Sample records for solids flow rates

  1. Solids flow rate measurement in dense slurries

    Porges, K.G.; Doss, E.D.


    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  2. Sealpot and method for controlling a solids flow rate therethrough

    Chiu, John H.; Teigen, Bard C.


    A sealpot for a combustion power plant includes a downcomer standpipe which receives solids of the combustion power plant, a bed including a first end and a second opposite end, the first end connected to the downcomer standpipe, a discharge standpipe disposed at the second opposite end of the bed, and an orifice plate disposed between the bed and the discharge standpipe separating the discharge standpipe from the bed. The orifice plate includes apertures disposed at a height above the bed which allow transport of fluidized solids and gas through the orifice plate.

  3. Design of fan beam optical sensor and its application in mass flow rate measurement of pneumatically conveyed solids

    LI Yang; ZHENG Ying-na; YUE Hong-wei


    The fan-beam optical sensor is made up of many semiconductor lasers and detectors fixed around the wall alternately at a cross section of pneumatically conveying pipe. When the sensor works, a scanning light source emits a 50° lamellar fan-beam through the gas-solid two phase flow, and the projection data resulting extinction effect of solid particles are detected at the same time. With the projection data, the flow rate mass can be calculated, and then the flow image can be reconstructed. In this paper, the design of the sensor including spatial arrangement of the structural parts, basic principle and measurement sensitivity distribution are introduced. The mathematical measurement model of solid mass flow rate is presented together with the testing results.

  4. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    Villegas, Manuel; Huiliñir, Cesar


    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  5. Fluid-Structure Interaction Effects on Mass Flow Rates in Solid Rocket Motors


    Analytical  Solution  Utilizing  the  geometry   and  dimensions  provided  in  Figure  2,  and  considering  that  the  motor  is  axisymmetric, the burn...distribution is unlimited. PA# Analytical Solution Motor Geometry Burn Surface Area, Ab 118,996 mm2 Throat Area, At 531 mm2 • From previous equations...FEA) is explored. A propellant flap in a cross flow is analyzed. Comparisons are made between an analytical solution, a solely CFD solution, a manual

  6. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors.

    Li, Jian; Kong, Ming; Xu, Chuanlong; Wang, Shimin; Fan, Ying


    The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within -3%-8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  7. An Integrated Instrumentation System for Velocity, Concentration and Mass Flow Rate Measurement of Solid Particles Based on Electrostatic and Capacitance Sensors

    Jian Li


    Full Text Available The online and continuous measurement of velocity, concentration and mass flow rate of pneumatically conveyed solid particles for the high-efficiency utilization of energy and raw materials has become increasingly significant. In this paper, an integrated instrumentation system for the velocity, concentration and mass flow rate measurement of dense phase pneumatically conveyed solid particles based on electrostatic and capacitance sensorsis developed. The electrostatic sensors are used for particle mean velocity measurement in combination with the cross-correlation technique, while the capacitance sensor with helical surface-plate electrodes, which has relatively homogeneous sensitivity distribution, is employed for the measurement of particle concentration and its capacitance is measured by an electrostatic-immune AC-based circuit. The solid mass flow rate can be further calculated from the measured velocity and concentration. The developed instrumentation system for velocity and concentration measurement is verified and calibrated on a pulley rig and through static experiments, respectively. Finally the system is evaluated with glass beads on a gravity-fed rig. The experimental results demonstrate that the system is capable of the accurate solid mass flow rate measurement, and the relative error is within −3%–8% for glass bead mass flow rates ranging from 0.13 kg/s to 0.9 kg/s.

  8. Effect of H2S Flow Rate and Concentration on Performance of H2S/Air Solid Oxide Fuel Cell

    钟理; 张腾云; 陈建军; WEIGuolin; LUOJingli; K.Chung


    A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt,air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850℃.Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 1750mA·cm-2 and 200mW·cm-2,are obtained with pure H2S flow rate of 50 ml·min-1 and air flow rate of 100ml·min-1 at 850℃.

  9. Wet solids flow enhancemant

    Caram, H.S.; Foster, N.; Wildman, D.J. [USDOE Pittsburgh Energy Technology Center, PA (United States)


    WE used glass beads of different sizes as.a model system to study the flow enhancing properties of Octadecyltrichlorosilane (OTS). 0TS provides Si(CH{sub 2}){sub 17}CH{sub 3} groups that bind with the surface hydrox groups to make it hydrophobic. Experimental data showed, indeed, that surface hydrophobicity promotes the flow of wet granular materials. Mixtures of different percentage of silanized/unsilanized particles were prepared for tensile strength measurements. The tensile strength decreased as more silanized particles were added to the samples. The relationship between dimensionless tensile strength and void fraction followed the correlation found by Pierrat (1994). Contact angles were larger for the silanized particles, as compared with unsilanized ones.

  10. The heat-transfer performance of gas—solid trickle flow over a regularly stacked packing

    Verver, A.B.; Swaaij, van W.P.M.


    The heat-transfer behaviour of a countercurrent gas—solid trickle flow contactor is studied, using coarse sand particles as the solids phase. Experimental data on the overall heat-transfer rate constant between the gas flow and the solid particle flow were obtained in a 0.15 m square cross-section c

  11. Characterization of the flow pattern of a gas/solids flow in a downer reactor

    Lehner, P.; Wirth, K.E. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Mechanische Verfahrenstechnik


    The downer reactor is discussed in literature as a new type of gas/solids reactor. Due to the cocurrent movement of gas and solids in direction of gravity, it is expected that a narrow residence time distribution and a flow regime close to plug flow can be established in this reactor. Recent studies show, that the gas/solids distributor on the top of the downer mainly influences the flow conditions. However, the influence of the physical properties of the solids and the plant setup on the flow behavior is still ambiguous. Therefore, experimental investigations concerning the local and cross-sectional solids distribution have been carried out under different operating conditions (variation of superficial gas velocity and solids circulation rate) and with different solids (glass beads, d{sub p}=60 {mu}m and d{sub p}=130 {mu}m). An X-ray computed tomography system has been used to obtain the solids concentration distribution in the entire cross-section at different axial positions of the downer. Pressure profiles can provide additional information about the overall behavior of the gas/solids flow. Results show a significant influence of the entrance conditions of the gas/solids flow on the flow pattern in the region below the gas/solids distributor. After a significant length, depending on solids properties and superficial gas velocity, similar flow behavior can be noticed for different entrance conditions. Superficial gas velocity not only influences the entrance length, but also the solids distribution in the entire cross-section of the downer. (orig.)

  12. Columbus Payloads Flow Rate Anomalies

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.


    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.


    N. Gnanasundaram


    Full Text Available Abstract Experiments were conducted in a liquid-solid circulating fluidized bed with different viscous liquids and particles to study the hydrodynamics, average solid hold up and solid circulation rate. The effects of operating parameters, i.e., primary liquid flow rate in the riser, auxiliary liquid flow rate, total liquid flow rate and viscosity of the liquid were studied for solids of different density and particle size. Results show that the circulating fluidization regime starts earlier for more viscous solutions because of the decrease in critical transitional velocity. The onset of solid holdup increases with an increase in liquid viscosity for sand and for glass beads. The solid circulation rate increases with an increase in total velocity and auxiliary velocity, and also increases with increasing viscosity.

  14. Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.


    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli

  15. Flow acoustics in solid-fluid structures

    Willatzen, Morten; Mads, Mikhail Vladimirovich Deryabin


    along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton's equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers....... A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.......The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion...

  16. Rheological measurements of liquid-solid flows with inertia

    Linares, Esperanza; Hunt, Melany; Zenit, Roberto


    This talk presents experimental measurements of effective viscosity for neutrally-buoyant suspensions in which the Reynolds numbers based on particle diameter varies from 1 to 1000 and for solid fractions from 10% to 50%. The measurements are conducted in a rough-walled, coaxial-cylinder rheometer. For Reynolds numbers from 1 to 100 and solid fractions less than 30%, the effective viscosities increase with Reynolds number and are comparable with recent numerical simulations found in the literature. For higher solid fractions, the effective viscosity shows shear thinning at the lowest shear rates, followed by thickening at higher shear rates. Over this range of Reynolds numbers for a pure fluid, the flow is laminar. At higher Reynolds numbers for a pure fluid, the flow transitions to turbulence. When particles are added under these flow conditions (particle Reynolds number greater than 100), the effective viscosity continues to increase with Reynolds number but with a greater magnitude. At the highest solid fractions, the effective viscosity is independent of shear rate.

  17. Local Gas Phase Flow Characteristics of a Gas—Liquid—Solid Three—Phase Reversed Flow Jet Loop Reactor

    WENJianping; ChenYunlin; 等


    The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10-3m3, corresponding to a solid volume fraction,εS=2.5%.

  18. High burn rate solid composite propellants

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  19. Exchange Rate Forecasting with Information Flow Approach

    Irena Mačerinskienė


    Full Text Available The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can forecast the exchange rate, the most significant information flows are distinguished. The results lead to further development of the information flow approach as a tool to forecast exchange rate fluctuations.

  20. Flow rate logging seepage meter

    Reay, William G. (Inventor); Walthall, Harry G. (Inventor)


    An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.

  1. HANARO core channel flow-rate measurement

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  2. Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-Solid Circulating Fluidized Bed

    Lim, Dae Ho; Lim, Ho; Jin, Hae Ryong; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)


    Characteristics of holdup and flow behavior of fluidized solid particles were investigated in a liquid-solid circulating fluidized bed (0.102 m x 3.5 m). Effects of liquid velocity (U{sub L}), particle size (d{sub P}) and solid circulation rate (G{sub S}) on the solid holdup, overall particle rising velocity, slip velocity between liquid and particles and hydrodynamic energy dissipation rate in the riser were examined. The particle holdup increased with increasing d{sub P} or G{sub S} but decreased with increasing U{sub L}. The overall particle rising velocity increased with increasing U{sub L} or G{sub S} but decreased with increasing d{sub P}. The slip velocity increased with increasing U{sub L} or d{sub P} but did not change considerably with G{sub S}. The energy dissipation rate, which was found to be closely related to the contacting frequency of micro eddies, increased with increasing d{sub P}, G{sub S} or U{sub L}. The solid particle holdup was well correlated with operating variables such as U{sub L}, d{sub P} and G{sub S}.

  3. Exchange Rate Forecasting with Information Flow Approach

    Irena Mačerinskienė; Andrius Balčiūnas


    The purpose of this article is to assess exchange rate forecasting possibilities with an information flow approach model. In the model the three types of information flows are distinguished: fundamental analysis information flow through particular macroeconomic determinants, microstructure approach information flow through dealer clients’ positioning data, technical analysis information flow through technical indicators. By using regression analysis it is shown that the composed model can for...

  4. Optimum solar collector fluid flow rates

    Furbo, Simon; Shah, Louise Jivan


    the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0...... to the temperature difference between the solar collector and the bottom of the mantle - an increase of about 1% of the thermal performance is possible.Finally, calculations showed that the highest thermal performance for large SDHW systems with constant volume flow rates in the solar collector loops are achieved....... The flow rate is increasing for increasing temperature.The flow rate at the high temperature level is typically 70 % greater than the flow rate at the low temperature level.Further, the energy consumption for the electronically controlled pump in a solar heating system will be somewhat smaller than...

  5. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    M.A. Chowdhury


    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  6. Dependence of Selected Water Quality Parameters on Flow Rates in River Profiles in the Czech Republic

    Eduard Hanslík


    The results show that in the monitored profiles, there is a direct relationship with flow rate in case of N-NO3-, suspended solids and O2. Temperature shows an inverse relationship with the flow rate. Other parameters show different relationship with the flow rate in individual monitored profiles or do not show statistically significant relation.

  7. Coriolis mass flow rate meters for low flows

    Mehendale, A.


    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  8. Coriolis mass flow rate meters for low flows

    Mehendale, Aditya


    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do no

  9. Modeling and Design of Semi-Solid Flow Batteries

    Brunini, Victor Eric

    A three-dimensional dynamic model of the recently introduced semi-solid flow battery system is developed and applied to address issues with important design and operation implications. Because of the high viscosity of semi-solid flow battery suspensions, alternative modes of operation not typically used in conventional redox flow battery systems must be explored to reduce pumping energy losses. Modeling results are presented .and compared to experimental observations to address important considerations for both stoichiometric and intermittent flow operation. The importance of active material selection, and its impact on efficient stoichiometric flow operation is discussed. Electrochemically active zone considerations relevant to intermittent flow operation of semi-solid flow batteries (or other potential electronically conductive flow battery systems) are addressed. Finally, the use of the model as a design tool for optimizing flow channel design to improve system level performance is demonstrated.(Copies available exclusively from MIT Libraries, -

  10. Capital Flows, Exchange Rate Flexibility, and the Real Exchange Rate

    Jean-Louis Combes; Patrick Plane; Tidiane Kinda


    This paper analyzes the impact of capital inflows and exchange rate flexibility on the real exchange rate in developing countries based on panel cointegration techniques. The results show that public and private flows are associated with a real exchange rate appreciation. Among private flows, portfolio investment has the highest appreciation effect-almost seven times that of foreign direct investment or bank loans-and private transfers have the lowest effect. Using a de facto measure of excha...

  11. Facility for cold flow testing of solid rocket motor models

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold


    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The


    Shi Hui-xian; Wang Qin-hui; Wang Can-xing; Luo Zhong-yang; Cen Ke-fa


    Particle Imaging Velocimetry (PIV) is a valuable measuring tool for studying multiphase flows, such as liquid-gas and gas-solid flow. It can be used to carry out many hydrodynamic studies, in particular, to determine accurately the gas-solid flow structure in CFB (Circulating Fluidized Beds). In this paper, the technique characteristics was described in applying the PIV to measure the gas-solid flow in circulating fluidized beds. A primary experiment was completed on a CFB unit with the PIV, yielding the velocity vector fields of high-density particles for different gas-solid superficial velocities and solid recycle rates. Velocities of the transported particles were calculated with cross-correlation method. The major factors influencing the successful measurement of particle velocity with the PIV technique were also described.

  13. Pulsating flows of solid/liquid suspensions

    Round, G.F.; El-Sayed, E.


    Results are presented on the pulsed flow of coal/water suspensions of weight concentration, Cw=0-53.7%. The laboratory pipeline used was 35 m long with an I.D. of 5 cm. The coal used was a bituminous coal from Butler County, Pennsylvania. Its size ranged from 45 to 880 micrometer with a mean of 260 micrometers. The ranges of pulsing parameters studied were: velocity: 0-27 m/s; pulse amplitude: 0-80 mm; pulse frequency: 0-1.25 Hz. It was found that over most of the concentration range investigated there was a substantial energy saving measured in terms of an energy ratio Jp/Js, the ratio of total energy input in the pulsed state to that at steady state at the same volumetric flow rate. Minima over the entire velocity range occurred at a frequency of 0.3 Hz, with very little variation at different amplitudes. The weight concentration at which these occurred was Cw=20% with a corresponding energy saving which could be as much as 20%. 12 figs., 15 refs., 3 tabs.

  14. Flow rate measurements by means of tracers

    Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)

    The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.

  15. Laser velocimeter measurements of multiphase flow of solids

    Kadambi, J.R.; Chen, R.C.; Bhunia, S.


    A unique refractive index matched facility for studying solid-liquid multiphase flow has been developed. The refractive index matching of the solid and the liquid allows the use of non-intrusive Laser Doppler Velocimetry (LDV) to measure the solid and the liquid velocities. These measurements will be useful in developing a better understanding of solid-liquid flows, especially solid-liquid and solid-solid interactions. Silica gel and 50% sodium iodide solution in water (refractive index {approx}1.443) are used as the refractive index matched solid and liquid respectively. A two color back scatter mode LDV is used for making velocity measurements. Tests were conducted in solid-liquid slurries with volumetric solid concentration levels of 5% and 15% in the Reynolds number (Re) range of 400 to 9200. Silica gel particles of mean diameter 40 microns were used. Measurements included mapping of the solid and liquid velocities and obtaining the pressure drop data. Signal processing technique utilizing histogram of velocity measurements made at a point and signal amplitude discrimination was successfully used for differentiating between solid and liquid velocities. 34 refs., 61 figs., 5 tabs.

  16. Aqueous semi-solid flow cell: demonstration and analysis

    Li, Z; Smith, KC; Dong, YJ; Baram, N; Fan, FY; Xie, J; Limthongkul, P; Carter, WC; Chiang, YM


    An aqueous Li-ion flow cell using suspension-based flow electrodes based on the LiTi2(PO4)(3)-LiFePO4 couple is demonstrated. Unlike conventional flow batteries, the semi-solid approach utilizes fluid electrodes that are electronically conductive. A model of simultaneous advection and electrochemical transport is developed and used to separate flow-induced losses from those due to underlying side reactions. The importance of plug flow to achieving high energy efficiency in flow batteries utilizing highly non-Newtonian flow electrodes is emphasized.

  17. Flow Simulation of Solid Rocket Motors. 2; Sub-Scale Air Flow Simulation of Port Flows

    Yeh, Y. P.; Ramandran, N.; Smith, A. W.; Heaman, J. P.


    The injection-flow issuing from a porous medium in the cold-flow simulation of internal port flows in solid rocket motors is characterized by a spatial instability termed pseudoturbulence that produces a rather non-uniform (lumpy) injection-velocity profile. The objective of this study is to investigate the interaction between the injection- and the developing axial-flows. The findings show that this interaction generally weakens the lumpy injection profile and affects the subsequent development of the axial flow. The injection profile is found to depend on the material characteristics, and the ensuing pseudoturbulence is a function of the injection velocity, the axial position and the distance from the porous wall. The flow transition (from laminar to turbulent) of the axial-flow is accelerated in flows emerging from smaller pores primarily due to the higher pseudoturbulence produced by the smaller pores in comparison to that associated with larger pores. In flows with rather uniform injection-flow profiles (weak or no pseudoturbulence), the axial and transverse velocity components in the porous duct are found to satisfy the sine/cosine analytical solutions derived from inviscid assumptions. The transition results from the present study are compared with previous results from surveyed literature, and detailed flow development measurements are presented in terms of the blowing fraction, and characterizing Reynolds numbers.

  18. Effect of H2S Flow Rate and Concentration on Performance of H2S/Air Solid Oxide Fuel Cell%不同硫化氢流率与浓度对硫化氢固体氧化物燃料电池性能影响

    钟理; 张腾云; 陈建军; WEI Guolin; LUO Jingli; K. Chung


    A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt,air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃.Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, and,are obtained with pure H2S flow rate of 50ml.min-1 and air flow rate of 100ml.min-1 at 850℃.

  19. Flow rate dependency of critical wall shear stress in a radial-flow cell

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.


    of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress......In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  20. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

    Chucheep, Thiensak; Wannasin, Jessada; Canyook, Rungsinee; Rattanochaikul, Tanate; Janudom, Somjai; Wisutmethangoon, Sirikul; Flemings, Merton C.


    Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

  1. Reserve, flowing electrolyte, high rate lithium battery

    Puskar, M.; Harris, P.

    Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.

  2. Negative Policy Rates, Banking Flows and Exchange Rates

    Khayat, Anwar


    Setting negative nominal rates is one of the unconventional policies implemented after the Great Recession to overcome the Zero Lower Bound. Using data from the euro area and Denmark, I assess the impact of introducing a negative interest rate on reserves. I find that it did put a depreciation pressure on the currency due to a reversal in banking flows. This effect is not only caused by policy differentials, but also by a distinct impact of going into negative territory from lowering interest...

  3. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.


    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  4. Flow Mapping in a Gas-Solid Riser via Computer Automated Radioactive Particle Tracking (CARPT)

    Muthanna Al-Dahhan; Milorad P. Dudukovic; Satish Bhusarapu; Timothy J. O' hern; Steven Trujillo; Michael R. Prairie


    Statement of the Problem: Developing and disseminating a general and experimentally validated model for turbulent multiphase fluid dynamics suitable for engineering design purposes in industrial scale applications of riser reactors and pneumatic conveying, require collecting reliable data on solids trajectories, velocities ? averaged and instantaneous, solids holdup distribution and solids fluxes in the riser as a function of operating conditions. Such data are currently not available on the same system. Multiphase Fluid Dynamics Research Consortium (MFDRC) was established to address these issues on a chosen example of circulating fluidized bed (CFB) reactor, which is widely used in petroleum and chemical industry including coal combustion. This project addresses the problem of lacking reliable data to advance CFB technology. Project Objectives: The objective of this project is to advance the understanding of the solids flow pattern and mixing in a well-developed flow region of a gas-solid riser, operated at different gas flow rates and solids loading using the state-of-the-art non-intrusive measurements. This work creates an insight and reliable database for local solids fluid-dynamic quantities in a pilot-plant scale CFB, which can then be used to validate/develop phenomenological models for the riser. This study also attempts to provide benchmark data for validation of Computational Fluid Dynamic (CFD) codes and their current closures. Technical Approach: Non-Invasive Computer Automated Radioactive Particle Tracking (CARPT) technique provides complete Eulerian solids flow field (time average velocity map and various turbulence parameters such as the Reynolds stresses, turbulent kinetic energy, and eddy diffusivities). It also gives directly the Lagrangian information of solids flow and yields the true solids residence time distribution (RTD). Another radiation based technique, Computed Tomography (CT) yields detailed time averaged local holdup profiles at

  5. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques

    Khan, Amjad; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Ismail; Ullah, Zia; Ullah, Aman


    Liqui-solid technique and solid dispersion formation are two novel approaches for enhancement of dissolution rate of BCS class II drugs. Liqui-solid compact converts a liquid drug or drug solution into a free flowing powder with enhanced dissolution rate. In case of solid dispersion drug is molecularly dispersed in a hydrophilic polymer in solid state. In the present study, Liqui-solid and solid dispersion techniques were applied to enhance the dissolution of the Hydrochlorothiazide. Three formulations of Hydrochlorothiazide were prepared by liqui-solid technique using micro crystalline cellulose as carrier material and colloidal silicon dioxide as coating material. Water, poly ethylene glycol-400 and Tween-60 were used as solvent system. Solid dispersions of Hydrochlorothiazide were prepared by solvent fusion method using PEG-4000 as carrier polymer. Tablets were subjected to evaluation of various physical and chemical characteristics. Dissolution profiles of tablets prepared by the novel techniques were compared with marketed conventional tablets. Model independent techniques including similarity factor, dissimilarity factor and dissolution efficiency were applied for comparison of dissolution profiles. The results obtained indicated that liqui-solid compact formulations were more effective in enhancing the dissolution rate compared with solid dispersion technique. The liqui-solid compacts improved the dissolution rate up to 95% while the solid dispersion increased it to 88%. PMID:26702260



    In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.

  7. Turbulent Flow over Small Amplitude Solid Waves


    7. Annubar flow meter 8. Butterfly throttling valve 9. Removable blanking plate 10. Diaphragm valve 11. Small pump 12. By pass diaphragm valve...monitored by using an annubar connected to either a mercury or mirriam oil filled manometer. (b) Test Section 2 a A wave with a ratio of 0.014

  8. Numerical method for a moving solid object in flows.

    Yokoi, Kensuke


    We propose a numerical method for dealing with a moving solid body that interacts with a complex liquid surface. The method is based on the level set method, the CIP method, and the ghost fluid method. The validity of the method was shown by applying it to Poiseuille and Couette flow problems. The method can precisely capture the boundary layer as well as a moving solid object.


    I.O. Popoola


    Full Text Available

    ENGLISH ABSTRACT: The article addresses how the flow rates of an extruder can be optimized. It mentions the plastic recycling industry as an example, which is only one of many solid waste recycling industries. The literature on flow rates is reviewed to demonstrate a gap that the current study aims to fills, in the hope that it will stimulate further research in a fertile area.

    AFRIKAANSE OPSOMMING: Die artikel adresseer die vraagstuk van vloeitempo van ‘n ekstrusieproses. Dit handel met ‘n voorbeeld van ‘n plastiekherwinningsproses wat spruit uit soliede afvalverwerking. ‘n Literatuurstudie toon hoedat die navorsing verdere areas wat braak lê, aanspreek in die hoop dat verdere studie gestimuleer sal word.

  10. Instabilities in granular gas–solid flows

    Gómez González, Rubén; Garzó, Vicente


    A linear stability analysis of the hydrodynamic equations with respect to the homogeneous cooling state is performed to study the conditions for stability of a suspension of solid particles immersed in a viscous gas. The dissipation in such systems arises from two different sources: inelasticity in particle collisions and viscous friction dissipation due to the influence of the gas phase on the solid particles. The starting point is a suspension model based on the (inelastic) Enskog kinetic equation. The effect of the interstitial gas phase on the dynamics of grains is modeled though a viscous drag force. The study is carried out in two different steps. First, the transport coefficients of the system are obtained by solving the Enskog equation by means of the Chapman–Enskog method up to first order in spatial gradients. Explicit expressions for the Navier–Stokes transport coefficients are obtained in terms of the volume fraction, the coefficient of restitution and the friction coefficient characterizing the amplitude of the external force. Once the transport properties are known, then the corresponding linearized hydrodynamic equations are solved to get the dispersion relations. In contrast to previous studies (Garzó et al 2016 Phys. Rev. E 93 012905), the hydrodynamic modes are analytically obtained as functions of the parameter space of the system. For a d-dimensional system, as expected linear stability shows d  ‑  1 transversal (shear) modes and a longitudinal ‘heat’ mode to be unstable with respect to long enough wavelength excitations. The results also show that the main effect of the gas phase is to decrease the value of the critical length L c (beyond which the system becomes unstable) with respect to its value for a dry granular fluid. Comparison with direct numerical simulations for L c shows a qualitative good agreement for conditions of practical interest.

  11. Explicit expression to predict the erosive burning rate of solid propellants

    Wang, S.


    Using the theory of gas dynamics and heat transfer from a turbulent gas flow to the burning surface of propellant along a permeable wall, an explicit expression is derived to predict the burning rate of the solid propellant with crossflow. Results of the calculation have been compared with experimental data and proved to be correct.

  12. Orifice plate for controlling solids flow, methods of use thereof and articles comprising the same

    Jukkola, Glen D.; Teigen, Bard C.


    Disclosed herein is an orifice plate comprising one or more plates having orifices disposed therein; the orifices being operative to permit the flow of solids from a moving bed heat exchanger to a solids flow control system; where the orifice plate is downstream of a tube bundle of the moving bed heat exchanger and upstream of the solids flow control system and wherein the orifice plate is operative to evenly distribute the flow of solids in the solids flow control system.

  13. Stock flow diagram analysis on solid waste management in Malaysia

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack


    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  14. Real time mass flow rate measurement using multiple fan beam optical tomography.

    Abdul Rahim, R; Leong, L C; Chan, K S; Rahiman, M H; Pang, J F


    This paper presents the implementing multiple fan beam projection technique using optical fibre sensors for a tomography system. From the dynamic experiment of solid/gas flow using plastic beads in a gravity flow rig, the designed optical fibre sensors are reliable in measuring the mass flow rate below 40% of flow. Another important matter that has been discussed is the image processing rate or IPR. Generally, the applied image reconstruction algorithms, the construction of the sensor and also the designed software are considered to be reliable and suitable to perform real-time image reconstruction and mass flow rate measurements.


    Hongzhong Li


    A theory of nonfluidized gas-solids flow, which combines the theory of multiphase flow with the mechanics of particulate media, was proposed on the basis of understanding that the particles contact each other, solids and gas are in movement, and the drag force on the particles caused by interstitial gas flow is similar to gravity force having the property of mass force. Then this theory was verified by experiments on vertical and inclined moving beds, and was applied to calculation and design of equipment and devices with moving beds, such as pneumatic moving bed transport,dipleg, V-value, L-valve, orifice flow, and arching prevention. It can be used to guide the design and operation of moving beds and fixed beds.

  16. Unsaturated flow parameters of municipal solid waste.

    Feng, Shi-Jin; Zheng, Qi-Teng; Chen, H X


    Leachate pollution/recirculation and landfill gas emission are the major environmental concerns in municipal solid waste (MSW) landfills. A good understanding and prediction of MSW unsaturated properties are critical for the design of piping systems and the control of these problems within landfills. This paper reviews the recent studies of unsaturated properties of MSW, including experimental methods, theoretical models and corresponding model parameters. For experimental methods, the sample size is a common and significant limitation and large test apparatuses (e.g., >80cm in diameter) are generally required and valuable. The theoretical models for MSW also have some limitations due to the changes in waste composition and particle size distribution caused by biodegradation. Thus, the available data of intrinsic permeabilities, water retention curves, relative permeabilities and anisotropy of MSW were summarized to investigate the influences of porosity, waste composition and particle size distribution. A series of estimation methods were subsequently proposed to determine the parameters of water retention curve like θLm, θLr, nv and α. The other parameters such as the pore connectivity term (l) and the degree of anisotropy (k) were significantly lacking data, thus only their relationships with porosity were proposed. The results show that it is possible to define the second order effects caused by variations in porosity, waste composition and particle size distribution. However, the estimation methods still need more experimental data for improvement, especially their dependence on waste composition and particle size distribution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analytical Solution for Isentropic Flows in Solids

    Heuzé, Olivier


    In the XIXth century, Riemann gave the equations system and the exact solution for the isentropic flows in the case of the ideal gas. But to our knowledge, nothing has been done to apply it to condensed media. Many materials of practical interest, for instance metals, obey to the linear law D = c+s u, where D is the shock velocity, u the particle velocity, and c and s properties of the material. We notice that s is strongly linked to the fundamental derivative. This means that the assumption of constant fundamental derivative is useful in this case, as it was with the isentropic gamma in the Riemann solution. Then we can apply the exact Riemann solution for these materials. Although the use of the hypergeometric function is complicated in this case, we obtain a very good approximation with the development in power series.

  18. Electromechanically Actuated Valve for Controlling Flow Rate

    Patterson, Paul


    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces

  19. High strain rate loading of polymeric foams and solid plastics

    Dick, Richard D.; Chang, Peter C.; Fourney, William L.


    The split-Hopkinson pressure bar (SHPB) provided a technique to determine the high strain rate response for low density foams and solid ABS and polypropylene plastics. These materials are used in the interior safety panels of automobiles and crash test dummies. Because the foams have a very low impedance, polycarbonate bars were used to acquire the strain rate data in the 100 to 1600 l/s range. An aluminum SPHB setup was used to obtain the solid plastics data which covered strain rates of 1000 to 4000 l/s. The curves for peak strain rate versus peak stress for the foams over the test range studied indicates only a slight strain rate dependence. Peak strain rate versus peak stress curves for polypropylene shows a strain rate dependence up to about 1500 l/s. At that rate the solid poly propylene indicates no strain rate dependence. The ABS plastics are strain rate dependent up to 3500 l/s and then are independent at larger strain rates.

  20. Semi-solid electrodes having high rate capability

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison


    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  1. Creeping Viscous Flow around a Heat-Generating Solid Sphere

    Krenk, Steen


    The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in close...... form and an application to the storage of heat-generating nuclear waste is discussed....

  2. White blood cell differentiation using a solid state flow cytometer

    Doornbos, R.M.P.; Hennink, E.J.; Putman, C.A.J.; Grooth, de Bart G.; Greve, Jan


    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche pho

  3. Wall Shear Rates in Taylor Vortex Flow

    V. Sobolik


    Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.

  4. White blood cell differentiation using a solid state flow cytometer

    Doornbos, R.M.P.; Hennink, E J; Putman, C.A.J.; Grooth, de, Bart G.; Greve, Jan


    A flow cytometer using a solid state light source and detector was designed and built. For illumination of the sample stream two types of diode lasers (670 nm and 780 nm) were tested in a set-up designed to differentiate human leukocytes by means of light scattering. The detector is an avalanche photodiode, which was used to detect the weak scattered light in the orthogonal direction. The new flow cytometer set-up is very small, relatively cheap and yields similar results as a standard flow c...

  5. Semi-solid electrodes having high rate capability

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison


    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  6. Semi-solid electrodes having high rate capability

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison


    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  7. Reaction kinetics of solid fuels during entrained flow gasification

    Tremel, Alexander


    meet slag requirements. Simple empirical reaction rate models that are directly derived from the entrained flow experiments are used to evaluate larger scale entrained flow gasification of other fuels. The use of Lusatian lignite results in a comparable gasifier performance. The maximum CGE of the bituminous coal in a 500 MW gasifier is 82.5 %, but a larger gasifier size compared to the lignite gasifier is required. Also, the addition of steam to the burner is considered to reduce the flame temperature. The entrained flow gasification of biocoal is simulated for a thermal fuel input of 10 MW and for an operation pressure of 0.5 MPa. If the gasifier is operated above the ash melting temperature, a maximum cold gas efficiency of 78.9 % is achieved. The potential operation of the gasifier in a non-slagging mode improves the efficiency up to 82.0 %. The experience obtained during collecting the measurement sets and the theoretical background of the model development are then used to derive a test procedure for the evaluation of entrained flow reaction behaviour of unknown (coals, residuals) and alternative (biomass, waste) solid fuels. The test procedure consists of a limited number of measurements and leads to a comprehensive data set that enables the accurate prediction of fuel conversion in larger scale entrained flow gasifiers. This will enable significantly enhanced gasifier performance in the future.

  8. Optimally controlled heating of solid particles in a fluidised bed with a dispersive flow of the solid

    Poświata Artur


    Full Text Available In this study the authors minimise the total process cost for the heating of solid particles in a horizontal fluidised bed by an optimal choice of the inlet heating gas temperature profile and the total gas flow. Solid particles flowed along the apparatus and were heated by a hot gas entering from the bottom of the fluidised apparatus. The hydrodynamics of the fluidised bed is described by a two-phase Kunii - Levenspiel model. We assumed that the gas was flowing only vertically, whereas solid particles were flowing horizontally and because of dispersion they could be additionally mixed up in the same direction. The mixing rate was described by the axial dispersion coefficient. As any economic values of variables describing analysing process are subject to local and time fluctuations, the accepted objective function describes the total cost of the process expressed in exergy units. The continuous optimisation algorithm of the Maximum Principle was used for calculations. A mathematical model of the process, including boundary conditions in a form convenient for optimisation, was derived and presented. The optimization results are presented as an optimal profile of inlet gas temperature. The influence of heat transfer kinetics and dispersion coefficients on optimal runs of the heating process is discussed. Results of this discussion constitute a novelty in comparison to information presented in current literature.

  9. Increasing granular flow rate with obstructions

    Alan Murray


    Full Text Available We describe a simple experiment involving spheres rolling down an inclined plane towards a bottleneck and through a gap. Results of the experiment indicate that flow rate can be increased by placing an obstruction at optimal positions near the bottleneck. We use the experiment to develop a computer simulation using the PhysX physics engine. Simulations confirm the experimental results and we state several considerations necessary to obtain a model that agrees well with experiment. We demonstrate that the model exhibits clogging, intermittent and continuous flow, and that it can be used as a tool for further investigations in granular flow. Received: 22 November 2015, Accepted: 19 February 2016; Edited by: L. A. Pugnaloni; Reviewed by: C. M. Carlevaro, Instituto de Física de Líquidos y Sistemas Biológicos, La Plata, Argentina; DOI: Cite as: A Murray, F Alonso-Marroquin, Papers in Physics 8, 080003 (2016

  10. A Study of Damage on the Pipe Flow Materials Caused by Solid Particle Erosion

    Kim, Kyung-Hoon; Choi, Duk-Hyun; Kim, Hyung-Joon [Kyung Hee University, Yongin (Korea, Republic of)


    Wall thinning can be classified into three types: flow-accelerated corrosion, cavitation erosion and solid particle erosion. This article presents a study of solid particle erosion, which frequently causes damages to power plants' pipe system. Unlike previous studies, this study uses a mechanism to make solid particles in a fluid flow collide with pipe materials in underwater condition. Experiment is conducted in three cases of velocity according to solid-water ratio using the three types of the materials of A106B, SS400, and A6061. The experiments were performed for 30 days, and the surface morphology and hardness of the materials were examined for every 7 days. Based on the velocity change of the solid particles in a fluid flow, the surface changes, the change in the amount of erosion, the erosion rate and the variation in the hardness of carbon steel and aluminum family pipe materials can all be determined. In addition, factor based erosion rates are verified and a wall-thinning relation function is suggested for the pipe materials.


    TANG Xuelin; QIAN Zhongdong; WU Yulin


    The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.

  12. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall

    Kasumi, Hiroki; Solomentsev, Yuri E.; Guelcher, Scott A.; Anderson, John L.; Sides, Paul J.


    During the electrolytic evolution of oxygen bubbles forming on a vertically oriented transparent tin oxide electrode, bubbles were found to be mutually attractive. The mechanism of the aggregation had never been explained satisfactorily until Guelcher et al. attributed it to thermocapillary flow. The gradient of surface tension of the liquid at the bubble's surface, which was established because of reaction heat and ohmic heat loss at the electrode wall, drives flow of the liquid adjacent to each bubble; the bubble "pumps" fluid along its surface away from the wall. Fluid flows toward the bubble to conserve mass and entrains nearby bubbles in the flow pattern. The same logic would apply when two bubbles of equal size are adjacent to each other on a warm wall. Each bubble drives thermocapillary flow and hence entrains the other in its flow pattern, which drives the aggregation. Our objective here is to perform experiments where the temperature gradient at the wall is well known and controlled. The theory can be quantitatively tested by studying aggregation of bubble pairs of equal size, and by varying system parameters such as temperature gradient, bubble size and fluid viscosity. The results are then compared with the theory in a quantitatively rigorous manner. We demonstrate that the theory without adjustable parameters is capable of quantitatively modeling the rate of aggregation of two bubbles. The equations governing the thermocapillary flow around a single stationary bubble on a heated or cooled wall in a semi-infinite domain were solved. Both Reynolds number and Marangoni number were much less than unity. The critical result is that liquid in the vicinity of a warm wall flows toward a stationary collector bubble. Consequently the thermocapillary flow around the stationary bubble entrains another bubble toward itself. The bubbles undergo hindered translation parallel to the wall with velocity U while the fluid flow field is described with u. Two velocities

  13. An investigation of particle behavior in gas-solid horizontal pipe flow by an extended LDA technique

    Yong Lu; Donald H. Glass; William J. Easson [University of Edinburgh, Edinburgh (United Kingdom). Institute for Materials and Processes


    An extended Laser Doppler Anemometry (LDA) technique has been developed to measure the distributions of particle velocities and particle number rates over a whole pipe cross-section in a dilute pneumatic conveying system. The first extension concentrates on the transform matrix for predicting the laser beams' cross point in a pipe according to the shift coordinate of the 3D computer-controlled traverse system on which the probes of the LDA system were mounted. The second focuses on the proper LDA sample rate for the measurement of gas-solid pipe flow with polydisperse particles. A suitable LDA sample rate should ensure that enough data is recorded in the measurement interval to precisely calculate the particle mean velocity or other statistical values at every sample point. The present study explores the methodology as well as the fundamentals of measurements, using a laser facility, of the cross-sectional distributions of solid phase. In the horizontal gas-solid pipe flow (glass beads less than 110 {mu}m), the experimental data show that the cross-sectional flow patterns of the solid phase can be classified by annulus-like flow describing the axial particle velocity contours and stratified flow characterising particle number rate distribution over a cross-section. Thus, the cross-sectional flow pattern of the solid phase in a horizontal pipe may be annular or stratified dependent on whether the axial particle velocity or particle number rate is the phenomenon studied. 13 refs., 16 figs., 1 tab.

  14. Flowing Foam: T1 events and solid-liquid transitions.

    Dennin, Michael


    Flowing aqueous foam is found in many applications ranging from oil recovery, to fire fighting, to spreading shaving cream. Aqueous foam consists of gas bubbles with liquid walls. One of the striking features of foam is that despite being composed entirely of fluids, its mechanical properties are either those of a solid (elastic response) or fluid (viscous flow), depending on the nature of the applied stress and strains. We study the transition between these two regimes using a model foam system: bubble rafts. Bubble rafts are a single layer of bubbles floating on the air-water surface. This allows us to track the motion of all the bubbles during flow. In this talk, we will present two main results. First, we will discuss the observation of the coexistence between a solid-like and fluid-like state during flow. Second, we will discuss the role played by nonlinear, topological rearrangements, known as T1 events, in determining the mechanical response of the system.

