Information System (INIS)
Cruz-Santiago, C.A.; Staśto, A.M.
2013-01-01
We construct the gluon wave functions, fragmentation functions and scattering amplitudes within the light-front perturbation theory. Recursion relations on the light-front are constructed for the wave functions and fragmentation functions, which in the latter case are the light-front analogs of the Berends–Giele recursion relations. Using general relations between wave functions and scattering amplitudes it is demonstrated how to obtain the maximally-helicity violating amplitudes, and explicit verification of the results is based on simple examples.
Energy Technology Data Exchange (ETDEWEB)
Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)
1975-01-01
With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.
The soliton solution of the PHI24 field theory in the Hartree approximation
International Nuclear Information System (INIS)
Altenbokum, M.
1984-01-01
In this thesis in a simple model which possesses at the classical level a soliton solution a quantum-mechanical soliton sector shall be constructed in a Hartree-Fock approximation without application of semiclassical procedures. To this belongs beside the determination of the excitation spectrum of the applied Hamiltonian the knowledge of the corresponding infinitely-much eigenfunctions. The existing translational invariance of a classical soliton solution which implies the existence of a degenerated ground state by presence of a massless excitation is removed by quantum fluctuations. By removing of this degeneration conventional approximation procedures for this sector of the Hilbert space become for the first time immediately possible. (HSI) [de
Solitons in quadratic nonlinear photonic crystals
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....
Exponential time-dependent perturbation theory in rotationally inelastic scattering
International Nuclear Information System (INIS)
Cross, R.J.
1983-01-01
An exponential form of time-dependent perturbation theory (the Magnus approximation) is developed for rotationally inelastic scattering. A phase-shift matrix is calculated as an integral in time over the anisotropic part of the potential. The trajectory used for this integral is specified by the diagonal part of the potential matrix and the arithmetic average of the initial and final velocities and the average orbital angular momentum. The exponential of the phase-shift matrix gives the scattering matrix and the various cross sections. A special representation is used where the orbital angular momentum is either treated classically or may be frozen out to yield the orbital sudden approximation. Calculations on Ar+N 2 and Ar+TIF show that the theory generally gives very good agreement with accurate calculations, even where the orbital sudden approximation (coupled-states) results are seriously in error
Basics of thermal field theory a tutorial on perturbative computations
Laine, Mikko
2016-01-01
This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Stability of the static solitons in a pure spinor theory with fractional power nonlinearities
International Nuclear Information System (INIS)
Akdeniz, K.G.; Tezgor, G.; Barut, A.O.; Kalayci, J.; Okan, S.E.
1988-08-01
Soliton solutions are obtained in a pure fermionic model with fractional power nonlinear self-interactions. The stability properties of the minimum solutions have also been investigated within the framework of the Shatah-Strauss formalism. (author). 10 refs
Technical fine-tuning problem in renormalized perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.
Enforcing conservation laws in nonequilibrium cluster perturbation theory
Gramsch, Christian; Potthoff, Michael
2017-05-01
Using the recently introduced time-local formulation of the nonequilibrium cluster perturbation theory (CPT), we construct a generalization of the approach such that macroscopic conservation laws are respected. This is achieved by exploiting the freedom for the choice of the starting point of the all-order perturbation theory in the intercluster hopping. The proposed conserving CPT is a self-consistent propagation scheme which respects the conservation of energy, particle number, and spin, which treats short-range correlations exactly up to the linear scale of the cluster, and which represents a mean-field-like approach on length scales beyond the cluster size. Using Green's functions, conservation laws are formulated as local constraints on the local spin-dependent particle and the doublon density. We consider them as conditional equations to self-consistently fix the time-dependent intracluster one-particle parameters. Thanks to the intrinsic causality of the CPT, this can be set up as a step-by-step time propagation scheme with a computational effort scaling linearly with the maximum propagation time and exponentially in the cluster size. As a proof of concept, we consider the dynamics of the two-dimensional, particle-hole-symmetric Hubbard model following a weak interaction quench by simply employing two-site clusters only. Conservation laws are satisfied by construction. We demonstrate that enforcing them has strong impact on the dynamics. While the doublon density is strongly oscillating within plain CPT, a monotonic relaxation is observed within the conserving CPT.
Technical fine-tuning problem in renormalized perturbation theory
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes
Heavy-light semileptonic decays in staggered chiral perturbation theory
Aubin, C.; Bernard, C.
2007-07-01
We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.
Theory of adiabatic pressure-gradient soliton compression in hollow-core photonic bandgap fibers
DEFF Research Database (Denmark)
Lægsgaard, Jesper; Roberts, John
2009-01-01
Adiabatic soliton compression by means of a pressure gradient in a hollow-core photonic bandgap fiber is investigated theoretically and numerically. It is shown that the dureation of the compressed pulse is limited mainly by the interplay between third-order dispersion and the Raman-induced soliton...... frequency shift. Analytical expressions for this limit are derived and compared with results of detailed numerical simulations for a realistic fiber structure....
International Nuclear Information System (INIS)
Swieca, J.A.
1976-01-01
Some aspects of two recent developments in quantum field theory are discussed. First, related with 'extended particles' such as soliton, kink and the 't Hooft monopole. Second, with confinement of particles which are realized in the Schwinger model [pt
Bidirectional soliton spectral tunneling effects in the regime of optical event horizon
DEFF Research Database (Denmark)
Gu, Jie; Guo, Hairun; Wang, Shaofei
2015-01-01
We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects.......We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....
Many-body perturbation theory for ab initio nuclear structure
International Nuclear Information System (INIS)
Tichai, Alexander
2017-01-01
The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation
Topological string theory, modularity and non-perturbative physics
Energy Technology Data Exchange (ETDEWEB)
Rauch, Marco
2011-09-15
In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in
Topological string theory, modularity and non-perturbative physics
International Nuclear Information System (INIS)
Rauch, Marco
2011-09-01
In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P 2 and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in turn is
Helmholtz bright and boundary solitons
Energy Technology Data Exchange (ETDEWEB)
Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2007-02-16
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts.
Helmholtz bright and boundary solitons
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2007-01-01
We report, for the first time, exact analytical boundary solitons of a generalized cubic-quintic nonlinear Helmholtz (NLH) equation. These solutions have a linked-plateau topology that is distinct from conventional dark soliton solutions; their amplitude and intensity distributions are spatially delocalized and connect regions of finite and zero wave-field disturbances (suggesting also the classification as 'edge solitons'). Extensive numerical simulations compare the stability properties of recently derived Helmholtz bright solitons, for this type of polynomial nonlinearity, to those of the new boundary solitons. The latter are found to possess a remarkable stability characteristic, exhibiting robustness against perturbations that would otherwise lead to the destabilizing of their bright-soliton counterparts
Existence of localizing solutions in plasticity via the geometric singular perturbation theory
Lee, Min-Gi; Tzavaras, Athanasios
2017-01-01
system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré
International Nuclear Information System (INIS)
Gopakumar, R.
2002-01-01
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect
Energy Technology Data Exchange (ETDEWEB)
Gopakumar, R [Harish-Chandra Research Institute, Jhusi, Allahabad (India)
2002-05-15
Though noncommutative field theories have been explored for several years, a resurgence of interest in it was sparked off after it was realised that they arise very naturally as limits of string theory in certain background fields. It became more plausible (at least to string theorists) that these nonlocal deformations of usual quantum field theories are consistent theories in themselves. This led to a detailed exploration of many of their classical and quantum properties. I will elaborate further on the string theory context in the next section. One of the consequences of this exploration was the discovery of novel classical solutions in noncommutative field theories. Since then much work has been done in exploring many of their novel properties. My lectures focussed on some specific aspects of these noncommutative solitons. They primarily reflect the topics that I have worked on and are not intended to be a survey of the large amount of work on this topic. We have tried to give a flavour of the physics that can be captured by the relatively elementary classical solutions of noncommutative field theories. We have seen in different contexts how these solitons are really simple manifestations of D-branes, possessing many of their important features. Though they have been primarily studied in the context of tachyon condensation, we saw that they can also shed some light on the resolution of singularities in spacetime by D-brane probes. In addition to other applications in string theory it is important at this stage to explore their presence in other systems with a strong magnetic field like the quantum hall effect.
One-Group Perturbation Theory Applied to Measurements with Void
International Nuclear Information System (INIS)
Persson, Rolf
1966-09-01
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m 2 and 0.267 ± 0.005/m 2 resp. From single-rod experiments differences between diffusion coefficients are determined to δD r /D = 0.083 ± 0.004 and δD z /D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D z /D r ) air = 1.034 ± 0.020
One-Group Perturbation Theory Applied to Measurements with Void
Energy Technology Data Exchange (ETDEWEB)
Persson, Rolf
1966-09-15
Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 {+-} 0.015/m{sup 2} and 0.267 {+-} 0.005/m{sup 2} resp. From single-rod experiments differences between diffusion coefficients are determined to {delta}D{sub r}/D = 0.083 {+-} 0.004 and {delta}D{sub z}/D = 0.120 {+-} 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (D{sub z}/D{sub r}){sub air} = 1.034 {+-} 0.020.
High orders of perturbation theory. Are renormalons significant?
International Nuclear Information System (INIS)
Suslov, I.M.
1999-01-01
According to Lipatov [Sov. Phys. JETP 45, 216 (1977)], the high orders of perturbation theory are determined by saddle-point configurations, i.e., instantons, which correspond to functional integrals. According to another opinion, the contributions of individual large diagrams, i.e., renormalons, which, according to t'Hooft [The Whys of Subnuclear Physics: Proceedings of the 1977 International School of Subnuclear Physics (Erice, Trapani, Sicily, 1977), A. Zichichi (Ed.), Plenum Press, New York (1979)], are not contained in the Lipatov contribution, are also significant. The history of the conception of renormalons is presented, and the arguments in favor of and against their existence are discussed. The analytic properties of the Borel transforms of functional integrals, Green's functions, vertex parts, and scaling functions are investigated in the case of φ 4 theory. Their analyticity in a complex plane with a cut from the first instanton singularity to infinity (the Le Guillou-Zinn-Justin hypothesis [Phys. Rev. Lett. 39, 95 (1977); Phys. Rev. B 21, 3976 (1980)] is proved. It rules out the existence of the renormalon singularities pointed out by t'Hooft and demonstrates the nonconstructiveness of the conception of renormalons as a whole. The results can be interpreted as an indication of the internal consistency of φ 4 theory
SIMP model at NNLO in chiral perturbation theory
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2015-10-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.
The role of resonances in chiral perturbation theory
International Nuclear Information System (INIS)
Ecker, G.; Rafael, E. de
1988-09-01
The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)
Universality of fast quenches from the conformal perturbation theory
Dymarsky, Anatoly; Smolkin, Michael
2018-01-01
We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.
On the non-linear scale of cosmological perturbation theory
Blas, Diego; Konstandin, Thomas
2013-01-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Variational cluster perturbation theory for Bose-Hubbard models
International Nuclear Information System (INIS)
Koller, W; Dupuis, N
2006-01-01
We discuss the application of the variational cluster perturbation theory (VCPT) to the Mott-insulator-to-superfluid transition in the Bose-Hubbard model. We show how the VCPT can be formulated in such a way that it gives a translation invariant excitation spectrum-free of spurious gaps-despite the fact that it formally breaks translation invariance. The phase diagram and the single-particle Green function in the insulating phase are obtained for one-dimensional systems. When the chemical potential of the cluster is taken as a variational parameter, the VCPT reproduces the dimensional dependence of the phase diagram even for one-site clusters. We find a good quantitative agreement with the results of the density-matrix renormalization group when the number of sites in the cluster becomes of order 10. The extension of the method to the superfluid phase is discussed
Monte Carlo perturbation theory in neutron transport calculations
International Nuclear Information System (INIS)
Hall, M.C.G.
