WorldWideScience

Sample records for solids radiation effects

  1. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  2. Direct and indirect effects of radiation on polar solid solutions

    International Nuclear Information System (INIS)

    Ershov, V.G.; Gaponova, I.S.

    1982-01-01

    Radiation-chemical decomposition of a solute is due to the direct effect of ionizing radiation on it and also to its reaction with radical-ion products of radiolysis of the solution. At low temperature, the movement of the reagents is limited, and thus it is possible to isolate and evaluate the contribution of direct and indirect effects of radiation on the solute. The present paper is devoted to an investigation of the mechanism of formation of radicals from a solute (LiNO 2 ) in a polar solid solution (CH 3 OH) under the effect of γ-radiation

  3. Combination effect of cisplatin and radiation in murine solid tumors

    International Nuclear Information System (INIS)

    Egawa, Shin; Lee, Kan-ei; Ishibashi, Akira; Komiyama, Hiroki; Umezawa, Iwao.

    1986-01-01

    The combination effect of cisplatin and radiation was studied using the two different murine systems of sarcoma 180 and Ehrlich solid tumors. In sarcoma 180 solid tumor the minimal effective doses (MED) of cisplatin and radiation were 19.5 mg/kg and 10375 rad respectively whereas these doses did not show any effective antitumor activity practically. Administration of cisplatin with a doses of 9 mg/kg given 24 hours before radiation (1000 rad), however, showed synergistic antitumor activity. In Ehrlich solid tumor the MED of cisplatin and radiation were 13.8 mg/kg and 2892 rad respectively. Treatment with cisplatin, 3, 6 or 9 mg/kg, given 24 hours before radiation (1000 rad) showed also synergistic antitumor activity also. Sodium thiosulfate (STS) rescue was effective in reducing toxicity of cisplatin on combined use of the drug with radiation. Cell kinetics of sarcoma 180 solid tumor in vivo after the combined treatment was analyzed by computer aided flowcytometry. Accumulation of cells in the radiosensitive G 2 + M phase was observed 18 to 42 hours after a single intraperitoneal administration of 9 mg/kg of cisplatin. It is strongly suggested that this synchronization is one of the mechanisms of the synergism in the combination therapy. (author)

  4. Radiation effects on thermal decomposition of inorganic solids

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.

    1985-01-01

    Radiation effects on the thermal decomposition characteristics of inorganic oxyanions like permanganates, nitrates, zeolites and particularly ammonium perchlorate (AP) have been highlighted.The last compound finds wide application as an oxidizer in solid rocket propellents and although several hundred papers have been published on it during the last 30-40 years, most of which from the point of view of understanding and controlling the decomposition behaviour, there are only a few reports available in this area following the radiation treatment. (author)

  5. Global radiative effects of solid fuel cookstove aerosol emissions

    Science.gov (United States)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  6. Significance of radiation effects in solid radioactive waste

    International Nuclear Information System (INIS)

    Permar, P.H.; McDonell, W.R.

    1980-01-01

    Proposed NRC criteria for disposal of high-level nuclear waste require development of waste packages to contain radionuclide for at least 1000 years, and design of repositories to prevent radionuclide release at an annual rate greater than 1 part in 100,000 of the total activity. The high-level wastes that are now temporarily stored as aqueous salts, sludges, and calcines must be converted to high-integrity solid forms that resist deterioration from radiation and other effects of long-term storage. Spent fuel may be encapsulated for similar long-term storage. Candidate waste forms beside the spent fuel elements themselves, include borosilicate and related glasses, mineral-like crystalline ceramics, concrete formulations, and metal-matrix glass or ceramic composites. these waste forms will sustain damage produced by beta-gamma radiation up to 10 12 rads, by alpha radiation up to 10 19 particles/g, by internal helium generation greater than about 0.1 atom percent, and by the atom transmutations accompanying radioactive decay. Current data indicate that under these conditions the glass forms suffer only minor volume changes, stored energy deposition, and leachability effects. The crystalline ceramics appear susceptible to the potentially more severe alterations accompanying metamictization and natural analogs of candidate materials are being examined to establish their suitability as waste forms. Helium concentrations in the waste forms are generally below thresholds for severe damage in either glass or crystalline ceramics at low temperatures, but microstructural effects are not well characterized. Transmutation effects remain to be established

  7. Solid state radiation dosimetry

    International Nuclear Information System (INIS)

    Moran, P.R.

    1976-01-01

    Important recent developments provide accurate, sensitive, and reliable radiation measurements by using solid state radiation dosimetry methods. A review of the basic phenomena, devices, practical limitations, and categories of solid state methods is presented. The primary focus is upon the general physics underlying radiation measurements with solid state devices

  8. Radiation damage effects in solids special topic volume with invited peer reviewed papers only

    CERN Document Server

    Virk, Hardev Singh

    2013-01-01

    Public interest and concern about radiation damage effects has increased during recent times. Nuclear radiation proved to be a precursor for the study of radiation damage effects in solids. In general, all types of radiation, e.g. X-ray, gamma ray, heavy ions, fission fragments and neutrons produce damage effects in materials. Radiation damage latent tracks in solids find applications in nuclear and elementary particle physics, chemistry, radiobiology, earth sciences, nuclear engineering, and a host of other areas such as nuclear safeguards, virus counting, ion track filters, uranium exploration and archaeology. Radiation dosimetry and reactor shielding also involve concepts based on radiation damage in solids. This special volume consists of ten Chapters, including Review and Research Papers on various topics in this field.Physical scientists known to be investigating the effects of radiation on material were invited to contribute research and review papers on the areas of their specialty. The topics include...

  9. Review of radiation effects in solid-nuclear-waste forms

    International Nuclear Information System (INIS)

    Weber, W.J.

    1981-09-01

    Radiation effects on the stability of high-level nuclear waste (HLW) forms are an important consideration in the development of technology to immobilize high-level radioactive waste because such effects may significantly affect the containment of the radioactive waste. Since the required containment times are long (10 3 to 10 6 years), an understanding of the long-term cumulative effects of radiation damage on the waste forms is essential. Radiation damage of nuclear waste forms can result in changes in volume, leach rate, stored energy, structure/microstructure, and mechanical properties. Any one or combination of these changes might significantly affect the long-term stability of the nuclear waste forms. This report defines the general radiation damage problem in nuclear waste forms, describes the simulation techniques currently available for accelerated testing of nuclear waste forms, and reviews the available data on radiation effects in both glass and ceramic (primarily crystalline) waste forms. 76 references

  10. Second international conference on computer simulation of radiation effects in solids

    International Nuclear Information System (INIS)

    Rubia, T.D. de la; Gilmer, G.H.

    1994-01-01

    A total of 102 abstracts are included, arranged under the following headings: interatomic potentials and theoretical methods, displacement cascades and radiation effects in metals, radiation effects in semiconductors, sputtering and surface processes, cluster-solid interactions, highly charged ions and inelastic effects, and posters (A and B)

  11. The effects of viscosity on sound radiation near solid surfaces

    DEFF Research Database (Denmark)

    Morfey, C.L.; Sorokin, Sergey; Gabard, G.

    2012-01-01

    Although the acoustic analogy developed by Lighthill, Curle, and Ffowcs Williams and Hawkings for sound generation by unsteady flow past solid surfaces is formally exact, it has become accepted practice in aeroacoustics to use an approximate version in which viscous quadrupoles are neglected. Her...

  12. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  13. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  14. Radiation damage of nonmetallic solids

    International Nuclear Information System (INIS)

    Goland, A.N.

    1975-01-01

    A review of data and information on radiation damage in nonmetallic solids is presented. Discussions are included on defects in nonmetals, radiation damage processes in nonmetals, electronic damage processes, physical damage processes, atomic displacement, photochemical damage processes, and ion implantation

  15. Radiation resistance of plastic solid

    International Nuclear Information System (INIS)

    Moriyama, Noboru; Dojiri, Shigeru; Wadachi, Yoshiki

    1985-01-01

    The radiation from nucleides contained in solidified wates have some effects on the degradation of the solidification materials. This report deals with effects of such radiation on the mechanical strength of waste-plastics composites and on the generation of gasses. It is shown that the mechanical strength of polyethylene and polyester solids will not decrease at a total absorbed dose of 10 6 rad, a dose which a low-level waste composite is expected to receive during an infinite period of time. Rather, it increases in the case of polyethylene. The amount of gas generated from degraded polyethylene is about three times as large as that from polyester, namely, about 6 l per 200 l drum can at 10 6 rad. Hydrogen accounts for about 80 % of the total gas generated from polyethylene. On the other hand, the gas from polyester solid mainly contains hydrogen, carbon dioxide, carbon monoxide and methane, with a composition greatly dependent on the type of the waste contained. It is concluded from these results that plastic materials can serve satisfactorily as for as the effects of radiation on their mechanical strength and gas generation are concerned. A more important problem still remaining to be solved is the effects of radiation on the leaching of radioactive nuclides. (Nogami, K.)

  16. Radiation treatment of solid wastes

    International Nuclear Information System (INIS)

    Brenner, W.; Rugg, B.; Rogers, C.

    1977-01-01

    Solid waste is now generally recognized as both a major problem and an underutilized renewable resource for materials and energy recovery. Current methods for dealing with solid wastes are admittedly inadequate for cost effective utilization of the latest material and energy values, especially of cellulose and other organics. Processes for production of energy from organic wastes including incineration, pyrolysis and biodegradation, are receiving considerable attention even though the heating value of dried organic wastes is substantially less than that of fossil fuels. An attractive alternative approach is conversion into chemical feedstocks for use as fuels, intermediates for plastics, rubbers, fibers etc., and in the preparation of foods. Radiation treatment of solid wastes offers attractive possibilities for upgrading the value of such organic waste components as cellulose and putrescible matter. The latter can be cold sterilized by radiation treatments for the production of animal feed supplements. The wide availability of cellulosic wastes warrants their consideration as an alternate feedstock to petrochemicals for fuels, intermediates and synthesis of single cell protein. The crucial step in this developing technology is optimizing the conversion of cellulose to its monomer glucose which can be accomplished by either acid or enzymatic hydrolysis. A combination pretreatment consisting of radiation of hydropulped cellulosic wastes has shown considerable promise in improving the yields of glucose for acid hydrolysis reactions at substantially lower cost than presently used methods such as grinding. Data are presented to compare the effectiveness of this pretreatment with other techniques which have been investigated. (author)

  17. Effect of radiation losses on the compression of hydrogen by imploding solid liners

    International Nuclear Information System (INIS)

    Hussey, T.W.; Kiuttu, G.F.; Degnan, J.H.; Peterkin, R.E.; Smith, G.A.; Turchi, P.J.

    1996-01-01

    Quasispherical solid liner implosions with little or no instability growth have been achieved experimentally. Applications for such implosions include the uniform, shock-free compression of some sort of on-axis target. One proposed means of obtaining such compression is to inject a 1 eV hydrogen plasma working fluid between the liner and the target, and imploding the liner around it. the high initial temperature assures that the sound speed within the liner is always greater than the inner surface implosion velocity of the liner, and the initial density is chosen so that the volume of the working fluid at peak compression is sufficiently large so that perfectly spherical convergence of the liner is not required. One concern with such an approach is that energy losses associated with ionization and radiation will degrade the effective gamma of the compression. To isolate and, therefore, understand these effects the authors have developed a simple zero-dimensional model for the liner implosion that accurately accounts for the shape and thickness of the liner as it implodes and compresses the working fluid. Based on simple considerations they make a crude estimate of the range of initial densities of interest for this technique. They then observe that within this density rage, for the temperatures of interest, the lines are strongly self-absorbed so that the transport of radiation is dominated by bound-free and free-free processes

  18. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  19. Radiation sensitive solid state devices

    International Nuclear Information System (INIS)

    Shannon, J.M.; Ralph, J.E.

    1975-01-01

    A solid state radiation sensitive device is described employing JFETs as the sensitive elements. Two terminal construction is achieved by using a common conductor to capacitively couple to the JFET gate and to one of the source and drain connections. (auth)

  20. Interaction of radiation with solids. Proceedings of 8. International conference

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Zhukova, S.I.; Azarko, I.I.; Dorozhkina, O.L.

    2009-09-01

    In the collection are the papers presented at the 8 International Conference 'Interaction of radiation with solids' and covering the following topics: the processes of interaction of radiation with solids and radiation effects in solids, the interaction of plasma with the surface modification of materials properties, formation, structure and properties of coatings, equipment for radiation technologies. Addressed to researchers and students of natural science faculties.

  1. Interaction of radiation with solids. Proceedings of 11. International conference

    International Nuclear Information System (INIS)

    Anishchik, V.M.

    2015-09-01

    In the collection are the papers presented at the 11 International Conference 'Interaction of radiation with solids' (23-25 September 2015) and covering the following topics: processes of interaction of radiation and plasma with solids, radiation effects in solids, ray methods of formation of nanomaterials and nanostructures, modification of material properties, structure and properties of coatings, equipment for radiation technologies. Addressed to researchers and students of natural science faculties. (authors)

  2. Interaction of radiation with solids. Proceedings of 9. International conference

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Uglov, V.V.; Baran, L.V.; Azarko, I.I.

    2011-09-01

    In the collection are the papers presented at the 9 International Conference 'Interaction of radiation with solids' (20-22 September 2011) and covering the following topics: processes of interaction of radiation with solids, radiation effects in solids, interaction of plasma with the surface, modification of material properties, formation, structure and properties of coatings, equipment for radiation technologies. Addressed to researchers and students of natural science faculties.

  3. Study the Effect of Gamma Radiation on some Solid and Polymeric Materials and Its Possible Applications in Radiation Dosimetry

    International Nuclear Information System (INIS)

    El-Shawadfy, E.R.

    2015-01-01

    Dyed solid materials (films and gels) and dyed solutions dosimeters have wide-spread applications in radiation processing for installation process qualification and routine dose control for both gamma rays and electron beam irradiation. These film dosimeters have been introduced for low- and high-dose monitoring. The introduction of new types of dosimeters is due to the effort of seeking for more reliable, more stable, simpler and cheaper systems as routine dosimeters and/or label dosimeters. The main objective of this work is to study the possibility of preparing dyed solid polymeric materials (dyed films- dyed gels) and dyed solutions, and study the dosimetric studies for the prepared materials. The results obtained in this work can be summarized in the following: Section (1): Deals with the investigation of prepared three dosimetry systems based on Toludine Blue O (TBO) dye, to make them readily usable in high and low-radiation dosimetry applications (e.g. sterilization of medical products, sterilization of pharmaceutical products and polymer modification). This section is divided into three parts: Part I: This part includes the preparation and development of polymeric films for high-dose dosimetry applications, these films are based on poly (vinyl alcohol) dyed with TBO. These flexible plastic film dosimeters are bleached when exposed to gamma-ray photons (i.e. from blue to colorless) at λmax=633 nm. The radiation chemical yield (G-Value) for different concentrations of the dye as well as the dye with additive substances (chloral hydrate) was calculated. It was found that these films are highly stable for long time before and after irradiation under different storage conditions. The response of these films is not affected by humidity change in the range of relative humidity (0-56%). PVA films dyed with TBO are suitable in the dose range from 1-150 kGy. These properties suggest them to be useful for routine and dose mapping in sterilization range of radiation

  4. Solid state radiation detector system

    International Nuclear Information System (INIS)

    1977-01-01

    A solid state radiation flux detector system utilizes a detector element, consisting of a bar of semiconductor having electrical conductance of magnitude dependent upon the magnitude of photon and charged particle flux impinging thereon, and negative feedback circuitry for adjusting the current flow through a light emitting diode to facilitate the addition of optical flux, having a magnitude decreasing in proportion to any increase in the magnitude of radiation (e.g. x-ray) flux incident upon the detector element, whereby the conductance of the detector element is maintained essentially constant. The light emitting diode also illuminates a photodiode to generate a detector output having a stable, highly linear response with time and incident radiation flux changes

  5. Solid state radiative heat pump

    Science.gov (United States)

    Berdahl, P.H.

    1984-09-28

    A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.

  6. 10th International Conference on Computer Simulation of Radiation Effects in Solids - COSIRES 2010. Abstracts and Programme

    International Nuclear Information System (INIS)

    2010-01-01

    COSIRES 2010 is the 10 th International Conference on Computer Simulation of Radiation Effects in Solids. This series of conferences addresses the development and application of advanced computer modeling techniques to the study of phenomena taking place during interaction of energetic particles and clusters (from several eV to some MeV) with solids. Due to the continuous development of new theoretical methodologies and permanent increase of computer power this research field is growing fast. The application of computer simulations leads to a better understanding of basic microscopic processes taking place during and after irradiation. Fundamental understanding of such processes is often not accessible by experimental methods since they occur on very small time and length scales. However, computer simulation techniques are not only used for investigations of basic phenomena but also increasingly applied in the development of modern industrial technologies. Conference topics include, but are not limited to: I) Computer modeling of following phenomena: · Sputtering; · Formation and evolution of radiation defects in materials; · Radiation responses of structural materials important for nuclear and fusion industry; · Irradiation-induced evolution of surface topography and ripple formation; · Ion beam synthesis of thin films and nanostructures; · Ion-, electron and photon-induced physical and chemical effects at surfaces, interfaces and nanostructures; · Irradiation-induced charge redistribution, electron excitation and electron-phonon interactions II) Development of new computer modeling protocols and interatomic potentials for investigation of radiation effects. The conference follows previous meetings that were held in Berlin/Germany (1992), Santa Barbara/USA (1994), Guildford/UK (1996), Okayama/Japan (1998), State College/USA (2000), Dresden/Germany (2002), Helsinki/Finland (2004), Richland/USA (2006) and finally in Beijing/China (2008). Current meeting is

  7. 10th International Conference on Computer Simulation of Radiation Effects in Solids - COSIRES 2010. Abstracts and Programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    COSIRES 2010 is the 10{sup th} International Conference on Computer Simulation of Radiation Effects in Solids. This series of conferences addresses the development and application of advanced computer modeling techniques to the study of phenomena taking place during interaction of energetic particles and clusters (from several eV to some MeV) with solids. Due to the continuous development of new theoretical methodologies and permanent increase of computer power this research field is growing fast. The application of computer simulations leads to a better understanding of basic microscopic processes taking place during and after irradiation. Fundamental understanding of such processes is often not accessible by experimental methods since they occur on very small time and length scales. However, computer simulation techniques are not only used for investigations of basic phenomena but also increasingly applied in the development of modern industrial technologies. Conference topics include, but are not limited to: I) Computer modeling of following phenomena: {center_dot} Sputtering; {center_dot} Formation and evolution of radiation defects in materials; {center_dot} Radiation responses of structural materials important for nuclear and fusion industry; {center_dot} Irradiation-induced evolution of surface topography and ripple formation; {center_dot} Ion beam synthesis of thin films and nanostructures; {center_dot} Ion-, electron and photon-induced physical and chemical effects at surfaces, interfaces and nanostructures; {center_dot} Irradiation-induced charge redistribution, electron excitation and electron-phonon interactions II) Development of new computer modeling protocols and interatomic potentials for investigation of radiation effects. The conference follows previous meetings that were held in Berlin/Germany (1992), Santa Barbara/USA (1994), Guildford/UK (1996), Okayama/Japan (1998), State College/USA (2000), Dresden/Germany (2002), Helsinki/Finland (2004

  8. Effect of radiation quality on radical formation in ion-irradiated solid alanine

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, Hitoshi; Ichikawa, Tsuneki; Yoshida, Hiroshi [Hokkaido Univ., Sapporo (Japan); Namba, Hideki; Taguchi, Mitsumasa; Kojima, Takuji

    1997-03-01

    Radical formation in solid alanine irradiated with H{sup +} and He{sup +} ions of 0.5-3.0 MeV and with heavy ions of hundreds of MeV was examined by the ESR method. Radical yield is constant below a critical fluence, and the yield decreases above the fluence. The critical fluence for the H{sup +} and He{sup +} ions is about 10{sup 12} ions cm{sup -2}, while the critical fluence for the heavy ions is 10{sup 10}-10{sup 11} ions cm{sup -2}. G-value of the radical formation (radicals per 100 eV absorbed dose) is obtained from the constant yield at the low fluences. The G-value depends on the radiation quality. This dependence is ascribed to the difference of local dose in the ion tracks. The fluence-yield curves were simulated with a model assuming cylindrical shape of ion tracks and dose-yield relationship for {gamma}-irradiation. This model well explains the fluence-yield curves for the ion irradiations. (author)

  9. 11. International conference on solid radiation dosimetry

    International Nuclear Information System (INIS)

    Krylova, I.V.

    1996-01-01

    The main problems discussed during the international conference on solid radiation dosimetry which took place in June 1995 in Budapest are briefly considered. These are the basic physical processes, materials applied for dosimetry, special techniques, personnel monitoring, monitoring of environmental effects, large-dose dosimetry, clinic dosimetry, track detector used for dosimetry, dosimetry in archaeology and geology, equipment and technique for dosimetric measurements. The special attention was paid to superlinearity in the TLD-100 (LiF, Mg, Ti) response function when determining doses of gamma radiation, heavy charged particles, low-energy particle fluxes in particular. New theoretical models were considered

  10. Spontaneous radiation emission during penetration of ions in solids

    International Nuclear Information System (INIS)

    Miraglia, J.E.; Pacher, M.C.

    1988-01-01

    In this work, the principal continuum radiative emission processes, which occur during the penetration of ions in solids or gases, are resumed. The characteristics of the following processes are discussed: secondary electron bremsstrahlung (SEB), atomic bremsstrahlung (AB), and internuclear bremsstrahlung (INB). Recent advances of the ion channeling effects in crystal solids on the spontaneous radiative spectra are exposed. (A.C.A.S.) [pt

  11. Calculation of radiation effects in solids by direct numerical solution of the adjoint transport equation

    International Nuclear Information System (INIS)

    Matthes, W.K.

    1998-01-01

    The 'adjoint transport equation in its integro-differential form' is derived for the radiation damage produced by atoms injected into solids. We reduce it to the one-dimensional form and prepare it for a numerical solution by: --discretizing the continuous variables energy, space and direction, --replacing the partial differential quotients by finite differences and --evaluating the collision integral by a double sum. By a proper manipulation of this double sum the adjoint transport equation turns into a (very large) set of linear equations with tridiagonal matrix which can be solved by a special (simple and fast) algorithm. The solution of this set of linear equations contains complete information on a specified damage type (e.g. the energy deposited in a volume V) in terms of the function D(i,E,c,x) which gives the damage produced by all particles generated in a cascade initiated by a particle of type i starting at x with energy E in direction c. It is essential to remark that one calculation gives the damage function D for the complete ranges of the variables {i,E,c and x} (for numerical reasons of course on grid-points in the {E,c,x}-space). This is most useful to applications where a general source-distribution S(i,E,c,x) of particles is given by the experimental setup (e.g. beam-window and and target in proton accelerator work. The beam-protons along their path through the window--or target material generate recoil atoms by elastic collisions or nuclear reactions. These recoil atoms form the particle source S). The total damage produced then is eventually given by: D = (Σ)i ∫ ∫ ∫ S(i, E, c, x)*D(i, E, c, x)*dE*dc*dx A Fortran-77 program running on a PC-486 was written for the overall procedure and applied to some problems

  12. Radiation-chemical aspects of solid state hot atom chemistry

    International Nuclear Information System (INIS)

    Matsuura, T.; Collins, K.E.; Collins, C.H.

    1984-01-01

    The study of nuclear hot atom chemical (NHAC) processes occurring in solids is seriously limited by the lack of adequate methods for directly studying the chemical species containing hot atoms. In the present review the effects of ionizing radiation on parent and non-parent yields from solid state targets is surveyed and qualitative interpretations are given. After a few general remarks of the relationship of radiation chemistry to solid state NHAC, a detailed description of the radiation effects is given (radiation annealing, neutron activation, changes in separable yield). (Auth.)

  13. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Science.gov (United States)

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner

    2017-10-01

    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy -1 ) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the LSS risk estimates used

  14. The effect of ionizing radiation on Plantago ovata (Ispaghula husk) in the solid state

    International Nuclear Information System (INIS)

    Al-Assaf, S.; Parsons, B.J.; Phillips, G.O.

    2005-01-01

    Herbal medicine derived from natural raw materials is widely used in pharmaceutical preparations. Our study concerns the radiation decontamination of ispaghula husk (IH). Due to the high polysaccharide content of IH, it gels over wide range of concentrations. During the course of IH intake by patients, it experiences different degradation conditions such as acidic, alkaline and colonic microflora. Our study was designed to mimic this behaviour by carrying out controlled degradation steps using ionizing radiation and to study the effects on the molecular weight distribution in different solvents. Gel permeation chromatography coupled on line to a multi angle laser light detector (GPC-MALLS) was used in this study. We have shown that the water-soluble extract of the IH was increased from 21% to 47% with increasing degradation of the molecular structure whereas the alkaline solubility increased from 60 to 80%). The weight average molecular weight of the soluble control polysaccharide was higher in the water extract (2.3x106) than the material extracted in alkali (1.6x106), but following degradation as a results of irradiation, the material extracted into the two systems showed similar molecular weight profiles (author)

  15. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  16. The radiation chemistry of organic solids

    International Nuclear Information System (INIS)

    Willard, J.E.

    1987-01-01

    The yields of primary products (ions, electrons, and excited state) produced by exposure of an organic compound to ionizing radiation are essentially independent of whether it is in the gas, liquid, or solid state. However, the nature and yields of the final products are often dependent on the state. This is the result of the effects of density and temperature on the relative probabilities of competing reactions of the primary species and of the radicals which they produce. The density effects are of two types. First, the dose proximity of neighboring molecules in the solid favors reactivation rather than decomposition of excited molecules and favors prompt recombination in the parent cage of the fragments of any that do decompose. Second, since the distance traveled by an energetic electron is depositing its energy is inversely proportional to the density of the medium, the tracks are shorter and the spur radii smaller in the solid than in the liquid (and in great contrast to the gas, where spur effects are negligible). The increased role of intraspur reactions of radicals, electrons, and cations in solids is shown by the results discussed in this chapter

  17. Radiation-Related New Primary Solid Cancers in the Childhood Cancer Survivor Study: Comparative Radiation Dose Response and Modification of Treatment Effects

    International Nuclear Information System (INIS)

    Inskip, Peter D.; Sigurdson, Alice J.; Veiga, Lene; Bhatti, Parveen; Ronckers, Cécile; Rajaraman, Preetha; Boukheris, Houda; Stovall, Marilyn; Smith, Susan; Hammond, Sue; Henderson, Tara O.

    2016-01-01

    Objectives: The majority of childhood cancer patients now achieve long-term survival, but the treatments that cured their malignancy often put them at risk of adverse health outcomes years later. New cancers are among the most serious of these late effects. The aims of this review are to compare and contrast radiation dose–response relationships for new solid cancers in a large cohort of childhood cancer survivors and to discuss interactions among treatment and host factors. Methods: This review is based on previously published site-specific analyses for subsequent primary cancers of the brain, breast, thyroid gland, bone and soft tissue, salivary glands, and skin among 12,268 5-year childhood cancer survivors in the Childhood Cancer Survivor Study. Analyses included tumor site–specific, individual radiation dose reconstruction based on radiation therapy records. Radiation-related second cancer risks were estimated using conditional logistic or Poisson regression models for excess relative risk (ERR). Results: Linear dose–response relationships over a wide range of radiation dose (0-50 Gy) were seen for all cancer sites except the thyroid gland. The steepest slopes occurred for sarcoma, meningioma, and nonmelanoma skin cancer (ERR/Gy > 1.00), with glioma and cancers of the breast and salivary glands forming a second group (ERR/Gy = 0.27-0.36). The relative risk for thyroid cancer increased up to 15-20 Gy and then decreased with increasing dose. The risk of thyroid cancer also was positively associated with chemotherapy, but the chemotherapy effect was not seen among those who also received very high doses of radiation to the thyroid. The excess risk of radiation-related breast cancer was sharply reduced among women who received 5 Gy or more to the ovaries. Conclusions: The results suggest that the effect of high-dose irradiation is consistent with a linear dose–response for most organs, but they also reveal important organ-specific and host

  18. Radiation-Related New Primary Solid Cancers in the Childhood Cancer Survivor Study: Comparative Radiation Dose Response and Modification of Treatment Effects

    Energy Technology Data Exchange (ETDEWEB)

    Inskip, Peter D., E-mail: inskippeter@gmail.com [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Sigurdson, Alice J.; Veiga, Lene [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bhatti, Parveen [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington (United States); Ronckers, Cécile [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Department of Pediatric Oncology, Emma Children' s Hospital/Academic Medical Center, Amsterdam (Netherlands); Rajaraman, Preetha [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Boukheris, Houda [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); The University of Oran School of Medicine (Algeria); Stovall, Marilyn; Smith, Susan [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas (United States); Hammond, Sue [Department of Laboratory Medicine and Pathology, Children' s Hospital and Ohio State University College of Medicine, Columbus, Ohio (United States); Henderson, Tara O. [University of Chicago Department of Pediatrics, Section of Hematology, Oncology and Stem Cell Transplantation, Chicago, Illinois (United States); and others

    2016-03-15

    Objectives: The majority of childhood cancer patients now achieve long-term survival, but the treatments that cured their malignancy often put them at risk of adverse health outcomes years later. New cancers are among the most serious of these late effects. The aims of this review are to compare and contrast radiation dose–response relationships for new solid cancers in a large cohort of childhood cancer survivors and to discuss interactions among treatment and host factors. Methods: This review is based on previously published site-specific analyses for subsequent primary cancers of the brain, breast, thyroid gland, bone and soft tissue, salivary glands, and skin among 12,268 5-year childhood cancer survivors in the Childhood Cancer Survivor Study. Analyses included tumor site–specific, individual radiation dose reconstruction based on radiation therapy records. Radiation-related second cancer risks were estimated using conditional logistic or Poisson regression models for excess relative risk (ERR). Results: Linear dose–response relationships over a wide range of radiation dose (0-50 Gy) were seen for all cancer sites except the thyroid gland. The steepest slopes occurred for sarcoma, meningioma, and nonmelanoma skin cancer (ERR/Gy > 1.00), with glioma and cancers of the breast and salivary glands forming a second group (ERR/Gy = 0.27-0.36). The relative risk for thyroid cancer increased up to 15-20 Gy and then decreased with increasing dose. The risk of thyroid cancer also was positively associated with chemotherapy, but the chemotherapy effect was not seen among those who also received very high doses of radiation to the thyroid. The excess risk of radiation-related breast cancer was sharply reduced among women who received 5 Gy or more to the ovaries. Conclusions: The results suggest that the effect of high-dose irradiation is consistent with a linear dose–response for most organs, but they also reveal important organ-specific and host

  19. Interaction of radiation with solids. Proceedings of the 7. international conference

    International Nuclear Information System (INIS)

    Anishchik, V.M.

    2007-09-01

    The proceedings content more than 100 articles in different fields: interaction of radiation with solids, radiation effects, interaction of plasma with surfaces, modification of properties of materials, creation, structure and properties of coatings, equipment for radiation technologies

  20. Synchrotron radiation in solid state chemistry

    International Nuclear Information System (INIS)

    Ghigna, Paolo; Pin, Sonia; Spinolo, Giorgio; Newton, Mark A.; Chiara Tarantino, Serena; Zema, Michele

    2011-01-01

    An approach towards the reactivity in the solid state is proposed, primarily based on recognizing the crucial role played by the interfacial free energy and by the topotactical relationship between the two reactants, which in turn control formation of the new phase and its spatial and orientational relationships with respect to the parent phases. Using one of the reactants in the form of film, the ratio between bulk and interfacial free energy can be changed, and the effect of interfacial free energy is maximized. The role of Synchrotron Radiation in such an approach is exemplified by using a new developed technique for μ-XANES mapping with nanometric resolution for studying the reactivity of thin films of NiO onto differently oriented Al 2 O 3 single crystals. The result obtained allowed us to speculate about the rate determining step of the NiO+Al 2 O 3 →NiAl 2 O 4 interfacial reaction.

  1. Application of solid dosimeter to radiation control

    International Nuclear Information System (INIS)

    Tsujimoto, Tadashi

    1988-01-01

    Individual exposure dose measuring devices are used to measure the dose of each person in facilities using radiations. Major devices of this type currently used in Japan include the film badge, thermoluminescence dosimeter, portable radiation dosimeter and fluorescent glass dosimeter. All of these devices except the portable radiation dosimeter are of a solid type. Various portable-type spatial dose rate measuring devices, generally called survey meters, are available to determine the spatial distribution of radiations. Major survey meters incorporates an ionization chamber, GM counter tube or scintillation counter, while BF 3 counting tubes are available for neutron measurement. Of these, the scintillation dosimeter is of a solid type. A new scintillation survey meter has recently been developed which incorporated a discrimination bias modulation circuit. Dosimeters incorporating an ionization chamber or a GM counter tube are generally used as portable alarms. Recently, a new solid-type alarm has been developed which incorporates a solicon radiation detector. Microcomputers are also used for self-diagnosis, data processing, automatic calibration, etc. (Nogami, K.)

  2. Interaction of radiation with solids. Proceedings of the 10th international conference

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Uglov, V.V.; Baran, L.V.; Azarko, I.I.

    2013-09-01

    In the collection are the papers presented at the 10 International Conference 'Interaction of radiation with solids' (24-27 September 2013) and covering the following topics: processes of interaction of radiation with solids, radiation effects in solids, interaction of plasma with the surface, modification of material properties, formation, structure and properties of coatings, equipment for radiation technologies. Addressed to researchers and students of natural science faculties.

  3. Radiation effects

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    An important cause of deterioration in superconducting magnets intended for high-energy physics and fusion-reactor applications is radiation damage. The present chapter deals chiefly with the effects of electron, proton, gamma and neutron irradiation on the properties of stabilized Ti-Nb-base composite superconductors. The authors examine the particle-accelerator environment, electron irradiation of Ti-Nb superconductor, proton irradiation of Ti-Nb superconductor and its stabilizer, and deuteron irradiation of Ti-Nb superconductor. A section discussing the fusion reactor environment in general is presented, and the two principal classes of fusion reactor based on the magnetic-confinement concept, namely the tokamak and the mirrormachine are examined. Also discussed is neutron irradiation of Cu/TiNb composite superconductors and critical current density of neutronirradiated Ti-Nb. Finally, radiation damage to stabilizer and insulating materials is described

  4. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    International Nuclear Information System (INIS)

    Alkasasbeh, Hamzeh Taha; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan

    2015-01-01

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N R , the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed

  5. Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid

    Energy Technology Data Exchange (ETDEWEB)

    Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com [Futures and Trends Research Group, Faculty of Industrial Science and Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Tahar, Razman Mat [Faculty of Technology, Universiti Malaysia Pahang, 26300 UMP Kuantan, Pahang (Malaysia); Nazar, Roslinda [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Pop, Ioan [Department of Mathematics, Babeş-Bolyai University, R-400084 Cluj-Napoca (Romania)

    2015-02-03

    In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.

  6. Effect of molecular weight on radiation chemical degradation yield of chain scission of γ-irradiated chitosan in solid state and in aqueous solution

    International Nuclear Information System (INIS)

    Tahtat, Djamel; Mahlous, Mohamed; Benamer, Samah; Nacer Khodja, Assia; Larbi Youcef, Souad

    2012-01-01

    Chitosan A 1 , A 2 and A 3 with molecular weight of 471, 207 and 100 kDa respectively, produced from squid pen chitin was degraded by gamma rays in the solid state and in aqueous solution with various doses in air at ambient temperature. Effect of molecular weight on radiation chemical degradation yield of chain scission and degradation rate constants of γ-irradiated chitosan in solid state and in aqueous solution was investigated. The radiation chemical degradation yield G (s) and degradation rate values were calculated. The molecular weight changes were monitored by capillary viscometry method and the chemical structure changes were followed by UV analysis. The results showed that, the degradation of chitosan was faster in solution, than in solid state. The values of G (s) in solid state and in aqueous solution were respectively 1.1×10 −8 mol/J and 0.074×10 −7 mol/J for A 1 , 4.42×10 −8 mol/J and 0.28×10 −7 mol/J for A 2 and 6.08×10 −8 mol/J and 0.38×10 −7 mol/J for A 3 . Degradation rate constants values ranged from 0.41×10 −5 to 2.1×10 −5 kGy −1 in solid state, whereas in solution they ranged from 13×10 −5 to 68×10 −5 kGy −1 . The chitosan A 3 was more sensitive to radiolysis than A 1 and A 2 . The chain scission yield, G (s) and degradation rate constants seems to be greatly influenced by the initial molecular weight of the chitosan. Structural changes in irradiated chitosan are revealed by the apparition of absorption peaks at 261 and 295 nm, which could be attributed to the formation of carbonyl groups. In both conditions the peak intensity was higher in chitosan A 3 than in A 1 and A 2 , the oxidative products decreased with increasing molecular weight of chitosan. - Highlights: ► We investigated the effects of MW on G (s) value of γ-irradiated chitosan in solid and aqueous state. ► Chitosan with low molecular weight was more sensitive to radiolysis than high molecular weight. ► G (s) value and degradation rate

  7. Measurement of Thermal Radiation Properties of Solids

    Science.gov (United States)

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  8. Antitumor Effect of Selenium and Modified Pectin Nano Particles and Gamma Radiation on Ehrilch Solid Tumor in Female Mice

    International Nuclear Information System (INIS)

    Mansour, S. Z.; Anis, L.M.; EI- Batal, A.I.

    2010-01-01

    Selenium nano particle (Nano- Se) is a novel Se species with novel biological activities with low toxicity. The aim of the present work was to evaluate the antitumor activity of a novel Nano- Se compound with or without gamma irradiation of female mice. Selenium size- controlled Nano-Se was prepared by a simple method by adding modified pectin to the selenious acid and ascorbic acid. The antitumor activity of Selenium and Modified Pectin Nano Particles (Se-Mp- NPs) were evaluated against Ehrilch ascites carcinoma (In vitro) and Ehrilch solid tumor model (In vivo). The antioxidant states of the novel compound were assessed measuring parameters in blood and tumor tissue of female mice. Malonaldehydoyl (MDA) end product of lipid peroxidation was evaluated in plasma and tumor tissue. Glutathione -S- transferase (GST) and cytochrome P450 (Cyto P450) were determined in tumor tissue homogenate. Tumor necrosis factor alpha (TNF- a) concentration and interleukin 10 (IL- 10) concentrations was evaluated in plasma of female mice. The effect of tumor inoculation and different treatments on liver enzymes (ALT and AST) and kidney Function (urea and creatinine) were detected in the plasma of animals. Apoptosis was shown and estimated in tumor tissue of animals histopathological of tumor in different groups of mice were examined. Ehrilch solid tumor induced a significant increase in MDA content, GSH-Px and GST activities level and in the amount of metabolites of CYP 450. Moreover, a significant decrease was observed in GSH content, SOD activity level in the tumor tissue, INF- a concentration, IL- 10 concentration in the plasma. Also, a significant alteration in kidney and liver functions was occurred as compared to control group. The results showed a significant antitumor activity of selenium and Modified Pectin Nano Particles (Se-Mp- NPs) at the concentration 2.25 μg / ml was 70%

  9. Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948-2008.

    Directory of Open Access Journals (Sweden)

    Mikhail Sokolnikov

    Full Text Available Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948-2008. The cohort of Mayak Production Association (PA workers in Russia offers a unique opportunity to study the effects of prolonged low dose rate external gamma exposures and exposure to plutonium in a working age population. We examined radiation effects on the risk of mortality from solid cancers excluding sites of primary plutonium deposition (lung, liver, and bone surface among 25,757 workers who were first employed in 1948-1982. During the period 1948-2008, there were 1,825 deaths from cancers other than lung, liver and bone. Using colon dose as a representative external dose, a linear dose response model described the data well. The excess relative risk per Gray for external gamma exposure was 0.16 (95% CI: 0.07 - 0.26 when unadjusted for plutonium exposure and 0.12 (95% CI 0.03 - 0.21 when adjusted for plutonium dose and monitoring status. There was no significant effect modification by sex or attained age. Plutonium exposure was not significantly associated with the group of cancers analyzed after adjusting for monitoring status. Site-specific risks were uncertainly estimated but positive for 13 of the 15 sites evaluated with a statistically significant estimate only for esophageal cancer. Comparison with estimates based on the acute exposures in atomic bomb survivors suggests that the excess relative risk per Gray for prolonged external exposure in Mayak workers may be lower than that for acute exposure but, given the uncertainties, the possibility of equal effects cannot be dismissed.

  10. Elastic scattering of gamma radiation in solids

    International Nuclear Information System (INIS)

    Goncalves, O.D.

    1987-01-01

    The elastic scattering of gamma rays in solids is studied: Rayleigh scattering as well as Bragg scattering in Laue geometries. We measured Rayleigh cross sections for U, Pb, Pt, W, Sn, Ag, Mo, Cd, Zn, and Cu with gamma energies ranging from 60 to 660 KeV and angles between 5 0 and 140 0 . The experimental data are compared with form factor theories and second order perturbation theories and the limits of validity of both are established. In the 60 KeV experiment, a competition between Rayleigh and Bragg effects is found in the region of low momentum transfer. The Bragg experiments were performed using the gamma ray diffractometer from the Hahn-Meitner Institut (Berlin) with gammas of 317 KeV and angles up to 2 0 . In particular, we studied the effect of annealing in nearly perfect Czochralski Silicon crystals with high perfection in the crystallographic structure. The results are compared with Kinematical and Dynamical theories. (author)

  11. Radiation effects on video imagers

    International Nuclear Information System (INIS)

    Yates, G.J.; Bujnosek, J.J.; Jaramillo, S.A.; Walton, R.B.; Martinez, T.M.; Black, J.P.

    1985-01-01

    Radiation sensitivity of several photoconductive, photoemissive, and solid state silicon-based video imagers was measured by analyzing stored photocharge induced by irradiation with continuous and pulsed sources of high energy photons and neutrons. Transient effects as functions of absorbed dose, dose rate, fluences, and ionizing particle energy are presented

  12. Radiation effects at ISABELLE

    International Nuclear Information System (INIS)

    Sanger, P.A.; Danby, G.T.

    1975-01-01

    Shielding, radiation damage, and radiation heating at the planned ISABELLE storage rings were considered. Radiation shielding studies were reviewed and were found to be adequate for present day dosage limits. Radiation damage could be encountered in some extreme cases, but is not expected to limit the performance of the superconducting magnets. Experiments to study the effect of radiation heating on actual magnets are recommended

  13. Proceedings of the Fourth international conference 'Interaction of radiation with solids'

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Zhukova, S.I.; Azarko, I.I.; Prikhod'ko, Zh.L.

    2001-10-01

    The 132 collected papers form the Proceedings of the International Conference 'Interaction of Radiation with Solids'. This Conference is the fourth forum biennially gathering in Minsk the specialists from different countries. The scope of the problems considered at the Conference is widening steadily from year to year including the recent results and most advanced leads in the field of radiation physics of condensed matter. In the proceedings consideration is being given to 'Processes of ion interaction with solids', 'Plasma interaction with surface' and 'Radiation effects in solids'

  14. 100 years of solid state dosimetry and radiation protection dosimetry

    International Nuclear Information System (INIS)

    Bartlett, David T.

    2008-01-01

    The use of solid state detectors in radiation dosimetry has passed its 100th anniversary. The major applications of these detectors in radiation dosimetry have been in personal dosimetry, retrospective dosimetry, dating, medical dosimetry, the characterization of radiation fields, and also in microdosimetry and radiobiology research. In this introductory paper for the 15th International Conference, I shall speak of the history of solid state dosimetry and of the radiation measurement quantities that developed at the same time, mention some landmark developments in detectors and applications, speak a bit more about dosimetry and measurement quantities, and briefly look at the past and future

  15. Radiation effects and radiation risks

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.

    1988-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig./MG) With 8 maps in appendix [de

  16. Radiation damages in solids and tissues

    International Nuclear Information System (INIS)

    Cevc, P.; Kogovsek, F.; Kanduser, A.; Peternelj, M.; Skaleric, U.; Funduk, N.