  15. Role of viscoelasticity in instability in plane shear flow over a deformable solid

    Paresh Chokshi


    The stability of the flow of a viscoelastic fluid over a deformable elastic solid medium is reviewed focusing on the role played by the fluid elasticity on the earlier known instability modes for the Newtonian fluids. In particular, two classes of modes are emphasized: the viscous mode for the creeping flow, and the wall mode for high Reynolds number flow. The flow geometry is restricted to plane Couette flow of fluid supported on elastic substrate of finite thickness. The viscoelastic fluid is described using the Oldroyd-B model and the dynamics of the deformable solid continuum is described by either Hookean or neo-Hookean elastic model. In the limit of $Re \\to 0$, the introduction of fluid elasticity delays the onset of instability and for sufficiently viscoelastic fluid with dilute polymer concentration, the instability is suppressed rendering the flow stable. For concentrated solution and polymer melt, the instability persists, but with higher value of critical shear rate than for the Newtonian fluid, indicating stabilizing role of fluid elasticity in creeping flow regime. However, for high Reynolds number flow of dilute polymer solution, the polymer addition plays a destabilizing role for wall modes, indicated by reduction in critical Reynolds number by an order of magnitude.

  16. Storage and flow of solids. Bulletin No. 123; Vol. 53, No. 26, November 1964

    Jenike, A.W.


    Information is presented on: the concepts of flowability of bulk solids and of channels and the flow-no flow postulate; equipment and procedures for testing the flow of bulk solids; and bulk flow equipment design. This information should be sufficient to enable the engineer to design storage plants and flow channels for unobstructed bulk flow. Only an outline of the theory of flow is included. (LCL)

  17. Local Heat and Mass Transfer for Gas—Solid Two Phase Flow in CFB

    FengLu; Ming-HengShi


    An experimental investigation on the flow characteristics and the local heat and mass transfer between coarse wet particles and hot gas in the circulaing fluidized bed(CFB) has been performed.A twothermocouple contrast method was developed to measure the local gas and solid temperature along the height of the bed.The influences of air superficial velocity,solid rate and initial moisture content on the local heat and mass transfer between gas and sloid were examined.The correlations of heat and mass transfer coefficients between gas and coarse wet particles in CFB were obtained.

  18. NMR relaxation rate and the libron energy of solid hydrogen

    Sugawara, K.; Woollam, J. A.


    By taking the rotational relaxation of orthohydrogen (o-H2) in solid hydrogen into account, the authors have theoretically investigated the longitudinal NMR spin lattice relaxation rate of o-H2. The rate is characterized by an anomalous maximum, as a function of temperature, at temperatures close to the mean libron energy of o-H2. Application of the theory for o-H2 concentrations between 42% and 75% reveals a nearly concentration-independent mean libron energy equivalent to about 1 K. This qualitatively and quantitatively contradicts the conclusions of other theories, but agrees with recent experiments.

  19. Solid rocket booster internal flow analysis by highly accurate adaptive computational methods

    Huang, C. Y.; Tworzydlo, W.; Oden, J. T.; Bass, J. M.; Cullen, C.; Vadaketh, S.


    The primary objective of this project was to develop an adaptive finite element flow solver for simulating internal flows in the solid rocket booster. Described here is a unique flow simulator code for analyzing highly complex flow phenomena in the solid rocket booster. New methodologies and features incorporated into this analysis tool are described.

  20. Construction of the flow rate nomogram using polynomial regression.

    Hosmane, B; Maurath, C; McConnell, M


    The urinary flow rates of normal individuals depend on the initial bladder volume in a non-linear fashion (J. Urol. 109 (1973) 874). A flow rate nomogram was developed by Siroky, Olsson and Krane, (J. Vol. 122 (1979) 665), taking the non-linear relationship into account, as an aid in the interpretation of urinary flow rate data. The use of a flow rate nomogram is to differentiate normal from obstructed individuals and is useful in the post operative follow-up of urinary outflow obstruction. It has been shown (J. Urol. 123 (1980) 123) that the flow rate nomogram is an objective measure of the efficacy of medical or surgical therapy. Instead of manually reading nomogram values from the flow rate nomogram, an algorithm is developed using polynomial regression to fit the flow rate nomograms and hence compute nomogram values directly from the fitted nomogram equations.


    Ning Yang; Wei Wang; Wei Ge; Jinghai Li


    @@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.

  2. Computer Simulations and Measurements of Radial Solid Flow Distribution in a Riser

    LuHuilin; ZhaoGangbo; 等


    Comparisons between the numerical predictions from a two-phase model and the experimental hydrodynamic data have been performed in fully developed gas-solid flows for Fcc catalysts,The results suggested the existence of self-similar solid flux profiles at low solid fluxes.Non-uniformity in the radial solids fluxes was found with a high solid flowing aminly downward near the wall.The model predictions were reasonably caught up the experimental trends.

  3. Impact of socioeconomic status on municipal solid waste generation rate.

    Khan, D; Kumar, A; Samadder, S R


    The solid waste generation rate was expected to vary in different socioeconomic groups due to many environmental and social factors. This paper reports the assessment of solid waste generation based on different socioeconomic parameters like education, occupation, income of the family, number of family members etc. A questionnaire survey was conducted in the study area to identify the different socioeconomic groups that may affect the solid waste generation rate and composition. The average waste generated in the municipality is 0.41 kg/capita/day in which the maximum waste was found to be generated by lower middle socioeconomic group (LMSEG) with average waste generation of 0.46 kg/capita/day. Waste characterization indicated that there was no much difference in the composition of wastes among different socioeconomic groups except ash residue and plastic. Ash residue is found to increase as we move lower down the socioeconomic groups with maximum (31%) in lower socioeconomic group (LSEG). The study area is a coal based city hence application of coal and wood as fuel for cooking in the lower socioeconomic group is the reason for high amount of ash content. Plastic waste is maximum (15%) in higher socioeconomic group (HSEG) and minimum (1%) in LSEG. Food waste is a major component of generated waste in almost every socioeconomic group with maximum (38%) in case of HSEG and minimum (28%) in LSEG. This study provides new insights on the role of various socioeconomic parameters on generation of household wastes.


    幡手, 泰雄; 野村, 博; 碇, 醇; ハタテ, ヤスオ; ノムラ, ヒロシ; イカリ, アツシ; HATATE, Yasuo; Nomura, Hiroshi; IKARI, Atsushi


    It is significant to know the hydrodynamic characteristics of the system in the design and scale-up of reactors containing gas-liquid-solid particles system. As a fundamental study of such a three-phase flow, the gas holdup and the pressure drop were measured in the vertical tubes, through which various mixtures of air, water, and fine glass-sphere, particles were passed. Three kinds of glass particles were used the average sizes of which were 30, 60 and 90 μm. Two kinds of tubes, 15 an...

  5. Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke

    Li Guomei; Wang Yueshe; He Renyang; Cao Xuewen; Lin Changzhi; Meng Tao


    Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semi-empirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).

  6. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    Tien, J. S.; Yang, Chin Tien


    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  7. Radial pressure profiles in a cold‐flow gas‐solid vortex reactor

    Pantzali, Maria N.; Kovacevic, Jelena Z.; Marin, Guy B.; Shtern, Vladimir N.


    A unique normalized radial pressure profile characterizes the bed of a gas‐solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950–1240 kg/m3, 1–2 mm, 2 kg to maximum solids capacity, and 0.4–0.8 Nm3/s (corresponding to gas injection velocities of 55–110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized—with respect to the overall pressure drop—pressure profiles for different gas injection velocities in particle‐free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers AIChE J, 61: 4114–4125, 2015 PMID:27667827

  8. Radial pressure profiles in a cold-flow gas-solid vortex reactor.

    Pantzali, Maria N; Kovacevic, Jelena Z; Heynderickx, Geraldine J; Marin, Guy B; Shtern, Vladimir N


    A unique normalized radial pressure profile characterizes the bed of a gas-solid vortex reactor over a range of particle densities and sizes, solid capacities, and gas flow rates: 950-1240 kg/m(3), 1-2 mm, 2 kg to maximum solids capacity, and 0.4-0.8 Nm(3)/s (corresponding to gas injection velocities of 55-110 m/s), respectively. The combined momentum conservation equations of both gas and solid phases predict this pressure profile when accounting for the corresponding measured particle velocities. The pressure profiles for a given type of particles and a given solids loading but for different gas injection velocities merge into a single curve when normalizing the pressures with the pressure value downstream of the bed. The normalized-with respect to the overall pressure drop-pressure profiles for different gas injection velocities in particle-free flow merge in a unique profile. © 2015 The Authors AIChE Journal published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers , 61: 4114-4125, 2015.

  9. Microgravity flame spread over thick solids in low velocity opposed flow

    Wang, Shuangfeng; Zhu, Feng


    Motivated primarily by fire safety of spacecraft, a renewed interest in microgravity flame spread over solid materials has arisen. With few exceptions, however, research on microgravity flame spread has been focused on thermally thin fuels due to the constraint on available test time. In this study, two sets of experiments are conducted to examine the flame spread and extinction behavior over thick PMMA in simulated and actual microgravity environments. The low-gravity flame spread environment is produced by a narrow channel apparatus in normal gravity. Extinction limits using flow velocity and oxygen concentration as coordinates are presented, and flame spread rates are determined as a function of the velocity and oxygen concentration of the gas flow. The microgravity experiments are also performed with varying low-velocity flow and varying ambient oxygen concentration. The important observations include flame behavior and appearance as a function of oxygen concentration and flow velocity, temperature variation in gas and solid phases, and flame spread rate. A comparison between simulated and actual microgravity data is made, and general agreement is found. Based on the experimental observations, mechanisms for flame spread and extinction in low velocity opposed flows are discussed.

  10. Multiport solid-state imager characterization at variable pixel rates

    Yates, George J.; Albright, Kevin L.; Turko, Bojan T.


    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD-13, manufactured by English Electric Valve (EEV), is a 512 X 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal X 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory's High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 are presented and the versatility/capabilities of the test station are reviewed.

  11. Molecular dynamics of fluid flow at solid surfaces

    Koplik, Joel; Banavar, Jayanth R.; Willemsen, Jorge F.


    Molecular dynamics techniques are used to study the microscopic aspects of several slow viscous flows past a solid wall, where both fluid and wall have a molecular structure. Systems of several thousand molecules are found to exhibit reasonable continuum behavior, albeit with significant thermal fluctuations. In Couette and Poiseuille flow of liquids it is found that the no-slip boundary condition arises naturally as a consequence of molecular roughness, and that the velocity and stress fields agree with the solutions of the Stokes equations. At lower densities slip appears, which can be incorporated into a flow-independent slip-length boundary condition. The trajectories of individual molecules in Poiseuille flow are examined, and it is also found that their average behavior is given by Taylor-Aris hydrodynamic dispersion. An immiscible two-fluid system is simulated by a species-dependent intermolecular interaction. A static meniscus is observed whose contact angle agrees with simple estimates and, when motion occurs, velocity-dependent advancing and receding angles are observed. The local velocity field near a moving contact line shows a breakdown of the no-slip condition and, up to substantial statistical fluctuations, is consistent with earlier predictions of Dussan [AIChE J. 23, 131 (1977)].

  12. A review of interaction mechanisms in fluid-solid flows

    Johnson, G.; Rajagopal, K.R. (Pittsburgh Univ., PA (USA). Dept. of Mechanical Engineering); Massoudi, M. (USDOE Pittsburgh Energy Technology Center, PA (USA))


    Multiphase flows have become the subject of considerable attention because of their importance in many industrial applications, such as fluidized beds, pneumatic transport of solids, coal combustion, etc. Fundamental research into the nature of pneumatic transport has made significant progress in identifying key parameters controlling the characteristics of these processes. The emphasis of this study is on a mixture composed of spherical particles of uniform size and a linearly viscous fluid. Section 1 introduces our approach and the importance of this study. In Section 2, the dynamics of a single particle as studied in classical hydrodynamics and fluid dynamics is presented. This has been a subject of study for more than 200 years. In Section 3, we review the literature for the constitutive relations as given in multiphase studies, i.e., generalization of single particle and as given in literature concerning the continuum theories of mixtures or multicomponent systems. In Section 4, a comparison between these representations and the earlier approach, i.e., forces acting on a single particle will be made. The importance of flow regimes, particle concentration, particle size and shape, rotation of the particle, effect of solid walls, etc. are discussed. 141 refs.

  13. Stability of Couette flow past a viscoelastic solid

    Hess, Andrew; Gao, Tong


    Soft materials such as polymer gels have been widely used in engineering applications such as microfluidics, micro-optics, and active surfaces. It is important to obtain fundamental understandings of the dynamics of various soft materials when interacting with fluid. Here we investigate the material behavior of a viscoelastic solid film immersed in a simple Newtonian Couette flow. An Eulerian formulation of the Zener model is used to model the solid phase with the surface tension effect. A linear stability analysis is first performed to predict the material instabilities induced by the shear flow field, and provide an analytical basis to the numerical results. The nonlinear fluid/elastic structure interactions are further explored by using the direct numerical simulations. Phase tracking is accomplished through the use of a generalized Cahn-Hilliard model for the surface tension between the gel-like material and the ambient fluid. The coupled Cahn-Hilliard/Navier-Stokes/Zener equations are then solved on a staggered grid through a finite difference method. The results are compared with previous studies for both the hyperelastic and viscoelastic materials.

  14. Solid formation in piperazine rate-based simulation

    Gaspar, Jozsef; Thomsen, Kaj; von Solms, Nicolas


    of view but also from a modeling perspective. The present work develops a rate-based model for CO2 absorption and desorption modeling for gas-liquid-solid systems and it is demonstrated for the piperazine CO2 capture process. This model is an extension of the DTU CAPCO2 model to precipitating systems....... It uses the extended UNIQUAC thermodynamic model for phase equilibria and thermal properties estimation. The mass and heat transfer phenomena is implemented in a film model approach, based on second order reactions kinetics. The transfer fluxes are calculated using the concentration of the dissolved...

  15. Internal flow measurements of drop impacting a solid surface

    Kumar, S. Santosh; Karn, Ashish; Arndt, Roger E. A.; Hong, Jiarong


    Understanding the fundamental physical process involved in drop impacts is important for a variety of engineering and scientific applications. Despite exhaustive research efforts on the dynamics of drop morphology upon impact, very few studies investigate the fluid dynamics induced within a drop upon impact. This study employs planar particle image velocimetry (PIV) with fluorescent particles to quantify the internal flow field of a drop impact on a solid surface. The image distortion caused by the curved liquid-air interface at the drop boundary is corrected using a ray-tracing algorithm. PIV analysis using the corrected images has yielded interesting insights into the flow initiated within a drop upon impact. Depending on the pre-impact conditions, characterized by impact number, different vortex modes are observed in the recoil phase of the drop impact. Further, the strength of these vortices and the kinetic energy of the internal flow field have been quantified. Our studies show a consistent negative power law correlation between vortex strength, internal kinetic energy and the impact number.

  16. A CFD study of gas-solid jet in a CFB riser flow

    Li, Tingwen; Guenther, Chris


    Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics of riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.

  17. Local Gas Phase Flow Characteristics of a Gas-Liquid-Solid Three-Phase Reversed Flow Jet Loop Reactor%气-液-固三相下喷环流反应器局部气相流动特性

    闻建平; 周怀; 陈云琳


    The local gas-phase flow characteristics such as local gas holdup (εs), local bubble velocity (Vb) and local bubble mean diameter (db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle dianeter and axial position on the local εg, Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local eg and Vb, but also decreased the local db. The optimum solid loading for the maximum local εg and Vb together with the minimum local db was 0.16 × 10-3 m3,corresponding to a solid volume fraction, εs = 2.5%.

  18. Effect of particle inertia on fluid turbulence in gas-solid disperse flow

    Mito, Yoichi


    The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.

  19. Numerical Study of Flow Characteristics in a Solid Particle Incinerator for Various Design Parameters of Injectors

    Son, Jin Woo; Kim, Su Ho; Sohn, Chae Hoon [Sejong Univ., Seoul (Korea, Republic of)


    The flow characteristics in a solid particle incinerator are investigated numerically for high burning rate of wastes. The studied incinerator employs both a swirl flow used in the furnace of power plants and a design concept applied to a rocket combustor. As the first step, the non-reactive flow field is analyzed in the incinerator with primary and secondary injectors through which solid fuel and air are injected. The deflection angle of a primary injector, inclination angle of a secondary injector, and gap between the two types of injectors are selected as design parameters. The swirl number is adopted for evaluating the degree of swirl flow and estimated over wide ranges of three parameters. The swirl number increases with deflection angle, but it is affected little by inclination angle. Recirculation zones are formed near the injectors, and their size affects the swirl number. The swirl number decreases with the zonal size of recirculation. From the numerical results, the design points can be found with strong swirl flow.

  20. Study on flow characteristics of solid/liquid system in lysozyme crystal growth

    CUI HaiLiang; YU Yong; CHEN WanChun; KANG Qi


    During the process of lysozyme protein crystallization with batch method, the macroscopic flow field of solid/liquid system was observed by particle image velocimetry (PIV). Furthermore, a normal growth rate of (110) face and local flow field around a single protein crystal were obtained by a long work distance microscope. The experimental results showed that the average velocity, the maximal velocity of macroscopic solid/liquid system and the velooity of local flow field around single protein crystal were fluctuant. The effective boundary layer thickness δeff, the concentration at the interface Gi and the characteristic velocity V were calculated using a convection-diffusion model. The results showed that the growth of lysozyme crystal in this experiment was dominated by interfacial kinetics rather than bulk transport, and the function of buoyancy-driven flow in bulk transport was small, however, the effect of bulk transport in crystal growth had a tendency to increase with the increase of lysozyme concentration. The calculated results also showed that the order of magnitude of shear force was about 10-21 N,which was much less than the bond force between the lysozyme molecules. Therefore the shear force induced by buoyancy-driven flows cannot remove the protein molecules from the interface of crystal.

  1. A novel concept of measuring mass flow rates using flow induced stresses

    P I Jagad; B P Puranik; A W Date


    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  2. Continuum modeling of rate-dependent granular flows in SPH

    Hurley, Ryan C.; Andrade, José E.


    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  3. Continuum modeling of rate-dependent granular flows in SPH

    Hurley, Ryan C.; Andrade, José E.


    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.


    Suharso Suharso


    Full Text Available The growth rates of borax single crystals from aqueous solutions at various flow rates in the (001 direction were measured using in situ cell method. From the growth rate data obtained, the growth rate distribution of borax crystals was investigated using Minitab Software and SPSS Software at relative supersaturation of 0807 and temperature of 25 °C. The result shows that normal, gamma, and log-normal distribution give a reasonably good fit to GRD. However, there is no correlation between growth rate distribution and flow rate of solution.   Keywords: growth rate dispersion (GRD, borax, flow rate

  5. Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis

    Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise


    It is known that the simulations of solid rocket motor internal flow field with AL-based propellants require complex multi-phase turbulent flow model. The objective of this study is to develop an advanced particulate multi-phase flow model which includes the effects of particle dynamics, chemical reaction and hot gas flow turbulence. The inclusion of particle agglomeration, particle/gas reaction and mass transfer, particle collision, coalescence and breakup mechanisms in modeling the particle dynamics will allow the proposed model to realistically simulate the flowfield inside a solid rocket motor. The Finite Difference Navier-Stokes numerical code FDNS is used to simulate the steady-state multi-phase particulate flow field for a 3-zone 2-D axisymmetric ASRM model and a 6-zone 3-D ASRM model at launch conditions. The 2-D model includes aft-end cavity and submerged nozzle. The 3-D model represents the whole ASRM geometry, including additional grain port area in the gas cavity and two inhibitors. FDNS is a pressure based finite difference Navier-Stokes flow solver with time-accurate adaptive second-order upwind schemes, standard and extended k-epsilon models with compressibility corrections, multi zone body-fitted formulations, and turbulence particle interaction model. Eulerian/Lagrangian multi-phase solution method is applied for multi-zone mesh. To simulate the chemical reaction, penalty function corrected efficient finite-rate chemistry integration method is used in FDNS. For the AL particle combustion rate, the Hermsen correlation is employed. To simulate the turbulent dispersion of particles, the Gaussian probability distribution with standard deviation equal to (2k/3)(exp 1/2) is used for the random turbulent velocity components. The computational results reveal that the flow field near the juncture of aft-end cavity and the submerged nozzle is very complex. The effects of the turbulent particles affect the flow field significantly and provide better

  6. Effect of flow rate on diameter of electrospun nanoporous fibers

    Tang Xiao-Peng


    Full Text Available The effect of flow rate on the diameter of the charged jet in the electrospinning process is studied theoretically. The obtained theoretical results offer in-depth physical understanding and mechanism of nanoporous fibers. It also reveals that the morphology and diameter of nanoporous microspheres can be controlled by the flow rate.

  7. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095 Section 23.1095 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system...

  8. Planetary Population Synthesis: the importance of the solids accretion rate

    Fortier, A.; Alibert, Y.; Carron, F.; Mordasini, C.; Benz, W.


    In the framework of the nucleated instability model, the formation time-scale of giant planets is very sensitive to the time it takes to build the solid core. The accretion of solids can be described by two different, consecutive regimes: it first proceeds in a very fast fashion, known as runaway growth, and later on in a much slower regime, the so-called oligarchic growth. The transition between the runaway and the oligarchic growth depends on many parameters (e.g. the isolation mass and the size of the accreted planetesimals), but as a general rule we can assume that an embryo of a Lunar mass is already an oligarch. Then, the timescale to build a 10 Earth masses (M⊙) core is regulated by the oligarchic regime, as the previous runaway stage proceeds in a negligible amount of time compared to the oligarchic timescale. In this work we show the results of adopting the oligarchic growth for the core in planetary population synthesis calculations. In previous works (see [1], [2]) a fast solids accretion rate was prescribed, leading to a very fast formation of massive solid embryos. Here we show that when considering the oligarchic growth, the formation of giant planets is more difficult, especially in the outer parts of the disk, where the formation of big planets is almost impossible under these hypothesis. On the other hand, many Earth to Super- Earth sized planets are found in the very innermost parts of the disk. However, if the size of the accreted planetesimals is reduced, the formation of giant planets is more likely, preserving also a large amount of smaller planets. We also consider the formation of planetary systems, including the N-body interaction between the forming planets and the collisions that may occur among them during their migration. In the case of many planets forming in the same disk, we find that the final masses of the planets are smaller (but not too small) than in the case of a single planet per star.

  9. Responses of prawn to water flow rates

    Vascotto, G.L.; Nilas, P.U.


    An aquarium study to determine the responses of postlarval macrobrachium rosenbergii to varying water changes was carried out. Six week old postlarvae were raised in glass aquaria receiving 0, 1.15, 7.2 and 14.4 water changes per day over a 12 week period. The treatments had significant influences on survival, biomass, and average size of the animals. Maximum survival and highest biomass were found in the 1.15 water turnover treatment; however, this treatment also produced the smallest average size animals. Early high mortalities were attributed to poor growing conditions in the high and low flow treatments, while later mortality appeared to be biomass dependent.

  10. Study of Solid Particle Behavior in High Temperature Gas Flows

    Majid, A.; Bauder, U.; Stindl, T.; Fertig, M.; Herdrich, G.; Röser, H.-P.


    The Euler-Lagrangian approach is used for the simulation of solid particles in hypersonic entry flows. For flow field simulation, the program SINA (Sequential Iterative Non-equilibrium Algorithm) developed at the Institut für Raumfahrtsysteme is used. The model for the effect of the carrier gas on a particle includes drag force and particle heating only. Other parameters like lift Magnus force or damping torque are not taken into account so far. The reverse effect of the particle phase on the gaseous phase is currently neglected. Parametric analysis is done regarding the impact of variation in the physical input conditions like position, velocity, size and material of the particle. Convective heat fluxes onto the surface of the particle and its radiative cooling are discussed. The variation of particle temperature under different conditions is presented. The influence of various input conditions on the trajectory is explained. A semi empirical model for the particle wall interaction is also discussed and the influence of the wall on the particle trajectory with different particle conditions is presented. The heat fluxes onto the wall due to impingement of particles are also computed and compared with the heat fluxes from the gas.

  11. Multiport solid-state imager characterization at variable pixel rates

    Yates, G.J.; Albright, K.A. [Los Alamos National Lab., NM (United States); Turko, B.T. [Lawrence Berkeley Lab., CA (United States)


    The imaging performance of an 8-port Full Frame Transfer Charge Coupled Device (FFT CCD) as a function of several parameters including pixel clock rate is presented. The device, model CCD- 13, manufactured by English Electric Valve (EEV) is a 512 {times} 512 pixel array designed with four individual programmable bidirectional serial registers and eight output amplifiers permitting simultaneous readout of eight segments (128 horizontal {times} 256 vertical pixels) of the array. The imager was evaluated in Los Alamos National Laboratory`s High-Speed Solid-State Imager Test Station at true pixel rates as high as 50 MHz for effective imager pixel rates approaching 400 MHz from multiporting. Key response characteristics measured include absolute responsivity, Charge-Transfer-Efficiency (CTE), dynamic range, resolution, signal-to-noise ratio, and electronic and optical crosstalk among the eight video channels. Preliminary test results and data obtained from the CCD-13 will be presented and the versatility/capabilities of the test station will be reviewed.

  12. Experimental study of the solid-liquid interface in a yield-stress fluid flow upstream of a step

    Luu, Li-Hua; Pierre, Philippe; Guillaume, Chambon


    We present an experimental study where a yield-stress fluid is implemented to carefully examine the interface between a liquid-like unyielded region and a solid-like yielded region. The studied hydrodynamics consists of a rectangular pipe-flow disturbed by the presence of a step. Upstream of the step, a solid-liquid interface between a dead zone and a flow zone appears. This configuration can both model geophysical erosion phenomenon in debris flows or find applications for industrial extrusion processes. We aim to investigate the dominant physical mechanism underlying the formation of the static domain, by combining the rheological characterization of the yield-stress fluid with local measurements of the related hydrodynamic parameters. In this work, we use a model fluid, namely polymer micro-gel Carbopol, that exhibits a Hershel-Bulkley viscoplastic rheology. Exploiting the fluid transparency, the flow is monitored by Particle Image Velocimetry thanks to internal visualization technique. In particular, we demonstrate that the flow above the dead zone roughly behaves as a plug flow whose velocity profile can successfully be described by a Poiseuille equation including a Hershel-Bulkley rheology (PHB theory), with exception of a thin zone at the close vicinity of the static domain. The border inside the flow zone above which the so-called PHB flow starts, is found to be the same regardless of the flow rate and to move with a constant velocity that increases with the flow rate. We interpret this feature as a slip frontier.


    Xu Bing; Ma Jien; Lin Jianjie


    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  14. 基于一维气相稳态反应流的燃速预估软件研究%Study on Software of Solid Propellant Burning Rate Prediction Based on one-dimensional Steady-state Reaction Gas Flow

    封锋; 陈军; 郑亚; 宋洪昌


    Based on the model of one-dimensional steady-state reaction gas flow, the correction factors of burning rate related to double base propellant, modified double base propellant and composite solid propellant were summed up, the application scope of theoretical combustion model was broadened. Using Visual C++ and Microsoft Access for the development tools, the software of solid propellant burning rate prediction(SPRS) was completed by the structural parameters of chemical bonds. The software was based on system of Windows XP, user-friendly, easy to use ,and with the functions of data updating and information querying. The burning rates and pressure indexs could been calculated when the chemical compositions of the propellant (formula) and the pressures were given. The compositions of the propellant(formula) could be adjusted by giving the burning rates and pressure indexs too. It was of great significance in development of cycle-shortening and cost-saving of solid propellant.%在一维气相稳态反应流模型的基础上,总结了适用于双基推进剂、改性双基推进剂、复合固体推进剂燃速预估的修正因子,拓宽了燃烧理论模型的适用范围.采用Visual C++和Microsoft Access为开发工具,完成了基于组分化学键结构参数的固体推进剂燃速预估软件(SPRS)编制.该软件基于Windows XP系统,界面友好,使用方便,具有数据更新和信息查询功能.用户不仅能根据推进剂的化学组成(配方)和给定压强计算燃速、压力指数等参数,还可根据给定的燃速和压力指数等调整推进剂配方组成,对缩短固体推进剂研制周期和节约研制成本具有重要意义.

  15. Instability modes on a solid-body-rotation flow in a finite-length pipe

    Feng, Chunjuan; Liu, Feng; Rusak, Zvi; Wang, Shixiao


    Numerical solutions of the incompressible Navier-Stokes equations are obtained to study the time evolution of both axisymmetric and three-dimensional perturbations to a base solid-body-rotation flow in a finite-length pipe with non-periodic boundary conditions imposed at the pipe inlet and outlet. It is found that for a given Reynolds number there exists a critical swirl number beyond which the initial perturbations grow, in contrast to the solid-body rotation flow in an infinitely-long pipe or a finite-length pipe with periodic inlet and exit boundary conditions for which the classical Kelvin analysis and Rayleigh stability criterion affirm neutrally stable for all levels of swirl. This paper uncovers for the first time the detailed evolution of the perturbations in both the axisymmetric and three-dimensional situations. The computations reveal a linear growth stage of the perturbations with a constant growth rate after a brief initial period of decay of the imposed initial perturbations. The fastest growing axisymmetric and three-dimensional instability modes and the associated growth rates are identified numerically for the first time. The computations show that the critical swirl number increases and the growth rate of instability decreases at the same swirl number with decreasing Reynolds number. The growth rate of the axisymmetric mode at high Reynolds number agrees well with previous stability theory for inviscid flow. More importantly, three-dimensional simulations uncover that the most unstable mode is the spiral type m = 1 mode, which appears at a lower critical swirl number than that for the onset of the axisymmetric mode. This spiral mode grows faster than the unstable axisymmetric mode at the same swirl. Moreover, the computations reveal that after the linear growing stage of the perturbation the flow continues to evolve nonlinearly to a saturated axisymmetric vortex breakdown state.

  16. Spray coating as a powerful technique in preparation of solid dispersions with enhanced desloratadine dissolution rate.

    Kolašinac, Nemanja; Kachrimanis, Kyriakos; Djuriš, Jelena; Homšek, Irena; Grujić, Branka; Ibrić, Svetlana


    Solid dispersion systems have been widely used to enhance dissolution rate and oral bioavailability of poorly water-soluble drugs. However, the formulation process development and scale-up present a number of difficulties which has greatly limited their commercial applications. In this study, solid dispersions (SDs) of desloratadine (DSL) with povidone (PVP) and crospovidone (cPVP) were prepared by spray coating technique. The process involved the spray application of 96% ethanol solution of DSL and PVP/cPVP, and subsequent deposition of the coprecipitates onto microcrystalline cellulose pellets during drying by air flow in a mini spray coater. The results from the present study demonstrated that the spray coating process is efficient in preparing SDs with enhanced drug dissolution rate and it is highly efficient in organic solvent removal. Both PVP and cPVP greatly improved drug dissolution rate by SDs, with PVP showing better solubilization capability. Very fast drug dissolution rate is achieved from SDs containing PVP regardless of differences in K grade. SD with smaller particles of cPVP have higher drug dissolution rate in comparison to the cPVP with larger particles. Results from physical state characterization indicate that DSL in SDs exist in the amorphous (high free-energy) state which is probably stabilized by PVP/cPVP. After 6-month accelerated stability study, DSL remains amorphous, while PVP and cPVP act as anti-plasticizing agents, offering efficient steric hindrance for nucleation and crystal growth.

  17. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen


    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  18. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    Abulon DJK


    Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System

  19. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria


    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  20. Analytically computed rates of seepage flow into drains and cavities

    Fujii, N.; Kacimov, A. R.


    The known formulae of Freeze and Cherry, Polubarinova-Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are inverted using the Schulgasser theorem from the Polubarinova-Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction.

  1. Exchange Flow Rate Measurement Technique in Density Different Gases

    Motoo Fumizawa


    Full Text Available Buoyancy-driven exchange flows of helium-air through inclined a narrow tube was investigated. Exchange flows may occur following the opening of a window for ventilation, as well as when a pipe ruptures in a high temperature gas-cooled reactor. The experiment in this paper was carried out in a test chamber filled with helium and the flow was visualized using the smoke wire method. A high-speed camera recorded the flow behavior. The image of the flow was transferred to digital data, and the slow flow velocity, i.e. micro flow rate was measured by PIV software. Numerical simulation was carried out by the code of moving particle method with Lagrange method.

  2. Computing equations of water hammer in pseudo-homogeneous solid-liquid flow and their verification


    In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow's viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.

  3. Design and Implementation of Automatic Air Flow Rate Control System

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal


    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  4. Anomalous effect of flow rate on the electrochemical behavior at a liquid|liquid interface under microfluidic conditions.

    Kaluza, Dawid; Adamiak, Wojciech; Kalwarczyk, Tomasz; Sozanski, Krzysztof; Opallo, Marcin; Jönsson-Niedziolka, Martin


    We have investigated the oxidation of ferrocene at a flowing organic solvent|aqueous electrolyte|solid electrode junction in a microfluidic setup using cyclic voltammetry and fluorescent laser scanning confocal microscopy. At low flow rates the oxidation current decreases with increasing flow, contrary to the Levich equation, but at higher flow rates the current increases linearly with the cube root of the flow rate. This behavior is explained using a simple model postulating a smallest effective width of the three-phase junction, which after fitting to the data comes to be ca. 20 μm. The fluorescence microscopy reveals mixing of the two phases close to the PDMS cover, but the liquid|liquid junction is stable close to the glass support. This study shows the importance of the solid|liquid|liquid junctions for the behavior of multiphase systems under microfluidic conditions.

  5. Blood flow rate measurements with indicator techniques revisited

    Sejrsen, Per; Bülow, Jens


    In view of the emerging role, disturbances in regional blood flow rate seem to play in the pathogenesis of the metabolic syndrome; we review the concepts of the classical indicator dilution and washout techniques used for determinations of regional blood flow rate. Prerequisites, assumptions......, necessary precautions for the application of these experimental techniques are emphasized. Special attention has been carried out to elucidate the consequence of a choice of indicators having a large distribution volume in the tissues....

  6. Online monitoring of gas-solid two-phase flow using projected CG method in ECT image reconstruction

    Qi wang; Chengyi Yang; Huaxiang Wang; Ziqiang Cui; Zhentao Gao


    Electrical capacitance tomography (ECT) is a promising technique for multi-phase flow measurement due to its high speed,low cost and non-intrusive sensing.Image reconstruction for ECT is an inverse problem of finding the permittivity distribution of an object by measuring the electrical capacitances between sets of electrodes placed around its periphery.The conjugate gradient (CG) method is a popular image reconstruction method for ECT,in spite of its low convergence rate.In this paper,an advanced version of the CG method,the projected CG method,is used for image reconstruction of an ECT system.The solution space is projected into the Krylov subspace and the inverse problem is solved by the CG method in a low-dimensional specific subspace.Both static and dynamic experiments were carried out for gas-solid two-phase flows.The flow regimes are identified using the reconstructed images obtained with the projected CG method.The results obtained indicate that the projected CG method improves the quality of reconstructed images and dramatically reduces computation time,as compared to the traditional sensitivity,Landweber,and CG methods.Furthermore,the projected CG method was also used to estimate the important parameters of the pneumatic conveying process,such as the volume concentration,flow velocity and mass flow rate of the solid phase.Therefore,the projected CG method is considered suitable for online gas-solid two-phase flow measurement.



    Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction,then general equations of velocities of solid phase and liquid phase were founded in twophase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation.

  8. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming


    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  9. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo


    3-D blood flow quantification with high spatial and temporal resolution would strongly benefit clinical research on cardiovascular pathologies. Ultrasonic velocity techniques are known for their ability to measure blood flow with high precision at high spatial and temporal resolution. However......, current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI......) technique is extended to estimate the 3-D velocity components inside a volume at high temporal resolutions (

  10. On flow characteristics of liquid-solid mixed-phase nanofluid inside nanochannels



    The atomic behavior of liquid-solid mixed-phase nanofluid flows inside nanochannels is investigated by a molecular dynamics simulation (MDS). The results of visual observation and statistic analysis show that when the nanoparticles reach near each other, the strong interatomic force will make them attach together. This aggrega-tion continues until all nanoparticles make a continuous cluster. The effect of altering the external force magnitude causes changes in the agglomeration rate and system enthalpy. The density and velocity profiles are shown for two systems, i.e., argon (Ar)-copper (Cu) nanofluid and simple Ar fluid between two Cu walls. The results show that using nanopar-ticles changes the base fluid particles ordering along the nanochannel and increases the velocity. Moreover, using nanoparticles in simple fluids can increase the slip length and push the near-wall fluid particles into the main flow in the middle of the nanochannel.

  11. A study of solid particle flow characterization in solar particle receiver

    Kim, Kibum [Mechanical Engineering Department, Hanyang University, 1271 Sa-3 dong, Sangnok-gu, Ansan, Kyeonggi-do, 426-791 (Korea); Siegel, Nathan; Kolb, Greg [Sandia National Laboratories Solar Technologies Department, P.O. Box 5800, Albuquerque, NM 87185-1127 (United States); Rangaswamy, Vijayarangan; Moujaes, Samir F [Mechanical Engineering Department, University of Nevada Las Vegas, 4505 Maryland Pkwy Las Vegas, NV 89154-4027 (United States)


    The solid particle receiver (SPR) is a direct absorption receiver in which solar energy heats a curtain of falling ceramic particle to a temperature in excess of 1000 C. A small scale test platform was built to investigate particle flow properties. The curtain was comprised of approximately 697 {mu}m ceramic particles that were dropped within the receiver cavity of the test platform. Tests were conducted to experimentally determine the distribution of particles velocity, curtain thickness, and curtain opacity along a drop length of approximately 3 m. Velocity data were measured using a high speed digital camera to obtain images of the particle flow at 1000 frames per second with an exposure time of 100 {mu}s. Five mass flow rates ranging from 1 kg/s-m to 22 kg/s-m were examined, and it was found that all flows approached a terminal velocity of about 6-7 m/s in a vertical drop distance of 3 m. The experimental results were validated with computational results and were found in excellent agreement with the simulation results. In addition, a similar study was performed with various sizes of the particles to better understand how the particle flow characteristics were affected by the size of the particles. (author)

  12. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Ting-Ting Zhang


    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  13. The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump

    裴吉; 袁寿其; 袁建平; 王文杰


    To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at di-fferent flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadi-ness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence in-tensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to re-duce the flow unsteadiness and to increase the pump reliability under multi-conditions.

  14. Water hammer in coarse-grained solid-liquid flows in hydraulic hoisting for ocean mining

    韩文亮; 王光谦; 吴保生; 刘少军; 邹伟生


    The particles of polymetallic nodules in hydraulic hoisting flows that are used for mining in deep sea are rather coarse, therefore their flow velocity is smaller than that of the surrounding water. The characteristics of solid-liquid flows such as their density, concentration, elastic modulus and resistance were discussed. The wave propagation speed and the continuity and momentum equations of water hammer in coarse-grained solid-liquid flows were theoretically derived, and a water hammer model for such flows was developed.

  15. Unsteady Numerical Simulation of Steam-Solid Two-Phase Flow in the Governing Stage of a Steam Turbine

    Yufeng Li; Peigang Yan; Wanjin Han


    Solid particle erosion (SPE) in an ultra-supercritical steam turbine control stage with block configuration is inves-tigated numerically, based on the finite volume method and the fluid-particle coupling solver. We apply the parti-cle discrete phase model to model the solid particles flow, and use the Euler conservation equations to solve the continuous phase. The investigation is focused on the influence of the solid particle parameters (such as particle diameter, particle velocity and particle trajectory) on the erosion rate of the stator and rotor blade surface in un-steady condition. The distributions of the highly eroded zone on the stator and rotor blade surfaces are shown and discussed in detail according to the mechanism of solid particle/blade wall interaction. We obtain that the erosion rate of the vane blade is sensitive to the fluctuation of the potential flow field, and the smaller particle has a greater impact on the erosion distribution of rotor blade. The erosion rate does not entirely depend on the diameter size of the solid particle.

  16. Flow of granular materials-I. Discharge rates from hoppers

    Nedderman, R.M. (Univ. of Cambridge, England); Tuezuen, U.; Savage, S.B.; Houlsby, G.T.