1980-01-01
The need to obtain sensitivities in complicated geometrical configurations has resulted in the development of Monte Carlo sensitivity estimation. A new method has been developed to calculate energy-dependent sensitivities of any number of responses in a single Monte Carlo calculation with a very small time penalty. This estimation typically increases the tracking time per source particle by about 30%. The method of estimation is explained. Sensitivities obtained are compared with those calculated by discrete ordinates methods. Further theoretical developments, such as second-order perturbation theory and application to k/sub eff/ calculations, are discussed. The application of the method to uncertainty analysis and to the analysis of benchmark experiments is illustrated. 5 figures
The Operator Product Expansion Beyond Perturbation Theory in QCD
International Nuclear Information System (INIS)
Dominguez, C. A.
2011-01-01
The Operator Product Expansion (OPE) of current correlators at short distances beyond perturbation theory in QCD, together with Cauchy's theorem in the complex energy plane, are the pillars of the method of QCD sum rules. This technique provides an analytic tool to relate QCD with hadronic physics at low and intermediate energies. It has been in use for over thirty years to determine hadronic parameters, form factors, and QCD parameters such as the quark masses, and the running strong coupling at the scale of the τ-lepton. QCD sum rules provide a powerful complement to numerical simulations of QCD on the lattice. In this talk a short review of the method is presented for non experts, followed by three examples of recent applications.
On the non-linear scale of cosmological perturbation theory
International Nuclear Information System (INIS)
Blas, Diego; Garny, Mathias; Konstandin, Thomas
2013-04-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Recent advances in multireference-based perturbation theory
International Nuclear Information System (INIS)
Nakano, Haruyuki; Hirao, Kimihiko
2003-01-01
Accurate ab initio computational chemistry has evolved dramatically. In particular, the development of multireference-based approaches has opened up a completely new area, and has had a profound impact on the potential of theoretical chemistry. Multireference-based perturbation theory (MRPT) is an extension of the closed-shell single reference Moeller-Plesset method, and has been successfully applied to many chemical and spectroscopic problems. MRPT has established itself as an efficient technique for treating nondynamical and dynamical correlations. Usually, a complete active space self-consistent field (CASSCF) wave function is chosen as a reference function of MRPT. However, CASSCF often generates too many configurations, and the size of the active space can outgrow the capacity of the present technology. Many attempts have been proposed to reduce the dimension of CASSCF and to widen the range of applications of MRPT. This review focuses on our recent development in MRPT
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Exploring perturbative conformal field theory in Mellin space
Energy Technology Data Exchange (ETDEWEB)
Nizami, Amin A. [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Rudra, Arnab [Center for Quantum Mathematics and Physics (QMAP), Department of Physics,University of California, Davis, 1 Shields Ave, Davis, CA 95616 (United States); Sarkar, Sourav [Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14476 Potsdam (Germany); Verma, Mritunjay [International Centre for Theoretical Sciences, TIFR,Hesaraghatta, Hubli, Bengaluru-560089 (India); Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad-211019 (India)
2017-01-24
We explore the Mellin representation of correlation functions in conformal field theories in the weak coupling regime. We provide a complete proof for a set of Feynman rules to write the Mellin amplitude for a general tree level Feynman diagram involving only scalar operators. We find a factorised form involving beta functions associated to the propagators, similar to tree level Feynman rules in momentum space for ordinary QFTs. We also briefly consider the case where a generic scalar perturbation of the free CFT breaks conformal invariance. Mellin space still has some utility and one can consider non-conformal Mellin representations. In this context, we find that the beta function corresponding to conformal propagator uplifts to a hypergeometric function.
Time-dependent perturbation theory for nonequilibrium lattice models
International Nuclear Information System (INIS)
Jensen, I.; Dickman, R.
1993-01-01
The authors develop a time-dependent perturbation theory for nonequilibrium interacting particle systems. They focus on models such as the contact process which evolve via destruction and autocatalytic creation of particles. At a critical value of the destruction rate there is a continuous phase transition between an active steady state and the vacuum state, which is absorbing. They present several methods for deriving series for the evolution starting from a single seed particle, including expansions for the ultimate survival probability in the super- and subcritical regions, expansions for the average number of particles in the subcritical region, and short-time expansions. Algorithms for computer generation of the various expansions are presented. Rather long series (24 terms or more) and precise estimates of critical parameters are presented. 45 refs., 4 figs., 9 tabs
Meson-baryon interactions in unitarized chiral perturbation theory
International Nuclear Information System (INIS)
Garcia Recio, G.; Nieves, J.; Ruiz Arriola, E.; Vicente Vacas, M.
2003-01-01
Meson-Baryon Interactions can be successfully described using both Chiral Symmetry and Unitarity. The s-wave meson-baryon scattering amplitude is analyzed in a Bethe-Salpeter coupled channel formalism incorporating Chiral Symmetry in the potential. Two body coupled channel unitarity is exactly preserved. The needed two particle irreducible matrix amplitude is taken from lowest order Chiral Perturbation Theory in a relativistic formalism. Off-shell behavior is parameterized in terms of low energy constants. The relation to the heavy baryon limit is discussed. The position of the complex poles in the second Riemann sheet of the scattering amplitude determine masses and widths baryonic resonances of the N(1535), N(1670), Λ(1405) and Λ(1670) resonances which compare well with accepted numbers
Developing feasible loading patterns using perturbation theory methods
International Nuclear Information System (INIS)
White, J.R.; Avila, K.M.
1990-01-01
This work illustrates an approach to core reload design that combines the power of integer programming with the efficiency of generalized perturbation theory. The main use of the method is as a tool to help the design engineer identify feasible loading patterns with minimum time and effort. The technique is highly successful for the burnable poison (BP) loading problem, but the unpredictable behavior of the branch-and-bound algorithm degrades overall performance for large problems. Unfortunately, the combined fuel shuffling plus BP optimization problem falls into this latter classification. Overall, however, the method shows great promise for significantly reducing the manpower time required for the reload design process. And it may even give the further benefit of better designs and improved performance
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Energy Technology Data Exchange (ETDEWEB)
Hermes, Matthew R. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); Hirata, So, E-mail: sohirata@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Bright Solitons in a PT-Symmetric Chain of Dimers
Directory of Open Access Journals (Sweden)
Omar B. Kirikchi
2016-01-01
Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
Theory of deep inelastic neutron scattering: Hard-core perturbation theory
International Nuclear Information System (INIS)
Silver, R.N.
1988-01-01
Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He
Analysis of Green's functions and stability problem in models of quantum field theory with solitons
International Nuclear Information System (INIS)
Raczka, R.; Roszkowski, L.
1983-10-01
A class of models of quantum field theory for a multiplet phi-vector=(phi 1 ,...,phisub(N)) of real scalar fields, possessing a particle-like classical solution phi-vector 0 , is considered. A new formula for generating functional for time-ordered Green's functions in terms of effective propagators is derived. The problem of classical and quantum stability is analyzed in detail. It is shown by partly non-perturbative analysis that in the considered models the excited states of mesons do exist and form the trajectories in the plane mass 2 -spin. These trajectories are linear or approximately linear like experimental trajectories. (author)
Photoionization cross sections and Auger rates calculated by many-body perturbation theory
International Nuclear Information System (INIS)
Kelly, H.P.
1976-01-01
Methods for applying the many body perturbation theory to atomic calculations are discussed with particular emphasis on calculation of photoionization cross sections and Auger rates. Topics covered include: Rayleigh--Schroedinger theory; many body perturbation theory; calculations of photoionization cross sections; and Auger rates
Variational, projection methods and Pade approximants in scattering theory
International Nuclear Information System (INIS)
Turchetti, G.
1980-12-01
Several aspects on the scattering theory are discussed in a perturbative scheme. The Pade approximant method plays an important role in such a scheme. Solitons solutions are also discussed in this same scheme. (L.C.) [pt
Determination of partial molar volumes from free energy perturbation theory.
Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L
2015-04-07
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.
Finite density two color chiral perturbation theory revisited
Adhikari, Prabal; Beleznay, Soma B.; Mannarelli, Massimo
2018-06-01
We revisit two-color, two-flavor chiral perturbation theory at finite isospin and baryon density. We investigate the phase diagram obtained varying the isospin and the baryon chemical potentials, focusing on the phase transition occurring when the two chemical potentials are equal and exceed the pion mass (which is degenerate with the diquark mass). In this case, there is a change in the order parameter of the theory that does not lend itself to the standard picture of first order transitions. We explore this phase transition both within a Ginzburg-Landau framework valid in a limited parameter space and then by inspecting the full chiral Lagrangian in all the accessible parameter space. Across the phase transition between the two broken phases the order parameter becomes an SU(2) doublet, with the ground state fixing the expectation value of the sum of the magnitude squared of the pion and the diquark fields. Furthermore, we find that the Lagrangian at equal chemical potentials is invariant under global SU(2) transformations and construct the effective Lagrangian of the three Goldstone degrees of freedom by integrating out the radial fluctuations.
Suliman, Mohamed Abdalla Elhag; Ballal, Tarig; Kammoun, Abla; Alnaffouri, Tareq Y.
2016-01-01
In this supplementary appendix we provide proofs and additional simulation results that complement the paper (constrained perturbation regularization approach for signal estimation using random matrix theory).
Modification of Plasma Solitons by Resonant Particles
DEFF Research Database (Denmark)
Karpman, Vladimir; Lynov, Jens-Peter; Michelsen, Poul
1980-01-01
A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... Korteweg–de Vries equation. Laboratory measurements carried out in a strongly magnetized, plasma‐filled waveguide and results from particle simulation are interpreted in terms of the analytical results.......A consistent theory of plasma soliton interaction with resonant particles is developed. A simple derivation of a perturbed Korteweg–de Vries equation with the interaction term is presented. It is shown how the known limit cases (such as Ott–Sudan’s, etc.) can be derived from the general equations...... and what their regions of applicability are. Some effects caused by the soliton‐particle interaction (amplitude change‐rate, tail formation, etc.) are analyzed by means of a recently developed perturbation method. The analytical results are compared with a direct numerical integration of the perturbed...
A stochastic perturbation theory for non-autonomous systems
Energy Technology Data Exchange (ETDEWEB)
Moon, W., E-mail: wm275@damtp.cam.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Wettlaufer, J. S., E-mail: wettlaufer@maths.ox.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)
2013-12-15
We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.
Rebolini, Elisa; Teale, Andrew M.; Helgaker, Trygve; Savin, Andreas; Toulouse, Julien
2018-06-01
A Görling-Levy (GL)-based perturbation theory along the range-separated adiabatic connection is assessed for the calculation of electronic excitation energies. In comparison with the Rayleigh-Schrödinger (RS)-based perturbation theory this GL-based perturbation theory keeps the ground-state density constant at each order and thus gives the correct ionisation energy at each order. Excitation energies up to first order in the perturbation have been calculated numerically for the helium and beryllium atoms and the hydrogen molecule without introducing any density-functional approximations. In comparison with the RS-based perturbation theory, the present GL-based perturbation theory gives much more accurate excitation energies for Rydberg states but similar excitation energies for valence states.
The cosmological perturbation theory in loop cosmology with holonomy corrections
International Nuclear Information System (INIS)
Wu, Jian-Pin; Ling, Yi
2010-01-01
In this paper we investigate the scalar mode of first-order metric perturbations over spatially flat FRW spacetime when the holonomy correction is taken into account in the semi-classical framework of loop quantum cosmology. By means of the Hamiltonian derivation, the cosmological perturbation equations is obtained in longitudinal gauge. It turns out that in the presence of metric perturbation the holonomy effects influence both background and perturbations, and contribute the non-trivial terms S h1 and S h2 in the cosmological perturbation equations
Real and virtual multidimensional solitons
International Nuclear Information System (INIS)
Boiti, M.; Martina, L.; Pashaev, O.K.; Pempinelli, F.