    1977-01-01

    In submitted research work we have studied radiation damages in ferroelectric crystals and application of ferroelectric crystals. Studying the radiation damages we have introduced new technique of EPR measurements under high hydrostatic pressure, that will enable us to obtain additional data on crystal lattice dynamics. A change of piroelectric coefficient with high radiation doses in dopped TGS has been measured also

  17. Solid radiation curable polyene compositions containing liquid polythiols and solid styrene-allyl copolymer based polyenes

    International Nuclear Information System (INIS)

    Morgan, C.R.

    1977-01-01

    Novel styrene-allyl alcohol copolymer based solid polyene compositions which when mixed with liquid polythiols can form solid curable polyene-polythiol systems are claimed. These solid polyenes, containing at least two reactive carbon-to-carbon unsaturated bonds, are urethane or ester derivatives of styrene-allyl alcohol copolymers. The solid polyenes are prepared by treating the hydroxyl groups of a styrene-allyl alcohol copolymer with a reactive unsaturated isocyanate, e.g., allyl isocyanate or a reactive unsaturated carboxylic acid, e.g., acrylic acid. Upon exposure to a free radical generator, e.g., actinic radiation, the solid polyene-polythiol compositions cure to solid, insoluble, chemically resistant, cross-linked polythioether products. Since the solid polyene-liquid polythiol composition can be cured in a solid state, such a curable system finds particular use in preparation of coatings, imaged surfaces such as photoresists, particularly solder-resistant photoresists, printing plates, etc

  18. Investigation of radiation defects in solids using the EXAFS method

    International Nuclear Information System (INIS)

    Eritsyan, G.N.

    1983-01-01

    The exafs method is proposed as a more informative, universal one to investigate the radiation defects in solids. The successful results as obtained by the author using the synchrotron radiation source are reported for the first time. The measurements were carried out in GaAsP crystals irradiated with 50 MeV electrons

  19. Classical theory of thermal radiation from a solid.

    Science.gov (United States)

    Guo, Wei

    2016-06-01

    In this work, a solid at a finite temperature is modeled as an ensemble of identical atoms, each of which moves around a lattice site inside an isotropic harmonic potential. The motion of one such atom is studied first. It is found that the atom moves like a time-dependent current density and, thus, can emit electromagnetic radiation. Since all the atoms are identical, they can radiate, too. The resultant radiation from the atoms is the familiar thermal radiation from the solid. After its general expression is obtained, the intensity of the thermal radiation is discussed for its properties, and specifically calculated in the low-temperature limit. Both atomic motion and radiation are formulated in the classical domain.

  20. Optimization of combustion process for radiation-treated solid fuels in dust state

    International Nuclear Information System (INIS)

    Askarova, A.S.; Bajdullaeva, G.E.

    1997-01-01

    Computation experiment on combustion of solid radiation-treated fuel in burning chamber of boiler at Pavlodar thermal electric plant is carried out. Velocity, temperature distribution and concentration of combustion products by height of chamber are received. Analysis of received results shows that radiation treatment of fuels exerts substantial effect on egress parameters of thermal electric plant. It is shown, that radiation treatment allows to improve effectiveness of boiler device and reduce of harmful substances discharge in atmosphere. Results of conducted numerical experiments allow to create complete methods of solid fuel combustion with high moisture and ashiness

  1. Generation of electromagnetic radiation in laser action with solids

    International Nuclear Information System (INIS)

    Aref'ev, K.P.; Vorob'ev, S.A.; Kuznetsov, M.F.; Mastov, Sh.R.; Pogrebnyak, A.D.

    1984-01-01

    A new effect of electromagnetic pulse generation in solids, exposed to laser irradiation was revealed experimentally. The ruby laser with 694.36 nm wave length was used in the experiments. Monocrystals of Si, GaAs, KCl, LiF, polycrystals of Cu, Al, metals, the rocks-calcite, marble, natural quartz, feldspar - were used as samples. The effect of electromagnetic pulse generation, which is characterized by sharp threshold dependence on the density of laser radiation power, as well as on the type of material and its characteristics was observed for each material. The possibility of using the method of electromagnetic pulse detection during laser irradiation for evaluation of defectiveness degree and strength characteristics of investigated materials was shown

  2. Effect of Ganoderma lucidum (G. lucidum) on the Liver of Mice Bearing Ehrlich Solid Tumor (EST) and Exposed to γ-Radiation

    International Nuclear Information System (INIS)

    Ibrahim, S.I.; El-Kabany, H.

    2013-01-01

    The present study was performed to investigate the antitumor and radio sensitizing efficacy of Ganodarma lucidum (G. lucidum) and to evaluate its potential to improve hepatic dysfunction in Ehrlich solid tumor (EST) bearing mice. G. lucidum (100 mg/Kg body weight) was administered orally to EST bearing mice for 15 days before and 15 days after tumor inoculation. Irradiation was carried out the 8th day of tumor inoculation when the diameter of the tumor reached approximately 10 mm. Mice were exposed to fractionated doses of whole body γ-radiation (3x2Gy) at two days interval to attain a total dose of 6 Gy. Mice were divided into 6 groups (15 mice in each group) as follows: normal control, mice treated with G. lucidum for 30 days, EST bearing mice, EST bearing mice exposed to fractionated doses of γ-radiation (2Gy x 3), EST bearing mice treated with G. lucidum for 15 days before and 15 days after tumor inoculation and EST bearing mice received combined treatment radiation and G. lucidum. Five mice from each group were sacrificed, after 18 hr fasting after the last dose of G. lucidum treatment. Blood was collected, liver and tumor were removed for biochemical and histopathological studies. The remaining animals were observed for recording survival percentage and tumor size. In vitro study on Ehrlich Ascites Carcinoma cells showed that the percentage of nonviable cells (NVC%) increase with increasing G. lucidum concentration. The results revealed also that treatment of EST bearing mice with G. lucidum and/or γ- radiation increased the survivability and decrease the tumor size as compared to EST group. The biochemical analysis for EST bearing group recorded an elevation in the activities of lactate dehydrogenase (LDH), asparta amino transferase (AST) and alanine amino transferase (ALT) in the serum. Also, there was an elevation in the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, accompanied by a decrease in superoxide dismutase (SOD

  3. Effects of vacuum ultraviolet radiation on deoxyoligonucleotides in solids in the wavelength region around and above ionization potential -with special reference to the chain scission

    International Nuclear Information System (INIS)

    Ito, Takashi; Saito, Mikio

    1991-01-01

    Photoproducts arising from exposure of deoxyoligonucleotides of adenine, d(pA) n (n = 2 ∼ 5), as solids to vacuum-u.v. radiation at the wavelengths around and above ionization potential were analyzed by thin-layer chromatography. The main decomposition products were identified as adenine and all possible oligonucleotide and mononucleotide components for k satisfying n - k ≥ 1. These results and previous findings on the related compounds were discussed with special reference to the rules on the induction of chain scission by superexcitation. (author)

  4. Space radiation effects

    International Nuclear Information System (INIS)

    Li Shiqing; Yan Heping

    1995-01-01

    The authors briefly discusses the radiation environment in near-earth space and it's influences on material, and electronic devices using in space airship, also, the research developments in space radiation effects are introduced

  5. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented

  6. Radiation damage in nonmetallic solids under dense electronic excitation

    International Nuclear Information System (INIS)

    Itoh, Noriaki; Tanimura, Katsumi; Nakai, Yasuo

    1992-01-01

    Basic processes of radiation damage of insulators by dense electronic excitation are reviewed. First it is pointed out that electronic excitation of nonmetallic solids produces the self-trapped excitons and defect-related metastable states having relatively long lifetimes, and that the excitation of these metastable states, produces stable defects. The effects of irradiation with heavy ions, including track registration, are surveyed on the basis of the microscopic studies. It is pointed out also that the excitation of the metastable states plays a role in laser-induced damage at relatively low fluences, while the laser damage has been reported to be governed by heating of free electrons produced by multiphoton excitation. Difference in the contributions of the excitation of metastable defects to laser-induced damage of surfaces, or laser ablation, and laser-induced bulk damage is stressed. (orig.)

  7. Biological radiation effects

    International Nuclear Information System (INIS)

    Gomes, R.A.

    1976-01-01

    The stages of processes leading to radiation damage are studied, as well as, the direct and indirect mechanics of its production. The radiation effects on nucleic acid and protein macro moleculas are treated. The physical and chemical factors that modify radiosensibility are analysed, in particular the oxygen effects, the sensibilization by analogues of nitrogen bases, post-effects, chemical protection and inherent cell factors. Consideration is given to restoration processes by excision of injured fragments, the bloching of the excision restoration processes, the restoration of lesions caused by ionizing radiations and to the restoration by genetic recombination. Referring to somatic effects of radiation, the early ones and the acute syndrome of radiation are discussed. The difference of radiosensibility observed in mammalian cells and main observable alterations in tissues and organs are commented. Referring to delayed radiation effects, carcinogeneses, alterations of life span, effects on growth and development, as well as localized effects, are also discussed [pt

  8. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  9. Electronic radiative capture in solid targets

    International Nuclear Information System (INIS)

    Pregliasco, R.; Nemirovsky, I.; Suarez, S.

    1988-01-01

    X-ray spectra originating from electron radiative capture from aluminium target to K shell on F 9+ and F 8+ beams with 115MeV are studied. Using an electrostatic analyzer, it was obtained the charge fractions Fi to aluminiun thicknesses of 39 and 58 micrograms/cm 2 . These thicknesses are determined by the stopping power of alpha particles. (A.C.A.S.) [pt

  10. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1963-08-15

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  11. Radiation Damage in Reactor Materials. Part of the Proceedings of the Symposium on Radiation Damage in Solids and Reactor Materials

    International Nuclear Information System (INIS)

    1963-01-01

    Radiation damage has presented a new design parameter for the selection of materials to be used in fuel and cladding elements, moderators, structural components and pressure vessels in nuclear reactors. The severe and novel requirements for certain optimum combinations of physical and nuclear properties have emphasized the need for a better understanding of the basic mechanisms of radiation damage. This knowledge is not only essential for progress in the field of nuclear energy, but has direct applications to space technology and semi-conductor research as well. The IAEA, as part of its programme of promoting nuclear technology, therefore convened the Symposium on Radiation Damage in Solids and Reactor Materials, 7-11 May 1962. At the invitation of, and with generous material assistance from, the Government of Italy, the Symposium was held at Venice. The Symposium was primarily concerned with the investigation of the fundamental processes of radiation that underlie the behaviour of metals, alloys and ceramics that are actually useful or potentially useful reactor materials. Two sessions were devoted to studies of irradiation effects on simple metals, as these effects are easiest to interpret. Other topics included general theory, alloys, fissionable and moderator materials and special experimental techniques for radiation damage studies. The properties influenced by irradiation which were of main concern were those of primary importance to the behaviour of solids as reactor materials (e. g. dimensional stability, phase transformation, radiation hardening, fracture, fission-gas escape from uranium and its compounds). Other properties, such as optical, electrical and magnetic properties, and effects on semiconductors, ionic and other non-metallic crystals are also of interest in that these studies can increase our knowledge of the mechanism of radiation damage in solids and provide a tool for investigation into the physics of the solid state by offering a means of

  12. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  13. Radiation sterilization of ephedrine in the solid state

    International Nuclear Information System (INIS)

    Dettlaff, K.; Marciniec, B.; Bednarek, B.; Tezyk, A.; Wachowiak, R.; Naskrent, M.

    2008-01-01

    The effects of the e-beam ionising radiation of energy 9.96 MeV in doses 25-800 kGy on the stability of solid ephedrine hydrochloride (1R,2S)-(-)-2-methylamino -1 -phenyl -1 -propanol hydrochloride) have been studied. These effects have been observed using the following analytical methods: organoleptic (form, colour, smell, clarity of solution), scanning electron microscope SEM, pH measurement, chirality and water content measurement (Karl Fischer method), spectrometric methods (UV, FT-IR, EPR), chromatography (TLC), and combined chromatography (TLC-UV, GC-MS). Even the standard sterilisation dose of 25 kGy has been found to cause a change in colour from white to pale yellow, the appearance of free radicals in the concentration of 3.05 x 10 15 spin g -1 , and about 1% loss of the content. The effects of higher doses 50-800 kGy have shown that radiodegradation degree of the compound is proportional to the dose applied. The main product of radiodegradation, formed at a yield of G = 17.17 x 10 -7 mol J -1 , has been identified as 2-methylamino -1 phenyl -1 -propanone (methcathinone, ephedrone), a psychoactive compound of the activity similar to that of amphetamine. For the above reasons ephedrine hydrochloride can not be subjected to radiative sterilisation with a dose of 25 kGy, however, assuming sufficiently low microbiological contamination of the initial substance, lower doses could be probably used for sterilisation purposes. Our results have not confirmed the earlier reports from 1970s on the resistance of ephedrine to ionising radiation in doses up to 60 kGy. (authors)

  14. Radiation Therapy Side Effects

    Science.gov (United States)

    Radiation therapy has side effects because it not only kills or slows the growth of cancer cells, it can also affect nearby healthy cells. Many people who get radiation therapy experience fatigue. Other side effects depend on the part of the body that is being treated. Learn more about possible side effects.

  15. Radiation sterilization of vitamins - studies on the radiolysis and radiation protection of vitamins in aqueous systems and the solid state

    International Nuclear Information System (INIS)

    Rao, K.N.; Moorthy, P.N.; Kishore, K.

    1978-01-01

    Radiation sterilization of pharmaceutical products may cause their radiation degradation and loss in their potency. Radiation degradation may even give rise to new products whose effects on the organisms could be different from the parent substances. Extent of radiolytic decomposition of vitamins thiamine, nicotinamide, riboflavine and pyridoxine was studied under controlled conditions so that either only the hydrated electrons (esub(aq)) or only hydrogen atom (H) and hydroxyl radical react with these molecules. Experiments were also conducted in which scavengers for these species were added to reduce radiolytic degradation of the vitamins. It was found that irradiation of vitamins in the frozen aqueous state and with addition of glucose reduces radiolytic degradation and their irradiation in dry solid state causes no detectable damage. The last finding indicates that the best method for radiation sterilization of vitamin preparations may be to irradiate the components in the dry solid state and then compound them together. (M.G.B.)

  16. Radiation effects on polyaniline

    International Nuclear Information System (INIS)

    Oki, Yuichi; Kondo, Kenjiro; Suzuki, Takenori; Numajiri, Masaharu; Miura, Taichi; Doi, Shuji; Ohnishi, Toshihiro.

    1992-01-01

    Effects of γ-irradiation on electrical conductivity of polyaniline were investigated. A drastic increase of the conductivity due to radiation-induced doping was observed in combined systems of polyaniline films and halogen-containing polymers. This effect can be applied to measure an integrated radiation dose. (author)

  17. Radiation effects in space

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs

  18. Radiation effects and radioprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, R.K., E-mail: dr_rajendra_purohit@yahoo.co.in [Radiation Biology Laboratory, Department of Zoology, Govt. Dungar College, Bikaner (India); Bugalia, Saroj [Department of Zoology, S.K. Kalyan College, Sikar (India); Dakshene, Monika [Department of Chemistry, Govt. College, Kota (India)

    2012-07-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  19. Radiation effects and radioprotectors

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bugalia, Saroj; Dakshene, Monika

    2012-01-01

    Radiation exposure causes damage to biological systems and these damages are mediated by the generation of free radicals and reactive oxygen species targeting vital cellular components such as DNA and membranes. DNA repair systems and the endogenous cellular biochemical defense mechanisms against reactive oxygen species and antioxidants enzymes like reduced Glutathione (GSH), Superoxide dismutase, Glutathione peroxidase catalase etc. fail upon exposures to higher as well as chronic radiation doses leading to alterations in cell functions, cell death or mutations. Radioprotectors prevent these alterations and protect cells and tissues from the deleterious effects of radiations. Radioprotectors are of great importance due to their possible and potential application during planned radiation exposures such as radiotherapy, diagnostic scanning, clean up operations in nuclear accidents, space expeditions etc. and Unplanned radiations exposures such as accidents in nuclear industry, nuclear terrorism, natural background radiation etc. Many of the available synthetic radioprotectors are toxic to mammalian system at doses required to be effective as radioprotector. Increasing uses of ionizing radiation have drawn the attention of many radiobiologists towards their undesired side effects produced in various tissues and for modifying them to facilitate the beneficial uses of radiation. Modification of radiation response is obtained by means of chemical substances that can significantly decrease the magnitude of response when present in a biological system during irradiation. Radioprotectors are chemicals that modify a cell's response to radiation. Radioprotectors are drugs that protect normal (non cancerous) cells from the damage caused by radiation therapy. These agents promote the repair of normal cells that are exposed to radiation. Various chemicals, like Cysteamine, MPG , WR-2721 have been tested for the protection against harmful effects of radiation. These radio

  20. Man and radiation effects

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    The book describes the effects of ionizing radiation on man in a simple, popular, detailed and generally valid manner and gives a comprehensive picture of the concepts, elements, principles of function, and perspectives of medical radiobiology. Radiobiology in general is explained, and its application in research on the causes of radiolesions and radiation diseases as well as a radiotherapy and radiation protection is discussed in popular form. (orig./MG) [de

  1. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  2. Solid state detectors for neutron radiation monitoring in fusion facilities

    International Nuclear Information System (INIS)

    Gómez-Ros, J.M.

    2014-01-01

    The purpose of this communication is to summarize the main solid state based detectors proposed for neutron diagnostic in fusion applications and their applicability under the required harsh conditions in terms of intense radiation, high temperature and available space restrictions. Activation systems, semiconductor based detectors, luminescent materials and Cerenkov fibre optics sensors (C-FOS) are the main devices that are described. - Highlights: • A state-of-the-art summary of solid state based detectors are described. • Conditions and restrictions for their applicability are described. • A list of the 38 more relevant references has been included

  3. Biophysical radiation effects

    International Nuclear Information System (INIS)

    Fidorra, J.

    1982-07-01

    The biological effectiveness of ionizing radiation is based upon the absorption of energy in molecular structures of a cell. Because of the quantum nature of radiation large fluctuations of energy concentration in subcellulare regions has to be considered. In addition both the spatial distribution of a sensitive molecular target and cellulare repair processes has to be taken into consideration for an assessment of radiation action. In radiation protection the difference between the quality factor and the Relative Biological Effectiveness has a fundamental meaning and will be discussed in more detail. The present report includes a short review on some relevant models on radiation action and a short discussion on effects of low dose irradiation. (orig.) [de

  4. Radiation effects in gases

    International Nuclear Information System (INIS)

    Leonhardt, J.W.

    1985-01-01

    Problems in the studies of radiation effects in gases are discussed. By means of ionization- excitation- and electron-capture yields various applications are characterized: ionization detectors, X-ray detectors, radionuclide battery, and radiation-induced chemical gas-phase reactions. Some new results of basic research in respect to the SO 2 oxidation are discussed. (author)

  5. Effects of ionizing radiations

    International Nuclear Information System (INIS)

    Gaussens, G.

    1984-08-01

    After recalling radiation-matter interaction, influence on radiation effects of chemical composition, structure, irradiation atmosphere, dose rate, temperature of organic materials and evolution of electrical, mechanical and physical properties are reviewed. Then behaviour under irradiation of main organic materials: elastomers, thermoplastics, thermosetting plastics, oils and paints are examined. 68 refs [fr

  6. Role of impurity molecules in radiation-initiated processes in solid carbohydrates

    International Nuclear Information System (INIS)

    Kavetskii, V.G.; Yudin, I.V.

    1992-01-01

    Extension of the use of ionizing radiation for sterilization of medicinal preparations is stimulating the study of radiation-initiated processes in solid polyhydroxyl matrixes containing impurities of various organic substances. Such investigations make it possible to establish common characteristics of the effect of impurity molecules on the radiolysis of organic crystals. The materials of the investigation were lactose and rhamnose, precipitated by slow evaporation of the solvent from saturated aqueous solutions with different dihydroxyacetone contents. 4 refs., 1 fig

  7. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor

    International Nuclear Information System (INIS)

    Monzen, Hajime; Griffin, R.J.; Williams, B.W.; Amamo, Morikazu; Ando, Satoshi; Hasegawa, Takeo

    2004-01-01

    Arsenic trioxide (ATO) has been reported to be an effective chemotherapeutic agent for acute promyelocytic leukemia (APL), and, recently, anti-tumor effect has been demonstrated in solid tumors. However, little is known about the mechanism of action of the ATO effect on solid tumor. We investigated the anti-vascular effect of ATO and the potential of combining ATO with radiation therapy. We studied the anti-vascular effect of ATO and radiosensitization of squamous cell carcinoma (SCC) VII murine tumors of C3H mice. The anti-vascular effect was examined using magnetic resonance imaging (MRI), and radiosensitivity was studied by clonogenic assay and tumor growth delay. Histopathological changes of the tumors after various treatments were also observed with hematoxylin and eosin (H and E) staining. Necrosis and blood flow changes in the central region of tumors in the hind limbs of the animals were observed on T2-weighted imaging after an intraperitoneal (i.p.) injection of 8 mg/kg of ATO alone. ATO exposure followed by radiation decreased the clonogenic survival of SCC VII cells compared with either treatment alone. Tumor growth delay after 10-20 Gy of radiation alone was increased slightly compared with control tumors, but the combination of ATO injection 2 hours before exposure to 20 Gy of radiation significantly prolonged tumor growth delay by almost 20 days. The results suggest that ATO and radiation can enhance the radiosensitivity of solid tumor. (author)

  8. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  9. Secondary solid tumors following radiation in Hodgkin's disease: experience of the Institut Gustave-Roussy

    International Nuclear Information System (INIS)

    Cosset, J.M.; Henry-Amar, M.; Dietrich, P.Y.; Socie, G.; Girinsky, T.; Hayat, M.; Tubiana, M.

    1992-01-01

    From 1961 to 1984, in the Institut Gustave-Roussy, 893 patients have been treated in Hodgkin's disease. The authors study the solid tumors that they have observed after exclusive radiotherapy and chemo-radiotherapy in order to know the radiation effect in the birth of this type of cancer

  10. The use of ionizing radiations in the treatment of liquid and solid waste; biological and physico-chemical effects and industrial study

    International Nuclear Information System (INIS)

    Gallien, C.L.

    1977-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture, or animal supplement feed is of great economical and ecological interest. However, it requires strong disinfection. Treatment with ionizing radiation can be used as a complement to conventional methods in the treatment of liquid and solid wastes. An experiment conducted with a high-energy electron beam linear accellerator (10 MeV) is presented. Degradation of undesirable metabolites in wastes occurs at a dose of 50 krad. Undesirable seeds, present in sludge, are destroyed with a 200-krad dose. The same dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of poliovirus (DL 90) is obtained at 400 krad. Higher doses (1000-2000 krad) produce mineralisation of toxic organic mercury or reduce some toxic chemical pollutants present in sludge and improve flocculation. Industrial study shows that waste treatment with high-energy electron beams is technically and economically feasible. The design for a treatment unit of 5 MCi cobalt-equivalent, with a capacity of 500 t/Mrad/24h is presented, with indicative cost calculation

  11. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  12. Proceedings of the Fourth international conference 'Interaction of radiation with solids'; Materialy chetvertoj mezhdunarodnoj konferentsii 'Vzaimodejstvie izluchenij s tverdym telom'

    Energy Technology Data Exchange (ETDEWEB)

    Anishchik, V M [ed.; Zhukova, S I; Azarko, I I; Prikhod' ko, Zh L

    2001-10-01

    The 132 collected papers form the Proceedings of the International Conference 'Interaction of Radiation with Solids'. This Conference is the fourth forum biennially gathering in Minsk the specialists from different countries. The scope of the problems considered at the Conference is widening steadily from year to year including the recent results and most advanced leads in the field of radiation physics of condensed matter. In the proceedings consideration is being given to 'Processes of ion interaction with solids', 'Plasma interaction with surface' and 'Radiation effects in solids'.

  13. ''Solid-state fusion'' effects

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1990-01-01

    The ''Solid-State Fusion'' or ''Cold Fusion'' phenomenon, including excess heat generation and the production of nuclear particles, was first reported by Professors Martin Fleischmann and B. Stanley Pons in March 1989. The phenomenon described (the anomalous effects observed when deuterium oxide (heavy water) is electrolysed using a palladium cathode and a platinum anode in the presence of lithium deuteroxide) has many fascinating facets, not least of which is the fact that investigators are unable to produce the effects ''on demand''. Many of the experimental variables which seem to be significant were described and discussed at the ''First Annual Conference on Cold Fusion'' which was held in Salt Lake City, Utah, USA, from 29th to 31st March 1990. The information presented at the conference is summarised here. Some papers addressed the excess heat effects observed, some the nuclear particles, and others the theoretical aspects. These are reviewed. At the end of the conference Fleischmann summarised all the areas where apparent evidence for solid state fusion had been obtained during the past year, namely: excess enthalpy, bursts in enthalpy; tritium, bursts in tritium; neutrons, bursts in neutrons; X-rays, gamma rays and bursts in these. He recommended that emphasis should now be concentrated on confirming reaction products, such as He 4 . New theories were emerging, but one year was too short a time in which to evaluate them fully. (author)

  14. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  15. Modern state of radiation chemistry of inorganic solids

    International Nuclear Information System (INIS)

    Zakharov, Yu.A.; Nevostruev, V.A.; Ryabykh, S.M.; Safonov, Yu.N.

    1985-01-01

    Regularities of radiolysis of different metal salts and inorganic acid complex anions are considered taking account of the nature of electron states and radiation transformations in them. By chemical processes during irradiation the solid salts considered are divided into 2 groups: salts in which the processes stimulated by radiation lead to chemical transformations in anion and cation subsystems, their valency changed, (1st group); salts in which radiation-chemical transformations influence anion sublattice and cation valency is without any change (2nd group). It is shown that the main part of secondary chemical transformations is realized from low-energy excited electron states. For first group salts these states are of cation nature, at this secondary reactions are determined by ionization processes. For second group salts low-energy electron terms are mostly of anion nature. Classification of inorganic salts by the character of transformations in anion sublattices is marked to be developed

  16. Radiation. Doses, effect, risk

    International Nuclear Information System (INIS)

    Vapirev, E.; Todorov, P.

    1994-12-01

    This book outlines in a popular form the topic of ionizing radiation impacts on living organisms. It contains data gathered by ICRP for a period of 35 years. The essential dosimetry terms and units are presented. Natural and artificial sources of ionizing radiation are described. Possible biological radiation effects and diseases as a consequence of external and internal irradiation at normal and accidental conditions are considered. An assessment of genetic risk for human populations is presented and the concept of 'acceptable risk' is discussed

  17. Solid cancer risks from radiation exposure for the Australian population

    International Nuclear Information System (INIS)

    Wise, K.N.

    2003-01-01

    Estimates are made of the risks to the Australian population as a function of age and gender for mortality or morbidity for all solid cancers after exposure to radiation. Excess relative risk (ERR) and excess absolute risk (EAR) models are used. The model coefficients are re-evaluated for radiation doses expressed as effective dose using data from the Japanese Life Span Study. Life-table methods are used throughout and the risk measures studied are: the risk of exposure related death, RERD and the risk of exposure related cancer, RERC. Australian life-table data and the age-specific cancer incidence and mortality rates of Australian males and females are taken from recent published tables. No dose and dose-rate effectiveness factor is applied. Sources of uncertainty used to calculate the confidence regions for the estimated risks include the statistical uncertainties of the model parameters and of the extrapolation of the risks beyond the period supported by the epidemiological data. Summary values of the risks are reported as averages of those calculated from the ERR and the EAR models. For males, the mortality risks per sievert range from 14% for 0-9 year age group, 7% at 30-39 years and 4% at 50-59 years. Corresponding values for females are 20%, 10% and 6%. Incidence risks are higher: for males the estimates are 32% for the 0-9 year group, 12% at 30-39 and 5% at 50-59. Corresponding values for females are 56%, 20% and 8%. The 90% confidence regions are about ± 50% of these values. Estimates are given for the risks from CT whole-body scanning or virtual colonoscopy which could be used for cancer screening. If used at 3 year intervals and the effective dose per procedure is 10 mSv, then the RERD for males beginning screening at 40, 50 and 60 years is 0.4%, 0.3% and 0.1%, respectively and for females, 0.6%, 0.4% and 0.2%, respectively. RERD estimates for a 5 year interval between screens are about one-third smaller. Copyright (2003) Australasian College of

  18. Handbook of radiation effects

    International Nuclear Information System (INIS)

    Holmes-Siedle, A.; Adams, L.

    1993-01-01

    This handbook is intended to serve as a tool for designers of equipment and scientific instruments in cases where they are required to ensure the survival of the equipment in radiation environments. High-technology materials, especially semiconductors and optics, tend to degrade on exposure to radiation in many different ways. Intense high-energy radiation environments are found in nuclear reactors and accelerators, machines for radiation therapy, industrial sterilization, and space. Some engineers have to build equipment which will survive a nuclear explosion from a hostile source. Proper handling of a disaster with radioactive materials requires equipment which depends utterly on semiconductor microelectronics and imaging devices. Thus the technology of radiation-tolerant electronics is an instrument for good social spheres as diverse as disaster planning and the exploration of Mars. In order to design equipment for intense environments like those described above, then degradation from high-energy irradiation must be seen as a basic design parameter. The aim of this handbook is to assist the engineer or student in that thought; to make it possible to write intelligent specifications; to offer some understanding of the complex variety of effects which occur when high-technology components encounter high-energy radiation; and to go thoroughly into the balance of choices of how to alleviate the effects and hence achieve the design aims of the project. Separate abstracts were prepared for 15 chapters of this book

  19. Chemical structure and radiation stability of solid crystalline antibiotics: thiamphenicol and chloramphenicol

    International Nuclear Information System (INIS)

    Varshney, Lalit; Soe Nwe

    1997-01-01

    Antibiotics in solid state show significant radiation resistance and some of them are exposed to gamma or electron beam irradiation for sterilization. Even small radiation degradation in solid state antibiotics is not desirable. Two antibiotics namely thiamphenicol (TPL) and chloramphenicol (CPL) having similar chemical and solid state structure were irradiated at different graded radiation doses to study their stability. Differential scanning calorimetry (DSC) was used to evaluate purity, entropy of radiation processing, heat of fusion and melting point. (author). 3 refs., 1 tab

  20. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  1. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  2. Radiation damage in amorphous solids - a computer simulation

    International Nuclear Information System (INIS)

    Chaki, T.K.; Li, J.C.M.

    1984-01-01

    It is known for crystalline materials that injection of high energy atoms introduces point defects. The nature of defects is not known for amorphous solids. So a molecular dynamic simulation of radiation damage in an amorphous metal was carried out. An amorphous structure of 685 atoms with periodic boundary conditions in all 3 dimensions was equilibrated first. Then one atom on the surface was given a high initial velocity so it was injected inward. Radial temperature distribution around the line of injection was calculated as a function of time. Void distribution and its evolution with time in the direction of injection was calculated by counting the atomic centers in thin slabs perpendicular to the line of injection. The swelling of the whole solid was calculated also. Some results are compared with experiments

  3. Features of destruction of solids by laser radiation in process of formation of multiply charged ions

    International Nuclear Information System (INIS)

    Bedilov, R.M.; Bedilov, M.R.; Sabitov, M.M.; Matnazarov, A.; Niyozov, B.

    2004-01-01

    Full text: It is known, under interaction of laser radiation with solid surface a power density q > 0.01 W/cm 2 are observed destruction of a solid and issue of electrons, ions, neutrals, neutrons, plasmas, and also radiation in a wide ranges of a spectra. Despite of a plenty of works, devoted to study of processes of interaction, the studies of feature of destruction of solids by laser beam in process of formation multiply charged ions are insufficiently investigated. The results of study feature of destruction of solids by laser radiation in process of formation multiply charged ions are given in this work. In our experiments, we used the mass spectrometer with single-channel laser radiation. The laser installation had the following parameters: a power density of laser radiation q=(0.1-50) GW/cm 2 ; the angle of incidence a=18 deg. to the target surface Al, (W). It was obtained experimentally dynamics of morphology of destruction and also mass - charge and energy spectra of multiply charged ions formed under interaction of laser radiation with Al (W) in the intensity range q=(0.1-50) GW/cm 2 . These studies showed features of destruction Al(W) by laser radiation, i.e. invariable of value evaporation mass from a surface of a solid increase as the laser intensity q. But thus temperature a pair increases in accordance with increase of flow density of a laser radiation. Increase of temperature the pair gives in formation of multiply charged plasma. It is typical that, as q of the laser increases the maximum charge number of ions in laser plasma considerably increase and their energy spectra extend toward higher energies. For example, under q=0.1 GW/cm 2 and 50 GW/cm 2 the maximum charge number of ions Al (W) are equal to Z max = 1 and 7, respectively. From the experimental data obtained, we can conclude that, the formed multiply charged plasma practically completely absorption laser radiation and 'shielding' a target surface for various metals at power densities

  4. Radiation hazard of solid metallic tailings in Shangluo, China

    OpenAIRE

    Zhuang Sukai; Lu Xinwei; Li Jiantao; Li Qian

    2016-01-01

    The radiation hazards of five kinds of different solid metallic tailings collected from Shangluo, China were determined on the basis of natural radioactivity measurements using low background multichannel gamma ray spectrometry. The activity concentration of 226Ra, 232Th and 40K in the tailings ranged from 5.1 to 204.3, 3.8 to 28.5, and 289.6 to 762.3 Bq/kg, respectively. The radium equivalent activities and the external hazard indexes of all studied metall...

  5. Radiation damage in an amorphous Lennard-Jones solid

    International Nuclear Information System (INIS)

    Chaki, T.K.; Li, J.C.M.

    1985-01-01

    A molecular-dynamics simulation of radiation damage in an amorphous Lennard-Jones solid has been undertaken. A three-dimensional structure of 685 atoms with periodic boundary conditions was used. An atom was injected inward from the middle of one surface, and as it lost its energy its velocity and position were recorded. The temperature profile around the injection direction was also calculated. The amorphous structure was examined before and after irradiation by calculating the volume distribution of the Voronoi polyhedra and its time evolution. The production of vacancies and interstitials was observed. The interstitials were found to disappear rapidly, and the vacancies slowly. (author)

  6. Ion beam modification of solids ion-solid interaction and radiation damage

    CERN Document Server

    Wesch, Werner

    2016-01-01

    This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for ins...

  7. Unravelling radiative energy transfer in solid-state lighting

    Science.gov (United States)

    Melikov, Rustamzhon; Press, Daniel Aaron; Ganesh Kumar, Baskaran; Sadeghi, Sadra; Nizamoglu, Sedat

    2018-01-01

    Today, a wide variety of organic and inorganic luminescent materials (e.g., phosphors, quantum dots, etc.) are being used for lighting and new materials (e.g., graphene, perovskite, etc.) are currently under investigation. However, the understanding of radiative energy transfer is limited, even though it is critical to understand and improve the performance levels of solid-state lighting devices. In this study, we derived a matrix approach that includes absorption, reabsorption, inter-absorption and their iterative and combinatorial interactions for one and multiple types of fluorophores, which is simplified to an analytical matrix. This mathematical approach gives results that agree well with the measured spectral and efficiency characteristics of color-conversion light-emitting diodes. Moreover, it also provides a deep physical insight by uncovering the entire radiative interactions and their contribution to the output optical spectrum. The model is universal and applicable for all kinds of fluorophores.

  8. Thermal radiation modelling in a tubular solid oxide fuel cell

    International Nuclear Information System (INIS)

    Austin, M.E.; Pharoah, J.G.; Vandersteen, J.D.J.

    2004-01-01

    Solid Oxide Fuel Cells (SOFCs) are becoming the fuel cell of choice among companies and research groups interested in small power generation units. Questions still exist, however, about the operating characteristics of these devices; in particular the temperature distribution in the fuel cell. Using computational fluid dynamics (CFD) a model is proposed that incorporates conduction, convection and radiation. Both surface-to-surface and participating media are considered. It is hoped that a more accurate account of the temperature field in the various flow channels and cell components will be made to assist work on design of fuel cell components and reaction mechanisms. The model, when incorporating radiative heat transfer with participating media, predicts substantially lower operating temperatures and smaller temperature gradients than it does without these equations. It also shows the importance of the cathode air channel in cell cooling. (author)

  9. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1980-10-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. (auth)

  10. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Heribanova, A.

    1995-01-01

    The basic principles and pathways of effects of ionizing radiation on living organisms and cells are outlined. The following topics are covered: effects of radiation on living matter (direct effects, radical or indirect effects, dual radiation action, and molecular biological theories); effects of radiation on cells and tissues (cell depletion, changes in the cytogenetic information, reparation mechanisms), dose-response relationship (deterministic effects, stochastic effects), and the effects of radiation on man (acute radiation sickness, acute local changes, fetus injuries, non-tumorous late injuries, malignant tumors, genetic changes). (P.A.). 3 tabs., 2 figs., 5 refs

  11. Bystander effects of radiation

    International Nuclear Information System (INIS)

    Umar, Neethu Fathima; Daniel, Nittu

    2013-01-01

    The Radiation-Induced Bystander Effect is the phenomenon in which unirradiated cells show irradiated effects due to the signals received from nearby irradiated cells. Evidence suggests that targeted cytoplasmic irradiation results in mutation in the nucleus of the hit cells. Cells that are not directly hit by an alpha particle, but are in the vicinity of one that is hit, also contribute to the genotoxic response of the cell population. When cells are irradiated, and the medium is transferred to unirradiated cells, these unirradiated cells show bystander responses when assayed for clonogenic survival and oncogenic transformation. The demonstration of a bystander effect in human tissues and, more recently, in whole organisms have clear implication of the potential relevance of the non-targeted response to human health. This effect may also contribute to the final biological consequences of exposure to low doses of radiation. The radiation-induced bystander effect represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation, in that extranuclear and extracellular events may also contribute to the final biological consequences of exposure to low doses of radiation. Multiple pathways are involved in the bystander phenomenon, and different cell types respond differently to bystander signalling. Using cDNA microarrays, a number of cellular signalling genes, including cyclooxygenase-2 (CQX-2), have been shown to be casually linked to the bystander phenomenon. The observation that inhibition of the phosphorylation of extracellular signal-related kinase (ERK) suppressed the bystander response further confirmed the important role of the mitogen-activated protein kinase (MAPK) signalling cascade in the bystander process. The cells deficient in mitochondrial DNA showed a significantly reduced response to bystander signalling, suggesting a functional role of mitochondria in the signalling process. (author)

  12. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  13. Second Solid Cancers After Radiation Therapy: A Systematic Review of the Epidemiologic Studies of the Radiation Dose-Response Relationship

    Energy Technology Data Exchange (ETDEWEB)

    Berrington de Gonzalez, Amy, E-mail: berringtona@mail.nih.gov [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Gilbert, Ethel; Curtis, Rochelle; Inskip, Peter; Kleinerman, Ruth; Morton, Lindsay; Rajaraman, Preetha; Little, Mark P. [Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-06-01

    Rapid innovations in radiation therapy techniques have resulted in an urgent need for risk projection models for second cancer risks from high-dose radiation exposure, because direct observation of the late effects of newer treatments will require patient follow-up for a decade or more. However, the patterns of cancer risk after fractionated high-dose radiation are much less well understood than those after lower-dose exposures (0.1-5 Gy). In particular, there is uncertainty about the shape of the dose-response curve at high doses and about the magnitude of the second cancer risk per unit dose. We reviewed the available evidence from epidemiologic studies of second solid cancers in organs that received high-dose exposure (>5 Gy) from radiation therapy where dose-response curves were estimated from individual organ-specific doses. We included 28 eligible studies with 3434 second cancer patients across 11 second solid cancers. Overall, there was little evidence that the dose-response curve was nonlinear in the direction of a downturn in risk, even at organ doses of ≥60 Gy. Thyroid cancer was the only exception, with evidence of a downturn after 20 Gy. Generally the excess relative risk per Gray, taking account of age and sex, was 5 to 10 times lower than the risk from acute exposures of <2 Gy among the Japanese atomic bomb survivors. However, the magnitude of the reduction in risk varied according to the second cancer. The results of our review provide insights into radiation carcinogenesis from fractionated high-dose exposures and are generally consistent with current theoretical models. The results can be used to refine the development of second solid cancer risk projection models for novel radiation therapy techniques.

  14. Genetic effects of radiation

    International Nuclear Information System (INIS)

    Selby, P.B.

    1977-01-01

    Many of the most important findings concerning the genetic effects of radiation have been obtained in the Biology Division of Oak Ridge National Laboratory. The paper focuses on some of the major discoveries made in the Biology Division and on a new method of research that assesses damage to the skeletons of mice whose fathers were irradiated. The results discussed have considerable influence upon estimates of genetic risk in humans from radiation, and an attempt is made to put the estimated amount of genetic damage caused by projected nuclear power development into its proper perspective

  15. Solid state radiation chemistry. Features important in basic research and applications

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1998-01-01

    The basic research of chemical radiation effects has been mostly proceeded in aqueous systems. When one turns from aqueous to the 'dry solute' systems, reactions are running in a very different way. The examined compound, previously the solute, becomes then the only constituent of the system, absorbing all ionising energy. Majority of dosimeters and of radiation processed systems is solid: these are crystalline or rigid substances of high viscosity, sometimes of complicated phase-compositions being no longer homogenous like liquids. Main features of the solid (and rigid) state radiation chemistry is to be discussed in five parts: I. Character of absorption process. Absorption of radiation is in all media heterogenous on the molecular level, i.e. with formation of single- and multi-ionisation spurs. The yield of the latters is 15-25% of the total ionisations, depending on the system, even at low LET radiation. In spite of random distribution of initial ionisations, the single-ionisation spurs can turn rapidly into specifically arranged, temporal localisations. The variety of spur reactions is usually more complicated than that in aqueous systems. II. Character of transients. Intermediates in solid state radiation chemistry exhibit very different transport properties: from free electrons moving fast and far, to electrons changing the position by different physicochemical mechanisms, to easy movable H-atoms, and to practically unmovable, only vibrating, new fragments of a lattice or glass. III. Paramagnetic intermediates. Radicals living for microseconds in liquids, when created and trapped in a solid matrix are usually very stable, e.g. they can have a difference of half-life times of 12 orders of magnitude, however their chemical composition remais identical. (author)

  16. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  17. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Marko, A.M.

    1981-05-01

    In this review radiation produced by the nuclear industry is placed into context with other sources of radiation in our world. Human health effects of radiation, derivation of standards and risk estimates are reviewed in this document. The implications of exposing the worker and the general population to radiation generated by nuclear power are assessed. Effects of radiation are also reviewed. Finally, gaps in our knowledge concerning radiation are identified and current research on biological effects, on environmental aspects, and on dosimetry of radiation within AECL and Canada is documented in this report. (author)

  18. Recombination of radiation defects in solid methane: neutron sources and cryo-volcanism on celestial bodies

    Science.gov (United States)

    Kirichek, O.; Savchenko, E. V.; Lawson, C. R.; Khyzhniy, I. V.; Jenkins, D. M.; Uyutnov, S. A.; Bludov, M. A.; Haynes, D. J.

    2018-03-01

    Physicochemical properties of solid methane exposed to ionizing radiation have attracted significant interest in recent years. Here we present new trends in the study of radiation effects in solid methane. We particularly focus on relaxation phenomena in solid methane pre-irradiated by energetic neutrons and electron beam. We compare experimental results obtained in the temperature range from 10K to 100K with a model based on the assumption that radiolysis defect recombinations happen in two stages, at two different temperatures. In the case of slow heating up of the solid methane sample, irradiated at 10K, the first wave of recombination occurs around 20K with a further second wave taking place between 50 and 60K. We also discuss the role of the recombination mechanisms in “burp” phenomenon discovered by J. Carpenter in the late 1980s. An understanding of these mechanisms is vital for the designing and operation of solid methane moderators used in advanced neutron sources and could also be a possible explanation for the driving forces behind cryo-volcanism on celestial bodies.