    This was the first of a set of three review papers on the flow of granular materials. The objective of the papers was to review the published literature in these fields. Much information was drawn from a body of unpulished work represented by internal reports of the Chemical Engineering Department at Cambridge. This paper discussed the experimental results for hopper discharge rates and the correlations of these results. Then theoretical analyses that have been advanced to explain the observations were presented. Also the effects of interstitial pressure gradients were discussed, both those that arise due to deliberate pressurization of the hopper and those caused by the dilation of the flowing material. The flow of coarse, free-flowing materials through orifices seemed to have been adequately investigated experimentally and the correlation of Beverloo or minor modifications of it appeared to predict the flow rates with acceptable precision. Some difficulties were however encountered with narrow angled conical hoppers or in cases where the orifice is close to a vertical wall. The effects of an imposed gas flow were also correlated to reasonable precision at least for modest gas flow rates. Though the correlations seemed satisfactory, there was no really adequate theoretical explanations of the observations. Several theories exist that give qualitative trends in accord with obsrvation but there is no theory that can be used without empirical adjustments of the coefficients. However, with fine particles many more difficulties are encountered. 6 figures. (DP)

  17. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro


    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  18. Ultrasonic 3-D vector flow method for quantitative in vivo peak velocity and flow rate estimation

    Holbek, Simon; Ewertsen, Caroline; Bouzari, Hamed;


    Current clinical ultrasound systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the Transverse Oscillation (TO) method, a 32 x 32 element matrix array, and the experimental ultrasound scanner SARUS...... is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames per second in a plane, and was used to estimate 3-D vector flow in a cross sectional image plane....... The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom (ø = 8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow...

  19. Computing equations of water hammer in pseudo-homogeneous solid-liquid flow and their verification

    韩文亮; 董曾南; 柴宏恩; 韩军


    In engineering practice, single-phase water hammer models are still employed to analyze the water hammer of solid-liquid flow. According to the characteristics of solid-liquid flow, continuity equations and momentum equations of pseudo-homogeneous flows are deduced, and a pseudo-homogeneous water hammer model is thus built and verified with experiment results. The characteristics of solid-liquid flow’s viscosity, resistance and wave velocity are considered in the model. Therefore, it has higher precision than a single-phase model.

  20. Estimation of Saturation Flow Rates at Signalized Intersections

    Chang-qiao Shao


    Full Text Available The saturation flow rate is a fundamental parameter to measure the intersection capacity and time the traffic signals. However, it is revealed that traditional methods which are mainly developed using the average value of observed queue discharge headways to estimate the saturation headway might lead to underestimate saturation flow rate. The goal of this paper is to study the stochastic nature of queue discharge headways and to develop a more accurate estimate method for saturation headway and saturation flow rate. Based on the surveyed data, the characteristics of queue discharge headways and the estimation method of saturated flow rate are studied. It is found that the average value of queue discharge headways is greater than the median value and that the skewness of the headways is positive. Normal distribution tests were conducted before and after a log transformation of the headways. The goodness-of-fit test showed that for some surveyed sites, the queue discharge headways can be fitted by the normal distribution and for other surveyed sites, the headways can be fitted by lognormal distribution. According to the queue discharge headway characteristics, the median value of queue discharge headways is suggested to estimate the saturation headway and a new method of estimation saturation flow rates is developed.

  1. Doppler-Based Flow Rate Sensing in Microfluidic Channels

    Liron Stern


    Full Text Available We design, fabricate and experimentally demonstrate a novel generic method to detect flow rates and precise changes of flow velocity in microfluidic devices. Using our method we can measure flow rates of ~2 mm/s with a resolution of 0.08 mm/s. The operation principle is based on the Doppler shifting of light diffracted from a self-generated periodic array of bubbles within the channel and using self-heterodyne detection to analyze the diffracted light. As such, the device is appealing for variety of “lab on chip” bio-applications where a simple and accurate speed measurement is needed, e.g., for flow-cytometry and cell sorting.

  2. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme

    Chia-Yen Lee


    Full Text Available This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD. In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5o error.

  3. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen


    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

  4. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI


    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  5. Relationship between salivary flow rates and Candida albicans counts.

    Navazesh, M; Wood, G J; Brightman, V J


    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  6. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    Stephen Seong Lee


    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ

  7. Evaluation of clogging in planted and unplanted horizontal subsurface flow constructed wetlands: solids accumulation and hydraulic conductivity reduction.

    De Paoli, André Cordeiro; von Sperling, Marcos


    This study aimed to evaluate the behaviour of two horizontal subsurface flow constructed wetland units regarding solids build up and clogging of the filter medium. In order to analyse the causes of this process, which is considered the major operational problem of constructed wetlands, studies were carried out to characterize accumulated solids and hydraulic conductivity at specific points of the beds of two wetlands (planted with Typha latifolia and unplanted units) receiving effluent from an upflow anaerobic sludge blanket reactor treating sanitary sewage (population equivalent of 50 inhabitants each unit). The experiments were performed after the units were operating for 2 years and 4 months. This study presents comparative results related to the quantification and characterization of accumulated solids and hydraulic conductivity along the length and width of the filter beds. Approximately 80% of the solids found were inorganic (fixed). Near the inlet end, the rate interstitial solids/attached solids was 5.0, while in the outlet end it was reduced to 1.5. Hydraulic conductivity was lower near the inlet of the units (as expected) and, by comparing the planted wetland with the unplanted, the hydraulic conductivity was lower in the former, resulting in larger undesired surface flow.

  8. Local overall volumetric gas-liquid mass transfer coefficients in gas-liquid-solid reversed flow jet loop bioreactor with a non-Newtonian fluid.

    Jianping; Ping; Lin; Yunlin


    The local overall volumetric gas-liquid mass transfer coefficients at the specified point in a gas-liquid-solid three-phase reversed flow jet loop bioreactor (JLB) with a non-Newtonian fluid was experimentally investigated by a transient gassing-in method. The effects of liquid jet flow rate, gas jet flow rate, particle density, particle diameter, solids loading, nozzle diameter and CMC concentration on the local overall volumetric gas-liquid mass transfer coefficient (K(L)a) profiles were discussed. It was observed that local overall K(L)a profiles in the three-phase reversed flow JLB with non-Newtonian fluid increased with the increase of gas jet flow rate, liquid jet flow rate, particle density and particle diameter, but decreased with the increase of the nozzle diameter and CMC concentration. The presence of solids at a low concentration increased the local overall K(L)a profiles, and the optimum of solids loading for a maximum profile of the local overall K(L)a was found to be 0.18x10(-3)m(3) corresponding to a solids volume fraction, varepsilon(S)=2.8%.

  9. Development of a Computational Framework on Fluid-Solid Mixture Flow Simulations for the COMPASS Code

    Zhang, Shuai; Morita, Koji; Shirakawa, Noriyuki; Yamamoto, Yuichi

    The COMPASS code is designed based on the moving particle semi-implicit method to simulate various complex mesoscale phenomena relevant to core disruptive accidents of sodium-cooled fast reactors. In this study, a computational framework for fluid-solid mixture flow simulations was developed for the COMPASS code. The passively moving solid model was used to simulate hydrodynamic interactions between fluid and solids. Mechanical interactions between solids were modeled by the distinct element method. A multi-time-step algorithm was introduced to couple these two calculations. The proposed computational framework for fluid-solid mixture flow simulations was verified by the comparison between experimental and numerical studies on the water-dam break with multiple solid rods.

  10. Burn Rate Modelling of Solid Rocket Propellants (Short Communication

    A.R. Kulkarni


    Full Text Available A generalised model of burning of a solid rocket propellant based on kinetics of propellant hasbeen developed. A complete set of variables has been formed after examining the existing models.Buckingham theorem provides the functional form of the model, such that the existing models are thesubcases of this generalised model. This proposed model has been validated by an experimental data.

  11. Improvement of the dissolution rate of silymarin by means of solid dispersions

    Li FQ; Hu JH


    Solid dispersions of silymarin were prepared by the fusion method with the intention of improving the dissolution properties of silymarin. Polyethylene glycol 6000 (PEG 6000) was used as the inert hydrophilic matrix. The dissolution studies of the solid dispersions were performed in vitro. And the results obtained showed that the dissolution rate of silymarin was considerably improved when formulated in solid dispersions with PEG 6000 as compared to original drug, and the increased dissolution rate might be favorable for further oral absorption.

  12. Debris flows and cosmogenic catchment wide denudation rates

    Kober, F.; Hippe, K.; Salcher, B.; Ivy-Ochs, S.; Kubik, P. W.; Christl, M.; Wacker, L.


    One of the basic question in alpine Quantitative Geomorphology is: Are widely measured cosmogenic nuclide-derived denudation rates in alpine catchments truly representative for the whole catchment at any given time? Or in contrast can they vary markedly in response to extreme events and perturbations? And if such perturbations affect cosmogenic nuclide-derived denudation rates then what bias can occur when such denudation rates are compared with sediment yield or thermochronological data or to various morphometric parameters, such as slope, mean elevation or uplift rates as potential controlling factors? We present 10Be and 14C results measured in sand samples from an active river channel from a single catchment (upper Aare), in the Swiss Alps (up to monthly sampling between 2008 to 2011). Our goal was to establish a time series to see if extreme events (such as landslides or debris flows) do have a discernible effect on derived denudation rates. The admixture of sediment of debris flows in 2009, originating upstream of the sampling spot, began to have a marked effect on 10Be concentrations and thus catchment wide denudation rates that are assumed to be in a long-term range mode prior to 2009. In summer of 2010, several extreme debris flows were recorded in the studied catchment. Samples taken document a doubling of denudation rates over the values determined from 2008. These cosmogenic nuclide data clearly demonstrate the impact of episodic events on sediment flux and the related perturbation of catchment wide denudation rates. We have recently expanded this dataset into 2011, with i) a spatial sub-sampling of debris flow and non-debris flow catchment compartments and ii) including again a major debris flow event in early autumn 2011. These data will be presented at the conference. Never-the-less the fact that the CWDR's only doubled does suggest a certain robustness in the method beyond a certain catchment size. In addition to the 10Be data, in situ 14C

  13. Efficiencies of flat plate solar collectors at different flow rates

    Chen, Ziqian; Furbo, Simon; Perers, Bengt;


    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  14. Kinetic assessment of measured mass flow rates and streamwise pressure distributions in microchannel gas flows

    Jing Fan; Chong Xie; Jianzheng Jiang


    Measured mass flow rates and streamwise pressure distributions of gas flowing through microchannels were reported by many researchers. Assessment of these data is crucial before they are used in the examination of slip models and numerical schemes, and in the design of microchannel elements in various MEMS devices. On the basis of kinetic solutions of the mass flow rates and pressure distributions in microchannel gas flows, the measured data available are properly normalized and then are compared with each other. The 69 normalized data of measured pressure distributions are in excellent agreement, and 67 of them are within 1 ± 0.05. The normalized data of mass flow-rates ranging between 0.95 and 1 agree well with each other as the inlet Knudsen number Kni > 0.02, but they scat ter between 0.85 and 1.15 as Kni < 0.02 with, to some extent, a very interesting bifurcation trend.

  15. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.

    M Soltani

    Full Text Available Modeling of interstitial fluid flow involves processes such as fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. To date, majority of microvascular flow modeling has been done at different levels and scales mostly on simple tumor shapes with their capillaries. However, with our proposed numerical model, more complex and realistic tumor shapes and capillary networks can be studied. Both blood flow through a capillary network, which is induced by a solid tumor, and fluid flow in tumor's surrounding tissue are formulated. First, governing equations of angiogenesis are implemented to specify the different domains for the network and interstitium. Then, governing equations for flow modeling are introduced for different domains. The conservation laws for mass and momentum (including continuity equation, Darcy's law for tissue, and simplified Navier-Stokes equation for blood flow through capillaries are used for simulating interstitial and intravascular flows and Starling's law is used for closing this system of equations and coupling the intravascular and extravascular flows. This is the first study of flow modeling in solid tumors to naturalistically couple intravascular and extravascular flow through a network. This network is generated by sprouting angiogenesis and consisting of one parent vessel connected to the network while taking into account the non-continuous behavior of blood, adaptability of capillary diameter to hemodynamics and metabolic stimuli, non-Newtonian blood flow, and phase separation of blood flow in capillary bifurcation. The incorporation of the outlined components beyond the previous models provides a more realistic prediction of interstitial fluid flow pattern in solid tumors and surrounding tissues. Results predict higher interstitial pressure, almost two times, for realistic model compared to the simplified model.

  16. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810)

    Schram, E.; Verdegem, M.C.J.; Widjaja, R.T.O.B.H.; Kloet, C.J.; Foss, A.; Schelvis-Smit, A.A.M.


    The effect of flow rate on growth was investigated in juvenile turbot. Fish with a mean (SD) initial weight of 102 (10.4) g were reared at 6 different flow rates, equaling 1, 2, 3, 4, 6 or 8 tank volumes/h in 196 L tanks during 29 days at 18 ± 0.29 °C, a salinity of 18.0 ± 0.77¿ and a pH ranging

  17. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    Stephen Seong Lee


    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ

  18. Controlling Surface Roughness to Enhance Mass Flow Rates in Nanochannels

    Zimon, Malgorzata; Emerson, David; Reese, Jason


    A very active field of research in fluid mechanics and material science is predicting the behavior of Newtonian fluids flowing over porous media with different wettabilities. Opposite effects have been observed: some state that wall roughness always suppresses fluid-slip, whereas others show that for some cases roughness may reduce the surface friction. In this work, MD simulations were carried out to further investigate physical mechanisms for liquid slip, and factors affecting it. A rough wall was formed by either periodically spaced rectangular protrusions or was represented by a cosine wave. The MD simulations were conducted to study Poiseuille and Couette flow of liquid argon in a nanochannel with hydrophilic kryptonian walls. The effect of wall roughness and interface wettability on the streaming velocity, and the slip-length at the walls, is observed to be significant. Our results show a dependency of mass flow rate on the type of flow and topography of the channel walls. For a fixed magnitude of the driving force, an increase in the mass flow rate, compared to the smooth surface, was observed for the wavy roughness, whereas the opposite effect was observed for Couette flow where a higher slip was obtained for rectangular gaps. The study is funded in the UK by the Engineering and Physical Sciences Research Council.

  19. Effects of argon gas flow rate on laser-welding.

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro


    The purpose of this study was to evaluate the effects of the rate of argon gas flow on joint strength in the laser-welding of cast metal plates and to measure the porosity. Two cast plates (Ti and Co-Cr alloy) of the same metal were abutted and welded together. The rates of argon gas flow were 0, 5 and 10 L/min for the Co-Cr alloy, and 5 and 10 L/min for the Ti. There was a significant difference in the ratio of porosity according to the rate of argon gas flow in the welded area. Argon shielding had no significant effect on the tensile strength of Co-Cr alloy. The 5 L/min specimens showed greater tensile strength than the 10 L/min specimens for Ti. Laser welding of the Co-Cr alloy was influenced very little by argon shielding. When the rate of argon gas flow was high, joint strength decreased for Ti.

  20. Assessment of salivary flow rate: biologic variation and measure error.

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.


    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated measurem

  1. Flow electrochemical biosensors based on enzymatic porous reactor and tubular detector of silver solid amalgam

    Josypčuk, Bohdan, E-mail: [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Barek, Jiří [Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic); Josypčuk, Oksana [J. Heyrovský Institute of Physical Chemistry of AS CR, v.v.i., Department of Biophysical Chemistry, Dolejskova 3, Prague (Czech Republic); Charles University in Prague, Faculty of Science, University Center of Excellence UNCE “Supramolecular Chemistry”, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Albertov 6, CZ-128 43 Prague 2 (Czech Republic)


    Graphical abstract: -- Highlights: •Flow amperometric enzymatic biosensor was constructed. •The biosensor is based on a reactor of a novel material – porous silver solid amalgam. •Tubular amalgam detector was used for determination of decrease of O{sub 2} concentration. •Covalent bonds amalgam−thiol−enzyme contributed to the sensor long-term stability. •LOD of glucose was 0.01 mmol L{sup −1} with RSD = 1.3% (n = 11). -- Abstract: A flow amperometric enzymatic biosensor for the determination of glucose was constructed. The biosensor consists of a flow reactor based on porous silver solid amalgam (AgSA) and a flow tubular detector based on compact AgSA. The preparation of the sensor and the determination of glucose occurred in three steps. First, a self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed at the porous surface of the reactor. Second, enzyme glucose oxidase (GOx) was covalently immobilized at MUA-layer using N-ethyl-N′-(3-dimethylaminopropyl) carboimide and N-hydroxysuccinimide chemistry. Finally, a decrease of oxygen concentration (directly proportional to the concentration of glucose) during enzymatic reaction was amperometrically measured on the tubular detector under flow injection conditions. The following parameters of glucose determination were optimized with respect to amperometric response: composition of the mobile phase, its concentration, the potential of detection and the flow rate. The calibration curve of glucose was linear in the concentration range of 0.02–0.80 mmol L{sup −1} with detection limit of 0.01 mmol L{sup −1}. The content of glucose in the sample of honey was determined as 35.5 ± 1.0 mass % (number of the repeated measurements n = 7; standard deviation SD = 1.2%; relative standard deviation RSD = 3.2%) which corresponds well with the declared values. The tested biosensor proved good long-term stability (77% of the current response of glucose was retained after 35 days)

  2. Proposed method for measurement of flow rate in turbulent periodic pipe flow

    Werzner, E.; Ray, S.; Trimis, D.


    The present investigation deals with a previously proposed flow metering technique for laminar, fully-developed, time-periodic pipe flow. Employing knowledge of the pulsation frequency-dependent relationship between the mass flow rate and the pressure gradient, the method allows reconstruction of the instantaneous mass flow rate on the basis of a recorded pressure gradient time series. In order to explore if the procedure can be extended for turbulent flows, numerical simulations for turbulent, fully-developed, sinusoidally pulsating pipe flow with low pulse amplitude have been carried out using a ν2-f turbulence model. The study covers pulsation frequencies, ranging from the quasi-steady up to the inertia-dominated frequency regime, and three cycle-averaged Reynolds numbers of 4360, 9750 and 15400. After providing the theoretical background of the flow rate reconstruction principle, the numerical model and an experimental facility for the verification of simulations are explained. The obtained results, presented in time and frequency domain, show good agreement with each other and indicate a frequency dependence, similar to that used for the signal reconstruction for laminar flows. A modified dimensionless frequency definition has been introduced, which allows a generalised representation of the results considering the influence of Reynolds number.

  3. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.


    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  4. Nanoparticle transport in water-unsaturated porous media: effects of solution ionic strength and flow rate

    Prédélus, Dieuseul; Lassabatere, Laurent; Louis, Cédric; Gehan, Hélène; Brichart, Thomas; Winiarski, Thierry; Angulo-Jaramillo, Rafael


    This paper presents the influence of ionic strength and flow on nanoparticle (NP) retention rate in an unsaturated calcareous medium, originating from a heterogeneous glaciofluvial deposit of the region of Lyon (France). Laboratory columns 10 cm in diameter and 30 cm in length were used. Silica nanoparticles (Au-SiO2-FluoNPs), with hydrodynamic diameter ranging from 50 to 60 nm and labeled with fluorescein derivatives, were used to simulate particle transport, and bromide was used to characterize flow. Three flow rates and five different ionic strengths were tested. The transfer model based on fractionation of water into mobile and immobile fractions was coupled with the attachment/detachment model to fit NPs breakthrough curves. The results show that increasing flow velocity induces a decrease in nanoparticle retention, probably as the result of several physical but also geochemical factors. The results show that NPs retention increases with ionic strength. However, an inversion of retention occurs for ionic strength >5.10-2 M, which has been scarcely observed in previous studies. The measure of zeta potential and DLVO calculations show that NPs may sorb on both solid-water and air-water interfaces. NPs size distribution shows the potential for nanoparticle agglomeration mostly at low pH, leading to entrapment in the soil pores. These mechanisms are highly sensitive to both hydrodynamic and geochemical conditions, which explains their high sensitivity to flow rates and ionic strength.

  5. Mixed convection boundary-layer flow about an isothermal solid sphere in a nanofluid

    Tham, L [Faculty of Agro Industry and Natural Resources, Universiti Malaysia Kelantan, Kelantan (Malaysia); Nazar, R [School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor (Malaysia); Pop, I, E-mail: [Faculty of Mathematics, University of Cluj, Cluj (Romania)


    The steady mixed convection boundary-layer flow of a nanofluid about a solid sphere with constant surface temperature has been studied for cases of both assisting and opposing flows. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme known as the Keller-box method. The solutions for the flow and heat-transfer characteristics are evaluated numerically for various values of the parameters, namely the nanoparticle volume fraction {psi} and the mixed convection parameter {lambda} at Prandtl numbers Pr=0.7 and 6.2. The three different types of nanoparticles considered are Al{sub 2}O{sub 3}, Cu and TiO{sub 2}, using water-based fluid with Pr=6.2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction {psi} increases, the skin friction coefficient and the heat-transfer rate at the surface also increase. This leads to an increase in the value of the mixed convection parameter {lambda}, which at first gives no separation.

  6. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法


    Heat transfer between gas-solid multiphase flow and tubes occurs in many industry processes, such as circulating fluidized bed process, pneumatic conveying process, chemical process, drying process, etc. (This paper focuses on the influence of the presence of particles on the heat transfer between a tube and gas-solid sus-pension. The presence of particles causes positive enhancement of heat transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low soliding ratio (Ms of less than 0.05 kg/kg). A usefial correlation ineorpomting solid lolling ratio, particle size and flow Reytmlds number was derived from experimental data. In addition, the κ-ε two-equation model and the Fluctuation-Spectrum-Random-Trajectory Model (FSRT Model) are used to simulate the flow field and heat transit of the gas-phase and the solid-phase, respectively. Through coupling of the two phases the model can predict the local and total heat transfer characteristics of tube in gas-solid cross flow. For the total heat transfer enhancement due to particles loading the model predictions agreed well wih experimental data.

  7. Effect of particle loading on heat transfer enhancement in a gas-solid suspension cross flow

    周劲松; 骆仲泱; 高翔; 倪明江; 岑可法


    Heat transfer between gas-solid multiphase flow and tubes occurs in m a ny industry processes, such as circulating fluidized bed process, pneumatic conv eying process, chemical process, drying process, etc. This paper focuses on the influence of the presence of particles on the heat transfer between a tube and g as-solid suspension. The presence of particles causes positive enhancement of h e at transfer in the case of high solid loading ratio, but heat transfer reduction has been found for in the case of very low solid loading ratio (Ms of les s than 0.05 kg/kg). A useful correlation incorporating solid loading ratio, particle s ize and flow Reynolds number was derived from experimental data. In addition, th e k-ε two-equation model and the Fluctuation-Spectrum- Random-Trajecto ry Model ( FSRT Model) are used to simulate the flow field and heat transfer of the gas-ph a se and the solid-phase, respectively. Through coupling of the two phases the mo d el can predict the local and total heat transfer characteristics of tube in gas - solid cross flow. For the total heat transfer enhancement due to particles loadi ng the model predictions agreed well with experimental data.

  8. Optimization of a new flow design for solid oxide cells using computational fluid dynamics modelling

    Duhn, Jakob Dragsbæk; Jensen, Anker Degn; Wedel, Stig;


    Design of a gas distributor to distribute gas flow into parallel channels for Solid Oxide Cells (SOC) is optimized, with respect to flow distribution, using Computational Fluid Dynamics (CFD) modelling. The CFD model is based on a 3d geometric model and the optimized structural parameters include...

  9. Process Measurement Deviation Analysis for Flow Rate due to Miscalibration

    Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)


    An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.

  10. Internal Flow Simulation of High-Performance Solid Rockets using a k-ωTurbulence Model



    @@ For technological reasons many high-performance solid rocket motors are made from segmented propellant grains with non-uniform port geometry. In this paper parametric studies have been carried out to examine the geometric dependence of transient flow features in solid rockets with non-uniform ports. Numerical computations have been carried out in an inert simulator of solid propellant rocket motor with the aid of a standard k-ω turbulence model. It was seen that the damping of the temperature fluctuation is faster in solid rocket with convergent port than with divergent port geometry. We inferred that the damping of the flow fluctuations using the port geometry is a meaningful objective for the suppression and control of the instability and/or pressure/thrust oscillations during the starting transient of solid rockets.

  11. Coupling Analysis of Fluid-Structure Interaction and Flow Erosion of Gas-Solid Flow in Elbow Pipe

    Hongjun Zhu; Hongnan Zhao; Qian Pan; Xue Li


    A numerical simulation has been conducted to investigate flow erosion and pipe deformation of elbow in gas-solid two-phase flow. The motion of the continuous fluid phase is captured based on calculating three-dimensional Reynolds-averaged-Navier-Stokes (RANS) equations, while the kinematics and trajectory of the discrete particles are evaluated by discrete phase model (DPM), and a fluid-structure interaction (FSI) computational model is adopted to calculate the pipe deformation. The effects o...

  12. Universal and non-universal features in coarse-grained models of flow in disordered solids.

    Nicolas, Alexandre; Martens, Kirsten; Bocquet, Lydéric; Barrat, Jean-Louis


    We study the two-dimensional (2D) shear flow of amorphous solids within variants of an elastoplastic model, paying particular attention to spatial correlations and time fluctuations of, e.g., local stresses. The model is based on the local alternation between an elastic regime and plastic events during which the local stress is redistributed. The importance of a fully tensorial description of the stress and of the inclusion of (coarse-grained) convection in the model is investigated; scalar and tensorial models yield similar results, while convection enhances fluctuations and breaks the spurious symmetry between the flow and velocity gradient directions, for instance when shear localisation is observed. Besides, correlation lengths measured with diverse protocols are discussed. One class of such correlation lengths simply scale with the spacing between homogeneously distributed, simultaneous plastic events. This leads to a scaling of the correlation length with the shear rate as γ̇(-1/2) in 2D in the athermal regime, regardless of the details of the model. The radius of the cooperative disk, defined as the near-field region in which plastic events induce a stress redistribution that is not amenable to a mean-field treatment, notably follows this scaling. On the other hand, the cooperative volume measured from the four-point stress susceptibility and its dependence on the system size and the shear rate are model-dependent.

  13. Interaction of a decaying vortex ring with a rotational background flow bounded by a solid wall

    Ishii, K.; Liu, C. H.


    The interaction between a vortex ring of finite strength and an axisymmetric rotational background flow bounded by a solid wall is studied by a singular perturbation method. The analysis is carried out by combining a composite solution of a vortex ring and an unsteady Navier-Stokes solution for the background rotational flow. Using the method of averaging, numerical scheme is developed to obtain a Navier-Stokes solution in which the grid and time-step sizes depend solely on the length and velocity scales of the background flow. Numerical results are presented to illustrate the separation of the boundary layer on a solid wall and its interaction with the vortex ring.

  14. Performance analysis on solid-liquid mixed flow in a centrifugal pump

    Ning, C.; Wang, Y.


    In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction

  15. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    Xie, Jianyu; Yu, Bo; Zhang, Xinyu; Shao, Qianqian; Song, Xianzhi


    A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilli...

  16. Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion

    Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa


    A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.

  17. Droplet entrainment rate in gas-liquid annular flow

    Sawant, P. [Energy Research Inc., Rockville, Maryland (United States); Liu, Y.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States); Mori, M. [Tokyo Electric Power Co., Inc., Yokohama (Japan); Chen, S. [Purdue Univ., West Lafayette, Indiana (United States)


    Droplet entrainment and deposition are the two most important physical phenomena in the gas-liquid annular two-phase flow. Modeling of these phenomena is essential for the estimation of dryout margins in the Light Water Reactors (LWRs) and the boilers. In this study, gas-liquid annular two-phase flow experiments are performed in a vertical round tube test section under adiabatic conditions. Air-water and organic fluid Freon-113 are used as the test fluids. The experiments covered a wide range of pressure and flow conditions. Liquid film extraction technique was used for the measurement of droplet entrainment and deposition rates. Additionally, the thickness of liquid film was measured in the air-water experiments using the ring type conductance probes. In this paper, the experimental data on entrainment rate is used to analyze the currently available correlations in the literature. The analysis showed that the existing correlations failed to predict the data at high gas velocity conditions. At high gas velocity, the experimental entrainment rate approaches a maximum limiting value; however, the correlations predicted continuously increasing entrainment rate as the gas velocity increases. (author)

  18. Vacuum rated flow controllers for inert gas ion engines

    Pless, L. C.


    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  19. Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels

    Chakraborty, Suman; Ray, Subhashis


    The present study is directed towards devising a scientific strategy for obtaining controlled time-periodic mass flow-rate characteristics through the employment of pulsating electric fields in circular microchannels by exploiting certain intrinsic characteristics of periodic electro-osmosis phenomenon. Within the assumption of thin electrical double layers, the governing equations for potential distribution and fluid flow are derived, corresponding to a steady base state and a time-varying perturbed state, by assuming periodic forms of the imposed electrical fields and the resultant velocity fields. For sinusoidal pulsations of the electric field superimposed over its mean, a signature map depicting the amplitudes of the mass flow rate and the electrical field as well as their phase differences is obtained from the theoretical analysis as a function of a nondimensional frequency parameter for different ratios of the characteristic electric double layer thickness relative to the microchannel radius. Distinctive characteristics in the signature profiles are obtained for lower and higher frequencies, primarily attributed to the finite time scale for momentum propagation away from the walls. The signature characteristics, obtained from the solution of the prescribed sinusoidal electric field, are subsequently used to solve the "inverse" problem, where the mass flow rate is prescribed in the form of sinusoidal pulsations and the desired electric fields that would produce the required mass flow-rate variations are obtained. The analysis is subsequently extended for controlled triangular and trapezoidal pulsations in the mass flow rate and the required electric fields are successfully obtained. It is observed that the higher the double layer thickness is in comparison to the channel radius, the more prominent is the deviation of the shape of the required electric field pulsation from the desired transience in the mass flow-rate characteristics. Possible extensions of the

  20. Automatic Stand Modeling of Casting Rate Influence on Solid Phase Growth of Round Ingot inside Crystallizer

    A. N. Chichko


    Full Text Available The method of calculation and results of computer dynamics modeling of solid ingot skin in a crystallizer are presented in the paper. The paper shows influence of ingot drawing rate on dynamics of solid ingot skin growth in the continuous casting machine at steel grades used at Republic Unitary Enterprise «Belarussian Metallurgical Works» (BMZ.

  1. Humid storage conditions increase the dissolution rate of diazepam from solid dispersions prepared by melt agglomeration

    Jørgensen, Anna Cecilia; Torstenson, Anette Seo


    The purpose of this study is to investigate the effect of cooling mode and storage conditions on the dissolution rate of a solid dispersion prepared by melt agglomeration. The aim has been to relate this effect to the solid state properties of the agglomerates. The cooling mode had an effect on t...


    Bing Du; W. Warsito; Liang-Shih Fan


    The electrical capacitance tomography (ECT) with neural network multi-criteria image reconstruction technique (NN-MOIRT) is developed for real time imaging of a gas-solid fluidized bed using FCC particles with evaporative liquid injection. Some aspects of the fundamental characteristics of the gas-solid flow with evaporative liquid injection,including real time and time averaged cross-sectional solids concentration distributions, the cross-sectional solids concentration fluctuations and the quasi-3D flow structures are studied. A two-region model and a direct image calculation are proposed to describe the dynamic behavior in both the bubble/void phase and the emulsion phase based on the tomographic images. Comparisons are made between the fundamental behaviors of the gas-solid flows with and without evaporative liquid injection for various gas velocities ranging from bubbling to turbulent fiuidization regimes. Significant differences are observed in the behavior of the gas-solid flow with the evaporative liquid injection compared to the fluidized bed without liquid injection.

  3. Effects of flow and water chemistry on lead release rates from pipe scales.

    Xie, Yanjiao; Giammar, Daniel E


    Lead release from pipe scales was investigated under different water compositions, stagnation times, and flow regimes. Pipe scales containing PbO(2) and hydrocerussite (Pb(3)(OH)(2)(CO(3))(2)) were developed on lead pipes by conditioning the pipes with water containing free chlorine for eight months. Water chemistry and the composition of the pipe scales are two key factors affecting lead release from pipe scales. The water rarely reached equilibrium with pipe scales within one day, which makes solid-water contact time and corrosion product dissolution rates the controlling factors of lead concentrations for the conditions tested. Among five water compositions studied, a solution with orthophosphate had the lowest dissolved lead release rate and highest particulate lead release rate. Free chlorine also decreased the dissolved lead release rate at stagnant conditions. Water flow increased rates of release of both dissolved and particulate lead by accelerating the mass transfer of lead out of the porous pipe scales and by physically destabilizing pipe scales. Dissolved lead comprised the majority of the lead released at both stagnant and laminar flow conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Variation analysis of flow rate delivered using a blister pump

    Selvakumar, Sivesh; Linares, Rodrigo; Oppenheimer, Aaron; Anthony, Brian


    Components for on-chip storage and delivery of liquid reagent are necessary for many commercial applications of lab-on- a-chip technology. One such system uses a 'blister-pack' that is pushed by an actuator. This paper explores the sensitivity of the flow rate produced by a blister-actuator pair to the expected manufacturing variations in its dimensions. A numerical model of the blister-actuator pair is developed and the tool of Variation Simulation Modeling (VSM) is used to determine the robustness of fluid delivery. For a flow-rate requirement of +/- 10%, the number of out-of-spec parts is found to be less than 0.01%. The critical dimensions that need to be controlled to improve robustness are also identified.

  5. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm{sup 2} at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode.

  6. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric


    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  7. Innovative model-based flow rate optimization for vanadium redox flow batteries

    König, S.; Suriyah, M. R.; Leibfried, T.


    In this paper, an innovative approach is presented to optimize the flow rate of a 6-kW vanadium redox flow battery with realistic stack dimensions. Efficiency is derived using a multi-physics battery model and a newly proposed instantaneous efficiency determination technique. An optimization algorithm is applied to identify optimal flow rates for operation points defined by state-of-charge (SoC) and current. The proposed method is evaluated against the conventional approach of applying Faraday's first law of electrolysis, scaled to the so-called flow factor. To make a fair comparison, the flow factor is also optimized by simulating cycles with different charging/discharging currents. It is shown through the obtained results that the efficiency is increased by up to 1.2% points; in addition, discharge capacity is also increased by up to 1.0 kWh or 5.4%. Detailed loss analysis is carried out for the cycles with maximum and minimum charging/discharging currents. It is shown that the proposed method minimizes the sum of losses caused by concentration over-potential, pumping and diffusion. Furthermore, for the deployed Nafion 115 membrane, it is observed that diffusion losses increase with stack SoC. Therefore, to decrease stack SoC and lower diffusion losses, a higher flow rate during charging than during discharging is reasonable.

  8. A correction to collision rates of droplets in turbulent flows

    Zhang, Huang


    This paper makes a correction to the collision rates of small droplets in turbulent fluid derived by Saffman and Turner(1956). Not only the distortion but also the rotation of the fluid is taken into account between two close droplets. A rotation reference is fixed on one drop, and the fluxes of the other drops moving towards the fixed one are carried out based on this new reference. The behaviors of turbulent flow are analyzed within the smallest eddies under the rotation reference, and a correction is made to the collision rates by multiplying a factor sqrt(2).

  9. Reactive Gas Solids Flow in Circulating Fluidised Beds

    Hjertager, Bjørn Helge; Solberg, Tron; Hansen, Kim Granly


    Progress in modelling and simulation of flow processes in gas/particle systems carried out at the authors? research group are presented. Emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi fluid techniques. Turbulence modelling strategies for gas/pa...

  10. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  11. Relationship between Formation Water Rate, Equivalent Penetration Rate and Volume Flow Rate of Air in Air Drilling

    Wang Kexiong; Zhang Laibin; Jiang Hongwei


    Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper,the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.

  12. Application of validated radiation model in flame spread rate over solid fuels

    Ivisic, Ivan

    In this thesis the radiative effects of opposed flow flames spreading over solid fuels are discussed as well as the coupling of a radiation and CFD program. The coupled programs are used to show the radiative heat transfer mechanisms and how they affect the flame globally. A radiation program is used to calculate radiation properties of the flame such as the heat flux distribution, net heat flow, and mean Plank absorptivity constant for a particular flame. The radiation program imports the temperature fields from a CFD program. Trends in the mean Plank absorptivity constant with varying ambient conditions are analyzed and an application of the radiation program to simulate a physical radiometer is demonstrated for a test case. The CFD program can import radiation results to help improve the accuracy of the simulation. A script was written to automate the update process to produce more accurate results for flame simulations. Flux distributions, stability and relative error are analyzed to show the coupled programs are producing results within an acceptable error. Trends in error and stability are discussed and stable regions with low enough error are determined. The coupled programs are used to gather data on flame spread rate and find differences in flame structure and properties of neglecting certain radiation mechanisms. No radiation included produced the hottest fastest moving flame, while no gas to surface radiation produced the coolest flame. Including the gas to surface radiation produced a slightly hotter faster moving flame. This trend was studied across different opposed flow velocities and sample widths. The radiative heat fluxes are analyzed for the cases as well. All the flame simulations in this thesis were run for a microgravity, 21% oxygen, and PMMA fuel.

  13. PIV Measurements of Turbulent Flow in a Channel with Solid or Perforated Ribs

    Wang, Lei; Salewski, Mirko; Sundén, Bengt


    Particle image velocimetry measurements are performed in a channel with periodic ribs on one wall. We investigate the flow around two different rib configurations: solid and perforated ribs with a slit. The ribs obstruct the channel by 20% of its height and are arranged 10 rib heights apart....... For the perforated ribs, the slit height is 20% of the rib height, and the open-area ratio is 16%. We discuss the flow in terms of mean velocity, streamlines, vorticity, turbulence intensity, and Reynolds shear stress. We find that the recirculation bubbles after the perforated ribs are significantly smaller than...... those after the solid ribs. The reattachment length after perforated ribs is smaller by about 45% compared with the solid ribs. In addition, the Reynolds shear stresses around the perforated ribs are significantly smaller than in the solid rib case, leading to a reduction of the pressure loss...

  14. Lagrangian simulation of deposition of CO2 gas-solid sudden expansion flow


    Freezing and blockage resulting from the deposition of solid CO2 formed because of sudden expansion of the downstream pipe during the release of CO2 through safety valves,will endanger the protected equipment.To overcome this problem,the characteristics of the CO2 gas-solid sudden expansion flow are studied by using the disperse Lagrangian model.A comparison of the calculated deposition of the solid CO2 with the experimental results shows that they are in reasonable agreement.The simulation results show that the size of the solid CO2 formed should not be in the range of 0.04-0.07 mm (St number 3.2-9.8).This can be achieved by using an appropriate flow cross section of the safety valve.

  15. Scaling laws for gas-solid riser flow through two-fluid model simulation

    P.R. Naren; Vivek. V. Ranade


    Scale up of gas-solid circulating fluidized bed (CFB) risers poses many challenges to researchers. In this paper, CFD investigation of hydrodynamic scaling laws for gas-solid riser flow was attempted on the basis of two-fluid model simulations, in particular, the recently developed empirical scaling law of Qi, Zhu,and Huang (2008). A 3D computational model with periodic boundaries was used to perform numerical experiments and to study the effect of various system and operating parameters in hydrodynamic scaling of riser flow. The Qi scaling ratio was found to ensure similarity in global parameters like overall crosssectional average solid holdup or pressure drop gradient. However, similarity in local flow profiles was not observed for all the test cases. The present work also highlighted the significance of error bars in reporting experimental values.

  16. Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow


    Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.

  17. CFD Simulations of Oscillating Flow around Solid and Perforated Plates


    Damping plates have been used for truss spars in gulf of Mexico to reduce the heave motions. The plates are usually perforated with holes for the passage of marine risers, but the effects of the perforation have not been examined thoroughly. In the present study, a computational fluid dynamics investigation into the hydrodynamic forces is carried out by using FLUENT, which is on two-dimensional perforated plates with varying degrees of perforation in oscillating flow under small Keulegan-Carpenter (KC) number. The numerical results of the hydrodynamic coefficients are presented. The effects of both the perforation ratio (PR) and KC number on the hydrodynamic coefficients of the plates are discussed. Some results of the simulated flow patterns around the plates were also given and discussed.

  18. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas


    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  19. The discrete multi-hybrid system for the simulation of solid-liquid flows.

    Alessio Alexiadis

    Full Text Available This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling, flow conditions (confined, free-surface, microscopic, and scales (from microns to meters. Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow.

  20. Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows

    唐学林; 徐宇; 吴玉林


    The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.

  1. Entrained Flow Reactor Study of K-Capture by Solid Additives

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao


    A method to simulate the reaction between gaseous K-species and solid additives, at suspension fired conditions has been developed, using an entrained flow reactor (EFR). A water slurry containing solid additives (kaolin or coal fly ash) and KCl, is injected into the EFR and the solid products...... are collected from the cyclone and filter. The K-capture reaction is evaluated by determining the fraction of water-insoluble K in the products. The results showed that KCl can effectively be captured by kaolin and coal fly ash, forming water-insoluble K-aluminosilicates. The amount of K, captured per gram...