1993-01-01
Recently it has been shown that in two spatial and one temporal dimensions (2+1) there exist localized solitons. These coherent structures display a richer phenomenology than the one dimensional solitons. Different effects have been reported successively in a series of papers. Some of them are due to the fact that the soliton solution is structurally unstable with respect to special choices of the parameters. Also some quantum-like effects as the non conservation of the number of solitons have been discovered by using direct methods. This report is dedicated to the study of the origin and generality of these new effects in the context of the Spectral Transform (ST) theory. By choosing more general boundaries than those used in previous papers we derive an N 2 -soliton solution, which is parameterized by a point in a space of 4N(N+1) real parameters. Of these parameters 2N(N+2) are determined by the choice of the boundaries and fix the velocity and the possible location of the solitons in the plane at large times, while the remaining 2N govern the dynamics of the solitons during the interaction. The total mass of solitons is conserved but, in general, the mass of the single soliton is not preserved by the interaction. The extreme cases in which the masses of one or more solitons are zero at t = -∞ or/and t = +∞ are also allowed. We call these solitons with asymptotic zero masses and, consequently, with asymptotic zero amplitudes virtual solitons. The total momentum of solitons is not conserved because the boundaries act as external forces. Solitons can simulate inelastic scattering processes of quantum particles including creation and annihilation of particles
Granovsky, Alexander A
2011-06-07
The distinctive desirable features, both mathematically and physically meaningful, for all partially contracted multi-state multi-reference perturbation theories (MS-MR-PT) are explicitly formulated. The original approach to MS-MR-PT theory, called extended multi-configuration quasi-degenerate perturbation theory (XMCQDPT), having most, if not all, of the desirable properties is introduced. The new method is applied at the second order of perturbation theory (XMCQDPT2) to the 1(1)A(')-2(1)A(') conical intersection in allene molecule, the avoided crossing in LiF molecule, and the 1(1)A(1) to 2(1)A(1) electronic transition in cis-1,3-butadiene. The new theory has several advantages compared to those of well-established approaches, such as second order multi-configuration quasi-degenerate perturbation theory and multi-state-second order complete active space perturbation theory. The analysis of the prevalent approaches to the MS-MR-PT theory performed within the framework of the XMCQDPT theory unveils the origin of their common inherent problems. We describe the efficient implementation strategy that makes XMCQDPT2 an especially useful general-purpose tool in the high-level modeling of small to large molecular systems. © 2011 American Institute of Physics
International Nuclear Information System (INIS)
Wilets, L.; Goldflam, R.
1983-09-01
The MIT bag was one of the earliest and most successful models of QCD, imposing confinement and including perturbative gluon interactions. An evolution of the MIT bag came with the introduction of the chiral and cloudy bags, which treat pions as elementary particles. As a model of QCD, the soliton model proposed by Friedberg and Lee is particularly attractive. It is based on a covariant field theory and is sufficiently general so that, for certain limiting cases of the adjustable parameters, it can describe either the MIT or SLAC (string) bags. The confinement mechanism appears as a dynamic field. This allows non-static processes, such as bag oscillations and bag collisions, to be calculated utilizing the well-developed techniques of nuclear many-body theory. The utilization of the model for calculating dynamical processes is discussed. 14 references
Numerical perturbative methods in the quantum theory of physical systems
International Nuclear Information System (INIS)
Adam, G.
1980-01-01
During the last two decades, development of digital electronic computers has led to the deployment of new, distinct methods in theoretical physics. These methods, based on the advances of modern numerical analysis as well as on specific equations describing physical processes, enabled to perform precise calculations of high complexity which have completed and sometimes changed our image of many physical phenomena. Our efforts have concentrated on the development of numerical methods with such intrinsic performances as to allow a successful approach of some Key issues in present theoretical physics on smaller computation systems. The basic principle of such methods is to translate, in numerical analysis language, the theory of perturbations which is suited to numerical rather than to analytical computation. This idea has been illustrated by working out two problems which arise from the time independent Schroedinger equation in the non-relativistic approximation, within both quantum systems with a small number of particles and systems with a large number of particles, respectively. In the first case, we are led to the numerical solution of some quadratic ordinary differential equations (first section of the thesis) and in the second case, to the solution of some secular equations in the Brillouin area (second section). (author)
Neutral pion electroproduction off light nuclei in chiral perturbation theory
International Nuclear Information System (INIS)
Lenkewitz, Mark
2013-01-01
Threshold pion electroproduction on tri-nucleon systems is investigated in the framework of baryon Chiral Perturbation Theory (ChPT) at next-to-leading one-loop order O(q 4 ) in the chiral expansion. To this order in small momenta, the production operator is a sum of one- and two-nucleon terms. While the one-nucleon terms resemble the impulse approximation, the two-nucleon contributions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange interactions, which prove to be dominant, and due to recoil effects of the participating nucleons, which appear to be negligible. We calculate the expectation value of the production operator using chiral wave functions in a three-dimensional approach without partial wave expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration, the VEGAS algorithm of Lepage. We obtain results for the threshold production multipoles E 0+ and L 0+ on 3 He and 3 H and comment on the sensitivity to the fundamental neutron amplitude E 0+ π 0 n . 3 He appears to be a particularly promising target to extract information about the neutron amplitude. This idea is usually invoked for spin-dependent quantities since the 3 He wave function is strongly dominated by the principal S-state component which suggests that its spin is largely driven by the one of the neutron.
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Pascalutsa, Vladimir; Vanderhaeghen, Marc [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik, Cluster of Excellence PRISMA, Mainz (Germany)
2017-02-15
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep → epγ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (BχPT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χPT (HBχPT) - and discuss the differences between BχPT and HBχPT responsible for these discrepancies. (orig.)
Generalised perturbation theory and source of information through chemical measurements
International Nuclear Information System (INIS)
Lelek, V.; Marek, T.
2001-01-01
It is important to make all analyses and collect all information from the work of the new facility (which the transmutation demonstration unit will surely be) to be sure that the operation corresponds to the forecast or to correct the equations of the facility. The behaviour of the molten salt reactor and in particular the system of measurement are very different from that of the solid fuel reactor. Key information from the long time kinetics could be the nearly on line knowledge of the fuel composition. In this work it is shown how to include it into the control and use such data for the correction of neutron cross-sections for the high actinides or other characteristics. Also the problem of safety - change of the boundary problem to the initial problem - is mentioned. The problem is transformed into the generalised perturbation theory in which the adjoint function is obtained through the solution of the equations with right hand side having the form of source. Such an approach should be a theoretical base for the calculation of the sensitivity coefficients. (authors)
International Nuclear Information System (INIS)
Feng-De, Zong; Jie-Fang, Zhang
2008-01-01
A model of the perturbed complex Toda chain (PCTC) to describe the dynamics of a Bose–Einstein condensate (BEC) N-soliton train trapped in an applied combined external potential consisting of both a weak harmonic and tilted periodic component is first developed. Using the developed theory, the BEC N-soliton train dynamics is shown to be well approximated by 4N coupled nonlinear differential equations, which describe the fundamental interactions in the system arising from the interplay of amplitude, velocity, centre-of-mass position, and phase. The simplified analytic theory allows for an efficient and convenient method for characterizing the BEC N-soliton train behaviour. It further gives the critical values of the strength of the potential for which one or more localized states can be extracted from a soliton train and demonstrates that the BEC N-soliton train can move selectively from one lattice site to another by simply manipulating the strength of the potential. (general)
Screening of Coulomb interaction and many-body perturbation theory in atoms
International Nuclear Information System (INIS)
Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.
1988-01-01
Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example
Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation
International Nuclear Information System (INIS)
Pletzer, A.; Zakharov, L.E.
1999-01-01
The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory
Teruo, KISHIMOTO; Tetsuo, KAMMURI; Institute of Physics, University of Tsukuba; Department of Physics, Osaka University
1990-01-01
With the Dynamical Nuclear Field Theory (DNFT) in the Tamm-Dancoff representation we examine higher order corrections in the vibrational mode of a spherical nuclear system. Due to the effects of bubble diagrams, the perturbation expansion in terms of the unrenormalized coupling strength and boson energy fails at full self-consistency. On the other hand, it becomes applicable in the form of linked-cluster expansion when we use thses constants renormalized by the effect of bubble diagrams, in t...
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
Quantum field theory with a momentum space of constant curvature (perturbation theory)
International Nuclear Information System (INIS)
Mir-Kasimov, R.M.
1978-01-01
In the framework of the field-theoretical approach in which the off-the-mass shell extension proceeds in the p-space of constant curvature, the perburbation theory is developed. The configurational representation of the de Sitter space is introduced with the help of the Fourier transformation of the group of motions. On the basis of a natural generalization of the Bogolyubov causality condition to the case of the new configurational representation a perturbation theory is constructed with the local in xi space Lagrangian density fucntion. The obtained S matrix obeys the reguirement of translation invariance. The S matrix elements are given by convergent expressions
Non-perturbative field theory/field theory on a lattice
International Nuclear Information System (INIS)
Ambjorn, J.
1988-01-01
The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas
The stability analysis of non-topological solitons in gauge theory and in electrodynamics
International Nuclear Information System (INIS)
Chakrabarti, S.
1982-08-01
The Lyapunov stability analysis of the nontopological soliton solution in the many-charge Qsub(i) Synge Model in non-Abelian SU(2)xU(1) symmetry with the presence of gauge fields is considered. It is shown that in the presence of the subsidiary condition of fixation of charges μsub(i)νsub(i)delta Qsub(i)=0 the necessary condition for stability of the soliton solution (periodic in time with parameters νsub(i)) is defined by the inequality: μsub(i,k) (deltaQsub(i) 0 /deltaνsub(k)) - νsub(i)νsub(k)<0. This condition holds for any Lagrangian density with second-order time derivatives in the presence of gauge fields. This result is extended to the stability analysis of a scalar soliton with electromagnetic field in U(1) symmetry, and it is shown that, in this case, the necessary condition reduces to deltaQsub(i)/deltaν<0. (author)
Bogdan, V. M.; Bond, V. B.
1980-01-01
The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.
International Nuclear Information System (INIS)
Dominguez, Fabio; Marquet, C.; Mueller, A.H.; Wu Bin; Xiao, Bo-Wen
2008-01-01
We compare medium induced energy loss and p perpendicular -broadening in perturbative QCD with that of the trailing string picture of SYM theory. We consider finite and infinite extent matter as well as relativistic heavy quarks which correspond to those being produced in the medium or external to it. When expressed in terms of the appropriate saturation momentum, we find identical parametric forms for energy loss in perturbative QCD and SYM theory. We find simple correspondences between p perpendicular -broadening in QCD and in SYM theory although p perpendicular -broadening is radiation dominated in SYM theory and multiple scattering dominated in perturbative QCD
Caserta, A.; Kanivetsky, R.; Salusti, E.
2017-11-01
We here analyze a new model of transients of pore pressure p and solute density ρ in geologic porous media. This model is rooted in the nonlinear wave theory, its focus is on advection and effect of large pressure jumps on strain. It takes into account nonlinear and also time-dependent versions of the Hooke law about stress, rate and strain. The model solutions strictly relate p and ρ evolving under the effect of a strong external stress. As a result, the presence of quick and sharp transients in low permeability rocks is unveiled, i.e., the nonlinear "Burgers solitons". We, therefore, show that the actual transport process in porous rocks for large signals is not only the linear diffusion, but also a solitons presence could control the process. A test of a presence of solitons is applied to Pierre shale, Bearpaw shale, Boom clay and Oznam-Mugu silt and clay. An application about the presence of solitons for nuclear waste disposal and salt water intrusions is also discussed. Finally, in a kind of "theoretical experiment" we show that solitons could also be present in higher permeability rocks (Jordan and St. Peter sandstones), thus supporting the idea of a possible occurrence of osmosis also in sandstones.