  19. Radiation Effects Research Foundation

    International Nuclear Information System (INIS)

    1979-01-01

    The last day of March 1978 marked the completion of the first 3 years of operation of the Radiation Effects Research Foundation in Hiroshima and Nagasaki. RERF was established on 1 April 1975 as successor to the Atomic Bomb Casualty Commission which had been in continuous operation since 1947. This record of the first 3 years of operation consists of selected reports and other documents prepared in the course of conducting the business of RERF and includes a brief history, a late radiation effects that might be conducted at RERF. The wisdom and thought given to the research program and its operation by the Scientific Council and the Board of Directors is reflected in the minutes of their meetings which are included in the Appendix. (Mori, K.)

  20. Radiation Bystander Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Shokohzaman Soleymanifard

    2009-06-01

    Full Text Available Introduction: Radiation Induced Bystander Effect (RIBE which cause radiation effects in non-irradiated cells, has challenged the principle according to which radiation traversal through the nucleus of a cell is necessary for producing biological responses. What is the mechanism of this phenomenon? To have a better understanding of this rather ambiguous concept substantial number of original and reviewed article were carefully examined. Results: Irradiated cells release molecules which can propagate in cell environment and/or transmit through gap junction intercellular communication. These molecules can reach to non-irradiated cells and transmit bystander signals. In many investigations, it has been confirmed that these molecules are growth factors, cytokines, nitric oxide and free radicals like reactive oxygen species (ROS. Transmission of by stander signal to neighboring cells persuades them to produce secondary growth factors which in their turn cause further cell injuries. Some investigators suggest, organelles other than nucleus (mitochondria and cell membrane are the origin of these signals.  There is another opinion which suggests double strand breaks (DSB are not directly generated in bystander cells, rather they are due to smaller damage like single strand breaks which accumulate and end up to DSB. Although bystander mechanisms have not been exactly known, it can be confirmed that multiple mechanisms and various pathways are responsible for this effect. Cell type, radiation type, experimental conditions and end points identify the dominant mechanism. Conclusion: Molecules and pathways which are responsible for RIBE, also cause systemic responses to other non-irradiation stresses. So RIBE is a kind of systemic stress or innate immune responses, which are performed by cell microenvironment. Irradiated cells and their signals are components of microenvironment for creating bystander effects.

  1. Radiation effects in metals

    International Nuclear Information System (INIS)

    Leteurtre Jean.

    1978-01-01

    The current understanding of radiation damage in metals is reviewed, simplifying the actual complexity of the effects by considering some aspects separately. The production of point defects in metals, the primary damage state are first studied. The second part of the lecture is devoted to the evolution of this primary damage state as a function of temperature and dose: the steady state concentration of point defects, the nucleation of secondary defects and their growth are successively considered

  2. Provision of radiation safety at the designing of the industrial complex of solid radwaste management (ICSRM)

    International Nuclear Information System (INIS)

    Lobach, S.Yu.; Sevastyuk, O.V.

    2003-01-01

    The article presents the basic principles and criteria of the radiation safety provision, organization of the radiation control system, and dose calculation for the staff irradiation at the construction and operation of the Industrial complex of solid radwaste management (ICSRM)

  3. Epidemiological survey of radiation workers. Risk of leukemia and solid cancer by low level radiation exposure

    International Nuclear Information System (INIS)

    Tatsumi, Kouichi

    2011-01-01

    An interim report on the epidemiological survey of cohort involving radiation workers in the nuclear power plants in Japan was introduced. It consists of eight chapters such as introduction, the objects of mortality rate survey from death causes and creating a cohort, the method of tracking the life and death, analytical methods of mortality rate, analytical results, confounded effects of life style, discussion: contrast the report on the mortality rate of solid cancer except leukemia in Japan and other countries and the conclusions. The subjects of mortality rate of the forth survey were about 277,000 workers including from the first to the third survey. In a prospective cohort study, 203,904 workers were screened for analytical study, and they included 14,224 deaths (5,711 from malignant neoplasm, 6,310 from nonmalignant neoplasm and 1,995 from extrinsic death). The analytical results were shown by three types of death caused from leukemia, malignant neoplasm except for leukemia and nonmalignant neoplasm. Analytical results of the mortality rate from death caused in third and forth study, change of analytical results from the first to the forth observation period were illustrated. (S.Y.)

  4. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Gray, W.M.; Watson, E.R.

    1977-01-01

    In five previous papers, the concept of Cumulative Radiation Effect (CRE) has been presented as a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Simple nomographic and tabular methods for the solution of practical problems in radiotherapy are now described. An essential feature of solving a CRE problem is firstly to present it in a concise and readily appreciated form, and, to do this, nomenclature has been introduced to describe schedules and regimes as compactly as possible. Simple algebraic equations have been derived to describe the CRE achieved by multi-schedule regimes. In these equations, the equivalence conditions existing at the junctions between schedules are not explicit and the equations are based on the CREs of the constituent schedules assessed individually without reference to their context in the regime as a whole. This independent evaluation of CREs for each schedule has resulted in a considerable simplification in the calculation of complex problems. The calculations are further simplified by the use of suitable tables and nomograms, so that the mathematics involved is reduced to simple arithmetical operations which require at the most the use of a slide rule but can be done by hand. The order of procedure in the presentation and calculation of CRE problems can be summarised in an evaluation procedure sheet. The resulting simple methods for solving practical problems of any complexity on the CRE-system are demonstrated by a number of examples. (author)

  5. Radiation effects on microelectronics

    International Nuclear Information System (INIS)

    Gover, J.E.

    1987-01-01

    Applications of radiation-hardened microelectronics in nuclear power systems include (a) light water reactor (LWR) containment building, postaccident instrumentation that can operate through the beta and gamma radiation released in a design basis loss-of-coolant accident; (b) advanced LWR instrumentation and control systems employing distributed digital integrated circuit (IC) technology to achieve a high degree of artificial intelligence and thereby reduce the probability of operator error under accident conditions; (c) instrumentation, command, control and communication systems for space nuclear power applications that must operate during the neutron and gamma-ray core leakage environments as well as the background electron, proton, and heavy charged particle environments of space; and (d) robotics systems designed for the described functions. Advanced microelectronics offer advantages in cost and reliability over alternative approaches to instrumentation and control. No semiconductor technology is hard to all classes of radiation effects phenomena. As the effects have become better understood, however, significant progress has been made in hardening IC technology. Application of hardened microelectronics to nuclear power systems has lagged military applications because of the limited market potential of hardened instruments and numerous institutional impediments

  6. Radiation effect on implanted pacemakers

    International Nuclear Information System (INIS)

    Pourhamidi, A.H.

    1983-01-01

    It was previously thought that diagnostic or therapeutic ionizing radiation did not have an adverse effect on the function of cardiac pacemakers. Recently, however, some authors have reported damaging effect of therapeutic radiation on cardiac pulse generators. An analysis of a recently-extracted pacemaker documented the effect of radiation on the pacemaker pulse generator

  7. Radiation effects on polyethylenes

    International Nuclear Information System (INIS)

    Suzuki, T.; Oki, Y.; Numajiri, M.; Miura, T.; Kondo, K.; Tanabe, Y.; Ishiyama, M.; Ito, Y.

    1992-01-01

    Radiation effects on four kinds of polyethylenes were studied from the viewpoints of mechanical properties, free radicals and free volumes. The samples were irradiated using a cobalt 60 gamma source to give doses up to 3MGy. The degradation of mechanical strength due to gamma-irradiation was evaluated by the elongation at break and its tensile strength. Radiation induced free radicals were measured by ESR. Free volumes observed by the o-Ps component of the positron annihilation spectrum are normally the large ones located in the amorphous regions and after irradiation these are created in crystalline regions, too. The sizes and the relative numbers of free volumes were evaluated by lifetimes and intensities of a long-lived component of positronium, respectively. Using these data, the properties of polyethylenes before and after irradiation are discussed. (author)

  8. ESR Study Applied To Thermal Stability Of Radiation-Induced Species Of Solid Ketoprofen

    International Nuclear Information System (INIS)

    Maltar-Strmecki, N.; Katusin-Razem, B.; Razem, D.

    2015-01-01

    Ketoprofen [2-(3-benzoylphenyl) propionic acid] is a non-steroidal anti-inflammatory drug. It has been widely used in human and veterinary medicine. Radiation processing of drugs and its ingredients is recognized as a safe and effective method among the existing technologies for sterilization and protocols that can be found in ISO 11137-1. Radiosterilization of drugs or other medical products by a suitable dose of ionizing radiation conducted in an appropriate environment ensures sterile conditions by destroying or removing vegetative and sporulating microbes from the ingredients or environment. In earlier studies the effects of gamma radiation was evaluated by selected physico-chemical methods and the observations showed that solid ketoprofen is relatively stable toward ionizing irradiation and that radiosterilization might be a suitable method for the sterilization of solid ketoprofen. The studies reported in this work were undertaken to analyse thermal stability of free radicals by accelerated aging method with a view to the determination of shelf-life. The expiration date (shelf-life) of a product is based on evaluation of both, thermal stability of free radicals, as well as on the time evolution of stable radiolysis products. Namely, storage time is determined by the time required by any degradation product in the dosage form to achieve a sufficient level to represent a risk to the patient. This work shows that ESR spectroscopy provides means for determination of thermal stability of radicals induced by gamma-irradiation in solid drugs. Therefore, despite the complex mixture of individual free radicals induced by gamma-irradiation in solid ketoprofen, the overall lifetime of free radicals could be determined by using isothermal and isochronal annealing. This study shows that radicals induced by gamma-irradiation in solid ketoprofen are stable for at least about 6 months. (author).

  9. Biological effects of ionising radiation

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The paper reports the proceedings of a conference organised jointly by Friends of the Earth (U.K.) and Greenpeace (International). The aim of the conference was to discuss the effects of low level radiation, particularly on man, within the terms of dose/risk relationships. The topics discussed included: sources of radiation, radiation discharges from nuclear establishments, predictive modelling of radiation hazards, radiation effects at Hiroshima, low dose effects and ICRP dose limits, variation in sensitivity to radiation, and the link between childhood cancer and nuclear power. (U.K.)

  10. Characterisation and Radiation Modification of Carrageenan in the Solid State

    International Nuclear Information System (INIS)

    Gulrez, S.; Al-Assaf, S.; Phillips, G.O.

    2010-01-01

    This study reports the modification of kappa-carrageenan in the solid state using gamma radiation (in the dose range of 1-25kGy) in the presence of unsaturated alkyne gas. The results showed maximum production of hydrogel at 5kGy with nearly 80% of starting material being converted to hydrogel form in the absence of a gellin agent. Higher irradiation doses at 25kGy resulted in reducing the hydrogel proportion to ~40% due to degradation. The molecular weight and distribution was determined by GPC-MALLS and the results showed a decrease in the mass recovery and molecular weight of the soluble fraction at 60C. The molecular weight results were in agreement with hydrogel data determined from the filtration method. There was an optimum increase in the viscosity, elasticity and mechanical strength at 5kGy which was followed by a decrease in the gel strength at higher doses (25kGy). Our study demonstrates the potential production of novel hydrogel based carrageenan obtained by irradiation in the absence of metal ions with possible new applications. A mechanism for the radiation induced cross-linking to produce superhelical aggregates in the absence of a gelling agent is proposed. (author)

  11. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  12. Biological radiation effects

    International Nuclear Information System (INIS)

    Koggl, D.; Dedenkov, A.N.

    1986-01-01

    All nowadays problems of radio biology are considered: types of ionizing radiations, their interaction with material; damage of molecular structures and their reparation; reaction of cells and their recovery from radiation damage; reaction of the whole organism and its separate systems. Particular attention is given to the problems of radiation carcinogenesis and radiation hazard for man

  13. Cumulative radiation effect

    International Nuclear Information System (INIS)

    Kirk, J.; Cain, O.; Gray, W.M.

    1977-01-01

    Cumulative Radiation Effect (CRE) represents a scale of accumulative sub-tolerance radiation damage, with a unique value of the CRE describing a specific level of radiation effect. Computer calculations have been used to simplify the evaluation of problems associated with the applications of the CRE-system in radiotherapy. In a general appraisal of the applications of computers to the CRE-system, the various problems encountered in clinical radiotherapy have been categorised into those involving the evaluation of a CRE at a point in tissue and those involving the calculation of CRE distributions. As a general guide, the computer techniques adopted at the Glasgow Institute of Radiotherapeutics for the solution of CRE problems are presented, and consist basically of a package of three interactive programs for point CRE calculations and a Fortran program which calculates CRE distributions for iso-effect treatment planning. Many examples are given to demonstrate the applications of these programs, and special emphasis has been laid on the problem of treating a point in tissue with different doses per fraction on alternate treatment days. The wide range of possible clinical applications of the CRE-system has been outlined and described under the categories of routine clinical applications, retrospective and prospective surveys of patient treatment, and experimental and theoretical research. Some of these applications such as the results of surveys and studies of time optimisation of treatment schedules could have far-reaching consequences and lead to significant improvements in treatment and cure rates with the minimum damage to normal tissue. (author)

  14. Non-perturbative approach for laser radiation interactions with solids

    International Nuclear Information System (INIS)

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  15. Radiation-induced transformations of isolated organic molecules in solid rare gas matrices

    International Nuclear Information System (INIS)

    Feldman, V.I.

    1998-01-01

    Complete text of publication follows. The studies of radiation-chemical behaviour of isolated organic molecules in rigid inert media are of considerable interest for radiation chemistry and general structural chemistry. Previous efforts were limited to the ESR studies of radicals resulting from some small hydrocarbon molecules in frozen rare gas solutions. Recently, we developed an approach to the radiation chemistry of isolated organic molecules using classic matrix isolation procedure for sample preparation and a combination of ESR and IR spectroscopy for characterization of paramagnetic and diamagnetic species resulting form electron irradiation or organic molecules in solid rare gas matrices at 10-15 K. The results obtained reveal high efficiency of energy transfer from rare gas matrix to organic molecules. The total radiation-chemical yields of degradation of organic molecules in argon and xenon matrices were measured directly by IR spectroscopy. The studies of the effect of electron scavengers on the radiolysis of organic molecules in solid rare gases show that the main primary process is positive hole transfer from matrix to additive molecule. ESR spectra of a number of radical cations (alkanes, ethers, arenes) were first characterized in a low-disturbing environment. It was found that the electronic characteristics (IP, polarizability) of the matrix used had crucial effect on trapping and degradation of primary organic radical cations. Using matrices with various IP provides an unique possibility to examine the chemical meaning of excess energy resulting from exothermic positive hole transfer, that is, to follow the fate of excited cations in condensed phase

  16. Effects of background radiation

    International Nuclear Information System (INIS)

    Knox, E.G.; Stewart, A.M.; Gilman, E.A.; Kneale, G.W.

    1987-01-01

    The primary objective of this investigation is to measure the relationship between exposure to different levels of background gamma radiation in different parts of the country, and different Relative Risks for leukaemias and cancers in children. The investigation is linked to an earlier analysis of the effects of prenatal medical x-rays upon leukaemia and cancer risk; the prior hypothesis on which the background-study was based, is derived from the earlier results. In a third analysis, the authors attempted to measure varying potency of medical x-rays delivered at different stages of gestation and the results supply a link between the other two estimates. (author)

  17. Radiation effects on vasoproliferation

    International Nuclear Information System (INIS)

    Yamaura, Hirotsugu; Matsuzawa, Taiju

    1975-01-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of 60 Co γ-rays, a dose dependent inhibition of vasoproliferation was observed. (auth.)

  18. Radiation effects on vasoproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, H; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-06-01

    The authors quantitatively examined radiation effects on vascular proliferarion, using the rat transparent chamber technique to observe the living microcirculation. We studied the process of vasoproliferation and revascularization from the surrounding pre-existing vessels into the surgically avascularized area in the chamber, by measuring the vascular lenght photographically. A hyper-vascularized zone, about 0.5 mm in with, was formed on the vascularizing frontier, the significance of which is so far not known. When the chambers were irradiated with various doses of /sup 60/Co ..gamma..-rays, a dose dependent inhibition of vasoproliferation was observed.

  19. Biological radiation effects

    International Nuclear Information System (INIS)

    Sejourne, Michele.

    1977-01-01

    This work examines ionizing radiations: what they are, where they come from, their actions and consequences, finally the norms and preventive measures necessary to avoid serious contamination, whether the individual or the population in general is involved. Man has always been exposed to natural irradiation, but owing to the growing use of ionizing radiations both in medicine and in industry, not to mention nuclear tests and their use as an argument of dissuasion, the irradiation of human beings is increasing daily. Radioactive contamination does remain latent, apart from acute cases, but this is where the danger lies since the consequences may not appear until long after the irradiation. Of all biological effects due to the action of radioelements the genetic risk is one of the most important, affecting the entire population and especially the generations to come. The risk of cancer and leukemia induction plays a substantial part also since a large number of people may be concerned, depending on the mode of contamination involved. All these long-term dangers do not of course exclude the various general or local effects to which the individual alone may be exposed and which sometimes constitute a threat to life. As a result the use of ionizing radiations must be limited and should only be involved if no other process can serve instead. The regulations governing radioelements must be stringent and their application strictly supervised for the better protection of man. This protection must be not only individual but also collective since pollution exists in air, water and land passes to plants and animals and finally reaches the last link in the food chain, man [fr

  20. Radiation effects and radiation risks. 2. ed.

    International Nuclear Information System (INIS)

    Lengfelder, E.; Forst, D.; Feist, H.; Pratzel, H.G.

    1990-01-01

    The book presents the facts and the principles of assessment and evaluation of biological radiation effects in general and also with particular reference to the reactor accident of Chernobyl, reviewing the consequences and the environmental situation on the basis of current national and international literature, including research work by the authors. The material compiled in this book is intended especially for physicians, but will also prove useful for persons working in the public health services, in administration, or other services taking care of people. The authors tried to find an easily comprehensible way of presenting and explaining the very complex processes and mechanisms of biological radiation effects and carcinogenesis, displaying the physical primary processes and the mechanisms of the molecular radiation effects up to the effects of low-level radiation, and present results of comparative epidemiologic studies. This section has been given considerable space, in proportion to its significance. It also contains literature references for further reading, offering more insight and knowledge of aspects of special subject fields. The authors also present less known results and data and discuss them against the background of well-known research results and approaches. Apart from the purpose of presenting comprehensive information, the authors intend to give an impact for further thinking about the problems, and helpful tools for independent decisions and action on the basis of improved insight and assessment, and in this context particularly point to the problems induced by the Chernobyl reactor accident. (orig.) With 10 maps in appendix [de

  1. Effects of radiation

    International Nuclear Information System (INIS)

    Masse, R.

    2006-01-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  2. Solid state radiation chemistry of the DNA backbone

    International Nuclear Information System (INIS)

    Bernhard, W.A.

    1989-09-01

    The long term goal of this program is to determine the fundamental rules needed to predict the type and yield of damage produced in DNA due to direct effects of ionizing radiation. The focus is on damage to the sugar-phosphate backbone, damage that would lead to strand breaks. Model systems have been chosen that permit various aspects of this problem to be investigated. The emphasis will be on single crystals of monosaccharides, nucleosides, and nucleotides but will also include some powder work on polynucleotides. In these model systems, free radical products and reactions are observed by electron spin resonance (ESR) and electron nuclear double resonance (ENDOR) techniques. The information thus gained is used in constructing rules that predict what primary free radicals are formed in single crystals of model compounds and the reactions stemming from the primary radicals. The formulation of a set of rules that work in model systems will represent a major advance toward formulating a set of rules that predict the direct damage in DNA itself. In a broader context this program is part of the effort to understand and predict the effects of exposure to ionizing radiation received at low dose rates over long periods of time. Assessment of low dose effects requires a basic understanding of the action of radiation at the molecular level. By contributing to that basic understanding, this program will help solve the problems of risk assessment under low dose conditions. 5 refs., 3 figs

  3. Radiation effects on living systems

    International Nuclear Information System (INIS)

    Hawley, N.J.

    1984-04-01

    This bibliography includes papers and reports by Atomic Energy of Canada Limited scientists concerning radiation effects on living systems. It is divided into three sections: Radiobiology, Radiation Biochemistry and Radiation Chemistry. It is intended that the bibliography will be updated regularly

  4. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1977-03-01

    A summary is given of studies on radiation effects in light-emitting diodes, laser diodes, detectors, optical isolators and optical fibers. It is shown that the study of radiation damage in these devices can provide valuable information concerning the nature of the devices themselves, as well as methods of hardening these devices for applications in radiation environments

  5. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1991-12-01

    Ionizing radiation effects on the gem cells, which can result in genetic abnormalities, are described. The basic mechanisms of radiation interactions with chromosomes, or specifically DNA, which can result in radiation induced mutation are discussed. Methods of estimating genetic risks, and some values for quantitative risk estimates are given. (U.K.). 13 refs., 2 figs., 1 tab

  6. Biological effects of particle radiation

    International Nuclear Information System (INIS)

    Sakamoto, Kiyohiko

    1988-01-01

    Conventional radiations such as photons, gamma rays or electrons show several physical or biological disadvantages to bring tumors to cure, therefore, more and more attentions is being paid to new modalitie such as fast neutrons, protons, negative pions and heavy ions, which are expected to overcome some of the defects of the conventional radiations. Except for fast neutrons, these particle radiations show excellet physical dose localization in tissue, moreover, in terms of biological effects, they demonstrate several features compared to conventional radiations, namely low oxygen enhancement ratio, high value of relative biological effectiveness, smaller cellular recovery, larger therapeutic gain factor and less cell cycle dependency in radiation sensitivity. In present paper the biological effects of particle radiations are shown comparing to the effects of conventional radiations. (author)

  7. LIFE Materials: Topical Assessment Report for LIFE Volume 1 TOPIC: Solid First Wall and Structural Components TASK: Radiation Effects on First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Caro, A

    2008-11-26

    This report consists of the following chapters: CHAPTER A: LIFE Requirements for Materials. Part 1: The structure of the First Wall--Basic requirements; A qualitative view of the challenge; The candidate materials; and Base-line material's properties. CHAPTER B: Summary of Existing Knowledge--Brief historical introduction; Design window; The temperature window; Evolution of the design window with damage; Damage calculations; He and H production; Swelling resistance; Incubation dose for swelling; Design criterion No. 1, Strength; Design criterion No. 2, Corrosion resistance; Design criterion No. 3, Creep resistance; Design criterion No. 4, Radiation induced embrittlement; and Conclusions. CHAPTER C: Identification of Gaps in Knowledge & Vulnerabilities. CHAPTER D: Strategy and Future Work.

  8. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, R.; Martin, G.

    1979-01-01

    A TEM study of 1 MeV electron irradiated Al 1.9 at% Zn solid solution shows that Zn precipitates form, under irradiation at temperatures well above the Zn solvus temperature outside irradiation. The corresponding upward shift of this temperature is dose rate dependent. This new example of radiation-induced precipitation exhibits unexpected features, which are not accounted for by the available models: (1) no correlation exists between the location of the precipitates and that of the point defects sinks; (2) the precipitation of incoherent β-phase with atomic volume smaller than that of the matrix, and of coherent G.P. zones both occurs; (3) the size of the coherent β precipitates saturates at large dose. A general mechanism for solute concentration fluctuations under irradiation is proposed which qualitatively accounts for the formation of coherent G.P. zones and for the nucleation of solute clusters with more complex structures. A reanalysis of Russell's model (1977) for the growth of incoherent precipitates shows that it may qualitatively account for the observed behavior of the β phase precipitates. (Auth.)

  9. Biology of ionizing radiation effects

    International Nuclear Information System (INIS)

    Ferradini, C.; Pucheault, J.

    1983-01-01

    The present trends in biology of ionizing radiation are reviewed. The following topics are investigated: interaction of ionizing radiations with matter; the radiolysis of water and aqueous solutions; properties of the free radicals intervening in the couples O 2 /H 2 O and H 2 O/H 2 ; radiation chemistry of biological compounds; biological effects of ionizing radiations; biochemical mechanisms involving free radicals as intermediates; applications (biotechnological applications, origins of life) [fr

  10. The biological effects of radiation

    International Nuclear Information System (INIS)

    Sykes, D.A.

    1979-01-01

    The hazards of radiations to man are briefly covered in this paper. The natural background sources of radiations are stated and their resulting doses are compared to those received voluntarily by man. The basis of how radiations cause biological damage is given and the resulting somatic effects are shown for varying magnitude of dose. Risk estimates are given for cancer induction and genetic effects are briefly discussed. Finally four case studies of radiation damage to humans are examined exemplifying the symptoms of large doses of radiations [af

  11. Radiation effects on lymphocytes

    International Nuclear Information System (INIS)

    Roser, B.

    1976-01-01

    This review of the ontogeny of lymphocyte populations concentrates on sites of production, rates of production, and the factors governing the differentiation and longevity of the various lymphocyte pools. The physiology of the lymphocyte pools is described with particular emphasis on recirculation from blood to lymph through lymphoid tissues. The separate routes of recirculation of both thymus-derived and nonthymus-derived lymphocytes and the possible anatomical sites and mechanisms of lymphocyte cooperation are discussed. Radiation effects on lymphocyte populations are divided into two sections. First, the effects of whole-body irradiation on the total lymphocyte pools are discussed including the differential effects of irradiation on T lymphocytes, B lymphocytes, lymphoblasts, and plasma cells. The differential sensitivity of various types of immune response is correlated, where possible, with the differential sensitivity of the lymphocyte types involved. Second, experimental attempts to selectively deplete discrete subpopulations of the total lymphocyte pools, e.g., recirculating cells, are briefly discussed with particular emphasis on studies on the effects of the localization of radionuclides in lymphoid tissue

  12. Relation of radiation damage of metallic solids to electronic structure. Pt. 5

    International Nuclear Information System (INIS)

    Shalaev, A.M.; Adamenko, A.A.

    1977-01-01

    The problem of relating a damage in metal solids to the parameters of radiation fluxes and the physical nature of a target is considered. Basing upon experimental and theoretical investigations into the processes of interaction of particle fluxes with solids, the following conclusions have been reached. Threshold energy of ion displacement in the crystal lattice of a metal solid is dependent on the energy of a bombarding particle, which is due to ionization and electroexcitation stimulated by energy transfer from a fast particle to a system of collectivized electrons. The rate of metal solid damage by radiation depends on the state of the crystal lattice, in particular on its defectness. Variations of local electron density in the vicinity of a defect are related with changing thermodynamic characteristics of radiation-induced defect formation. A type of atomic bond in a solid affects the rate of radiation damage. The greatest damage occurs in materials with a covalent bond

  13. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Experiments with small animals, tissue cultures, and inanimate materials help with understanding the effects of ionizing radiation that occur at the molecular level and cause the gross effects observed in man. Topics covered in this chapter include the following: Radiolysis of Water; Radiolysis of Organic Compounds; Radiolysis in Cells; Radiation Exposure and Dose Units; Dose Response Curves; Radiation Effects in Animals; Factors Affecting Health Risks. 8 refs., 3 figs., 5 tabs

  14. Effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1981-01-01

    The available evidence on the effects of radiation on man and the predictions that have been made of possible low level effects are reviewed. Data from United Nations Scientific Committee of the Effects of Atomic Radiation (UNSCEAR) and the committee on the Biological Effects of Ionising Radiation (BEIR) is used to illustrate the acute, delayed and hereditary effects of high dose levels. The effects of low dose levels are discussed on the assumption that both somatic and hereditary effects can be predicted on the basis of linear extrapolation from high dose effects. (U.K.)

  15. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Pathak, B.

    1989-12-01

    Ionizing radiation is energy that travels through space as electromagnetic waves or a stream of fast moving particles. In the workplace, the sources of ionizing radiation are radioactive substances, nuclear power plants, x-ray machines and nuclear devices used in medicine, research and industry. Commonly encountered types of radiation are alpha particles, beta particles and gamma rays. Alpha particles have very little penetrating power and pose a risk only when the radioactive substance is deposited inside the body. Beta particles are more penetrating than alpha particles and can penetrate the outer body tissues causing damage to the skin and the eyes. Gamma rays are highly penetrating and can cause radiation damage to the whole body. The probability of radiation-induced disease depends on the accumulated amount of radiation dose. The main health effects of ionizing radiation are cancers in exposed persons and genetic disorders in the children, grandchildren and subsequent generations of the exposed parents. The fetus is highly sensitive to radiation-induced abnormalities. At high doses, radiation can cause cataracts in the eyes. There is no firm evidence that ionizing radiation causes premature aging. Radiation-induced sterility is highly unlikely for occupational doses. The data on the combined effect of ionizing radiation and other cancer-causing physical and chemical agents are inconclusive

  16. Chemical effects of radiation

    International Nuclear Information System (INIS)

    Philips, G.O.

    1986-01-01

    Ionizing radiations initiate chemical changes in materials because of the high energy of their quanta. In water, highly reactive free radicals are produced which can initiate secondary changes of solutes, and in chemical of biological molecules in contact with the water. Free radicals can also be directly produced in irradiated medical products. Their fate can be identified and the molecular basis of radiation inactivation clarified. Methods have now been developed to protect and minimise such radiation damage. (author)

  17. Thermal Effects Induced by Laser Irradiation of Solids

    International Nuclear Information System (INIS)

    Galovic, S.

    2004-01-01

    A part of incident energy is absorbed within the irradiated sample when a solid is exposed to the influence of laser radiation, to more general electromagnetic radiation within the wide range of wavelengths (from microwaves, to infrared radiation to X-rays), or to the energy of particle beams (electronic, protonic, or ionic). The absorption process signifies a highly selective excitation of the electronic state of atoms or molecules, followed by thermal and non-thermal de-excitation processes. Non-radiation de-excitation-relaxation processes induce direct sample heating. In addition, a great number of non-thermal processes (e.g., photoluminescence, photochemistry, photovoltage) may also induce heat generation as a secondary process. This method of producing heat is called the photothermal effect.The photothermal effect and subsequent propagation of thermal waves on the surface and in the volume of the solid absorbing the exciting beam may produce the following: variations in the temperature on the surfaces of the sample; deformation and displacement of surfaces; secondary infrared radiation (photothermal radiation); the formation of the gradient of the refractivity index; changes in coefficients of reflection and absorbtion; the generation of sound (photoacoustic generation), etc. These phenomena may be used in the investigation and measurement of various material properties since the profile and magnitude of the generated signal depend upon the nature of material absorbing radiation. A series of non-destructive spectroscopic, microscopic and defectoscopic detecting techniques, called photothermal methods, is developed on the basis of the above-mentioned phenomena.This paper outlines the interaction between the intensity modulated laser beam and solids, and presents a mathematical model of generated thermal sources. Generalized models for a photothermal response of optically excited materials have been obtained, including thermal memory influence on the propagation

  18. Radiation effects in LDD MOS devices

    International Nuclear Information System (INIS)

    Woodruff, R.L.; Adams, J.R.

    1987-01-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined that the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10 6 rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10 6 rads(Si), and shows promise for achieving 1.0 x 10 7 rad(Si) total-dose capability

  19. Diffusion effects in undulator radiation

    Directory of Open Access Journals (Sweden)

    Ilya Agapov

    2014-11-01

    Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.

  20. Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors

    Science.gov (United States)

    Moeendarbari, Sina; Tekade, Rakesh; Mulgaonkar, Aditi; Christensen, Preston; Ramezani, Saleh; Hassan, Gedaa; Jiang, Ruiqian; Öz, Orhan K.; Hao, Yaowu; Sun, Xiankai

    2016-02-01

    Malignant tumors are considered “unresectable” if they are adhere to vital structures or the surgery would cause irreversible damages to the patients. Though a variety of cytotoxic drugs and radiation therapies are currently available in clinical practice to treat such tumor masses, these therapeutic modalities are always associated with substantial side effects. Here, we report an injectable nanoparticle-based internal radiation source that potentially offers more efficacious treatment of unresectable solid tumors without significant adverse side effects. Using a highly efficient incorporation procedure, palladium-103, a brachytherapy radioisotope in clinical practice, was coated to monodispersed hollow gold nanoparticles with a diameter about 120 nm, to form 103Pd@Au nanoseeds. The therapeutic efficacy of 103Pd@Au nanoseeds were assessed when intratumorally injected into a prostate cancer xenograft model. Five weeks after a single-dose treatment, a significant tumor burden reduction (>80%) was observed without noticeable side effects on the liver, spleen and other organs. Impressively, >95% nanoseeds were retained inside the tumors as monitored by Single Photon Emission Computed Tomography (SPECT) with the gamma emissions of 103Pd. These findings show that this nanoseed-based brachytherapy has the potential to provide a theranostic solution to unresectable solid tumors.

  1. Radiation effect on polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Deng Pengyang; Zhong Xiaoguang; Sun Jiazhen

    1999-01-01

    Polytetrafluoroethylene (PTFE) has always been regarded as a typical kind of radiation degradation polymer. But, in fact, PTFE can be induced crosslinking by γ-ray or electron beam at some special conditions (free oxygen and a narrow temperature region at 335 +- 5 degree C). Compared with radiation degradiation PTFE, cosslinking PTFE owns a lot of new properties. Some articles concerning with these have been published, which will be systematically reviewed in this

  2. Three dimensional analysis of planar solid oxide fuel cell stack considering radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Inui, Y.; Urata, A.; Kanno, T. [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2007-05-15

    The authors have been engaged in numerical simulations of the planar type solid oxide fuel cell (SOFC) to make clear the dependence of the cell performance on its operating conditions. Up to now, the authors have already developed the simulation codes for the one channel region and the single cell plate in its cell stack. To calculate accurately the effect of radiation heat transfer from the cell stack surfaces, however, a code that can treat the whole cell stack is necessary. In the present study, therefore, the authors newly develop a three dimensional simulation code of the planar SOFC stack, and the detailed effect of the radiation heat transfer is investigated. It is made clear that the conventional codes are sufficiently accurate, and the newly developed whole cell stack code is not inevitable to predict the maximum cell temperature. This is because the thermal conductivity of the cell materials made of ceramics is very small, and the central part of the cell stack is almost free from the influence of radiation heat transfer. On the other hand, the stack simulation is needed to calculate accurately the cell voltage because the radiation heat transfer reduces it when the ambient temperature is low. The bad influence of low ambient temperature on the voltage is, however, small and relatively high voltage is obtained even when the ambient temperature is very low. (author)

  3. Radiation-acoustic system for solid state research

    International Nuclear Information System (INIS)

    Zalyubovsky, I.I.; Kalinichenko, A.I.; Kresnin, Yu.; Popov, G.F.

    1998-01-01

    The radiation-acoustic system (RAS) is designed for comprehensive investigation of thermoelastic (TE), thermophysical (TP) and thermodynamic (TD) characteristics of structural materials. It operation is based on radiation-acoustic method, which includes probing of investigated materials by pulsed electron beam and registration the exited thermo acoustic stress. The hardware includes a CAMAC crate, an IBM PC computer, a set of sensors, a strobe analog-digital converter, a commutators of analog signals, and drivers of physical parameters. The system allows to process thermo acoustic signals generated in beam-target interaction and to extract information about phase state, TE-, TP-, and TD characteristics of the target materials. The system was used for simultaneous measuring of phase state, TE-, TP-, and TD characteristics and for investigation of kinetics of structural phase transitions in multifunctional materials such as materials with the shape memory effect (CuAlNi, TiNi, TiNiFe, TiNiCu), rare-earth metals (Dy, Gd), high-temperature superconductors YBaCuO, piezoelectric crystals (TiBa, ZrTiPb-ceramics), polymers (PMMA, PTFE, PE) etc

  4. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    Experimental data are presented concerning the effects of relatively low doses of x radiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the manifold influence of radiation-induced membrane phenomenon on the development and regeneration of radiation injuries. (author)

  5. Radiation effects in optoelectronic devices

    International Nuclear Information System (INIS)

    Barnes, C.E.; Wiczer, J.J.

    1984-05-01

    Purpose of this report is to provide not only a summary of radiation damage studies at Sandia National Laboratories, but also of those in the literature on the components of optoelectronic systems: light emitting diodes (LEDs), laser diodes, photodetectors, optical fibers, and optical isolators. This review of radiation damage in optoelectronic components is structured according to device type. In each section, a brief discussion of those device properties relevant to radiation effects is given

  6. Radiation induced homogeneous precipitation in undersaturated solid-solutions

    International Nuclear Information System (INIS)

    Cauvin, Richard; Martin, Georges.

    1978-01-01

    The stability of various types of solid solutions under irradiation is studied. In this paper, observations made on AlZn solid solutions under 1 MeV electron irradiation are reported. Al-Zn was chosen as a prototype of solid solutions with a simple miscibility gap. It is shown that under appropriate irradiation conditions undersaturated AnZn solid solutions give rise to a homogeneous precipitation of coherent G.P. zones and of incoherent Zn precipitates the atomic volume of which is smaller than that of the matrix. We propose a more general treatment of solute concentration heterogeneities in solid solutions under irradiation and suggest how it might account for the nucleation of the observed phases. The growth of the observed precipitates is studied

  7. Ionizing radiation exposures in treatments of solid neoplasms are not associated with subsequent increased risks of chronic lymphocytic leukemia.

    Science.gov (United States)

    Radivoyevitch, Tomas; Sachs, Rainer K; Gale, Robert Peter; Smith, Mitchell R; Hill, Brian T

    2016-04-01

    Exposure to ionizing radiation is not thought to cause chronic lymphocytic leukemia (CLL). Challenging this notion are recent data suggesting CLL incidence may be increased by radiation exposure from the atomic bombs (after many decades), uranium mining and nuclear power facility accidents. To assess the effects of therapeutic ionizing radiation for the treatment of solid neoplasms we studied CLL risks in data from the Surveillance, Epidemiology, and End Results (SEER) Program. Specifically, we compared the risks of developing CLL in persons with a 1(st) non-hematologic cancer treated with or without ionizing radiation. We controlled for early detection effects on CLL risk induced by surveillance after 1(st) cancer diagnoses by forming all-time cumulative CLL relative risks (RR). We estimate such CLL RR to be 1.20 (95% confidence interval, 1.17, 1.23) for persons whose 1(st) cancer was not treated with ionizing radiation and 1.00 (0.96, 1.05) for persons whose 1(st) cancer was treated with ionizing radiations. These results imply that diagnosis of a solid neoplasm is associated with an increased risk of developing CLL only in persons whose 1(st) cancer was not treated with radiation therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  9. Effects of radiation; Effets des radiations

    Energy Technology Data Exchange (ETDEWEB)

    Masse, R. [Office de Protection contre les Rayonnements Ionisants, 78 - le Vesinet (France)

    2006-07-01

    The medical consequences of a whole-body irradiation come from the destruction of cells and inflammatory reactions it provokes. The most sensitive organs are the tissues that actively split. The embryo is particularly sensitive, from 200 mSv for the effects on the brain development. The reproduction functions are reached for man from 2000 mSv, the ovary sensitivity is less, the oocytes do not split after the fetus life. For adult the bone marrow outrage leads to the disappearing of blood cells (4000 mSv). The doses from 6000 to 10000 mSv lead the failure of the digestive system and lung. for the upper doses every tissue is reached, particularly by the effects on cells of blood vessels. Important brain dysfunctions appear beyond 10000 mSv. As regards the delayed effects of overexposures the epidemiology brings to light sanitary consequences of the exposure of the population to the ionizing radiations and requires that all the possible factors associated for that purpose are considered. About hereditary effects, it appears that moderate acute radiation exposures of even a relatively large human population must have little impact, in spite of the rate of spontaneous congenital deformations is of the order of 6 %. For the induction of cancers, it is not observed excess for doses lower than 200 mSv for adults and 100 mSv for children (the populations studied are survival people of hiroshima and Nagasaki, patients treated by irradiation, uranium miners, children exposed to radioactive iodine after Chernobylsk accident). To simplify an expression of the risk has been fixed to 5% of induced cancer by Sv for population and 4% by Sv for workers, the different being explained by the demography and the sensitivity of the youngest age groups. As regards the low doses of radiations, a bundle of convergent epidemiological observations notices the absence of effects of the low doses rates. Biological mechanisms, notably of repair are approached, then certain accidents (Goiania

  10. Ionizing radiations: effects and sources

    International Nuclear Information System (INIS)

    Vignes, S.; Nenot, J.C.

    1978-01-01

    Having first mentioned the effects of ionizing radiations in cancerogenisis, pre-natal, and genetic fields, the authors present the different sources of radiations and estimate their respective contributions to the total irradiation dose. Their paper makes reference to the main elements of a report issued by the United Nations Scientific Committee in 1977 [fr

  11. Genetic effects of ionising radiation

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    The mutagenic effects of ionising radiation on germ cells with resulting genetic abnormalities in subsequent generations, are considered. Having examined a simple model to explain the interaction of ionising radiation with genetic material and discussed its limitations, the methods whereby mutations are transmitted are discussed. Methods of estimating genetic risks and the results of such studies are examined. (U.K.)

  12. New solid-state effects used in neutron detection and dosimetry. 1

    International Nuclear Information System (INIS)

    Doerschel, B.; Hahn, G.

    1981-01-01

    A review is given of radiation effects on solids and their usability for personnel neutron dosimetry. Part 1 covers mechanical effects on the crystal lattice of solids (dislocations in copper foils and changes in the bulk modulus, unclear effects in quartz connected with changes in the oscillation frequency), thermal effects of metals embedded in type I superconductors (superheated colloid detectors) or other materials (superheated drop detectors)

  13. Epigenetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    EI-Naggar, A.M.

    2007-01-01

    Data generated during the last three decades provide evidence of Epigenetic Effects that ave-induced by ionizing radiation, particularly those of high LET values, and low level dose exposures. Epigenesist is defined as the stepwise process by which genetic information, as modified by environmental influences, is translated into the substance and behavior of cells, tissues, organism.The epigenetic effects cited in the literature are essentially classified into fine types depending on the type and nature of the effect induced.The most accepted postulation, for the occurrence of these epigenetic effects, is a radiation induced bio electric disturbances in the environment of the non-irradiated cellular volume. This will trigger signals that will induce effects in the unirradiated cells.The epigenetic effects referenced in the literature up to date are five types; namely, Genomic Instability, Bystander. Effects, Clastogenic Plasma Factors,, Abscopal Effects, and Tran generational Effects.The demonstration of Epigenetic Effects associated with exposure to ionizing radiation indicates the need to re- examine the concept of radiation dose and target size. Also an improved understanding of qualifiring and quantifying radiation risk estimates may be attained. Also, a more logical means to understand the underlying mechanisms of radiation induced carcinogenic transformation of cells

  14. Radiation hazards and biological effects of ionising radiation on man

    International Nuclear Information System (INIS)

    Siti Najila Mohd Janib

    2004-01-01

    The contents of this chapter are follows - Mechanism of damage: direct action of radiation, indirect action of radiation. Classification of effects: somatic effect, induction of cancer, factors, affecting somatic effects, genetic effect, inherited abnormalities, induced effects, early effects, late effects, deterministic effect, stochastic effect. Effect of specific group: development abnormality, childhood Cancer, fertile women, risk and uncertainty, comparison of risk

  15. Radiation and radiation effects; Strahlung und Strahlenwirkung

    Energy Technology Data Exchange (ETDEWEB)

    Neumaier, S. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Arbeitsgruppe Strahlenschutz; Janssen, H. [Physikalisch-Technische Bundesanstalt, Berlin (Germany). Abt. Ionisierende Strahlung

    2006-12-15

    The average dose incurred by the German population is about 4 millisievert p.a., about half of which results from natural radiation sources. The second half is caused nearly completely by medical applications. Only a very small fraction of the annual dose results from technical applications. This special issue of PTB focuses on the measuring problems relating to natural radiation sources and technical applications of ionizing radiation. The current contribution also outlines some important aspects of radiation exposure from medical applications. (orig.)

  16. Numerical Study on Similarity of Plume’s Infrared Radiation from Reduced Scaling Solid Rocket

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhang

    2015-01-01

    Full Text Available Similarity of plume radiation between reduced scaling solid rocket models and full scale ones in ground conditions has been taken for investigation. Flow and radiation of plume from solid rockets with scaling ratio from 0.1 to 1 have been computed. The radiative transfer equation (RTE is solved by the finite volume method (FVM in infrared band 2~6 μm. The spectral characteristics of plume gases have been calculated with the weighted-sum-of-gray-gas (WSGG model, and those of the Al2O3 particles have been solved by the Mie scattering model. Our research shows that, with the decreasing scaling ratio of the rocket engine, the radiation intensity of the plume decreases with 1.5~2.5 power of the scaling ratio. The infrared radiation of the plume gases shows a strong spectral dependency, while that of the Al2O3 particles shows grey property. Spectral radiation intensity of the high temperature core of the solid rocket plume increases greatly in the peak absorption spectrum of plume gases. Al2O3 particle is the major radiation composition in the rocket plume, whose scattering coefficient is much larger than its absorption coefficient. There is good similarity between spectral variations of plumes from different scaling solid rockets. The directional plume radiation rises with the increasing azimuth angle.