  2. SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows

    Canelas, Ricardo B.; Crespo, Alejandro J. C.; Domínguez, Jose M.; Ferreira, Rui M. L.; Gómez-Gesteira, Moncho


    A unified discretization of rigid solids and fluids is introduced, allowing for resolved simulations of fluid-solid phases within a meshless framework. The numerical solution, attained by Smoothed Particle Hydrodynamics (SPH) and a variation of Discrete Element Method (DEM), the Distributed Contact Discrete Element Method (DCDEM) discretization, is achieved by directly considering solid-solid and solid-fluid interactions. The novelty of the work is centred on the generalization of the coupling of the DEM and SPH methodologies for resolved simulations, allowing for state-of-the-art contact mechanics theories to be used in arbitrary geometries, while fluid to solid and vice versa momentum transfers are accurately described. The methods are introduced, analysed and discussed. Initial validations on the DCDEM and the fluid coupling are presented, drawing from test cases in the literature. An experimental campaign serves as a validation point for complex, large scale solid-fluid flows, where a set of blocks in several configurations is subjected to a dam-break wave. Blocks are tracked and positions are then compared between experimental data and the numerical solutions. A Particle Image Velocimetry (PIV) technique allows for the quantification of the flow field and direct comparison with numerical data. The results show that the model is accurate and is capable of treating highly complex interactions, such as transport of debris or hydrodynamic actions on structures, if relevant scales are reproduced.

  3. Rate Control Protocol for Fast Flows: A Survey

    Mr. Gaganpreet Singh,


    Full Text Available In today’s world, congestion control is a main objective to maximize fairness, utilization and throughput of the Internet. Every protocol has its own features to handle the congestion. The most widely used protocol over the Internet is Transfer Control Protocol. It aims at reliable and in order delivery of bytes to the higher layer and it also protect the network from congestive control. Other congestion control protocols are XCP and RCP. These new protocols are advancement over TCP. We study new congestion control protocol like Rate Control Protocol that make flows complete frequently as compared to TCP and other version of TCP and XCP. In this paper we have presented a comparison between TCP, XCP and RCP, which shows that RCP is a superior choice to use over the Internet to make flows complete quickly


    H.; Zhang; J.-X.; Zhu


    In a 9.3 m high and 0.10 m i.d. gas-solids downflow fluidized bed (downer), the radial and axial distributions of the local solids holdups and particle velocities along the downer column were measured with the superficial gas velocity set to zero. A unique gas-solids flow structure was found in the downer system with zero gas velocity, which is completely different from that under conditions with higher gas velocities, in terms of its radial and axial flow structures as well as its micro flow structure. The gas-solids flow pattern under zero gas velocity conditions, together with that under low gas velocity conditions, can be considered as a special regime which differs from that under higher gas velocity conditions. According to the hydrodynamic properties of the two regimes, they can be named the "dense annulus" regime for the flow pattern under zero or low gas velocity conditions and the "dense core" regime for that under higher gas velocity conditions.

  5. Granular-flow rheology: Role of shear-rate number in transition regime

    Chen, C.-L.; Ling, C.-H.


    This paper examines the rationale behind the semiempirical formulation of a generalized viscoplastic fluid (GVF) model in the light of the Reiner-Rivlin constitutive theory and the viscoplastic theory, thereby identifying the parameters that control the rheology of granular flow. The shear-rate number (N) proves to be among the most significant parameters identified from the GVF model. As N ??? 0 and N ??? ???, the GVF model can reduce asymptotically to the theoretical stress versus shear-rate relations in the macroviscous and graininertia regimes, respectively, where the grain concentration (C) also plays a major role in the rheology of granular flow. Using available data obtained from the rotating-cylinder experiments of neutrally buoyant solid spheres dispersing in an interstitial fluid, the shear stress for granular flow in transition between the two regimes proves dependent on N and C in addition to some material constants, such as the coefficient of restitution. The insufficiency of data on rotating-cylinder experiments cannot presently allow the GVF model to predict how a granular flow may behave in the entire range of N; however, the analyzed data provide an insight on the interrelation among the relevant dimensionless parameters.

  6. Advanced Flow Analysis Tools for Transient Solid Rocket Motor Simulations Project

    National Aeronautics and Space Administration — The challenges of designing, developing, and fielding man-rated propulsion systems continue to increase as NASA's mission moves forward with evolving solid...

  7. CFD Simulation of Liquid-solid Multiphase Flow in Mud Mixer

    T.Y. Kim


    Full Text Available In the present study, a computational fluid dynamics (CFD simulation was performed to analyze the mixing phenomena associated with multi-phase flow in a mud mixing system. For the validation of CFD simulation, firstly a liquid-solid multiphase flow inside horizontal pipe was simulated and compared with the experiments and other numerical simulations. And then, the multiphase flow simulation was carried out for the mud mixer in the drilling handling system in order to understand mixing phenomena and predict the mixing efficiency. For the modeling and simulation, a commercial software, STAR-CCM+, based on a finite-volume method (FVM was adopted. The simulation results for liquid-solid flow inside the pipe shows a good agreement with the experimental data. With the same multiphase model, the simulation for mud mixer is performed under the generalized boundary condition and then pressure drop through the mud mixer will be discussed.

  8. The wall shear rate in non-Newtonian turbulent pipe flow

    Trinh, K T


    This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer

  9. Assessment of Various Flow Solvers Used to Predict the Thermal Environment inside Space Shuttle Solid Rocket Motor Joints

    Wang, Qun-Zhen; Cash, Steve (Technical Monitor)


    It is very important to accurately predict the gas pressure, gas and solid temperature, as well as the amount of O-ring erosion inside the space shuttle Reusable Solid Rocket Motor (RSRM) joints in the event of a leak path. The scenarios considered are typically hot combustion gas rapid pressurization events of small volumes through narrow and restricted flow paths. The ideal method for this prediction is a transient three-dimensional computational fluid dynamics (CFD) simulation with a computational domain including both combustion gas and surrounding solid regions. However, this has not yet been demonstrated to be economical for this application due to the enormous amount of CPU time and memory resulting from the relatively long fill time as well as the large pressure and temperature rising rate. Consequently, all CFD applications in RSRM joints so far are steady-state simulations with solid regions being excluded from the computational domain by assuming either a constant wall temperature or no heat transfer between the hot combustion gas and cool solid walls.

  10. Effect of fine solid particles on absorption rate of gaseous CO2

    Sumin LU; Youguang MA; Shuhua SHEN; Chunying ZHU


    The influence of the properties of solid particles in slurry on the absorption of CO2 in the slurry was inves-tigated in a stirred thermostatic reactor. The absorption experiments were carried out in three different slurries con-sisting of water, cyclohexane and soybean oil, respectively, and three kinds of solid particles (active carbon, active alu-mina and silica gel) were incorporated into each of the above mentioned slurries separately. The experimental results show that the active carbon particles could enhance the absorption rate of gaseous CO2 in the aqueous slurry, while in the cyclohexane slurry, active carbon particles indi-cated no the absorption enhancement effect. However, it was observed that the active alumina and silica gel particles could enhance the absorption rate of CO2 in the cyclohex-ane slurry. These phenomena indicate that the solid part-icles, which could enhance the gaseous CO2 absorption rate, should possess two properties simultaneously, i.e. they rejected the solvent and had higher adsorption capacity for the solute. The experimental results also show that, as for those solid particles which could enhance the gas absorption rate, the enhancement increased quickly with the increase of solid concentration in slurry at first, and then reached a constant value gradually. It was also found that the enhancement factor was related to the coverage fraction of solid particles on the gas-liquid interface, and due to the reduction of surface fraction with increasing stirred speed, the enhancement factor decreased.


    Muhammad; M.; R.; Qureshi; Chao; Zhu; Chao-Hsin; Lin; Liang-Shih; Fan


    A three-dimensional simulation study is performed for investigating the hydrodynamic behaviors of a cross-flow liquid nitrogen spray injected into an air-fluidized catalytic cracking (FCC) riser of rectangular cross-section. Rectangular nozzles with a fixed aspect ratio but different fan angles are used for the spray feeding. While our numerical simulation reveals a generic three-phase flow structure with strong three-phase interactions under rapid vaporization of sprays, this paper tends to focus on the study of the effect of nozzle fan angle on the spray coverage as well as vapor flux distribution by spray vaporization inside the riser flow. The gas-solid (air-FCC) flow is simulated using the multi-fluid method while the evaporating sprays (liquid nitrogen) are calculated using the Lagrangian trajectory method, with a strong two-way coupling between the Eulerian gas-solid flow and the Lagrangian trajectories of spray. Our simulation shows that the spray coverage is basically dominated by the spray fan angle. The spray fan angle has a very minor effect on spray penetration. The spray vaporization flux per unit area of spray coverage is highly non-linearly distributed along the spray penetration. The convection of gas-solid flow in a riser leads to a significant downward deviation of vapor generated by droplet vaporization, causing a strong recirculating wake region in the immediate downstream area of the spray.


    Mihaela IAVORSCHI


    Full Text Available The liberalization of capital movements between states and of the trade of goods and services, are one of the most important phenomena in the current world economy. The purpose of the present study, in the case of Romania, is to answer the question whether the interventions by means of the exchange rate of the national currency contributes to the fluidization and improvement of the commercial trades. The study demonstrates that the leu devaluation does not lead to a substantial increase of the exports. As a mechanism of influence of the commercials flows, the exchange rate has a short-term influence and the economy requires structural reforms, meant to stimulate the growth of the economic competitiveness.

  13. Characterization of Absorbent Flow Rate in Towel and Tissue

    Paul D. Beuther


    Full Text Available The quality of a paper towel is often judged based on how quickly it can wipe up a spill. However, the test methods currently available cannot repeatably measure significant differences in absorbent rate between samples. Recent round-robin testing evaluations by TAPPI and CEN organizations have shown that past methods, such as ASTM D5802-95 and TAPPI T561-pm [1], are unreliable due to high variability. The reasons for the lack of repeatability are unclear. The relation between the wicking mechanism and the fundamental absorbent properties needs to be better understood. This paper uses x-ray imaging to show the overall flow characteristics of fluid absorption within a towel, and compares the results to model predictions to show which parameters are important to the process. From this understanding, a revised test method is proposed that provides adequate statistical discernment of absorbent rate properties of tissue on a simple lab-bench scale device.

  14. The study of solid circulation rate in a compartmented fluidized bed gasifier (CFBG)

    Wee, S. K.; Pok, Y. W.; Law, M. C.; Lee, V. C. C.


    Biomass waste has been abundantly available in Malaysia since the booming of palm oil industry. In order to tackle this issue, gasification is seen a promising technology to convert waste into energy. In view of the heat requirement for endothermic gasification reaction as well as the complex design and operation of multiple fluidized beds, compartmented fluidized bed gasifier (CFBG) with the combustor and the gasifier as separate compartments is proposed. As such, solid circulation rate (SCR) is one of the essential parameters for steady gasification and combustion to be realized in their respective compartments. Experimental and numerical studies (CFD) on the effect of static bed height, main bed aeration, riser aeration and v-valve aeration on SCR have been conducted in a cold- flow CFBG model with only river sand as the fluidizing medium. At lower operating range, the numerical simulations under-predict the SCR as compared to that of the experimental results. Also, it predicts slightly different trends over the range. On the other hand, at higher operating range, the numerical simulations are able to capture those trends as observed in the experimental results at the lower operating range. Overall, the numerical results compare reasonably well with that of the experimental works.

  15. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants

    Srinarong, P.; Faber, J.H.; Visser, M.R.; Hinrichs, W.L.J.; Frijlink, H.W.


    In this study, it was shown that the incorporation of superdisintegrants in solid dispersion tablets containing a high drug load can strongly enhance the dissolution rate of the highly lipophilic drug fenofibrate. In addition, the dissolution rate was more increased when the superdisintegrant was in

  16. Hydrodynamic behaviour of a gas—solid counter-current packed column at trickle flow

    Roes, A.W.M.; Swaaij, van W.P.M.


    Trickle flow of a more or less fluidized catalyst through a packed column is a promising new gas—solid counter-current operation. The hydrodynamic, behaviour of such a column, filled with dumped PALL rings, has been investigated, while some results have been obtained with RASCHIG rings and cylindric

  17. CO2 capture in a continuous gas–solid trickle flow reactor

    Veneman, Rens; Hilbers, T.J.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.


    This paper describes the selection, design and experimental validation of a gas–solid trickle flow adsorber for post-combustion CO2 capture using a supported amine sorbents (Lewatit® VP OC 1065). The experimental work presented here summarizes over 300 h of operating experience, which is equivalent

  18. Effects of solid inertial particles on the velocity and temperature statistics of wall bounded turbulent flow

    Nakhaei, Mohammadhadi; Lessani, B.


    The effect of solid inertial particles on the velocity and temperature statistics of a non-isothermal turbulentchannel flow is studied using direct numerical simulation. The particles inertia is varied by changingthe particles diameter. The density of particles is kept constant. A two-way coupled...

  19. Free surface modeling of contacting solid metal flows employing the ALE formulation

    Stelt, van der A.A.; Bor, T.C.; Geijselaers, H.J.M.; Akkerman, R.; Huetink, J.; Merklein, M.; Hagenah, H.


    In this paper, a numerical problem with contacting solid metal flows is presented and solved with an arbitrary Lagrangian-Eulerian (ALE) finite element method. The problem consists of two domains which mechanically interact with each other. For this simulation a new free surface boundary condition i

  20. Solids removal from a coldwater recirculating system - comparison of swirl separator and radial-flow settlers

    Solids removal across two settling devices, i.e., a swirl separator and a radial-flow settler, and across a microscreen drum filter was evaluated in a fully recirculating system containing a single 150 m3 'Cornell-type' dual-drain tank during the production of food-size Arctic char and rainbow trout...

  1. Modulation on flow field by solid particles in gas-solid two-phase turbulent free shear flows


    In order to understand the interaction between fluid and particles, a two-way coupled three-dimensional mixing layer laden with particles at a Stokes number of 5 with different mass loadings is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is used to trace particles. The concept of computational particles is introduced to vary the mass loading of particles. The momentum coupling effect introduced by a particle is approximated to the point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the flow field is modulated by particles. The addition of the particles enhances the energy of all the Fourier modes with non-zero spanwise wavenumber, and the enhancement increases with the augment of the mass loading. A higher mass loading results in a lower energy at fundamental wavenumber and streamwise subharmonic Fourier mode of the fluid in the phase of Kelvin-Helmholtz rolling up, but for large-scale vortex structures pairing, the energy of the fluid increases as the mass loading increases. Similar trends can also be found in the developments of the turbulent kinetic energy and the momentum thickness.

  2. A framework for coupling flow and deformation of the porous solid

    Turner, D Z; Martinez, M J


    In this paper, we consider the flow of an incompressible fluid in a deformable porous solid. We present a mathematical model using the framework offered by the theory of interacting continua. In its most general form, this framework provides a mechanism for capturing multiphase flow, deformation, chemical reactions and thermal processes, as well as interactions between the various physics in a conveniently implemented fashion. To simplify the presentation of the framework, results are presented for a particular model than can be seen as an extension of Darcy's equation (which assumes that the porous solid is rigid) that takes into account elastic deformation of the porous solid. The model also considers the effect of deformation on porosity. We show that using this model one can recover identical results as in the framework proposed by Biot and Terzaghi. Some salient features of the framework are as follows: (a) It is a consistent mixture theory model, and adheres to the laws and principles of continuum therm...




    problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.


    Kamil Bekir KOÇ


    Full Text Available In the process of meeting the growing demand for electric power and heat, coal will play an increasingly important role in the world wide. Fluidized combustion offers a clean and relatively inexpensive method for coal combustion, a method insensitive to fuel quality and capable of reducing sulfur and nitric oxides emission. At the work, a prototype fluid bed was produced and the distance between the holes had been narrower towards to the center of the distributor sieve in order to balance the distribution of the air. Later on, the quantity of the coal was decreased continuously and at the end of the measurements, the heights of the solids and the rates of the solid had been defined and the effects of the coal quantity had been investigated.

  5. Numerical Simulation of Gas-Liquid-Solid Three-Phase Flow in Deep Wells

    Jianyu Xie


    Full Text Available A gas-liquid-solid flow model which considers the effect of the cuttings on the pressure drop is established for the annulus flow in the deep wells in this paper, based on which a numerical code is developed to calculate the thermal and flow quantities such as temperature and pressure distributions. The model is validated by field data, and its performance is compared with several commercial software. The effects of some important parameters, such as well depth, gas kick, cuttings, and drilling fluid properties, on the temperature and pressure distributions are studied.

  6. Using Arrested Solid-Solid Multiphase Reactions in Geological Materials to Deduce the Rate of Crustal Uplift

    Glassley, W.E.; Meike, A.


    The history geological terrains experience can be traced as a series of temperature and pressure changes. Each change drives the system toward a new state of thermodynamic equilibrium. The resultant overprinted rock fabrics, textures and chemical heterogeneities can be difficult to interpret. However, if carefully chosen, features from the scale of kilometers to nanometers can be used to reconstruct the history of mountain systems. Uplift of the Sri Lankan Central Highlands was rapid enough to preserve well-developed symplectite textures, some of which represent arrested solid-state diffusion-controlled reactions of garnet + O{sub 2} to form orthopyroxene + plagioclase + magnetite, as the rocks were exhumed from over 30 km in the earth's crust. Our objective has been to determine the reaction mechanisms responsible for symplectite development, and to establish the time interval over which these reactions occurred, to constrain the rate of mountain uplift. Considering that the most rapid mechanism is solid state grain-boundary diffusion of oxygen, the reaction time can be constrained by bounding the rate of oxygen supply to the reaction site. The solid state grain boundary diffusion rate of oxygen has been inferred to be ca. 10{sup -14}m{sup 2}-sec (Farver and Yund, 1991), but is sensitive to inferred grain boundary width. The range of rates thus determined allows the distinction between rapid uplift similar to that of the Himalayan Mountains, and the slow and progressive erosion of a less dramatic terrain. Further constraints on diffusion control and energetic relationships are determined from crystallographic relationships between the reactant and product phases, and submicron scale microstructure.

  7. Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor

    Salar Azizi; Dariush Mowla; Goodarz Ahmadi


    A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.

  8. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Musa, Omer; Xiong, Chen; Changsheng, Zhou


    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  9. Energy dissipation rate limits for flow through rough channels and tidal flow across topography

    Kerswell, R R


    An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...

  10. Effects of propellant composition variables on acceleration-induced burning-rate augmentation of solid propellants

    Northam, G. B.


    This work was conducted to define further the effects of propellant composition variables on the acceleration-induced burning rate augmentation of solid propellants. The rate augmentation at a given acceleration was found to be a nonlinear inverse function of the reference burning rate and not controlled by binder or catalyst type at a given reference rate. A nonaluminized propellant and a low rate double-base propellant exhibited strong transient rate augmentation due to surface pitting resulting from the retention of hot particles on the propellant surface.

  11. Development of digital flow control system for multi-channel variable-rate sprayers

    Precision modulation of nozzle flow rates is a critical step for variable-rate spray applications in orchards and ornamental nurseries. An automatic flow rate control system activated with microprocessors and pulse width modulation (PWM) controlled solenoid valves was developed to control flow rates...

  12. Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis

    Baocheng Shi


    Full Text Available For numerically simulating 3D solid-liquid turbulent flow in low specific speed centrifugal pumps, the iteration convergence problem caused by complex internal structure and high rotational speed of pump is always a problem for numeral simulation researchers. To solve this problem, the combination of three measures of dynamic underrelaxation factor adjustment, step method, and rotational velocity control means according to residual curves trends of operating parameters was used to improve the numerical convergence. Numeral simulation of 3D turbulent flow in a low specific speed solid-liquid centrifugal pump was performed, and the results showed that the improved solution strategy is greatly helpful to the numerical convergence. Moreover, the 3D turbulent flow fields in pumps have been simulated for the bottom ash-particles with the volume fraction of 10%, 20%, and 30% at the same particle diameter of 0.1 mm. The two-phase calculation results are compared with those of single-phase clean water flow. The calculated results gave the main region of the abrasion of the impeller and volute casing and improve the hydraulic design of the impeller in order to decrease the abrasion and increase the service life of the pump.

  13. Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase

    Barsky, Eugene


    This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...

  14. Succeed escape: Flow shear promotes tumbling of Escherichia colinear a solid surface

    Molaei, Mehdi; Sheng, Jian


    Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation and tumble. We have applied microfluidics and digital holographic microscopy to capture a large number (>105) of 3D Escherichia coli trajectories near a surface under various flow shear. We find that near-surface flow shear promotes cell reorientation and mitigates the tumble suppression and re-orientation confinement found in a quiescent flow, and consequently enhances surface normal bacterial dispersion. Conditional sampling suggests that two complimentary hydrodynamic mechanisms, Jeffrey Orbit and shear-induced flagella unbundling, are responsible for the enhancement in bacterial tumble motility. These findings imply that flow shear may mitigate cell trapping and prevent biofilm initiation.

  15. Numerical Simulation of a Dual Pulse Solid Rocket Motor Flow Field

    Afroz Javed


    Full Text Available Numerical simulations are carried out for the internal flow field of a dual pulse solid rocket motor port to understand the flow behaviour. Three dimensional Reynolds Averaged Navier Stokes equations are solved alongwith shear stress transport turbulence model using commercial code. The combustion gas is assumed as a mixture of alumina and gases and single phase flow calculations are done with the thermo chemical properties provided for the mixture. The simulation captures all the essential features of the flow field. The flow accelerates through the pulse separation device (PSD port and high temperature and high velocity gas is seen to impinge the motor wall near the PSD port. The overall total pressure drop through motor port and through PSD is found to be moderate.Defence Science Journal, 2012, 62(6, pp.369-374, DOI:

  16. Flow analysis of metals in a municipal solid waste management system.

    Jung, C H; Matsuto, T; Tanaka, N


    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  17. Removal of total suspended solids from wastewater in constructed horizontal flow subsurface wetlands.

    Manios, T; Stentiford, E I; Millner, P


    Subsurface horizontal flow experimental wetlands (reed beds), were designed and built based on a combination of two design methodologies, that of the WRc and Severn Trent Water plc (1996) and that of the USA, EPA (1988). Four different growing media were used with a combination of top soil, gravel, river sand, and mature sewage sludge compost, to determine the best substrate for total suspended solids (TSS) removal. Eight units were constructed, two for each growing media. One bed for each pair was planted with Typha latifolia plants commonly known as cattails. Primary treated domestic wastewater, was continuously fed to the beds for more than six months. All eight beds performed very well. The best performance was achieved by the gravel reed beds with an almost constant removal rate above 95% and an average effluent concentration of less than 10 mg/L. Soil based beds containing top soil and sand, managed to reach values of removal around 90%. The wetlands containing compost in their substrate, produced an effluent with average concentration of less than 30 mg/L and a percentage removal between 80% and 90%. As expected, there was no significant difference in the performance of planted and unplanted wetlands.

  18. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory


    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  19. Characterizing shallow secondary clarifier performance where conventional flux theory over-estimates allowable solids loading rate.

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    The performance characteristics of relatively shallow (3.3 and 3.7 m sidewater depth in 30.5 m diameter) activated sludge secondary clarifiers were extensively evaluated during a 2-year testing program at the City of Akron Water Reclamation Facility (WRF), Ohio, USA. Testing included hydraulic and solids loading stress tests, and measurement of sludge characteristics (zone settling velocity (ZSV), dispersed and flocculated total suspended solids), and the results were used to calibrate computational fluid dynamic (CFD) models of the various clarifiers tested. The results demonstrated that good performance could be sustained at surface overflow rates in excess of 3 m/h, as long as the clarifier influent mixed liquor suspended solids (MLSS) concentration was controlled to below critical values. The limiting solids loading rate (SLR) was significantly lower than the value predicted by conventional solids flux analysis based on the measured ZSV/MLSS relationship. CFD analysis suggested that this resulted because mixed liquor entering the clarifier was being directed into the settled sludge blanket, diluting it and also creating a 'thin' concentration sludge blanket that overlays the thicker concentration sludge blanket typically expected. These results indicate the need to determine the allowable SLR for shallow clarifiers using approaches other than traditional solids flux analysis. A combination of actual testing and CFD analyses are demonstrated here to be effective in doing so.

  20. Gas suspension flows of a moderately dense binary mixture of solid particles in vertical tubes

    Zamankhan, P.; Huotari, J. [VTT Energy, Jyvaeskylae (Finland). Combustion and Conversion Lab.


    The turbulent, steady, fully-developed flow of a moderately dense (solid volume faction >>0.001) binary mixture of spherical particles in a gaseous carrier is investigated for the case of flow in a vertical riser. The suspended particles are considered to be in turbulent motion, driven by random aerodynamic forces acting between the particle and the gaseous carrier as well as particle-particle interactive forces. A model is constructed based on the combination of the time-averaged after volume-averaged conservation equations of mass, momentum and mechanical energy of the gas phase in the continuum theory and the corresponding equations for the solid particles obtained using the recently developed Enskog theory for dense multi-component mixtures of slightly inelastic spherical particles. The model properly takes into account the contributions of particle-particle collisions, as well as the fluid-dynamic fluctuating forces on individual particles. To demonstrate the validity of this approach, the fully-developed steady-state mean velocity and concentration distributions of a moderately dense binary mixture of solid particles in a turbulent vertical flow calculated by the present model are compared with available experimental measurements. The results provide a qualitative description of the experimentally observed motion of coarse particles in a fast bed of fine solids. (author)

  1. Copepod feeding currents : flow patterns, filtration rates and energetics

    van Duren, LA; Stamhuis, EJ; Videler, JJ


    Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T. l

  2. Effect of Flow Characteristics in the Downstream of Butterfly Valve on the Flow Rate Measurement using Venturi Tube

    Yoon, Seok Ho; Lee, Jungho; Yu, Cheong Hwan; Park, San-Jin; Chung, Chang-Hwan


    For testing large-capacity pump, the accurate flow rate measurement is needed in the test loop. As a measuring method of flow rate, venturi tube is recommended due to its low pressure loss. However, upstream disturbance of loop component such as valve has an effect upon the accuracy of flow rate measurement. For controlling flow rate in case of high flow rate and large-scale piping system, butterfly-type valve is generally used due to its compactness. However, butterfly valve disturbs downstream flow by generating turbulence, cavities, or abrupt pressure change. In this study, the effect of downstream disturbance of butterfly valve on the flow rate measurement using venturi tube is investigated. Test loop consists of circulation pump, reservoir, butterfly valve, venturi tube, and reference flow meter. The test is conducted with regard to a different valve opening angle of butterfly valve. PIV system is used to visualize and analyze flow in the downstream region of butterfly valve. According to valve opening angle, the flow characteristics and the accuracy of flow rate measurement are investigated.

  3. Design and construction of a novel Coriolis mass flow rate meter

    Mehendale, Aditya; Zwikker, Rini; Jouwsma, Wybren


    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  4. Design and construction of a novel Coriolis mass flow rate meter

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren


    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  5. Development and characterization of solid dispersion of piroxicam for improvement of dissolution rate using hydrophilic carriers

    Mohammad Barzegar-jalali


    Full Text Available Introduction: The main objective of this study was preparation and characterization of solid dispersion of piroxicam to enhance its dissolution rate. Methods: Solid dispersion formulations with different carriers including crospovidone, microcrystalline cellulose and Elaeagnus angustifolia fruit powder and with different drug: carrier ratios were prepared employing cogrinding method. Dissolution study of the piroxicam powders, physical mixtures and solid dispersions was performed in simulated gastric fluid and simulated intestinal fluid using USP Apparatus type II. The physical characterization of formulations were analyzed using powder X ray diffraction (PXRD, particle size analyzer and differential scanning calorimetry (DSC. Interactions between the drug and carriers were evaluated by Fourier transform infrared (FT-IR spectroscopic method. Results: It was revealed that all of three carriers increase the dissolution rate of piroxicam from physical mixtures and especially in solid dispersions compared to piroxicam pure and treated powders. PXRD and DSC results were confirmed the reduction of crystalline form of piroxicam. FT-IR analysis did not show any physicochemical interaction between drug and carriers in the solid dispersion formulations. Conclusion: Dissolution rate was dependent on the type and ratio of drug: carrier as well as pH of dissolution medium. Dissolution data of formulations were fitted well in to the linear Weibull as well as non-linear logistic and a suggested models.

  6. Nonaffine deformation under compression and decompression of a flow-stabilized solid

    Ortiz, Carlos P.; Riehn, Robert; Daniels, Karen E.


    Understanding the particle-scale transition from elastic deformation to plastic flow is central to making predictions about the bulk material properties and response of disordered materials. To address this issue, we perform experiments on flow-stabilized solids composed of micron-scale spheres within a microfluidic channel, in a regime where particle inertia is negligible. Each solid heap exists within a stress field imposed by the flow, and we track the positions of particles in response to single impulses of fluid-driven compression or decompression. We find that the resulting deformation field is well-decomposed into an affine field, with a constant strain profile throughout the solid, and a non-affine field. The magnitude of this non-affine response decays with the distance from the free surface in the long-time limit, suggesting that the distance from jamming plays a significant role in controlling the length scale of plastic flow. Finally, we observe that compressive pulses create more rearrangements than decompressive pulses, an effect that we quantify using the D\\text{min}2 statistic for non-affine motion. Unexpectedly, the time scale for the compression response is shorter than for decompression at the same strain (but unequal pressure), providing insight into the coupling between deformation and cage-breaking.

  7. Online monitoring of particle mass flow rate in bottom spray fluid bed coating--development and application.

    Wang, Li Kun; Heng, Paul Wan Sia; Liew, Celine Valeria


    The primary purpose of this study is to develop a visiometric process analyzer for online monitoring of particle mass flow rate in the bottom spray fluid bed coating process. The secondary purpose is to investigate the influences of partition gap and air accelerator insert size on particle mass flow rate using the developed visiometric process analyzer. Particle movement in the region between the product chamber and partition column was captured using a high speed camera. Mean particle velocity and number of particles in the images were determined by particle image velocimetry and morphological image processing method respectively. Mass flow rate was calculated using particle velocity, number of particles in the images, particle density and size information. Particle velocity and number findings were validated using image tracking and manual particle counting techniques respectively. Validation experiments showed that the proposed method was accurate. Partition gap was found to influence particle mass flow rate by limiting the rate of solids flux into the partition column; the air accelerator insert was found to influence particle mass flow rate by a Venturi effect. Partition gap and air accelerator insert diameter needed to be adjusted accordingly in relation to the other variability sources and diameter of coating cores respectively. The potential, challenges and possible solutions of the proposed visiometric process analyzer were further discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.


    Suharso Suharso


    Full Text Available The growth rates of borax crystals from aqueous solutions in the (010 direction at various flow rates were measured. The observed variations of the growth rate can be represented by a normal distribution.  It was found that there is no correlation between growth rate distribution and solution flow under these experimental conditions.   Keywords: Growth rate dispersion (GRD, borax, flow rate

  9. Transient Burning Rate Model for Solid Rocket Motor Internal Ballistic Simulations

    David R. Greatrix


    Full Text Available A general numerical model based on the Zeldovich-Novozhilov solid-phase energy conservation result for unsteady solid-propellant burning is presented in this paper. Unlike past models, the integrated temperature distribution in the solid phase is utilized directly for estimating instantaneous burning rate (rather than the thermal gradient at the burning surface. The burning model is general in the sense that the model may be incorporated for various propellant burning-rate mechanisms. Given the availability of pressure-related experimental data in the open literature, varying static pressure is the principal mechanism of interest in this study. The example predicted results presented in this paper are to a substantial extent consistent with the corresponding experimental firing response data.

  10. Investigation and numerical simulation of inner-flow of an axial mineflow fan under low flow rate conditions

    LI Yi-min; ZHOU Zhong-ning


    Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reli-ability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investi-gated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.

  11. Experimental determination of convective heat transfer coefficients in the separated flow region of the Space Shuttle Solid Rocket Motor

    Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.


    A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.

  12. Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation

    Yan-jie Ni


    Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.

  13. Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation

    Yan-jie NI; Yong JIN; Gang WAN; Chun-xia YANG; Hai-yuan LI; Bao-ming LI


    A 30 mm electrothermal-chemical (ETC) gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR) of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt) is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley’s modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt) and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.

  14. A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows

    Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.


    In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme

  15. Calculation of the Rate of Combustion of a Metallized Composite Solid Propellant with Allowance for the Size Distribution of Agglomerates

    Poryazov, V. A.; Krainov, A. Yu.


    A physicomathematical model of combustion of a metallized composite solid propellant based on ammonium perchlorate has been presented. The model takes account of the thermal effect of decomposition of a condensed phase (c phase), convection, diffusion, the exothermal chemical reaction in a gas phase, the heating and combustion of aluminum particles in the gas flow, and the velocity lag of the particles behind the gas. The influence of the granulometric composition of aluminum particles escaping from the combustion surface on the linear rate of combustion has been investigated. It has been shown that information not only on the kinetics of chemical reactions in the gas phase, but also on the granulometric composition of aluminum particles escaping from the surface of the c phase into the gas, is of importance for determination of the linear rate of combustion.

  16. Design and fabrication of novel anode flow-field for commercial size solid oxide fuel cells

    Canavar, Murat; Timurkutluk, Bora


    In this study, nickel based woven meshes are tested as not only anode current collecting meshes but also anode flow fields instead of the conventional gas channels fabricated by machining. For this purpose, short stacks with different anode flow fields are designed and built by using different number of meshes with various wire diameters and widths of opening. A short stack with classical machined flow channels is also constructed. Performance and impedance measurements of the short stacks with commercial size cells of 81 cm2 active area are performed and compared. The results reveal that it is possible to create solid oxide fuel cell anode flow fields with woven meshes and obtain acceptable power with a proper selection of the mesh number, type and orientation.

  17. Accuracy of flow convergence estimates of mitral regurgitant flow rates obtained by use of multiple color flow Doppler M-mode aliasing boundaries: an experimental animal study.

    Zhang, J; Jones, M; Shandas, R; Valdes-Cruz, L M; Murillo, A; Yamada, I; Kang, S U; Weintraub, R G; Shiota, T; Sahn, D J


    The proximal flow convergence method of multiplying color Doppler aliasing velocity by flow convergence surface area has yielded a new means of quantifying flow rate by noninvasively derived measurements. Unlike previous methods of visualizing the turbulent jet of mitral regurgitation on color flow Doppler mapping, flow convergence methods are less influenced by machine factors because of the systematic structure of the laminar flow convergence region. However, recent studies have demonstrated that the flow rate calculated from the first aliasing boundary of color flow Doppler imaging is dependent on orifice size, flow rate, aliasing velocity and therefore on the distance from the orifice chosen for measurement. In this study we calculated the regurgitant flow rates acquired by use of multiple proximal aliasing boundaries on color Doppler M-mode traces and assessed the effect of distances of measurement and aliasing velocities on the calculated regurgitant flow rate. Six sheep with surgically induced mitral regurgitation were studied. The distances from the mitral valve leaflet M-mode line to the first, second, and third sequential aliasing boundaries on color Doppler M-mode traces were measured and converted to the regurgitant flow rates calculated by applying the hemispheric flow equation and averaging instantaneous flow rates throughout systole. The flow rates that were calculated from the first, second, and third aliasing boundaries correlated well with the actual regurgitant flow rates (r = 0.91 to 0.96). The mean percentage error from the actual flow rates were 151% for the first aliasing boundary, 7% for the second aliasing boundary, and -43% for the third aliasing boundary; and the association between aliasing velocities and calculated flow rates indicates an inverse relationship, which suggests that in this model, there were limited velocity-distance combinations that fit with a hemispheric assumption for flow convergence geometry. The second aliasing

  18. The Research on Transient Burning Rate of Solid Propellant by Digital Image Processing

    Xin Peng


    Full Text Available In order to obtain the burn rate of the solid propellant that is the important parameter of transient burning, the new method named digital image processing is presented. In the article , the principle of digital image processing is analysed; The burning face of the sample in the each time is located according the image and the coordinates of the burning face is obtained. In experiment the transient burn rate is measured by digital image processing and the accuracy is acceptable.

  19. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert


    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  20. Liquid-gas-solid flows with lattice Boltzmann: Simulation of floating bodies

    Bogner, Simon


    This paper presents a model for the simulation of liquid-gas-solid flows by means of the lattice Boltzmann method. The approach is built upon previous works for the simulation of liquid-solid particle suspensions on the one hand, and on a liquid-gas free surface model on the other. We show how the two approaches can be unified by a novel set of dynamic cell conversion rules. For evaluation, we concentrate on the rotational stability of non-spherical rigid bodies floating on a plane water surface - a classical hydrostatic problem known from naval architecture. We show the consistency of our method in this kind of flows and obtain convergence towards the ideal solution for the measured heeling stability of a floating box.


    Brahmaiah Bonthagarala*, Leela Madhuri Pola and Sreekanth Nama


    Full Text Available The aim of this research wok is to formulate and evaluate Ciprofloxacin solid dispersions system by using the different techniques. This will increase the solubility of the drug or Ciprofloxacin and give the immediate release of the drug from the formulations. The main objective is to formulate a drug product as immediate release oral solid dosage form of Ciprofloxacin solid dispersion system which is considered to be stable, robust quality and enhanced dissolution rate. To optimize the method of manufacture by formulate the Ciprofloxacin solid dispersion system by various techniques like Physical mixing, Co-grinding, Kneading and solvent evaporation techniques. The disintegrating agent used in the present study is Crosscarmellose sodium. Among the four different techniques used for preparation of solid dispersions solvent evaporation technique has shown the increase in dissolution rate that is the Trail-5 was found to have a faster solubility and dissolution property which was prepared by using Crosscarmellose sodium as a disintegrant in the ratio of 1:1.

  2. Formulation development and dissolution rate enhancement of efavirenz by solid dispersion systems

    P T Koh


    Full Text Available The aim of this study was to enhance the dissolution rate of efavirenz using solid dispersion systems (binary and ternary. A comparison between solvent and fusion method was also investigated. Solid dispersions of efavirenz were prepared using polyethylene glycol 8000, polyvinylpyrrolidone K30 alone and combination of both. Tween 80 was incorporated to obtain a ternary solid dispersion system. Dissolution tests were conducted and evaluated on the basis of cumulative percentage drug release and dissolution efficiency. Physicochemical characterizations of the solid dispersions were carried out using differential scanning calorimetric, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Dissolution was remarkably improved in both systems compared to pure efavirenz ( P0.05 in dissolution was observed between the two methods. Binary and ternary solid dispersion systems both have showed a significant improvement in the dissolution rate of efavirenz. Formulations with only polyvinylpyrrolidone K30 showed best dissolution profile and 1:10 was identified as an optimum drug-polymer weight ratio.

  3. Molecular dynamics study of solid-liquid heat transfer and passive liquid flow

    Yesudasan Daisy, Sumith

    High heat flux removal is a challenging problem in boilers, electronics cooling, concentrated photovoltaic and other power conversion devices. Heat transfer by phase change is one of the most efficient mechanisms for removing heat from a solid surface. Futuristic electronic devices are expected to generate more than 1000 W/cm2 of heat. Despite the advancements in microscale and nanoscale manufacturing, the maximum passive heat flux removal has been 300 W/cm2 in pool boiling. Such limitations can be overcome by developing nanoscale thin-film evaporation based devices, which however require a better understanding of surface interactions and liquid vapor phase change process. Evaporation based passive flow is an inspiration from the transpiration process that happens in trees. If we can mimic this process and develop heat removal devices, then we can develop efficient cooling devices. The existing passive flow based cooling devices still needs improvement to meet the future demands. To improve the efficiency and capacity of these devices, we need to explore and quantify the passive flow happening at nanoscales. Experimental techniques have not advanced enough to study these fundamental phenomena at the nanoscale, an alternative method is to perform theoretical study at nanoscales. Molecular dynamics (MD) simulation is a widely accepted powerful tool for studying a range of fundamental and engineering problems. MD simulations can be utilized to study the passive flow mechanism and heat transfer due to it. To study passive flow using MD, apart from the conventional methods available in MD, we need to have methods to simulate the heat transfer between solid and liquid, local pressure, surface tension, density, temperature calculation methods, realistic boundary conditions, etc. Heat transfer between solid and fluids has been a challenging area in MD simulations, and has only been minimally explored (especially for a practical fluid like water). Conventionally, an

  4. Effect of Flow Rate and Disc Area Increment on the Efficiency of Rotating Biological Contactor for Treating Greywater

    Ashfaq Ahmed Pathan


    Full Text Available The performance of greywater treatment through RBC (Rotating Biological Contactor is related to many factors including rotational speed of disc, surface area of the media, thickness of biological film; quality and flow rate of influent. The plastic media provides surface for biological slime. The slime is rotated alternatively into the settled wastewater and then into atmosphere to provide aerobic conditions for the microorganisms. In this study the performance of RBC is investigated at different flow rates and disk areas of media by introducing additional discs on the shaft of RBC. Initially efficiency of the RBC was observed on six flow rates at the disc area of 9.78m2. Furthermore optimized three flow rates were used to augment the disk area. The efficiency of RBC system was improved significantly at disk area of 11.76m2 and flow rate of 20 L/h. Under these conditions the removal of BOD5 (Biochemical Oxygen Demand COD (Chemical Oxygen Demand and TSS (Total Suspended Solid was observed 83, 57 and 90% respectively

  5. Method and apparatus for controlling the flow rate of mercury in a flow system

    Grossman, Mark W.; Speer, Richard


    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  6. A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces

    Shao, Sihong


    We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.