Equation-of-motion coupled cluster perturbation theory revisited
DEFF Research Database (Denmark)
Eriksen, Janus Juul; Jørgensen, Poul; Olsen, Jeppe
2014-01-01
The equation-of-motion coupled cluster (EOM-CC) framework has been used for deriving a novel series of perturbative corrections to the coupled cluster singles and doubles energy that formally con- verges towards the full configuration interaction energy limit. The series is based on a Møller-Ples......-Plesset partitioning of the Hamiltonian and thus size extensive at any order in the perturbation, thereby rem- edying the major deficiency inherent to previous perturbation series based on the EOM-CC ansatz. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873138]...
Optimized Perturbation Theory for Wave Functions of Quantum Systems
International Nuclear Information System (INIS)
Hatsuda, T.; Tanaka, T.; Kunihiro, T.
1997-01-01
The notion of the optimized perturbation, which has been successfully applied to energy eigenvalues, is generalized to treat wave functions of quantum systems. The key ingredient is to construct an envelope of a set of perturbative wave functions. This leads to a condition similar to that obtained from the principle of minimal sensitivity. Applications of the method to the quantum anharmonic oscillator and the double well potential show that uniformly valid wave functions with correct asymptotic behavior are obtained in the first-order optimized perturbation even for strong couplings. copyright 1997 The American Physical Society
Soliton models in resonant and nonresonant optical fibers
Indian Academy of Sciences (India)
where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.
Domain walls and perturbation theory in high-temperature gauge theory: SU(2) in 2+1 dimensions
International Nuclear Information System (INIS)
Korthals Altes, C.; Michels, A.; Teper, M.; Stephanov, M.
1997-01-01
We study the detailed properties of Z 2 domain walls in the deconfined high-temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter g 2 /T is close to unity. The quantities studied include the surface tension, the action density profiles, roughening, and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool. copyright 1997 The American Physical Society
In what sense the canonical perturbation theory is gauge-invariant
International Nuclear Information System (INIS)
Chen, C.Y.
1992-07-01
It is shown that the time-dependent canonical perturbation theory in classical mechanics has unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector potential A-tilde ≠ 0). As a numerical apparatus, the theory relates to gauge-dependent vectors larger than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative approach is accordingly introduced. (author). 8 refs, 2 figs
Contribution of higher order terms in the reductive perturbation theory, 2
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Mitsuhashi, Teruo; Konno, Kimiaki.
1977-01-01
Contribution of higher order terms in the reductive perturbation theory has been investigated for nonlinear propagation of strongly dispersive ion plasma wave. The basic set of fluid equation is reduced to a coupled set of the nonlinear Schroedinger equation for the first order perturbed potential and a linear inhomogeneous equation for the second order perturbed potential. A steady state solution of the coupled set of equations has been solved analytically in the asymptotic limit of small wave number. (auth.)
Korteweg-de Vries description of Helmholtz-Kerr dark solitons
Energy Technology Data Exchange (ETDEWEB)
Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)
2006-12-15
A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations.
Korteweg-de Vries description of Helmholtz-Kerr dark solitons
International Nuclear Information System (INIS)
Christian, J M; McDonald, G S; Chamorro-Posada, P
2006-01-01
A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations
Soliton dynamics in periodic system with different nonlinear media
International Nuclear Information System (INIS)
Zabolotskij, A.A.
2001-01-01
To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru
An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice
Energy Technology Data Exchange (ETDEWEB)
Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Hebbar, Aditya [Indian Institute of Science, Centre for High Energy Physics, Karnataka (India); University of Delaware, Department of Physics and Astronomy, Newark, DE (United States)
2016-12-15
We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)
An analytic approach to sunset diagrams in chiral perturbation theory: Theory and practice
International Nuclear Information System (INIS)
Ananthanarayan, B.; Ghosh, Shayan; Bijnens, Johan; Hebbar, Aditya
2016-01-01
We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files in the Electronic Supplementary Material to this paper, which may serve as pedagogical supplements to the methods described in this paper. (orig.)
The 1/ N Expansion of Tensor Models Beyond Perturbation Theory
Gurau, Razvan
2014-09-01
We analyze in full mathematical rigor the most general quartically perturbed invariant probability measure for a random tensor. Using a version of the Loop Vertex Expansion (which we call the mixed expansion) we show that the cumulants write as explicit series in 1/ N plus bounded rest terms. The mixed expansion recasts the problem of determining the subleading corrections in 1/ N into a simple combinatorial problem of counting trees decorated by a finite number of loop edges. As an aside, we use the mixed expansion to show that the (divergent) perturbative expansion of the tensor models is Borel summable and to prove that the cumulants respect an uniform scaling bound. In particular the quartically perturbed measures fall, in the N→ ∞ limit, in the universality class of Gaussian tensor models.
International Nuclear Information System (INIS)
Somogyi, Gabor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. D 73, 063519 (2006)] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid--the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ∼3% on scales of order k∼0.05h Mpc -1 at z=10, and by ∼0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ∼15% on scales k∼0.05h Mpc -1 at z=10, and by ∼3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for baryon and slightly damped for CDM
Somogyi, Gábor; Smith, Robert E.
2010-01-01
We generalize the renormalized perturbation theory (RPT) formalism of Crocce and Scoccimarro [M. Crocce and R. Scoccimarro, Phys. Rev. DPRVDAQ1550-7998 73, 063519 (2006)10.1103/PhysRevD.73.063519] to deal with multiple fluids in the Universe and here we present the complete calculations up to the one-loop level in the RPT. We apply this approach to the problem of following the nonlinear evolution of baryon and cold dark matter (CDM) perturbations, evolving from the distinct sets of initial conditions, from the high redshift post-recombination Universe right through to the present day. In current theoretical and numerical models of structure formation, it is standard practice to treat baryons and CDM as an effective single matter fluid—the so-called dark matter only modeling. In this approximation, one uses a weighed sum of late-time baryon and CDM transfer functions to set initial mass fluctuations. In this paper we explore whether this approach can be employed for high precision modeling of structure formation. We show that, even if we only follow the linear evolution, there is a large-scale scale-dependent bias between baryons and CDM for the currently favored WMAP5 ΛCDM model. This time evolving bias is significant (>1%) until the present day, when it is driven towards unity through gravitational relaxation processes. Using the RPT formalism we test this approximation in the nonlinear regime. We show that the nonlinear CDM power spectrum in the two-component fluid differs from that obtained from an effective mean-mass one-component fluid by ˜3% on scales of order k˜0.05hMpc-1 at z=10, and by ˜0.5% at z=0. However, for the case of the nonlinear evolution of the baryons the situation is worse and we find that the power spectrum is suppressed, relative to the total matter, by ˜15% on scales k˜0.05hMpc-1 at z=10, and by ˜3%-5% at z=0. Importantly, besides the suppression of the spectrum, the baryonic acoustic oscillation (BAO) features are amplified for
The Hill-determinant perturbation theory with triangular propagators
International Nuclear Information System (INIS)
Znojil, M.
1996-01-01
A new version of the Rayleigh-Schroedinger perturbation prescription is proposed. Its main formal feature lies in an unusual choice of the model space and unperturbed H 0 and in a resulting lower-triangular matrix structure of its propagators. Within the framework of the so-called Hill-determinant method, an admissibility of any incompletely solvable zero-order Hamiltonian is achieved in this way. As a consequence, the range of practical applicability of our new perturbative formalism may be expected to incorporate many new phenomenological interactions with a strongly anharmonic character. 18 refs
Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories
Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez
1995-02-01
We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
An intermolecular perturbation theory for the region of moderate overlap
International Nuclear Information System (INIS)
Hayes, I.C.; Stone, A.J.
1984-01-01
A perturbational method is described for calculating the interaction energy of two molecules in the region where the overlap between their wave-functions is significant. By working directly with a basis of determinants constructed from the SCF orbitals of the separated molecules, without orthogonalization, it is possible to avoid many of the disadvantages of other methods. (author)
Brownian motion of solitons in a Bose-Einstein condensate.
Aycock, Lauren M; Hurst, Hilary M; Efimkin, Dmitry K; Genkina, Dina; Lu, Hsin-I; Galitski, Victor M; Spielman, I B
2017-03-07
We observed and controlled the Brownian motion of solitons. We launched solitonic excitations in highly elongated [Formula: see text] Bose-Einstein condensates (BECs) and showed that a dilute background of impurity atoms in a different internal state dramatically affects the soliton. With no impurities and in one dimension (1D), these solitons would have an infinite lifetime, a consequence of integrability. In our experiment, the added impurities scatter off the much larger soliton, contributing to its Brownian motion and decreasing its lifetime. We describe the soliton's diffusive behavior using a quasi-1D scattering theory of impurity atoms interacting with a soliton, giving diffusion coefficients consistent with experiment.
Enhanced mutual capture of colored solitons by matched modulator
Feigenbaum, Eyal; Orenstein, Meir
2004-08-01
The mutual capture of two colored solitons is enhanced by a modulator, to a level which enables its practical exploitation, e.g., for a read- write mechanism in a soliton buffer. The enhanced capture was analyzed using closed form particle-like soliton perturbation, and verified by numerical simulations. Optimal modulator frequency and modulation depth are obtained. This mutual capture can be utilized for all-optical soliton logic and memory.
Perturbative quantum field theory in the framework of the fermionic projector
International Nuclear Information System (INIS)
Finster, Felix
2014-01-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur
Perturbative Quantum Field Theory in the Framework of the Fermionic Projector
Finster, Felix
2013-01-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
Perturbative quantum field theory in the framework of the fermionic projector
Energy Technology Data Exchange (ETDEWEB)
Finster, Felix, E-mail: finster@ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)
2014-04-15
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
Perturbative quantum field theory in the framework of the fermionic projector
Finster, Felix
2014-04-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
Effective Lagrangians for SUSY QCD with properties seen in perturbation theory
International Nuclear Information System (INIS)
Sharatchandra, H.S.
1984-06-01
We construct effective Lagrangians for supersymmetric QCD which properly incorporate the relevant Ward identities and possess features encountered in perturbation theory. This shows that the unusual scenarios, proposed for SUSY QCD, are not necessary. (author)
On estimating perturbative coefficients in quantum field theory and statistical physics
International Nuclear Information System (INIS)
Samuel, M.A.; Stanford Univ., CA
1994-05-01
The authors present a method for estimating perturbative coefficients in quantum field theory and Statistical Physics. They are able to obtain reliable error-bars for each estimate. The results, in all cases, are excellent
International Nuclear Information System (INIS)
Killingbeck, J.
1979-01-01
By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)
Renormalized perturbation theory: Vlasov-Poisson System, weak turbulence limit and gyrokinetics
International Nuclear Information System (INIS)
Zhang, Y.Z.; Mahajan, S.M.
1987-10-01
The Self-consistency of the renormalized perturbation theory is demonstrated by applying it to the Vlasov-Poisson System and showing that the theory has the correct weak turbulence limit. Energy conservation is proved to arbitrary high order for the electrostatic drift waves. The theory is applied to derive renormalized equations for a low-β gyrokinetic system. Comparison of our theory with other current theories is presented. 22 refs
Energy Technology Data Exchange (ETDEWEB)
Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik
1975-01-01
Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.
International Nuclear Information System (INIS)
Randriamisy, H.D.E.