  17. Measurement and evaluation of the radiative properties of a thin solid fuel

    Science.gov (United States)

    Pettegrew, Richard; Street, Kenneth; Pitch, Nancy; Tien, James; Morrison, Phillip

    2003-01-01

    Accurate modeling of combustion systems requires knowledge of the radiative properties of the system. Gas phase properties are well known, but detailed knowledge of surface properties is limited. Recent work has provided spectrally resolved data for some solid fuels, but only for the unburned material at room temperature, and for limited sets of previously burned and quenched samples. Due to lack of knowledge of the spectrally resolved properties at elevated temperatures, as well as processing limitations in the modeling effort, graybody values are typically used for the fuels surface radiative properties. However, the spectrally resolved properties for the fuels at room temperature can be used to give a first-order correction for temperature effects on the graybody values. Figure 1 shows a sample of the spectrally resolved emittance/absorptance for a thin solid fuel of the type commonly used in combustion studies, from approximately 2 to 20 microns. This plot clearly shows a strong spectral dependence across the entire range. By definition, the emittance is the ratio of the emitted energy to that of a blackbody at the same temperature. Therefore, to determine a graybody emittance for this material, the spectrally resolved data must be applied to a blackbody curve. The total area under the resulting curve is ratioed to the total area under the blackbody curve to yield the answer. Due to the asymmetry of the spectrally resolved emittance and the changing shape of the blackbody curve as the temperature increases, the relative importance of the emittance value at any given wavelength will change as a function of temperature. Therefore, the graybody emittance value for a given material will change as a function of temperature even if the spectral dependence of the radiative properties remains unchanged. This is demonstrated in Figures 2 and 3, which are plots of the spectrally resolved emittance for KimWipes (shown in Figure 1) multiplied by the blackbody curves for

  18. Radiation effects on structural materials

    International Nuclear Information System (INIS)

    Ghoniem, N.M.

    1991-01-01

    This report discusses the following topics on the effect radiation has on thermonuclear reactor materials: Atomic Displacements; Microstructure Evolution; Materials Engineering, Mechanics, and Design; Research on Low-Activation Steels; and Research Motivated by Grant Support

  19. Biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Gisone, Pablo; Perez, Maria R.

    2001-01-01

    It has been emphasised the importance of DNA as the main target for ionizing radiation, that can induce damage by its direct action on this molecule or by an indirect effect mediated by free-radicals generated by water radiolysis. Biological effects of ionizing radiation are influenced not only by the dose but also by the dose-rate and the radiation quality. Radiation induced damage, mainly DNA single and double strand breaks, is detected by molecular sensors which in turn trigger signalling cascades leading to cell cycle arrest to allow DNA repair or programmed cell death (apoptosis). Those effects related with cell death, named deterministic, exhibits a dose-threshold below which they are not observed. Acute radiation syndrome and radiological burns are examples of this kind of effects. Other radiation induced effects, called stochastic, are the consequence of cell transformation and do not exhibit a dose-threshold. This is the case of cancer induction and hereditary effects. The aim of this presentation is briefly describe the main aspects of deterministic and stochastic effects from the point of view of radiobiology and radio pathology. (author)

  20. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  1. Effects of radiation on erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Harriss, E B

    1971-04-01

    Since the pioneer work of Heineke (1903; 1905) many workers have studied the effect of radiation on haemopoiesis. Their work has been reviewed by Bloom (1948), by Jacobson (1954) and more recently by Bond et al. (1965). The subject continues to stimulate much interest but is now more concerned with the effects of radiation on the multipotential stem cell pool than on radiation damage to the erythropoietic cells themselves. Death from haemopoietic failure following an LD{sub 50/30} dose of radiation is probably not attributable to failure of erythropoiesis; while damage to the erythropoietic system certainly plays a part in the syndrome, it is not a major factor contributing to the death of the animal. Although the severity and time course of the response vary with the species studied, the general effects of radiation on erythropoiesis are similar in all mammalian bone marrow studied to date. Likewise, though the severity of the reaction varies somewhat with the energy of the radiation and has been used to compare the relative biological effectiveness of different types of radiation (Sinclair et al., 1962; Sztanyik, 1967), the response is different only in degree and not in its fundamental pattern. The initial syndrome of depression and recovery will therefore be described largely by reference to work performed on the response of the rat to single acute exposures of either whole-body or partial-body irradiation with conventional X-rays.

  2. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  3. Generalized atomic processes for interaction of intense femtosecond XUV- and X-ray radiation with solids

    International Nuclear Information System (INIS)

    Deschaud, B.; Peyrusse, O.; Rosmej, F.B.

    2014-01-01

    Generalized atomic processes are proposed to establish a consistent description from the free-atom approach to the heated and even up to the cold solid. It is based on a rigorous introduction of the Fermi-Dirac statistics, Pauli blocking factors and on the respect of the principle of detailed balance via the introduction of direct and inverse processes. A probability formalism driven by the degeneracy of the free electrons enables to establish a link of atomic rates valid from the heated atom up to the cold solid. This allows to describe photoionization processes in atomic population kinetics and subsequent solid matter heating on a femtosecond time scale. The Auger effect is linked to the 3-body recombination via a generalized 3-body recombination that is identified as a key mechanism, along with the collisional ionization, that follows energy deposition by photoionization of inner shells when short, intense and high-energy radiation interacts with matter. Detailed simulations are carried out for aluminum that highlight the importance of the generalized approach. (authors)

  4. Low level radiation: biological effects

    International Nuclear Information System (INIS)

    Loken, M.K.

    1983-01-01

    It is imperative that physicians and scientists using radiations in health care delivery continue to assess the benefits derived, vs. potential risk, to patients and radiation workers being exposed to radiation in its various forms as part of our health delivery system. Insofar as possible we should assure our patients and ourselves that the benefits outweigh the potential hazards involved. Inferences as to the possible biological effects of low level radiation are generally based on extrapolations from those effects observed and measured following acute exposures to considerably higher doses of radiation. Thus, in order to shed light on the question of the possible biological effects of low level radiation, a wide variety of studies have been carried out using cells in culture and various species of plant and animal life. This manuscript makes reference to some of those studies with indications as to how and why the studies were done and the conclusions that might be drawn there from. In addition reference is made to the handling of this information by scientists, by environmentalists, and by the news media. Unfortunately, in many instances the public has been misled by what has been said and/or written. It is hoped that this presentation will provide an understandable and reasonable perspective on the various appropriate uses of radiation in our lives and how such uses do provide significant improvement in our health and in our quality of life

  5. Photothermoacoustic effect in solids with piezoelectric detection

    International Nuclear Information System (INIS)

    Kozachenko, V. V.; Kucherov, I.Ya.

    2004-01-01

    Full text: In the last few years, a growing interest has been expressed in studies of substances in different aggregate states which were performed with the help of the photothermoacoustic PTA effect. Main in this method is use of thermal waves as the carrier of the information about properties of explored substance. The excitation of thermal waves is carried out, as a rule, by modulated light flux. A specific feature of the PTA effect is the dependence of the information obtained from it on the method used for detecting thermal waves. One of the most sensitive methods for detecting a PTA signal is the piezoelectric method. For studies of solids, the PTA effect in plates offers considerable promise. In this work, PTA effect in a solid-piezoelectric layered structure is studied theoretically and experimentally. The layered plate consisting of an isotropic solid and piezoelectric crystal of a class 6 mm (or piezoelectric ceramics) is considered. The surface of a solid body is uniformly irradiated with a modulated light flux. The sample is heated and the thermal waves are generated. In the sample, the temperature field of thermal waves generates, due to the thermoelastic effect, acoustic vibration and waves that are registered by a piezoelectric. Expressions for the potential difference U across an arbitrary layer of piezoelectric transducer are derived. The solid bodies with various optical and thermal properties for cases of one-layer and two-layer piezoelectric transducer are analyzed. In particular, is shown, that for the case two-layer piezoelectric transducer, in the high-frequency region, the amplitude ratio U 1 / U 2 the tangent of the phase difference tg(Δφ) of signals taken from individual layers of the transducer depend almost linearly on the inverse square root of the frequency f -1/2 . With use of these features, the new method of definition of some elastic and thermal parameters of solid bodies offered. An experiment is performed with samples Cu, Fe

  6. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    Science.gov (United States)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two

  7. Topical Day on Biological Effects of Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Baatout, S.; Jacquet, P.

    1997-05-15

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed.

  8. Topical Day on Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Baatout, S.; Jacquet, P.

    1997-01-01

    The topical day has been focussed on the potential effects of ionizing radiation on human health. A general overview on molecular and biophysical aspects of radiation, its effects on cells and organisms, and the contribution of radiobiology to radiation protection and risk assessment is given. The genetic effects of radiation and its effects on the developing organism, the effects of radiation on the cell cycle and the mechanisms of radiation induced apoptosis were also discussed

  9. Effects of radiation-counselling convergence education on radiation awareness

    Energy Technology Data Exchange (ETDEWEB)

    Seoung, Youl Hun [Dept. of Radiological Science, College of Health Science, Cheongju University, Cheongju (Korea, Republic of)

    2017-06-15

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit.

  10. Effects of radiation-counselling convergence education on radiation awareness

    International Nuclear Information System (INIS)

    Seoung, Youl Hun

    2017-01-01

    The purpose of study was to analysis on the effects of radiation-counselling convergence education on radiation awareness. The survey objects were students of radiation-counselling convergence education from 12th May to 22th June in 2016. The questionnaires were education satisfactions and radiation awareness (risk, benefit, control) by Likert-type 5 scales. The analysis results revealed that education satisfactions of men students showed a significant higher female students and correlation coefficient of education satisfactions were the best high in the benefit and control of radiation. Finally radiation-counselling convergence education had a significant effect on radiation benefit. This convergence education influenced positive recognition on radiation benefit and it was indicated that radiation-counselors could treat clients on the basis of radiation benefit

  11. The effects of radiation on electronic systems

    International Nuclear Information System (INIS)

    Messenger, G.C.; Ash, M.S.

    1986-01-01

    This book is the first unified treatment of the analysis and design methods for protection of principally electronic systems from the deleterious effects of nuclear and electro-magnetic radiation. Coverage spans from a detailed description of the nuclear radiation sources to pertinent semiconductor physics, then to hardness assurance. This work combines the disciplines of solid state physics, semiconductor physics, circuit engineering, nuclear physics, together with electronics and electromagnetic theory into a book that can be used as a text with problems at the end of the majority of the chapters. Written by veterans in the field, the most significant feature of this book is its comprehensive treatment of the phenomena involved. This treatment includes the analysis and design of the effect of nuclear radiation on electronic systems from the experimental, theoretical, and engineering viewpoints. Unique pedagogical attempts are employed to make the material more understandable from the position of an enlightened engineering and scientific readership whose task is the design and analysis of radiation hardened electronic systems

  12. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  13. RADIATION EFFECTS IN NUCLEAR WASTE MATERIALS

    International Nuclear Information System (INIS)

    Weber, William J.

    2000-01-01

    The objective of this research was to develop fundamental understanding and predictive models of radiation effects in glasses and ceramics at the atomic, microscopic, and macroscopic levels, as well as an understanding of the effects of these radiation-induced solid-state changes on dissolution kinetics (i.e., radionuclide release). The research performed during the duration of this project has addressed many of the scientific issues identified in the reports of two DOE panels [1,2], particularly those related to radiation effects on the structure of glasses and ceramics. The research approach taken by this project integrated experimental studies and computer simulations to develop comprehensive fundamental understanding and capabilities for predictive modeling of radiation effects and dissolution kinetics in both glasses and ceramics designed for the stabilization and immobilization of high-level tank waste (HLW), plutonium residues and scraps, surplus weapons plutonium, other actinides, and other highly radioactive waste streams. Such fundamental understanding is necessary in the development of predictive models because all experimental irradiation studies on nuclear waste materials are ''accelerated tests'' that add a great deal of uncertainty to predicted behavior because the damage rates are orders of magnitude higher than the actual damage rates expected in nuclear waste materials. Degradation and dissolution processes will change with damage rate and temperature. Only a fundamental understanding of the kinetics of all the physical and chemical processes induced or affected by radiation will lead to truly predictive models of long-term behavior and performance for nuclear waste materials. Predictive models of performance of nuclear waste materials must be scientifically based and address both radiation effects on structure (i.e., solid-state effects) and the effects of these solid-state structural changes on dissolution kinetics. The ultimate goal of this

  14. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  15. Radiation effects in optical components

    International Nuclear Information System (INIS)

    Friebele, E.J.

    1987-01-01

    This report discusses components of high performance optical devices may be exposed to high energy radiation environments during their lifetime. The effect of these adverse environments depends upon a large number of parameters associated with the radiation (nature, energy, dose, dose rate, etc.) or the system (temperature, optical performance requirements, optical wavelength, optical power, path length, etc.), as well as the intrinsic susceptibility of the optical component itself to degradation

  16. Environmental dosimetry and radiation effects

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1997-01-01

    Specific assessment of the potential effects on wild organisms of increased radiation exposure arising from the authorized disposal of radioactive wastes to the environment requires two interrelated sets of information. First, an estimate is required of the incremental radiation exposure; and second, dose rate-response relationships are necessary to predict the potential impact of the estimated incremental exposure. Each of these aspects will be discussed in detail. (author)

  17. Experimental studies on interactions of radiation and cancer chemotherapeutic drugs in normal tissues and a solid tumour

    International Nuclear Information System (INIS)

    Maase, H. van der

    1986-01-01

    The interactions of radiation and seven cancer chemotherapeutic drugs have been investigated in four normal tissues and in a solid C 3 H mouse mammary carcinoma in vivo. The investigated drugs were adriamycin (ADM), bleomycin (BLM), cyclophosphamide (CTX), 5-fluorouracil (5-FU), methotrexate (MTX), mitomycin C (MM-C) and cis-diamminedichloroplatinum(II) (cis-DDP). The drugs enhanced the radiation response in most cases. However, signs of radioprotection was observed for CTX in skin and for MTX in haemopoietic tissue. The interval and the sequence of the two treatment modalities were of utmost importance for the normal tissue reactions. In general, the most serious interactions occurred when drugs were administered simultaneously with or a few hours before radiation. The radiation-modifying effect of the drugs deviated from this pattern in the haemopoietic tissue as the radiation response was most enhanced on drug administration 1-3 days after radiation. Enhancement of the radiation response was generally less pronounced in the tumour model than in the normal tissues. The combined drug-radiation effect was apparently less time-dependent in the tumour than in the normal tissues. (Auth.)

  18. The late biological effects of ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-06-15

    Full text: The principal objective of the symposium was to review the current status of understanding of the late biological effects of ionizing radiation from external and internal sources. A second objective was to critically evaluate information obtained from epidemiological studies of human population groups as well as from animal experimentation in order to provide a solid scientific basis upon which problems of current concern, such as radiation protection standards and risk-benefit analysis, could be deliberated. Eighty-one papers were presented in 10 sessions which covered epidemiological studies of late effects in human populations exposed to internal and/or external ionizing radiation; quantitative and qualitative data from animal experimentation of late effects; methodological problems and modern approaches; factors influencing susceptibility or expression of late radiation injury; comparative evaluation of late effects induced by radiation and other environmental pollutants, and problems of risk assessment. In addition, there were two evening sessions for free discussion of problems of interpreting animal data, and of the epidemiological studies of occupationally exposed populations. Reports on atomic bomb survivors showed that these epidemiological studies are providing dependable data, such as dose-related excess infant mortality. The reports also revealed the need for consensus in the method employed in the interpretation of data. That was also the case with studies on occupationally exposed populations at Hanford plant, where disparate results were presented on radiation-induced neoplasia among radiation workers. These data are, however, considered not so significant in relative terms when compared to risks involved in other industries. It was recommended that national registry systems for the dosimetry and medical records of radiation workers be established and co-ordinated internationally in order to facilitate reliable epidemiological

  19. Radiation effects at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Gilchriese, M.G.D. [ed.] [Superconducting Super Collider Lab., Dallas, TX (United States)

    1988-06-01

    This report contains a preliminary study of the effects of the radiation levels expected at the SSC on potential detector components and a subset of materials to be used in the SSC accelerators. The report does not contain a discussion of radiation damage to electronics components that may be used at the SSC. We have investigated many of the effects of radiation on silicon detectors, on wire chambers, on scintillating materials and the associated readout, on optical fibers for data transmission and on structural or other materials to be used in detector or accelerator components. In the SSC accelerator complex, in particular the storage rings, radiation damage will not present significant problems different than those now faced by existing high energy accelerators. We find that the effects of radiation damage on SSC detector components will be significant at the design luminosity of the ssc and will limit, or determine, many of the options for different detector components. In this regard the reader should keep in mind that, in the absence of a specific detector design, it is not possible to form definitive conclusions regarding the viability of the detector components. Since the radiation levels in experiments at the SSC will depend on the geometry and composition of the apparatus, simple yes /no generalizations about the feasibility of a detector component are not possible.

  20. Rechargeable solid state neutron detector and visible radiation indicator

    Science.gov (United States)

    Stowe, Ashley C.; Wiggins, Brenden; Burger, Arnold

    2017-05-23

    A radiation detection device, including: a support structure; and a chalcopyrite crystal coupled to the support structure; wherein, when the chalcopyrite crystal is exposed to radiation, a visible spectrum of the chalcopyrite crystal changes from an initial color to a modified color. The visible spectrum of the chalcopyrite crystal is changed back from the modified color to the initial color by annealing the chalcopyrite crystal at an elevated temperature below a melting point of the chalcopyrite crystal over time. The chalcopyrite crystal is optionally a .sup.6LiInSe.sub.2 crystal. The radiation is comprised of neutrons that decrease the .sup.6Li concentration of the chalcopyrite crystal via a .sup.6Li(n,.alpha.) reaction. The initial color is yellow and the modified color is one of orange and red. The annealing temperature is between about 450 degrees C. and about 650 degrees C. and the annealing time is between about 12 hrs and about 36 hrs.

  1. Constant sensitivity circuit for solid state nuclear radiation counters

    International Nuclear Information System (INIS)

    Kronenberg, S.; Erkkila, B.

    1985-01-01

    The utilization of solid state counters in tactical radiological instruments for measuring intensities and doses of fallout gamma rays offers advantages over Geiger-Mueller (GM) counters such as a much wider dynamic range and low operating voltages. Their very small size is suitable for use in miniaturized equipment. However, these devices have a serious problem if used in a mixed, fast neutron/gamma environment such as is encountered e.g. in a battlefield where tactical nuclear weapons are used and neutrons, prompt, initial gammas and fallout gammas are killing factors of comparable importance. Exposure to fast neutrons reduces seriously their sensitivity. This makes the solid state counters at this time unacceptable for use in Army tactical surveillance equipment and in other applications where according to requirements the performance must not be impaired by exposure to fast neutrons. It seems to be possible to reduce to some extent this neutron generated damage by improving the crystal counters

  2. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Taiee [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  3. Health effects of ionising radiation

    International Nuclear Information System (INIS)

    Mohammadi, S.

    2000-01-01

    Human and animal studies have shown an increased incidence of cancer and malformation due to radioactive materials and external radiation. The biological effects of radiation on tissues are the occurrence of morphological and functional changes in the body. The critical parts of the body are those tissues or organs which when irradiated, are likely to influence the health of the individual or its offspring. The probability of these changes depends on the radiation dose. There are two main types of damage due to radiation dose. Radiation Sickness with well-defined symptoms like cancer and inherited disorders which can appear after several years. A second type of damage, namely Acute Radiation Sickness results after exposure of the whole or parts of the body to high doses of radiation greater than 1 Gy. There are safety standards for the amount of dose equivalent that is taken as acceptable. The International Commission on Radiological Protection (ICRP) has given norms in which natural and medical causes were not included. These are given as recommended values (1966) and proposed values (2000), both in mSv/yr: population at large: 1.7 and 0.4; members of the public: 5 and 2; and radiologic workers: 50 and 20, respectively. Taking into account the increased number of reactor accidents, the question is how safe is our safety standards? Even when one is able to connect a quantitative risk with a radiation dose, there are three fundamental principles which we should obey in dealing with risks from radiation. These are: (1) Avoid any risk. (2) The risk should be related to the possible benefit. (3) Any dose below the politically agreed limits is acceptable

  4. The combined effect of interferon synthesis inductors, radiosensitizing and antitumoral agents on solid tumors

    International Nuclear Information System (INIS)

    Leonidze, D.L.

    1987-01-01

    In experiments with mice bearing solid sarcoma 37 a study was conducted on the combined effect of radiation and inductors of endogenous inerferon synthesis (IEIS), together with hyperthermia or together with an alkylating and carbomoilating agent, dimethinur. The effect was estimated by the tumor growth coefficient and by the number of animals with the regressed tumors. Poly I; polyC was not shiown to influence the efficiency of hyperthermia combined with radiation with radiation; dextransulphate and tiloron increased the radiosensitizing effect of hyperthermia. Dimethinur aggravated the effect of radiation, but with IEIS used together with dimethynur and radiation, the response of the tumor increased insignificantly as compared to the effect of IEIS together with radiation

  5. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  6. Biological effects of nuclear radiation

    International Nuclear Information System (INIS)

    Hotz, G.

    1975-01-01

    After a brief survey about the main radiobiological effects caused by ionizing radiation, human symptoms after irradiation and incorporation are shown. The special radiotoxic effect of radionuclides which are chemically associated with metabolism-specific elements such as calcium and potassium is shown and methods of treatment are indicated. (ORU) [de

  7. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  8. Ultraviolet radiation-damage absorption peak in solid deuterium-tritium. Revision 1

    International Nuclear Information System (INIS)

    Fearon, E.M.; Tsugawa, R.T.; Souers, P.C.; Poll, J.D.; Hunt, J.L.

    1985-01-01

    An ultraviolet absorption peak has been seen in solid deuterium-tritium and hydrogen-tritium at a sensor temperature of 5 K. The peak occurs at 3.6 eV and is about 1.5 eV wide. It bleaches out when the temperature is raised to about 10 K but reappears upon cooling and is, therefore, radiation induced. At 5 K, the peak forms on a time scale of minutes and appears to represent part-per-million levels of electron-mass defects. The suggested model is that of a trapped electron, where the peak is the ground state-to-the-conduction band transition. A marked isotope effect is seen between D-T and H-T

  9. Numerical study on similarity of plume infrared radiation between reduced-scale solid rocket motors

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoying

    2016-08-01

    Full Text Available This study seeks to determine the similarities in plume radiation between reduced and full-scale solid rocket models in ground test conditions through investigation of flow and radiation for a series of scale ratios ranging from 0.1 to 1. The radiative transfer equation (RTE considering gas and particle radiation in a non-uniform plume has been adopted and solved by the finite volume method (FVM to compute the three dimensional, spectral and directional radiation of a plume in the infrared waveband 2–6 μm. Conditions at wavelengths 2.7 μm and 4.3 μm are discussed in detail, and ratios of plume radiation for reduced-scale through full-scale models are examined. This work shows that, with increasing scale ratio of a computed rocket motor, area of the high-temperature core increases as a 2 power function of the scale ratio, and the radiation intensity of the plume increases with 2–2.5 power of the scale ratio. The infrared radiation of plume gases shows a strong spectral dependency, while that of Al2O3 particles shows spectral continuity of gray media. Spectral radiation intensity of a computed solid rocket plume’s high temperature core increases significantly in peak radiation spectra of plume gases CO and CO2. Al2O3 particles are the major radiation component in a rocket plume. There is good similarity between contours of plume spectral radiance from different scale models of computed rockets, and there are two peak spectra of radiation intensity at wavebands 2.7–3.0 μm and 4.2–4.6 μm. Directed radiation intensity of the entire plume volume will rise with increasing elevation angle.

  10. Kinetic theory of radiation effects

    International Nuclear Information System (INIS)

    Mansur, L.K.

    1987-01-01

    To help achieve the quantitative and mechanistic understanding of these processes, the kinetic theory of radiation effects has been developed in the DOE basic energy sciences radiation effects and fusion reactor materials programs, as well as in corresponding efforts in other countries. This discipline grapples with a very wide range of phenomena and draws on numerous sub-fields of theory such as defect physics, diffusion, elasticity, chemical reaction rates, phase transformations and thermodynamics. The theory is cast in a mathematical framework of continuum dynamics. Issues particularly relevant to the present inquiry can be viewed from the standpoints of applications of the theory and areas requiring further progress

  11. Radiation protection at UKAEA's solid waste plant at Harwell

    International Nuclear Information System (INIS)

    Gallacher, G.; Tierney, T.

    2006-01-01

    The paper provides an overview of the solid waste plant at Harwell ( United Kingdom)Examples of waste streams, processes and the supporting health physics measures have been briefly described. It is clear that all waste operations involve close team work between staff from U.K.A.E.A. (United Kingdom Atomic Energy Authority) operations and health physics staff from both U.K.A.E.A. and RWE NUKEM (RWE NUKEM is one of the health physics support contractors). Work must be planned carefully, and radiological conditions monitored to ensure that the job is progressing smoothly and workplace exposure remains as low as reasonably practicable. (authors)

  12. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O [International Atomic Energy Agency, Division of Health, Safety and Waste Disposal, Vienna (Austria)

    1959-04-15

    To establish the maximum permissible radiation doses for occupational and other kinds of radiation exposure, it is necessary to know those biological effects which can be produced by very small radiation doses. This particular field of radiation biology has not yet been sufficiently explored. This holds true for possible delayed damage after occupational radiation exposure over a period of many years as well as for acute reactions of the organism to single low level exposures. We know that irradiation of less than 25 Roentgen units (r) is unlikely to produce symptoms of radiation sickness. We have, however, found indications that even smaller doses may produce certain instantaneous reactions which must not be neglected

  13. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.

    2005-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  14. Radiation Effects in Nuclear Waste Materials

    International Nuclear Information System (INIS)

    Weber, William J.; Wang, Lumin; Hess, Nancy J.; Icenhower, Jonathan P.; Thevuthasan, Suntharampillai

    2003-01-01

    The objective of this project is to develop a fundamental understanding of radiation effects in glasses and ceramics, as well as the influence of solid-state radiation effects on aqueous dissolution kinetics, which may impact the performance of nuclear waste forms and stabilized nuclear materials. This work provides the underpinning science to develop improved glass and ceramic waste forms for the immobilization and disposition of high-level tank waste, excess plutonium, plutonium residues and scrap, other actinides, and other nuclear waste streams. Furthermore, this work is developing develop predictive models for the performance of nuclear waste forms and stabilized nuclear materials. Thus, the research performed under this project has significant implications for the immobilization of High-Level Waste (HLW) and Nuclear Materials, two mission areas within the Office of Environmental Management (EM). With regard to the HLW mission, this research will lead to improved understanding of radiation-induced degradation mechanisms and their effects on dissolution kinetics, as well as development of predictive models for waste form performance. In the Nuclear Materials mission, this research will lead to improvements in the understanding of radiation effects on the chemical and structural properties of materials for the stabilization and long-term storage of plutonium, highly-enriched uranium, and other actinides. The research uses plutonium incorporation, ion-beam irradiation, and electron-beam irradiation to simulate the effects of alpha decay and beta decay on relevant glasses and ceramics. The research under this project has the potential to result in improved glass and ceramic materials for the stabilization and immobilization of high-level tank waste, plutonium residues and scraps, surplus weapons plutonium, highly-enriched uranium, other actinides, and other radioactive materials

  15. Measurement and calculation of radiation fields of the Sandia irradiator for dried sewage solids

    International Nuclear Information System (INIS)

    Morris, M.E.

    1981-03-01

    The radiation field of the Sandia Irradiator for Dried Sewage Solids was measured. The results of the measurement are given in this report. In addition, theoretical calculations of the fields are given and then compared with the measured values. Elementary models of the radiation source geometry and irradiated product are found to be adequate and thus allow us to duplicate (through calculation) the important features of the measured fields

  16. Collective migration of adsorbed atoms on a solid surface in the laser radiation field

    International Nuclear Information System (INIS)

    Andreev, V V; Ignat'ev, D V; Telegin, Gennadii G

    2004-01-01

    The lateral (in the substrate plane) interaction between dipoles induced in particles adsorbed on a solid surface is studied in a comparatively weak laser radiation field with a Gaussian transverse distribution. It is shown that the particles migrate over the surface in the radial direction either outside an illuminated spot with the formation of a 'crater' or inside the spot with the formation of a 'mound'. (interaction of laser radiation with matter. laser plasma)

  17. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1982-12-01

    The subject is discussed under the headings: introduction; ionising radiation (alpha and beta particles, gamma- and X-radiation, neutrons, half-life, sources of radiation); biological effects; risk estimates (somatic) (early effects, delayed effects); risk estimates (hereditary); control of radiation; risk estimates (accidents). (U.K.)

  18. Health effects of ionizing radiation

    International Nuclear Information System (INIS)

    Radford, E.P.

    1980-01-01

    This presentation is restricted to the health effects of low doses of ionizing radiation. In general, these cumulative exposures are well below 100 rem, or about 50 times background or less. The two effects of interest in this dose range are genetic mutations and cancer production. The genetic effects will not be discussed in detail. The chief reason for the rise in risk estimates for cancer is the longer follow-up of exposed populations

  19. Detection of gamma-neutron radiation by solid-state scintillation detectors. Detection of gamma-neutron radiation by novel solid-state scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, V.; Grinyov, B.; Piven, L.; Onyshchenko, G.; Sidletskiy, O. [Institute for Scintillation Materials of the NAS of Ukraine, Kharkov, (Ukraine); Naydenov, S. [Institute for Single Crystals of the National Academy of Sciences of Ukraine, Kharkov, (Ukraine); Pochet, T. [DETEC-Europe, Vannes (France); Smith, C. [Naval Postgraduate School, Monterey, CA (United States)

    2015-07-01

    It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role of detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n

  20. Stimulating effects of ionizing radiation

    International Nuclear Information System (INIS)

    Jaworowski, Z.

    1995-01-01

    The influence of low doses on human organism is not definite known up to now. The worldwide discussion on this topic has been presented. A lot of analysed statistical data proved that the stimulating effect of low doses of ionizing radiation really exists and can have a beneficial influence on human health. 43 refs, 4 figs, 6 tabs

  1. Biopositive Effects of Ionizing Radiation?

    International Nuclear Information System (INIS)

    Broda, E.

    1972-01-01

    This paper was written for a talk given by E. Broda in Vienna for an event organised by the chemical physical society, the Austrian biochemical society and the Austrian biophysical society in December 1972. In this paper Broda analyses the question of biopositive effects of ionizing radiation. (nowak)

  2. Modification of radiation effects

    International Nuclear Information System (INIS)

    Lindenbaum, A.

    1975-01-01

    Results are reported from studies on the tissue distribution of 239 Pu and 241 Am in mice and beagle dogs and the effectiveness of various therapeutic treatments for decorporation. In dogs injected with monomeric Pu the value of a regimen of early and prolonged treatment with DTPA (diethylenetriaminepentaacetic acid) for minimizing the Pu burden in the soft tissues and skeleton was demonstrated. These results have immediate implication for DTPA treatment in man. New studies in mice verified the action of pyran copolymer antiviral agents in enhancing the effectiveness of DTPA for removal of polymeric Pu from the liver. Recent application of autoradiographic procedures for quantitatively comparing short- and long-term localization of monomeric and polymeric 239 Pu in dog liver showed that there is no net translocation of monomeric Pu within the liver between 6 and 90 days following injection. One of the molecular studies presently underway aims at synthesis of a variety of DTPA esters. The diethyl ester has already been prepared and tested for toxicity in mice. These compounds are designed to bring DTPA into contact with plutonium deposits unavailable to the action of ionic DTPA. (U.S.)

  3. Radiation effects on eye components

    Science.gov (United States)

    Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.

    1999-08-01

    The most important water-soluble components of the vertebrate eye (lens proteins, aqueous humor, vitreous, hyaluronic acid, ascorbic acid) have been investigated in aqueous solution, after preceding X- or UV-irradiation. Spectroscopic, chromatographic, electrophoretic, hydrodynamic and analytic techniques have been applied, to monitor several radiation damages such as destruction of aromatic and sulfur-containing amino acids, aggregation, crosslinking, dissociation, fragmentation, and partial unfolding. Various substances were found which were able to protect eye components effectively against radiation, some of them being also of medical relevance.

  4. Effective solidity in vertical axis wind turbines

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-11-01

    The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.

  5. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Subba Ramu, M.C.; Mishra, U.C.

    1989-01-01

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  6. Radiation Effects in Paediatric radiography

    International Nuclear Information System (INIS)

    Mutwasi, O.

    2006-01-01

    Diagnostic imaging has evolved from single technique to a field which we have a choice from many modalities. Some without radiation. Radiation producing modalities include plain films (low dose), Fluoroscopy (mid range dose), Computed tomography (high dose). Radiography dose can significantly be influenced in plain radiography by varying speed of screens, cassette construction and type of radiography. E.g. digital or computed. In computed or digital radiography we are no longer able to tell h igh dose b y the quality of images. The final image is by great extend a product of post processing algorithms. It's for this reasons that the basic understanding of the sensitivity and specifying of various types of examinations and of specifically radiation effects is mandatory for a paediatric imager

  7. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  8. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  9. Radiation Therapy Intensification for Solid Tumors: A Systematic Review of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Yamoah, Kosj [Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL (United States); Showalter, Timothy N. [Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia (United States); Ohri, Nitin, E-mail: ohri.nitin@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (United States)

    2015-11-15

    Purpose: To systematically review the outcomes of randomized trials testing radiation therapy (RT) intensification, including both dose escalation and/or the use of altered fractionation, as a strategy to improve disease control for a number of malignancies. Methods and Materials: We performed a literature search to identify randomized trials testing RT intensification for cancers of the central nervous system, head and neck, breast, lung, esophagus, rectum, and prostate. Findings were described qualitatively. Where adequate data were available, pooled estimates for the effect of RT intensification on local control (LC) or overall survival (OS) were obtained using the inverse variance method. Results: In primary central nervous system tumors, esophageal cancer, and rectal cancer, randomized trials have not demonstrated that RT intensification improves clinical outcomes. In breast cancer and prostate cancer, dose escalation has been shown to improve LC or biochemical disease control but not OS. Radiation therapy intensification may improve LC and OS in head and neck and lung cancers, but these benefits have generally been limited to studies that did not incorporate concurrent chemotherapy. Conclusions: In randomized trials, the benefits of RT intensification have largely been restricted to trials in which concurrent chemotherapy was not used. Novel strategies to optimize the incorporation of RT in the multimodality treatment of solid tumors should be explored.

  10. Biological radiation effects

    International Nuclear Information System (INIS)

    Russo, A.

    2000-01-01

    Everyone is exposed to a complex mix of electromagnetic fields (EMF) of different frequencies that permeate our environment. Exposures to these EMF are increasing significantly as technology advances unabated and new applications are found. Technological progress in the broadest sense of the word has always been associated with various hazards and risks, both perceived and real. The industrial, commercial and household application on EMF is no exception. Throughout the world, the general public is concerned that exposure to EMF from such sources as high voltage power lines, broadcasting networks, mobile telephones and their base stations could lead to adverse health consequences, especially in children. As a result, the construction of new power lines and broadcasting and mobile telephone network has met with considerable opposition in many countries. Public exposure to EMF is regulated by a variety of voluntary and legal limits, together with various national safety standards. Guidelines are designed to avoid all identified hazards, from short and long term exposure, recommended limits. The aim of this paper is to report the summary of the actual scientific knowledge about the potential health effects and hazards due to man made EMF and the new tendencies of the social and political choices [it

  11. Radiation effects on and dose enhancement of electronic materials

    International Nuclear Information System (INIS)

    Srour, J.R.; Long, D.M.

    1984-01-01

    This book describes radiation effects on and dose enhancement factors for electronic materials. Alteration of the electrical properties of solid-state devices and integrated circuits by impinging radiation is well-known. Such changes may cause an electronic subsystem to fail, thus there is currently great interest in devising methods for avoiding radiation-induced degradation. The development of radiation-hardened devices and circuits is an exciting approach to solving this problem for many applications, since it could minimize the need for shielding or other system hardening techniques. Part 1 describes the basic mechanisms of radiation effects on electronic materials, devices, and integrated circuits. Radiation effects in bulk silicon and in silicon devices are treated. Ionizing radiation effects in silicon dioxide films and silicon MOS devices are discussed. Single event phenomena are considered. Key literature references and a bibliography are provided. Part II provides tabulations of dose enhancement factors for electronic devices in x-ray and gamma-ray environments. The data are applicable to a wide range of semiconductor devices and selected types of capacitors. Radiation environments discussed find application in system design and in radiation test facilities

  12. Biological effects of low-dose ionizing radiation exposure; Biologische Wirkungen niedriger Dosen ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst (comps.)

    2009-07-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  13. Status and trends of solid state track detector use in radiation protection monitoring

    International Nuclear Information System (INIS)

    Doerschel, B.

    1980-01-01

    The characteristic properties of solid state track detectors allow them to be used for determining the radiation fields of charged and uncharged particles and, consequently, for solving some problems involved in radiation protection monitoring. Aptitude of various detector materials is investigated on the basis of the track formation mechanism taking into account the properties of the particles to be detected. Use of these detectors in radiation protection monitoring presumes appropriate methods of intensifying the latent tracks, which are discussed as a function of various physical parameters. Readout methods of solid state track detectors are based on variations in detector properties determined by number and size of particle tracks in the detector. The choice of a special readout method, among other things, depends on the purpose, detector material, and pretreatment of the detectors. The most prospective methods are described and investigated with respect to their possible use in various fields of radiation protection monitoring. The trends of development of the application of solid state track detectors in radiation protection monitoring are discussed, using some typical applications as examples. (author)

  14. Genomic instability and radiation effects

    International Nuclear Information System (INIS)

    Christian Streffer

    2007-01-01

    Complete text of publication follows. Cancer, genetic mutations and developmental abnormalities are apparently associated with an increased genomic instability. Such phenomena have been frequently shown in human cancer cells in vitro and in situ. It is also well-known that individuals with a genetic predisposition for cancer proneness, such as ataxia telangiectesia, Fanconi anaemia etc. demonstrate a general high genomic instability e.g. in peripheral lymphocytes before a cancer has developed. Analogous data have been found in mice which develop a specific congenital malformation which has a genetic background. Under these aspects it is of high interest that ionising radiation can increase the genomic instability of mammalian cells after exposures in vitro an in vivo. This phenomenon is expressed 20 to 40 cell cycles after the exposure e.g. by de novo chromosomal aberrations. Such effects have been observed with high and low LET radiation, high LET radiation is more efficient. With low LET radiation a good dose response is observed in the dose range 0.2 to 2.0 Gy, Recently it has been reported that senescence and genomic instability was induced in human fibroblasts after 1 mGy carbon ions (1 in 18 cells are hit), apparently bystander effects also occurred under these conditions. The instability has been shown with DNA damage, chromosomal aberrations, gene mutation and cell death. It is also transferred to the next generation of mice with respect to gene mutations, chromosomal aberrations and congenital malformations. Several mechanisms have been discussed. The involvement of telomeres has gained interest. Genomic instability seems to be induced by a general lesion to the whole genome. The transmission of one chromosome from an irradiated cell to an non-irradiated cell leads to genomic instability in the untreated cells. Genomic instability increases mutation rates in the affected cells in general. As radiation late effects (cancer, gene mutations and congenital

  15. Notes on radiation effects on materials

    International Nuclear Information System (INIS)

    Anno, J.N.

    1984-01-01

    The effects of radiation from nuclear reactions on various classes of materials are examined in an introductory textbook for students of nuclear engineering. Topics discussed include the units and general scale of radiation damage, fundamental interactions of neutrons and gamma rays with materials, transient radiation effects on electrical components, radiation effects on organic materials and on steels, nuclear fission effects, surface effects of nuclear radiations, radiation effects on biological material, and neutron and gamma-ray dosimetry. Graphs, diagrams, tables of numerical data, and problems for each chapter are provided. 122 references

  16. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1985-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The csub(p) of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation. (author)

  17. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  18. Thermal effects in radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1984-01-01

    The balance of ionizing radiation energy incident on an object being processed is discussed in terms of energy losses, influencing the amount really absorbed. To obtain the amount of heat produced, the absorbed energy is corrected for the change in internal energy of the system and for the heat effect of secondary reactions developing after the initiation. The temperature of a processed object results from the heat evolved and from the specific heat of the material comprising the object. The specific heat of most materials is usually much lower than that of aqueous systems and therefore temperatures after irradiation are higher. The role of low specific heat in radiation processing at cryogenic conditions is stressed. Adiabatic conditions of accelerator irradiation are contrasted with the steady state thermal conditions prevailing in large gamma sources. Among specific questions discussed in the last part of the paper are: intermediate and final temperature of composite materials, measurement of real thermal effects in situ, neutralization of undesired warming experienced during radiation processing, processing at temperatures other than ambient and administration of very high doses of radiation

  19. Health effects of radiation and the implications for radiation safety

    International Nuclear Information System (INIS)

    Gonzalez, A.J.; Anderer, J.

    1991-01-01

    In this Paper two elements of a multiphase analysis of radiation exposures in the living environment - the human health effects of ionizing radiation and the implications for radiation safety policy and practices - are presented. Part 1 draws together the current state of scientific knowledge and insight about the human health effects of radiation, describing these in terms of known cause-related deterministic effects and of the estimated incidence of stochastic effects as defined by biostatistics and biological models. The 1988 UNSCEAR report provides an authoritative basis for such an examination. Part 2 explores some of the major implications that the state-of-the-art of radiation biology has - or should have - for radiation safety policy and practices. (author)

  20. Research on radiation effect and radiation protection at JAEA

    International Nuclear Information System (INIS)

    Saito, Kimiaki

    2007-01-01

    Researches on radiation effect and radiation protection at JAEA have been carried out in different sections. In recent years, the organizations were rearranged to attain better research circumstances, and new research programs started. At present, radiation effect studies focus on radiation effect mechanisms at atomic, molecular and cellular levels including simulation studies, and protection studies focus on dosimetry for conditions difficult to cover with currently used methods and data as well as the related basic studies. The outlines of the whole studies and also some descriptions on selected subjects will be given in this paper. (author)

  1. Biological effects of radiation and health risks from exposure to low levels of ionizing radiation

    International Nuclear Information System (INIS)

    Kotian, Rahul P.; Kotian, Sahana Rahul; Sukumar, Suresh

    2013-01-01

    The very fact that ionizing radiation produces biological effects is known from many years. The first case of injury reported by Sir Roentgen was reported just after a few months after discovery of X-rays in 1895. As early as 1902, the first case of X-ray induced cancer was reported in the literature. Early human evidence of harmful effects as a result of exposure to radiation in large amounts existed in the 1920s and 1930s, based upon the experience of early radiologists, miners exposed to airborne radioactivity underground, persons working in the radium industry, and other special occupational groups. The long-term biological significance of smaller, repeated doses of radiation, however, was not widely appreciated until relatively recently, and most of our knowledge of the biological effects of radiation has been accumulated since World War II. The mechanisms that lead to adverse health effects after exposure to ionizing radiation are still not fully understood. Ionizing radiation has sufficient energy to change the structure of molecules, including DNA, within the cells of the body. Some of these molecular changes are so complex that it may be difficult for the body's repair mechanisms to mend them correctly. However, the evidence is that only a small fraction of such changes would be expected to result in cancer or other health effects. The most thoroughly studied individuals for the evaluation of health effects of ionizing radiation are the survivors of the Hiroshima and Nagasaki atomic bombings, a large population that includes all ages and both sexes.The Radiation Effects Research Foundation (RERF) in Japan has conducted followup studies on these survivors for more than 50 years. An important finding from these studies is that the occurrence of solid cancers increases in proportion to radiation dose. More than 60% of exposed survivors received a dose of radiation of less than 100 mSv (the definition of low dose used by the BEIR VII report). (author)

  2. Health effects of radiation damage

    International Nuclear Information System (INIS)

    Gasimova, K; Azizova, F; Mehdieva, K.