  7. study of solid-liquid flow regimes in mining industry using gamma radiation

    Salgado, Cesar M.; Brandao, Luis E.B.; Nunes, Rogerio C.; Nascimento, Ana C. de H., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salgado, William L., E-mail: [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil)


    One of the most promising areas in the mining industry is the development of devices for measuring solid mass flowrate in pipelines, mainly in transportation of ore. These units are composed of interconnected pipes where transport of the material is accomplished by pumps capable of driving the ore pellets using water. One of the problems inherent in these systems is the stratification if a critical velocity is reached, the ore pellets begin to sediment at the bottom of the pipe and it may block the system. The solid phase displacement behavior depends on a number of factors (water flowrate, density, pipe diameter, average size of the pellet) which makes the flow regime knowledge essential to the appropriate operation of the system. An apparatus to evaluate the stratification level through of particle (ore pellets) spatial distributions inside the pipe is important because it increases the safety condition of pumping and transportation of solid phase. Therefore, this work presents a study to optimize the geometrical parameters for the identification of a possible stratification of the solid phase inside a pipeline. The detection system uses different NaI(Tl) detectors and gamma ray sources (fan beam geometry), adequately positioned in order to calculate transmitted and scattered beams. Additionally, theoretical models for different flow regimes (homogeneous and stratified) have been developed using MCNP-X mathematical code. (author)

  8. Numerically stable fluid–structure interactions between compressible flow and solid structures

    Grétarsson, Jón Tómas


    We propose a novel method to implicitly two-way couple Eulerian compressible flow to volumetric Lagrangian solids. The method works for both deformable and rigid solids and for arbitrary equations of state. The method exploits the formulation of [11] which solves compressible fluid in a semi-implicit manner, solving for the advection part explicitly and then correcting the intermediate state to time tn+1 using an implicit pressure, obtained by solving a modified Poisson system. Similar to previous fluid-structure interaction methods, we apply pressure forces to the solid and enforce a velocity boundary condition on the fluid in order to satisfy a no-slip constraint. Unlike previous methods, however, we apply these coupled interactions implicitly by adding the constraint to the pressure system and combining it with any implicit solid forces in order to obtain a strongly coupled, symmetric indefinite system (similar to [17], which only handles incompressible flow). We also show that, under a few reasonable assumptions, this system can be made symmetric positive-definite by following the methodology of [16]. Because our method handles the fluid-structure interactions implicitly, we avoid introducing any new time step restrictions and obtain stable results even for high density-to-mass ratios, where explicit methods struggle or fail. We exactly conserve momentum and kinetic energy (thermal fluid-structure interactions are not considered) at the fluid-structure interface, and hence naturally handle highly non-linear phenomenon such as shocks, contacts and rarefactions. © 2011 Elsevier Inc.

  9. Control valve and control valve system for controlling solids flow, methods of manufacture thereof and articles comprising the same

    Jukkola, Glen D.; Teigen, Bard C.


    Disclosed herein is a solids flow control valve comprising a standpipe; a shoe; and a transport pipe; wherein the standpipe is in operative communication with the shoe and lies upstream of the shoe; the standpipe comprising a first end and a second end, where the first end is in contact with a source that contains disposable solids and the second end is in fluid contact with the shoe; the shoe being operative to restrict the flow of the disposable solids; the transport pipe being disposed downstream of the shoe to receive and transport the solids from the shoe.

  10. Mineral/solution reaction rates in a mixed flow reactor: Wollastonite hydrolysis

    Rimstidt, J. Donald; Dove, Patricia M.


    A newly developed mixed flow reactor was used to measure the rate of hydrolysis of wollastonite over the pH range of 3 to 8. This design avoids abrasion of the solid sample by confining it within a nylon mesh while the reacting solution is circulated over it by a stirrer. The rate of reaction was determined from the difference of the compositions of the input and output solutions following the methods used by chemical engineers for the analysis of mixed flow reactors, also called continuously stirred tank reactors (CSTR). This apparatus, constructed from easily obtainable parts, avoids many of the problems inherent in studying mineral/solution reaction kinetics in batch reactors. The hydrolysis of wollastonite CaSiO3 + 2 H+ + H2O = Ca2+ + H4SiO4 can be fit to a rate law of the form: dnH+/ dt = kadKH+mH+/(1.0 + KH+mH+) where kad = 9.80 × 10 -8molm-2sec-1 and KH+ = 2.08 × 10 5. Over the pH range of 4 to 7, the data also may fit a simple linear form: dnH+/ dt = - Ak+( aH+) 0.40 where k+ = 3.80 × 10 -6 sec -1 at 25°C. The presence of calcium ion in the solution at concentrations up to 1.0 mol kg -1 produces only a minor reduction of the reaction rate. The activation energy for this reaction is 79.2 kJ mol -1. Examination of the surfaces of the reacted grains showed no evidence of incongruent reaction leading to a product layer but did show the extensive development of etch pits leading to a rapid increase in the specific surface area. At large extents of reaction at low pH, diffusion of ions into or from these deep etch pits may limit the reaction rate.

  11. Metals, nutrients and total suspended solids discharged during different flow conditions in highly urbanised catchments.

    Beck, Hayden J; Birch, Gavin F


    Stormwater discharged from highly urbanised catchments on the southern shore of Sydney estuary, Australia, has been identified as the primary source of contaminants responsible for ecological degradation and reduction in recreational value of the waterway. Effective management of this pollution requires knowledge of contaminant loads associated with various stormwater flow conditions in three highly urbanised catchments in Sydney estuary catchment. The majority (>90%) of metal (Cu, Pb and Zn) and total suspended solid annual loads were contributed during high-flow conditions (>50 mm rainfall day(t1)), whereas ≤55% of TN and ≤21% of total phosphorus were contributed to annual loading by dry weather base-flow conditions. All flow conditions posed an in-stream ecological threat because contaminant concentrations exceeded water quality guidelines for all analytes measured, except Pb. Irregular, temporal variability in contaminant concentrations associated with base-flow (within day and amongst days), high-flow (amongst events) and irregular discharges indicated that contaminant contributions in stormwater were strongly controlled by human activity in the three catchments. Significant variation in contaminant concentrations under all flow conditions revealed unique chemical signatures for each catchment despite similarities in land uses, location and geology amongst catchments. These characteristics indicate that assessment and management of stormwater pollution needs to be conducted on an individual-catchment basis for highly urbanised regions of Sydney estuary catchment.



    The flow injection analysis was firstly used for studying a solid-liquid adsorption system,and the dynamics process in the adsorption of dyestuff with regenerable chitin was traced by an online method of flow injection-spectrophotometry. Experimental results indicate that there is a linearization between the tested signals and the height of peaks with reciprocity coefficient 0.9999by using the flow injection-spectrophotometry system to study the dynamics adsorption process in solid-liquid system. The method shows a good stability and reproducibility. It provides a new method for the studies on adsorption dynamics in solid- liquid system.

  13. Solids flow diagram of a CFB riser using Geldart B-type powders

    Shiva Mahmoudi; Chian Wen Chan; Anke Brems; Jonathan Seville; Jan Baeyens


    Riser operating modes are vital to designing a circulating fluidized bed (CFB) reactor for a required process of either a gas-solid or a gas-catalytic nature.Different operating modes provide different solids' residence times and mixing behaviors,which define the reactions' efficiency and yield.The literature demonstrates distinct operating modes resulting from observed differences in slip factors and the range of particle velocities and their associated residence time distribution.The present research uses positron emission particle tracking (PEPT) in a riser of B-type bed material to determine the different operating modes by measuring (i) particle velocities and residence time distribution,(ii) population densities of these particles in the cross-sectional area of the riser,and (iii) solids flow pattern at the bottom of the riser.Data treatment defines four distinct solids hold-up regimes in the riser and proposes a “phase diagram” depicting the existence of the different operating modes (dilute,dense,core-annulus and combined) as a function of the superficial gas velocity and solids circulation flux in the riser.The delineated regimes have good agreement with available literature data and known industrial operations.Comparison with literature data for risers using A-type powders is also fair.The diagram enables CFB designers to better delineate operating characteristics.

  14. Volumetric flow rate comparisons for water and product on pasteurization systems.

    Schlesser, J E; Stroup, W H; McKinstry, J A


    A flow calibration tube system was assembled to determine the volumetric flow rates for water and various dairy products through a holding tube, using three different flow promotion methods. With the homogenizer, the volumetric flow rates of water and reconstituted skim milk were within 1.5% of each other. With the positive displacement pump, the flow rate for reconstituted skim milk increased compared with that for water as the pressure increased or temperature decreased. The largest increase in flow rate was at 310-kPa gauge and 20 degrees C. On a magnetic flow meter system, the volumetric flow rates of water and reconstituted skim milk were within .5% of the flow rate measured from the volume collected in a calibrated tank. The flow rate of whole milk was similar to that of skim milk on the three flow promoters evaluated. Ice milk mix increased the flow rate of the positive displacement pump, but not the homogenizer and magnetic flow meter system.

  15. Analysis of Flow Structure and Calculation of Drag Coefficient for Concurrent-up Gas-Solid Flow

    杨宁; 王维; 等


    This study investigates the heterogeneous structure and its influence on drag coefficient for concurrent up gas-solid flow.The energy-minimization multi-scale (EMMS) model is modified to simulate the variation of structure parameters with solids concentration,showing the tendency for particles to aggregated to form clusters and for fluid to pass around clusters.The global drag coefficient is resolved into that for the dense phase,for the dilutephase and for the so-called inter-phase,all of which can be obtained from their respective phase-specific structure parameters.The computational results show that the drag coefficients of the different phases are quite different,and the global drag coefficient calculated from the EMMS approach is much lower than that from the correlation of Wen and Yu.The simulation results demonstrate that the EMMS approach can well describe the heterogeneous flow structure,and is very promising for incorporation into the two-fluid model or the discrete particle model as the closure law for drag coefficient.

  16. Navier-Stokes analysis of solid propellant rocket motor internal flows

    Sabnis, J. S.; Gibeling, H. J.; Mcdonald, H.


    A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot.

  17. Navier-Stokes analysis of solid propellant rocket motor internal flows

    Sabnis, J. S.; Gibeling, H. J.; Mcdonald, H.


    A multidimensional implicit Navier-Stokes analysis that uses numerical solution of the ensemble-averaged Navier-Stokes equations in a nonorthogonal, body-fitted, cylindrical coordinate system has been applied to the simulation of the steady mean flow in solid propellant rocket motor chambers. The calculation procedure incorporates a two-equation (k-epsilon) turbulence model and utilizes a consistently split, linearized block-implicit algorithm for numerical solution of the governing equations. The code was validated by comparing computed results with the experimental data obtained in cylindrical-port cold-flow tests. The agreement between the computed and experimentally measured mean axial velocities is excellent. The axial location of transition to turbulent flow predicted by the two-equation (k-epsilon) turbulence model used in the computations also agrees well with the experimental data. Computations performed to simulate the axisymmetric flowfield in the vicinity of the aft field joint in the Space Shuttle solid rocket motor using 14,725 grid points show the presence of a region of reversed axial flow near the downstream edge of the slot.

  18. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas


    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  19. A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries

    Qi, Zhaoxiang; Koenig, Gary M.


    A new type of non-aqueous redox couple without carbon additives for flow batteries is proposed and the target anolyte chemistry is demonstrated. The so-called "Solid Dispersion Redox Couple" incorporates solid electroactive materials dispersed in organic lithium-ion battery electrolyte as its flowing suspension. In this work, a unique and systematic characterization approach has been used to study the flow battery redox couple in half cell demonstrations relative to a lithium electrode. An electrolyte laden with Li4Ti5O12 (LTO) has been characterized in multiple specially designed lithium half cell configurations. The flow battery redox couple described in this report has relatively low viscosity, especially in comparison to other flow batteries with solid active materials. The lack of carbon additive allows characterization of the electrochemical properties of the electroactive material in flow without the complication of conductive additives and unambiguous observation of the electrorheological coupling in these dispersed particle systems.

  20. Meandering instability of air flow in a granular bed: self-similarity and fluid-solid duality

    Yoshimura, Yuki; Yagisawa, Yui; Okumura, Ko


    Meandering instability is familiar to everyone through river meandering or small rivulets of rain flowing down a windshield. However, its physical understanding is still premature, although it could inspire researchers in various fields, such as nonlinear science, fluid mechanics and geophysics, to resolve their long-standing problems. Here, we perform a small-scale experiment in which air flow is created in a thin granular bed to successfully find a meandering regime, together with other remarkable fluidized regimes, such as a turbulent regime. We discover that phase diagrams of the flow regimes for different types of grains can be universally presented as functions of the flow rate and the granular-bed thickness when the two quantities are properly renormalized. We further reveal that the meandering shapes are self-similar as was shown for meandering rivers. The experimental findings are explained by theory, with elucidating the physics. The theory is based on force balance, a minimum-dissipation principle, and a linear-instability analysis of a continuum equation that takes into account the fluid-solid duality, i.e., the existence of fluidized and solidified regions of grains along the meandering path. The present results provide fruitful links to related issues in various fields, including fluidized bed reactors in industry.

  1. Microstructure from simulated Brownian suspension flows at large shear rate

    Morris, Jeffrey F.; Katyal, Bhavana


    Pair microstructure of concentrated Brownian suspensions in simple-shear flow is studied by sampling of configurations from dynamic simulations by the Stokesian Dynamics technique. Simulated motions are three dimensional with periodic boundary conditions to mimic an infinitely extended suspension. Hydrodynamic interactions through Newtonian fluid and Brownian motion are the only physical influences upon the motion of the monodisperse hard-sphere particles. The dimensionless parameters characterizing the suspension are the particle volume fraction and Péclet number, defined, respectively, as φ=(4π/3)na3 with n the number density and a the sphere radius, and Pe=6πηγ˙a3/kT with η the fluid viscosity, γ˙ the shear rate, and kT the thermal energy. The majority of the results reported are from simulations at Pe=1000; results of simulations at Pe=1, 25, and 100 are also reported for φ=0.3 and φ=0.45. The pair structure is characterized by the pair distribution function, g(r)=P1|1(r)/n, where P1|1(r) is the conditional probability of finding a pair at a separation vector r. The structure under strong shearing exhibits an accumulation of pair probability at contact, and angular distortion (from spherical symmetry at Pe=0), with both effects increasing with Pe. Flow simulations were performed at Pe=1000 for eight volume fractions in the range 0.2⩽φ⩽0.585. For φ=0.2-0.3, the pair structure at contact, g(|r|=2)≡g(2), is found to exhibit a single region of strong correlation, g(2)≫1, at points around the axis of compression, with a particle-deficient wake in the extensional zones. A qualitative change in microstructure is observed between φ=0.3 and φ=0.37. For φ⩾0.37, the maximum g(2) lies at points in the shear plane nearly on the x axis of the bulk simple shear flow Ux=γ˙y, while at smaller φ, the maximum g(2) lies near the compressional axis; long-range string ordering is not observed. For φ=0.3 and φ=0.45, g(2)˜Pe0.7 for 1⩽Pe⩽1000, a

  2. Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows

    Changsui Zhao; Liu Shen; Pan Xu; Xiaoping Chen; Daoyin Liu; Cai Liang; Guiling Xu


    This paper presents a review and analysis of the research that has been carried out on dynamic calibration for optical-fiber solids concentration probes. An introduction to the optical-fiber solids concentration probe was given. Different calibration methods of optical-fiber solids concentration probes reported in the literature were reviewed. In addition, a reflection-type optical-fiber solids concentration probe was uniquely calibrated at nearly full range of the solids concentration from 0...

  3. Phase field modeling and simulation of three-phase flow on solid surfaces

    Zhang, Qian; Wang, Xiao-Ping


    Phase field models are widely used to describe the two-phase system. The evolution of the phase field variables is usually driven by the gradient flow of a total free energy functional. The generalization of the approach to an N phase (N ≥ 3) system requires some extra consistency conditions on the free energy functional in order for the model to give physically relevant results. A projection approach is proposed for the derivation of a consistent free energy functional for the three-phase Cahn-Hilliard equations. The system is then coupled with the Navier-Stokes equations to describe the three-phase flow on solid surfaces with moving contact line. An energy stable scheme is developed for the three-phase flow system. The discrete energy law of the numerical scheme is proved which ensures the stability of the scheme. We also show some numerical results for the dynamics of triple junctions and four phase contact lines.

  4. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat


    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  5. 4D ultrafast ultrasound flow imaging: in vivo quantification of arterial volumetric flow rate in a single heartbeat

    Correia, Mafalda; Provost, Jean; Tanter, Mickael; Pernot, Mathieu


    We present herein 4D ultrafast ultrasound flow imaging, a novel ultrasound-based volumetric imaging technique for the quantitative mapping of blood flow. Complete volumetric blood flow distribution imaging was achieved through 2D tilted plane-wave insonification, 2D multi-angle cross-beam beamforming, and 3D vector Doppler velocity components estimation by least-squares fitting. 4D ultrafast ultrasound flow imaging was performed in large volumetric fields of view at very high volume rate (>4000 volumes s-1) using a 1024-channel 4D ultrafast ultrasound scanner and a 2D matrix-array transducer. The precision of the technique was evaluated in vitro by using 3D velocity vector maps to estimate volumetric flow rates in a vessel phantom. Volumetric Flow rate errors of less than 5% were found when volumetric flow rates and peak velocities were respectively less than 360 ml min-1 and 100 cm s-1. The average volumetric flow rate error increased to 18.3% when volumetric flow rates and peak velocities were up to 490 ml min-1 and 1.3 m s-1, respectively. The in vivo feasibility of the technique was shown in the carotid arteries of two healthy volunteers. The 3D blood flow velocity distribution was assessed during one cardiac cycle in a full volume and it was used to quantify volumetric flow rates (375  ±  57 ml min-1 and 275  ±  43 ml min-1). Finally, the formation of 3D vortices at the carotid artery bifurcation was imaged at high volume rates.

  6. Effects of aluminum and iron nanoparticle additives on composite AP/HTPB solid propellant regression rate

    Styborski, Jeremy A.

    This project was started in the interest of supplementing existing data on additives to composite solid propellants. The study on the addition of iron and aluminum nanoparticles to composite AP/HTPB propellants was conducted at the Combustion and Energy Systems Laboratory at RPI in the new strand-burner experiment setup. For this study, a large literature review was conducted on history of solid propellant combustion modeling and the empirical results of tests on binders, plasticizers, AP particle size, and additives. The study focused on the addition of nano-scale aluminum and iron in small concentrations to AP/HTPB solid propellants with an average AP particle size of 200 microns. Replacing 1% of the propellant's AP with 40-60 nm aluminum particles produced no change in combustive behavior. The addition of 1% 60-80 nm iron particles produced a significant increase in burn rate, although the increase was lesser at higher pressures. These results are summarized in Table 2. The increase in the burn rate at all pressures due to the addition of iron nanoparticles warranted further study on the effect of concentration of iron. Tests conducted at 10 atm showed that the mean regression rate varied with iron concentration, peaking at 1% and 3%. Regardless of the iron concentration, the regression rate was higher than the baseline AP/HTPB propellants. These results are summarized in Table 3.

  7. Internal Flow Analysis of Large L/D Solid Rocket Motors

    Laubacher, Brian A.


    Traditionally, Solid Rocket Motor (SRM) internal ballistic performance has been analyzed and predicted with either zero-dimensional (volume filling) codes or one-dimensional ballistics codes. One dimensional simulation of SRM performance is only necessary for ignition modeling, or for motors that have large length to port diameter ratios which exhibit an axial "pressure drop" during the early burn times. This type of prediction works quite well for many types of motors, however, when motor aspect ratios get large, and port to throat ratios get closer to one, two dimensional effects can become significant. The initial propellant grain configuration for the Space Shuttle Reusable Solid Rocket Motor (RSRM) was analyzed with 2-D, steady, axi-symmetric computational fluid dynamics (CFD). The results of the CFD analysis show that the steady-state performance prediction at the initial burn geometry, in general, agrees well with 1-D transient prediction results at an early time, however, significant features of the 2-D flow are captured with the CFD results that would otherwise go unnoticed. Capturing these subtle differences gives a greater confidence to modeling accuracy, and additional insight with which to model secondary internal flow effects like erosive burning. Detailed analysis of the 2-D flowfield has led to the discovery of its hidden 1-D isentropic behavior, and provided the means for a thorough and simplified understanding of internal solid rocket motor flow. Performance parameters such as nozzle stagnation pressure, static pressure drop, characteristic velocity, thrust and specific impulse are discussed in detail and compared for different modeling and prediction methods. The predicted performance using both the 1-D codes and the CFD results are compared with measured data obtained from static tests of the RSRM. The differences and limitations of predictions using ID and 2-D flow fields are discussed and some suggestions for the design of large L/D motors and

  8. Vortex Matter in Highly Strained Nb_{75}Zr_{25}: Analogy with Viscous Flow of Disordered Solids

    Chandra, Jagdish; Manekar, Meghmalhar; Sharma, V. K.; Mondal, Puspen; Tiwari, Pragya; Roy, S. B.


    We present the results of magnetization and magneto-transport measurements in the superconducting state of an as-cast Nb_{75}Zr_{25} alloy. We also report the microstructure of our sample at various length scales by using optical, scanning electron and transmission electron microscopies. The information of microstructure is used to understand the flux pinning properties in the superconducting state within the framework of collective pinning. The magneto-transport measurements show a non-Arrhenius behaviour of the temperature- and field-dependent resistivity across the resistive transition and is understood in terms of a model for viscous flow of disordered solids which is popularly known as the `shoving model'. The activation energy for flux flow is assumed to be mainly the elastic energy stored in the flux-line lattice. The scaling of pinning force density indicates the presence of two pinning mechanisms of different origins. The elastic constants of the flux-line lattice are used to estimate the length scale of vortex lattice movement, or the volume displaced by the flux-line lattice. It appears that the vortex lattice displacement estimated from elastic energy considerations is of the same order of magnitude as that of the flux bundle hopping length during flux flow. Our results could provide possible directions for establishing a framework where vortex matter and glass-forming liquids or amorphous solids can be treated in a similar manner for understanding the phenomenon of viscous flow in disordered solids or more generally the pinning and depinning properties of elastic manifolds in random media. It is likely that the vortex molasses scenario is more suited to explain the vortex dynamics in conventional low-T_C superconductors.

  9. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E


    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys


    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  11. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.


    ... definitions. (1) Sample flow rate means the quantitative volumetric flow rate of the air stream caused by the... the flow rate cut-off test, download the archived data from the test sampler and verify that the...

  12. Numerical simulation of gas-liquid-solid flows using a combined front tracking and discrete particle method

    Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.


    In this paper a hybrid model is presented for the numerical simulation of gas¿liquid¿solid flows using a combined front tracking (FT) and discrete particle (DP) approach applied for, respectively, dispersed gas bubbles and solid particles present in the continuous liquid phase. The hard sphere DP mo

  13. High repetition rate, compact micro-pulse all-solid-state laser

    Yutong Feng; Junqing Meng; Weibiao Chen


    A high repetition rate, compact micro-pulse all-solid-state laser is designed. The diffusion bonded crystal of YAG, Nd:YAG, and Cr4+:YAG is taken as a monolithic cavity. The optimized initial transmission,output coupling, and pumping size of Cr4+:YAG are calculated. The experimental results show that the laser satisfies the requirement of a spaceborne laser range finder.

  14. Optimum feeding rate of solid hazardous waste in a cement kiln burner


    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of...

  15. Analysis of field usage failure rate data for plastic encapsulated solid state devices


    Survey and questionnaire techniques were used to gather data from users and manufacturers on the failure rates in the field of plastic encapsulated semiconductors. It was found that such solid state devices are being successfully used by commercial companies which impose certain screening and qualification procedures. The reliability of these semiconductors is now adequate to support their consideration in NASA systems, particularly in low cost systems. The cost of performing necessary screening for NASA applications was assessed.

  16. Dividend growth, cash flow, and discount rate news

    Garrett, Ian; Priestley, Richard


    Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained by noise betas. We also find that the relative importance of cash flow news in explaining recent stock price run-ups and subs...

  17. Dividend growth, cash flow, and discount rate news

    Garrett, Ian; Priestley, Richard


    Using a new variable based on a model of dividend smoothing, we find that dividend growth is highly predictable and that cash flow news contributes importantly to return variability. Cash flow betas derived from this predictability are central to explaining the size effect in the cross section of returns. However, they do not explain the value effect; this is explained by noise betas. We also find that the relative importance of cash flow news in explaining recent stock price run-ups and subs...

  18. Performance evaluation of commercial copper chromites as burning rate catalyst for solid propellants

    Milton Faria Diniz


    Full Text Available Copper chromites are well known as burning rate catalysts for the combustion of composite solid propellants, used as a source of energy for rocket propulsion. The propellant burning rate depends upon the catalyst characteristics such as chemical composition and specific surface area. In this work, copper chromite samples from different suppliers were characterized by chemical analysis, FT-IR spectroscopy and by surface area measurement (BET. The samples were then evaluated as burning rate catalyst in a typical composite propellant formulation based on HTPB binder, ammonium perchlorate and aluminum. The obtained surface area values are very close to those informed by the catalyst suppliers. The propellant processing as well as its mechanical properties were not substantially affected by the type of catalyst. Some copper chromite catalysts caused an increase in the propellant burning rate in comparison to the iron oxide catalyst. The results show that in addition to the surface area, other parameters like chemical composition, crystalline structure and the presence of impurities might be affecting the catalyst performance. All evaluated copper chromite samples may be used as burning rate catalyst in composite solid propellant formulations, with slight advantages for the SX14, Cu-0202P and Cu-1800P samples, which led to the highest burning rate propellants.

  19. Investigation into the Flow Properties of Coarse Solid Fuels for Use in Industrial Feed Systems

    James M. Craven


    Full Text Available Material feeding and handling systems have been cited as one of the most common causes of process downtime where thermochemical conversion processes are concerned. New and emerging fuels come in a variety of forms, and if such fuels are to be deployed widely it is imperative that material feeding and handling systems are designed appropriately. This study proposes an approach for designing material feeding and handling systems for use with coarse solid fuels. The data obtained from this study indicates particle size to be one of the key issues affecting the flowability of bulk solids further to the uniformity in particle shape. Coarse bulk solid samples were shown to flow more freely than their milled and pulverised counterparts, generating higher degrees of flowability. The results from this study were also applied to a new feed system used for feeding solid fuels to high pressure processes named the Hydraulic Lock Hopper. In this study the Hydraulic Lock Hopper demonstrated the feeding of wood pellets, torrefied spruce pellets, and ground anthracite coal grains against a pressure of 25 barg in two modes of operation. Energy savings compared to conventional lock hopper systems were recorded in the region of 80%.

  20. Dense Pellicular Agarose-Glass Beads for Expanded Bed Application: Flow Hydrodynamics and Solid Phase Classifications

    周鑫; 史清洪; 白姝; 孙彦


    Two dense pellicular agarose-glass matrices of different sizes and densities, i.e., AG-S and AG-L, have been characterized for their bed expansion behavior, flow hydrodynamics and particle classifications in an expanded bed system. A 26 mm ID column with side ports was used for sampling the liquid-solid suspension during expanded bed operations. Measurements of the collected solid phase at different column positions yielded the particle size and density distribution data. It was found that the composite matrices showed particle size as well as density classifications along the column axis, i.e., both the size and density of each matrix decreased with increasing the axial bed height. Their axial classifications were expressed by a correlation related to both the particle size and density as a function of the dimensionless axial bed height. The correlation was found to fairly describe the solid phase classifications in the expanded bed system. Moreover, it can also be applied to other two commercial solid matrices designed for expanded bed applications.

  1. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode


    The main goal of this work is to investigate the possible different flow patterns existing in pump turbine under off-design conditions in pump mode. Numerical simulations by solving the Navier-Stokes equation, coupled with the "SST k-ω" turbulence model, were carried out. Flow characteristics were assumed to be stalled in the appropriate region of ?ow rate levels of Q/QD=0.15–0.61. The simulation result was compared with experimental data and they showed good agreement. Consequently, velocity fields in three axial locations in stay vanes and guide vanes were analysed in details. It was shown that "jet-wake" flow pattern exists near the band, which changes little in the whole shape with flow rate increasing; to the middle location of vanes, reverse flow begins to appear on the interface between the runner and guide vanes, which will disappear gradually as the flow rate increases; massive reverse flow is captured near the crown, whose intensity will be weakened as the flow rate increases. Ultimately, it was found that the special head-flow profile can be ascribed to the special hydraulic loss characteristics of the stay vanes and guide vanes.

  2. Investigation of the Flow Rate Effect Upstream of the Constant-Geometry Throttle on the Gas Mass Flow

    Yu. M. Timofeev


    Full Text Available The turbulent-flow throttles are used in pneumatic systems and gas-supply ones to restrict or measure gas mass flow. It is customary to install the throttles in joints of pipelines (in teejoints and cross tees or in joints of pipelines with pneumatic automation devices Presently, in designing the pneumatic systems and gas-supply ones a gas mass flow through a throttle is calculated by a known equation derived from the Saint-Venant-Vantсel formula for the adiabatic flow of ideal gas through a nozzle from an unrestrictedly high capacity tank. Neglect of gas velocity at the throttle inlet is one of the assumptions taken in the development of the above equation. As may be seen in practice, in actual systems the diameters of the throttle and the pipe wherein it is mounted can be commensurable. Neglect of the inlet velocity therewith can result in an error when determining the required throttle diameter in design calculation and a flow rate in checking calculation, as well as when measuring a flow rate in the course of the test. The theoretical study has revealed that the flow velocity at the throttle inlet is responsible for two parameter values: the outlet flow velocity and the critical pressure ratio, which in turn determine the gas mass flow value. To calculate the gas mass flow, the dependencies are given in the paper, which allow taking into account the flow rate at the throttle inlet. The analysis of obtained dependencies has revealed that the degree of influence of inlet flow rate upon the mass flow is defined by two parameters: pressure ratio at the throttle and open area ratio of the throttle and the pipe wherein it is mounted. An analytical investigation has been pursued to evaluate the extent to which the gas mass flow through the throttle is affected by the inlet flow rate. The findings of the investigation and the indications for using the present dependencies are given in this paper. By and large the investigation allowed the

  3. Risk of solid cancer in low dose-rate radiation epidemiological studies and the dose-rate effectiveness factor.

    Shore, Roy; Walsh, Linda; Azizova, Tamara; Rühm, Werner


    Estimated radiation risks used for radiation protection purposes have been based primarily on the Life Span Study (LSS) of atomic bomb survivors who received brief exposures at high dose rates, many with high doses. Information is needed regarding radiation risks from low dose-rate (LDR) exposures to low linear-energy-transfer (low-LET) radiation. We conducted a meta-analysis of LDR epidemiologic studies that provide dose-response estimates of total solid cancer risk in adulthood in comparison to corresponding LSS risks, in order to estimate a dose rate effectiveness factor (DREF). We identified 22 LDR studies with dose-response risk estimates for solid cancer after minimizing information overlap. For each study, a parallel risk estimate was derived from the LSS risk model using matching values for sex, mean ages at first exposure and attained age, targeted cancer types, and accounting for type of dosimetric assessment. For each LDR study, a ratio of the excess relative risk per Gy (ERR Gy(-1)) to the matching LSS ERR risk estimate (LDR/LSS) was calculated, and a meta-analysis of the risk ratios was conducted. The reciprocal of the resultant risk ratio provided an estimate of the DREF. The meta-analysis showed a LDR/LSS risk ratio of 0.36 (95% confidence interval [CI] 0.14, 0.57) for the 19 studies of solid cancer mortality and 0.33 (95% CI 0.13, 0.54) when three cohorts with only incidence data also were added, implying a DREF with values around 3, but statistically compatible with 2. However, the analyses were highly dominated by the Mayak worker study. When the Mayak study was excluded the LDR/LSS risk ratios increased: 1.12 (95% CI 0.40, 1.84) for mortality and 0.54 (95% CI 0.09, 0.99) for mortality + incidence, implying a lower DREF in the range of 1-2. Meta-analyses that included only cohorts in which the mean dose was radiation exposure. The LDR data provide direct evidence regarding risk from exposures at low dose rates as an important complement to the

  4. Recent developments in automatic solid-phase extraction with renewable surfaces exploiting flow-based approaches

    Miró, Manuel; Hartwell, Supaporn Kradtap; Jakmunee, Jaroon


    Solid-phase extraction (SPE) is the most versatile sample-processing method for removal of interfering species and/or analyte enrichment. Although significant advances have been made over the past two decades in automating the entire analytical protocol involving SPE via flow-injection approaches......,on-line SPE assays performed in permanent mode lack sufficient reliability as a consequence of progressively tighter packing of the bead reactor, contamination of the solid surfaces and potential leakage of functional moieties. This article overviews the current state-of-the-art of an appealing tool...... chemical-derivatization reactions, and it pinpoints the most common instrumental detection techniques utilized. We present and discuss in detail relevant environmental and bioanalytical applications reported in the past few years....

  5. Determination of resveratrol in red wine by solid phase extraction-flow injection chemiluminescence method


    A sensitive flow injection chemiluminescence method has been developed for the detection of resveratrol in red wine based on the fact that resveratrol can greatly enhance chemiluminescence reaction between KMnO4 and HCHO in sulfuric acid medium.Analytes were pre-concentrated on solid sorbents (C18 solid-phase extraction cartridges). Under the optimum conditions, the proposed method allows the measurement of resveratrol over the range of 1.32 × 10-s to 1.32 × 10-5 mol/L with a detection limit of 3.30 × 10-9 mol/L, and the relative standard deviation for 1.32 × 10-5 mol/L resveratrol (n = 11 ) is 3.8%. This method has been successfully applied for the determination of the resveratrol in red wine. Furthermore, the possible reaction mechanism was also discussed.

  6. Direct determination of bulk etching rate for LR-115-II solid state nuclear track detectors

    T A Salama; U Seddik; T M Heggazy; A Ahmed Morsy


    The thickness of the removed layer of the LR-115-II solid state nuclear track detector during etching is measured directly with a rather precise instrument. Dependence of bulk etching rate on temperature of the etching solution is investigated. It has been found that the bulk etching rate is 3.2 m/h at 60°C in 2.5 N NaOH of water solution. It is also found that the track density in detectors exposed to soil samples increases linearly with the removed layer.

  7. Application of Ultrasonic Technique for Measurement of Instantaneous Burn Rate of Solid Propellants .

    Desh Deepak


    Full Text Available The ultrasonic pulse-echo technique has been applied for the measurement of instantaneous burnrate of aluminised composite solid propellants. The tests have been carried out on end-burning 30 mmthick propellant specimens at nearly constant pressure of about 1.9 MPa. Necessary software forpost-test data processing and instantaneous burn rate computations have been developed. The burnrates measured by the ultrasonic technique have been compared with those obtained from ballisticevaluation motor tests on propellant from the same mix. An accuracy of about +- 1 per cent ininstantaneous burn rate measurements and reproducibility of results have been demonstrated byapplying ultrasonic technique.

  8. Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD

    Gao Yan-Tao; Zhang Xiao-Dan; Zhao Ying; Sun Jian; Zhu Feng; Wei Chang-Chun; Chen Fei


    Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (H2+SiH4).Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).

  9. An electronic flow control system for a variable-rate tree sprayer

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  10. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan


    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  11. Measuring Flow Rate in Crystalline Bedrock Wells Using the Dissolved Oxygen Alteration Method.

    Vitale, Sarah A; Robbins, Gary A


    Determination of vertical flow rates in a fractured bedrock well can aid in planning and implementing hydraulic tests, water quality sampling, and improving interpretations of water quality data. Although flowmeters are highly accurate in flow rate measurement, the high cost and logistics may be limiting. In this study the dissolved oxygen alteration method (DOAM) is expanded upon as a low-cost alternative to determine vertical flow rates in crystalline bedrock wells. The method entails altering the dissolved oxygen content in the wellbore through bubbler aeration, and monitoring the vertical advective movement of the dissolved oxygen over time. Measurements were taken for upward and downward flows, and under ambient and pumping conditions. Vertical flow rates from 0.06 to 2.30 Lpm were measured. To validate the method, flow rates determined with the DOAM were compared to pump discharge rates and found to be in agreement within 2.5%.

  12. High Sensitivity Carbon Nanotubes Flow-Rate Sensors and Their Performance Improvement by Coating

    Xing Yang


    Full Text Available A new type of hot-wire flow-rate sensor (HWFS with a sensing element made of a macro-sized carbon nanotube (CNT strand is presented in this study. An effective way to improve repeatability of the CNT flow-rate sensor by coating a layer of Al2O3 on the CNT surface is proposed. Experimental results show that due to the large surface-to-volume ratio and thin coated Al2O3 layer, the CNT flow-rate sensor has higher sensitivity and faster response than a conventional platinum (Pt HWFS. It is also demonstrated that the covered CNT flow-rate sensor has better repeatability than its bare counterpart due to insulation from the surrounding environment. The proposed CNT flow-rate sensor shows application potential for high-sensitivity measurement of flow rate.

  13. Effect of Molecular Interactions between the Solid Wall and Liquid on the Flow Properties in Microtubes

    BAO Fu-Bing; LIN Jian-Zhong


    The flow properties in microtubes, such as velocity profiles and pressure distributions, are different from those in macrotubes. We attribute this phenomenon to the molecular interactions between the solid wall and inner liquid. The apparent viscosity, which takes into consideration the molecular interactions, is introduced in the present study and the Navier-Stokes equations are solved. Water is adopted in the calculation. For the hydrophilic material wall, the water is more like to adhere to the wall. The velocity near the wall is smaller than that of conventional theory, while the centerline velocity and pressure gradients are much larger. Such a phenomenon becomes much more obvious with the decrease in tube diameter.

  14. Numerical simulation of gas-solid flow in an interconnected fluidized bed

    Canneto Giuseppe


    Full Text Available The gas-particles flow in an interconnected bubbling fluidized cold model is simulated using a commercial CFD package by Ansys. Conservation equations of mass and momentum are solved using the Eulerian granular multiphase model. Bubbles formation and their paths are analyzed to investigate the behaviour of the bed at different gas velocities. Experimental tests, carried out by the cold model, are compared with simulation runs to study the fluidization quality and to estimate the circulation of solid particles in the bed.

  15. Correlation dimension estimate and its potential use in analysis of gas-solid flows

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen


    be reproduced from the state-space trajectory (i.e., attractor) reconstructed from the time series of one single measured parameter. This method is widely used in gas-solid flows in fluidized beds. However, there exist different results in literature for correlation dimension (a key parameter to describe......-estimated correlation dimension (a spatial dimension), is highlighted and a solution is given. The technique is demonstrated by analyzing absolute pressure fluctuations from a cold fluidized bed. Comparison of estimated correlation dimensions based on the same pressure fluctuations indicates excluding dynamical...

  16. Advanced Test Method of Solid Oxide Cells in a Plug-Flow Setup

    Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang;


    This paper describes a case study of two electrolysis tests of solid oxide cells [Ni/yttria-stabilized zirconia (YSZ)-YSZ-lanthanum strontium manganite (LSM)/YSZ] tested in a plug-flow setup. An extensively instrumented cell test setup was used, and the tests involved measurements of the cell...... electrolysis conditions. From measurements of the in-plane voltages in the electrodes and impedance spectra obtained during the electrolysis operation, we derive information about the resistance distributions in the Ni electrodes and describe how these distributions evolve over time. Impedance spectra at open...

  17. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.