2014-01-01
Nowadays, the study of scattering and production of particles occupies an important place in subatomic physics research. The main ongoing experiments concern high-energy scattering in the colliders, the scattering theory based on quantum field theory is used for the theoretical study. The work presented in this thesis is located in this framework, in fact it concerns a study on the scattering theory and Perturbative Quantum Chromodynamics. We used the path integral formalism of quantum field theory and perturbation theory. As we considered the higher order corrections in perturbative developments, the renormalization theory with the method of dimensional regularization was also used. As an application, the case of the Top quark production was considered. As main results, we can quote the obtention of the cross section of quark-antiquark top pair production up to second order. [fr
A global numerical solution of the radial Schroedinger equation by second-order perturbation theory
International Nuclear Information System (INIS)
Adam, G.
1979-01-01
A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)
Lattice field theories: non-perturbative methods of analysis
International Nuclear Information System (INIS)
Weinstein, M.
1978-01-01
A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references
International Nuclear Information System (INIS)
Anabalón, Andrés; Astefanesei, Dumitru; Choque, David
2016-01-01
We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.
Energy Technology Data Exchange (ETDEWEB)
Anabalón, Andrés, E-mail: andres.anabalon@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar (Chile); Astefanesei, Dumitru, E-mail: dumitru.astefanesei@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Choque, David, E-mail: brst1010123@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile)
2016-11-10
We construct exact hairy AdS soliton solutions in Einstein-dilaton gravity theory. We examine their thermodynamic properties and discuss the role of these solutions for the existence of first order phase transitions for hairy black holes. The negative energy density associated to hairy AdS solitons can be interpreted as the Casimir energy that is generated in the dual filed theory when the fermions are antiperiodic on the compact coordinate.
Statistical mechanics of solitons
International Nuclear Information System (INIS)
Bishop, A.
1980-01-01
The status of statistical mechanics theory (classical and quantum, statics and dynamics) is reviewed for 1-D soliton or solitary-wave-bearing systems. Primary attention is given to (i) perspective for existing results with evaluation and representative literature guide; (ii) motivation and status report for remaining problems; (iii) discussion of connections with other 1-D topics
International Nuclear Information System (INIS)
Boya, L.J.; Carinena, J.F.; Mateos, J.
1978-01-01
Starting from classical field theory with a Lagrangian, solitons are identified with solutions of the field equations which satisfy peculiar boundary conditions. The symmetry group which causes the degenerate vacuum is taken generally internal, that is, not operating in space-time. Gauge symmetry plays a dominant role. A precise definition of solitons is given and it is shown how to study some continuous mappings of the ''distant'' parts of space on the set of degenerate vacua. A marvellous instrument, the exact homotopy sequence, is applied to calculate homotopy groups of some higher-dimensional manifolds
Second-order generalized perturbation theory for source-driven systems
International Nuclear Information System (INIS)
Greenspan, E.; Gilai, D.; Oblow, E.M.
1978-01-01
A second-order generalized perturbation theory (GPT) for the effect of multiple system variations on a general flux functional in source-driven systems is derived. The derivation is based on a functional Taylor series in which second-order derivatives are retained. The resulting formulation accounts for the nonlinear effect of a given variation accurate to third order in the flux and adjoint perturbations. It also accounts for the effect of interaction between any number of variations. The new formulation is compared with exact perturbation theory as well as with perturbation theory for altered systems. The usefulnes of the second-order GPT formulation is illustrated by applying it to optimization problems. Its applicability to areas of cross-section sensitivity analysis and system design and evaluation is also discussed
Hirota's solitons in the affine and the conformal affine Toda models
International Nuclear Information System (INIS)
Aratyn, H.; Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1993-01-01
We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis. (orig.)
Perturbation theory of the periodic Anderson lattice and superconductivity
International Nuclear Information System (INIS)
Geertsuma, W.
1988-01-01
In this paper the author develops a perturbation calculation of the second and fourth order interparticle interaction in band states, based on the Periodic Anderson Lattice. The author shows that 4th order interparticle interactions giving rise to the well known Kondo effect vanish in the superconducting ground state. This term survives in the presence of a magnetic field. Pair excitations can only give rise to an appreciable attractive contribution when the d states are less than half filled and the pair energy is near the Fermi level. The only important attractive interaction comes from the normal fourth order terms
Nonrelativistic hyperfine splitting in muonic helium by adiabatic perturbation theory
International Nuclear Information System (INIS)
Drachman, R.J.
1980-01-01
Huang and Hughes have recently discussed the hyperfine splitting Δν of muonic helium (α ++ μ - e - ) using a variational approach. In this paper, the Born-Oppenheimer approximation is used to simplify the evaluation of Δν in the nonrelativistic limit. The first-order perturbed wave function of the electron is obtained in closed form by slightly modifying the method used by Dalgarno and Lynn. The result Δν=4450 MHz, is quite close to the published result of Huang and Hughes 4455.2 +- 1 MHz, which required a very large Hylleraas expansion as well as considerable extrapolation
An algebraic description of perturbation theory in quantum electrodynamics
International Nuclear Information System (INIS)
Wright, J.D.
1982-01-01
An algebraic formulation of the electromagnetic field, in which various quantization procedures can be described, is used to discuss perturbation calculations. The Feynman rules and the second order calculation of the self-energy of the electron can be developed on the basis of the Fermi method of quantization. The algebraic approach clarifies the problems in defining the vacuum and other states, which are associated with calculations in terms of field algebra operators. The vacuum state defined on the field algebra by Schwinger leads to incorrect results in the self-energy calculation
Short-time perturbation theory and nonrelativistic duality
International Nuclear Information System (INIS)
Whitenton, J.B.; Durand, B.; Durand, L.
1983-01-01
We give a simple proof of the nonrelativistic duality relation 2 sigma/sub bound/>roughly-equal 2 sigma/sub free/> for appropriate energy averages of the cross sections for e + e - →(qq-bar bound states) and e + e - →(free qq-bar pair), and calculate the corrections to the relation by relating W 2 sigma to the Fourier transform of the Feynman propagation function and developing a short-time perturbation series for that function. We illustrate our results in detail for simple power-law potentials and potentials which involve combinations of powers
Perturbative quantum gravity as a double copy of gauge theory.
Bern, Zvi; Carrasco, John Joseph M; Johansson, Henrik
2010-08-06
In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-theory ones. As a nontrivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an antisymmetric tensor and dilaton.
Short-distance perturbation theory for the leading logarithm models
International Nuclear Information System (INIS)
Adler, S.L.
1983-01-01
I derive a short-distance perturbation expansion for the static potential of quasi-abelian quark and antiquark source charges, in the models in which renormalization group radiative corrections are retained in the gauge gluon effective dielectric functional. A natural running coupling parameter zeta for the models is identified, and the scale mass #betta#sub(p) appearing in zeta is computed by requiring the vanishing of the O(zeta 2 ) term in the perturbation expansions. The models are shown to give unsatisfactory results beyond one-loop order in the short-distance expansion, as a result of the breakdown in the ultraviolet of the assumption that the effective action is a local functional of the field strength. The same argument indicates that the assumption of a local effective action becomes self-consistent in the large-distance limit. The coupling parameter zeta is identified as a running coupling which evolves in field strength, rather than momentum, and which becomes infinite in the large-distance limit. (orig.)
Soliton-soliton effective interaction
International Nuclear Information System (INIS)
Maki, J.N.
1986-01-01
A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The S col matrix of two punctual bodies was determined, and it is shown that, in the limit of 1 2 2 /mN 4 it reproduces the exact S 2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the S col matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.) [pt
Sensitivity theory for reactor burnup analysis based on depletion perturbation theory
International Nuclear Information System (INIS)
Yang, Wonsik.
1989-01-01
The large computational effort involved in the design and analysis of advanced reactor configurations motivated the development of Depletion Perturbation Theory (DPT) for general fuel cycle analysis. The work here focused on two important advances in the current methods. First, the adjoint equations were developed for using the efficient linear flux approximation to decouple the neutron/nuclide field equations. And second, DPT was extended to the constrained equilibrium cycle which is important for the consistent comparison and evaluation of alternative reactor designs. Practical strategies were formulated for solving the resulting adjoint equations and a computer code was developed for practical applications. In all cases analyzed, the sensitivity coefficients generated by DPT were in excellent agreement with the results of exact calculations. The work here indicates that for a given core response, the sensitivity coefficients to all input parameters can be computed by DPT with a computational effort similar to a single forward depletion calculation
International Nuclear Information System (INIS)
Keski-Vakkuri, E.; Kraus, P.
1998-01-01
Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)
On the S-matrix of type-0 string theory
International Nuclear Information System (INIS)
DeWolfe, Oliver; Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia; Walcher, Johannes
2003-01-01
The recent discovery of non-perturbatively stable two-dimensional string back-grounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors. (author)
Bunched soliton states in weakly coupled sine-Gordon systems
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.
1990-01-01
The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....
A computational chemistry analysis of six unique tautomers of cyromazine, a pesticide used for fly control, was performed with density functional theory (DFT) and canonical second order Møller–Plesset perturbation theory (MP2) methods to gain insight into the contributions of molecular structure to ...
International Nuclear Information System (INIS)
Bovier, A.; Felder, G.
1984-01-01
We use the polymer representation of PHI 4 -quantum field theories to prove an infinite family of correlation inequalities, called ''skeleton inequalities'', for the 2n-point Green's functions. As an application, we show that they imply that Feynman perturbation theory is asymptotic in less than four dimensions. (orig.)
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
The motion of a soliton in a supergravity background configuration is studied. The dynamics of the soliton is desribed by a trajectory in curved N = 2 superspace. For the proposed Langrangian the moments, the constraints and the generators of local supertranslations are displayed. An additional local gauge symmetry is exhibited. Special emphasis is laid on the classical equations of motion. These turn out to be a supersymmetric generalization of Papapetrou's equation of motion for a spinning particle in a gravitational field. (Author)
On the all-order perturbative finiteness of the deformed N=4 SYM theory
International Nuclear Information System (INIS)
Rossi, G.C.; Sokatchev, E.; Stanev, Ya.S.
2006-01-01
We prove that the chiral propagator of the deformed N=4 SYM theory can be made finite to all orders in perturbation theory for any complex value of the deformation parameter. For any such value the set of finite deformed theories can be parametrized by a whole complex function of the coupling constant g. We reveal a new protection mechanism for chiral operators of dimension three. These are obtained by differentiating the Lagrangian with respect to the independent coupling constants. A particular combination of them is a CPO involving only chiral matter. Its all-order form is derived directly from the finiteness condition. The procedure is confirmed perturbatively through order g 6
Radiation perturbation theory in gravity and quantum universe as a hydrogen atom
International Nuclear Information System (INIS)
Pervushin, V.N.
1992-01-01
In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs
A direct derivation of polynomial invariants from perturbative Chern-Simons gauge theory
International Nuclear Information System (INIS)
Ochiai, Tomoshiro
2003-01-01
There have been several methods to show that the expectation values of Wilson loop operators in the SU(N) Chern-Simons gauge theory satisfy the HOMFLY skein relation. We shall give another method from the perturbative method of the SU(N) Chern-Simons gauge theory in the light-cone gauge, which is more direct than already known methods
International Nuclear Information System (INIS)
Schlichting, H.
1985-01-01
We do a linearised mean field calculation in axial gauge for the four dimensional mixed fundamental adjoint SU(2) lattice gauge theory and extract the gluon condensate parameter from the expectation values of the plaquette and the action by subtracting mean field perturbation theory from Monte Carlo data. (orig.)
Generalized perturbation theory based on the method of cyclic characteristics
Energy Technology Data Exchange (ETDEWEB)
Assawaroongruengchot, M.; Marleau, G. [Institut de Genie Nucleaire, Departement de Genie Physique, Ecole Polytechnique de Montreal, 2900 Boul. Edouard-Montpetit, Montreal, Que. H3T 1J4 (Canada)
2006-07-01
A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)
Generalized perturbation theory based on the method of cyclic characteristics
International Nuclear Information System (INIS)
Assawaroongruengchot, M.; Marleau, G.