    2012-01-01

    Full text : A summary of the nature of radiactive contamination would be incomplete without some mention of the human health effects relatied to radioactivity and radioactive materials. Several excellent reviews at the variety of levels of detail have been written and should be consulted by the reader. Internal exposures of alpha and beta particles are important for ingested and inhaled radionuclides. Dosimetry models are used to estimate the dose from internally deposited radioactive particles. As mentioned above weighting parameters that take into account the radiation type, the biological half-life and the tissue or organ at risk are used to convert the physically absorbed dose in units of gray (or red) to the biologically significant committed equivalent dose and effective dose, measured in units of Sv (or rem). There is considerable controversy over the shape of the dose-response curve at the chronic low dose levels important for enviromental contamination. Proposed models include linear models, non-linear models and threshold models. Because risks at low dose must be extrapolated from available date at high doses, the shape of the dose-response curve has important implications for the environmental regulations used to protect the general public. The health effect of radiation damage depends on a combination of events of on the cellular, tissue and systemic levels. These lead to mutations and cellular of the irradiated parent cell. The dose level at which significant damage occurs depends on the cell type. Cells that reproduce rapidily, such as those found in bone marrow or the gastrointestinal tract, will be more sensitive to radiation than those that are longer lived, such as striated muscle or nerve cells. The effects of high radiation doses on an organ depends on the various cell types it contains

  3. Onconase-induced changes in radiation response and physiological parameters in solid tumors

    International Nuclear Information System (INIS)

    Lee, I.; Shui, C.; Shogen, K.; Mikulski, S.M.; Nunno, M.; Wallner, P.E.

    1996-01-01

    Purpose: Onconase (ONC), previously known as P-30 protein, is a novel basic amphibian protein isolated from eggs of the leopard frog. The original study conducted by Darzynkiewicz et al. (Cell Tissue Kinetics, 1988) demonstrated that ONC shows anti-proliferative and cytotoxic activities against several tumor cell lines in vitro. Since then, to our knowledge, no studies regarding the inhibitory effect of ONC in solid tumor models were performed. ONC is also known to inhibit cell-cycle progression from the radiation-sensitive G 1 phase to the radiation-resistant S phase. Thus, we examined the effect of ONC as a potential radiation sensitizer. The radiation response and physiological parameters were evaluated in C3H mice and/or nude mice bearing various (murine and/or human) tumor models. Materials and Method: First, we examined the effect of ONC on the cellular proliferative, as well as the clonogenic, response of various cell lines (i.e., H4IIE rat hepatoma, AsPC-1 human pancreas adenocarcinoma, DU145 human prostate carcinoma, LS174T human colon adenocarcinoma, A549 human lung carcinoma, MCaIV murine adenocarcinoma, FSaII murine fibrosarcoma, and CCL-209 bovine artery pulmonary endothelial cells) by using the MTT and clonogenic cell survival assays. Second, we determined the enhancement of radiation response before, during, and after treatment with ONC in several cell lines. Third, we determined whether ONC can inhibit the growth of solid tumors in vivo (i.e., FSaII and MCaIV in C3H mice, LS174T in nude mice). Fourth, we examined whether minocycline, an antiangiogenic agent, could amplify the tumoricidal efficacy of ONC in solid tumors. To test our hypothesis: if ONC could eradicate the outgrowth of tumor cells in confined spaces, it could lower the elevated pressure in solid tumors, we measured tumor interstitial fluid pressure (TIFP) using the wick-in-needle method, and systemic pressure using the right carotid artery cannulation method after treatment with ONC

  4. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Linda [Federal Office for Radiation Protection, Department ' ' Radiation Protection and Health' ' , Oberschleissheim (Germany); University of Zurich, Medical Physics Group, Institute of Physics, Zurich (Switzerland); Zhang, Wei [Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxford (United Kingdom)

    2016-03-15

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and

  5. Radiation risk models for all solid cancers other than those types of cancer requiring individual assessments after a nuclear accident

    International Nuclear Information System (INIS)

    Walsh, Linda; Zhang, Wei

    2016-01-01

    In the assessment of health risks after nuclear accidents, some health consequences require special attention. For example, in their 2013 report on health risk assessment after the Fukushima nuclear accident, the World Health Organisation (WHO) panel of experts considered risks of breast cancer, thyroid cancer and leukaemia. For these specific cancer types, use was made of already published excess relative risk (ERR) and excess absolute risk (EAR) models for radiation-related cancer incidence fitted to the epidemiological data from the Japanese A-bomb Life Span Study (LSS). However, it was also considered important to assess all other types of solid cancer together and the WHO, in their above-mentioned report, stated ''No model to calculate the risk for all other solid cancer excluding breast and thyroid cancer risks is available from the LSS data''. Applying the LSS models for all solid cancers along with the models for the specific sites means that some cancers have an overlap in the risk evaluations. Thus, calculating the total solid cancer risk plus the breast cancer risk plus the thyroid cancer risk can overestimate the total risk by several per cent. Therefore, the purpose of this paper was to publish the required models for all other solid cancers, i.e. all solid cancers other than those types of cancer requiring special attention after a nuclear accident. The new models presented here have been fitted to the same LSS data set from which the risks provided by the WHO were derived. Although it is known already that the EAR and ERR effect modifications by sex are statistically significant for the outcome ''all solid cancer'', it is shown here that sex modification is not statistically significant for the outcome ''all solid cancer other than thyroid and breast cancer''. It is also shown here that the sex-averaged solid cancer risks with and without the sex modification are very similar once breast and thyroid cancers are factored out. Some other notable model

  6. Genetic and somatic effects of ionizing radiation

    International Nuclear Information System (INIS)

    1986-01-01

    This is the ninth substantive report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) to the General Assembly. This report contains reviews on three special topics in the field of biological effects of ionizing radiation that are among those presently under consideration by the Committee: genetic effects of radiation, dose-response relationships for radiation-induced cancer and biological effects of pre-natal irradiation

  7. The influence of radiation sterilisation on some {beta}-blockers in the solid state

    Energy Technology Data Exchange (ETDEWEB)

    Marciniec, B. [Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Gruwaldzka Str., 60-780 Poznan (Poland); Ogrodowczyk, M., E-mail: mogrodo@ump.edu.pl [Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 6 Gruwaldzka Str., 60-780 Poznan (Poland); Czajka, B.; Hofman, M. [Department of Cooridinational Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznan (Poland)

    2011-02-20

    Research highlights: {yields} Six {beta}-blockers (acebutolol, alprenolol, atenolol, metoprolol, pindolol, propranolol) in solid phase were exposed to the ionising radiation by e-beam in doses from 25 to 400 kGy. {yields} To establish the effects of irradiation on their physico-chemical properties, the compounds were then analysed by DSC, SEM, XRD and FT-IR. {yields} For alprenolol, propranolol and metoprolol linear relations were found between the irradiation dose and the decrease in the melting point (r = 0.9446-0.9864). {yields} No changes were observed in the FT-IR spectra and in the SEM images of the compounds studied. - Abstract: Six derivatives of aryloxyalkylaminopropanol of known {beta}-adrenolytic activity (acebutolol, alprenolol, atenolol, metoprolol, pindolol, propranolol) in solid phase were exposed to the ionising radiation generated by e-beam of high-energy electrons from an accelerator ({approx}10 MeV) in doses from 25 to 400 kGy. To establish the effects of irradiation on their physico-chemical properties, the compounds were then analysed by differential scanning calorimetry (DSC), scanning electron microscope (SEM), X-ray diffraction (XRD) and FT-IR spectrometry. The standard sterilisation dose (25 kGy) was found to cause no changes in only one derivative - acebutolol, whereas in the other derivatives the irradiation caused colour changes, differences in X-ray diffraction patterns and in the character of DSC curves, including a decrease in the melting point. For each derivative one clear peak corresponding to the process of melting was observed and its position shifted towards lower temperatures with increasing dose of irradiation. For all compounds studied the value of the shift was between 0.1 and 1.0 {sup o}C. For alprenolol, propranolol and metoprolol linear relations were found between the irradiation dose and the decrease in the melting point, described by the correlation coefficient (between 0.9446 and 0.9864). No changes were observed in

  8. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    Talpalariu, Corneliu; Talpalariu, Jeni; Matei, Corina; Lita, Ioan; Popescu, Oana

    2010-01-01

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  9. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  10. Ionising radiation - physical and biological effects

    International Nuclear Information System (INIS)

    Holter, Oe.; Ingebretsen, F.; Parr, H.

    1979-01-01

    The physics of ionising radiation is briefly presented. The effects of ionising radiation on biological cells, cell repair and radiosensitivity are briefly treated, where after the effects on man and mammals are discussed and related to radiation doses. Dose limits are briefly discussed. The genetic effects are discussed separately. Radioecology is also briefly treated and a table of radionuclides deriving from reactors, and their radiation is given. (JIW)

  11. Radiation effects on microelectronics in space

    International Nuclear Information System (INIS)

    Srour, J.R.; McGarrity, J.M.

    1988-01-01

    The basic mechanisms of space radiation effects on microelectronics are reviewed in this paper. Topics discussed include the effects of displacement damage and ionizing radiation on devices and circuits, single event phenomena, dose enhancement, radiation effects on optoelectronic devices and passive components, hardening approaches, and simulation of the space radiation environment. A summary is presented of damage mechanisms that can cause temporary or permanent failure of devices and circuits operating in space

  12. Proceedings of the Third international conference 'Interaction of radiation with solids'. Part 2

    International Nuclear Information System (INIS)

    Anishchik, V.M.; Zhukova, S.I.; Ponaryadov, V.V.; Popok, V.N.; Prikhod'ko, Zh.L.

    1999-10-01

    The 128 collected papers form the Proceedings of the International Conference 'Interaction of Radiation with Solids'. This Conference is the third forum biennially gathering in Minsk the specialists from different countries. The scope of the problems considered at the Conference is widening steadily from year to year including the recent results and most advanced leads in the field of radiation physics of condensed matter. In the second part of the proceedings consideration is being given to 'Properties modification of materials ' and 'Equipment and technologies'

  13. Effect of radiation in radiotherapy

    International Nuclear Information System (INIS)

    Hirata, Hideki; Fujibuchi, Toshio; Saito, Tsutomu

    2013-01-01

    The title subject is easily explained for the deterministic effect, secondary cancer formation and case reports of accidental exposure at radiotherapy. For the deterministic effect, the dose-effect relationship is sigmoidal in normal and cancer tissues, and the more separated are their curves, the more favorable is the radiotherapy. TD 5/5 is the tolerable dose to yield <5% of irreversible radiation injury to the normal tissue within 5 years after the therapy and is generally dose-limiting. The curves are of various shapes depending on the tissue composition that its functional subunit (FSU) is parallel like lobules of the liver, or in series like neuron. Symptoms appear complicated on these factors. Recent development of CT-based therapeutic planning has made it possible to analyze the partial tissue volume to be irradiated and its absorbed dose by the relationship (dose volume histogram, DVH) between the electron density vs CT value regardless to anatomy. The normal tissue complication probability is a model composed from the physical DVH and biological factors of FSU composition and cellular radiation susceptibility, and is a measure of the irreversible late effect manifested in normal tissues. Epidemiology has shown the increased risk of secondary cancer formation by radiotherapy. Children are highly susceptible to this, and in adults undergoing the therapy of a certain cancer, it is known that the risk of radiation carcinogenesis is increased in the particular tissue. There are presented such case reports of accidental excessive exposure at radiotherapy as caused by an inappropriate use of detector, partial loss of data in a therapeutic planning device, reading of reversed MRI image, and too much repeated use of the old-type electric portal imaging device. (T.T.)

  14. The influence of the oestrous cycle on the radiation response of solid tumours

    Science.gov (United States)

    Swann, Patricia R.

    Oestrogen increases the transcription of nitric oxide synthase, thus increasing nitric oxide production, which can result in vasodilation of blood vessels. Fluctuating levels of oestrogen throughout the menstrual cycle has the potential to affect tumour blood flow. Variations of blood supply to a solid tumour can influence tumour oxygenation and subsequently the percentage of hypoxic cells. As hypoxic cells are more resistant to radiation than well-oxygenated cells, this could potentially affect the radiation response of the tumour. This project evaluated the impact of the oestrous stage on the radiation response of BCHT, RIF-1 and SCCvii tumours in syngeneic C3H mice. The oestrous cycle consists of the following stages, pro-oestrus, oestrus, metoestrus and dioestrus and each stage can be determined by the cellular composition of vaginal smears. The peak of oestrogen occurs in the ovulatory phase and a second smaller peak occurs in dioestrus. Subcutaneous tumour were treated at a volume of 200 - 250 mm3 with local irradiation of 10 Gy ionising radiation at different stages of the oestrous cycle. Tumours were excised either immediately or 24 hours after irradiation and disaggregated into a single cell suspension. Tumour cell survival was assessed by clonogenic assay of the excised tumour relative to untreated tumours excised at the corresponding oestrous stage. Tumours irradiated in oestrus consistently produced the lowest surviving fraction after immediate and delayed excision. Tumours irradiated in pro-oestrus and excised immediately after irradiation, showed a two-fold increase in surviving fraction compared to tumours irradiated in oestrus. The surviving fractions of tumours excised 24 hours after irradiation were less than for tumours excised immediately after irradiation. Surviving fractions of irradiated, clamped KHT tumours were independent of oestrous stage. To confirm that these oestrous stage dependent changes were due to changes in tumour perfusion, the

  15. V. Physical effects in ionizing radiation passage through matter

    International Nuclear Information System (INIS)

    1984-01-01

    The ionization of the medium during absorption of alpha particles is described. The ranges are given of alpha particles in the air and in certain liquids and solids. The absorption of protons and deuterons takes place similarly as in alpha particles but protons and deuterons have a bigger range at the same energy. The term half-thickness has been introduced for the absorption of beta particles. For different energies of beta particles the absorption of these particles is graphically represented for different materials. The greatest attention is devoted to the absorption of electromagnetic radiation, i.e., X radiation and gamma radiation. The mechanisms are explained of absorption by photoelectric effect, the Compton effect and electron pair formation. In X radiation radiotherapy, filters are used, mostly aluminium, copper or zinc plates. The values are given of radiation intensity for different thicknesses of aluminium and copper filters and a survey is given of combined filters for 220 to 400 kV. For radiotherapy purposes great attention is devoted to the calculation of the depth dose. The effects are discussed of ionizing radiation on photographic emulsion, on changes in the colouring of some substances and fluorescence. Also given are the biological effects of ionizing radiation and the theory of direct and indirect effects is briefly described. (E.S.)

  16. Radiation Effects in Nuclear Ceramics

    Directory of Open Access Journals (Sweden)

    L. Thomé

    2012-01-01

    Full Text Available Due to outstanding physicochemical properties, ceramics are key engineering materials in many industrial domains. The evaluation of the damage created in ceramics employed in radiative media is a challenging problem for electronic, space, and nuclear industries. In this latter field, ceramics can be used as immobilization forms for radioactive wastes, inert fuel matrices for actinide transmutation, cladding materials for gas-cooled fission reactors, and structural components for fusion reactors. Information on the radiation stability of nuclear materials may be obtained by simulating the different types of interactions involved during the slowing down of energetic particles with ion beams delivered by various types of accelerators. This paper presents a review of the radiation effects occurring in nuclear ceramics, with an emphasis on recent results concerning the damage accumulation processes. Energetic ions in the KeV-GeV range are used to explore the nuclear collision (at low energy and electronic excitation (at high energy regimes. The recovery by electronic excitation of the damage created by ballistic collisions (SHIBIEC process is also addressed.

  17. Lower Bound for the Radiation $Q$ of Electrically Small Magnetic Dipole Antennas With Solid Magnetodielectric Core

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2011-01-01

    A new lower bound for the radiation $Q$ of electrically small spherical magnetic dipole antennas with solid magnetodielectric core is derived in closed form using the exact theory. The new bound approaches the Chu lower bound from above as the antenna electrical size decreases. For $ka, the new...... bound is lower than the bounds for spherical magnetic as well as electric dipole antennas composed of impressed electric currents in free space....

  18. Radiation effects on cell membranes

    International Nuclear Information System (INIS)

    Koeteles, G.J.

    1982-01-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries. (orig.)

  19. Radiation effects on cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Koeteles, G.J.

    1982-11-01

    The recent developments in the field of membrane biology of eukaryotic cells result in revival of relevant radiobiological studies. The spatial relations and chemical nature of membrane components provide rather sensitive targets. Experimental data are presented concerning the effects of relatively low doses of X-irradiation and low concentration of tritiated water (HTO) on various receptor functions - concanavalin A, cationized ferritin, poliovirus - of plasma membranes of animal and human cells which point to early and temporary disturbances of the composite structures and functions of membranes. References are given to the multifold roles of radiationinduced membrane phenomena on the development and regeneration of radiation injuries.

  20. Effect of radiation on food

    Energy Technology Data Exchange (ETDEWEB)

    Sofyan, R [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1983-07-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys.

  1. Effect of radiation on food

    International Nuclear Information System (INIS)

    Sofyan, Rochestri

    1983-01-01

    Research reports on the effect on radiation on food are reviewed. Irradiation processing inhibits the sprouting of vegetables, delays ripening, reduces the number of microorganisms that spoil food, controls patrogenic organisms and parasites found in food, disinfests food of insects, and disinfects spices of microbes. So far there has been no evidence that food irradiaton introduces nutritional or microbiological problems. The FAO/WHO/IAEA expert committee on the wholesomeness of irradiated food recommend the acceptability from a toxicological stand-point of any food commodity irradiated up to an overall average dose of 10 kilograys. (RUW)

  2. Effects of radiation upon gastrointestinal motility

    Institute of Scientific and Technical Information of China (English)

    Mary F Otterson

    2007-01-01

    Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifiable. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.

  3. The Brookhaven Radiation Effects Facility

    Energy Technology Data Exchange (ETDEWEB)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H{sup -}, H{sup o}, and H{sup +} beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 {mu}s to 500 {mu}s length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 {sigma}) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs.

  4. The Brookhaven Radiation Effects Facility

    International Nuclear Information System (INIS)

    Grand, P.; Snead, C.L.; Ward, T.

    1988-01-01

    The Neutral Particle Beam (NPB) Radiation Effects Facility (REF), funded by the Strategic Defense Initiative Office (SDIO) through the Defense Nuclear Agency (DNA) and the Air Force Weapons Laboratory (AFWL), has been constructed at Brookhaven National Laboratory (BNL). Operation started in October 1986. The facility is capable of delivering pulsed H - , H/sup o/, and H + beams of 100 to 200 MeV energy up to 30 mA peak current. Pulses can be adjusted from 5 μs to 500 μs length at a repetition rate of 5 pps. The beam spot on target is adjustable from 3 to 100 cm diameter (2 σ) resulting in a maximum dose of about 10 MRads (Si) per pulse (small beam spot). Experimental use of the REF is being primarily supported by the SDI lethality (LTH-4) program. The program has addressed ionization effects in electronics, both dose rate and total dose dependence, radiation-sensitive components, and dE/dx effects in energetic materials including propellants and high explosives (HE). This paper describes the facility, its capabilities and potential, and the experiments that have been carried out to date or are being planned. 2 refs., 10 figs

  5. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Braddock, M.

    1985-07-01

    The hydroxyl radical (OH radical) is the most damaging radical produced by the effect of ionizing radiation in water. The rate of reaction of the OH radical with purified, native and isodisperse DNA has been determined as compared with calf thymus DNA. This has been achieved by direct observation of the rate of formation of the DNA-OH radical adduct, and by competition with SCN - . Results obtained from direct observation are consistent with calculations which have been performed using the encounter frequency model of Braams and Ebert. However, results obtained for OH radical with DNA derived from competition plots suggest a rate constant somewhat lower than that obtained from direct observation. The relative merits of both techniques are discussed. In order to study the effect of energy deposited directly in the DNA, dry films of purified plasmid DNA have been irradiated in a system where the indirect effects of radical interaction have been minimized. The present results indicate that with different molecular lengths of plasmid DNA, non-random breakage may occur, and that additional damage may be brought about at sites of previously existing damage. Differences in the sensitivity of plasmid DNA molecules of varying lengths to radiation induced double strand breaks have been demonstrated. (author)

  6. Effects of ionizing radiation on vitamins

    International Nuclear Information System (INIS)

    Thayer, D.W.; Fox, J.B. Jr.; Lakritz, L.

    1991-01-01

    Vitamins are known to be sensitive to the effects of ionizing radiation. Since most foods contain a large proportion of water, the most probable reaction of the ionizing radiation would be with water; and as vitamins are present in very small amounts compared with other substances in the food they will be affected indirectly by the radiation. This chapter discusses the effect of ionizing radiation on water soluble vitamins and fat soluble vitamins. (author)

  7. Radiation effects of high and low doses

    International Nuclear Information System (INIS)

    El-Naggar, A.M.

    1998-01-01

    The extensive proliferation of the uses and applications of atomic and nuclear energy resulted in possible repercussions on human health. The prominent features of the health hazards that may be incurred after exposure to high and low radiation doses are discussed. The physical and biological factors involved in the sequential development of radiation health effects and the different cellular responses to radiation injury are considered. The main criteria and features of radiation effects of high and low doses are comprehensively outlined

  8. Medical response to effects of ionising radiation

    International Nuclear Information System (INIS)

    Crosbie, W.A.; Gittus, J.H.

    1989-01-01

    The proceedings of a conference on 'Medical Response to Effects of Ionising Radiation' in 1989 in the form of nineteen papers published as a book. Topics discussed include radiation accidents at nuclear facilities, the medical management of radiation casualties, the responsibilities, plans and resources for coping with a nuclear accident and finally the long term effects of radiation, including leukaemia epidemiology studies. All papers were selected and indexed separately. (UK)

  9. Radiation-induced reactions of amino acids adsorbed on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Esquivel Kranksith, L.; Negron-Mendoza, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico); Mosqueira, F.G. [Direcion General de Divulgacion de la Ciencia, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, AP. 70-487 Mexico D.F. (Mexico); Ramos-Bernal, Sergio, E-mail: ramos@nucleares.unam.m [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A.P. 70-543, 04510 Mexico D.F. (Mexico)

    2010-07-21

    The purpose of this work is to study the adsorption of compounds such as amino acids on clays and carbon nanotubes (CNTs) as a possible phase in the chemical evolution that may have occurred on the primitive Earth or in extraterrestrial environments. We further study the behavior of amino acids adsorbed on these solid surfaces at different conditions of pH and levels of irradiation, simulating a high-radiation field at early Earth conditions. The relevance of this work is to explain the possible contribution of solids (clays and CNTs) as promoters of polymerization and as shields for the adsorbed organic compounds against external sources of energy. To this end, tryptophan, aspartic acid, and glutamic acid were adsorbed on fixed amounts of solid surfaces and were irradiated by a {sup 60}Co source for different periods of time at fixed dose rates. After irradiation, the amino acids were extracted from the solid and analyzed with UV and IR spectroscopes and high-performance liquid chromatography. The most efficient surface for adsorption of amino acids was clay, followed by CNTs. Studies of the gamma irradiation of amino acids adsorbed on clay (in the solid phase) show a low yield of recovery of the amino acid.

  10. Radiation effects in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Begay, F.; Rosen, L.; Petersen, D.F.; Mason, C.; Travis, B. [Los Alamos National Lab., NM (United States); Yazzie, A. [Navajo Nation, Window Rock, AZ (United States). Dept. of History; Isaac, M.C.P.; Seaborg, G.T. [Lawrence Berkeley National Lab., CA (United States); Leavitt, C.P. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    1999-04-01

    Although the Navajo possess substantial resource wealth-coal, gas, uranium, water-this potential wealth has been translated into limited permanent economic or political power. In fact, wealth or potential for wealth has often made the Navajo the victims of more powerful interests greedy for the assets under limited Navajo control. The primary focus for this education workshop on the radiation effects in the environment is to provide a forum where scientists from the nuclear science and technology community can share their knowledge toward the advancement and diffusion of nuclear science and technology issues for the Navajo public. The scientists will make an attempt to consider the following basic questions; what is science; what is mathematics; what is nuclear radiation? Seven papers are included in this report: Navajo view of radiation; Nuclear energy, national security and international stability; ABC`s of nuclear science; Nuclear medicine: 100 years in the making; Radon in the environment; Bicarbonate leaching of uranium; and Computational methods for subsurface flow and transport. The proceedings of this workshop will be used as a valuable reference materials in future workshops and K-14 classrooms in Navajo communities that need to improve basic understanding of nuclear science and technology issues. Results of the Begay-Stevens research has revealed the existence of strange and mysterious concepts in the Navajo Language of nature. With these research results Begay and Stevens prepared a lecture entitled The Physics of Laser Fusion in the Navajo language. This lecture has been delivered in numerous Navajo schools, and in universities and colleges in the US, Canada, and Alaska.

  11. Excess relative risk of solid cancer mortality after prolonged exposure to naturally occurring high background radiation in Yangjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun Quanfu; Tao Zufan [Ministry of Health, Beijing (China). Lab. of Industrial Hygiene; Akiba, Suminori (and others)

    2000-10-01

    A study was made on cancer mortality in the high-background radiation areas of Yangjiang, China. Based on hamlet-specific environmental doses and sex- and age-specific occupancy factors, cumulative doses were calculated for each subject. In this article, we describe how the indirect estimation was made on individual dose and the methodology used to estimate radiation risk. Then, assuming a linear dose response relationship and using cancer mortality data for the period 1979-1995, we estimate the excess relative risk per Sievert for solid cancer to be -0.11 (95% CI, -0.67, 0.69). Also, we estimate the excess relative risks of four leading cancers in the study areas, i.e., cancers of the liver, nasopharynx, lung and stomach. In addition, we evaluate the effects of possible bias on our risk estimation. (author)

  12. Effects of ionizing radiation on life

    International Nuclear Information System (INIS)

    Rausch, L.

    1982-01-01

    Radiobiology in the last years was able to find detailed explanations for the effects of ionizing radiation on living organisms. But it is still impossible to make exact statements concerning the damages by radiation. Even now, science has to content itself with probability data. Moreover no typical damages of ionizing radiation can be identified. Therefore, the risks of ionizing radiation can only be determined by comparison with the spontaneous rate of cancerous or genetic defects. The article describes the interaction of high-energy radiation with the molecules of the organism and their consequences for radiation protection. (orig.)

  13. γ radiation effects on Collembola

    International Nuclear Information System (INIS)

    Loring, S.J.

    1985-01-01

    Pitfall traps were used to collect surface-active Collembola at intervals of 10-100 m from a γ radiation source on Long Island, N.Y., during the summer of 1968. Thirty-two species of Collembola were collected along the radiation transect. Community diversities were similar at all intervals except 10 m. Collembola appeared resistant to γ radiation; only chronic, very high γ radiation exposure seriously affected population levels and community diversity of surface Collembola

  14. Effect of radiation on microtubule structure in cancer cells

    International Nuclear Information System (INIS)

    Tripath, Shambhoo Sharan; Panda, Dulal; Jayakumar, S.; Maikho, Thoh; Sandur, Santosh Kumar

    2017-01-01

    Microtubules (MT) are dynamic structural cellular components. In proliferating cells, they are essential components in cell division through the formation of the mitotic spindle. Radiotherapy is an integral part of cancer treatment for most of the solid cancers. Scanty data exists in the literature related to how ionizing radiation affects microtubule reorganization in tumor cells. In the present study, breast cancer cell line (MCF-7 cells) was exposed to different doses of radiation (2-10Gy). Cells were cultured for 24 h, fixed and stained with antitubulin antibody and subjected to immunofluorescence microscopy. In another experiment, cells were subjected to cold treatment for 5 min or 30 min for studying the disassembly of microtubules after 24 h of irradiation. Further, these cells were incubated at 37°C for 20 min for studying the reassembly of microtubules. Acetylation of microtubule was also examined after exposure of cells to radiation. Experiments were also performed by combining radiation with low concentration of CXI-Benzo 84 (MT destabilizing agent 1 and 2.5 uM). Exposure of MCF-7 cells to radiation lead to destabilization of microtubules. Interestingly, destabilization of microtubule was faster upon cold treatment in irradiated group as compared to control group. These cells failed to re-stabilize at 37°C. Radiation also reduced the acetylation level of microtubule. Combination treatment of CXI-Benzo 84 with radiation exhibited additive effect in terms of depolymerization of MT. Our results suggest that ionizing radiation indeed modulates microtubule dynamics. (author)

  15. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  16. Study of biological effect of radiation

    International Nuclear Information System (INIS)

    Li Guisheng

    1992-01-01

    The some progress on the study of biological effect for protract exposure to low dose rate radiation is reported, and it is indicated that the potential risk of this exposure for the human health and the importance of the routine monitoring of radiation dose for various nuclear installations. The potential exposure to the low dose rate radiation would attract people's extra attention

  17. Molecular and cellular effects of radiations

    International Nuclear Information System (INIS)

    Peak, M.J.; Peak, J.G.; Ito, A.; Roth, R.M.

    1985-01-01

    This program is concerned with the basic nature of the biological effects of mutagenic and carcinogenic environmental radiations, including those solar ultraviolet and visible radiations responsible for the most common form of human cancer: cancer of the skin. Concentrating on the damages to DNA caused by these radiations, the program attempts to delineate the basic mechanisms whereby such damage may occur. 14 refs

  18. Radiation effects on biochemical systems

    International Nuclear Information System (INIS)

    Seddon, G.M.

    2000-04-01

    Xanthine oxidase catalyses the oxidative hydroxylation of hypoxanthine, xanthine and a wide range of carbonyl compounds. The enzyme exists as an oxidase and a dehydrogenase; both catalyze the oxidation of the same substrates. Steady state radiolysis and pulse radiolysis were used to generate oxidative and reductive free radicals. Their effects on the enzymatic activity of xanthine oxidase were determined. Initially inactivation studies were carried out to evaluate the extent to which radiolysis in aqueous solution affects the enzyme activity. Values of D 37 and G inactivation were calculated following irradiation in the presence of free radical scavengers and in the presence of catalase and superoxide dismutase. The kinetic constants Vmax and Km were also determined following radiolysis. The effect of ionising radiation on the iron content of xanthine oxidase was measured using atomic absorption spectrometry. Native gel electrophoresis and iso-electric focussing were performed in an attempt to demonstrate changes in the overall structure of the enzyme. The binding of xanthine oxidase to heparin was carried out by measuring, (1) the displacement of methylene blue (MB + ) from a heparin-MB + complex, (2) affinity chromatography and, (3) pulse radiolysis. The effect of irradiation on the binding process was investigated using techniques (1) and (2). Finally the radiation-induced conversion of xanthine oxidase to dehydrogenase was established. The results indicate that xanthine oxidase is inactivated greatest in the presence of air and irradiation causes Vmax to he reduced and Km to increase. The iron content of irradiated xanthine oxidase is unaffected. Electrophoresis shows the enzyme becomes fragmented and the isoelectric points of the fragments vary over a wide range of pH. Binding of xanthine oxidase to heparin as measured by displacement of MB + from a heparin-MB + complex suggests that irradiation increases the affinity of the enzyme for the polyanion, whereas

  19. The effects of radiation on man

    International Nuclear Information System (INIS)

    Saunders, P.

    1981-01-01

    Available evidence on the effects of high levels of radiation on man and the predictions which have been made on possible low level effects, by extrapolation of the high level data, are summarised. The factors which influence the biological effects of radiation are examined and acute, delayed, somatic and hereditary effects as reported in the literature, are discussed. (U.K.)

  20. Long term effects of radiation in man

    International Nuclear Information System (INIS)

    Tso Chih Ping; Idris Besar

    1984-01-01

    An overview of the long term effects of radiation in man is presented, categorizing into somatic effects, genetic effects and teratogenic effects, and including an indication of the problems that arise in their determination. (author)

  1. Non controlled effect of ionizing radiations : involvement for radiation protection

    International Nuclear Information System (INIS)

    Little, J. B.

    2005-01-01

    It is widely accepted that damage to DNA is the critical event on irradiated cells, and that double strand breaks are the primary DNA lesions responsible for the biological effects of ionizing radiation. This has lead to the long standing paradigm that these effects, be they cytotoxicity, mutagenesis or malignant transformation, occur in irradiated cells as a consequences of the DNA damage they incur. Evidence has been accumulating over the past decade, however, to indicate that radiation may induce effects that ar not targeted to the irradiated cells itself. Two non-targeted effects will be described in this review. The first, radiation-induced genomic instability, is a phenomenon whereby signals are transmitted to the progeny of the irradiated cell over many generations, leading to the occurrence of genetic effects such as mutations and chromosomal aberrations arising in the distant descendants of the irradiated cell. Second, the bystander effect, is a phenomenon whereby irradiated cells transmit damage signals to non-irradiated cells in a mixed population, leading to genetic effects arising in these bystander cells that received no radiation exposure. the model system described in this review involves dense monolayer cultures exposed to very low fluences of alpha particles. The potential implications of these two phenomena for the analysis of the risk to the human population of exposure to low levels of ionising radiation is discussed. (Author) 111 refs

  2. Radiation effects on materials in high-radiation environments

    International Nuclear Information System (INIS)

    Weber, W.J.; Mansur, L.K.; Clinard, F.W. Jr.; Parkin, D.M.

    1991-01-01

    A workshop on Radiation Effects on Materials in High-Radiation Environments was held in Salt Lake City, Utah (USA) from August 13 to 15, 1990 under the auspices of the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy. The workshop focused on ceramics, alloys, and intermetallics and covered research needs and capabilities, recent experimental data, theory, and computer simulations. It was concluded that there is clearly a continuing scientific and technological need for fundamental knowledge on the underlying causes of radiation-induced property changes in materials. Furthermore, the success of many current and emerging nuclear-related technologies critically depend on renewed support for basic radiation-effects research, irradiation facilities, and training of scientists. The highlights of the workshop are reviewed and specific recommendations are made regarding research needs. (orig.)

  3. Graphene Field Effect Transistor for Radiation Detection

    Science.gov (United States)

    Li, Mary J. (Inventor); Chen, Zhihong (Inventor)

    2016-01-01

    The present invention relates to a graphene field effect transistor-based radiation sensor for use in a variety of radiation detection applications, including manned spaceflight missions. The sensing mechanism of the radiation sensor is based on the high sensitivity of graphene in the local change of electric field that can result from the interaction of ionizing radiation with a gated undoped silicon absorber serving as the supporting substrate in the graphene field effect transistor. The radiation sensor has low power and high sensitivity, a flexible structure, and a wide temperature range, and can be used in a variety of applications, particularly in space missions for human exploration.

  4. Radiation as an inducer of in-situ autologous vaccine in the treatment of solid tumors

    International Nuclear Information System (INIS)

    Ahmed, Mansoor M.

    2013-01-01

    Radiation therapy (RT) is conventionally used for local tumor control. Although local control of the primary tumor can prevent the development of subsequent systemic metastases, tumor irradiation is not effective in controlling pre-existing systemic disease. The concept of radiation-enhanced antigen presentation and immunomodulation allows the harnessing of tumor cell death induced by radiation as a potential source of tumor antigens for immunotherapy. Immunomodulation using RT is a novel strategy of in situ tumor vaccination where primary tumor irradiation can contribute to the control of pre-existing systemic metastatic disease. The absence of systemic immunosuppression (often associated with chemotherapy) and the generally lower toxicity makes radiation a desirable adjuvant regimen for immunotherapy and tumor vaccination strategies. Increased understanding of tumor immunology and the biology of radiation-mediated immune modulation should enhance the efficacy of combining these therapeutic modalities. Here we aim to provide an overview of the biology of radiation-induced immune modulation. (author)

  5. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.

    Science.gov (United States)

    Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M

    1989-08-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.

  6. Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids

    International Nuclear Information System (INIS)

    Urbain, J.L.; Mortelmans, L.; Cutsem, E. van; Maegdenbergh, V. van den; Roo, M. de

    1989-01-01

    In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111 In-DTPA water and 1 scrambled egg labeled with 99m Tc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal. (orig.) [de

  7. Effective medium of periodic fluid-solid composites

    KAUST Repository

    Mei, Jun; Wu, Ying; Liu, Zhengyou

    2012-01-01

    An analytic solution of the effective mass density and bulk modulus of a periodic fluid-solid composite is obtained by using the multiple-scattering theory in the long-wavelength limit. It is shown that when the concentration of solid inclusions

  8. Chemical and biological effects of radiation sterilization of medical products

    International Nuclear Information System (INIS)

    Gupta, B.L.

    1975-01-01

    Radiation is extensively used for the sterilization of plastic materials, pharmaceuticals and biological tissue grafts. The pharmaceuticals may be solid, liquid, or suspension in a liquid or a solution. Cobalt-60 gamma radiation, generally used for sterilization, primarily interacts with these materials through the Compton process. The resulting damage may be direct or indirect. In aqueous systems the primary species produced compete for interaction among themselves and the dissolved solutes. The nature, the G-values and the reactions of the primary species very much depend on the pH of the solution. The important chemical changes in plastic materials are gas liberation, change in concentration of double bonds, cross-linking, degradation and oxidation. These chemical changes lead to some physical changes like crystallinity, specific conductivity and permeability. The reactions in biological systems are very complex and are influenced by the presence or absence of water and oxygen. Water produces indirect damage and the radiation effect is generally more in the presence of oxygen. Most microorganisms are relatively radioresistant. Various tissues of an animal differ in their response to radiation. Catgut is not stable to irradiation. Lyophilized human serum is stable to irradiation whereas, when irradiated in aqueous solutions, several changes are observed. Generally, pharmaceuticals are considerably more stable in the dry solid state to ionizing radiations than in aqueous solutions or in any other form of molecular aggregation. (author)

  9. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  10. Radiation Polymerization in the Solid Phase; Polymerisation radiochimique en phase solide; Radiatsionnaya polimerizatsiya v tverdoj faze; Radiopolimerizacion en fase solida

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, I. M.; Gol' danskij, V. I.; Enikolopov, N. S.; Terekhova, S. F.; Trofimova, G. M.

    1963-11-15

    The radiation polymerization of solid and frozen monomers has recently attracted a great deal of attention because of its theoretical and practical importance in chemical kinetics and radiation chemistry. The strict spacing of monomer units in a polymer brings about a sharp improvement in the physico-chemical properties without any change of chemicai composition. In the synthesis of stereo-regular polymers, the matrix principle is used, i.e. the monomer unit is strictly oriented spatially by the formation of a complex with a catalyst or some other compound. In the radiation polymerization of a number of monomers oriented in clathrate complexes of urea and thio-urea, for instance, crystal stereo-regular polymers were obtained. The simplest variation, however, is the orientation of a monomer in its own crystal lattice. Although many of the theoretical questions involved remain obscure, the technique is extremely promising. Thus, highly crystalline polyoxymethylene has already been obtained by the radiation polymerization of crystalline trioxane. Nevertheless, a more detailed theoretical investigation of the technique is required. For each separate monomer, the contribution to the general picture made by the different types of reaction taking place during irradiation and the subsequent fusion of the solid monomers (specific radiation reaction, post-polymerization and polymerization at phase transition points) needs clarification. Recent detailed research at the Institute of Chemical Physics, USSR, into the solid-phase radiation-polymerization kinetics of a number of monomers, using the calorimetric method and an EPR signal, has revealed the essential role of the specific radiation reaction during the irradiation. The polymerization process for acrylonitrile (from -196{sup o}C to -140{sup o}C) and vinyl acetate (-196{sup o}C to -100{sup o}C) ceases when irradiation is discontinued despite the retention of the shape and intensity of the EPR signal and despite the long

  11. Solid state spectroscopy by using of far-infrared synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nanba, Takao [Kobe Univ. (Japan). Faculty of Science

    1996-07-01

    If the spectroscopic system corresponding to the wavelength region required for experiment is installed, the light source with continuous wavelength is to be obtainable by synchrotron radiation. This report is that of the research on solid state spectroscopy using the ordinary incoherent synchrotron radiation which is obtained from the deflection electromagnet parts of electron storage ring. At present in the world, the facilities which can be utilized in far-infrared spectroscopy region are five, including the UVSOR of Molecular Science Research Institute in Japan. The optical arrangement of the measuring system of the UVSOR is shown. The spectrum distribution of the light passing through the pinholes with different diameter in the place of setting samples was compared in case of the UVSOR and a high pressure mercury lamp, and it was shown that synchrotron radiation has high luminance. The researches on solid state spectroscopy carried out in the above mentioned five facilities are enumerated. In this paper, the high pressure spectroscopic experiment which has been carried out at the UVSOR is reported. The observation of the phase transition of fine particles and the surface phonons of fine particles are described. As fine particle size became smaller, the critical pressure at which phase transition occurred was high. (K.I.)

  12. Untargeted effects of ionizing radiation: Implications for radiation pathology

    International Nuclear Information System (INIS)

    Wright, Eric G; Coates, Philip J

    2006-01-01

    The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, radiation-induced genomic instability in vivo may not necessarily be a reflection of genomically unstable cells. Rather the damage may reflect responses to ongoing production of damaging signals; i.e. bystander responses, but not in the sense used to describe the rapidly induced effects resulting from direct interaction of irradiated and non-irradiated cells. The findings are consistent with a delayed and long-lived tissue reaction to radiation injury characteristic of an inflammatory response with the potential for persisting bystander-mediated damage. An important implication of the findings is that contrary to conventional radiobiological dogma and interpretation of epidemiologically-based risk estimates, ionizing radiation may contribute to malignancy and particularly childhood leukaemia by promoting initiated cells rather than being the initiating agent. Untargeted mechanisms may also contribute to other pathological consequences

  13. A-bomb radiation effects digest

    International Nuclear Information System (INIS)

    Shigematsu, Itsuzo; Akiyama, Mitoshi; Sasaki, Hideo; Ito, Chikako; Kamada, Nanao.

    1993-01-01

    This publication is the digest of the book 'Genbaku Hoshasen no Jintai Eikyo (Effects of A-bomb Radiation on the Human Body)' (365p.), published in Japanese by Hiroshima International Council for Medical Care of the Radiation-Exposed. Following a brief description on the damage of the atomic bomb, the subjects of malignant tumors, endocrine and metabolic deseases, ocular lesions, dermatologic effects, prenatal exposure, chromosoal aberrations, mutations, sensitivity to radiation, immune function, genetic effects and other effects of radiation are summarized. (J.P.N.)

  14. Long-term effects of ionizing radiation

    International Nuclear Information System (INIS)

    Kaul, Alexander; Burkart, Werner; Grosche, Bernd; Jung, Thomas; Martignoni, Klaus; Stephan, Guenther

    1997-01-01

    This paper approaches the long-term effects of ionizing radiation considering the common thought that killing of cells is the basis for deterministic effects and that the subtle changes in genetic information are important in the development of radiation-induced cancer, or genetic effects if these changes are induced in germ cells

  15. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Lunu, Shyam; Kumar, Hemant; Joshi, Pankaj Kumar; Songara, Venkteshwer

    2012-01-01

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  16. Complex of GRAD programs for analytical calculation of radiation defects generation in solids

    International Nuclear Information System (INIS)

    Suvorov, A.L.; Zabolotnyj, V.T.; Babaev, V.P.

    1989-01-01

    Complex of programms for analytical calculation of generation of radiation defects (GRAD) in solids, and also of their recombination during cascade area relaxation and postradiation annealing, of mass removing by atomic collisions in volume (mixing) and through the surface (sputtering), of structure - phase state and property changes is suggested. The complex volume is less than 10 KBytes and it may be realized by computer of any type. Satisfactional agreement with more wide range of experimental data in comparison with tradition models is obtained. 27 refs.; 2 figs

  17. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    Science.gov (United States)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-12-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE® structure and scanning methods. This article attempts to review and reflect on the results of these investigations.