    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  18. The Use of Fractal for Prediction of Burning Rate of Composite Solid Propellants

    ManouchehrNikazar; MohammadB.Bagherpour; 等


    By using fractal geometry is is possible to calculate the actual AP(Ammonium Perchlorate)surface area and oxidizer-binder interface fractal dimension in the prediction of burning rate of commposite solid propellants.In this investigation,the fractal dimension was determined by a procedure known as the "Box counting Method".using this dimensio,surface area relations were developed for the rough particles.This method was implemented in the PEM(Petite Ensemble Model) burning rate model,The comparison of burning rates for a typical propellant by the PEM and fractal model shows that the burning rates botained by using the fractal geometry are slightly less than those obtained by the PEM model.

  19. Changes in Peak Expiratory Flow Rate, Blood Pressure



    Mar 23, 2010 ... (PEFR), blood pressure and pulse rate in an attempt to determine some physiological effects of ... SBP increased significantly at 4g and 6g when compared .... Decrease in heart rate associated with ... exercise performance .

  20. Solid organ transplant patients experience high rates of infection and other complications after total knee arthroplasty.

    Klatt, Brian A; Steele, G Daxton; Fedorka, Catherine J; Sánchez, Alvaro I; Chen, Antonia F; Crossett, Lawrence S


    Survival after solid organ transplants in the United States is increasing, and there is a need to understand the complications in knee arthroplasty patients who underwent organ transplantation. A retrospective study was conducted from 1993-2008 on 19 patients (23 knee arthroplasties) with previous successful solid organ transplants. Eleven knee arthroplasties were performed after renal transplantation, and 12 after nonrenal solid organ transplant (seven liver, four heart, one lung). Complications occurred in 9/23 patients (39.1%) and infections occurred in 4/23 patients (17.3%). Of the infected knees, two had MRSA, one had MSSA, and one Escherichia coli. Noninfectious complications (5/24, 21.7%) include aseptic loosening, quadriceps rupture, femoral fracture, hemarthrosis, and arthrofibrosis. All patients with complications were on immunosuppressant medications at the time of arthroplasty. There was a significantly higher rate of infection in the renal group compared to the non-renal group (P = 0.022). There was also a higher overall complication rate in the renal group however this did not reach significance.

  1. Dynamic flow-through approaches for metal fractionation in environmentally relevant solid samples

    Miró, Manuel; Hansen, Elo Harald; Chomchoei, Roongrat


    In the recent decades, batchwise equilibrium-based single or sequential extraction schemes have been consolidated as analytical tools for fractionation analyses to assess the ecotoxicological significance of metal ions in solid environmental samples. However, taking into account that naturally...... occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. The present review details the state-of-the-art and the fundamental...... generations of flow-injection analysis. Special attention is also paid to a novel, robust, non-invasive approach for on-site continuous sampling of soil solutions, capitalizing on flow-through microdialysis, which presents itself as an appealing complementary approach to the conventional lysimeter experiments...

  2. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.


    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  3. Theoretical analysis and numerical computation of dilute solid/liquid two_phase pipe flow


    Starting with the kinetic theory for dilute solid/liquid two_phase flow, a mathematical model is established to predict the flow in a horizontal square pipe and the predictions are compared with LDV measurements. The present model predicts correctly two types of patterns of the vertical distribution of particle concentration observed in experiments, and also gives different patterns of the distribution of particle fluctuating energy. In the core region of the pipe, the predicted mean velocity of particles is smaller than that of liquid, but near the pipe bottom the reverse case occurs. In addition, full attention is paid to the mechanism for the vertical distribution of the average properties of particles such as concentration and mean velocity. From the kinetic_theory point of view, the cause of formation for different patterns of the vertical concentration distribution is not only related to the lift force exerted on a particle, but also related to the distribution of particle fluctuating energy.

  4. Nonlinear Analysis of Bedload Transport Rate of Paroxysm Debris Flow


    The evolution characteristics of bedload transport feature of paroxysm debris flow have been studied by means of both theory analysis and experimental data.The analysis based on the flume experiment data of a sand pile model as well as a large amount of field data of debris flow clearly shown that the statistical distribu- tion for the main variable of the sand pile made of non-uniform sand (according the sand pile experiment,φ≥2.55) conform to the negative power law,that means the non-uniform sand syste...

  5. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

    Skjaerpe Terje


    Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.

  6. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko


    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10(3) tonnes in 2007 to 437×10(3) tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10(3) and 7×10(3) tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10(3) to 253×10(6) tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10(3) to 158×10(3) tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  7. Thermophoretically augmented mass transfer rates to solid walls across laminar boundary layers

    Gokoglu, S. A.; Rosner, D. E.


    Predictions of mass transfer (heavy vapor and small particle deposition) rates to solid walls, including the effects of thermal (Soret) diffusion ('thermophoresis' for small particles), are made by numerically solving the two-dimensional self-similar forced convection laminar boundary-layer equations with variable properties, covering the particle size range from vapor molecules up to the size threshold for inertial (dynamical nonequilibrium) effects. The effect of thermophoresis is predicted to be particularly important for submicron particle deposition on highly cooled solid surfaces, with corresponding enhancement factors at atmospheric conditions being over a thousand-fold at T(w)/T(e) equal to about 0.6. As a consequence of this mass transfer mechanism, the particle size dependence of the mass transfer coefficient to a cooled wall will be much weaker than for the corresponding case of isothermal capture by Brownian-convective diffusion.

  8. Direct Measurement of the Flip-Flop Rate of Electron Spins in the Solid State

    Dikarov, Ekaterina; Zgadzai, Oleg; Artzi, Yaron; Blank, Aharon


    Electron spins in solids have a central role in many current and future spin-based devices, ranging from sensitive sensors to quantum computers. Many of these apparatuses rely on the formation of well-defined spin structures (e.g., a 2D array) with controlled and well-characterized spin-spin interactions. While being essential for device operation, these interactions can also result in undesirable effects, such as decoherence. Arguably, the most important pure quantum interaction that causes decoherence is known as the "flip-flop" process, where two interacting spins interchange their quantum state. Currently, for electron spins, the rate of this process can only be estimated theoretically, or measured indirectly, under limiting assumptions and approximations, via spin-relaxation data. This work experimentally demonstrates how the flip-flop rate can be directly and accurately measured by examining spin-diffusion processes in the solid state for physically fixed spins. Under such terms, diffusion can occur only through this flip-flop-mediated quantum-state exchange and not via actual spatial motion. Our approach is implemented on two types of samples, phosphorus-doped 28Si and nitrogen vacancies in diamond, both of which are significantly relevant to quantum sensors and information processing. However, while the results for the former sample are conclusive and reveal a flip-flop rate of approximately 12.3 Hz, for the latter sample only an upper limit of approximately 0.2 Hz for this rate can be estimated.

  9. Flow Rate in the Discharge of a Two-dimensional Silo

    Zuriguel, I.; Janda, A.; Garcimartín, A.; Maza, D.


    We present an experimental study of the flow rate in the discharge of a flat bottomed two-dimensional silo. The results of the flow rate dependence on the size of the orifice evidence that the Beverloo expression is not valid for small outlet sizes. This behavior is related with the properties of the flow rate which has been found to fluctuate in a gaussian like form for large orifices. On the contrary, for small orifices extreme events appear at zero flow rates causing a significant slow down of the average flow rate. These events are explained in terms of the existence of arches that block the outlet instantaneously but are unstable to permanently halt the flow.

  10. Litter ammonia losses amplified by higher air flow rates

    ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...

  11. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung


    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  12. Impact of Organic Loading Rate on Psychrophilic Anaerobic Digestion of Solid Dairy Manure

    Noori M. Cata Saady


    Full Text Available Increasing the feed total solids to anaerobic digester improves the process economics and decreases the volume of liquid effluent from current wet anaerobic digestion. The objective of this study was to develop a novel psychrophilic (20 °C anaerobic digestion technology of undiluted cow feces (total solids of 11%–16%. Two sets of duplicate laboratory-scale sequence batch bioreactors have been operated at organic loading rates (OLR of 6.0 to 8.0 g total chemical oxygen demand (TCOD kg−1 inoculum day−1 (d−1 during 210 days. The results demonstrated that the process is feasible at treatment cycle length (TCL of 21 days; however, the quality of cow feces rather than the OLR had a direct influence on the specific methane yield (SMY. The SMY ranged between 124.5 ± 1.4 and 227.9 ± 4.8 normalized liter (NL CH4 kg−1 volatile solids (VS fed d−1. Substrate-to-inoculum mass ratio (SIR was 0.63 ± 0.05, 0.90 ± 0.09, and 1.06 ± 0.07 at OLR of 6.0, 7.0, and 8.0 g TCOD kg−1 inoculum d−1, respectively. No volatile fatty acids (VFAs accumulation has been observed which indicated that hydrolysis was the rate limiting step and VFAs have been consumed immediately. Bioreactors performance consistency in terms of the level of SMYs, VFAs concentrations at end of the TCL, pH stability and volatile solids reduction indicates a stable and reproducible process during the entire operation.

  13. Onset of the Mutual Thermal Effects of Solid Body and Nanofluid Flow over a Flat Plate Theoretical Study

    A. Malvandi


    Full Text Available The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate and forced convection of a non-homogeneous nanofluid flow (over a flat plate is investigated, which is classified in conjugate heat transfer problems. Two-component four-equation non-homogeneous equilibrium model for convective transport in nanofluids (mixture of water with particles<100nm has been applied that incorporates the effects of the nanoparticles migration due to the thermophoresis and Brownian motion forces. Employing similarity variables, we have transformed the basic non-dimensional partial differential equations to ordinary differential ones and then solved numerically. Moreover, variation of the heat transfer and concentration rates with thermal resistance of the plate is studied in detail. Setting the lowest dependency of heat transfer rate to the thermal resistance of the plate as a goal, we have shown that for two nanofluids with similar heat transfer characteristics, the one with higher Brownian motion (lower nanoparticle diameter is desired.

  14. The Clustering Instability in Rapid Granular and Gas-Solid Flows

    Fullmer, William D.; Hrenya, Christine M.


    Flows of solid particles are known to exhibit a clustering instability—dynamic microstructures characterized by a dense region of highly concentrated particles surrounded by a dilute region with relatively few particles—that has no counterpart in molecular fluids. Clustering is pervasive in rapid flows. Its presence impacts momentum, heat, and mass transfer, analogous to how turbulence affects single-phase flows. Yet predicting clustering is challenging, again analogous to the prediction of turbulent flows. In this review, we focus on three key areas: (a) state-of-the-art mathematical tools used to study clustering, with an emphasis on kinetic theory–based continuum models, which are critical to the prediction of the larger systems found in nature and industry, (b) mechanisms that give rise to clustering, most of which are explained via linear stability analyses of kinetic theory–based models, and (c) a critical review of validation studies of kinetic theory–based models to highlight the accuracies and limitations of such theories.

  15. Effect of surface chemistry on the behaviour of solid particles in multiphase flow

    Gulbrandsen, Egil; Pedersen, Anette


    The surface chemical properties of solids particles strongly influence their behaviour in multiphase flow, e.g. their tendency to be transported by the oil or water phase, their tendency to stick to the oil-water interfaces, or their tendency to aggregate. The behaviour of the solid particles may influence various processes such as emulsion breakdown, oil-water separation, or sedimentation of solids in a pipeline, and thereby issues as erosion, and corrosion under deposits. These issues were addressed in the present laboratory study. The reported results focus on behaviour of sand in a simple oil-water system in presence of a model corrosion inhibitor compound, cetyltrimethylammonium bromide. A refined oil was used in the tests. The system was studied by various methods like zeta-potential measurements, assessment of wetting properties and tendency of aggregation and sedimentation in oil-water system. It was found that surface-active corrosion inhibitor could strongly influence the wetting of the sand. By addition of the corrosion inhibitor, the sand changed from water wet to oil wet. This change induced a tendency to aggregation of the sand grains. The aggregation led to sticky deposits of sand. This may have an impact on under deposit corrosion phenomena. (Author)

  16. A hybrid DEM/CFD approach for solid-liquid flows

    QIU Liu-chao; WU Chuan-yu


    A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme. The motion of the solid phase is obtained by using the DEM, in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics. The two phases are coupled through the Newton’s third law of motion. To verify the proposed method, the sedi-mentation of a single spherical particle is simulated in water, and the results are compared with experimental results reported in the literature. In addition, the drafting, kissing, and tumbling (DKT) phenomenon between two particles in a liquid is modelled and rea-sonable results are obtained. Finally, the numerical simulation of the density-driven segregation of a binary particulate suspension in-volving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles.

  17. Motion of a distant solid particle in a shear flow along a porous slab

    Khabthani, S.; Sellier, A.; Feuillebois, F.


    The motion of a solid and no-slipping particle immersed in a shear flow along a sufficiently porous slab is investigated. The fluid flow outside and inside of the slab is governed by the Stokes and Darcy equations, respectively, and the so-called Beavers and Joseph slip boundary conditions are enforced on the slab surface. The problem is solved for a distant particle with length scale a in terms of the small parameter a/ d where d designates the large particle-slab separation. This is achieved by asymptotically inverting a relevant boundary-integral equation on the particle surface, which has been recently proposed for any particle location (distant or close particle) in Khabthani et al. (J Fluid Mech 713:271-306, 2012). It is found that at order O( a/ d) the slab behaves for any particle shape as a solid plane no-slip wall while the slab properties (thickness, permeability, associated slip length) solely enter at O(( a/ d)2). Moreover, for a spherical particle, the numerical results published in Khabthani et al. (J Fluid Mech 713:271-306, 2012) perfectly agree with the present asymptotic analysis.

  18. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund


    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full-scale ...

  19. In Vivo Three-Dimensional Velocity Vector Imaging and Volumetric Flow Rate Measurements

    Pihl, Michael Johannes; Stuart, Matthias Bo; Tomov, Borislav Gueorguiev


    scanner SARUS. Measurements are conducted on a carotid artery flow phantom from Danish Phantom Design, and 20 frames are acquired with a constant flow rate of 16.7±0.17 mL/s provided by a Shelley Medical Imaging Technologies CompuFlow 1000 system. The peak velocity magnitude in the vessel is found...

  20. A New Method for Measurement of Local Solid Flux in Gas-Solid Two-phase Flow

    鄂承林; 卢春善; 徐春明; 高金森; 时铭显


    Previous works have shown that the suction probe cannot be used to accurately measure the upward and downward particle fluxes independently. A new method using a single optical probe to measure the local solid flux is presented. The measurement of upward, downward and net solid fluxes was carried out in a cold model circulating fluidized bed (CFB) unit. The result shows that the profile of the net solid flux is in good agreement with the previous experimental data measured with a suction probe. The comparison between the average solid flux determined with the optical measuring system and the external solid flux was made, and the maximum deviationturned out to be 22%, with the average error being about 6.9%. These confirm that the optical fiber system can be successfully used to measure the upward, downward and net solid fluxes simultaneously by correctly processing the sampling signals obtained from the optical measuring system.

  1. The direct effects of strain on burning rates of composite solid propellants

    Langhenry, M. T.


    A mathematical model is developed to predict burn rate augmentation due to strain in a composite solid propellant. The model assumes the effect is due to the ability of the flame to penetrate the small fissures and voids that form when a propellant is strained. The number and size of these fissures is obtained by applying a flaw propagation analysis to randomly distributed flaws that form when the binder-oxidizer particle bonds break under stress. A flame height is calculated with Summerfield's burn rate equation and is used to compute the burn rate augmentation based upon the additional burn area created when the flame penetrates the fissures. Comparisons are made with data obtained from published sources. The existence of threshold pressure and strains, above which augmentation occurs, is verified although the model predicts a lower threshold pressure and higher threshold strain than expected. Further results and applications of the model are discussed.

  2. Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow

    Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha

    We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. * Supported by NSF MRSEC DMR 0820506.

  3. Numerical Simulations of Liquid-Gas-Solid Three-Phase Flows in Microgravity

    Xinyu Zhang


    Full Text Available Three-phase liquid-gas-solid flows under microgravity condition are studied. An Eulerian-Lagrangian computational model was developed and used in the simulations. In this approach, the liquid flow was modeled by a volume-averaged system of governing equations, whereas motions of particles and bubbles were evaluated using the Lagrangian trajectory analysis procedure. It was assumed that the bubbles remained spherical, and their shape variations were neglected. The bubble-liquid, particle-liquid and bubbl-particle two-way interactions were accounted for in the analysis. The discrete phase equations used included drag, lift, buoyancy, and virtual mass forces. Particle-particle interactions and bubble-bubble interactions were accounted for by the hard sphere model. Bubble coalescence was also included in the model. The transient flow characteristics of the three-phase flow were studied; and the effects of gravity, inlet bubble size and g-jitter acceleration on variation of flow characteristics were discussed. The low gravity simulations showed that most bubbles are aggregated in the inlet region. Also, under microgravity condition, bubble transient time is much longer than that in normal gravity. As a result, the Sauter mean bubble diameter, which is proportional to the transient time of the bubble, becomes rather large, reaching to more than 9 mm. The bubble plume in microgravity exhibits a plug type flow behavior. After the bubble plume reaches the free surface, particle volume fraction increases along the height of the column. The particles are mainly located outside the bubble plume, with very few particles being retained in the plume. In contrast to the normal gravity condition, the three phases in the column are poorly mixed under microgravity conditions. The velocities of the three phases were also found to be of the same order. Bubble size significantly affects the characteristics of the three-phase flows under microgravity conditions. For

  4. Numerical simulation of flow hydrodynamics of struvite pellets in a liquid-solid fluidized bed.

    Ye, Xin; Chu, Dongyuan; Lou, Yaoyin; Ye, Zhi-Long; Wang, Ming Kuang; Chen, Shaohua


    Phosphorus recovery in the form of struvite has been aroused in recent decades for its dual advantages in eutrophication control and resource protection. The usage of the struvite products is normally determined by the size which is largely depended on the hydrodynamics. In this study, flow behavior of struvite pellets was simulated by means of Eulerian-Eulerian two-fluid model combining with kinetic theory of granular flow in a liquid-solid fluidized bed reactor (FBR). A parametric study including the mesh size, time step, discretization strategy, turbulent model and drag model was first developed, followed by the evaluations of crucial operational conditions, particle characteristics and reactor shapes. The results showed that a cold model with the mesh resolution of 16×240, default time step of 0.001sec and first order discretization scheme was accurate enough to describe the fluidization. The struvite holdup profile using Syamlal-O'Brien drag model was best fitted to the experimental data as compared with other drag models and the empirical Richardson-Zaki equation. Regarding the model evaluation, it showed that liquid velocity and particle size played important roles on both solid holdups and velocities. The reactor diameter only influenced the solid velocity while the static bed height almost took no effect. These results are direct and can be applied to guide the operation and process control of the struvite fluidization. Moreover, the model parameters can also be used as the basic settings in further crystallization simulations. Copyright © 2016. Published by Elsevier B.V.

  5. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Thunaipragasam Selvakumaran


    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  6. Lattice Solid/Boltzmann Microscopic Model to Simulate Solid/Fluid Systems-A Tool to Study Creation of Fluid Flow Networks for Viable Deep Geothermal Energy

    Peter Mora; Yucang Wang; Fernando Alonso-Marroquin


    SUMMARY:Realizing the potential of geothermal energy as a cheap, green, sustainable resource to provide for the planet’s future energy demands that a key geophysical problem be solved first:how to develop and maintain a network of multiple fluid flow pathways for the time required to deplete the heat within a given region. We present the key components for micro-scale particle-based nu-merical modeling of hydraulic fracture, and fluid and heat flow in geothermal reservoirs. They are based on the latest developments of ESyS-Particle—the coupling of the lattice solid model (LSM) to simulate the nonlinear dynamics of complex solids with the lattice Boltzmann method (LBM) ap-plied to the nonlinear dynamics of coupled fluid and heat flow in the complex solid-fluid system. The coupled LSM/LBM can be used to simulate development of fracture systems in discontinuous media, elastic stress release, fluid injection and the consequent slip at joint surfaces, and hydraulic fractur-ing; heat exchange between hot rocks and water within flow pathways created through hydraulic fracturing;and fluid flow through complex, narrow, compact and gouge-or powder-filled fracture and joint systems. We demonstrate the coupled LSM/LBM to simulate the fundamental processes listed above, which are all components for the generation and sustainability of the hot-fractured rock geothermal energy fracture systems required to exploit this new green-energy resource.

  7. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Kenny, R Jeremy; Hulka, James R.


    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  8. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Kenny, R Jeremy; Hulka, James R.


    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  9. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis


    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  10. Comparison of whole saliva flow rates and mucin concentrations in healthy Caucasian young and aged adults.

    Navazesh, M; Mulligan, R A; Kipnis, V; Denny, P A; Denny, P C


    Unstimulated and chewing-stimulated whole saliva samples were obtained from 42 healthy Caucasians; 21 were between 18 and 35 years of age, and 21 between 65 and 83 years of age. The unstimulated salivary flow rate was significantly lower in the aged group, but the stimulated flow rate was significantly higher in the aged than in the young group. Both groups showed significantly increased flow during salivary stimulation. MG1 and MG2 concentrations in unstimulated and stimulated saliva samples were significantly lower in the aged group. There were no significant correlations between salivary flow rates and MG1 and MG2 concentrations.

  11. Decay rates of large-l Rydberg states of multiply charged ions approaching solid surfaces

    Nedeljkovic, N. N.; Mirkovic, M. A.; Bozanic, D. K.


    We investigate the ionization of large-l multiply charged Rydberg ions approaching solid surfaces within the framework of decay model and applying the etalon equation method. The radial coordinate rho of the active electron is treated as a variational parameter and therefore the parabolic symmetry is preserved in this procedure. The complex eigenenergies are calculated from which the energy terms and the ionization rates are derived. We find that the large-l Rydberg states decay at approximately the same ion-surface distances as the low-l states oriented toward the vacuum and considerably closer to the surface comparing to the low-l states oriented towards the surface.

  12. Local Liquid Side Mass Transfer Model in Gas-Liquid-Solid Three-Phase Flow Airlift Loop Reactor for Newtonian and Non-Newtonian Fluids

    闻建平; 贾晓强; 毛国柱


    A small scale isotropic mass transfer model was developed for the local liquid side mass transfer coefficients in gas-liquid-solid three-phase flow airlift loop reactor for Newtonian and non-Newtonian fluids. It is based on Higbie's penetration theory and Kolmogoroff's theory of isotropic turbulence with kl=3√2D∈11/3/π(η1-1/3-λf-1/3)where e1 is local rate of energy dissipation, Af is the local microscale, r/l is the local Kolmogoroff scale and D is the diffusion coefficient. The capability of the proposed model is discussed in the light of experimental data obtained from 12 L gas-liquid-solid three-phase flow airlift loop reactor using Newtonian and non-Newtonian fluids. Good agreement with the experimental data was obtained over a wide range of conditions suggesting a general applicability of the proposed model.

  13. Parametric expressions of tritium flow rates and inventories in a target factory

    Sherohman, J.W.


    Parametric expressions have been derived for tritium flow rates and inventories in a target factory. The expressions are based on a tritium system that interfaces with a generalized target production process. The relationship of flow rates and inventories to target production form a basis for parametric study to determine the amount of tritium involved in the target factory of an ICF power plant.

  14. Impact of catheter on uroflow rate in pressure-flow study

    张鹏; 武治津; 高居忠


    @@ The importance of a pressure-flow study in the diagnostic work-up of patients suffering from benign prostatic hyperplasia (BPH) has been recognized. However, there is still uncertainty regarding the role the catheter might play in affecting uroflow rate during a pressure-flow study. In this present study, we retrospectively analyzed voiding data from pressure-flow studies taken before and after catheterization in 44 patients suffering from BPH to investigate whether catheterization has an effect on uroflow rate.

  15. International Portfolio Flows and Exchange Rate Volatility for Emerging Markets

    Caporale, Guglielmo Maria; Ali, Faek Menla; Spagnolo, Fabio; Spagnolo, Nicola


    This paper investigates the effects of equity and bond portfolio inflows on exchange rate volatility, using monthly bilateral data for the US vis-a-vis eight Asian developing and emerging countries (India, Indonesia, South Korea, Pakistan, Hong Kong, Thailand, the Philippines, and Taiwan) over the period 1993:01-2012:11, and estimating a time-varying transition probability Markov-switching model. We find that net equity (bond) inflows drive the exchange rate to a high (low) volatility state. ...

  16. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    Sindrup, J H; Kastrup, J; Christensen, H


    was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease......Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...

  17. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner

    Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)


    The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.

  18. Surface supersaturation in flow-rate modulation epitaxy of GaN

    Akasaka, Tetsuya; Lin, Chia-Hung; Yamamoto, Hideki; Kumakura, Kazuhide


    Hillocks on N-face GaN (000 1 bar) films are effectively eliminated by group-III-source flow-rate modulation epitaxy (FME), wherein the flow-rate of group-III sources are sequentially modulated under a constant supply of NH3. A hillock-free smooth surface obtained by group-III-source FME is attributed to the enhancement of step-flow growth. We found that a hillock originates from a micropipe and grows by spiral growth around the micropipe. The spiral growth rate rapidly decreases with decreasing the degree of surface supersaturation σ, while the step-flow growth rate decreases linearly. For group-III-source FME, wherein σ is lower than conventional continuous growth, the spiral growth rate could be lower than the step-flow growth one so that the formation of hillocks is suppressed.

  19. Adaptive real-time forecast of river flow-rates from rainfall data

    Bolzern, P.; Ferrario, M.; Fronza, G.


    The paper describes a stochastic rainfall—river flow-rate model of the ARMAX type. Then a real-time Kalman predictor is derived from the model, namely a recursive relationship which, at the beginning of each time step, supplies the "best" forecast of future flow-rate on the basis of current rainfall and flow-rate measurements. Three different versions (ordered in the sense of increasing complexity) of the predictor are considered, corresponding to different approaches for estimating parameters and noise statistics of the stochastic model. The flood forecast performance of all predictors is tested on a real case (Lake Maggiore water system). The performance is satisfactory (for instance correlations about 99% between forecast and true values, standard deviation of the forecast error less than 1% of the average flood flow-rate) and conspicuously better than the one given by the trivial persistence predictor (the future flow-rate is the present one).

  20. Experimental and simulation flow rate analysis of the 3/2 directional pneumatic valve

    Blasiak, Slawomir; Takosoglu, Jakub E.; Laski, Pawel A.; Pietrala, Dawid S.; Zwierzchowski, Jaroslaw; Bracha, Gabriel; Nowakowski, Lukasz; Blasiak, Malgorzata

    The work includes a study on the comparative analysis of two test methods. The first method - numerical method, consists in determining the flow characteristics with the use of ANSYS CFX. A modeled poppet directional valve 3/2 3D CAD software - SolidWorks was used for this purpose. Based on the solid model that was developed, simulation studies of the air flow through the way valve in the software for computational fluid dynamics Ansys CFX were conducted. The second method - experimental, entailed conducting tests on a specially constructed test stand. The comparison of the test results obtained on the basis of both methods made it possible to determine the cross-correlation. High compatibility of the results confirms the usefulness of the numerical procedures. Thus, they might serve to determine the flow characteristics of directional valves as an alternative to a costly and time-consuming test stand.

  1. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    Luo, Long; Holden, Deric A; White, Henry S


    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  2. Effect of Drag Reducing Polymer and Suspended Solid on the Rate of Diffusion Controlled Corrosion in 90° Copper Elbow

    Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes


    Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.

  3. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben


    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    Hanus, Robert; Zych, Marcin; Petryka, Leszek; Mosorov, Volodymyr; Hanus, Paweł


    The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl) scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  5. Application of the phase method in radioisotope measurements of the liquid - solid particles flow in the vertical pipeline

    Hanus Robert


    Full Text Available The paper presents idea and an application of the gamma-absorption method to a two-phase flow investigation in a vertical pipeline, where the flow of solid particles transported by water was examined by a set of two 241Am radioactive sources and probes with NaI(Tl scintillation crystals. In the described experiments as solid phase the ceramic models representing natural polymetallic ocean nodules were used. For advanced analysis of electrical signals obtained from detectors the phase of cross-spectral density function has been applied. Results of the average solid-phase velocity measurements were compared with one obtained by application of the classical cross-correlation. It was found that the combined uncertainties of the velocity of solid particles evaluation in the presented experiment did not exceed 0.6% in phase method and 3.2% in cross-correlation method.

  6. Single-pulse dynamics and flow rates of inertial micropumps

    Govyadinov, A N; Markel, D P; Torniainen, E D


    Bubble-driven inertial pumps are a novel method of moving liquids through microchannels. We combine high-speed imaging, computational fluid dynamics (CFD) simulations and an effective one-dimensional model to study the fundamentals of inertial pumping. Single-pulse flow through 22 x 17 um2 U-shaped channels containing 4-um polystyrene tracer beads has been imaged with a high-speed camera. The results are used to calibrate the CFD and one-dimensional models to extract an effective bubble strength. Then the frequency dependence of inertial pumping is studied both experimentally and numerically. The pump efficiency is found to gradually decrease once the successive pulses start to overlap in time.

  7. Effect of the flow composition on outflow rates from accretion discs around black holes

    Kumar, Rajiv; Chattopadhyay, Indranil; Chakrabarti, Sandip K


    We studied the outflow behaviour from accretion discs around black holes taking into account the vertical equilibrium accretion flow model. The outflow rate is found to depend crucially on flow composition. Our approach is to study the outflow behaviour as function of inflow around black holes with an equation of state which allows flow to be thermally relativistic close to black holes and non relativistic far away from black holes. We studied shock ejection model. A pure electron positron pair flow never undergoes shock transition while presence of some baryons (common in outflows and jets) makes it possible to have standing shock waves in the flow. It can be concluded that the presence of protons is necessary for the flow to show the outflow behaviour. The outflow rate is maximum when the flow contains the proton number density which is 27% of the electron number density. We conclude that a pure electron-positron jet is unlikely to form.

  8. Removal of PCDDs/Fs from municipal solid waste incineration by entrained-flow adsorption technology

    YAN Jian-hua; PENG Zheng; LU Sheng-yong; LI Xiao-dong; CEN Ke-fa


    Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solidwaste incineration (MSWI) process. The effects of operating parameters including flue gas temperature, feeding rate of activated carbon, polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs) concentration at the inlet of the air pollution control device (APCD), filter materials, pressure drop on PCDDs/Fs removal efficiency are reviewed and commented upon in this paper. Evaluation on the various mechanistic models for entrained flow adsorption is carried out based on the computational simulation in terms of the actual operating condition and theoretical analysis. Finally, an advancement of entrained flow adsorption in combination of dual bag filter is introduced.

  9. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.


    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  10. Flow-rate Characteristics Measurement of Regulators Based on the Pressure Response in an Isothermal Tank

    FAN Wei; ZHANG Hongli; WANG Tao; PENG Guangzheng; ONEYAMA Naotake


    Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators.

  11. 2D numerical simulation of gas flow interaction with a solid wall by regularized Grad's set of equations

    Timokhin, M. Yu.; Ivanov, I. E.; Kryukov, I. A.


    This study is devoted to the two-dimensional numerical simulation of gas flow in the transition regime with solid wall interaction. The regularized 13-moment Grad's set of equations (R13) [1,2] was chosen as a mathematical model. A variant of explicit high order Godunov-type scheme with linear flow parameter reconstruction is used for the numerical solution of this set of equations. Numerical method for wall boundary conditions is based on Newton's iterative method suggested here. Couette and Poiseuille flows and lid-driven cavity flow were solved as test examples with this numerical scheme.

  12. A generalized Forchheimer radial flow model for constant-rate tests

    Liu, Ming-Ming; Chen, Yi-Feng; Zhan, Hongbin; Hu, Ran; Zhou, Chuang-Bing


    Models used for data interpretation of constant-rate tests (CRTs) are commonly derived with the assumption of Darcian flow in an idealized integer flow dimension, where the non-Darcian nature of fluid flow and the complexity of flow geometry are disregarded. In this study, a Forchheimer's law-based analytical model is proposed with the assumption of buildup (or drawdown) decomposition for characterizing the non-Darcian flow in a generalized radial formation where the flow dimension n may become non-integer. The proposed model immediately reduces to Barker's (1988) model for Darcian flow in the generalized radial formation and to Mathias et al.'s (2008) model for non-Darcian flow in a two-dimensional confined aquifer. A comparison with numerical simulations shows that the proposed model behaves well at late times for flow dimension n > 1.5. The proposed model is finally applied for data interpretation of the constant-rate pumping tests performed at Ploemeur (Le Borgne et al., 2004), showing that the intrinsic hydraulic conductivity of formations will be underestimated and the specific storage will be overestimated if the non-Darcian effect is ignored. The proposed model is an extension of the generalized radial flow (GRF) model based on Forchheimer's law, which would be of significance for data interpretation of CRTs in aquifers of complex flow geometry in which non-Darcian flow occurs.

  13. Gap-filling of dry weather flow rate and water quality measurements in urban catchments by a time series modelling approach

    Sandoval, Santiago; Vezzaro, Luca; Bertrand-Krajewski, Jean-Luc


    seeks to evaluate the potential of the Singular Spectrum Analysis (SSA), a time-series modelling/gap-filling method, to complete dry weather time series. The SSA method is tested by reconstructing 1000 artificial discontinuous time series, randomly generated from real flow rate and total suspended...... solids (TSS) online measurements (year 2007, 2 minutes time-step, combined system, Ecully, Lyon, France). Results show up the potential of the method to fill gaps longer than 0.5 days, especially between 0.5 days and 1 day (mean NSE > 0.6) in the flow rate time series. TSS results still perform very...

  14. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  15. Multicomutation flow system for manganese speciation by solid phase extraction and flame atomic absorption spectrometry

    Tobiasz, Anna; Sołtys, Monika; Kurys, Ewa; Domagała, Karolina; Dudek-Adamska, Danuta; Walas, Stanisław


    In the paper an application of solid phase extraction technique for speciation analysis of manganese in water samples with the use of flame atomic absorption spectrometry is presented. Two types of sorbents, activated silica gel and Dowex 1 × 4, were used respectively for simultaneously Mn2 + and MnO42 - retention and preconcentration. The whole procedure was realized in multicomutation flow system. Different conditions like: type and concentration of eluent, sample pH and loading time were tested during the study. Under appropriate conditions, it was possible to obtained enrichment factors of 20 and 16 for Mn(II) and Mn(VII), respectively. Precision of the procedure was close to 4% (measured as relative standard deviation), whereas the detection limit (3σ) was 1.4 μg·L- 1 for Mn(II) and 4.8 μg·L- 1 for Mn(VII).

  16. Rheological flow from a die and painting on a moving solid wall

    TANG Zemei; HU Wenrui


    Die swell is an important phenomenon in polymer processing, and is explained usually by rheological properties of the fluid. Because of the nonuniform of temperature distribution on the free surface of the liquid jet, the thermocapillary convection driven by surface tension gradient exists. The rheological fluid flowing out of a die and painting on a moving solid wall is studied by the numerical finite element method of a two-dimensional and unsteady model in the present paper, and both the rheological effect of a non-Newtonian fluid and the thermocapillary effect are considered. The results show that both effects will enlarge the cross-section of the fluid jet, and the rheological effect of non-Newtonian fluid dominates the process in general.

  17. Gas-solid two-phase flow in the riser of circulating fluidized beds: mathematical modelling and numerical simulation

    Cabezas Gomez, Luben; Milioli, Fernando Eduardo [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Nucleo de Engenharia Termica e Fluidos]. E-mails:;


    A mathematical model is developed for gas-solids flows in circulating fluidized beds. An Eulerian formulation is followed based on the two-fluids model approach where both the fluid and the particulate phases are treated as a continuum. The physical modelling is discussed, including the formulation of boundary conditions and the description of the numerical methodology. Results of numerical simulation are presented and discussed. The model is validated through comparison to experiment, and simulation is performed to investigate the effects on the flow hydrodynamics of the solids viscosity. (author)

  18. Passive sampling of perfluorinated chemicals in water: flow rate effects on chemical uptake.

    Kaserzon, Sarit L; Vermeirssen, Etiënne L M; Hawker, Darryl W; Kennedy, Karen; Bentley, Christie; Thompson, Jack; Booij, Kees; Mueller, Jochen F


    A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In this work, uptake kinetics of selected PFCs, over 15 days, were investigated. A flow-through channel system was employed with spiked river water at flow rates between 0.02 and 0.34 m s(-1). PFC sampling rates (Rs) (0.09-0.29 L d(-1) depending on analyte and flow rate) increased from the lowest to highest flow rate employed for some PFCs (MW ≤ 464) but not for others (MW ≥ 500). Rs's for some of these smaller PFCs were increasingly less sensitive to flow rate as this increased within the range investigated. This device shows promise as a sampling tool to support monitoring efforts for PFCs in a range of flow rate conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluation of Physical Composition and Municipal Solid Waste Generation Rate of Hamadan (June 1999 May 2000

    M.T. Samadi


    Full Text Available Although municipal solid waste (MSW is generated every day , but with comparison to other municipal Environmental aspects such as Air pollution and Sewage, is not well considered. MSW management includes refuse production, storage, collection, transportation and disposal. Without adequate and reliable in formation and data about MSW generation rate and it’s physical components, optimun planning and management is not obtainable. In this research the physical composition of Hamadan MSW was studied . Samples were takan by Truck–Load sampling and portional random method from June 1999 untile May 2000 and analyzed for physical components and moisture percent age. The results showed that the average generation rate, density of wastes and its moisture percent were 252.33 Tons and 204.83 kg/m3 and 22.46% respectively. Average percents of physical componets were 77.72% , 5.75% , 5.42% , 3.15%, 2.11% , 1.04% and 4.92% for Biodegriable materials (garbage, papers, plastics, textiles, metals, glass and other materials respectively. Also maximum generation rate was 328 tons in March and minimum generation rate was 196 tons in December. In general, with planning of enforceable reuse and recycling programmes, could be avoid of 183, 14, 13 and 5 tons of biodegriable materials , paper, plastics and metals burial respectively everyday.

  20. Solid propellant rocket motor

    Dowler, W. L.; Shafer, J. I.; Behm, J. W.; Strand, L. D. (Inventor)


    The characteristics of a solid propellant rocket engine with a controlled rate of thrust buildup to a desired thrust level are discussed. The engine uses a regressive burning controlled flow solid propellant igniter and a progressive burning main solid propellant charge. The igniter is capable of operating in a vacuum and sustains the burning of the propellant below its normal combustion limit until the burning propellant surface and combustion chamber pressure have increased sufficiently to provide a stable chamber pressure.

  1. Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

    Vanessa N. Alves


    Full Text Available This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cachaça in Portuguese, using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0 mL min-1, 30.0 mg of sorbent mass, and 1.0 mol L-1 HNO3 as the eluent at a flow rate of 4.0 mL min-1. The limit of detection for zinc was 1.9 μg L-1, and the precision was below 0.82% (20.0 μg L-1, n=7. The analytical curve was linear from 2 to 50 μg L-1, with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%.

  2. Tangential stretching rate (TSR) analysis of non premixed reactive flows

    Valorani, Mauro


    We discuss how the Tangential stretching rate (TSR) analysis, originally developed and tested for spatially homogeneous systems (batch reactors), is extended to spatially non homogeneous systems. To illustrate the effectiveness of the TSR diagnostics, we study the ignition transient in a non premixed, reaction–diffusion model in the mixture fraction space, whose dependent variables are temperature and mixture composition. The reactive mixture considered is syngas/air. A detailed H2/CO mechanism with 12 species and 33 chemical reactions is employed. We will discuss two cases, one involving only kinetics as a model of front propagation purely driven by spontaneous ignition, the other as a model of deflagration wave involving kinetics/diffusion coupling. We explore different aspects of the system dynamics such as the relative role of diffusion and kinetics, the evolution of kinetic eigenvalues, and of the tangential stretching rates computed by accounting for the combined action of diffusion and kinetics as well for kinetics only. We propose criteria based on the TSR concept which allow to identify the most ignitable conditions and to discriminate between spontaneous ignition and deflagration front.

  3. Formation of the geometrically controlled carbon coils by manipulating the additive gas (SF6) flow rate.

    Jeon, Young-Chul; Kim, Sung-Hoon


    Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under the thermal chemical vapor deposition system. The nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. The flow rate and the injection time of SF6 varied according to the different reaction processes. Geometries of carbon coils developed from embryos to nanosized coils with increasing SF, flow rate from 5 to 35 sccm under the short SF6 flow injection time (5 minutes) condition. The gradual development of carbon coils geometries from nanosized to microsized types could be observed with increasing SF6 flow rate under the full time (90 minutes) SF6 flow injection condition. The flow rate of SF6 for the coil-type geometry formation should be more than or at least equal to the flow rate of carbon source gas (C2H2). A longer injection time of SF6 flow would increase the size of coils diameters from nanometer to micrometer.