2006-01-01
A GPT algorithm for estimation of eigenvalues and reaction-rate ratios is developed for the neutron transport problems in 2D fuel assemblies with isotropic scattering. In our study the GPT formulation is based on the integral transport equations. The mathematical relationship between the generalized flux importance and generalized source importance functions is applied to transform the generalized flux importance transport equations into the integro-differential forms. The resulting adjoint and generalized adjoint transport equations are then solved using the method of cyclic characteristics (MOCC). Because of the presence of negative adjoint sources, a biasing/decontamination scheme is applied to make the generalized adjoint functions positive in such a way that it can be used for the multigroup re-balance technique. To demonstrate the efficiency of the algorithms, perturbative calculations are performed on a 17 x 17 PWR lattice. (authors)
Dark-dark-soliton dynamics in two density-coupled Bose-Einstein condensates
Morera, I.; Mateo, A. Muñoz; Polls, A.; Juliá-Díaz, B.
2018-04-01
We study the one-dimensional dynamics of dark-dark solitons in the miscible regime of two density-coupled Bose-Einstein condensates having repulsive interparticle interactions within each condensate (g >0 ). By using an adiabatic perturbation theory in the parameter g12/g , we show that, contrary to the case of two solitons in scalar condensates, the interactions between solitons are attractive when the interparticle interactions between condensates are repulsive g12>0 . As a result, the relative motion of dark solitons with equal chemical potential μ is well approximated by harmonic oscillations of angular frequency wr=(μ /ℏ ) √{(8 /15 ) g12/g } . We also show that, in finite systems, the resonance of this anomalous excitation mode with the spin-density mode of lowest energy gives rise to alternating dynamical instability and stability fringes as a function of the perturbative parameter. In the presence of harmonic trapping (with angular frequency Ω ) the solitons are driven by the superposition of two harmonic motions at a frequency given by w2=(Ω/√{2 }) 2+wr2 . When g12<0 , these two oscillators compete to give rise to an overall effective potential that can be either single well or double well through a pitchfork bifurcation. All our theoretical results are compared with numerical solutions of the Gross-Pitaevskii equation for the dynamics and the Bogoliubov equations for the linear stability. A good agreement is found between them.
Perturbation theory of intermolecular interactions: What is the problem, are there solutions?
International Nuclear Information System (INIS)
Adams, W.H.
1990-01-01
We review the nature of the problem in the framework of Rayleigh-Schroedinger perturbation theory (the polarization approximation) considering explicitly two examples: the interaction of two hydrogen atoms and the interaction of Li with H. We show, in agreement with the work of Claverie and of Morgan and Simon, that the LiH problem is dramatically different from the H 2 problem. In particular, the physical states of LiH are higher in energy than an infinite number of discrete, unphysical states and they are buried in a continuum of unbound, unphysical states, which starts well below the lowest physical state. Clavrie has shown that the perturbation expansion, under these circumstances, is likely to converge to an unphysical state of lower energy than the physical ground state, if it converges at all. We review, also, the application of two classes of exchange perturbation theory to LiH and larger systems. We show that the spectra of three Eisenschitz-London (EL) class, exchange perturbation theories have no continuum of unphysical states overlaying the physical states and no discrete, unphysical states below the lowest physical state. In contrast, the spectra of two Hirschfelder-Silbey class theories differ hardly at all from that found with the polarization approximation. Not one of the EL class of perturbation theories, however, eliminates all of the discrete unphysical states
Use of the Halbach perturbation theory for the multipole design of the ALS storage ring sextupole
Energy Technology Data Exchange (ETDEWEB)
Marks, S. [Lawrence Berkeley Lab., CA (United States)
1995-02-01
The Advanced Light Source (ALS) storage ring sextupole is a unique multi-purpose magnet. It is designed to operate in the primary or sextupole mode and in three auxiliary trim modes: horizontal steering, vertical steering, and skew quadrupole. Klaus Halbach developed a perturbation theory for iron-dominated magnets which provides the basis for this design. Many magnet designers, certainly those who have been exposed to Klaus, are familiar with this theory and have used it for such things as evaluating the effect of assembly alignment errors. The ALS sextupole design process was somewhat novel in its use of the perturbation theory to design essential features of the magnet. In particular, the steering and skew quadrupole functions are produced by violating sextupole symmetry and are thus perturbations of the normal sextupole excitation. The magnet was designed such that all four modes are decoupled and can be excited independently. This paper discusses the use of Halbach`s perturbation theory to design the trim functions and to evaluate the primary asymmetry in the sextupole mode, namely, a gap in the return yoke to accommodate the vacuum chamber. Prototype testing verified all operating modes of the magnet and confirmed the expected performance from calculations based upon the Halbach perturbation theory. A total of 48 sextupole magnets of this design are now installed and operating successfully in the ALS storage ring.
Energy Technology Data Exchange (ETDEWEB)
Abram, I [Centre National d' Etudes des Telecommunications (CNET), 196 Avenue Henri Ravera, F-92220 Bagneux (France)
1999-02-01
Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weakerand weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This
International Nuclear Information System (INIS)
Budgor, A.B.; West, B.J.
1978-01-01
We employ the equivalence between Zwanzig's projection-operator formalism and perturbation theory to demonstrate that the approximate-solution technique of statistical linearization for nonlinear stochastic differential equations corresponds to the lowest-order β truncation in both the consolidated perturbation expansions and in the ''mass operator'' of a renormalized Green's function equation. Other consolidated equations can be obtained by selectively modifying this mass operator. We particularize the results of this paper to the Duffing anharmonic oscillator equation
Absorption line profiles in a moving atmosphere - A single scattering linear perturbation theory
Hays, P. B.; Abreu, V. J.
1989-01-01
An integral equation is derived which linearly relates Doppler perturbations in the spectrum of atmospheric absorption features to the wind system which creates them. The perturbation theory is developed using a single scattering model, which is validated against a multiple scattering calculation. The nature and basic properties of the kernels in the integral equation are examined. It is concluded that the kernels are well behaved and that wind velocity profiles can be recovered using standard inversion techniques.
International Nuclear Information System (INIS)
Fisch, J.M.L.
1990-01-01
The algebraic structure of the antifield-antibracket formalism for both reducible and irreducible gauge theories is clarified. This is done by using the methods of Homological Perturbation Theory (HPT). A crucial ingredient of the construction is the Koszul-Tate complex associated with the stationary surface of the classical extremals. The Koszul-Tate differential acts on the antifields and is graded by the antighost number. It provides a resolution of the algebra A of functions defined on the stationary surface, namely, it is acyclic except at degree zero where its homology group reduces to A. Acyclicity only holds because of the introduction of the ghosts of ghosts and provides an alternative criterion for what is meant by a proper solution of the master equation. The existence of the BRST symmetry follows from the techniques of HPT. The classical Lagrangian BRST cohomology is completely worked out and shown to be isomorphic with the cohomology of the exterior derivative along the gauge orbits on the stationary surface. The algebraic structure of the formalism is identical with the structure of the Hamiltonian BRST construction. The role played there by the constraint surface is played here by the stationary surface. Only elementary quantum questions (general properties of the measure) are addressed. (orig.)
Instantons and large N an introduction to non-perturbative methods in quantum field theory
Marino, Marcos
2015-01-01
This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.
Temperature effects on the Davydov soliton
DEFF Research Database (Denmark)
Cruzeiro, L.; Halding, J.; Christiansen, Peter Leth
1988-01-01
As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum mechanica......As a possible mechanism for energy storage and transport in proteins, Davydov has proposed soliton formation and propagation. In this paper we investigate the stability of Davydov solitons at biological temperatures. From Davydov’s original theory evolution equations are derived quantum...
Spherical perturbations of hairy black holes in designer gravity theories
International Nuclear Information System (INIS)
Battarra, Lorenzo
2012-01-01
We study the spectrum of the scalar l = 0 quasi-normal frequencies of anti-de Sitter hairy black holes in four- and five-dimensional designer gravity theories of the Einstein-scalar type, arising as consistent truncations of N= 8 gauged supergravity. In the dual field theory, such hairy black holes represent thermal states in which the operator corresponding to the bulk scalar field is condensed, due to the multi-trace deformation associated with non-standard boundary conditions. We show that, in a particular class of models, the effective potential describing the vacua of the deformed dual theory can be identified, at large values of the condensate, with the deformation plus the conformal coupling of the condensate to the curvature of the boundary geometry. In this limit, we show that the least damped quasi-normal frequency of the corresponding hairy black holes can be accurately predicted by the curvature of the effective potential describing the field theory at finite entropy. (paper)
Non-perturbative string theories and singular surfaces
International Nuclear Information System (INIS)
Bochicchio, M.
1990-01-01
Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)
Chiral perturbation theory approach to hadronic weak amplitudes
International Nuclear Information System (INIS)
Rafael, E. de
1989-01-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)
Simple perturbative renormalization scheme for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)
1983-06-30
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.
A simple perturbative renormalization scheme for supersymmetric gauge theories
International Nuclear Information System (INIS)
Foda, O.E.
1983-01-01
We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ] - delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)
Relativistic many-body perturbation-theory calculations based on Dirac-Fock-Breit wave functions
International Nuclear Information System (INIS)
Ishikawa, Y.; Quiney, H.M.
1993-01-01
A relativistic many-body perturbation theory based on the Dirac-Fock-Breit wave functions has been developed and implemented by employing analytic basis sets of Gaussian-type functions. The instantaneous Coulomb and low-frequency Breit interactions are treated using a unified formalism in both the construction of the Dirac-Fock-Breit self-consistent-field atomic potential and in the evaluation of many-body perturbation-theory diagrams. The relativistic many-body perturbation-theory calculations have been performed on the helium atom and ions of the helium isoelectronic sequence up to Z=50. The contribution of the low-frequency Breit interaction to the relativistic correlation energy is examined for the helium isoelectronic sequence
Perturbation theory of a symmetric center within Liénard equations
Françoise, Jean-Pierre; Xiao, Dongmei
2015-09-01
In this article, we introduce the use of Lambert function to develop further the global perturbation theory of an integrable Liénard equation which displays a symmetric center. We prove a global Morse lemma for the first integral and deduce the existence of an associated Picard-Fuchs system. We revisit previous contributions to first-order perturbation theory with the help of these new analytic techniques and in particular, we check that the fundamental integrals are linearly independent. The Lambert function allows to find an expansion formula for these integrals. We also study the possibility to develop a higher-order perturbation theory. The algorithm of the successive derivatives works in general in the class of analytic functions on the domain D where the level sets of the first integral are ovals. We end the article with some results on the first integral of a symmetric Liénard equation deduced from the algorithm of successive derivatives.
The method of rigged spaces in singular perturbation theory of self-adjoint operators
Koshmanenko, Volodymyr; Koshmanenko, Nataliia
2016-01-01
This monograph presents the newly developed method of rigged Hilbert spaces as a modern approach in singular perturbation theory. A key notion of this approach is the Lax-Berezansky triple of Hilbert spaces embedded one into another, which specifies the well-known Gelfand topological triple. All kinds of singular interactions described by potentials supported on small sets (like the Dirac δ-potentials, fractals, singular measures, high degree super-singular expressions) admit a rigorous treatment only in terms of the equipped spaces and their scales. The main idea of the method is to use singular perturbations to change inner products in the starting rigged space, and the construction of the perturbed operator by the Berezansky canonical isomorphism (which connects the positive and negative spaces from a new rigged triplet). The approach combines three powerful tools of functional analysis based on the Birman-Krein-Vishik theory of self-adjoint extensions of symmetric operators, the theory of singular quadra...