  18. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  19. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  20. Effects of Microwave Radiation on Oil Recovery

    Science.gov (United States)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  1. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  2. Surface effects in solid mechanics models, simulations and applications

    CERN Document Server

    Altenbach, Holm

    2013-01-01

    This book reviews current understanding, and future trends, of surface effects in solid mechanics. Covers elasticity, plasticity and viscoelasticity, modeling based on continuum theories and molecular modeling and applications of different modeling approaches.

  3. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  4. Radiation effects in ice: New results

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Fama, M.; Loeffler, M.J.; Raut, U.; Shi, J.

    2008-01-01

    Studies of radiation effects in ice are motivated by intrinsic interest and by applications in astronomy. Here we report on new and recent results on radiation effects induced by energetic ions in ice: amorphization of crystalline ice, compaction of microporous amorphous ice, electrostatic charging and dielectric breakdown and correlated structural/chemical changes in the irradiation of water-ammonia ices

  5. Radiation effects of ion beams on polymers

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1993-01-01

    Recent progress in the radiation effects of ion beams on polymers are reviewed briefly. Our recent work on the radiation effects of ion beams on polystyrene thin films on silicon wafers and time resolved emission studies on polymers are described. (orig.)

  6. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Science.gov (United States)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  7. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Mendoza A, D.

    1996-01-01

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  8. Selectivity of primary events in the radiation chemistry of organic solids and polymers as revealed by model studies of ionized molecules

    International Nuclear Information System (INIS)

    Feldman, V.

    2006-01-01

    Selectivity of the primary chemical events induced by ionizing radiation in molecular systems is the key issue of basic radiation chemistry, which is crucially important for controlling the radiation sensitivity of various-type organic and polymeric materials and designing new effective approaches to the radiation modification. In the past decade we have demonstrated that many features of selective localization of the radiation-induced effects in molecular solids can be understood on the basis of model studies of the primary ionized molecules in rigid low-temperature matrices. This talk will outline the key results of these studies and possible implications for radiation chemistry of vatious systems. In particular, the following aspects will be considered: (1) Spectroscopic characteristics of ustable ionized molecules in low-temperature matrices and their correlations with the site-selective reactivity. (2) Experimental modeling of the effect of excess energy on the properties of primary ionized molecules in condensed phases. (3) Intramolecular long-range effects with particular impact on the properties of ionized bifunctional molecules of X-(CH 2 ) n -X and X-(CH 2 ) n -Y types. (4) Modeling of intermolecular long-range positive hole transfer between molecular traps with close ionization energy and manifestations of 'fine tuning' effects resulting from conformation variations and intermolecular interactions. Several illustrative examples of correlation between the properties of primary ionized molecules and selectivity of the radiation-chemical transformations in organic solids and macromolecules will be presented. Finally, the problem of prediction of the radiation-chemical behaviour of complex organic systems on the basis of limited spectroscopic information and quantum-chemical data obtained for model systems will be addressed. This work was supported by the Russian Foundation for Basic Research (Project No. 06-03-33104) and the Russian Academy of Sciences

  9. Radiobiologic effects at low radiation levels

    International Nuclear Information System (INIS)

    Casarett, G.W.

    1975-01-01

    Data are reviewed on the effects of low radiation doses on mammals. Data from the 1972 report on the Biological Effects of Ionizing Radiation issued by the Advisory Committee of the National Academy of Sciences and National Research Council are discussed. It was concluded that there are certain radiosensitive systems in which low doses of radiation may cause degenerative effects, including gametogenic epithelium, lens of the eye, and developing embryos. Despite extensive investigation of genetic effects, including chromosomal effects, neither the amount of change that will be caused by very low levels of irradiation nor the degree of associated detriment is known

  10. Radiation-induced energy migration within solid DNA: The role of misonidazole as an electron trap

    International Nuclear Information System (INIS)

    Al-Kazwini, A.T.; O'Neill, P.; Adams, G.E.; Fielden, E.M.

    1990-01-01

    The in-pulse luminescence emission from solid DNA produced upon irradiation with electron pulses of energy below 260 keV has been investigated in vacuo at 293 K to gain an insight into the existence of radiation-induced charge/energy migration within DNA. The DNA samples contained misonidazole in the range 3 to 330 base pairs per misonidazole molecule. Under these conditions greater than 90% of the total energy is deposited in the DNA. The in-pulse radiation-induced luminescence spectrum of DNA was found to be critically dependent upon the misonidazole content of DNA. The luminescence intensity from the mixtures decreases with increasing content of misonidazole, and at the highest concentration, the intensity at 550 nm is reduced to 50% of that from DNA only. In the presence of 1 atm of oxygen, the observed emission intensity from DNA in the wavelength region 350-575 was reduced by 35-40% compared to that from DNA in vacuo. It is concluded that electron migration can occur in solid mixtures of DNA over a distance of up to about 100 base pairs

  11. Physics of intense, high energy radiation effects.

    Energy Technology Data Exchange (ETDEWEB)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-02-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic

  12. Physics of intense, high energy radiation effects

    International Nuclear Information System (INIS)

    Hjalmarson, Harold Paul; Hartman, E. Frederick; Magyar, Rudolph J.; Crozier, Paul Stewart

    2011-01-01

    This document summarizes the work done in our three-year LDRD project titled 'Physics of Intense, High Energy Radiation Effects.' This LDRD is focused on electrical effects of ionizing radiation at high dose-rates. One major thrust throughout the project has been the radiation-induced conductivity (RIC) produced by the ionizing radiation. Another important consideration has been the electrical effect of dose-enhanced radiation. This transient effect can produce an electromagnetic pulse (EMP). The unifying theme of the project has been the dielectric function. This quantity contains much of the physics covered in this project. For example, the work on transient electrical effects in radiation-induced conductivity (RIC) has been a key focus for the work on the EMP effects. This physics in contained in the dielectric function, which can also be expressed as a conductivity. The transient defects created during a radiation event are also contained, in principle. The energy loss lead the hot electrons and holes is given by the stopping power of ionizing radiation. This information is given by the inverse dielectric function. Finally, the short time atomistic phenomena caused by ionizing radiation can also be considered to be contained within the dielectric function. During the LDRD, meetings about the work were held every week. These discussions involved theorists, experimentalists and engineers. These discussions branched out into the work done in other projects. For example, the work on EMP effects had influence on another project focused on such phenomena in gases. Furthermore, the physics of radiation detectors and radiation dosimeters was often discussed, and these discussions had impact on related projects. Some LDRD-related documents are now stored on a sharepoint site (https://sharepoint.sandia.gov/sites/LDRD-REMS/default.aspx). In the remainder of this document the work is described in catergories but there is much overlap between the atomistic calculations, the

  13. Radiation Effects on Polymers - XI

    DEFF Research Database (Denmark)

    Ghanem, N. A.; El-Awady, N. I.; Singer, Klaus Albert Julius

    1979-01-01

    With the aim of improving properties of cellulose acetate membranes for reverse osmosis desalination, grafting was performed using high energy electrons. In this paper, the grafting parameters (radiation dose and method, monomer concentration, solvents, chain transfer agent and redox system...

  14. Radiation effects in polycarbonate capacitors

    Directory of Open Access Journals (Sweden)

    Vujisić Miloš

    2009-01-01

    Full Text Available The aim of this paper is to examine the influence of neutron and gamma irradiation on the dissipation factor and capacitance of capacitors with polycarbonate dielectrics. The operation of capacitors subject to extreme conditions, such as the presence of ionizing radiation fields, is of special concern in military industry and space technology. Results obtained show that the exposure to a mixed neutron and gamma radiation field causes a decrease of capacitance, while the loss tangent remains unchanged.

  15. Biological effects of high LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masami [Nagasaki Univ. (Japan). Faculty of Pharmaceutical Sciences

    1997-03-01

    Biological effect of radiation is different by a kind of it greatly. Heavy ions were generally more effective in cell inactivation, chromosome aberration induction, mutation induction and neoplastic cell transformation induction than {gamma}-rays in SHE cells. (author)

  16. Genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Childs, J.D.

    1980-01-01

    The genetic material in living organisms is susceptible to damage from a wide variety of causes including radiation exposure. Most of this damage is repaired by the organism; the residual damage and damage which is not correctly repaired can lead to genetic changes such as mutations. In lower organisms, most offspring carry an unaltered copy of the genetic information that was present in the parental organism, most of the genetic changes which do occur are not caused by natural background radiation, and the increase in frequency of genetic changes after irradiation at low-dose rates is directly proportional to total radiation dose. The same principles appear to be valid in mammals and other higher organisms. About 105 out of every 1000 humans born suffer from some genetic or partly-genetic condition requiring medical attention at some time. It has been estimated that approximately 1 person in every 2000 born carry a deleterious genetic mutation that was caused by the continued exposure of many generations of our ancestors to natural background radiation. On the same basis, it is predicted that the incidence of genetic diseases would be increased to 106 per 1000 in the children and grandchildren of radiation workers who were exposed to 1 rem per year commencing at age 18. However, there was no detectable change in the health and fitness of mice whose male ancestors were repeatedly exposed to high radiation doses up to 900 rem per generation. (auth)

  17. Radiation-induced effects in organic systems. Final report

    International Nuclear Information System (INIS)

    Johnsen, R.H.

    1982-01-01

    This project, which is of twenty-seven years duration, has been devoted to furthering our basic understanding of the processes involved in the absorption and distribution of high-energy radiation in organic molecules. The early phases of the work were concerned with the gross chemical effects of radiation and included studies in a number of important classes of organic compounds including alcohols, aliphatic acids, aliphatic hydrocarbons, and aromatic hydrocarbons. Basic information was acquired through these studies that has led to a better understanding of the effects of high-energy radiation on condensed media. During this period the so-called protective effect of low concentrations of aromatic hydrocarbons was also studied. A contribution of lasting significance at this time was the development of a technique for the post-radiolysis analysis of trapped free radicals by photochemical means. A comprehensive series of papers on the reactions of thermal hydrogen atoms with frozen organic substrates represented the beginning of a new phase in the approach to the problems of radiation chemistry in this laboratory. Since that time the general philosophy guided the research has been to single out events or processes suspected of contributing to the gross-radiation effect and study them in isolation. Thus from 1970 on efforts were devoted to charge-exchange processes, ionization efficiencies (w-values), radical decay process in solids and ion-dissociation reactions. The first by means of a modified time-of-flight mass spectrometer, the second utilizing an ionization chamber constructed in the FSU shops, the third using electron spin resonance detection, and the last involving the use of a dual mass spectrometer, solid target system invented in our laboratory. The most productive of these efforts has been the radical decay work

  18. Modification of genetic effects of gamma radiation by laser radiation

    International Nuclear Information System (INIS)

    Khotyljova, L.V.; Khokhlova, S.A.; Khokhlov, I.V.

    1988-01-01

    Full text: Mutants obtained by means of ionizing radiation and chemical mutagens often show low viability and productivity that makes their use in plant breeding difficult. Methods reducing the destructive mutagen action on important functions of plant organism and increasing quality and practical value of induced mutants would be interesting. We believe that one method for increasing efficiency of experimental mutagenesis in plants is the application of laser radiation as a modificator of genetic effects of ionizing radiation and chemical mutagens. Combined exposure of wheat seedlings to a gamma radiation dose of 2 kR and to laser radiation with the wave length of 632.8 nm (power density - 20 mVt/cm 2 , exposure - 30 min.) resulted in reducing the chromosomal aberration percentage from 30.5% in the gamma version to 16.3% in the combined treatment version. A radiosensibilizing effect was observed at additional exposure of gamma irradiated wheat seeds to laser light with the wave length of 441.6 nm where chromosomal aberration percentage increased from 22% in the gamma-irradiation version to 31% in the combined treatment version. By laser radiation it is also possible to normalize mitotic cell activity suppressed by gamma irradiation. Additional seedling irradiation with the light of helium-neon laser (632.8 nm) resulted in recovery of mitotic cell activity from 21% to 62% and increasing the average content of DNA per nucleus by 10%. The influence of only laser radiation on plant variability was also studied and it was shown that irradiation of wheat seeds and seedlings with pulsed and continuous laser light of visible spectrum resulted in phenotypically altered forms in M 2 . Their frequencies was dependent upon power density, dose and radiation wave length. Number of altered forms increased in going from long-wave to short-wave spectrum region. In comparing efficiency of different laser types of pulsed and continuous exposure (dose - 180 J/cm 2 ) 2% of altered

  19. Radiation effects on light sources and detectors

    International Nuclear Information System (INIS)

    Barnes, C.E.

    1985-01-01

    The rapidly expanding field of optoelectronics includes a wide variety of both military and non-military applications in which the systems must meet radiation exposure requirements. Herein, we review the work on radiation effects on sources and detectors for such optoelectronic systems. For sources the principal problem is permanent damage-induced light output degradation, while for detectors it is ionizing radiation-induced photocurrents

  20. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  1. Bystander Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Little, John B.

    2017-01-01

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  2. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  3. Atomic and molecular effects in the VUV spectra of solids

    International Nuclear Information System (INIS)

    Sonntag, B.

    1977-10-01

    The VUV spectra of solids are often dominated by atomic or molecular effects, which clearly manifest themselves in the gross features of the spectra and the fine structure at inner shell excitation thresholds. Evidence for the influence of atomic and molecular matrix elements, multiplet-splitting and correlation is presented. Special emphasis is given to the direct experimental verification based on the comparison of atomic and solid state spectra. (orig.) [de

  4. Chernobyl health effects: radiation or stress?

    International Nuclear Information System (INIS)

    Grinkhal', G.

    1996-01-01

    Consideration is given to results of wide-scale examination of human population, subjected to the effect of radiation in result of Chernobyl accident. The examined contingents consisted of liquidators, evacuated from 30-km zone, people still living in contamination territories, children of irradiated parents and children, who received large radiation doses. High levels of respiratory system diseases, digestive system diseases, cardiovascular diseases and nervous system diseases were revealed for these people. It was revealed that stress, socio-economic and chemical factors played sufficient role in disease incidence. It is shown that fair of radiation may damage more, than radiation itself

  5. Late effects of radiation: host factors

    International Nuclear Information System (INIS)

    Fry, R.J.M.; Storer, J.B.

    1983-01-01

    The paper discusses the influence of host factors on radiation late effects and in particular cancer. Radiation induces cellular changes that result in initiated cells with a potential to become cancers. The expression of the initiated cells as tumors is influenced, if not determined, by both tissue and systemic factors that are sex-, age-, and species-dependent

  6. Biological radiation effects and radioprotection standards

    International Nuclear Information System (INIS)

    Clerc, H.

    1991-03-01

    In this report, after recalling the mode of action of ionizing radiations, the notions of dose, dose equivalents and the values of natural irradiation, the author describes the biological radiation effects. Then he presents the ICRP recommendations and their applications to the french radioprotection system

  7. Radiation effects on Fischer-Tropsch syntheses

    International Nuclear Information System (INIS)

    Hatada, M.; Matsuda, K.

    1977-01-01

    Radiation effects on Fischer-Tropsch synthesis has been examined using high dose rate electron beams and Fe-Cu-diatomaceous earth catalyst. Yields of saturated hydrocarbons were found to increase by irradiation, but the yields of these compounds were decreased by raising reaction temperature without irradiation, suggesting the presence of radiation chemical process in catalytic reactions. (author)

  8. Radiation effects in charge coupled devices

    International Nuclear Information System (INIS)

    Williams, R.A.; Nelson, R.D.

    1975-01-01

    Charge coupled devices (CCD s) exhibit a number of advantages (low cost, low power, high bit density) in their several applications (serial memories, imagers, digital filters); however, fairly elementary theoretical considerations indicate that they will be very vulnerable to permanent radiation damage, by both neutrons and ionizing radiation, and to transient upset by pulsed ionizing radiation. Although studies of permanent ionizing-radiation damage in CCD's have been reported, little information has been published concerning their overall nuclear radiation vulnerability. This paper presents a fairly comprehensive experimental study of radiation effects in a 256-cell surface-channel, CCD shift-register. A limited amount of similar work is also presented for a 128-cell surface-channel device and a 130 cell peristaltic CCD shift register. The radiation effects phenomena discussed herein, include transient-ionizing-radiation responses, permanent ionizing- radiation damage to transfer efficiency, charge-carrying capacity and input transfer gate bias, and neutron damage to storage time--determined from dark current and charge-up time measurements

  9. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  10. Physics of radiation effects in crystals

    CERN Document Server

    Johnson, RA

    1986-01-01

    ``Physics of Radiation Effects in Crystals'' is presented in two parts. The first part covers the general background and theory of radiation effects in crystals, including the theory describing the generation of crystal lattice defects by radiation, the kinetic approach to the study of the disposition of these defects and the effects of the diffusion of these defects on alloy compositions and phases. Specific problems of current interest are treated in the second part and include anisotropic dimensional changes in x-uranium, zirconium and graphite, acceleration of thermal creep in reactor ma

  11. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Young, K.G.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Parr, H.

    1992-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain needed information and calculational procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. These calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  12. Effects of radiation on scintillating fiber performance

    International Nuclear Information System (INIS)

    Young, K.G.; Bauer, M.L.; Cohn, H.; Efremenko, Yu.; Gordeev, A.; Kamyshkov, Yu.; Onopienko, D.; Savin, S.; Shmakov, K.; Tarkovsky, E.; Carey, R.; Rothman, M.; Sulak, L.; Worstell, W.; Paar, H.

    1993-01-01

    Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculational procedures used in performing predictions for hadron scintillating fiber calorimetry in the Superconducting Supercollider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects, and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is also presented

  13. Characteristics of natural background external radiation and effective dose equivalent

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1989-01-01

    The two sources of natural radiation - cosmic rays and primordial radionuclides - are described. The factors affecting radiation doses received from natural radiation and the calculation of effective dose equivalent due to natural radiation are discussed. 10 figs., 3 tabs

  14. Solid State Division annual progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, M.K.; Young, F.W. Jr.

    1976-05-01

    Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials. (JRD)

  15. Solid State Division annual progress report for period ending December 31, 1975

    International Nuclear Information System (INIS)

    Wilkinson, M.K.; Young, F.W. Jr.

    1976-05-01

    Research activities are reported in programs on theoretical solid state physics, physical properties of solids, radiation effects in metals, neutron scattering, research materials, and isotope research materials

  16. Analytical formulae to calculate the solid angle subtended at an arbitrarily positioned point source by an elliptical radiation detector

    International Nuclear Information System (INIS)

    Abbas, Mahmoud I.; Hammoud, Sami; Ibrahim, Tarek; Sakr, Mohamed

    2015-01-01

    In this article, we introduce a direct analytical mathematical method for calculating the solid angle, Ω, subtended at a point by closed elliptical contours. The solid angle is required in many areas of optical and nuclear physics to estimate the flux of particle beam of radiation and to determine the activity of a radioactive source. The validity of the derived analytical expressions was successfully confirmed by the comparison with some published data (Numerical Method)

  17. Overview of radiation effects research in photonics

    Science.gov (United States)

    Webb, Robert C.; Cohn, Lewis M.; Taylor, Edward W.; Greenwell, Roger A.

    1995-05-01

    A brief overview of ongoing radiation effects research in photonics is presented focusing on integrated optic and acousto-optic components. A short summary of radiation-induced effects in electro-optic modulators, detector arrays, and other photonic technologies is presented along with extensive references. The coordinated radiation effects studies among researchers within the Tri-Service Organizations and international experimental teams are beginning to demonstrate consistent measurements of radiation-induced effects in photonic components and confirming earlier reported data. This paper will present an overview of these coordinated investigations and focus on key research being conducted with the AFMC Phillips Laboratory, Naval Research Laboratory, Defence Nuclear Agency, NATO Nuclear Effects Task Group, and the Tri-Service Photonics Coordinating Committee.

  18. Effects of small radiation doses

    International Nuclear Information System (INIS)

    Fuchs, G.

    1986-01-01

    The term 'small radiation dosis' means doses of about (1 rem), fractions of one rem as well as doses of a few rem. Doses like these are encountered in various practical fields, e.g. in X-ray diagnosis, in the environment and in radiation protection rules. The knowledge about small doses is derived from the same two forces, on which the radiobiology of human beings nearly is based: interpretation of the Hiroshima and Nagasaki data, as well as the experience from radiotherapy. Careful interpretation of Hiroshima dates do not provide any evidence that small doses can induce cancer, fetal malformations or genetic damage. Yet in radiotherapy of various diseases, e.g. inflammations, doses of about 1 Gy (100 rad) do no harm to the patients. According to a widespread hypothesis even very small doses may induce some types of radiation damage ('no threshold'). Nevertheless an alternative view is justified. At present no decision can be made between these two alternatives, but the usefullness of radiology is definitely better established than any damage calculated by theories or extrapolations. Based on experience any exaggerated fear of radiations can be met. (author)

  19. Effect of radiation processing on meat tenderisation

    International Nuclear Information System (INIS)

    Kanatt, Sweetie R.; Chawla, S.P.; Sharma, Arun

    2015-01-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour. - Highlights: • Effect of radiation processing on tenderness of three meat systems was evaluated. • Dose dependant reduction in shear force seen in buffalo meat. • Collagen solubility increased with irradiation

  20. Effects of gamma radiation in tomato seeds

    Energy Technology Data Exchange (ETDEWEB)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter, E-mail: tawiendl@hotmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  1. Radiation effect on rocket engine performance

    Science.gov (United States)

    Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.

    1990-01-01

    Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.

  2. Effects of gamma radiation in tomato seeds

    International Nuclear Information System (INIS)

    Wiendl, Toni A.; Wiendl, Fritz W.; Franco, Suely S.H.; Franco, Jose G.; Althur, Valter; Arthur, Paula B.

    2013-01-01

    Tomato dry seeds of the hybrid 'Gladiador' F1 were exposed to low doses of gamma radiation from Co-60 source at 0,509 kGy tax rate in order to study stimulation effects of radiation on germination and plant growth. Eight treatments radiation doses were applied as follows: 0 (control); 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 20,0 Gy. Seed germination as well as green fruits number, harvested fruit number, fruit weight and total production were assessed to identify occurrence of stimulation. Tomato seeds and plants were handled as for usual tomato production in Brazil. Low doses of gamma radiation treatment in the seeds stimulate germination and substantially increase fruit number and total production up to 86% at 10 Gy dose. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production thus, showing hormetic effects. (author)

  3. Biological effects of proton radiation: an update

    International Nuclear Information System (INIS)

    Girdhani, S.; Hlatky, L.; Sachs, R.

    2015-01-01

    Proton radiation provides significant dosimetric advantages when compared with gamma radiation due to its superior energy deposition characteristics. Although the physical aspects of proton radiobiology are well understood, biological and clinical endpoints are understudied. The current practice to assume the relative biological effectiveness of low linear energy transfer (LET) protons to be a generic value of about 1.1 relative to photons likely obscures important unrecognised differentials in biological response between these radiation qualities. A deeper understanding of the biological properties induced by proton radiation would have both radiobiological and clinical impact. This article briefly points to some of the literature pertinent to the effects of protons on tissue-level processes that modify disease progression, such as angiogenesis, cell invasion and cancer metastasis. Recent findings hint that proton radiation may, in addition to offering improved radio-therapeutic targeting, be a means to provide a new dimension for increasing therapeutic benefits for patients by manipulating these tissue-level processes. (authors)

  4. The effects of ionizing radiation on man

    International Nuclear Information System (INIS)

    Watson, G.M.

    1975-08-01

    This paper describes the major effects of ionizing radiation on man and the relationship between such effects and radiation dose, with the conclusion that standards of radiological safety must be based on the carcinogenetic and mutagenic properties of ionizing radiation. Man is exposed to radiation from natural sources and from man-made sources. Exposure from the latter should be regulated but, since there is little observational or experimental evidence for predicting the effects of the very small doses likely to be required for adequate standards of safety, it is necessary to infer them from what is seen at high doses. Because the formal relationship between dose and effect is not fully understood, simplifying assumptions are necessary to estimate the effects of low doses. Two such assumptions are conventionally used; that there is a linear relationship between dose and effect at all levels of dose, and that the rate at which a dose of radiation is given does not alter the magnitude of the effect. These assumptions are thought to be conservative, that is they will not lead to an underestimation of the effects of small radiation doses although they may give an over-estimate. (author)

  5. Fast Neutron Radiation Effects on Bacillus Subtili

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Jianguo; Chu Shijin; Ren Zhenglong; Zheng Chun; Yang Chengde; Tan Bisheng

    2009-01-01

    To examine the sterilizing effect and mechanism of neutron radiation, Bacillus subtilis var. niger. strain (ATCC 9372) spores were irradiated with the fast neutron from the Chinese fast burst reactor II(CFBR-II). The plate-count results indicated that the D 10 value was 384.6 Gy with a neutron radiation dose rate of 7.4 Gy/min. The rudimental catalase activity of the spores declined obviously with the increase in the radiation dose. Meanwhile, under the scanning electron microscope, no visible influence of the neutron radiation on the spore configuration was detected even if the dose was increased to 4 kGy. The content and distribution of DNA double-strand breaks induced by neutron radiation at different doses were measured and quantified by pulsed-field gel electrophoresis (PFGE). Further analysis of the DNA release percentage (PR), the DNA breakage level (L), and the average molecular weight, indicated that DNA fragments were obviously distributed around the 5 kb regions at different radiation doses, which suggests that some points in the DNA molecule were sensitive to neutron radiation. Both PR and L varied regularly to some extent with the increase in radiation dose. Thus neutron radiation has a high sterilization power, and can induce falling enzyme activity and DNA breakage in Bacillus subtilis spores

  6. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  7. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  8. Predicted solar cell edge radiation effects

    International Nuclear Information System (INIS)

    Gates, M.T.

    1993-01-01

    The Advanced Solar Cell Orbital Test (ASCOT) will test six types of solar cells in a high energy proton environment. During the design of the experiment a question was raised about the effects of proton radiation incident on the edge of the solar cells and whether edge radiation shielding was required. Historical geosynchronous data indicated that edge radiation damage is not detectable over the normal end of life solar cell degradation; however because the ASCOT radiation environment has a much higher and more energetic fluence of protons, considerably more edge damage is expected. A computer analysis of the problem was made by modeling the expected radiation damage at the cell edge and using a network model of small interconnected solar cells to predict degradation in the cell's electrical output. The model indicated that the deepest penetration of edge radiation was at the top of the cell near the junction where the protons have access to the cell through the low density cell/cover adhesive layer. The network model indicated that the cells could tolerate high fluences at their edge as long as there was high electrical resistance between the edge radiated region and the contact system on top of the cell. The predicted edge radiation related loss was less than 2% of maximum power for GaAs/Ge solar cells. As a result, no edge radiation protection was used for ASCOT

  9. The Effects of Ionizing Radiation on Mammalian Cells.

    Science.gov (United States)

    Biaglow, John E.

    1981-01-01

    Discusses the effects of radiation on dividing cells and factors influencing these effects; also briefly reviews the radical mechanism for radiation damage. Emphasizes the importance of oxygen in radiation effects. (CS)

  10. Internal friction, microstructure, and radiation effects

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Sommer, W.F.; Davidson, D.R.

    1984-01-01

    A brief review is given of internal friction relaxation peaks and background internal friction. The microstructural origin of the internal friction is discussed. Particular emphasis is placed on radiation effects

  11. Effects of solar radiation on glass

    Science.gov (United States)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  12. Decomposition of radiational effects of model feedbacks

    International Nuclear Information System (INIS)

    Ellsaesser, H.W.; MacCracken, M.C.; Potter, G.L.; Mitchell, C.S.

    1981-08-01

    Three separate doubled CO 2 experiments with the statistical dynamic model are used to illustrate efforts to study the climate dynamics, feedbacks, and interrelationships of meteorological parameters by decomposing and isolating their individual effects on radiation transport

  13. Sterilizing radiation effects on selected polymers

    International Nuclear Information System (INIS)

    Skiens, W.E.

    1979-03-01

    The mechanism of radiation effects and their industrial applications are discussed for the following classes of polymers: thermoplastics, thermosets, elastomers, films and fibers, and adhesives/coatings/potting compounds. 35 references, 3 tables

  14. Radiobiology: Biologic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Held, K.D.

    1987-01-01

    The biologic effects after exposure to ionizing radiation, such as cell death or tissue injury, result from a chain of complex physical, chemical, metabolic, and histologic events. The time scale of these radiation actions spans many orders of magnitude. The physical absorption of ionizing radiation occurs in about 10 -18 s, while late carcinogenic and genetic effects are expressed years or even generations later. Collectively, these effects form the science of radiobiology. Many of the concepts discussed in this chapter have been developed through the study of effects generated in tissues by external radiation sources, but they apply generally and often specifically to internally distributed radiopharmaceuticals which form the central topic of this book

  15. Genetic effects of ionizing radiations in Eucaryocytes

    International Nuclear Information System (INIS)

    Jullien, Pierre

    1976-01-01

    The litterature on the genetic effects of ionizing radiations is reviewed, especially as concerns specific loci or chromosome mutations. Extrapolation from one species to another is considered as well as extra-nuclear mutations [fr

  16. The effect of ionizing radiation on cyanophyta

    International Nuclear Information System (INIS)

    Kondrat'eva, N.V.; Shevchenko, T.F.; Golubkova, M.G.

    1989-01-01

    Publication data on the effect of ionizing radiation on cyanophyta are generalized. The conclusion about the presence of premises for forming cyanophyta radiobiology as special direction of procaryotic algae investigation is made

  17. [Effects of radiation exposure on human body].

    Science.gov (United States)

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  18. Evaluation of soluble solids content and pH of ice cream treated with gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rogovschi, V.D.; Nunes, T.C.F.; Fabbri, A.D.T.; Sagretti, J.M.; Sabato, S.F. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The ice cream is considered an aerated suspension of fat and ice crystals in a concentrated sugar solution containing hydrocolloids, proteins and casein micelles. Only in Brazil, in the year 2010, it was produced 1120 million liter of ice cream and due to high demand by the consumers, this is considered the most important product of the dairy industry. The objective of this work is to evaluate the soluble solids content (SSC) and the hydrogenionic potential (pH) of vanilla ice cream conditioned in isothermal boxes irradiated with 3.0 and 5.0 kGy in the Multipurpose Irradiator of {sup 60}Co located at IPEN - CNEN/SP. It can be concluded that the treatment of ice cream with gamma radiation did not cause changes in the analyzed parameters. . (author)

  19. Evaluation of soluble solids content and pH of ice cream treated with gamma radiation

    International Nuclear Information System (INIS)

    Rogovschi, V.D.; Nunes, T.C.F.; Fabbri, A.D.T.; Sagretti, J.M.; Sabato, S.F.

    2011-01-01

    The ice cream is considered an aerated suspension of fat and ice crystals in a concentrated sugar solution containing hydrocolloids, proteins and casein micelles. Only in Brazil, in the year 2010, it was produced 1120 million liter of ice cream and due to high demand by the consumers, this is considered the most important product of the dairy industry. The objective of this work is to evaluate the soluble solids content (SSC) and the hydrogenionic potential (pH) of vanilla ice cream conditioned in isothermal boxes irradiated with 3.0 and 5.0 kGy in the Multipurpose Irradiator of 60 Co located at IPEN - CNEN/SP. It can be concluded that the treatment of ice cream with gamma radiation did not cause changes in the analyzed parameters. . (author)

  20. Effects of radiations on ornamental fish

    International Nuclear Information System (INIS)

    Anita; Kalyankar, Amol D.; Ohlyan, Sunita; Gupta, R.K.

    2012-01-01

    Radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiations: ionizing and non-ionizing. Ultraviolet, X-rays, and gamma rays are some examples of radiation. 'Ornamental fish' is designed for aquatic hobbyists and the aquatic industry for several purposes. UV light has two primary uses in fish culture: Controlling green water and disinfecting the water supply. Many proponents of UV disinfection sometimes overlook the additional benefits relating to ornamental fish; those being that cleaner water reduces the stress on the fish by not having to fight off diseases, thus enhancing its immune system and leading to faster growth and more brilliant colors. Ultraviolet sterilizers are often used in aquaria to help control unwanted microorganisms in the water. UV radiation also ensures that exposed pathogens cannot reproduce, thus decreasing the likelihood of a disease outbreak in an aquarium. Despite of these benefits, the ill-effects of radiations cannot be ruled out. Ultraviolet Radiation-induced DNA Damage is seen in the skin of the Platyfish Xiphophorus. Higher radiation doses may cause the gastrointestinal syndrome that leads to defects of the intestinal mucosa barrier with successive contamination of musculature. Exposure to UV radiation can kill the fish and induce sublethal effects in embryos, larvae and adults. The change in skin includes irregularity of skin surface, epidermal oedema, necrosis etc. Irradiation may badly influence the textural attributes of fish muscle. (author)

  1. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    International Nuclear Information System (INIS)

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  2. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  3. Radiation abuse and its effects

    Energy Technology Data Exchange (ETDEWEB)

    Halm, A

    1976-06-01

    This paper delves into overuse practiced in diagnostic radiography. The conventional attitudes to low-dose irradiation are critically examined, as is the MPD related to individual radiosensitivity. Concern is expressed that a sizeable proportion of radiologists ignore important aspects of the Code of Practice and this attitude is readily emulated in the hospital setting. The author advocates education within the medical profession and the community on the risks involved in radiation abuse and the benefits derived from justified exposures to x rays.

  4. Radiation Effects in M and NEMS

    Science.gov (United States)

    2016-03-31

    electrical basis of operation of M&NEM structures? In particular, cumulative damage by non - ionizing energy loss can, in principle, alter the... Radiation Effects in M&NEMS Michael Alles, Kirill Bolotin, Alex Zettl, Brian Homeijer, Jim Davidson, Ronald Schrimpf, Robert Reed, Dan Fleetwood...understanding radiation effects on the relevant properties of the constituent materials and structures, particularly advanced 2D materials, and the

  5. Modifiers of radiation effects in the eye

    Science.gov (United States)

    Kleiman, Norman J.; Stewart, Fiona A.; Hall, Eric J.

    2017-11-01

    World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.

  6. Radiation effects on eye components

    International Nuclear Information System (INIS)

    Durchschlag, H.; Fochler, C.; Abraham, K.; Kulawik, B.

    1998-01-01

    The radiation damage (X-ray, UV light) of the most important components of the vertebrate eye (crystallins and other proteins, hyaluronic acid, vitreous, aqueous humour, ascorbic acid) has been investigated by various methods of physical chemistry. UV absorption and fluorescence spectroscopy as well as circular dichroism unveiled changes of the chromophores/fluorophores of the constituent biopolymers and low-molecular components, together with alterations of helix content and the occurrence of aggregation. Size-exclusion chromatography, analytical ultracentrifugation, densimetry, viscometry and light scattering experiments monitored changes of the global structure of proteins and polysaccharides involved. Electrophoreses allowed conclusions on fragmentation, unfolding and crosslinking. Analytical methods provided information regarding the integrity of groups of special concern (SH, SS) and revealed the existence of stable noxious species (H 2 O 2 ). By means of various measures and additives, manifold modifications of the impact of both ionizing and nonionizing radiation may be achieved. Caused by differences in the primary reactions, eye polymers are protected efficaciously by typical OH radical scavengers against X-irradiation, whereas compounds which exhibit absorption behavior in the UV range turn out to act as potent protectives ('chemical filters') against UV light. A few substances, such as ascorbate, are able to provide protection against both sorts of radiation and are even able to exhibit a slight chemical repair of already damaged particles. The results obtained are of importance for understanding pathological alterations of the eye (loss of transparency, cataractogenesis) and for developing new strategies for protection and repair of eye components. (author)

  7. Radiation effects on biodegradable polyesters

    International Nuclear Information System (INIS)

    Hiroshi Mitomo; Darmawan Darwis; Fumio Yoshii; Keizo Makuuchi

    1999-01-01

    Poly(3-hydroxybutyrate) [P(3HB)] and its copolymer poly(3-hydroxybutyrate-co-3hydroxyvalerate) [P(3HB-co-3HV)] are microbial biodegradable polyesters produced by many types of bacteria. Poly(butylene succinate) (PBS) and poly(E-caprolactone) (PCL) are also biodegradable synthetic polyesters which have been commercialized. These thermoplastics are expected for wide usage in environmental protection and blocompatible applications. Radiation grafting of hydrophilic monomers onto many polymers, e.g., polyethylene and polypropylene has been studied mainly for biomedical applications. In the present study, radiation-induced graft polymerization of vinyl monomers onto PHB and P(3HB-co-3HV) was carried out and improvement of their properties was studied. Changes in the properties and biodegradability were compared with the degree of grafting. Radiation-induced crosslinking of PBS and PCL which relatively show thermal and irradiation stability was also carried out to improve their thermal stability or processability. Irradiation to PBS and PCL mainly resulted in crosslinking and characterization of these crosslinked polyesters was investigated

  8. Perturbed effects at radiation physics

    International Nuclear Information System (INIS)

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  9. Radiation effects on cancer risks in the life span study cohort

    International Nuclear Information System (INIS)

    Kodama, K.; Ozasa, K.; Katayama, H.; Shore, R. E.; Okubo, T.

    2012-01-01

    To determine late health effects of radiation in atomic bomb survivors, the Radiation Effects Research Foundation has been conducting studies on the Life Span Study (LSS) population, which consists of 93 000 atomic bomb survivors and 27.000 controls. A recent report on the incidence of solid cancers estimates that at the age of 70 y, after exposure at the age of 30 y, solid-cancer rates increase by about 35 % per Gy for men and 58 % per Gy for women. The age-at-exposure is an important risk modifier. Furthermore, it seems that radiation-associated increases in cancer rates persist throughout life. In addition, radiation has similar effects upon first-primary and second-primary cancer risks. A recent report on leukemia mortality suggested that the effect of radiation on leukemia mortality persisted for more than five decades. In addition, a significant dose-response for myelodysplastic syndrome is found in Nagasaki LSS members 40-60 y after radiation exposure. In view of the nature of the continuing increase in solid cancers, the LSS should continue to provide important new information on cancer risks, as most survivors still alive today were exposed to the atomic bomb radiation under the age of 20 y and are now entering their cancer-prone years. (authors)

  10. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  11. Effect of dried solids of nejayote on broiler growth.

    Science.gov (United States)

    Velasco-Martinez, M; Angulo, O; Vazquez-Couturier, D L; Arroyo-Lara, A; Monroy-Rivera, J A

    1997-11-01

    The purpose of the present study was to test the suitability of the solids of nejayote (a waste product from the tortilla industry) in diets for broilers. The nejayote was obtained from two different tortilla-making factories and the solids were obtained by centrifuge then dried in a hot-air drier. Diets were formulated to be isocaloric and isonitrogenous according to the NRC dietary requirements (1994). Nejayote solids were supplemented at 2, 4, and 6% of the diet. Results show that the content of protein and calcium in the dried solids of nejayote were 5 and 13%, respectively. The performance of broilers fed diets supplemented with dried nejayote did not differ from that of those fed the control diet. Therefore, it is concluded that nejayote solids are suitable for broiler feed and do not affect growth performance. Utilization of nejayote solids at higher levels is a possibility provided that no adverse effects on body weight, feed utilization, and feed:gain ratios are observed.

  12. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  13. Multiply charged ions of the oxygen - produced at interaction of laser radiation with two-element solids

    International Nuclear Information System (INIS)

    Bedilov, M.R.; Bedilov, R.M.; Kamalova, J.O.; Davletov, I.Yu.; Matnazarov, A.R.

    2007-01-01

    Full text: The interest to study of the oxygen multiply charged ions spectra produced at interaction laser radiation with one and two-element solids, is associate with possibility of creating laser and inertial thermonuclear syntheses, effective sources of multiply charged ions and nuclei atoms elements, plasma lasers, lasers on multiply charged transition, design of radiation-resistant materials and others. The present time many works is devoted to multiply charged ions, obtained from one element targets. Experimental results of study charge and energy spectra multiply charged ions of the oxygen, formed at interaction laser radiation with one and two-element solids are given in this work. Our experiments, we used installation, which is described in [1]. Neodymium laser had following parameters: wavelength 1.06 μm; intensity q = (0.1 h 1000) GW/sm 2 ; angle of incidence = 180. Were study one element Al, and two-element Al 2 O 3 , Y 2 O 3 targets by a diameter of 10 mm and thickness of 3 mm. Analysis obtained charge and energy spectra of multiply charged ions one (Al) and two-element (Al 2 O 3 , Y 2 O 3 ) targets depending on intensity of laser radiation and targets components reveal the following: - maximal charge number one element target (Al) at q 500 GW/sm 2 is equal Z max = 6 and all peaks corresponding to charge numbers Z = 1 - 6 well resolved, but two-element targets (Al 2 O 3 ) Z max ions Al decrease before 3. Also it is necessary to note that, Z max ions of the oxygen depend on target components. In case Al 2 O 3 and Y 2 O 3 maximal charge number of oxygen ions are equal Z max = 6 and 3, accordingly; - obtained charge and energy spectra of oxygen ions being included in two-element targets, are indicative of that, general regularities of the change Z max , E max and structures charge and energy spectra depending on q laser are saved. However they hang by target components; - common features and some differences of energy spectra multiply charged oxygen ions

  14. Effective dose: a radiation protection quantity

    CERN Document Server

    Menzel, H G

    2012-01-01

    Modern radiation protection is based on the principles of justification, limitation, and optimisation. Assessment of radiation risks for individuals or groups of individuals is, however, not a primary objective of radiological protection. The implementation of the principles of limitation and optimisation requires an appropriate quantification of radiation exposure. The International Commission on Radiological Protection (ICRP) has introduced effective dose as the principal radiological protection quantity to be used for setting and controlling dose limits for stochastic effects in the regulatory context, and for the practical implementation of the optimisation principle. Effective dose is the tissue weighted sum of radiation weighted organ and tissue doses of a reference person from exposure to external irradiations and internal emitters. The specific normalised values of tissue weighting factors are defined by ICRP for individual tissues, and used as an approximate age- and sex-averaged representation of th...

  15. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  16. Biological effects of high-energy radiation

    International Nuclear Information System (INIS)

    Curtis, S.B.

    1976-01-01

    The biological effects of high-energy radiation are reviewed, with emphasis on the effects of the hadronic component. Proton and helium ion effects are similar to those of the more conventional and sparsely ionizing x- and γ-radiation. Heavy-ions are known to be more biologically effective, but the long term hazard from accumulated damage has yet to be assessed. Some evidence of widely varying but dramatically increased effectiveness of very high-energy (approximately 70 GeV) hadron beams is reviewed. Finally, the importance of the neutron component in many situations around high-energy accelerators is pointed out

  17. Solid-state device for detecting and locating the points of impact of ionizing radiation

    International Nuclear Information System (INIS)

    Rougeot, H.; Roziere, G.

    1979-01-01

    A semiconductor body contains microscopic passages in which multiplication of the free electrons appearing at the entrances to said passages, under the effect of the incident ionizing radiation, takes place. A conductive film forms a surface barrier in conjunction with the semiconductor body which is endowed with the property of secondary emission with an emission coefficient better than unity

  18. Duration of load effects of solid wood

    DEFF Research Database (Denmark)

    Svensson, Staffan

    Test methods for studying the effect of long-term loading on the load carrying capacity of structural wood are discussed. The impact of sampling procedures on test results is investigated and is exemplified. It is concluded from this investigation that the sampling method has a significant impact...

  19. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  20. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys

    International Nuclear Information System (INIS)

    Lu, Chenyang; Yang, Taini; Jin, Ke; Gao, Ning; Xiu, Pengyuan; Zhang, Yanwen; Gao, Fei; Bei, Hongbin; Weber, William J.; Sun, Kai; Dong, Yan; Wang, Lumin

    2017-01-01

    A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni"2"+ ions at 773 K to a fluence of 5 × 10"1"6 ions/cm"2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasing compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, “disk” like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.

  1. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  2. Radon-film-badges by solid radiators to complement track detector-based radon monitors

    International Nuclear Information System (INIS)

    Tommasino, L.; Tommasino, M.C.; Viola, P.