  4. Quartz measurement in coal dust with high-flow rate samplers: laboratory study.

    Lee, Taekhee; Lee, Eun Gyung; Kim, Seung Won; Chisholm, William P; Kashon, Michael; Harper, Martin


    A laboratory study was performed to measure quartz in coal dust using high-flow rate samplers (CIP10-R, GK2.69 cyclone, and FSP10 cyclone) and low-flow rate samplers [10-mm nylon and Higgins-Dewell type (BGI4L) cyclones] and to determine whether an increased mass collection from high-flow rate samplers would affect the subsequent quartz measurement by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analytical procedures. Two different sizes of coal dusts, mass median aerodynamic diameter 4.48 μm (Coal Dust A) and 2.33 μm (Coal Dust B), were aerosolized in a calm air chamber. The mass of coal dust collected by the samplers was measured gravimetrically, while the mass of quartz collected by the samplers was determined by FTIR (NIOSH Manual of Analytical Method 7603) and XRD (NIOSH Manual of Analytical Method 7500) after one of two different indirect preparations. Comparisons between high-flow rate samplers and low-flow rate samplers were made by calculating mass concentration ratios of coal dusts, net mass ratios of coal dusts, and quartz net mass. Mass concentrations of coal dust from the FSP10 cyclone were significantly higher than those from other samplers and mass concentrations of coal dust from 10-mm nylon cyclone were significantly lower than those from other samplers, while the CIP10-R, GK2.69, and BGI4L samplers did not show significant difference in the comparison of mass concentration of coal dusts. The BGI4L cyclone showed larger mass concentration of ∼9% compared to the 10-mm nylon cyclone. All cyclones provided dust mass concentrations that can be used in complying with the International Standard Organization standard for the determination of respirable dust concentration. The amount of coal dust collected from the high-flow rate samplers was found to be higher with a factor of 2-8 compared to the low-flow rate samplers but not in direct proportion of increased flow rates. The high-flow rate samplers collected more quartz compared to

  5. Effects of mass flow rate and droplet velocity on surface heat flux during cryogen spray cooling

    Karapetian, Emil [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Aguilar, Guillermo [Department of Biomedical Engineering, University of California, Irvine, CA (United States); Kimel, Sol [Beckman Laser Institute, University of California, Irvine, CA (United States); Lavernia, Enrique J [Department of Chemical Engineering and Material Sciences, University of California, Irvine, CA (United States); Nelson, J Stuart [Department of Biomedical Engineering, University of California, Irvine, CA (United States)


    Cryogen spray cooling (CSC) is used to protect the epidermis during dermatologic laser surgery. To date, the relative influence of the fundamental spray parameters on surface cooling remains incompletely understood. This study explores the effects of mass flow rate and average droplet velocity on the surface heat flux during CSC. It is shown that the effect of mass flow rate on the surface heat flux is much more important compared to that of droplet velocity. However, for fully atomized sprays with small flow rates, droplet velocity can make a substantial difference in the surface heat flux. (note)

  6. Effect of organic loading rate during anaerobic digestion of municipal solid waste.

    Dhar, Hiya; Kumar, Pradeep; Kumar, Sunil; Mukherjee, Somnath; Vaidya, Atul N


    The effect of chemical oxygen demand (COD) and volatile solids (VS) on subsequent methane (CH4) production during anaerobic digestion (AD) of organic fraction of municipal solid waste (OFMSW) was studied in a laboratory-scale digester. The experiment was performed in 2L anaerobic digester under different experimental conditions using different input mass co-digested with inoculum and organic loading rate (OLR) for 27days at 38±2°C. Three digesters (digesters 1, 2 and 3) were operated at initial loading of 5.1, 10.4 and 15.2g/L CODS per batch which were reduced to 77.9% and 84.2%, respectively. Cumulative biogas productions were 9.3, 10.7 and 17.7L in which CH4 yields were 84.3, 101.0 and 168.4mL/gVS removal in digesters 1, 2, and 3, respectively. The observed COD removal was found to be influenced on variation in CH4 production. Co-efficient of determination (R(2)) was 0.67 and 0.74 in digesters 1 and 2, respectively.

  7. Financial modeling in medicine: cash flow, basic metrics, the time value of money, discount rates, and internal rate of return.

    Lexa, Frank James; Berlin, Jonathan W


    In this article, the authors cover tools for financial modeling. Commonly used time lines and cash flow diagrams are discussed. Commonly used but limited terms such as payback and breakeven are introduced. The important topics of the time value of money and discount rates are introduced to lay the foundation for their use in modeling and in more advanced metrics such as the internal rate of return. Finally, the authors broach the more sophisticated topic of net present value.

  8. Estimation of particle velocity in moving beds based on a flow model for bulk solids. Ryudo model ni motozuita idoso no ryushi sokudo no suisan

    Takahashi, H. (Muroran Inst. of Tech., Hokkaido (Japan)); Honda, Y. (Snow Brand Milk Products Co. Ltd., Sapporo (Japan))


    Based on a particle flow model (stress-shear strain velocity relational expression) which takes account of the bulk volume expansion effect during shearing deformation of particles, a new estimation method for particle velocity distribution and stress distribution is proposed. The method is applied to a crossflow moving bed and to a moving bed for comparison with the experimental values to examine its validity. The method is further extended to predict the velocity profile and stress profile of moving beds in a vertical tube (countercurrent and concurrent) accompanying gas flow. It is indicated that the bulk volume expansion effect differs according to dimensions. The velocity distribution and the stress distribution of flows in a vertical tube are greatly influenced by the nature of the flow, i.e. whether it is a counterflow or a concurrent flow, and the frictional force of solids on a wall surface increases markedly in a concurrent flow, which induces considerable lag of particle velocity. The parameter which is contained in the model and indicates the bulk volume expansion effect is a function of the particle velocity, and it is almost unaffected by the flow rate of gas moving. 7 refs., 10 figs.

  9. Mercury flow experiments. 4th report Measurements of erosion rate caused by mercury flow

    Kinoshita, H; Hino, R; Kaminaga, M


    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a construction plan of the Material-Life Science Facility, which is consisted of a Muon Science Facility and a Neutron Scattering Facility, in order to open up the new science fields. The Neutron Scattering Facility will be utilized for advanced fields of Material and Life science using high intensity neutron generated by the spallation reaction of a 1 MW pulsed proton beam and mercury target. Design of the spallation mercury target system aims to obtain high neutron performance with high reliability and safety. Since the target system is using mercury as the target material and contains large amount of radioactive spallation products, it is necessary to estimate reliability for strength of instruments in a mercury flow system during lifetime of the facility. Piping and components in the mercury flow system would be damaged by erosion with mercury flow, since these components will be we...

  10. Transitional phenomenon of particle dispersion in gas-solid two-phase flows

    LUO Kun; FAN JianRen; CEN KeFa


    Without using any turbulent model, direct numerical simulation of a three-dimensional gas-solid two-phase turbulent jet was performed by finite volume method. The effects on dispersion of particles with different Stokes numbers by the transitional behavior of turbulent structures were investigated. To produce high-resolution results and reduce the computation and storage, the fractional-step projection algorithm was used to solve the governing equations of gas phase fluid. The low-storage, three-order Runge-Kutta scheme was used for time integration. The governing equations of particles were solved in the Lagrangian framework. These numerical schemes were validated by the good agreement between the statistical results of flow field and the related experimental data. In the study of particle dispersion, it was found that the effects on particle dispersion by the spanwise vortex structures were prominent. The new behaviors of particle dispersion were also observed during the evolution of the flow field, i.e. the transitional phenomenon of particle dispersion occurs for the particles with small and intermediate Stokes numbers.

  11. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per


    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  12. Effect of Gas Phase Heat Sink on Suppression of Opposed Flow Flame Spread over Thin Solid Fuels in Microgravity Environment

    Vinayak Malhotra


    Full Text Available A two-dimensional numerical model of opposed flow flame spread over thin solid fuel is formulated and modeled to study the effect of gas phase heat sink (a wire mesh placed parallel to the fuel surface on the flame-spread rate and flame extinction. The work focuses on the performance of the wire mesh in microgravity environment at an oxygen concentration 21%. The simulations were carried out for various mesh parameters (wire diameter, “” and number of wires per unit length, “” and mesh distance perpendicular to fuel surface “”. Simulations show that wire mesh is effective in reducing flame-spread rate when placed at distance less than flame width (which is about 1 cm. Mesh wire diameter is determined not to have major influence on heat transfer. However, smaller wire diameter is preferred for better aerodynamics and for increasing heat transfer surface area (here prescribed by parameter “”. Flame suppression exhibits stronger dependence on number of wires per unit length; however, it is relatively insensitive to number of wires per unit length beyond certain value (here 20 cm−1.

  13. Onset of the Mutual Thermal Effects of Solid Body and Nanofluid Flow over a Flat Plate Theoretical Study

    A. Malvandi; Faraz Hedayati; Ganji, D.D.


    The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) is investigated, which is classified in conjugate heat transfer problems. Two-component four-equatio...


    Moe, Lonn; Thompson, Jerry L.


    The objective of this study was to discover the magnitude of the effect variable rate loans have on net operating cash flow over the period from 1968 to 1981. This was done by comparing a variable rate loan model with a fixed rate loan model under varying debt loads for four farm types.


    Moe, Lonn; Thompson, Jerry L.


    The objective of this study was to discover the magnitude of the effect variable rate loans have on net operating cash flow over the period from 1968 to 1981. This was done by comparing a variable rate loan model with a fixed rate loan model under varying debt loads for four farm types.

  16. Power flow controller with a fractionally rated back-to-back converter

    Divan, Deepakraj M.; Kandula, Rajendra Prasad; Prasai, Anish


    A power flow controller with a fractionally rated back-to-back (BTB) converter is provided. The power flow controller provide dynamic control of both active and reactive power of a power system. The power flow controller inserts a voltage with controllable magnitude and phase between two AC sources at the same frequency; thereby effecting control of active and reactive power flows between the two AC sources. A transformer may be augmented with a fractionally rated bi-directional Back to Back (BTB) converter. The fractionally rated BTB converter comprises a transformer side converter (TSC), a direct-current (DC) link, and a line side converter (LSC). By controlling the switches of the BTB converter, the effective phase angle between the two AC source voltages may be regulated, and the amplitude of the voltage inserted by the power flow controller may be adjusted with respect to the AC source voltages.

  17. Effects of neuropeptide Y on regulation of blood flow rate in canine myocardium

    Svendsen, Jesper Hastrup; Sheikh, S P; Jørgensen, J


    The effect of neuropeptide Y (NPY) on tension development was examined in isolated canine coronary arteries, and the effects on local myocardial blood flow rate were studied in open-chest anesthetized dogs by the local 133Xe washout technique. By immunohistochemistry, numerous NPY......+. In contrast, intracoronary NPY (0.01-10 micrograms) induced a considerable degree of vasoconstriction; the reduction of blood flow rate was dose related, with a maximum reduction to 52% of control values. The effect of intracoronary NPY (1 microgram) on maximally relaxed arterioles elicited by 30 s...... of ischemia was studied in separate experiments during reactive hyperemia. NPY induced a decrease in maximum blood flow during reactive hyperemia (166.6 vs. 214.6% of preocclusive blood flow rate, mean values; P = 0.05), an increase in the cumulative excess blood flow (61.0 vs. 35.3 ml/100 g; P = 0...

  18. Effects of Asymmetrical Micro Electrode Surface Topography to AC Electroosmosis flow Rate

    Hong-Yuan, Jiang; Zhen-Xiu, Hou; Yu-Kun, Ren; Yong-Jun, Sun


    AC Electroosmosis (ACEO) has many advantages such as low power consumption, non-moving parts, and easy to integrate etc., so it is widely used for low concentration microfluid manipulation in low frequency range. Classical ACEO theory assumes that electric double layer (EDL) is the main cause of electric field induced flow, and gives electric-flow field coupling equations for ACEO flow rate. But the calculation data usually are tens times faster than the experimental velocities. In this paper, electrode surface topography is included to solve ACEO flow rate. With electrode surface roughness as the characteristic parameter, equivalent EDL model is set up to modify the classical EDL model. The relationship between flow rate and electrode surface roughness is studied. Experiment results agree with the simulation very well, proving the feasibility of equivalent EDL model.

  19. Numerical simulation and analysis of solid-liquid two-phase three-dimensional unsteady flow in centrifugal slurry pump

    吴波; 汪西力; 徐海良


    Based on RNGk-ε turbulence model and sliding grid technique, solid−liquid two-phase three-dimensional (3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid−liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump.

  20. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    Larsbo, Mats; Koestel, John


    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  1. A Rate-Dependent Viscoelastic Damage Model for Simulation of Solid Propellant Impacts

    Matheson, E. R.; Nguyen, D. Q.


    A viscoelastic deformation and damage model (VED) for solid rocket propellants has been developed based on an extensive set of mechanical properties experiments. Monotonic tensile tests performed at several strain rates showed rate and dilatation effects. During cyclic tensile tests, hysteresis and a rate-dependent shear modulus were observed. A tensile relaxation experiment showed significant stress decay in the sample. Taylor impact tests exhibited large dilatations without significant crack growth. Extensive modifications to a viscoelastic-viscoplastic model (VEP) necessary to capture these experimental results have led to development of the VED model. In particular, plasticity has been eliminated in the model, and the multiple Maxwell viscoelastic formulation has been replaced with a time-dependent shear modulus. Furthermore, the loading and unloading behaviors of the material are modeled independently. To characterize the damage and dilatation behavior, the Tensile Damage and Distention (TDD) model is run in conjunction with VED. The VED model is connected to a single-cell driver as well as to the CTH shock physics code. Simulations of tests show good comparisons with tensile tests and some aspects of the Taylor tests.


    Kulkarni Parthasarathi Keshavarao


    Full Text Available The aim of the present study was to enhance the dissolution rate of piroxicam (PX using its solid dispersions (SDs with polyethylene glycol (PEG 6000. The phase solubility behavior of piroxicam in presence of various concentrations of PEG 6000 in distilled water was obtained at 37 °C. The solubility of PX increased with increasing amount of PEG 6000 in water and demonstrating that the reaction conditions became more favorable as the concentration of PEG 6000 increased. The SDs of PX with PEG 6000 were prepared using 1:1, 1:2,1:3,1:4 and1:5 (PX/PEG 6000 ratio by Hot-melt method and solvent evaporation method. Evaluation of the properties of the SDs was performed by using dissolution, Fourier-transform infrared (FTIR spectroscopy, differential scanning calorimetry (DSC. The SDs of PX with PEG 6000 exhibited enhanced dissolution rate of PX and the rate increased with increasing concentration of PEG 6000 in SDs. Mean dissolution time (MDT of PX decreased significantly after preparation of SDs and physical mixture with PEG6000. The FTIR spectroscopic studies revealed that there is no chemical interaction and drug was stable. The DSC studies indicated the microcrystalline or amorphous state of PX in SDs with PEG 6000.

  3. Determination of solid-propellant transient regression rates using a microwave Doppler shift technique

    Strand, L. D.; Schultz, A. L.; Reedy, G. K.


    A microwave Doppler shift system, with increased resolution over earlier microwave techniques, was developed for the purpose of measuring the regression rates of solid propellants during rapid pressure transients. A continuous microwave beam is transmitted to the base of a burning propellant sample cast in a metal waveguide tube. A portion of the wave is reflected from the regressing propellant-flame zone interface. The phase angle difference between the incident and reflected signals and its time differential are continuously measured using a high resolution microwave network analyzer and related instrumentation. The apparent propellant regression rate is directly proportional to this latter differential measurement. Experiments were conducted to verify the (1) spatial and time resolution of the system, (2) effect of propellant surface irregularities and compressibility on the measurements, and (3) accuracy of the system for quasi-steady-state regression rate measurements. The microwave system was also used in two different transient combustion experiments: in a rapid depressurization bomb, and in the high-frequency acoustic pressure environment of a T-burner.

  4. Particle Flow Cell Formation at Minimum Fluidization Flow Rates in a Rectangular Gas-Fluidized Bed.


    Kunii and Levenspiel Model ----------------- 66 C. FLUIDIZED BED VARIABLES THAT AFFECT HEAT TRANSFER ---------------------------------- 69 5 1...and Levenspiel Model -------------------------- 68 25. Heat transfer coefficient vs. mass velocity --------- 72 26. Contact geometry of surface-particle...becomes a very important factor. According to Kunii and Levenspiel [34], distributors should have a sufficient pressure drop to achieve equal flow

  5. Numerical Simulation for Effect of Inlet Cooling Rate on Fluid Flow and Temperature Distribution in Tundish

    QU Tian-peng; LIU Cheng-jun; JIANG Mao-fa


    The fluid flow in tundish is a non-isothermal process and the temperature variation of stream from teeming ladle dominates the fluid flow and thermal distribution in tundish. A numerical model was established to investigate the effect of inlet cooling rate on fluid flow and temperature distribution in tundish based on a FTSC (Flexible Thin Slab Casting) tundish. The inlet cooling rate varies from 0. 5 to 0. 25 ~C/rain. Under the present calculation conditions, the following conclusions were made. When the stream temperature from teeming ladle drops seriously (for inlet cooling rate of 0.5℃/min), there is a "backward flow" at the coming end of casting. The horizontal flow along the free surface turns to flow along the bottom of tundish. The bottom flow shortens the fluid flow route in tundish and deteriorates the removal effect of nonmetallic inclusions from molten steel. Nevertheless, when the inlet cooling rate decreases to 0.25℃/min, the horizontal flow is sustained during the whole casting period. The present research provides theoretical directions for temperature control in teeming ladle and continuous casting tundish during production of advanced steels.

  6. Direct Measurement of Planar Flow Rate in Excised Canine Larynx Model

    Oren, Liran; Khosla, Sid; Dembinski, Doug; Ying, Jun; Gutmark, Ephraim


    Objective During phonation, skewing of the glottal flow waveform (Q) during phonation refers to a phenomenon that occurs when the flow decelerates more rapidly than it accelerates. This skewing is clinically important because it increases the glottal efficiency, which is defined by the acoustic intensity (units are sound pressure level or SPL) divided by the subglottal pressure. Current theoretical models predict that the only mechanism to cause skewing of Q involves changes in the vocal tract inertance. The purpose of the current work is to show that other factors at the vocal fold level can also cause skewing of Q and to determine if the acoustic intensity is correlated with MFDR. Study design Basic Science Methods Intraglottal geometry and velocity measurements were taken in five canine larynges at the mid-membranous plane using two-dimensional particle imaging velocimetry (PIV). The flow rate at the glottal exit was computed from the PIV measurements for low, medium, and high subglottal pressures. Results Vortices form in the superior aspect of the divergent glottis during closing. These vortices produce negative pressure that increases both the maximum value of Q and the rapid deceleration of the flow. The skewing of the flow rate is increased as the intraglottal vortices are increased by increasing the subglottal pressure. The increase in the acoustic intensity is highly correlated with certain properties of the flow rate waveform, such as maximum flow rate. Conclusion Flow skewing and the acoustic intensity can be increased by increasing the intraglottal vortices. PMID:25093928

  7. A Distributed Flow Rate Control Algorithm for Networked Agent System with Multiple Coding Rates to Optimize Multimedia Data Transmission

    Shuai Zeng


    Full Text Available With the development of wireless technologies, mobile communication applies more and more extensively in the various walks of life. The social network of both fixed and mobile users can be seen as networked agent system. At present, kinds of devices and access network technology are widely used. Different users in this networked agent system may need different coding rates multimedia data due to their heterogeneous demand. This paper proposes a distributed flow rate control algorithm to optimize multimedia data transmission of the networked agent system with the coexisting various coding rates. In this proposed algorithm, transmission path and upload bandwidth of different coding rate data between source node, fixed and mobile nodes are appropriately arranged and controlled. On the one hand, this algorithm can provide user nodes with differentiated coding rate data and corresponding flow rate. On the other hand, it makes the different coding rate data and user nodes networked, which realizes the sharing of upload bandwidth of user nodes which require different coding rate data. The study conducts mathematical modeling on the proposed algorithm and compares the system that adopts the proposed algorithm with the existing system based on the simulation experiment and mathematical analysis. The results show that the system that adopts the proposed algorithm achieves higher upload bandwidth utilization of user nodes and lower upload bandwidth consumption of source node.

  8. Effects of the flow rate of hydrogen on the growth of graphene

    Yong-gui Shi; Yue Hao; Dong Wang; Jin-cheng Zhang; Peng Zhang; Xue-fang Shi; Dang Han; Zheng Chai; Jing-dong Yan


    Graphene samples with different morphologies were fabricated on the inside of copper enclosures by low pressure chemical vapor deposition and tuning the flow rate of hydrogen. It is found that the flow rate of hydrogen greatly influences the growth of graphene. Ther-modynamic analysis indicates that a higher flow rate of hydrogen is favorable to the formation of good quality graphene with regular mor-phology. However, the mass-transfer process of methane dominates the growth driving force. At very low pressure, mass-transfer proceeds by Knudsen diffusion, and the mass-transfer flux of methane decreases as the flow rate of hydrogen increases, leading to a decrease in the growth driving force. At a higher pressure, mass-transfer proceeds by Fick’s diffusion, and the mass-transfer flux of methane is dominated by the gas velocity, whose variation determines the growth driving force variation of graphene.

  9. Passive sampling of perfluorinated chemicals in water: Flow rate effects on chemical uptake

    Kaserzon, S.L.; Vermeirssen, E.L.M.; Hawker, D.W.; Kennedy, K.; Bentley, C.; Thompson, J.; Booij, K.; Mueller, J.F.


    A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In

  10. Relationship between Supplied Oil Flow Rates and Oil Film Thicknesses under Starved Elastohydrodynamic Lubrication

    Taisuke Maruyama


    Full Text Available Many studies have already considered starved lubrication. However, there have been no reports on the oil film thicknesses under steady starved EHL (elastohydrodynamic lubrication, where the ultra-low volume of oil supplied per unit time is uniform. The present study examined the relationship between the supplied oil flow rate and oil film thickness under steady starved lubrication. A ball-on-disk testing machine was used in experiments to measure the oil film thickness by means of optical interferometry. A microsyringe pump was used to accurately control the supplied oil flow rate. The supplied oil flow rate was kept constant, and the minimum oil film thickness was measured for 1 h after the start of the tests to determine the relationship between the supplied oil flow rate and oil film thickness.

  11. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst

    S.A. Khorrami


    Full Text Available Carbon nanotubes (CNTs were grown on copper catalyst by thermal chemical vapor deposition (TCVD using H2 and N2 as carrier gases. CNTs with different morphologies were observed using different carrier gas flow rates. The influence of carrier gas flow rates on the structure of carbon nanotubes was compared. Catalyst nanolayer was sputtered on mirror polished silicon wafers. The catalyst film thickness was determined by using the Rutherford Back Scattering (RBS technique. Ethanol as carbon source has been used. The surface morphology and nanostructure were studied by Scanning Electron Microscopy (SEM, Raman Spectroscopy, Tunneling Electron Microscopy (TEM and Atomic Force Microscopy (AFM. Results indicated that the amounts of deposited carbon decrease with increasing flow rates. These results showed that CNTs’ length decreased with increasing flow rates. Results suggest that Cu nanolayer is suitable as catalyst due to the fact that CNTs are monotonous.

  12. An in vivo assessment of the influence of needle gauges on endodontic irrigation flow rate

    Velayutham Gopikrishna


    Statistical Analysis Used: The following tests were used for the statistical analysis: Independent sample "T" test, one-way ANOVA test, and post hoc multiple comparison was carried out using Tukey′s honest significant difference (HSD test using Statistical Package for the Social Sciences (SPSS version 16 for Windows. Results: The average flow rate of 26 gauge was 0.27 mLs−1 , of 27 gauge was 0.19 mLs−1 , and of 30 gauge was 0.09 mls−1 . There was statistical significance among the gauges (P < 0.001. 26 gauge had highest flow rate when compared with other groups followed by 27 gauge and 30 gauge respectively. The operator variability for flow rate of three endodontic irrigation needle gauges (26 gauge, 27 gauge, and 30 gauge was found to be not significant. Conclusions: Needle gauge has significant influence on endodontic irrigation flow rate.

  13. Measurement of cerebral blood flow rate and its relationship with brain function using optical coherence tomography

    Liu, Jian; Wang, Yi; Zhao, Yuqian; Dou, Shidan; Ma, Yushu; Ma, Zhenhe


    Activity of brain neurons will lead to changes in local blood flow rate (BFR). Thus, it is important to measure the local BFR of cerebral cortex on research of neuron activity in vivo, such as rehabilitation evaluation after stroke, etc. Currently, laser Doppler flowmetry is commonly used for blood flow measurement, however, relatively low resolution limits its application. Optical coherence tomography (OCT) is a powerful noninvasive 3D imaging modality with high temporal and spatial resolutions. Furthermore, OCT can provide flow distribution image by calculating Doppler frequency shift which makes it possible for blood flow rate measurement. In this paper, we applied OCT to measure the blood flow rate of the primary motor cortex in rats. The animal was immobilized and anesthetized with isoflurane, an incision was made along the sagittal suture, and bone was exposed. A skull window was opened on the primary motor cortex. Then, blood flow rate changes in the primary motor cortex were monitored by our homemade spectral domain OCT with a stimulation of the passive movement of the front legs. Finally, we established the relationship between blood flow rate and the test design. The aim is to demonstrate the potential of OCT in the evaluation of cerebral cortex function.

  14. A 3D Simulation of a Moving Solid in Viscous Free-Surface Flows by Coupling SPH and DEM

    Liu-Chao Qiu


    Full Text Available This work presents a three-dimensional two-way coupled method to simulate moving solids in viscous free-surface flows. The fluid flows are solved by weakly compressible smoothed particle hydrodynamics (SPH and the displacement and rotation of the solids are calculated using the multisphere discrete element method (DEM allowing for the contact mechanics theories to be used in arbitrarily shaped solids. The fluid and the solid phases are coupled through Newton’s third law of motion. The proposed method does not require a computational mesh, nor does it rely on empirical models to couple the fluid and solid phases. To verify the numerical model, the floating and sinking processes of a rectangular block in a water tank are simulated, and the numerical results are compared with experimental results reported in published literatures. The results indicate that the method presented in this paper is accurate and is capable of modelling fluid-solid interactions with a free-surface.

  15. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    Xu, Xinpeng


    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  16. Two Models of DMFC under Effects of Cathode Humidification Temperature and Anode Flow Rate


    This paper introduced a novel self-adjustment of parameters of fuzzy neural networks. Then,the effects of cathode humidification temperature and anode flow rate on the performance of direct methanol fuel cell (DMFC)were described respectively. Two dynamic performance models of DMFC under the influences of cathode humidification temperature and anode flow rate were established separately based on fuzzy neural networks. The simulation results show the accuracy of the models established is satisfactory.

  17. Flow Rates in Liquid Chromatography, Gas Chromatography and Supercritical Fluid Chromatography: A Tool for Optimization

    Joris Meurs


    This paper aimed to develop a standalone application for optimizing flow rates in liquid chromatography (LC), gas chromatography (GC) and supercritical fluid chromatography (SFC). To do so, Van Deemter’s equation, Knox’ equation and Golay’s equation were implemented in a MATLAB script and subsequently a graphical user interface (GUI) was created. The application will show the optimal flow rate or linear velocity and the corresponding plate height for the set input parameters. Furthermore, a p...

  18. Effect of Flow Rate of Side-Type Orifice Intake on Withdrawn Water Temperature

    Xueping Gao; Guangning Li; Yunpeng Han


    Side-type orifice intake is a type of selective withdrawal facility used in managing reservoirs to mitigate the negative effects of low-temperature water. Based on the temperature data of a thermal stratified reservoir in China, an experiment was conducted in flume to study the influence of intake flow rate on withdrawn water temperature with different temperature distributions. Results indicated that withdrawn water temperature changed with different flow rates. The temperature change was de...

  19. A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    Westerterp, K.R.; Kuczynski, M.


    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical

  20. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang


    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  1. Numerical algorithm conjugating steady and transient, separated, compressible flow and a solid body having arbitrarily distributed heat sources

    Degani, D.


    A numerical algorithm that is second-order accurate in time has been developed for the conjugated problem of a separated, compressible flow field and a conductive solid body. The full two-dimensional time-dependent Navier-Stokes equations are coupled with the time-dependent energy equation for the solid body and are solved simultaneously. using implicit algorithms. The energy equation for the solid body may include arbitrarily distributed heat sources. The algorithm has been exmined for the case of two-dimensional supersonic compression-corner interaction, with a heat source embedded in the wall in the vicinity of the separation bubble and the attached boundary layer. The effect of the heat source on the flow field is studied for steady and transient cases.

  2. Development and elaboration of numerical method for simulating gas-liquid-solid three-phase flows based on particle method

    Takahashi, Ryohei; Mamori, Hiroya; Yamamoto, Makoto


    A numerical method for simulating gas-liquid-solid three-phase flows based on the moving particle semi-implicit (MPS) approach was developed in this study. Computational instability often occurs in multiphase flow simulations if the deformations of the free surfaces between different phases are large, among other reasons. To avoid this instability, this paper proposes an improved coupling procedure between different phases in which the physical quantities of particles in different phases are calculated independently. We performed numerical tests on two illustrative problems: a dam-break problem and a solid-sphere impingement problem. The former problem is a gas-liquid two-phase problem, and the latter is a gas-liquid-solid three-phase problem. The computational results agree reasonably well with the experimental results. Thus, we confirmed that the proposed MPS method reproduces the interaction between different phases without inducing numerical instability.

  3. Three-dimensional Simulation of Gas/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow%基于颗粒流运动论的喷动流化床气固流动行为三维模拟

    钟文琪; 章名耀; 金保升; 袁竹林


    A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of 1m and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles.

  4. Risk Factors for Reduced Salivary Flow Rate in a Japanese Population: The Hisayama Study

    Kenji Takeuchi


    Full Text Available The purpose of this study was to determine distinct risk factors causing reduced salivary flow rate in a community-dwelling population using a prospective cohort study design. This was a 5-year follow-up survey of 1,377 community-dwelling Japanese individuals aged ≥40 years. The salivary flow rate was evaluated at baseline and follow-up by collecting stimulated saliva. Data on demographic characteristics, use of medication, and general and oral health status were obtained at baseline. The relationship between reduced salivary flow rate during the follow-up period and its predictors was evaluated after adjustment for confounding factors. In a multivariate logistic regression model, higher age and plaque score and lower serum albumin levels were significantly associated with greater odds of an obvious reduction in salivary flow rate (age per decade, odds ratio [OR] = 1.25, 95% confidence interval [CI] = 1.03–1.51; serum albumin levels <4 g/dL, OR = 1.60, 95% CI = 1.04–2.46; plaque score ≥1, OR = 1.53, 95% CI = 1.04–2.24. In a multivariate linear regression model, age and plaque score remained independently associated with the increased rate of reduced salivary flow. These results suggest that aging and plaque score are important predictors of reduced salivary flow rate in Japanese adults.

  5. Flow rate of polygonal grains through a bottleneck: Interplay between shape and size

    Ezequiel Goldberg


    Full Text Available We report two-dimensional simulations of circular and polygonal grains passing through an aperture at the bottom of a silo. The mass flow rate for regular polygons is lower than for disks\\red{,} as observed by other authors. We show that both the exit velocity of the grains and the packing fraction are lower for polygons, which leads to the reduced flow rate. We point out the importance of the criteria used to define when two objects of different shape are considered to be of the same size. Depending on this criteria, the mass flow rate may vary significantly for some polygons. Moreover, the particle flow rate is non-trivially related to a combination of mass flow rate, particle shape and particle size. For some polygons, the particle flow rate may be lower or higher than that of the corresponding disks depending on the size comparison criteria. Received: 18 May 2015, Accepted: 30 October 2015; Edited by: F. Melo; Reviewed by: J.-N. Roux, Universite Parsi Est, Laboratoire Navier, Champs-sur-Marne, France; DOI: Cite as: E Goldberg, C M Carlevaro, L A Pugnaloni, Papers in Physics 7, 070016 (2015

  6. Flow rate dictates permeability enhancement during fluid pressure oscillations in laboratory experiments

    Candela, Thibault; Brodsky, Emily E.; Marone, Chris; Elsworth, Derek


    Seismic waves have been observed to increase the permeability in fractured aquifers. A detailed, predictive understanding of the process has been hampered by a lack of constraint on the primary physical controls. What aspect of the oscillatory forcing is most important in determining the magnitude of the permeability enhancement? Here we present laboratory results showing that flow rate is the primary control on permeability increases in the laboratory. We fractured Berea sandstone samples under triaxial stresses of tens of megapascals and applied dynamic fluid stresses via pore pressure oscillations. In each experiment, we varied either the amplitude or the frequency of the pressure changes. Amplitude and frequency each separately correlated with the resultant permeability increase. More importantly, the permeability changes correlate with the flow rate in each configuration, regardless of whether flow rate variations were driven by varying amplitude or frequency. We also track the permeability evolution during a single set of oscillations by measuring the phase lags (time delays) of successive oscillations. Interpreting the responses with a poroelastic model shows that 80% of the permeability enhancement is reached during the first oscillation and the final permeability enhancement scales exponentially with the imposed change in flow rate integrated over the rock volume. The establishment of flow rate as the primary control on permeability enhancement from seismic waves opens the door to quantitative studies of earthquake-hydrogeological coupling. The result also suggests that reservoir permeability could be engineered by imposing dynamic stresses and changes in flow rate.

  7. Study on the Mechanisms of Solids Segregation in Granular Debris Flows%泥石流颗粒物质分选机理和效应

    周公旦; 孙其诚; 崔鹏


    泥石流是一种由大量固体颗粒和液态水充分掺混所形成的多相流体,泥石流体内固体颗粒物质的相互作用所导致的泥石流颗粒物质的分选是引起泥石流流动性和冲击力大增的重要原因,是现阶段大型泥石流防治的重要关注方向.从基本的泥石流动力学理论出发,采用连续介质力学的方法构建泥石流运动的模型,初步分析颗粒分选对泥石流流动性的影响;进而采用离散元(DEM)数值模拟颗粒流的方法,对泥石流发展过程中颗粒间的作用方式和分选机理开展详尽的研究.研究结果表明:泥石流颗粒分选可以导致颗粒体内部孔隙水压力的重新分布,进而影响到龙头运动速度和颗粒体长度的激增;离散元数值模拟和分析进一步显示,区别于一般均匀颗粒所形成的颗粒流的边界层效应,颗粒分选能够显著地改变颗粒体内部的剪切速率的分布,从而弱化边界层效应.%Debris flow is generally composed of a wide range of solid particles and viscous pore fluid. Interactions between solid particles and the resulted segregation in debris flows are affected by multiple parameters,and usually govern the rheological properties of debris flows and the flow mobility. Through the theoretical analysis,the effect of solids segregation on the flow mobility was demonstrated. Furthermore,granular debris flows with grains of mixed sizes were numerically modelled and the contact behaviour of solid particles was fundamentally studied using the Discrete Element Method (DEM). Compared to granular flows with uniform solid particles,the mechanisms of solids segregation and the effect on granular flow mobility were investigated. The results showed that that segregation can significantly increase the flow velocity of the front head and the length of the granular body on slopes. Due to the solids segregation,the shear rate developed in the granular body is greatly enhanced and no shearing

  8. Study of Particle Rotation Effect in Gas-Solid Flows using Direct Numerical Simulation with a Lattice Boltzmann Method

    Kwon, Kyung [Tuskegee Univ., Tuskegee, AL (United States); Fan, Liang-Shih [The Ohio State Univ., Columbus, OH (United States); Zhou, Qiang [The Ohio State Univ., Columbus, OH (United States); Yang, Hui [The Ohio State Univ., Columbus, OH (United States)


    A new and efficient direct numerical method with second-order convergence accuracy was developed for fully resolved simulations of incompressible viscous flows laden with rigid particles. The method combines the state-of-the-art immersed boundary method (IBM), the multi-direct forcing method, and the lattice Boltzmann method (LBM). First, the multi-direct forcing method is adopted in the improved IBM to better approximate the no-slip/no-penetration (ns/np) condition on the surface of particles. Second, a slight retraction of the Lagrangian grid from the surface towards the interior of particles with a fraction of the Eulerian grid spacing helps increase the convergence accuracy of the method. An over-relaxation technique in the procedure of multi-direct forcing method and the classical fourth order Runge-Kutta scheme in the coupled fluid-particle interaction were applied. The use of the classical fourth order Runge-Kutta scheme helps the overall IB-LBM achieve the second order accuracy and provides more accurate predictions of the translational and rotational motion of particles. The preexistent code with the first-order convergence rate is updated so that the updated new code can resolve the translational and rotational motion of particles with the second-order convergence rate. The updated code has been validated with several benchmark applications. The efficiency of IBM and thus the efficiency of IB-LBM were improved by reducing the number of the Lagragian markers on particles by using a new formula for the number of Lagrangian markers on particle surfaces. The immersed boundary-lattice Boltzmann method (IBLBM) has been shown to predict correctly the angular velocity of a particle. Prior to examining drag force exerted on a cluster of particles, the updated IB-LBM code along with the new formula for the number of Lagrangian markers has been further validated by solving several theoretical problems. Moreover, the unsteadiness of the drag force is examined when a

  9. A constant air flow rate control of blower for residential applications

    Yang, S.M. [Tamkang Univ., Taipei (Taiwan, Province of China). Dept. of Mechanical Engineering


    This paper presents a technique to control a blower for residential applications at constant air flow rate using an induction motor drive. The control scheme combines a variable volt/hertz ratio inverter drive and an average motor current regulation loop to achieve control of the motor torque-speed characteristics, consequently controlling the air flow rate of the blower which the motor is driving. The controller is simple to implement and practical for commercialization. It is also reliable, since no external pressure or air flow sensor is required. Both a theoretical derivation and an experimental verification for the control scheme are presented in this paper.

  10. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    W.K. Hiromi Ariyaratne, Morten C. Melaaen, Lars-André Tokheim


    Full Text Available Solid hazardous waste mixed with wood chips (SHW is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  11. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    Ariyaratne, W.K. Hiromi; Melaaen, Morten C.; Tokheim, Lars-Andre [Telemark University College, Faculty of Technology, Kjoelnes Ring 56, P.O. Box 203, N-3901, Porsgrunn (Norway)


    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of the process. A full-scale experiment was carried out in the rotary kiln burner of a cement plant by varying the SHW substitution rate from 0 to 3 t/hr. Clinker quality, emissions and other relevant operational data from the experiment were analysed using fuel characteristics of coal and SHW. The results revealed that SHW could safely replace around 20% of the primary coal energy without giving negative effects. The limiting factor is the free lime content of the clinker. Results from the present study were also compared with results from a previous test using meat and bone meal.

  12. Co-flow anode/cathode supply heat exchanger for a solid-oxide fuel cell assembly

    Haltiner, Jr., Karl J.; Kelly, Sean M.


    In a solid-oxide fuel cell assembly, a co-flow heat exchanger is provided in the flow paths of the reformate gas and the cathode air ahead of the fuel cell stack, the reformate gas being on one side of the exchanger and the cathode air being on the other. The reformate gas is at a substantially higher temperature than is desired in the stack, and the cathode gas is substantially cooler than desired. In the co-flow heat exchanger, the temperatures of the reformate and cathode streams converge to nearly the same temperature at the outlet of the exchanger. Preferably, the heat exchanger is formed within an integrated component manifold (ICM) for a solid-oxide fuel cell assembly.

  13. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae).

    Terblanche, John S; Chown, Steven L


    Air flow rates may confound the investigation and classification of insect gas exchange patterns. Here we report the effects of flow rates (50, 100, 200, 400 ml min(-1)) on gas exchange patterns in wild-caught Glossina morsitans morsitans from Zambia. At rest, G. m. morsitans generally showed continuous or cyclic gas exchange (CGE) but no evidence of discontinuous gas exchange (DGE). Flow rates had little influence on the ability to detect CGE in tsetse, at least in the present experimental setup and under these laboratory conditions. Importantly, faster flow rates resulted in similar gas exchange patterns to those identified at lower flower rates suggesting that G. m. morsitans did not show DGE which had been incorrectly identified as CGE at lower flow rates. While CGE cycle frequency was significantly different among the four flow rates (prate treatment variation. Using a laboratory colony of closely related, similar-sized G. morsitans centralis we subsequently investigated the effects of temperature, gender and feeding status on CGE pattern variation since these factors can influence insect metabolic rates. At 100 ml min(-1) CGE was typical of G. m. centralis at rest, although it was significantly more common in females than in males (57% vs. 43% of 14 individuals tested per gender). In either sex, temperature (20, 24, 28 and 32 degrees C) had little influence on the number of individuals showing CGE. However, increases in metabolic rate with temperature were modulated largely by increases in burst volume and cycle frequency. This is unusual among insects showing CGE or DGE patterns because increases in metabolic rate are usually modulated by increases in frequency, but either no change or a decline in burst volume.