Soliton structure in crystalline acetanilide
International Nuclear Information System (INIS)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
The theory of self-trapping of amide I vibrational energy in crystalline acetanilide is studied in detail. A spectrum of stationary, self-trapped (soliton) solutions is determined and tested for dynamic stability. Only those solutions for which the amide I energy is concentrated near a single molecule were found to be stable. Exciton modes were found to be unstable to decay into solitons
SIMP model at NNLO in chiral perturbation theory
DEFF Research Database (Denmark)
Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.
2015-01-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles...... with phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....
Do we need Feynman diagrams for higher order perturbation theory?
International Nuclear Information System (INIS)
Jora, Renata
2012-01-01
We compute the two loop and three loop corrections to the beta function for Yang-Mills theories in the background gauge field method and using the background gauge field as the only source. The calculations are based on the separation of the one loop effective potential into zero and positive modes contributions and are entirely analytical. No two or three loop Feynman diagrams are considered in the process.
Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies
International Nuclear Information System (INIS)
Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer; Humboldt-Universitaet, Berlin
2016-04-01
We discuss the determination of the strong coupling α_M_S(m_Z) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α_s(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α_s=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α_s∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Determination of the QCD Λ-parameter and the accuracy of perturbation theory at high energies
Energy Technology Data Exchange (ETDEWEB)
Dalla Brida, Mattia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Fritzsch, Patrick [Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Korzec, Tomasz [Wuppertal Univ. (Germany). Dept. of Physics; Ramos, Alberto [CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Collaboration: ALPHA Collaboration
2016-04-15
We discuss the determination of the strong coupling α{sub MS}(m{sub Z}) or equivalently the QCD Λ-parameter. Its determination requires the use of perturbation theory in α{sub s}(μ) in some scheme, s, and at some energy scale μ. The higher the scale μ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the Λ-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to α{sub s}=0.1 and below. We find that (continuum) perturbation theory is very accurate there, yielding a three percent error in the Λ-parameter, while data around α{sub s}∼0.2 is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.
Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert
2017-07-01
Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
International Nuclear Information System (INIS)
Chowdhury, A.R.; Roy, T.
1980-01-01
We have considered the problem of evaluating the large order estimates of perturbation theory in a quantum field theory with more than one coupling constant. The theory considered is four dimensional and possesses instanton-type solutions. It contains a Boson field coupled with a Fermion through the usual g anti psi psi phi type interaction, along with the self-interaction of the Boson lambda phi 4 . Our analysis reveals a phenomenon not observed in a theory with only one coupling constant. One gets different kinds of behavior in different regions of the (lambda, g) plane. The results are quite encouraging for the application to more realistic field theories
Dynamical generation of non-abelian gauge group via the improved perturbation theory
International Nuclear Information System (INIS)
Kuroki, Tsunehide
2008-01-01
It was suggested that the massive Yang-Mills-Chern-Simons matrix model has three phases and that in one of them a non-Abelian gauge symmetry is dynamically generated. The analysis was at the one-loop level around a classical solution of fuzzy sphere type. We obtain evidences that three phases are indeed realized as nonperturbative vacua by using the improved perturbation theory. It gives a good example that even if we start from a trivial vacuum, the improved perturbation theory around it enables us to observe nontrivial vacua. (author)
New numerical method for iterative or perturbative solution of quantum field theory
International Nuclear Information System (INIS)
Hahn, S.C.; Guralnik, G.S.
1999-01-01
A new computational idea for continuum quantum Field theories is outlined. This approach is based on the lattice source Galerkin methods developed by Garcia, Guralnik and Lawson. The method has many promising features including treating fermions on a relatively symmetric footing with bosons. As a spin-off of the technology developed for 'exact' solutions, the numerical methods used have a special case application to perturbation theory. We are in the process of developing an entirely numerical approach to evaluating graphs to high perturbative order. (authors)
Estimation of high orders of the perturbation theory in quantum mechanics
International Nuclear Information System (INIS)
Seznec, Reynald.
1978-01-01
First of all the simple case of an integral of one variable (zero-dimensional model) is examined to illustrate the methods and concepts used. A system n quantum oscillators 0(n) (spherical model) is then studied. A theory of perturbations around the saddle point dominating the functional integral is developed (theory of perturbations around the instanton). The fluctuation propagator is calculated explicitly. Some properties of the corresponding Feynman diagrams are also investigated. Methods are proposed to generalize the calculations to more complicated potentials. As an example of application the calculations of the first correction to the Lipatovian term are given for the spherical model [fr
The calculation of isotopic partition function ratios by a perturbation theory technique
International Nuclear Information System (INIS)
Singh, G.; Wolfsberg, M.
1975-01-01
The vibrational Hamiltonian of a molecule in the harmonic approximation, H = (1/2) Σ (g/subi/jp/subi/p/subj/ + f/subi/jq/subi/q/subj/), has been divided into a diagonal part (terms with i=j) and an off-diagonal part (inot-equalj), which is regarded as the perturbation. The vibrational partition function of the molecule is then calculated by Schwinger perturbation theory as the partition function of the unperturbed problem, corresponding to a collection of oscillators with frequencies 2πν/subi/' = (f/subi/ig/subi/i)/sup 1 / 2 /, plus perturbation correction terms which are calculated to second order. With the usual assumptions of isotope effect calculations that the molecular translations and rotations are classical and separable from the vibrations, the perturbation formulation of the vibrational partition function is easily transformed into a perturbation theory formulation of (reduced) isotopic partition function ratios. If, for example, the molecular potential function is expressed in terms of the displacements of bond stretches and bond angle bends from their respective equilibrium values, the unperturbed partition function ratio corresponds to the isotope effect expected for noninteracting bond-stretch and bond-angle-bend oscillators. Detailed comparison is made for a number of molecular systems of perturbation theory calculations of partition functions and isotopic partition function ratios with exact calculations carried out by actually obtaining the normal mode vibrational frequencies of the vibrational Hamiltonian. Good agreement is found. The utility of the perturbation theory formulation resides in the fact that it permits one to look at isotope effects in a very simple manner; some demonstrations are given
Duality in a Supersymmetric Gauge Theory From a Perturbative Viewpoint
DEFF Research Database (Denmark)
Ryttov, Thomas A.; Shrock, Robert
2018-01-01
points of the renormalization group emerge in scheme-independent series expansions in the electric and magnetic theories. We further demonstrate that truncations of these series expansions to modest order yield very accurate approximations to these quantities and suggest possible implications......We study duality in N ¼ 1 supersymmetric QCD in the non-Abelian Coulomb phase, order-by-order in scheme-independent series expansions. Using exact results, we show how the dimensions of various fundamental and composite chiral superfields, and the quantities a, c, a=c, and b at superconformal fixed...
The Rise and Fall of the Cosmic String Theory for Cosmological Perturbations
International Nuclear Information System (INIS)
Perivolaropoulos, L.
2005-01-01
The cosmic string theory for cosmological fluctuations is a good example of healthy scientific progress in cosmology. It is a well defined physically motivated model that has been tested by cosmological observations and has been ruled out as a primary source of primordial fluctuations. Until about fifteen years ago, the cosmic string theory of cosmological perturbations provided one of the two physically motivated candidate theories for the generation of primordial perturbations. The cosmological data that appeared during the last decade have been compared with the well defined predictions of the theory and have ruled out cosmic strings as a primary source of primordial cosmological perturbations. Since cosmic strings are predicted to form after inflation in a wide range of microphysical theories (including supersymmetric and fundamental string theories) their observational bounds may serve a source of serious constraints for these theories. This is a pedagogical review of the historical development, the main predictions of the cosmic string theory and the constraints that have been imposed on it by cosmological observations. Recent lensing events that could be attributed to lighter cosmic strings are also discussed
Non-perturbative selection rules in F-theory
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, and I.N.F.N. Sezione di Padova, via Marzolo 8, Padova, I-35131 (Italy); Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität, Philosophenweg 19, Heidelberg, 69120 (Germany)
2015-09-29
We discuss the structure of charged matter couplings in 4-dimensional F-theory compactifications. Charged matter is known to arise from M2-branes wrapping fibral curves on an elliptic or genus-one fibration Y. If a set of fibral curves satisfies a homological relation in the fibre homology, a coupling involving the states can arise without exponential volume suppression due to a splitting and joining of the M2-branes. If the fibral curves only sum to zero in the integral homology of the full fibration, no such coupling is possible. In this case an M2-instanton wrapping a 3-chain bounded by the fibral matter curves can induce a D-term which is volume suppressed. We elucidate the consequences of this pattern for the appearance of massive U(1) symmetries in F-theory and analyse the structure of discrete selection rules in the coupling sector. The weakly coupled analogue of said M2-instantons is worked out to be given by D1-F1 instantons. The generation of an exponentially suppressed F-term requires the formation of half-BPS bound states of M2 and M5-instantons. This effect and its description in terms of fluxed M5-instantons is discussed in a companion paper.
Martin, Alexandre; Torrent, Marc; Caracas, Razvan
2015-03-01
A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).
Revisiting the pion's scalar form factor in chiral perturbation theory
Juttner, Andreas
2012-01-01
The quark-connected and the quark-disconnected Wick contractions contributing to the pion's scalar form factor are computed in the two and in the three flavour chiral effective theory at next-to-leading order. While the quark-disconnected contribution to the form factor itself turns out to be power-counting suppressed its contribution to the scalar radius is of the same order of magnitude as the one of the quark-connected contribution. This result underlines that neglecting quark-disconnected contributions in simulations of lattice QCD can cause significant systematic effects. The technique used to derive these predictions can be applied to a large class of observables relevant for QCD-phenomenology.
Higher order perturbation theory applied to radiative transfer in non-plane-parallel media
International Nuclear Information System (INIS)
Box, M.A.; Polonsky, I.N.; Davis, A.B.
2003-01-01
Radiative transfer in non-plane-parallel media is a very challenging problem, which is currently the subject of concerted efforts to develop computational techniques which may be used to tackle different tasks. In this paper we develop the full formalism for another technique, based on radiative perturbation theory. With this approach, one starts with a plane-parallel 'base model', for which many solution techniques exist, and treat the horizontal variability as a perturbation. We show that under the most logical assumption as to the base model, the first-order perturbation term is zero for domain-average radiation quantities, so that it is necessary to go to higher order terms. This requires the computation of the Green's function. While this task is by no means simple, once the various pieces have been assembled they may be re-used for any number of perturbations--that is, any horizontal variations
International Nuclear Information System (INIS)
Kropaczek, D.J.; Turinsky, P.J.
1990-01-01
Perturbation techniques utilized in reactor analysis have recently been applied in the solution of the in-core nuclear fuel management optimization problem. The use of such methods is motivated by the need to evaluate many times over, the core physics characteristics of loading pattern solutions obtained through an optimization process, which is typically iterative. Perturbation theory provides an efficient alternative to the prohibitively expensive, repetitive solutions of the system few-group neutron diffusion equations required in solving the fuel placement problem. A primary concern in the use of such methods is the control of perturbation errors arising during the fuel shuffling process. First-order accurate models inevitably resort to undue restriction of fuel movement during the optimization process to control these errors. Higher order perturbation theory models have the potential to overcome such limitations, which may result in the identification of local versus global optima. An accurate, computationally efficient reactor physics model based on higher order perturbation theory and geared toward the needs of large-scale in-core fuel management optimization is presented in this paper
Spatiotemporal optical solitons
International Nuclear Information System (INIS)
Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis
2005-01-01
In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)
Kinetic slow mode-type solitons
Directory of Open Access Journals (Sweden)
K. Baumgärtel
2005-01-01
Full Text Available One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25 and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 2003; Stasiewicz, 2004 against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.
Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...