    2009-01-01

    Existing passive radon monitors, based on track detectors, present many shortcomings, such as a limited response sensitivity for one-week-indoor measurements and a limited response linearity for the assessment of large radon exposures indoors, in thermal spa, in caves, and in soil. Moreover, for in-soil measurements these monitors are too bulky and are often conducive to wrong results. For what concerns the radon-in-water measurements, they are just not suitable. A new generation of passive radon monitors is introduced in this paper, which are very similar to the compact badges used in neutron- and gamma-dosimetry and will be referred to as radon-film-badges. These film-badges are formed by thin-film radiators with suitable radon-sorption characteristics, facing track detectors. The key strategy adopted for these radiators is to exploit an equilibrium type of radon sorption in solids. Even though this new generation of passive monitors is at its infancy, it appears already clear that said monitors make it finally possible to overcome most of the shortcomings of existing passive radon monitors. These devices are uniquely simple and can be easily acquired by any existing radon service to complement their presently used passive radon monitors with little or no effort.

  3. PRESAGE® as a solid 3-D radiation dosimeter: A review article

    International Nuclear Information System (INIS)

    Khezerloo, Davood; Nedaie, Hassan Ali; Takavar, Abbas; Zirak, Alireza; Farhood, Bagher; Movahedinejhad, Hadi; Banaee, Nooshin; Ahmadalidokht, Isa; Knuap, Courtney

    2017-01-01

    Radiation oncology has been rapidly improved by the application of new equipment and techniques. With the advent of new complex and precise radiotherapy techniques such as intensity modulated radiotherapy, stereotactic radiosurgery, and volumetric modulated arc therapy, the demand for an accurate and feasible three-dimensional (3-D) dosimetry system has increased. The most important features of a 3-D dosimeter, apart from being precise, accurate and reproducible, include also its low cost, feasibility, and availability. In 2004 a new generation of solid plastic dosimeters which demonstrate a radiochromic response to ionizing radiation was introduced. PRESAGE ® plastic dosimeter lacks the limitations of previous Ferric and polymer plastic 3-D dosimeters such as diffusion, sensitivity to oxygen, fabrication problems, scanning and read out challenges. In this decade, a large number of efforts have been carried out to enhance PRESAGE ® structure and scanning methods. This article attempts to review and reflect on the results of these investigations. - Highlights: • Sensitivity and stability can improve with variation in weight fraction of gel. • To overcome star and edge artifacts, Wide-parallel beam optical CT can use in clinic. • Modeling of scatter pattern can be usable to enhance of images.

  4. Radiation abuse and its effects

    International Nuclear Information System (INIS)

    Halm, A.

    1976-01-01

    This paper delves into overuse practiced in diagnostic radiography. The conventional attitudes to low-dose irradiation are critically examined, as is the MPD related to individual radiosensitivity. Concern is expressed that a sizeable proportion of radiologists ignore important aspects of the Code of Practice and this attitude is readily emulated in the hospital setting. The author advocates education within the medical profession and the community on the risks involved in radiation abuse and the benefits derived from justified exposures to x rays. (author)

  5. Proton induced target fragmentation studies on solid state nuclear track detectors using Carbon radiators

    Science.gov (United States)

    Szabó, J.; Pálfalvi, J. K.; Strádi, A.; Bilski, P.; Swakoń, J.; Stolarczyk, L.

    2018-04-01

    One of the limiting factors of an astronaut's career is the dose received from space radiation. High energy protons, being the main components of the complex radiation field present on a spacecraft, give a significant contribution to the dose. To investigate the behavior of solid state nuclear track detectors (SSNTDs) if they are irradiated by such particles, SSNTD stacks containing carbon blocks were exposed to high energy proton beams (70, 100, 150 and 230 MeV) at the Proteus cyclotron, IFJ PAN -Krakow. The incident protons cannot be detected directly; however, tracks of secondary particles, recoils and fragments of the constituent atoms of the detector material and of the carbon radiator are formed. It was found that as the proton energy increases, the number of tracks induced in the PADC material by secondary particles decreases. From the measured geometrical parameters of the tracks the linear energy transfer (LET) spectrum and the dosimetric quantities were determined, applying appropriate calibration. In the LET spectra the LET range of the most important secondary particles could be identified and their abundance showed differences in the spectra if the detectors were short or long etched. The LET spectra obtained on the SSNTDs irradiated by protons were compared to LET spectra of detectors flown on the International Space Station (ISS): they were quite similar, resulting in a quality factor difference of only 5%. Thermoluminescent detectors (TLDs) were applied in each case to measure the dose from primary protons and other lower LET particles present in space. Comparing and analyzing the results of the TLD and SSNTD measurements, it was obtained that proton induced target fragments contributed to the total absorbed dose in 3.2% and to the dose equivalent in 14.2% in this particular space experiment.

  6. Biological Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Durand, J.L.

    2000-01-01

    The aim of this work is to verify the existence of the adaptive response phenomenon induced by low doses of ionizing radiation in living cells.A wild-type yeast Saccharomyces cerevisiae (Baker's yeast) was chosen as the biological target.As a parameter to quantify the sensibility of the target to radiation, the Lethal Dose 50 (LD50 ) was observed. In our experimental condition a value of (60 ± 1) Gy was measured for LD50 with Dose Rate of (0.44 ± 0.03) Gy/min. The method employed to show up the adaptive response phenomenon consisted in exposing the sample to low ''conditioning'' doses, which would initiate these mechanisms. Later the samples with and without conditioning were exposed to higher ''challenging'' doses (such as LD50), and the surviving fractions were compared. In order to maximize the differences, the doses and the time between irradiations were varied. The best results were obtained with both a conditioning dose of (0.44 ± 0.03) Gy and a waiting time of 2 hs until the application of the challenging dose. Following this procedures the 80% of the conditioned samples has survived, after receiving the application of the LD50. The adaptive response phenomenon was also verified for a wide range of challenging doses

  7. Radiation effects on ion exchange materials

    International Nuclear Information System (INIS)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references

  8. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  9. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    Science.gov (United States)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  10. Radiation effects on optical data transmission systems

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-01-01

    The state of the art of optical transmitters, low loss fiber waveguides and receivers in both steady state and pulsed radiation environments is reviewed and summarized. Emphasis is placed on the effects of irradiation on the performance of light emitting and laser diodes, optical fiber waveguides and photodiodes. The influence of radiation-induced attenuation of optical fibers due to total dose, dose rate, time after irradiation, temperature, radiation history, photobleaching, OH and impurity content, dopant type and concentration is described. The performance of candidate components of the transmission system intended for deployment in the Superconducting Super Collider Detector and primary beam tunnel nuclear environment is discussed

  11. Study of defects and radiation damage in solids by field-ion and atom-probe microscopy

    International Nuclear Information System (INIS)

    Seidman, D.N.

    1979-06-01

    A brief review is presented of: the basic physical principles of the field-ion and atom-probe microscopes; the many applications of these instruments to the study of defects and radiation damage in solids; and the application of the atom-probe field-ion microscope to the study of the behavior of implanted 3 He and 4 He in tungsten

  12. Long-Range Electron Effects upon Irradiation of Molecular Solids and Polymers

    International Nuclear Information System (INIS)

    Feldman, V.I.

    2006-01-01

    Long-range electron effects are responsible for specific localization and selectivity of the radiation-induced chemical transformations occurring in molecular solids and polymers, when the classic diffusion mobility is essentially restricted. In particullar, understanding of the effects of this kind may be of key significance for establishing new ways to control the radiation sensitivity of macromolecules and organized polymeric systems, nanomaterials and biopolymers. This talk will present an overview of model studies of the long-range electron effects with the characteristic scale from several angstroms to ten nanometers. The following aspects of the problem will be analyzed: (1) Positive hole delocalization in ionized molecules. This phenomenon has been demonstrated experimentally and confirmed by quantum chemical calculations for a number of various-type molecules (alkanes, conjugated polyenes, bifunctional compounds). The effective delocalization length was found to be up to 2 nm (or even larger). The role of this effect in site-selective radiation chemistry will be discussed in the frame of concepts of distributed reactivity and 'switching' between delocalized and localized states. (2) Trap-to-trap positive hole and electron migration between isolated molecules or functional groups. The characteristic distance for this process was estimated to be 2 to 4 nm. Special impact will be made on the possible role of this process in selection of specific isomers or conformers upon irradiation of complex systems and macromolecules. (3) The effects of long-range scavenging of low-energy secondary electrons in polymers and organized polymeric systems. As revealed by model experiments, the radius of electron capture in solid polymers may be in the range of 1 to 10 nm. Possible implications of scavenging effects for controlling the radiation chemistry of polymers and organized polymeric systems will be considered

  13. Radiation effects on the integrity of paper

    International Nuclear Information System (INIS)

    Otero D'Almeida, Maria Luiza; Medeiros Barbosa, Patricia de Souza; Boaratti, Marcelo Fernando Guerra; Borrely, Sueli Ivone

    2009-01-01

    Books and documents attacked by fungi and insects have already been treated by radiation for disinfestations purposes. However, there is still need to investigate the influence of radiation on the cellulose paper structure. The aim of this research was to study the effects of radiation on paper properties, especially those related to strength and appearance. Paper sheets for this study were prepared in the laboratory, using bleached eucalyptus pulp as raw material. No additives were used to concentrate the attention only on the effects of irradiation on the pure cellulose matrix. The samples were irradiated at IPEN's 60 Co Gammacell irradiator with six radiation doses, from 3 to 15 kGy at the dose rate 0.817 Gy/s. The properties of paper sheets were tested after irradiation and compared with unirradiated samples according to ISO methods. No significant changes were detected in paper samples irradiated up to 15 kGy.

  14. Effect of gamma radiation on Campylobacter jejuni

    International Nuclear Information System (INIS)

    Lambert, J.D.; Maxcy, R.B.

    1984-01-01

    Radiation resistance of Campylobacter jejuni in broth, ground beef, and ground turkey meat was determined using dose levels from 0-200 Krad at -30 +/- 10 0 C, at 0-5 0 C, and at 30 +/- 10 0 C. Irradiation at -30 0 C increased radiation resistance of cultures in ground meats; broth cultures were not greatly influenced by temperature. The effect of culture age on radiation resistance was also evaluated using cells in various physiological phases. Age did not have a pronounced effect on radiation resistance. The largest D 10 value for C. jejuni was 32 Krad, which was less than D 10 values commonly reported for salmonellae. 20 references, 4 figures

  15. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  16. Evidence for beneficial low level radiation effects and radiation hormesis

    International Nuclear Information System (INIS)

    Feinendegen, L.E.

    2005-01-01

    Low doses in the mGy range cause a dual effect on cellular DNA. One effect concerns a relatively low probability of DNA damage per energy deposition event and it increases proportional with dose, with possible bystander effects operating. This damage at background radiation exposure is orders of magnitudes lower than that from endogenous sources, such as ROS. The other effect at comparable doses brings an easily obeservable adaptive protection against DNA damage from any, mainly endogenous sources, depending on cell type, species, and metabolism. Protective responses express adaptive responses to metabolic perturbations and also mimic oxygen stress responses. Adaptive protection operates in terms of DNA damage prevention and repair, and of immune stimulation. It develops with a delay of hours, may last for days to months, and increasingly disappears at doses beyond about 100 to 200 mGy. Radiation-induced apoptosis and terminal cell differentiation occurs also at higher doses and adds to protection by reducing genomic instability and the number of mutated cells in tissues. At low doses, damage reduction by adaptive protection against damage from endogenous sources predictably outweighs radiogenic damage induction. The analysis of the consequences of the particular low-dose scenario shows that the linear-no-threshold (LNT) hypothesis for cancer risk is scientifically unfounded and appears to be invalid in favor of a threshold or hormesis. This is consistent with data both from animal studies and human epidemiological observations on low-dose induced cancer. The LNT hypothesis should be abandoned and be replaced by a hypothesis that is scientifically justified. The appropriate model should include terms for both linear and non-linear response probabilities. Maintaining the LNT-hypothesis as basis for radiation protection causes unressonable fear and expenses. (author)

  17. The radiation effects on the living cell

    International Nuclear Information System (INIS)

    Sage, E.; Dutrillaux, B.; Soussi, Th.; Boiteux, S.; Lopez, B.; Feunteun, J.

    1999-06-01

    This publication is a presentation of particular points discussed during the colloquium of the 15-18 june 1999, for which scientific researches are performed at the CEA/CNRS. They deal with the radiobiology, for the radiation effects on living matter; with the DNA, for the knowledge and repair mechanisms on cells submitted to ionizing radiations; with the exposition to UV in correlation with neoplasms; with the P53 gene which is a tumour suppressor. (A.L.B.)

  18. Genetic effects of radiation. Annex I

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex is aimed at an updating of the 1977 UNSCEAR report, which presented a detailed review of the genetic effects of ionizing radiation, especially those parts that require significant revisions in the light of new data. There is an extensive bibliography with over 1000 references. Particular emphasis is given to those data that are relevant to the evaluation of genetic radiation hazards in man.

  19. Biological effect of radiation on human

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae [and others

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved.

  20. Biological effect of radiation on human

    International Nuclear Information System (INIS)

    Lee, Yun Sil; Cho, Chul Koo; Lee, Su Jae

    2000-04-01

    1. Adaptive response when 0.01 Gy was preirradiated before high challenging dose is induced in normal cell types such normal lymphocytes, primary keratinocytes, and L929 fibroblast cells but not in neoplastic cells such as L5178Y lymphoma cells, EL-4 lymphoma cells and 308 papilloma cells. 2. Heat shock protein (HSP) 25 and inducible HSP70 is responsible for the induction of adaptive response and radioresistance - cell cycle regulation, antiapoptotic molecule and PKC activation were involved. 3. Apoptosis was induced at most 5. hrs after irradiation in primary keratinocytes, in v-rasHa transformed keratinocytes, the maximum interval was 16 hrs, and in 308 papilloma cells, the maximum was 48 hrs. 4. PKC response by radiation is correlated with induction of apoptosis. 5. Rapid induction PKCdelta in primary keratinocytes and no response of PKC epsilon may involved in radiation induced apoptosis. 6. The rate of resorption was increased when radiation was given at 2.5 days after gestation. Early death including foetal death were highly expressed when radiation was given at 7.5 days after gestation. There are no difference in incidence of late death including embryonic death. 7. 2 Gy is the most effective dose in radiation induced teratogenesis in mouse model. 8. Growth retardation and small head was present when radiation was given at 5.5, 7.5, 11.5 and 15.5 days after gestation and small head showed high incidence at 11.5 days after gestation. 9. External malformation, internal malformation and skeletal malformation was induced when radiation was given at 7.5 days after gestation. 10. OGG1-mutated cells induced radiosensitive by G2/M cell cycle arrest. 11. Radiation induced G2/M phase cell cycle and correlated with radiosensitivity. 12. PKCalpha induced differentiation. 13. Radiation exposed cells showed carcinogenic effect. 14. Organ specific radiosensitivity was shown and protein expression was involved

  1. Epidemiological studies on the effects of low-level ionizing radiation on cancer risk

    International Nuclear Information System (INIS)

    Akiba, Suminori

    2010-01-01

    The health effects of low-level ionizing radiation are yet unclear. As pointed out by Upton in his review (Upton, 1989), low-level ionizing radiation seems to have different biological effects from what high-level radiation has. If so, the hazard identification of ionizing radiation should he conducted separately for low- and high-level ionizing radiation; the hazard identification of low-level radiation is yet to be completed. What makes hazard identification of ionizing radiation difficult, particularly in the case of carcinogenic effect, is the difficulty in distinguishing radiation-induced cancer from other cancers with respect to clinicopathological features and molecular biological characteristics. Actually, it is suspected that radiation-induced carcinogenesis involves mechanisms not specific for radiation, such as oxidative stress. Excess risk per dose in medium-high dose ranges can be extrapolated to a low-dose range if dose-response can be described by the linear-non-threshold model. The cancer risk data of atomic-bomb survivors describes leukemia risk with a linear-quadratic (LQ) model and solid-cancer risk with linear non-threshold (LNT) model. The LQ model for leukemia and the LNT model for solid cancer correspond to the two-hit model and the one-hit model, respectively. Although the one-hit model is an unlikely dose-response for carcinogenesis, there is no convincing epidemiological evidence supporting the LQ model or non-threshold model for solid cancer. It should be pointed out, however, even if the true dose response is non-linear various noises involved in epidemiological data may mask the truth. In this paper, the potential contribution of epidemiological studies on nuclear workers and residents in high background radiation areas will be discussed. (author)

  2. Radiation effects in corundum monocrystal

    International Nuclear Information System (INIS)

    Soulayman, S.; Attiah, J.; Molhem, A. G.

    2007-01-01

    It is found by this work that the irradiation of corundum monocrystals by energetic particles creates stable lattice defects, as a result of the atomic displacements to the sublattice. We have identified the colour centers (F and F + ) and more complex ones line [Al i + F]. This finding is in an agreement with the experimental results, available in the literature. We have also investigated the mechanism of occurrence of, so called 'radiation memory' in corundum monocrystals. This phenomenon reflects the fact that, after irradiation and annealing at high temperature and irradiation again by the quanta of x-rays, the absorption line 302 nm (4.1 eV) in the spectrum of optical absorption is restored in the range 200-650 nm. A comparison of our results with the results of other researchers in carried out. (author)

  3. Additive effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Cullen, A.P.

    1980-01-01

    A xenon-mercury high pressure lamp and a double monochromator were used to produce ultraviolet (uv) radiation at 295 nm. Pigmented rabbit eyes were irradiated and evaluated by slitlamp biomicroscopy. Corneal threshold (Hc) was 0.05 J.cm-2 and lens threshold (hL) was 0.75 J.cm-2. Other eyes were irradiated with 2 Hc and evaluated from 4 to 24 h at 4 h intervals. Corneal damage was only greater than that expected from a single Hc exposure if the separation between the two Hc exposures did not exceed 8 h. The most repeatable and reliable corneal response to these levels of uv was the development of corneal epithelial granules

  4. Size effect in radiation damage

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Radiation embrittlement of nuclear reactor pressure vessel steels is mostly measured using small standard specimens in dynamic bend tests. Their dimensions are much smaller than those of the reactor. The increase in the critical temperature (transition temperature from the brittle-to-ductile fracture) is normally measured using standard Charpy-V type specimens or small CT-type specimens. This increase is then used as the main parameter for the pressure vessel safety evaluation. The philosophy of experiments is discussed used for the nonirradiated and irradiated pressure vessel steels. A comparison of the increase in the transition temperature measured in different types of specimens using various testing methods (static and dynamic bend tests with notch or crack) is also made. The results of this comparison and another study showed a relatively good agreement. (author)

  5. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  6. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  7. Radiation effects concerns at a spallation source

    International Nuclear Information System (INIS)

    Sommer, W.F.

    1990-01-01

    Materials used at spallation neutron sources are exposed to energetic particle and photon radiation. Mechanical and physical properties of these materials are altered; radiation damage on the atomic scale leads to radiation effects on the macroscopic scale. Most notable among mechanical-property radiation effects in metals and metal alloys are changes in tensile strength and ductility, changes in rupture strength, dimensional stability and volumetric swelling, and dimensional changes due to stress-induced creep. Physical properties such as electrical resistivity also are altered. The fission-reactor community has accumulated a good deal of data on material radiation effects. However, when the incident particle energy exceeds 50 MeV or so, a new form of radiation damage ensues; spallation reactions lead to more energetic atom recoils and the subsequent temporal and spatial distribution of point defects is much different from that due to a fission-reactor environment. In addition, spallation reactions cause atomic transmutations with these new atoms representing an impurity in the metal. The higher-energy case is of interest at spallation sources; limited detailed data exist for material performance in this environment. 35 refs., 13 figs., 1 tab

  8. Laying a Solid Foundation: Strategies for Effective Program Replication

    Science.gov (United States)

    Summerville, Geri

    2009-01-01

    The replication of proven social programs is a cost-effective and efficient way to achieve large-scale, positive social change. Yet there has been little guidance available about how to approach program replication and limited development of systems--at local, state or federal levels--to support replication efforts. "Laying a Solid Foundation:…

  9. Oncogenic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Cross, L.

    1985-01-01

    In experimental studies the authors observed that following total-body irradiation (150 to 200 R, four times, at weekly intervals, applied to 6- to 8-week-old mice of the C3H strain) 56 out of 116 mice developed leukemia at 8 1/2 months average age and 2 mice developed multicentric parotid gland carcinomas when 6 to 7 months old. None of the 93 untreated controls developed either leukemia or salivary gland tumors. On the other hand, the authors demonstrated in a more recent study that similar exposure of rats, instead of mice, to total-body γ irradiation increased significantly the incidence of solid tumors, such as mammary or ovarian carcinomas, or subcutaneous sarcomas, but it did not increase, to any significant degree, the incidence of leukemia or lymphomas. In an experiment carried out on Sprague-Dawley rats, the incidence of tumors, mostly of the mammary glands (50% of which were carcinomas), increased, following irradiation, from 22 to 93% in females and from 5 to 59% in males. In a similar experiment carried out on Long-Evans rats, the incidence of tumors increased, following irradiation, from 28 to 63% in females and from 10 to 42% in males

  10. Solar Radiation effect on the bituminous binder

    International Nuclear Information System (INIS)

    Tadeo Rico, A.; Torres Perez, A.

    2010-01-01

    Asphalt, used as binder in road construction, becomes more brittle and harder during working life on the surface of the road pavement, conducting toward their deterioration. This is caused by the oxidation of the molecular functional groups of the asphalt molecular structure. Moreover, it is observed that ultraviolet radiation increases the oxidation process. However, the effect of solar light on the asphalt degradation has been poorly researched. The aim of this work is to study asphalt ageing caused by effect of solar radiation, by using standard test. Four commercial asphalts from different companies were selected: two with penetration number 50/70, and the other two polymer modified asphalts. From each of the asphalts forty samples were taken off and placed in four different aging conditions of temperature and radiation for a period ranging from 40 to 500 days. Ring and Ball test, and Fraass breaking Point test, were used to analyse the changes of asphalt properties after exposition to solar radiation. The results of the four analyzed asphalts showed a distinct behaviour; not only in the test temperature increase but also in the rate. Another experiment was carried out. Samples from a hot mix asphalt batch were placed under solar radiation, and were compacted by the Marshall procedure after increasing periods of time. Density and resistance to plastic flow using Marshall Apparatus were measured. Results showed an increase in the stability of samples under radiation. Both experiments show that the solar radiation is enough to cause changes in the asphalt molecular structure due to oxidation. So that, the study of the effect of the solar radiation on the asphalt properties could be a good tool to asses the performances of asphalt pavement. (Author) 26 refs.

  11. Effects of radiation on aquatic organisms

    International Nuclear Information System (INIS)

    Kaur, Harbhajan; Lata, Poonam; Sharma, Ankush

    2012-01-01

    With the onset of nuclear age, nuclear fuel cycle products, nuclear medicine techniques, disposal of radio active wastes on land or in water, fall out of testing nuclear weapons has contributed large amount of radio nuclides to the water bodies. Radio nuclides can imbalance aquatic ecosystem resulting in danger to natural life. The biological effects of radiation on aquatic life are mortality, pathophysiological, reproductive, developmental and genetic changes. A broad review of the results obtained about the aquatic organisms related to different phyla indicates that the lower or less developed or more primitive organisms are more resistant than the higher or more advanced, developed and complex organisms to ionizing radiation. The algae, protozoa are more resistant than the insects, crustaceans, molluscs and fishes. The changes in sensitivity between different stages of development have also been noted. A review of the results of exposing salmonoid gametes, eggs, fingerlings and adults to X-rays supports the concepts that radio sensitivity decreases with age. This paper presents a selective review on effects of radiation and radio nuclides on the aquatic life. It include uses and sources of radiation, effective quantity of radiation, lethal and sub lethal effect, effects on survival, growth, reproduction, behaviour, metabolism, carcinogenicity and mutagenicity. (author)

  12. Principles and techniques of radiation hardening. Volume 2. Transient radiation effects in electronics (TREE)

    International Nuclear Information System (INIS)

    Rudie, N.J.

    1976-01-01

    The three-volume book is intended to serve as a review of the effects of thermonuclear explosion induced radiation (x-rays, gamma rays, and beta particles) and the resulting electromagnetic pulse (EMP). Volume 2 deals with the following topics: radiation effects on quartz crystals, tantalum capacitors, bipolar semiconductor devices and integrated circuits, field effect transistors, and miscellaneous electronic devices; hardening electronic systems to photon and neutron radiation; nuclear radiation source and/or effects simulation techniques; and radiation dosimetry

  13. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium

  14. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  15. Health effects of low level radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Sadao [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1998-12-31

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted `Radiation Hormesis` on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm `is it true or not?` After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey`s claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  16. Health effects of low level radiation

    International Nuclear Information System (INIS)

    Hattori, Sadao

    1998-01-01

    In 1982, Prof. Thomas Don Luckey of Missouri Univ. asserted 'Radiation Hormesis' on the Journal of Health Physics and he published two books. CRIEPI initiated the research program on Radiation Hormesis following his assertion to confirm 'is it true or not?' After nearly ten year research activities on data surveys and animal tests with many Universities, we are realizing scientific truth of bio-positive effects by low level radiation exposures. The interesting bio-positive effects we found could be categorized in following five groups. 1) Rejuvenation of cells such as increase of SOD and cell membrane permeability, 2) Moderation of psychological stress through response of key enzymes, 3) Suppression and therapy of adult-diseases such as diabetes and hypertension, 4) Suppression of cancer through enhancement of immune systems such as lymphocytes, 5) Suppression of cancer and ratio-adaptive response by activation of DNA repair and apoptosis. In the responses of many specialists to our initiation of radiation hormesis research program following T.D. Luckey's claim about low level radiation, I have to pick up for the first, the great success of Prof. Sakamoto. Prof. Sakamoto had been already applying whole body low dose irradiation for ten years before our radiation hormesis research started on the therapy to suppress the cancer reappearing after treatment. He reported about his successful trial to real patients and showed an enhancement of immune system. (author)

  17. Radiation effects on bovine taste bud membranes

    International Nuclear Information System (INIS)

    Shatzman, A.R.; Mossman, K.L.

    1982-01-01

    In order to investigate the mechanisms of radiation-induced taste loss, the effects of radiation on preparations of enriched bovine taste bud membranes were studied. Taste buds containing circumvallate papilae, and surrounding control epithelial tissues devoid of taste buds, were obtained from steers and given radiation doses of 0-7000 cGy (rad). Tissue fractions were isolated into membrane-enriched and heterogeneous components using differential and sucrose gradient centrifugation of tissue homogenates. The yield of membranes, as measured by protein content in the buoyant membrane-enriched fractions, was reduced in quantity with increasing radiation dose. The relation between radiation dose and membrane quantity in membrane-enriched fractions could be fit by a simple exponential model with taste bud-derived membranes twice as radiosensitive as membranes from control epithelial tissue. Binding of sucrose, sodium, and acetate and fluoride stimulation of adenylate cyclase were nearly identical in both irradiated and nonirradiated intact membranes. Radiation had no effect on fractions of heterogeneous components. While it is not clear what changes are occurring in enriched taste cell membranes, damage to membranes may play an important role in the taste loss observed in patients following radiotherapy

  18. Effects of ionizing radiation on bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F [National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre

    1976-10-01

    The differences of radiosensitivities among bacteria in addition to the dependence upon the species or strains also depends on the environmental condition during irradiation (temperature, medium, the presence of protective or sensitizing agents, the gas phase or atmosphere, and water activity, or degree of hydration) and on the effects of the environmental condition before and after irradiation treatment (temperature of incubation, age of culture and growth medium). In general, spores are more resistant to radiation than vegetatic bacteria, with the exception that a few cocci are the most radiation resistant bacteria (Micrococcus and Streptococcus). The application of ionizing radiation in the fields of microbiology supports the radiation sterilization of medical and pharmaceutical products. In addition, microbiological aspects of food preservation, especially radurization, radicidation, and immunization studies by using irradiated microorganisms, are also important.

  19. Electromagnetic and radiation environments: effects on pacemakers

    International Nuclear Information System (INIS)

    Mouton, J.; Trochet, R.; Vicrey, J.; Sauvage, M.; Chauvenet, B.; Ostrovski, A.; Leroy, E.; Haug, R.; Dodinot, B.; Joffre, F.

    1999-01-01

    Nowadays, medical care development allows many people to share the benefits of implanted pacemakers (PM). PM can be perturbed and even fall in complete breakdowns in an electromagnetic and radiation environment. A stimuli-dependent patient can thus be seriously in danger. This article presents the effect of ionizing radiation from either a cobalt-60 source or from a linear accelerator (Saturne 43) on 12 pacemakers. It seems that technological progress make electronic circuits more sensitive to the cumulated dose of radiation. This survey shows that pacemakers have great difficulties to sustain ionizing radiation doses that are commonly delivered to patients during therapies. Usually perturbed functioning appears suddenly and means a strong shift of stimuli that might lead to heart failure

  20. Effect of radiation processing on meat tenderisation

    Science.gov (United States)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  1. The toxic effects of ionizing radiations

    International Nuclear Information System (INIS)

    Draghita Payet, A.C.

    2006-06-01

    The sources of radiations to which the human body is subjected are of natural or artificial origin and the irradiation of the human body can take place either by internal or external way. The ionizing radiations act at several levels of the human body, the main thing being the molecule of DNA. The ionizing radiations have no specificity, the effects on the human body can be: somatic, genetic or hereditary, teratogen. In the case of a human being irradiation, we proceed to the diagnosis and to the treatment of the irradiated person, however, to decrease the incidence of injuries we use the radiation protection. The treatment if necessary will be established according to the irradiation type. (N.C.)

  2. Effects of radiation on the skin

    International Nuclear Information System (INIS)

    Hopewell, J.W.

    1985-01-01

    The effects of X-irradiation on pig skin are described, comparing and contrasting the effects seen in human and rodent skin. It is concluded that, anatomically, pig skin is the best animal model for human skin. The applications of the 'pig skin model' to investigations of the problems of radiation therapy and radiological protection of human skin are discussed. (U.K.)

  3. Radiation dose effects, hardening of electronic components

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.

    1991-01-01

    This course reviews the mechanism of interaction between ionizing radiation and a silicon oxide type dielectric, in particular the effect of electron-hole pairs creation in the material. Then effects of cumulated dose on electronic components and especially in MOS technology are examined. Finally methods hardening of these components are exposed. 93 refs

  4. Cardiovascular effects of radiation therapy

    International Nuclear Information System (INIS)

    Alvarez, Jose A.G.; Leiva, Gustavo

    2001-01-01

    Therapeutic mediastinal irradiation can induce heart disease with variable degree of cardiac engagement. Heart disease manifestations depend on the grade of involvement of the different cardiac structures. During the first two years following irradiation, pericarditis with or without pericardial effusion is the most common manifestation of toxicity related to radiation therapy. Later on, after a latency period of five to ten years, a constrictive pericarditis may develop. Other type of late cardiac toxicities due to irradiation are restrictive cardiomyopathy, multiple valvular disease, coronary artery disease and different atrioventricular conduction disturbances. The therapeutic approach to this kind of heart disease has to be focused on its progressive course and in the possibility of a global involvement of all the cardiac structures. Pericardiectomy is strongly recommended for recurrent pericardial effusion with cardiac tamponade. Cardiac surgery for myocardial revascularization or valvular disease can be performed with variable results; the presence of myocardial fibrosis can significantly affect perioperative management and long-term results. Cardiac transplantation is a promissory option for those patients with end-stage cardiac failure. Immunosuppressive regimens are not associated with recurrence of malignancy. (author) [es

  5. Radiation effects, nuclear energy and comparative risks

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    2007-01-01

    Nuclear energy had a promising start as an unlimited, inexpensive and environmentally benign source of energy for electricity generation. However, over the decades its growth was severely retarded due to concerns about its possible detrimental effects on the well-being of mankind and the environment. Since such concerns are essentially due to the gigantic magnitude of radioactivity and ionizing radiations associated with nuclear energy, this article starts with a comprehensive account of effects of the ionizing radiation on living systems. Quantitative description of types of radiation exposure and their varied effects is given. The origin, type and magnitude of mutagenic effects of radiation are described. The concept of radiation risk factors, basis for their evaluation and their currently accepted values are presented. With this background, origin and magnitude of radioactivity and associated ionizing radiations in nuclear reactors are presented and the elaborate measures to contain them are described. It is recognized that notwithstanding all the measures taken in the nuclear industry, certain amount of radiation exposure, however small, is inevitable and the values, based on the experience world over, are presented. Estimated health risk due to such exposures is evaluated. For a comparative analysis, risks in other options of electricity generation such as hydel and fossil-fuelled plants are described. It is seen that on an overall basis, the nuclear option is no more risky than the other commonly employed options, and is in fact, significantly less. Lastly, since every option of electricity generation entails some risk, the case of 'no addition of electricity, and its impact on the society are considered. Based on the analysis of extensive data provided by UNDP on the human development parameters for different countries in the world, it is shown that at least for developing countries, any option of addition of electricity would be far more desirable than the

  6. Ionizing radiation effect on human reproduction

    International Nuclear Information System (INIS)

    Jirous, J.

    1987-01-01

    A review is presented of the existing knowledge on the adverse effects of ionizing radiation on human reproduction. Some interesting findings have been obtained by interapolating the results of studies in mouse embryos to humans, important knowledge has been obtained in studies involving the population of Hiroshima and Nagasaki. The review summarizes the knowledge in the following conclusions: (1) prior to the blastocyst stage, the mammalian embryo is insensitive to teratogenic and growth retarding radiation effects but is highly sensitive to the lethal radiation effect; (2) in the early organogenesis, the embryo is very sensitive to growth retarding, teratogenic and lethal radiation effects. It can, however, partly offset growth retardation in the post-natal period; (3) in the early fetal development stage, the fetus shows reduced sensitivity to teratogenic damage of many organs; sensitivity of the central nervous system and growth retardation remain which can only be compensated post-natally with difficulties; (4) in the late stage of pregnancy the fetus is not significantly deformed as a result of irradiation but permanent cellular depletion can result in various organs and tissues post-natally if radiation doses are high. (L.O.). 22 refs

  7. Effects of UV radiation on freshwater metazooplankton

    International Nuclear Information System (INIS)

    Tartarotti, B.

    1999-06-01

    There is evidence that fluxes of solar ultraviolet-B radiation (UV-B, 290-320 nm) are increasing over wide parts of the earth's surface due to stratospheric ozone depletion. UV radiation (290-400 nm) can have damaging effects on biomolecules and cell components that are common to most living organisms. The aim of this thesis is to gain a more thorough understanding of the potential impacts of solar radiation on freshwater metazooplankton. To detect UV-vulnerability in zooplankton populations dominating the zooplankton community of two clear-water, high mountain lakes located one in the Austrian Alps and another in the Chilean Andes, the survival of two copepod species was studied. The organisms were exposed to a 10- to 100-fold increase in UV-B radiation compared to those levels found at their natural, maximum daytime distribution. Both species vertically migrate and are pigmented. UV-absorbing compounds with a maximum absorption at ∼334 nm were also detected. Cyclops abyssorum tatricus, a common cyclopoid copepod species of Alpine lakes, was highly resistant to UV-B radiation and no significant lethal effect was observed. The calanoid copepod Boeckella gracilipes, frequent in Andean lakes, had a mortality ∼5 times higher in the treatment receiving full sunlight than in the UV-B excluded treatment (3.2 %) only when exposed for 70 h. The resistance of B. gracilipes was higher than that reported in the literature for the same species suggesting the existence of intraspecific differences in UV sensitivity. Survival, fecundity and development of the zooplankton community of a clear-water, high elevation Andean lake (33 o S) were studied with mesocosms experiments after prolonged UV exposure (48 days). When exposed to full sunlight, the population of the cladoceran Chydorus sphaericus and the rotifer Lepadella ovalis were strongly inhibited by UV-B, whereas both species were resistant to UV-A radiation. Conversely, UV-B radiation had no effect on the survival of the

  8. Cytogenetic effects of low-dose radiation

    International Nuclear Information System (INIS)

    Metalli, P.

    1983-01-01

    The effects of ionizing radiation on chromosomes have been known for several decades and dose-effect relationships are also fairly well established in the mid- and high-dose and dose-rate range for chromosomes of mammalian cells. In the range of low doses and dose rates of different types of radiation few data are available for direct analysis of the dose-effect relationships, and extrapolation from high to low doses is still the unavoidable approach in many cases of interest for risk assessment. A review is presented of the data actually available and of the attempts that have been made to obtain possible generalizations. Attention is focused on some specific chromosomal anomalies experimentally induced by radiation (such as reciprocal translocations and aneuploidies in germinal cells) and on their relevance for the human situation. (author)

  9. Long-term effects of radiation

    International Nuclear Information System (INIS)

    Smith, J.; Smith, T.

    1981-01-01

    It is pointed out that sources of long-term damage from radiation are two-fold. People who have been exposed to doses of radiation from initial early fallout but have recovered from the acute effects may still suffer long-term damage from their exposure. Those who have not been exposed to early fallout may be exposed to delayed fallout, the hazards from which are almost exclusively from ingesting strontium, caesium and carbon isotopes present in food; the damage caused is relatively unimportant compared with that caused by the brief doses from initial radiation and early fallout. A brief discussion is presented of the distribution of delayed long-lived isotope fallout, and an outline is sketched of late biological effects, such as malignant disease, cataracts, retarded development, infertility and genetic effects. (U.K.)

  10. Radiation effects on Brassica seeds and seedlings

    Science.gov (United States)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  11. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  12. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  13. Topological magnetoelectric effects in microwave far-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, M.; Kamenetskii, E. O.; Shavit, R. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2016-07-21

    Similar to electromagnetism, described by the Maxwell equations, the physics of magnetoelectric (ME) phenomena deals with the fundamental problem of the relationship between electric and magnetic fields. Despite a formal resemblance between the two notions, they concern effects of different natures. In general, ME-coupling effects manifest in numerous macroscopic phenomena in solids with space and time symmetry breakings. Recently, it was shown that the near fields in the proximity of a small ferrite particle with magnetic-dipolar-mode (MDM) oscillations have the space and time symmetry breakings and the topological properties of these fields are different from the topological properties of the free-space electromagnetic fields. Such MDM-originated fields—called magnetoelectric (ME) fields—carry both spin and orbital angular momenta. They are characterized by power-flow vortices and non-zero helicity. In this paper, we report on observation of the topological ME effects in far-field microwave radiation based on a small microwave antenna with a MDM ferrite resonator. We show that the microwave far-field radiation can be manifested with a torsion structure where an angle between the electric and magnetic field vectors varies. We discuss the question on observation of the regions of localized ME energy in far-field microwave radiation.

  14. Effects of radiation on DNA

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1978-01-01

    Irradiation has been shown to depress DNA (deoxyribonucleic acid) synthesis resulting in deficient DNA synthesis. In one experiment, Hela S 3 cells completed the next division after a dose of 500 rads to 200 kw X-rays. Another experiment showed that the amount of DNA synthesized was dependent on the stage in the generation cycle at which the cells are irradiated (Giffites and Tolmach, 1975). DNA synthesis was measured by radioactive thymidine incorporation. The smallest deficiency (20-35%) after a dose of 500 rad X-ray was observed in Hela S 3 cells irradiated in early G 1 or early G 2 , while the greatest deficiency (55-70*) after 500 rad X-ray was found in cells irradiated at mitosis or at the Gsub(1)/S transition. Using velocity sedimentation in alkaline gradients of the DNA from hamster, Elkind, et al 1972, studied repair processes as a function of X-ray dose. DNA containing material released by alkaline lysis was found initially contained in a complex-containing lipid, the sedimentation of which was anomalous relative to denatured RNA from unirradated cells. Doses of X-rays small enough to be in the range that permits high survival (100-800 rads) speed the resolution of single-stranded DNA from this DNA complex, giving rise to a species having a number average molecular weight of 2 x 10 8 daltons. Larger doses greater than 1000 to 2000 rads resulted in a degradation of these DNA strands. Incubation after irradiation resulted in the rapid repair of damage, although the rate of repair of damage to the complex resulted in a reassociation of lipid and DNA. This evidence supports the possibility that a large DNA-membrane structure is a principal target of radiation

  15. Numerical investigation of adhesion effects on solid particles filtration efficiency

    Science.gov (United States)

    Shaffee, Amira; Luckham, Paul; Matar, Omar K.

    2017-11-01

    Our work investigate the effectiveness of particle filtration process, in particular using a fully-coupled Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) approach involving poly-dispersed, adhesive solid particles. We found that an increase in particle adhesion reduces solid production through the opening of a wire-wrap type filter. Over time, as particle agglomerates continuously deposit on top of the filter, layer upon layer of particles is built on top of the filter, forming a particle pack. It is observed that with increasing particle adhesion, the pack height build up also increases and hence decreases the average particle volume fraction of the pack. This trend suggests higher porosity and looser packing of solid particles within the pack with increased adhesion. Furthermore, we found that the pressure drop for adhesive case is lower compared to non-adhesive case. Our results suggest agglomerating solid particles has beneficial effects on particle filtration. One important application of these findings is towards designing and optimizing sand control process for a hydrocarbon well with excessive sand production which is major challenge in oil and gas industry. Funding from PETRONAS and RAEng UK for Research Chair (OKM) gratefully acknowledged.

  16. Activities and future plans of the radiation effects research foundation

    International Nuclear Information System (INIS)

    Nagataki, Shigenobu

    2000-01-01

    The Radiation Effects Research Foundation (RERF) was established in 1975 as a binational research foundation supported by Japan and the United States. It continues the work of the Atomic Bomb Casualty Commission (ABCC) which was established in 1974. ABCC-RERF studies focus on several fixed cohorts of survivors and their children: the Life Span Study (LSS) cohort (120,000 survivors); the In-Utero cohort (3,300 people born within 9 months of the bombings); the F 1 cohort (88,000 people born between mid-1946 and 1984), and the Adult Health Study (AHS) cohort (an ongoing clinical study of 17,000 LSS survivors and 1,100 people exposed in-utero). Epidemiological data have shown increased risks of leukemia and solid cancers by radiation exposure among the survivors. Excess leukemia risks, especially for children, were markedly elevated 5 to 10 years after exposure and have continued at reduced levels. Excess solid cancer rates became apparent within 10 years after exposure, increasing throughout life in rough proportion to background rates. For doses of interest in radiation protection excess leukemia risks exhibit an upward curving dose response pattern while the solid cancer excess appears to be linear by dose with no apparent threshold. In addition to malignancy, AHS data has shown dose-related increased risk for various non-malignant diseases; radiation cataracts, benign tumors of uterus, thyroid and parathyroid (hyperparathyroidism), and autoimmune thyroid diseases. Persons exposed in-utero exhibit a broad range of dose-related effects including delayed growth and development and higher rates of microcephaly. Studies of birth defects, chromosome aberrations, childhood mortality, and genetic variants of serum or erythrocyte proteins have provided no indication of heritable mutations in the F 1 cohort. Continued follow-up of survivors exposed as children (90% are still alive) is essential to understanding the temporal pattern of excess risks and lifetime risks, and may

  17. Ultra violet radiation : effects on animals

    International Nuclear Information System (INIS)

    Stockdale, P.H.G.

    1993-01-01

    The paper deals with the evolutionary and historical events that have increased the susceptibility of certain genotypes of humanity and domestic animals to ultra violet radiation. Further it discusses the general effects of ultraviolet B (UVB) on vertebrates and then the clinical syndromes seen in such animals as a result of prolonged exposure to this form of radiation. Finally it gives anecdotal comments on evidence for changes in the immediately above types of disease and describes the need for a better recording system for these conditions so that these hypothetical changes could be effectively monitored. (author). 12 refs

  18. Genetic and chromosomal effects of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The genetic and chromosomal effects of ionizing radiations deal with those effects in the descendants of the individuals irradiated. The information base concerning genetic and chromosomal injury to humans from radiation is less adequate than is the information base for cancer and leukemia. As a result, it is not possible to make the kinds of quantitative estimates that have been made for carcinogenesis in previous chapters of this book. The chapter includes a detailed explanation of various types of genetic injuries such as chromosomal diseases, x-linked diseases, autosomal dominant diseases, recessive diseases, and irregularly inherited diseases. Quantitative estimates of mutation rates and incidences are given based on atomic bomb survivors data

  19. Additive effects in radiation grafting and curing

    International Nuclear Information System (INIS)

    Viengkhou, V.; Ng, L.

    1996-01-01

    Full text: Detailed studies on the accelerative effect of novel additives in radiation grafting and curing using acrylated monomer/oligomer systems have been performed in the presence of ionising radiation and UV as sources. Methyl methacrylate (MMA) is used as typical monomer for these grafting studies in the presence of the additives with model backbone polymers, cellulose and propropylene. Additives which have been found to accelerate these grafting processes are: mineral acid, occlusion compounds like urea, thermal initiators and photoinitiators as well as multifunctional monomers such as multifunctional acrylates. The results from irradiation with gamma rays have also been compared with irradiation from a 90W UV lamp. The role of the above additives in accelerating the analogous process of radiation curing has been investigated. Acrylated urethanes, epoxies and polyesters are used as oligomers together with acrylated monomers in this work with uv lamps of 300 watts/inch as radiation source. In the UV curing process bonding between film and substrate is usually due to physical forces. In the present work the presence of additives are shown to influence the occurrence of concurrent grafting during cure thus affecting the nature of the bonding of the cured film. The conditions under which concurrent grafting with UV can occur will be examined. A mechanism for accelerative effect of these additives in both grafting and curing processes has been proposed involving radiation effects and partitioning phenomena

  20. Radiation effects on custom MOS devices

    International Nuclear Information System (INIS)

    Harris, R.

    1999-05-01

    This Thesis consists of four chapters: The first is primarily for background information on the effects of radiation on MOS devices and the theory of wafer bonding; the second gives a full discussion of all practical work carried out for manufacture of Field Effect test Capacitors, the third discusses manufacture of vacuum insulator Field Effect Transistors (FET's) and the fourth discusses the testing of these devices. Using a thermally bonded field effect capacitor structure, a vacuum dielectric was studied for use in high radiation environments with a view to manufacturing a CMOS compatible, micro machined transistor. Results are given in the form of high frequency C-V curves before and after a 120 kGy(Si), 12 MRad(Si), dose from a Co 60 source showing a 1 Volt shift. The work is then extended to the design and manufacture of a micro machined, under-etch technique, Field Effect Transistor for use in high radiation areas. Results are shown for Threshold, Subthreshold and Transfer characteristics before and after irradiation up to a total dose of 100kGy or 10MRad. The conclusion from this work is that it should be possible to commercially manufacture practical vacuum dielectric field effect transistors which are radiation hard to at least 120 kGy(Si). (author)

  1. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Gang, E-mail: baigang@njupt.edu.cn [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu, Zhiguo [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xie, Qiyun; Guo, Yanyan; Li, Wei [Jiangsu Provincial Engineering Laboratory for RF Integration and Micropackaging and College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Yan, Xiaobing [College of Electronic and information Engineering, Hebei University, Baoding 071002 (China)

    2015-09-15

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba{sub 0.67}Sr{sub 0.33}TiO{sub 3} above T{sub c} similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  2. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    Science.gov (United States)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  3. Thermodynamics, diffusion and the Kirkendall effect in solids

    CERN Document Server

    Paul, Aloke; Vuorinen, Vesa; Divinski, Sergiy V

    2014-01-01

    Covering both basic and advanced thermodynamic and phase  principles,  as well as providing stability diagrams relevant for diffusion studies, Thermodynamics, Diffusion and the Kirkendall Effect in Solids maximizes reader insights into Fick’s laws of diffusion, atomic mechanisms, interdiffusion, intrinsic diffusion, tracer diffusion and the Kirkendall effect. Recent advances in the area of interdiffusion will be introduced, while the many practical examples and large number of illustrations given will serve to aid researches working in this area in learning the practical evaluation of various diffusion parameters from experimental results. With a unique approach to the two main focal points in solid state transformations, energetics (thermodynamics) and kinetics (interdiffusion) are extensively studied and their combined use in practise is discussed. Recent developments in the area of Kirkendall effect, grain boundary diffusion and multicomponent diffusion are also covered extensively. This book will appe...

  4. Effective medium of periodic fluid-solid composites

    KAUST Repository

    Mei, Jun

    2012-05-24

    An analytic solution of the effective mass density and bulk modulus of a periodic fluid-solid composite is obtained by using the multiple-scattering theory in the long-wavelength limit. It is shown that when the concentration of solid inclusions is high, the effective mass density is structure dependent and differs significantly from the leading-order dipole solution, whereas Wood\\'s formula is accurately valid, independently of the structures. Numerical evaluations from the analytic solution are shown to be in excellent agreement with finite-element simulations. In the vicinity of the tight-packing limit, the critical behavior of the effective mass density is also studied and it is independent of the lattice symmetry. © 2012 Europhysics Letters Association.

  5. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  6. Location of radiation-induced grafted chains in polymers studied by solid-state NMR

    International Nuclear Information System (INIS)

    Whittacker, A.; Liu, H.

    1998-01-01

    In this study styrene and N-phenyl maleimide monomers were grafted onto poly(ethylene) (PE) chains using gamma radiation. Of main interest is the distribution of grafted chains within the polymer matrix, as this will determine the efficacy of mixing with the glassy polymers. It is expected that grafting will occur within the amorphous regions, and especially near the interface of the crystalline and amorphous regions. A suitable method for characterising the location of the grafted chains is solid-state 13 C NMR spectroscopy. The 13 C CPMAS spectrum of the blend of PE and N-phenyl maleimide mixed in the melt at 150 deg C , prior to reaction, is shown above. The spectrum shows the typical peaks for poly(ethylene) due to the amorphous and crystalline phase at 30.5 and 32.5 ppm, respectively. Peaks are also seen in the aromatic and carbonyl region due to the maleimide (not plotted). Experiments will be described where the NMR magnetisation is prepared in either the crystalline and amorphous regions of the poly(ethylene) prior to spin diffusion to the maleimide and styrene fractions. The location of the grafted monomers can then be determined by monitoring the changes in signal of polymer and graft with time

  7. Polychromatic solid-state lamps versus tungsten radiator: hue changes of Munsell samples

    International Nuclear Information System (INIS)

    Stanikunas, R; Vaitkevicius, H; Svegzda, A; Viliunas, V; Bliznikas, Z; Breive, K; Vaicekauskas, R; Novickovas, A; Kurilcik, G; Zukauskas, A; Gaska, R; Shur, M S

    2005-01-01

    Colour-perception differences under illumination by two quadrichromatic solid-state sources of light have been studied with respect to a tungsten radiator with the same correlated colour temperature (2600 K). A virtual RYgCB source (illuminant), which contains red, yellow-green, cyan and blue components with the line width typical of AlGaInP and AlInGaN light-emitting diodes (LEDs), was fully optimized for the highest value of the general colour-rendering index (CRI) (R a = 98.3). An implemented RAGB source (lamp) contained commercially available red, amber, green and blue LEDs (R a 79.4). Colorimetric calculations in the Commission Internationale de l'Eclairage 1976 (u',v') colour plane for 40 Munsell colour samples (value 6, chroma/6, hue increment 2.5) revealed the differences in hue discrimination and distortion for both sources in the yellow-green and blue-cyan ranges. These differences were not revealed by the standard analysis of the special CRIs and were lower for the RYgCB illuminant, which contained primary LEDs in the sensitive ranges. A psychophysical experiment on seven subjects was performed using the RAGB lamp stabilized against thermal and ageing drifts. Despite different colour-perception abilities of the subjects under investigation, the experiment confirmed the calculation results. Methods of obtaining composite white light with high subjective ratings are discussed, based on the obtained data

  8. Ceramics radiation effects issues for ITER

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1993-01-01

    The key radiation effects issues associated with the successful operation of ceramic materials in components of the planned International Thermonuclear Experimental Reactor (ITER) are discussed. Radiation-induced volume changes and degradation of the mechanical properties should not be a serious issue for the fluences planned for ITER. On the other hand, radiation-induced electrical degradation effects may severely limit the allowable exposure of ceramic insulators. Degradation of the loss tangent and thermal conductivity may also restrict the location of some components such as ICRH feedthrough insulators to positions far away from the first wall. In-situ measurements suggest that the degradation of physical properties in ceramics during irradiation is greater than that measured in postirradiation tests. Additional in-situ data during neutron irradiation are needed before engineering designs for ITER can be finalized

  9. Effects of radiation rays on construction materials

    International Nuclear Information System (INIS)

    Akkurt, I.; Kilicarslan, S.; Basyigit, C.; Kacar, A.

    2006-01-01

    Molecules that are bring into existence material determined as gas, liquid and stiff according to their internal structures and heat. Materials show various reaction to various effects that is result from all kind of materials have various internal structures. Radiation is covert materials' mechanical, physical and chemical properties. Nowadays in construction formation there isn't using only one material it is preferred that kind of materials composition because of there are run into some problems about choosing and decision sort of material. Material that using in construction is classified as metals, plastics and ceramics in three groups. About sixty percent of construction cost is being formed from construction materials. In this study effects of various radiations on construction materials are being investigated and the end of study it is being suggestion some useful construction materials according to usage land and radiation properties

  10. Neutron diffraction radiation of solid solution of carbon and hydrogen in the α-titanium in the homogeneity domain

    International Nuclear Information System (INIS)

    Mirzaev, B.B.; Khidirov, I.; Mukhtarova, N.N.

    2005-01-01

    In the work by the neutron-graph the homogeneity domain of the introduction solid solution TiC x H y is determined. The sample neutron grams have been taken on the neutron diffractometer (λ=.1085 nm) installed at the thermal column of the WWR-SM reactor (INF AN RUz). For the phase analysis and estimation of solid solutions homogeneity the X-ray graph was used. X-ray grams were taken on the X-ray diffractometer DRON-3M with use of CuK α radiation (λ=0.015418 nm)

  11. Radiation research contracts: Biological effects of small radiation doses

    International Nuclear Information System (INIS)

    Hug, O.

    1959-01-01

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  12. Radiation research contracts: Biological effects of small radiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Hug, O

    1959-01-15

    According to its Statute the IAEA has to fulfil a dual function - to help individual countries in solving their specific problems and to undertake tasks in the common interest of all its Member States. With this latter aim in mind the Agency has placed a number of research contracts with national research institutes. The purpose and scope of two of them is described below by the scientists responsible for their execution. The Agency has contributed to this work by putting at the institutes' disposal scientists from its own staff apparatus and financial aid.IAEA placed a research contract concerning the effects of small radiation doses on cells, in particular on nervous cells, with the Pharmacological Institute of the University of Vienna. This Institute appeared well suited to deal with the problem owing to the type of its previous research work. The Director, Prof. Franz Bruecke, and his collaborator Dr. Otto Kraupp, have long been interested in the functioning of the nervous system and in the influence of different drugs upon it. It was particularly fortunate that the electrical properties and functions of cells had been measured by a method specially developed at this Institute. From the above mentioned observations one could expect that instantaneous reactions of cells to radiation would also lead to changes of the electrical status. Consequently, this method is now being applied to the research undertaken for IAEA. Different cells of plants and animals, ranging from algae to muscle fibres of mammals, were chosen as objects. So far changes of potentials-had been observed only during irradiation with very high doses. During these investigations another useful test for small radiation doses was developed, namely the measurement of the through-flow of an artificial blood solution through the blood vessels of an intestinal loop. It was observed that a few seconds after irradiation the flow rate diminishes, and returns to its normal level only when irradiation ends

  13. Effects of gamma radiation in annatto seeds

    International Nuclear Information System (INIS)

    Franco, Camilo F. de Oliveira; Arthur, Valter; Arthur, Paula B.; Harder, Marcia N.C.; Filho, Jose C.; Neto, Miguel B.

    2015-01-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  14. Effects of gamma radiation in soybean

    International Nuclear Information System (INIS)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin; Franco, Caio Haddad

    2015-01-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  15. Effects of gamma radiation in soybean

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose Gilmar; Franco, Suely Salumita Haddad; Arthur, Valter; Arthur, Paula Bergamin, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Franco, Caio Haddad [Centro Nacional de Pesquisa em Energia e Materiais (LNBio/CNPEM), Campinas, SP (Brazil). Laboratorio Nacional de Biociencias; Villavicencio, Anna Lucia, E-mail: zegilmar60@gmail.com, E-mail: gilmita@uol.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The degree of radiosensitivity depends mostly on the species, the stage of the embryo at irradiation, the doses employed and the criteria used to measure the effect. One of the most common criteria to evaluate radiosensitivity in seeds is to measure the average plant production. Soya dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.245 kGy dose rate. In order to study stimulation effects of radiation on germination, plant growth and production. Five treatments radiation doses were applied as follows: 0 (control); 25; 50; 75 and 100 Gy. Seed germination and harvest of number of seeds and total production were assessed to identify occurrence of stimulation. Soya seeds and plants were handled as for usual seed production in Brazil. The low doses of gamma radiation in the seeds that stimulate the production were doses of 25, 50 and 75 Gy. There are evidences that the use of low doses of gamma radiation can stimulate germination and plant production. (author)

  16. Effects of gamma radiation in annatto seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Camilo F. de Oliveira, E-mail: camilo.urucum@hotmail.com [Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA/EMEPA), Joao Pessoa, PB (Brazil); Arthur, Valter; Arthur, Paula B., E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Harder, Marcia N.C., E-mail: marcia.harder@fatec.sp.gov.br [Centro Paula Souza, Curso Superior de Tecnologia em Bicombustiveis (FATEC), Piracicaba, SP (Brazil); Filho, Jose C.; Neto, Miguel B., E-mail: jorgecazefilho@yahoo.com.br [Empresa Estadual de Pesquisa Agropecuaria da Paraiba (EMEPA), Joao Pessoa, PB (Brazil)

    2015-07-01

    The annatto bixin has emerged as a major source of natural dyes used in the world notably by the substitution of synthetics harmful to human health and ecologic tendency in obtaining industrial products free of additives with applications in industries textiles; cosmetics; pharmaceutical and food mainly. The aim of this research was to obtain increased of germination rate and dormancy breaking on annatto seeds by gamma radiation. Annatto dry seeds were exposed to low doses of gamma radiation from source of Cobalt-60, type Gammecell-220, at 0.456 kGy/hour dose rate. In order to study stimulation effects of radiation on germination rate and dormancy breaking in the seeds. Five treatments with gamma radiation doses were applied as follows: 0 (control); 100; 125; 150 and 175 Gy. After irradiation the annatto seeds were planted as for usual seed production. According to the results obtained in this experiment we can conclude that the low doses of gamma radiation utilized on the annatto seeds did not presented significantly effect on the germination of plants. But the best dose to increase the germination of seeds was 150 Gy. (author)

  17. Gamma and electron radiation effects on straw

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Baer, M.; Huebner, G.

    1983-01-01

    Gamma and electron radiation effects on wheat straw, oat straw, barley straw and rye straw are reported. In vitro and in vivo studies show that the digestibility of these agricultural rough materials can be increased up to 80% and more at high doses. The increase of the digestibility is connected with a depolymerisation of cellulose and hemicellulose. (author)

  18. The effects and control of radiation

    International Nuclear Information System (INIS)

    Saunders, P.A.H.

    1985-09-01

    Written for the layman, this booklet describes the effects of ionising radiation on people, and discusses the somatic hereditary risk estimates, and the measures taken to ensure the safe operation of the nuclear industry. New edition based on the sievert. (U.K.)

  19. Antiproton radiation found effective in cancer research

    CERN Multimedia

    2003-01-01

    "An international collaboration of scientists has completed the first ever antiproton beam experiments designed to reveal the biological effectiveness of antiproton radiation in terminating cells used for cancer research...PBar Labs assembled the collaboration at CERN (European Organization for Nuclear Research in Geneva) to perform the measurements" (1 page).

  20. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  1. Loading Effect on Tire Noise Radiation

    OpenAIRE

    Cao, Rui; Bolton, J Stuart

    2016-01-01

    Noise radiated by tires is a prominent noise pollution source and it is affected by many different parameters. Here, the effect of static load on tire noise radiation in a laboratory environment was investigated. The measurement was conducted by using the Tire Pavement Testing Apparatus (TPTA), on which a loaded tire can be run at speeds up to 50 km/hr; the tire noise was measured using a nearfield microphone method. The tire loading was varied from 500 to 900 pounds, and several different co...

  2. Effects of low doses of ionizing radiation

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Ionizing radiation of cosmic or terrestrial origin is part of the environment in which all living things have evolved since the creation of the universe. The artificial radioactivity generated by medical diagnostic and treatment techniques, some industrial activities, radioactive fallout, etc. has now been added to this natural radioactivity. This article reviews the biological effects of the low doses of ionizing radiation to which the population is thus exposed. Their carcinogenic risk cannot simply be extrapolated from what we know about high-dose exposure. (author)

  3. Solid tumor models for the assessment of different treatment modalities. XIV. The evaluation of host and tumor response to cyclophosphamide and radiation

    International Nuclear Information System (INIS)

    Looney, W.B.; Hopkins, H.A.; MacLeod, M.S.; Ritenour, E.R.

    1979-01-01

    The effect of increasing doses of cyclophosphamide (50 to 250 mg/kg) on the time of occurrence of maximal and minimal tumor growth rates, tumor volume reduction, and linear doubling times (LDT) on the solid tumor model H-4-II-E has been determined. Tumor response to cyclophosphamide was classified as class I, tumor regression; class II, pseudo-regression; and class III, slow-down. The overall treatment efficiency (OTE) has been used to assess the magnitude of tumor volume changes after treatment. The maximum OTE occurred after 150 mg/kg of cyclophosphamide. Increasing the dose to 200 and 250 mg/kg of cyclophosphamide resulted in a decrease in OTE. Similar parameters were utilized to measure the effectiveness of increasing doses of local tumor radiation (750, 1500, 2000, 2500, 3000 and 3500R). The major increase in OTE occurs when the radiation dose is increased from 750R to 2000R. Increasing the dose further to 3500R results in smaller incremental increases in the OTE. Results of the study indicate that increasing the cyclophosphamide dose beyond a certain level (i.e., 150 mg/kg) increases mortality and morbidity without concomitant therapeutic benefit. The effects of increasing the dose of local tumor radiation on life span have given results which suggest that increasing the total radiation dose beyond a certain limit is less effective in increasing life span

  4. Radiation effects on cultured human lymphoid cells

    International Nuclear Information System (INIS)

    Johansson, L.; Nilsson, K.; Carlsson, J.; Larsson, B.; Jakobsson, P.

    1981-01-01

    The cloning efficiency of human normal and malignant lymphoid cells is usually low. Radiation effects in vitro on such cells can therefore not be analysed with conventional cloning. However, this problem can be circumscribed by using the growth extrapolation method. A panel of human leukemia-lymphoma cell-lines representing Epstein-Barr virus carrying lymphoblastoid cells of presumed non-neoplastic derivation and neoplastic T- and B-lymphocytes was used to test the efficiency of this method. The sensitivity to radiation could be determined for all these cell types. The growth extrapolation method gave generally the same result as conventional cloning demonstrated by comparison with one exceptional cell-line with capacity for cloning in agar. The sensitivity varied largely between the different cell types. A common feature was that none of the cell lines had a good capacity to accumulate sublethal radiation injury. (Auth.)

  5. Tissue Acoustoelectric Effect Modeling From Solid Mechanics Theory.

    Science.gov (United States)

    Song, Xizi; Qin, Yexian; Xu, Yanbin; Ingram, Pier; Witte, Russell S; Dong, Feng

    2017-10-01

    The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10 -3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.

  6. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Franke, H.D.; Lierse, W.

    1978-01-01

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG) [de

  7. Effect of domperidone on radiation sickness

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, T; Sato, K [Nihon Univ., Tokyo. School of Medicine; Watari, T; Tanaka, T; Furuta, A

    1981-07-01

    Domperidone was administered to 95 patients with radiation sickness following radiotherapy for various cancers. The chest and the mediastinum were irradiated in 43 patients, the upper and lower abdomen in 40 patients, and the head, neck, and supraclavicular region in 12 patients. As to radiation source, x-ray was used for 46 patients, ..gamma..-ray for 41 patients, electron beam for 3 patients, and more than one radiation was used for 5 patients. The dose given before the onset of radiation sickness totaled 3000 rad in 20 patients, 1000 rad -- 3000 rad in 41, and less than 1000 rad in 34. Domperidone was given to the patients one tablet (5 mg or 10 mg) P.O., 3 times per day before meals, for 1 -- 2 weeks. The overall effective rate of the drug was 68.4%. The 10 mg tablets were slightly more effective than the 5 mg ones. In the patients who were given the drug in a dose of 10 mg, the ameliorating rate of subjective symptoms was 68.1% for nausea, 88.9% for vomiting, 44.6% for anorexia, 17.5% for general fatigue, and 69.2% for dizziness. Laboratory findings showed no abnormal effects of the drug. One patient had itching with eruptions, which, however, was mild and disappeared immediately after withdrawal of the medication.

  8. Radiation doses and possible radiation effects of low-level, chronic radiation in vegetation

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Franks, L.A.

    1975-01-01

    Measurements were made of radiation doses in soil and vegetation in Pu-contaminated areas at the Nevada Test Site with the objective of investigating low-level, low-energy gamma radiation (with some beta radiation) effects at the cytological or morphological level in native shrubs. In this preliminary investigation, the exposure doses to shrubs at the approximate height of stem apical meristems were estimated from 35 to 140 R for a ten-year period. The gamma exposure dose estimated for the same period was 20.7 percent +- 6.4 percent of that recorded by the dosimeters used in several kinds of field instrument surveys. Hence, a survey instrument reading made at about 25 cm in the tops of shrubs should indicate about 1 / 5 the dosimeter-measured exposures. No cytology has yet been undertaken because of the drought since last winter. (auth)

  9. Radiation effects in mammalian cells in vitro

    International Nuclear Information System (INIS)

    Hill, C.K.; Han, A.; Elkind, M.M.; Wells, R.L.; Buess, E.M.; Lin, C.M.

    1985-01-01

    The purpose of this research effort is to elucidate the mechanisms for the radiation-induced changes in mammalian cells that lead to cell death, mutation, neoplastic transformation, DNA damage, and chromosomal alterations. Of particular interest are the effects of low-dose-rate and fractionated irradiation on these end points with respect to the mechanisms whereby these effects are influenced by cellular repair processes, inhibitors, and promoters that act at the genetic or biochemical level. 17 refs

  10. Use of computerized, 3-dimensional solids modeling and data base management to support radiation mapping and ALARA planning

    International Nuclear Information System (INIS)

    Schauss, R.D.; Slobodien, M.S.

    1986-01-01

    The RADiation Mapping and ALARA Planning System (RADMAPS) under development by GPU Nuclear Corporation in conjunction with Construction Systems Associates, Inc., integrates computerized solids modeling and data base management to provide an automated, integrated systems solution to the problems associated with acquiring, managing, and communicating plant radiological data at nuclear facilities. This presentation describes the status of the RADMAPS development and outlines plans for future expansion

  11. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  12. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  13. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    Science.gov (United States)

    2014-03-01

    Defense Threat Reduction Agency 8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201...Attention to the Cosmic Radiation Component DISTRIBUTION A. Approved for public release: distribution is unlimited March 2014...Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component 5a

  14. Effects of gamma radiation on melon read-to-eat

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Juliana A.; Polizel, Francine Fernanda, E-mail: jujuba_angelo@yahoo.com.br, E-mail: fran_sininho@hotmail.com [Faculdade de Tecnologia em Piracicaba (FATEP), Piracicaba, SP (Brazil); Harder, Marcia N.C.; Silva, Lucia C.A.S.; Arthur, Paula B.; Arthur, Valter, E-mail: mnharder@terra.com.br, E-mail: lcasilva@cena.usp.br, E-mail: paula.arthur@hotmail.com, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2013-07-01

    This work comes from the irradiation of Cantaloupe melons (Cucumis melo L.), with the aid of gamma irradiation (Co60) to physical and chemical changes to assess their conservation. The research aimed to evaluate the effects of irradiation on melons, including the possibility of conservation, through pH, acidity, soluble solids and fresh squash. The samples were minimally processed and submitted to gamma radiation Co{sup 60} at doses of 0 (control); 1kGy and 2kGy. Physicochemical analyzes were made in periods of 1, 7 and 14 days after irradiation treatment. On day 1 and day 7, pH levels in irradiated samples had increased compared to control. Since the 14th day, the dose decreased 1kGy equaling the control. Soluble solids showed a statistical gradual decrease according to the increase of dose. The 14th had no significant difference while the 7th the dose was increased. The 1kGy sample decreased in another dose compared to the control. In fresh squash, absent statistics were observed for all samples in the three periods. And for the analysis of titratable acidity, there was observed no significant difference at day 1. There was observed a decrease in the 2kGy and 1kGy dose to 7 days compared to the control. On 14th day, a reduction in the dose of 2kGy and deterioration of 1kGy dose of the sample. Therefore, it demonstrates the irradiation doses of 2kGy, 1kGy physic-chemically alters the Cantaloupe melon pH, soluble solids content and acidity. And the dose of 2kGy is the one that longer preserves samples based on acidity values, greater and smaller values of soluble solids. (author)

  15. Effects of gamma radiation on melon read-to-eat

    International Nuclear Information System (INIS)

    Pires, Juliana A.; Polizel, Francine Fernanda; Harder, Marcia N.C.; Silva, Lucia C.A.S.; Arthur, Paula B.; Arthur, Valter

    2013-01-01

    This work comes from the irradiation of Cantaloupe melons (Cucumis melo L.), with the aid of gamma irradiation (Co60) to physical and chemical changes to assess their conservation. The research aimed to evaluate the effects of irradiation on melons, including the possibility of conservation, through pH, acidity, soluble solids and fresh squash. The samples were minimally processed and submitted to gamma radiation Co 60 at doses of 0 (control); 1kGy and 2kGy. Physicochemical analyzes were made in periods of 1, 7 and 14 days after irradiation treatment. On day 1 and day 7, pH levels in irradiated samples had increased compared to control. Since the 14th day, the dose decreased 1kGy equaling the control. Soluble solids showed a statistical gradual decrease according to the increase of dose. The 14th had no significant difference while the 7th the dose was increased. The 1kGy sample decreased in another dose compared to the control. In fresh squash, absent statistics were observed for all samples in the three periods. And for the analysis of titratable acidity, there was observed no significant difference at day 1. There was observed a decrease in the 2kGy and 1kGy dose to 7 days compared to the control. On 14th day, a reduction in the dose of 2kGy and deterioration of 1kGy dose of the sample. Therefore, it demonstrates the irradiation doses of 2kGy, 1kGy physic-chemically alters the Cantaloupe melon pH, soluble solids content and acidity. And the dose of 2kGy is the one that longer preserves samples based on acidity values, greater and smaller values of soluble solids. (author)

  16. Role of acoustic radiation force impulse elastography in the characterization of focal solid hepatic lesions

    Directory of Open Access Journals (Sweden)

    Harshavardhan Nagolu

    2018-01-01

    Full Text Available Objective: The purpose of the study is to investigate the usefulness of acoustic radiation force impulse (ARFI elastography in the characterization of focal solid liver lesions as benign, malignant, or metastatic using ARFI two-dimensional (2D imaging and ARFI quantification (shear wave velocities [SWVs]. Materials and Methods: Sixty lesions were included in this study. The lesions were classified into three groups: Group I included benign lesions (n = 25, Group II included malignant lesions (n = 27, and Group III included metastatic lesions (n = 8. ARFI elastography was performed in all these patients using a Siemens ACUSON S 2000TM ultrasound machine. Stiffness and size of the lesions were assessed on ARFI 2D images in correlation with B-mode ultrasound images. SWVs were obtained in these lesions for the quantification of stiffness. Results: In ARFI 2D images, malignant lesions were predominantly stiffer and larger, while benign lesions were softer and similar in size (P < 0.05. The mean SWVs in benign, malignant, and metastatic lesions were 1.30 ± 0.35 m/s, 2.93 ± 0.75 m/s, and 2.77 ± 0.90 m/s, respectively. The area under receiver operating characteristic curve of SWV for differentiating benign from malignant lesions was 0.877, suggesting fair accuracy (95% confidence interval: 0.777–0.976; with a cutoff value of 2 m/s, showing sensitivity: 92%; specificity: 96%; positive predictive value: 96%; negative predictive value: 93% (P < 0.05. Statistically significant difference exists in SWV of benign and malignant or metastatic lesions. Conclusion: ARFI elastography with 2D imaging and quantification might be useful in the characterization of benign and malignant liver lesions.

  17. Radiation effect on PVC/ENR blends

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Khairul Zaman Mohd Dahlan

    1997-01-01

    The effect of irradiation on the physical properties of Polyvinyl Chloride / Epoxidised Natural Rubber Blends (PVC/ENR blends) were investigated. The enhancement in tensile strength, elongation at break, hardness and aging properties of the blends have confirmed the positive effect of irradiation on the blends. It is evident from gel fraction and infra red spectroscopic studies that the blends of PVC and ENR cross-linked upon irradiation. The results also revealed that at any blend composition, the enhancement in properties depend on irradiation dose which controls the degree of radiation induced cross-linking. In an attempt to maximize the constructive effect of irradiation, the influence of various additives such as stabilizers, radiation sensitizers, fillers and processing aids on the blend properties were studied. The changes in blend properties upon irradiation with the presents of above additives were also presented in this paper

  18. Effects of Scattering of Radiation on Wormholes

    Directory of Open Access Journals (Sweden)

    Alexander Kirillov

    2018-02-01

    Full Text Available Significant progress in the development of observational techniques gives us the hope to directly observe cosmological wormholes. We have collected basic effects produced by the scattering of radiation on wormholes, which can be used in observations. These are the additional topological damping of cosmic rays, the generation of a diffuse background around any discrete source, the generation of an interference picture, and distortion of the cosmic microwave background (CMB spectrum. It turns out that wormholes in the leading order mimic perfectly analogous effects of the scattering of radiation on the standard matter (dust, hot electron gas, etc.. However, in higher orders, a small difference appears, which allows for disentangling effects of wormholes and ordinary matter.

  19. Neurophysiological appropriateness of ionizing radiation effects

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.

    1997-01-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of δ- and β- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both θ- and α-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author)

  20. Neurophysiological appropriateness of ionizing radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Nyagu, A I; Loganovsky, K N [Department of Neurology, Inst. of Clinical Radiology, Scientific Centre for Radiation Medicine of Academy of Medical Sciences of Ukraine, Kiev (Ukraine)

    1997-11-01

    The goal of this study was to compare bioelectrical activity of the brain in remote period of acute radiation sickness (ARS), chronic and prenatal irradiation as a result of the Chernobyl disaster. Registration of computerized 19-channel EEG, visual and somato-sensory evoked potentials have been carried out for 70 patients who had a verified ARS, 100 Chernobyl disaster survivors, who have been working in the Chernobyl exclusion zone since 1986-87 during 5 and more years, 50 prenatally irradiated children, and relevant controls. The relative risks of neurophysiological abnormalities are 4.5 for the ARS-patients, 3.6 for the chronically irradiated persons and 3.7 for the prenatally irradiated children. The data obtained testify to possibility of radiation-induced neurophysiological abnormalities in examined Chernobyl accident survivors which seems to be non-stochastic effects of ionizing radiation. For all examined irradiated patients it was typically an increasing of {delta}- and {beta}- powers of EEG, particularly, in the frontal lobe shifted to the left fronto-temporal region, but spectral power of both {theta}- and {alpha}-range was significantly depressed. Aforesaid signs together with data of evoked potentials reflect the structural and functional abnormalities of limbic system and the left hemisphere as the first revealed neurophysiological appropriateness of ionizing radiation effects. (author). 25 refs.

  1. Ultraviolet radiation and its biological effects

    International Nuclear Information System (INIS)

    Rames, J.; Bencko, V.

    1993-01-01

    In connexion with contamination of the atmosphere with freons, the interest is increasing in geophysical and health aspects of 'ozone holes' - the seasonal incidence of increased intensity of UV radiation. Its biological effects depend on the intensity of the radiation, the exposure time and the wavelength. There is a wide range of various sorts of damage, local as well as general. In addition to skin pigmentation and symptoms produced by an elevated histamine blood level, also changes are found which may have more serious and permanent consequences: changes in the number and structure of Langerhans islets, changes of the peripheral capillary walls, dimerization of pyrimidine and thymine in DNA. These changes demonstrably contribute to the development of skin malignancies. After exposure of the eye, changes in pigmentation are found, and depending on the dose, possibly also development of conjunctivitis or retinal damage. Recently the interaction of UV radiation with arsenic was investigated. On the other side, therapeutic effects of UV radiation combined with chemotherapy are used in dermatology, eg., for inhibition of contact sensitization. (author) 42 refs

  2. Effect of ionizing radiation on cardiovascular system

    International Nuclear Information System (INIS)

    Milliat, F.; Benderitter, M.; Gaugler, M.H.

    2011-01-01

    Radiotherapy treatment for cancer of the chest, mediastinal area or the neck area is associated with increased risk of cardiovascular disease. With the increasing number of cancer patients and the increased treatment efficiency, the number of cancer survivors is increasing exponentially. The cancer survivors live longer and their long-term follow-up must be considered. The cardiovascular toxicity is mainly associated with the treatment of breast cancer, Hodgkin's lymphoma and head and neck cancer. Radiation-induced cardiovascular effects are insidious and chronic. Their occurrence is linked to numerous factors including the age of the patient at the beginning of the radiotherapy schedule, the number of years following radiotherapy, the doses (and volume) to the heart and the large vessels (coronary and carotid arteries), and the association with the traditional cardiovascular risk factors. Pathophysiological mechanisms remain unclear and, even if similarities with age-related atherosclerosis were established, the specificities of the radiation-induced atherosclerosis for high doses remain to be discovered. For low/moderate doses of ionising radiation, recent epidemiological studies provide evidence of increased risk of cardiovascular pathologies. A better knowledge of the mechanisms associated with the radiation-induced cardiovascular pathologies and the more precise identification of the populations at risk in the future should allow a more effective care of these patients with cardiovascular risk. (authors)

  3. Radiation effects on two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2016-12-15

    The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Nonlocal effects on dynamic damage accumulation in brittle solids

    Energy Technology Data Exchange (ETDEWEB)

    Chen, E.P.

    1995-12-01

    This paper presents a nonlocal analysis of the dynamic damage accumulation processes in brittle solids. A nonlocal formulation of a microcrack based continuum damage model is developed and implemented into a transient dynamic finite element computer code. The code is then applied to the study of the damage accumulation process in a concrete plate with a central hole and subjected to the action of a step tensile pulse applied at opposite edges of the plate. Several finite element discretizations are used to examine the mesh size effect. Comparisons between calculated results based on local and nonlocal formulations are made and nonlocal effects are discussed.

  5. Microwave radiation - Biological effects and exposure standards

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, I.R.

    1980-06-01

    The thermal and nonthermal effects of exposure to microwave radiation are discussed and current standards for microwave exposure are examined in light of the proposed use of microwave power transmission from solar power satellites. Effects considered include cataractogenesis at levels above 100 mW/sq cm, and possible reversible disturbances such as headaches, sleeplessness, irritability, fatigue, memory loss, cardiovascular changes and circadian rhythm disturbances at levels less than 10 mW/sq cm. It is pointed out that while the United States and western Europe have adopted exposure standards of 10 mW/sq cm, those adopted in other countries are up to three orders of magnitude more restrictive, as they are based on different principles applied in determining safe limits. Various aspects of the biological effects of microwave transmissions from space are considered in the areas of the protection of personnel working in the vicinity of the rectenna, interactions of the transmitted radiation with cardiac pacemakers, and effects on birds. It is concluded that thresholds for biological effects from short-term microwave radiation are well above the maximal power density of 1 mW/sq cm projected at or beyond the area of exclusion of a rectenna.

  6. Literature survey: health effects of radiation

    International Nuclear Information System (INIS)

    Tveten, U.; Garder, K.

    This report was originally written as a chapter of a report entitled 'Air pollution effects of electric power generation, a literature survey', written jointly by the Norwegian Institute for Air Research (NILU) and the Institutt for Atomenergi (IFA). (INIS RN242406). A survey is presented of the health effects of radiation. It has not, however, been the intention of the authors to make a complete list of all the literature relevant to this subject. The NILU/IFA report was meant as a first step towards a method of comparing the health effects of electric power generation by fission, gas and oil. Consequently information relevant to quantification of the health effects on humans has been selected. It is pointed out that quantitative information on the health effects of low radiation and dose rates, as are relevant to routine releases, does not exist for humans. The convention of linear extrapolation from higher doses and dose rates is used worldwide, but it is felt by most that the estimates are conservative. As an example of the use of the current best estimates, a calculation of normal release radiation doses is performed. (Auth.)

  7. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  8. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  9. Simulation of first-wall radiation effects

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Hansen, L.F.

    1975-01-01

    Many of the effects induced in metals as a result of exposure to a radiation environment are intimately associated with the energy of primary recoil atoms (PKAs). Protons with an energy of 16 MeV closely reproduce the PKA energy spectrum which will be present at the first wall in a D--T fusion reactor and should therefore closely reproduce the radiation effects induced by PKAs in the first wall. A preliminary experiment with protons was conducted to measure the sputtering rate and to look for the phenomenon of chunk emission recently observed by Kaminsky and co-workers in samples exposed to 14-MeV neutrons. We are also able to observe the average projected transport range of activated PKAs. (U.S.)

  10. Thermal radiation effects on hydromagnetic flow

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2005-01-01

    Numerical results are presented for the effects of thermal radiation, buoyancy and heat generation or absorption on hydromagnetic flow over an accelerating permeable surface. These results are obtained by solving the coupled nonlinear partial differential equations describing the conservation of mass, momentum and energy by a perturbation technique. This qualitatively agrees with the expectations, since the magnetic field exerts a retarding force on the free convection flow. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, Prandtl number, Grashof number and Schmidt number on the profiles of the velocity components and temperature. The effects of the different parameters on the velocity and temperature profiles as well as the skin friction and wall heat transfer are presented graphically. Favorable comparisons with previously published work confirm the correctness of numerical results

  11. Effect of laser radiation on rat radiosensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Laprun, I.B.

    1979-03-01

    Quite a few experimental data have been obtained to date indicating that radioresistance of the organism is enhanced under the influence of electromagnetic emissions in the radiofrequency and optical ranges. But no studies were made of the possible radioprotective properties of coherent laser radiation. At the same time, it was demonstrated that the low-energy emission of optical quantum generators (lasers) in the red band stimulates the protective forces of the organism and accelerates regenerative processes; i.e., it induces effects that are the opposite of that of ionizing radiation. Moreover, it was recently demonstrated that there is activation of catalase, a radiosensitive enzyme that plays an important role in the metabolism of peroxide compounds, under the influence of lasers. For this reason, the effect of pre-exposure to laser beams on radiosensitivity of rats was tested.

  12. Combined genetic effects of chemicals and radiation

    International Nuclear Information System (INIS)

    Kada, T.; Inoue, T.; Yokoiyama, A.; Russel, L.B.

    1979-01-01

    Interactions of chemicals and radiation are complex and there may exist other unexpected patterns that are not mentioned. We show some examples. Photodynamic mutation induction by fluorescein dyes and Radiosensitization with iodine compounds are classified as Interactions of chemicals and radiation outside of the cell. On the other hand, the Antimutagenic effects of cobaltous chloride is concerned with events taking place in cells that had already been exposed to a mutagenic agent. It is likely that the action of a mutagenic agent is not direct and that cellular functions, such as mutators or repair systems, are involved in the mutagenesis initiated by the agent. Such cellular functions can be affected by a second agent. In sexually reproducing organisms, the two agents can also act on separate cells (male and female germcells) which subsequently fuse. Interaction effects of all types will be useful in future research in shedding light on the main pathways of mutagenesis

  13. Radiation Effects in the Space Telecommunications Environment

    International Nuclear Information System (INIS)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-01-01

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space

  14. Radiation Effects in the Space Telecommunications Environment

    Energy Technology Data Exchange (ETDEWEB)

    Fleetwood, Daniel M.; Winokur, Peter S.

    1999-05-17

    Trapped protons and electrons in the Earth's radiation belts and cosmic rays present significant challenges for electronics that must operate reliably in the natural space environment. Single event effects (SEE) can lead to sudden device or system failure, and total dose effects can reduce the lifetime of a telecommmiications system with significant space assets. One of the greatest sources of uncertainty in developing radiation requirements for a space system is accounting for the small but finite probability that the system will be exposed to a massive solar particle event. Once specifications are decided, standard laboratory tests are available to predict the total dose response of MOS and bipolar components in space, but SEE testing of components can be more challenging. Prospects are discussed for device modeling and for the use of standard commercial electronics in space.

  15. Radiation effects on algae and its application

    International Nuclear Information System (INIS)

    Dwivedi, Rakesh Kumar

    2013-01-01

    The effects of radiation on algae have been summarized in this article. Today, algae are being considered to have the great potential to fulfill the demand of food, fodder, fuel and various pharmaceutical products. Red algae are particularly rich in the content of polysaccharides present in their cell wall. For isolation of these polysaccharides, separation of cells cemented together by middle lamella is essential. The gamma rays are known to bring about biochemical changes in the cell wall and cause the breakdown of the middle lamella. These rays ate also known to speed up the starch sugar inter-conversion in the cells which is very useful for the tapping the potential of algae to be used as biofuel as well as in pharmaceutical industries. Cyanobacteria, among algae and other plants are more resistant to the radiation. In some cyanobacteria the radiation treatment is known to enhance the resistance against the antibiotics. Radiation treatment is also known to enhance the diameter of cell and size of the nitrogen fixing heterocyst. (author)

  16. Effect of γ-radiation on the saccharification of cellulose

    International Nuclear Information System (INIS)

    De la Rosa, A.M.; Banzon, R.B.; Abad, L.V.; Nuguid, Z.F.; Bulos, A.S.

    1985-01-01

    The effect of gamma radiation on the acid and saccharification of agricultural cellulosic wastes was investigated. Radiation doses of 200 KGy and higher significantly increased the saccharification of rice straw, rice hull and corn husk. The observed radiation effects varied with the cellulosic material. Rice straw exhibited the greatest radiosensitivity while rice hull showed the least susceptibility to gamma radiation. Possible mechanisms for the radiation-induced degradation of cellulose and agricultural cellulosic wastes are discussed. (author)

  17. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  18. Transistor Small Signal Analysis under Radiation Effects

    International Nuclear Information System (INIS)

    Sharshar, K.A.A.

    2004-01-01

    A Small signal transistor parameters dedicate the operation of bipolar transistor before and after exposed to gamma radiation (1 Mrad up to 5 Mrads) and electron beam(1 MeV, 25 mA) with the same doses as a radiation sources, the electrical parameters of the device are changed. The circuit Model has been discussed.Parameters, such as internal emitter resistance (re), internal base resistance, internal collector resistance (re), emitter base photocurrent (Ippe) and base collector photocurrent (Ippe). These parameters affect on the operation of the device in its applications, which work as an effective element, such as current gain (hFE≡β)degradation it's and effective parameter in the device operation. Also the leakage currents (IcBO) and (IEBO) are most important parameters, Which increased with radiation doses. Theoretical representation of the change in the equivalent circuit for NPN and PNP bipolar transistor were discussed, the input and output parameters of the two types were discussed due to the change in small signal input resistance of the two types. The emitter resistance(re) were changed by the effect of gamma and electron beam irradiation, which makes a change in the role of matching impedances between transistor stages. Also the transistor stability factors S(Ico), S(VBE) and S(β are detected to indicate the transistor operations after exposed to radiation fields. In low doses the gain stability is modified due to recombination of induced charge generated during device fabrication. Also the load resistance values are connected to compensate the effect

  19. Radiation protection standards: a summary of the biological effects of ionising radiation and principles of radiation protection

    International Nuclear Information System (INIS)

    1994-01-01

    This leaflet in the NRPB At-a-Glance-Series briefly summarises the biological effects of radiation, harm and sensitivity to radiation, radiation protection principles, acceptability of risk and the control of doses to workers, the public and in medical procedures in the UK. (UK)

  20. Side Effects of Chemotherapy and Radiation (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Side Effects of Chemotherapy and Radiation KidsHealth / For Parents / Side Effects of Chemotherapy and Radiation What's in this article? What to ...