Extended Møller-Plesset perturbation theory for dynamical and static correlations
International Nuclear Information System (INIS)
Tsuchimochi, Takashi; Van Voorhis, Troy
2014-01-01
We present a novel method that appropriately handles both dynamical and static electron correlations in a balanced manner, using a perturbation theory on a spin-extended Hartree-Fock (EHF) wave function reference. While EHF is a suitable candidate for degenerate systems where static correlation is ubiquitous, it is known that most of dynamical correlation is neglected in EHF. In this work, we derive a perturbative correction to a fully spin-projected self-consistent wave function based on second-order Møller-Plesset perturbation theory (MP2). The proposed method efficiently captures the ability of EHF to describe static correlation in degeneracy, combined with MP2's ability to treat dynamical correlation effects. We demonstrate drastic improvements on molecular ground state and excited state potential energy curves and singlet-triplet splitting energies over both EHF and MP2 with similar computational effort to the latter
Perturbation theory for the effective diffusion constant in a medium of random scatterers
International Nuclear Information System (INIS)
Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A
2004-01-01
We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation
International Nuclear Information System (INIS)
Santos, Adimir dos; Borges, A.A.
2000-01-01
A new method for the calculation of sensitivity coefficients is developed. The new method is a combination of two methodologies used for calculating these coefficients, which are the differential and the generalized perturbation theory methods. The proposed method utilizes as integral parameter the average flux in an arbitrary region of the system. Thus, the sensitivity coefficient contains only the component corresponding to the neutron flux. To obtain the new sensitivity coefficient, the derivates of the integral parameter, φ(ξ), with respect to σ are calculated using the perturbation method and the functional derivates of this generic integral parameter with respect to σ and φ are calculated using the differential method. The new method merges the advantages of the differential and generalized perturbation theory methods and eliminates their disadvantages. (author)
International Nuclear Information System (INIS)
Brekke, L.; Imbo, T.D.
1992-01-01
The authors study the inequivalent quantizations of (1 + 1)-dimensional nonlinear sigma models with space manifold S 1 and target manifold X. If x is multiply connected, these models possess topological solitons. After providing a definition of spin and statistics for these solitons and demonstrating a spin-statistics correlation, we give various examples where the solitons can have exotic statistics. In some of these models, the solitons may obey a generalized version of fractional statistics called ambistatistics. In this paper the relevance of these 2d models to the statistics of vortices in (2 + 1)-dimensional spontaneously broken gauge theories is discussed. The authors close with a discussion concerning the extension of our results to higher dimensions
Perturbations and quasi-normal modes of black holes in Einstein-Aether theory
International Nuclear Information System (INIS)
Konoplya, R.A.; Zhidenko, A.
2007-01-01
We develop a new method for calculation of quasi-normal modes of black holes, when the effective potential, which governs black hole perturbations, is known only numerically in some region near the black hole. This method can be applied to perturbations of a wide class of numerical black hole solutions. We apply it to the black holes in the Einstein-Aether theory, a theory where general relativity is coupled to a unit time-like vector field, in order to observe local Lorentz symmetry violation. We found that in the non-reduced Einstein-Aether theory, real oscillation frequency and damping rate of quasi-normal modes are larger than those of Schwarzschild black holes in the Einstein theory
Self-consistent many-body perturbation theory in range-separated density-functional theory
DEFF Research Database (Denmark)
Fromager, Emmanuel; Jensen, Hans Jørgen Aagaard
2008-01-01
effects adequately which, on the other hand, can be described by many-body perturbation theory MBPT. It is therefore of interest to develop a hybrid model which combines the best of both the MBPT and DFT approaches. This can be achieved by splitting the two-electron interaction into long-range and short...
The width of the Δ-resonance at two loop order in baryon chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Gegelia, Jambul, E-mail: j.gegelia@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Tbilisi State University, 0186 Tbilisi, Georgia (United States); Meißner, Ulf-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Siemens, Dmitrij, E-mail: dmitrij.siemens@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yao, De-Liang, E-mail: d.yao@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2016-12-10
We calculate the width of the delta resonance at leading two-loop order in baryon chiral perturbation theory. This gives a correlation between the leading pion–nucleon–delta and pion–delta couplings, which is relevant for the analysis of pion–nucleon scattering and other processes.
Predicting the Solubility of 1,1-Difluoroethane in Polystyrene Using the Perturbed Soft Chain Theory
DEFF Research Database (Denmark)
Pretel, Eduardo; Hong, Seong-Uk
1998-01-01
In this study, the solubility of 1,1-difluoroethane in polystyrene was correlated and predicted using the Perturbed Soft Chain Theory (PSCT) and compared with experimental data from the literature. For correlation, a binary interaction parameter was determined by using experimental solubility data...
A comment on continuous spin representations of the Poincare group and perturbative string theory
Energy Technology Data Exchange (ETDEWEB)
Font, A. [Departamento de Fisica, Centro de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Quevedo, F. [Abdus Salam ICTP, Trieste (Italy); DAMTP/CMS, University of Cambridge, Wilberforce Road, Cambridge (United Kingdom); Theisen, S. [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Golm (Germany)
2014-11-04
We make a simple observation that the massless continuous spin representations of the Poincare group are not present in perturbative string theory constructions. This represents one of the very few model-independent low-energy consequences of these models. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory
Institute of Scientific and Technical Information of China (English)
LI Xiao-Ya; L(U) Xiao-Fu
2006-01-01
In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.
1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1980-01-01
The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived
The sine-Gordon model and the small κ+ region of light- cone perturbation theory
International Nuclear Information System (INIS)
Griffin, P.A.
1992-01-01
The non-perturbative ultraviolet divergence of the sine-Gordon model is used to study the k + = 0 region of light-cone perturbation theory. The light-cone vacuum is shown to be unstable at the non- perturbative β 2 = 8π critical point by a light-cone version of Coleman's variational method. Vacuum bubbles, which are k + = 0 diagram in light-cone field theory and are individually finite and non-vanishing for all β, conspire to generate ultraviolet divergences of the light-cone energy density. The k + = 0 region of momentum also contributed to connected Green's functions: the connected two point function will not diverge, as it should, at the critical point unless diagrams which contribute only at k + = 0 are properly included. This analysis shows in a simple way how the k + = 0 region cannot be ignored even for connected diagrams. This phenomenon is expected to occur in higher dimensional gauge theories starting at two loop order in light-cone perturbation theory
International Nuclear Information System (INIS)
Frank, T.D.
2006-01-01
First-order approximations of time-dependent solutions are determined for stochastic systems perturbed by time-delayed feedback forces. To this end, the theory of delay Fokker-Planck equations is applied in combination with Bayes' theorem. Applications to a time-delayed Ornstein-Uhlenbeck process and the geometric Brownian walk of financial physics are discussed
Xu, Enhua; Zhao, Dongbo; Li, Shuhua
2015-10-13
A multireference second order perturbation theory based on a complete active space configuration interaction (CASCI) function or density matrix renormalized group (DMRG) function has been proposed. This method may be considered as an approximation to the CAS/A approach with the same reference, in which the dynamical correlation is simplified with blocked correlated second order perturbation theory based on the generalized valence bond (GVB) reference (GVB-BCPT2). This method, denoted as CASCI-BCPT2/GVB or DMRG-BCPT2/GVB, is size consistent and has a similar computational cost as the conventional second order perturbation theory (MP2). We have applied it to investigate a number of problems of chemical interest. These problems include bond-breaking potential energy surfaces in four molecules, the spectroscopic constants of six diatomic molecules, the reaction barrier for the automerization of cyclobutadiene, and the energy difference between the monocyclic and bicyclic forms of 2,6-pyridyne. Our test applications demonstrate that CASCI-BCPT2/GVB can provide comparable results with CASPT2 (second order perturbation theory based on the complete active space self-consistent-field wave function) for systems under study. Furthermore, the DMRG-BCPT2/GVB method is applicable to treat strongly correlated systems with large active spaces, which are beyond the capability of CASPT2.
Determination of low-energy constants of Wilson chiral perturbation theory
International Nuclear Information System (INIS)
Herdoiza, Gregorio; Univ. Autonoma de Madrid, Contoblanco; Univ. Autonoma de Madrid; Jansen, Karl; Univ. Cyprus, Nicosia; Michael, Chris; Ottnad, Konstantin; Urbach, Carsten; Univ. Bonn
2013-03-01
By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W 6 ' , W 8 ' and their linear combination c 2 . We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.
Singular perturbation theory mathematical and analytical techniques with applications to engineering
Johnson, RS
2005-01-01
Written in a form that should enable the relatively inexperienced (or new) worker in the field of singular perturbation theory to learn and apply all the essential ideasDesigned as a learning tool. The numerous examples and set exercises are intended to aid this process.
The structure of double scattering in old-fashioned perturbation theory
International Nuclear Information System (INIS)
Caneschi, L.; Halliday, I.G.; Schwimmer, A.
1978-01-01
The authors study in old-fashioned perturbation theory the time orderings that are relevant for the exchange of two Regge poles (ladders). They determine how the phase of double scattering is established in the Mandelstam diagram. The analysis clarifies the intermediate state structure of the multiple-scattering expansion and the role of the unitarity constraints. (Auth.)
The Feynman integrand as a white noise distribution beyond perturbation theory
International Nuclear Information System (INIS)
Grothaus, Martin; Vogel, Anna
2008-01-01
In this note the concepts of path integrals and techniques how to construct them are presented. Here we concentrate on a White Noise approach. Combining White Noise techniques with a generalized time-dependent Doss' formula Feynman integrands are constructed as white noise distributions beyond perturbation theory
DFR Perturbative Quantum Field Theory on Quantum Space Time, and Wick Reduction
Piacitelli, Gherardo
We discuss the perturbative approach à la Dyson to a quantum field theory with nonlocal self-interaction :φ⋆···⋆φ, according to Doplicher, Fredenhagen and Roberts (DFR). In particular, we show that the Wick reduction of nonlocally time-ordered products of Wick monomials can be performed as usual, and we discuss a very simple Dyson diagram.
Meson-baryon scattering in manifestly Lorentz invariant chiral perturbation theory
International Nuclear Information System (INIS)
Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.
2011-01-01
We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.
Aspects of meson-baryon scattering in three- and two-flavor chiral perturbation theory
International Nuclear Information System (INIS)
Mai, Maxim; Bruns, Peter C.; Kubis, Bastian; Meissner, Ulf-G.
2009-01-01
We analyze meson-baryon scattering lengths in the framework of covariant baryon chiral perturbation theory at leading one-loop order. We compute the complete set of matching relations between the dimension-two low-energy constants in the two- and three-flavor formulations of the theory. We derive new two-flavor low-energy theorems for pion-hyperon scattering that can be tested in lattice simulations.
Nucleon electric polarizability in soliton models and the role of the seagull terms
International Nuclear Information System (INIS)
Scoccola, N.N.; Cohen, T.D.
1996-01-01
The full Hamiltonian of the soliton models contains no electric seagull terms. Here it is shown that if one restricts the fields to the collective subspace then electric seagull terms are induced in the effective Hamiltonian. These effective seagull contributions are consistent with gauge invariance. They also reproduce the leading non-analytic behavior of a large N c chiral perturbation theory calculation of the electric polarizability. (orig.)
Dissipation-Managed Bright Soliton in a 1D Bose-Einstein Condensate in an Optical-Lattice Potential
International Nuclear Information System (INIS)
Zhou Zheng; Yu Huiyou; Ao Shengmei; Yan Jiaren
2010-01-01
We study the formation of a dynamically-stabilized dissipation-managed bright soliton in a quasi-one-dimensional Bose-Einstein condensate by including an imaginary three-body recombination loss term and an imaginary linear feeding one in the Gross-Pitaevskii equation, trapped in a shallow optical-lattice potential. Based on the direct approach of perturbation theory for the nonlinear Schroedinger equation, we demonstrate that the height (as well as width) of bright soliton may have little change through selecting experimental parameters. (general)
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
International Nuclear Information System (INIS)
Aichelburg, P.C.; Embacher, F.
1987-01-01
The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)