  14. Impact of gas flow rate on breakdown of filamentary dielectric barrier discharges

    Höft, H.; Becker, M. M.; Kettlitz, M.


    The influence of gas flow rate on breakdown properties and stability of pulsed dielectric barrier discharges (DBDs) in a single filament arrangement using a gas mixture of 0.1 vol. % O2 in N2 at atmospheric pressure was investigated by means of electrical and optical diagnostics, accompanied by fluid dynamics and electrostatics simulations. A higher flow rate perpendicular to the electrode symmetry axis resulted in an increased breakdown voltage and DBD current maximum, a higher discharge inception jitter, and a larger emission diameter of the discharge channel. In addition, a shift of the filament position for low gas flow rates with respect to the electrode symmetry axis was observed. These effects can be explained by the change of the residence time of charge carriers in the discharge region—i.e., the volume pre-ionization—for changed flow conditions due to the convective transport of particles out of the center of the gap.

  15. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    Ileana Wald


    Full Text Available In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head. We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of calculus to find optimal specifications for the filter. This work is related to the research conducted in Dr. James R. Mihelcic's Civil and Environmental Engineering Lab at USF.

  16. Fabrication of microfluidic architectures for optimal flow rate and concentration measurement for lab on chip application

    Adam, Tijjani; Hashim, U.


    Optimum flow in micro channel for sensing purpose is challenging. In this study, The optimizations of the fluid sample flows are made through the design and characterization of the novel microfluidics' architectures to achieve the optimal flow rate in the micro channels. The biocompatibility of the Polydimetylsiloxane (Sylgard 184 silicon elastomer) polymer used to fabricate the device offers avenue for the device to be implemented as the universal fluidic delivery system for bio-molecules sensing in various bio-medical applications. The study uses the following methodological approaches, designing a novel microfluidics' architectures by integrating the devices on a single 4 inches silicon substrate, fabricating the designed microfluidic devices using low-cost solution soft lithography technique, characterizing and validating the flow throughput of urine samples in the micro channels by generating pressure gradients through the devices' inlets. The characterization on the urine samples flow in the micro channels have witnessed the constant flow throughout the devices.

  17. Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes.

    Steudler, Susanne; Böhmer, Ulrike; Weber, Jost; Bley, Thomas


    Solid-state fermentation (SSF) is a robust process that is well suited to the on-site cultivation of basidiomycetes that produce enzymes for the treatment of lignocellulosics. Reliable methods for biomass quantification are essential for the analysis of fungal growth kinetics. However, direct biomass determination is not possible during SSF because the fungi grow into the substrate and use it as a nutrient source. This necessitates the use of indirect methods that are either very laborious and time consuming or can only provide biomass measurements during certain growth periods. Here, we describe the development and optimization of a new rapid method for fungal biomass determination during SSF that is based on counting fungal nuclei by flow cytometry. Fungal biomass was grown on an organic substrate and its concentration was measured by isolating the nuclei from the fungal hyphae after cell disruption, staining them with SYTOX(®) Green, and then counting them using a flow cytometer. A calibration curve relating the dry biomass of the samples to their concentrations of nuclei was established. Multiple buffers and disruption methods were tested. The results obtained were compared with values determined using the method of ergosterol determination, a classical technique for fungal biomass measurement during SSF. Our new approach can be used to measure fungal biomass on a range of different scales, from 15 mL cultures to a laboratory reactor with a working volume of 10 L (developed by the Research Center for Medical Technology and Biotechnology (fzmb GmbH)). © 2014 International Society for Advancement of Cytometry.

  18. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Zhao, Gaiping; Wu, Jie; Xu, Shixiong; Collins, M. W.; Long, Quan; König, Carola S.; Jiang, Yuping; Wang, Jian; Padhani, A. R.


    A coupled intravascular transvascular interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network. This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels. Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille’s law and Darcy’s law, respectively, transvascular flow is described by Starling’s law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convection on the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  19. High rate biomethanation technology for solid waste management and rapid biogas production: An emphasis on reactor design parameters.

    Dahiya, Shikha; Joseph, Johny


    A high rate biomethanation digester was designed and fabricated to study its real field treatment efficiency and simultaneous biogas generation. The major design parameters like self mixing, delinking hydraulic retention time and solid retention time etc. were considered for efficient performance. It was operated with an organic loading rate (OLR) of 1.5kg/m(3)d(-1) with composite food waste for about one year. The maximum treatment efficiency achieved with respect to total solid (TS) reduction and volatile solids (VS) reduction was 94.5% and 89.7%, respectively. Annual mean biogas of about 0.16m(3)/kgVSd(-1) was observed with methane content varying from 56% to 60% (v/v). The high competence of high rate digester is attributed to its specific design features and intermittent mixing of the digester contents and also due to the hydrodynamic principles involved in its operation.

  20. Mechanism of kinetic energy transfer in homogeneous bidisperse gas-solid flow and its implications for segregation

    Mehrabadi, Mohammad; Subramaniam, Shankar


    Most gas-solid flows encountered in nature and industrial applications are polydisperse, and the segregation or mixing of particle classes in polydisperse gas-solid flows is a phenomenon of great practical importance. A statistically homogeneous gas-solid flow with a bidisperse distribution (in size or density) of particles is a canonical representation of polydisperse flows. A key feature that distinguishes the bidisperse flow from its monodisperse counterpart is the exchange of momentum and kinetic energy between the particle classes due to collisions, which are important for applications outside the very dilute regime. The average exchange of linear momentum between particle classes due to collisions occurs through the particle-particle drag term. The conservation equations for average momentum corresponding to each particle class can be used to deduce the average slip velocity between the particle size and density classes, which is the signature of particle segregation. In this canonical problem, the steady value of particle mean slip velocity results from a balance between three terms, each in turn involving the body force or the mean fluid pressure gradient, the gas-particle drag, and the particle-particle drag. The particle-particle drag depends on the particle velocity fluctuations in each class [Louge, M. Y. et al., "The role of particle collisions in pneumatic transport," J. Fluid Mech. 231, 345-359 (1991)], thereby coupling the mean and second-moment equations. For monodisperse gas-solid flows the transfer of kinetic energy from the mean to second-moment equations was explained by Subramaniam and co-workers who proposed the conservation of interphase turbulent kinetic energy transfer principle [Xu, Y. and Subramaniam, S., "Consistent modeling of interphase turbulent kinetic energy transfer in particle-laden turbulent flows," Phys. Fluids 19(8), 085101 (2007)], and this was subsequently verified by particle-resolved direct numerical simulation [Mehrabadi

  1. Municipal solid waste flow and waste generation characteristics in an urban--rural fringe area in Thailand.

    Hiramatsu, Ai; Hara, Yuji; Sekiyama, Makiko; Honda, Ryo; Chiemchaisri, Chart


    In the urban-rural fringe of the Bangkok Metropolitan Region, rapid urbanization is creating a land-use mixture of agricultural fields and residential areas. To develop appropriate policies to enhance recycling of municipal solid waste (MSW), current MSW management was investigated in the oboto (local administrative district) of Bang Maenang in Nonthaburi Province, adjoining Bangkok. The authors conducted a structural interview survey with waste-related organizations and local residents, analysed household waste generation, and performed global positioning system (GPS) tracking of municipal garbage trucks. It was found that MSW was collected and treated by local government, private-sector entities, and the local community separately. Lack of integrated management of these entities complicated waste flow in the study area, and some residences were not served by MSW collection. Organic waste, such as kitchen garbage and yard waste, accounted for a large proportion of waste generation but was underutilized. Through GPS/GIS analysis, the waste collection rate of the generated waste amount was estimated to be 45.5- 51.1% of total generation.

  2. Effect of water flow rate and feed training on "pacamã" (Siluriforme: Pseudopimelodidae juvenile production

    R.K. Luz


    Full Text Available The effects of different water flow rates and feed training on the production of "pacamã" Lophiosilurus alexandri juveniles were evaluated. In the first experiment, nine day post-hatch larvae (n= 2,400 were stocked at a density of 5 larvae/L. Different water flow (F rates were tested: F1 = 180; F2 = 600; F3 = 1,300; and F4 = 2,600mL/min. Artemia nauplii were offered as food during the first 15 days of active feeding. In the second experiment for feed training, 720 juveniles (total length of 22.2mm were stocked at a density of 1.5 juveniles/L. A water flow rate similar to F1 was used. The use of extruded dry diet was tested, and feed training was done with and without other enhanced flavors (Artemia nauplii or Scott emulsion. The water flow rates did not influence the survival or growth of L. alexandri. Cannibalism occurred during feed training. The worst survival, specific growth rate and high mortality were found with the use of extruded dry diet, while similar values were registered with the different feed training diets used. Reduced water flow rate can be used to lower water consumption during larviculture and feed training of L. alexandri.

  3. Influence of chemistry on steam generator primary-to-secondary stabilized low leak flow rate

    Hervouet, C.; Pages, D. [EDF R and D (France); Fauchon, C.; Bretelle, J.L. [EDF GDL (France); Bus, F. [EDF DPN (France)


    The comparison of the leak flow rate behavior between the previous and the new boron/lithium coordination, the second one corresponding to an higher pH during the cycle than the first one, leads to the following conclusions, confirmed by the experimental and theoretical studies: Low leak flow rate is extremely sensitive to pH in the zone of pH of primary water because the behavior of metallic oxide is changing drastically in that range of pH (from precipitation to dissolution); Leak flow rate is often maintained lower with low pH. Let's recall however that pH can not reach a too low value which could enhance corrosion product deposition, increase dose rates along the primary circuit, and lead to reactor outages due to problems on fuel assemblies. The understanding of the governing phenomena led to adapt in 2000 the reactor cooling system chemical conditioning for the French Pressurized Water reactors facing problems with the management of the stabilized leak flow rate fluctuations, once no degradation of tube bundle integrity is proved. Each part of the cycle and operating conditions lead to an advised operating action. In general, the new recommendations for the reactors facing problems with the management of low leak flow rate are based on the principle of helping the precipitation of metallic oxide within the crack and preventing their dissolution. (authors)

  4. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Tan Chan Sin


    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.



    Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser.

  6. Evaluation of Antibacterial Enrofloxacin in Eggs by Matrix Solid Phase Dispersion-Flow Injection Chemiluminescence

    Xiaocui Duan


    Full Text Available The study based on the chemiluminescence (CL reaction of potassium ferricyanide and luminol in sodium hydroxide medium, enrofloxacin (ENRO could dramatically enhance CL intensities and incorporated with matrix solid-phase dispersion (MSPD technique (Florisil used as dispersant, dichloromethane eluted the target compounds. A simple flow injection chemiluminescence (FL-CL method with MSPD technique for determination of ENRO in eggs was described. Under optimal conditions, the CL intensities were linearly related to ENRO concentration ranging from 4.0×10-8 g.L−1 to 5.0×10-5 g.L−1, with a correlation coefficient of 0.9989 and detection limit of 5.0×10-9 g.L−1. The relative standard deviation was 3.6% at an ENRO concentration of 2.0×10-6 g.L−1. Our testing technique can help ensure food safety, and thus, protect public health.

  7. Gas-solid turbulent flow and heat transfer with collision effect in a vertical pipe

    Saffar-Avval, M.; Basirat Tabrizi, H.; Ramezani, P. [Department of Mechanical Engineering, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran); Mansoori, Z. [Energy Research Center, Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran)


    A turbulent gas-solid suspension upward flow in a vertical pipe is simulated numerically using Eulerian-Lagrangian approach. Particle-particle and particle-wall collisions are simulated based on deterministic approach. The influence of particle collisions on the particle concentration, mean temperature and fluctuating velocities are investigated. Numerical results are presented for different values of loading ratios. The profiles of particle concentration, mean velocity and temperature are shown to be flatter by considering inter-particle collisions, while this effect on the gas mean velocity and temperature is not significant. It is demonstrated that the effect of inter-particle collisions have a dramatic influence on the particle fluctuation velocity. It is shown that the profiles of particle concentration and particle velocity are flattened due to inter-particle collisions and this effect becomes more pronounced with increasing loading ratio. Also, the attenuation of turbulence by inter-particle collisions in the core region of the pipe is increased by increasing loading ratio. (author)

  8. Thermo-mechanical modeling of turbulent heat transfer in gas-solid flows including particle collisions

    Mansoori, Zohreh; Saffar-Avval, Majid; Basirat-Tabrizi, Hassan; Ahmadi, Goodarz; Lain, Santiago


    A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas-solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal k{sub {theta}}-{tau}{sub {theta}} equations, in addition to the hydrodynamic k-{tau} transport, and accounts for the particle-particle and particle-wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.

  9. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry

    Teixeira, Leonardo S.G.; Leao, Elsimar S.; Dantas, Alailson F.; Pinheiro, Heloisa L.C.; Costa, Antonio C.S.; De Andrade, Jailson B. [Instituto de Quimica-Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280-Salvador, Bahia (Brazil)


    In this work, a solid phase spectrophotometric method in association with flow injection analysis for formaldehyde determination has been developed with direct measurement of light-absorption in C{sub 18} material. The 3,5-diacetyl-1,4-dihydrolutidine produced from the reaction between formaldehyde and fluoral P was quantitatively retained on C{sub 18} support and the spectrophotometric detection was performed simultaneously at 412nm. The retained complex was quickly eluted from C{sub 18} material with the eluent stream consisting of a 50% (v/v) ethanol solution. The results showed that the proposed method is simple, rapid and the analytical response is linear in the concentration range of 0.050-1.5mgL{sup -1}. The limit of detection was estimated as 30{mu}mgL{sup -1} and the R.S.D. 2.2% using a sample volume of 625{mu}mL. The system presented an analytical throughput of 20 determinations per hour. The method was successfully applied in the determination of formaldehyde in ethanol fuel.

  10. Determination of formaldehyde in Brazilian alcohol fuels by flow-injection solid phase spectrophotometry.

    Teixeira, Leonardo S G; Leão, Elsimar S; Dantas, Alaílson F; Pinheiro, Heloísa L C; Costa, Antonio C S; de Andrade, Jailson B


    In this work, a solid phase spectrophotometric method in association with flow injection analysis for formaldehyde determination has been developed with direct measurement of light-absorption in C(18) material. The 3,5-diacetyl-1,4-dihydrolutidine produced from the reaction between formaldehyde and fluoral P was quantitatively retained on C(18) support and the spectrophotometric detection was performed simultaneously at 412nm. The retained complex was quickly eluted from C(18) material with the eluent stream consisting of a 50% (v/v) ethanol solution. The results showed that the proposed method is simple, rapid and the analytical response is linear in the concentration range of 0.050-1.5mgL(-1). The limit of detection was estimated as 30mugL(-1) and the R.S.D. 2.2% using a sample volume of 625muL. The system presented an analytical throughput of 20 determinations per hour. The method was successfully applied in the determination of formaldehyde in ethanol fuel.

  11. Model comparison of flow through a municipal solid waste incinerator ash landfill

    Johnson, C. A.; Schaap, M. G.; Abbaspour, K. C.


    The drainage discharge of a municipal solid waste incinerator (MSWI) bottom ash landfill was simulated using various modelling approaches. Two functional models including a neural networks approach and a hydrological linear storage model, and two mechanistic models requiring physical/hydrodynamic properties of the waste material, HYDRUS5 and MACRO (Version 4.0) were used. The models were calibrated using an 8-month data set from 1996 and validated on a 3-month data set from winter 1994/1995. The data sets comprised hourly values of rainfall, evaporation (estimated from the Penman-Monteith relationship), drainage discharge and electrical conductivity. Predicted and measured discharges were compared. The discharge predicted by the functional models more exactly followed the discharge patterns of the measured data but, particularly the linear storage model, could not cope with the non-linearity of the system that was caused by seasonal changes in water content of the MSWI bottom ash. The fit of the neural networks model to the data improved with increasing prior information but was less smooth than the measured data. The mechanistic model that included preferential discharge, MACRO, better modelled the discharge characteristics when inversely applied, indicating that preferential flow does occur in this system. However, even the inverse application of HYDRUS5 could not describe the system discharge as well as the linear storage model. All model approaches would have benefited from a more exact knowledge of initial water content.

  12. High-repetition-rate XeCl waveguide laser without gas flow

    Christensen, C.P.; Gordon C. III; Moutoulas, C.; Feldman, B.J.


    Operation of a microwave discharge XeCl laser at pulse-repetition rates extending to 8 kHz without flow of the laser gas is reported. Present limits on pulse-repetition rate appear to be imposed by thermally induced refractive-index gradients.

  13. Flow rate calibration to determine cell-derived microparticles and homogeneity of blood components.

    Noulsri, Egarit; Lerdwana, Surada; Kittisares, Kulvara; Palasuwan, Attakorn; Palasuwan, Duangdao


    Cell-derived microparticles (MPs) are currently of great interest to screening transfusion donors and blood components. However, the current approach to counting MPs is not affordable for routine laboratory use due to its high cost. The current study aimed to investigate the potential use of flow-rate calibration for counting MPs in whole blood, packed red blood cells (PRBCs), and platelet concentrates (PCs). The accuracy of flow-rate calibration was investigated by comparing the platelet counts of an automated counter and a flow-rate calibrator. The concentration of MPs and their origins in whole blood (n=100), PRBCs (n=100), and PCs (n=92) were determined using a FACSCalibur. The MPs' fold-changes were calculated to assess the homogeneity of the blood components. Comparing the platelet counts conducted by automated counting and flow-rate calibration showed an r(2) of 0.6 (y=0.69x+97,620). The CVs of the within-run and between-run variations of flow-rate calibration were 8.2% and 12.1%, respectively. The Bland-Altman plot showed a mean bias of -31,142platelets/μl. MP enumeration revealed both the difference in MP levels and their origins in whole blood, PRBCs, and PCs. Screening the blood components demonstrated high heterogeneity of the MP levels in PCs when compared to whole blood and PRBCs. The results of the present study suggest the accuracy and precision of flow-rate calibration for enumerating MPs. This flow-rate approach is affordable for assessing the homogeneity of MPs in blood components in routine laboratory practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Acute short-term mental stress does not influence salivary flow rate dynamics.

    Ella A Naumova

    Full Text Available BACKGROUND: Results of studies that address the influence of stress on salivary flow rate and composition are controversial. The aim of this study was to reveal the influence of stress vulnerability and different phases of stress reactivity on the unstimulated and stimulated salivary flow rate. We examined that acute mental stress does not change the salivary flow rate. In addition, we also examined the salivary cortisol and protein level in relation to acute mental stress stimuli. METHODS: Saliva of male subjects was collected for five minutes before, immediately, 10, 30 and 120 min after toothbrushing. Before toothbrushing, the subjects were exposed to acute stress in the form of a 2 min public speech. Salivary flow rate and total protein was measured. The physiological stress marker cortisol was analyzed using enzyme-linked immunosorbent assay. To determine the subjects' psychological stress reaction, the State-Trait-Anxiety Inventory State questionnaire (STAI data were obtained. The subjects were divided into stress subgroup (S1 (psychological reactivity, stress subgroup (S2 (psychological and physiological reactivity and a control group. The area under the curve for salivarycortisol concentration and STAI-State scores were calculated. All data underwent statistical analysis using one-way analysis of variance. RESULTS: Immediately after stress exposure, all participants exhibited a psychological stress reaction. Stress exposure did not change the salivary flow rate. Only 69% of the subjects continued to display a physiological stress reaction 20 minutes after the public talk. There was no significant change in the salivary flow rate during the psychological and the physiological stress reaction phases relative to the baseline. CONCLUSIONS: Acute stress has no impact on the salivary flow rate; however, there may be other responses through salivary proteins that are increased with the acute stress stimuli. Future studies are needed to examine

  15. Silica Measurement with High Flow Rate Respirable Size Selective Samplers: A Field Study.

    Lee, Taekhee; Harper, Martin; Kashon, Michael; Lee, Larry A; Healy, Catherine B; Coggins, Marie A; Susi, Pam; O'Brien, Andrew


    High and low flow rate respirable size selective samplers including the CIP10-R (10 l min(-1)), FSP10 (11.2 l min(-1)), GK2.69 (4.4 l min(-1)), 10-mm nylon (1.7 l min(-1)), and Higgins-Dewell type (2.2 l min(-1)) were compared via side-by-side sampling in workplaces for respirable crystalline silica measurement. Sampling was conducted at eight different occupational sites in the USA and five different stonemasonry sites in Ireland. A total of 536 (268 pairs) personal samples and 55 area samples were collected. Gravimetric analysis was used to determine respirable dust mass and X-ray diffraction analysis was used to determine quartz mass. Ratios of respirable dust mass concentration, quartz mass concentration, respirable dust mass, and quartz mass from high and low flow rate samplers were compared. In general, samplers did not show significant differences greater than 30% in respirable dust mass concentration and quartz mass concentration when outliers (ratio 3.0) were removed from the analysis. The frequency of samples above the limit of detection and limit of quantification of quartz was significantly higher for the CIP10-R and FSP10 samplers compared to low flow rate samplers, while the GK2.69 cyclone did not show significant difference from low flow rate samplers. High flow rate samplers collected significantly more respirable dust and quartz than low flow rate samplers as expected indicating that utilizing high flow rate samplers might improve precision in quartz measurement. Although the samplers did not show significant differences in respirable dust and quartz concentrations, other practical attributes might make them more or less suitable for personal sampling.

  16. An Experimental Study of Liquid-Solid Flow in a Circulating Fluidized Bed of Varying Liquid Viscosity

    nirmala sundaram


    Full Text Available Hydrodynamics plays a major role in the design of an industrial liquid-solid circulating fluidized bed (LSCFB system. Till date, research investigations have been carried out with tap water as a liquid phase in an LSCFB. But still there is a limited understanding regarding the circulation of particles in an LSCFB with viscous fluids. The aim of our study was to characterize the hydrodynamics in an LSCFB with varying viscosity. Experiments were conducted in a fluidized bed riser of 0.1 m diameter by 2.4 m height with different viscous liquids to study the effects of the operating parameters, namely, primary velocity, secondary velocity, and total velocity, on the hydrodynamic characteristics of the LSCFB with reference to its solid holdup, solid circulation rate, and particle velocity. Experiments were conducted using water and glycerol at different concentrations, and the solid particles (sand and resin of different densities, but same diameter were used in the experiment. The results indicate that the solid holdup in the riser was axially uniform for viscous liquids, which increased with an increase in auxiliary velocity. The average solid holdup decreased with an increase in total velocity, and it increased with an increase in liquid viscosity as the critical transitional velocity decreased with an increase in viscosity. The solid circulation rate was found to be increased with increased total velocity, auxiliary velocity, and viscosity.

  17. Assessment of Average Tracer Concentration Approach for Flow Rate Measurement and Field Calibration

    P. Sidauruk


    Full Text Available Tracer method is one of the methods available for open channel flow rate measurements such as in irrigation canals. Average tracer concentration approach is an instantaneous injection method that based on the average tracer concentrations value at the sampling point. If the procedures are correct and scientific considerations are justified, tracer method will give relatively high accuracy of measurements. The accuracy of the average tracer concentration approach has been assessed both in laboratory and field. The results of accuracy tests of open channel flow that has been conducted at the Center for Application Isotopes and Radiation Laboratory-BATAN showed that the accuracy level of average concentrations approach method was higher than 90% compared to the true value (volumetric flow rate. The accuracy of average tracer concentration approach was also assessed during the application of the method to measure flow rate of Mrican irrigation canals as an effort to perform field calibration of existing weirs. Both average tracer concentration approach and weirs can predict the trend of the flow correctly. However, it was observed that flow discrepancies between weirs measurement and average tracer concentration approach predictions were as high as 27%. The discrepancies might be due to the downgrading performances of the weirs because of previous floods and high sediment contents of the flow


    Yong-Nian XU; Zhi-Yong LIANG; Zhao-Yin WANG


    Riverbed scour of the main channel by floods in the Yellow River and its tributaries was investigated, including scour by hyper-concentrated floods. Flood scour usually causes variation of river cross-sections in a way similar to that occured when the sediment inflow is less than the sediment-laden capacity. Scour rate equation for the main channel derived based on the momentum and continuous equations was verified by field data. This equation indicates that unsteady flow scour rate is proportional to the flow density, the velocity of the flood peak, the rising rate of flow discharge per unit width, and so on. The Maximum scour depth after a flood could be predicted by the scour rate equation proposed in this paper.

  19. Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

    Fox, Rodney O. [Iowa State Univ., Ames, IA (United States); Passalacqua, Alberto [Iowa State Univ., Ames, IA (United States)


    Computational fluid dynamics (CFD) has been widely studied and used in the scientific community and in the industry. Various models were proposed to solve problems in different areas. However, all models deviate from reality. Uncertainty quantification (UQ) process evaluates the overall uncertainties associated with the prediction of quantities of interest. In particular it studies the propagation of input uncertainties to the outputs of the models so that confidence intervals can be provided for the simulation results. In the present work, a non-intrusive quadrature-based uncertainty quantification (QBUQ) approach is proposed. The probability distribution function (PDF) of the system response can be then reconstructed using extended quadrature method of moments (EQMOM) and extended conditional quadrature method of moments (ECQMOM). The report first explains the theory of QBUQ approach, including methods to generate samples for problems with single or multiple uncertain input parameters, low order statistics, and required number of samples. Then methods for univariate PDF reconstruction (EQMOM) and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ approach is demonstrated in several applications. The method is first applied to two examples: a developing flow in a channel with uncertain viscosity, and an oblique shock problem with uncertain upstream Mach number. The error in the prediction of the moment response is studied as a function of the number of samples, and the accuracy of the moments required to reconstruct the PDF of the system response is discussed. The QBUQ approach is then demonstrated by considering a bubbling fluidized bed as example application. The mean particle size is assumed to be the uncertain input parameter. The system is simulated with a standard two-fluid model with kinetic theory closures for the particulate phase implemented into

  20. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults.

    Hans, Rinki; Thomas, Susan; Garla, Bharat; Dagli, Rushabh J; Hans, Manoj Kumar


    Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey's test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.

  1. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults

    Rinki Hans


    Full Text Available Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way ANOVA, and post hoc Tukey’s test were applied in the statistical tests. Results. It was found that salivary pH decreased for all the beverages immediately after consumption and the salivary flow rate increased after their consumption. The oral clearance rate of sweetened milk was found to be the least at 6.5 minutes and that of pepsi was found to be 13 minutes. However, the oral clearance rates of fruit drink and coffee were found to be equal at 15 minutes. Conclusion. Although it was found out that liquids cleared rapidly from the oral cavity, they had a significant cariogenic and erosive potential. Hence, it is always advised to minimise the consumption of beverages, especially amongst children and young adults to maintain a good oral health.

  2. Tracheal compliance and limit flow rate changes in a murine model of asthma


    Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats’ trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta- bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.

  3. Tracheal compliance and limit flow rate changes in a urine model of asthma

    TENG ZhongZhao; WANG YiQin; LI FuFeng; YAN HaiXia; LIU ZhaoRong


    Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats' trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta-bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.

  4. Characterization of fractured reservoirs using tracer and flow-rate data

    Juliusson, Egill; Horne, Roland N.


    This article introduces a robust method for characterizing fractured reservoirs using tracer and flow-rate data. The flow-rate data are used to infer the interwell connectivity matrix, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find a function called the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods was developed to estimate the tracer kernels in situations where data are collected at variable flow rate or variable-injected concentration conditions. This characterization method was developed to describe enhanced geothermal systems, although it works well in general for characterizing incompressible flow in fractured reservoirs (e.g., geothermal, carbon sequestration, radioactive waste and waterfloods of oil fields) where transverse dispersivity can be considered negligible and production takes place at constant bottomhole pressure conditions. The inferred metrics can be used to sketch informative field maps and predict tracer breakthrough curves at variable flow-rate conditions.

  5. Mechanism for measurement of flow rate of cerebrospinal fluid in hydrocephalus shunts.

    Rajasekaran, Sathish; Kovar, Spencer; Qu, Peng; Inwald, David; Williams, Evan; Qu, Hongwei; Zakalik, Karol


    The measurement of the flow rate of cerebrospinal fluid (CSF) or existence of CSF flow inside the shunt tube after shunt implant have been reported as tedious process for both patients and doctors; this paper outlines a potential in vitro flow rate measurement method for CSF in the hydrocephalus shunt. The use of implantable titanium elements in the shunt has been proposed to allow for an accurate temperature measurement along the shunt for prediction of CSF flow rate. The CSF flow velocity can be deduced by decoupling the thermal transfer in the measured differential time at a pair of measurement spots of the titanium elements. Finite element analyses on the fluidic and thermal behaviors of the shunt system have been conducted. Preliminary bench-top measurements on a simulated system have been carried out. The measured flow rates, ranging from 0.5 mm/sec to 1.0 mm/sec, which is clinically practical, demonstrate good agreements with the simulation results.

  6. On rating curve variability in presence of movable bed and unsteady flow. Applications to Tuscan rivers.

    Minatti, Lorenzo; Nicoletta De Cicco, Pina; Paris, Enio


    In common engineering practice, rating curves are obtained from direct stage-discharge measurements or, more often, from stage measurements coupled with flow simulations. The present work mainly focuses on the latter technique, where stage-measuring gauges are usually installed on bridges with flow conditions likely to be influenced by local geometry constraints. In such cases, backwater flow and flow transition to supercritical state may occur, influencing sediment transport capacity and triggering more intense changes in river morphology. The unsteadiness of the flow hydrograph may play an important role too, according to the velocity of its rising and falling limbs. Nevertheless, the simulations conducted to build a rating curve are often carried out with steady flow and fixed bed conditions where the afore-mentioned effects are not taken into account at all. Numerical simulations with mobile bed and different unsteady flow conditions have been conducted on some real case studies in the rivers of Tuscany (Italy), in order to assess how rating curves change with respect to the "standard" one (that is, the classical steady flow rating curve). A 1D finite volume numerical model (REMo, River Evolution Modeler) has been employed for the simulations. The model solves the 1D Shallow Water equations coupled with the sediments continuity equation in composite channels, where the overbanks are treated with fixed bed conditions while the main channel can either aggrade or be scoured. The model employs an explicit scheme with 2nd order accuracy in both space and time: this allows the correct handling of moderately stiff source terms via a local corrector step. Such capability is very important for the applications of the present work as it allows the modelling of abrupt contractions and jumps in bed bottom elevations which often occur near bridges. The outcomes of the simulations are critically analyzed in order to provide a first insight on the conditions inducing

  7. Molecule-based approach for computing chemical-reaction rates in upper atmosphere hypersonic flows.

    Gallis, Michail A.; Bond, Ryan Bomar; Torczynski, John Robert


    This report summarizes the work completed during FY2009 for the LDRD project 09-1332 'Molecule-Based Approach for Computing Chemical-Reaction Rates in Upper-Atmosphere Hypersonic Flows'. The goal of this project was to apply a recently proposed approach for the Direct Simulation Monte Carlo (DSMC) method to calculate chemical-reaction rates for high-temperature atmospheric species. The new DSMC model reproduces measured equilibrium reaction rates without using any macroscopic reaction-rate information. Since it uses only molecular properties, the new model is inherently able to predict reaction rates for arbitrary nonequilibrium conditions. DSMC non-equilibrium reaction rates are compared to Park's phenomenological non-equilibrium reaction-rate model, the predominant model for hypersonic-flow-field calculations. For near-equilibrium conditions, Park's model is in good agreement with the DSMC-calculated reaction rates. For far-from-equilibrium conditions, corresponding to a typical shock layer, the difference between the two models can exceed 10 orders of magnitude. The DSMC predictions are also found to be in very good agreement with measured and calculated non-equilibrium reaction rates. Extensions of the model to reactions typically found in combustion flows and ionizing reactions are also found to be in very good agreement with available measurements, offering strong evidence that this is a viable and reliable technique to predict chemical reaction rates.

  8. Skeletal blood flow, iliac histomorphometry, and strontium kinetics in osteoporosis: a relationship between blood flow and corrected apposition rate

    Reeve, J.; Arlot, M.; Wootton, R.; Edouard, C.; Tellez, M.; Hesp, R.; Green, J.R.; Meunier, P.J.


    In 20 untreated patients with idiopathic or postmenopausal osteoporosis, kinetic studies of skeletal blood flow (using /sup 18/F) and bone turnover (using /sup 85/Sr) were combined with dynamic histomorphometry performed on transiliac biopsies taken within 6 weeks of each other. In 8 patients the combined studies were repeated after treatment. A further 5 patients were studied only while receiving treatment. As expected, skeletal blood flow measured by /sup 18/F correlated with an index of /sup 85/Sr uptake into the exchangeable pools of bone. Additionally and independently, skeletal blood flow correlated with an index of the work rate of the osteoblasts in each multicellular unit of bone (the corrected apposition rate of Parfitt). These correlations were statistically significant in both the untreated patients (P less than 0.05) and the whole group (P less than 0.001). Further indices related to bone turnover at the level of the skeleton as a whole were significantly associated with skeletal blood flow only in the combined group.

  9. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian


    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  10. A new numerical approach of coupled modeling for solid deformation and gas leak flow in multi-coal-seams

    SUN Pei-de; GUO Mao-xin


    From the viewpoint of interaction mechanics for solid and gas, a coupled mathematical model was presented for solid coal/rock deformation and gas leak flow in parallel deformable coal seams. Numerical solutions using the SIP (Strong Implicit Procedure) method to the coupled mathematical model for double parallel coal seams were also developed in detail. Numerical simulations for the prediction of the safety range using protection layer mining were performed with experimental data from a mine with potential danger of coal/gas outbursts. Analyses show that the numerical simulation results are consistent with the measured data in situ.

  11. Solid-State Disk with Double Data Rate DRAM Interface for High-Performance PCs

    Kim, Dong; Bang, Kwanhu; Ha, Seung-Hwan; Park, Chanik; Chung, Sung Woo; Chung, Eui-Young

    We propose a Solid-State Disk (SSD) with a Double Data Rate (DDR) DRAM interface for high-performance PCs. Traditional SSDs simply inherit the interface protocol of Hard Disk Drives (HDD) such as Parallel Advanced Technology Attachment (PATA) or Serial-ATA (SATA) for maintaining the compatibility. However, SSD itself provides much higher performance than HDD, hence the interface also needs to be enhanced. Unlike the traditional SSDs, the proposed SSD with DDR DRAM interface is placed in the North Bridge which provides two or more DDR DRAM interface ports in high-performance PCs. The novelty of our work is on DQS signaling scheme which allows arbitrary Column Address Strobe (CAS) latency unlike typical DDR DRAM interface scheme. The experimental results show that the proposed SSD maximally outperforms the traditional SSD by 8.7 times in read mode, by 1.5 times in write mode. Also, for synthetic workloads, the proposed scheme shows performance improvement over the conventional architecture by a factor of 1.6 times.

  12. Composition and production rate of dental solid waste and associated management practices in Hamadan, Iran.

    Nabizadeh, Ramin; Koolivand, Ali; Jafari, Ahmad Jonidi; Yunesian, Massoud; Omrani, Gasemali


    The objective of this study was to identify the components, composition and production rate of dental solid waste and associated management practices in dental offices in Hamadan. A total of 28 offices, including ten general dentist offices, eight specialist dentist offices, five practical dentist offices and five denture maker offices were selected in a random way. Three samples from each selected type were taken and the waste was manually separated into 74 sub-fractions and each sub-fraction was weighed. The results showed that the total annual dental waste production in dental offices was 41947.43 kg. Domestic type, potentially infectious, chemical and pharmaceutical and toxic waste constituted 71.15, 21.40, 7.26 and 0.18%, respectively of this amount. Only seven fractions including gypsum, latex gloves, nylon, dental impression material, used medicine ampoules, saliva-contaminated paper towels and saliva ejectors constituted about 80% of the waste. It was also indicated that there were no effective activity for waste minimization, separation, reuse and recycling in dental offices and the management of sharps, potentially infectious waste and other hazardous waste was poor.

  13. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    Khosrownejad, S. M.; Curtin, W. A.


    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  14. Control of skin blood flow, sweating, and heart rate - Role of skin vs. core temperature

    Wyss, C. R.; Brengelmann, G. L.; Johnson, J. M.; Rowell, L. B.; Niederberger, M.


    A study was conducted to generate quantitative expressions for the influence of core temperature, skin temperature, and the rate of change of skin temperature on sweat rate, skin blood flow, and heart rate. A second goal of the study was to determine whether the use of esophageal temperature rather than the right atrial temperature as a measure of core temperature would lead to different conclusions about the control of measured effector variables.

  15. ChargeOut! : discounted cash flow compared with traditional machine-rate analysis

    Ted Bilek


    ChargeOut!, a discounted cash-flow methodology in spreadsheet format for analyzing machine costs, is compared with traditional machine-rate methodologies. Four machine-rate models are compared and a common data set representative of logging skidders’ costs is used to illustrate the differences between ChargeOut! and the machine-rate methods. The study found that the...

  16. Impact of stretching-segment on saturated flow rate of signalized intersection using cellular automation

    李岩; 陈宽民; 过秀成


    In order to analyze the impact of stretching-segment on the saturated flow rate of signalized intersection approach, an improved cellular automation model was proposed to estimate its saturated flow rate. The NaSch model was improved by adding different slow probabilities, turning deceleration rules and modified lane changing rules. The relationship between the saturated flow rate of stretching-segments and adjacent lanes was tested in numerical simulation. The length of stretching-segment, cycle length and green time were selected as impact factors of the cellular automation model. The simulation result indicates that the geometrics design of stretching-segment and the traffic signal timing scenario have major effects on the saturated flow rate of the intersection approach. The saturated flow rate will continually increase with increasing stretching-segment length until it reaches a threshold. After reaching the threshold, the stretching-segment can be treated as a separate lane. The green time is approximately linearly related to the threshold length of the stretching-segment. An optimum cycle length exists when the length of the stretching-segment is not long enough, and it is approximately linearly related to the length of stretching-segment.

  17. A Flow Rate Control Approach on Off-Design Analysis of an Organic Rankine Cycle System

    Ben-Ran Fu


    Full Text Available This study explored effects of off-design heat source temperature (TW,in or flow rate (mW on heat transfer characteristics and performance of an organic Rankine cycle system by controlling the flow rate of working fluid R245fa (i.e., the operation flow rate of R245fa was controlled to ensure that R245fa reached saturation liquid and vapor states at the outlets of the preheater and evaporator, respectively. The results showed that the operation flow rate of R245fa increased with TW,in or mW; higher TW,in or mW yielded better heat transfer performance of the designed preheater and required higher heat capacity of the evaporator; heat transfer characteristics of preheater and evaporator differed for off-design TW,in and mW; and net power output increased with TW,in or mW. The results further indicated that the control strategy should be different for various off-design conditions. Regarding maximum net power output, the flow rate control approach is optimal when TW,in or mW exceeds the design point, but the pressure control approach is better when TW,in or mW is lower than the design point.

  18. Optimal power flow calculation for power system with UPFC considering load rate equalization

    Liu, Jiankun; Chen, Jing; Zhang, Qingsong


    Unified power flow controller (UPFC) device can change system electrical quantity (such as voltage, impedance, phase angle, etc.) rapidly and flexibly under the premise of maintain security, stability and reliability of power system, thus can improve the transmission power and transmission line utilization, so as to enhance the power supply capacity of the power grid. Based on a thorough study of the steady-state model of UPFC, taking load rate equalization as objective function, the optimal power flow model is established with UPFC, and simplified interior point method is used to solve it. Finally, optimal power flow of 24 continuous sections actual data is calculated on a typical day of Nanjing network. The results show that the optimal power flow calculation with UPFC can optimize the load rate equalization on the basis of eliminating line overload, improving the voltage level of local power network.

  19. Flow Rate of Particles through Apertures Obtained from Self-Similar Density and Velocity Profiles

    Janda, Alvaro; Zuriguel, Iker; Maza, Diego


    “Beverloo’s law” is considered as the standard expression to estimate the flow rate of particles through apertures. This relation was obtained by simple dimensional analysis and includes empirical parameters whose physical meaning is poorly justified. In this Letter, we study the density and velocity profiles in the flow of particles through an aperture. We find that, for the whole range of apertures studied, both profiles are self-similar. Hence, by means of the functionality obtained for them the mass flow rate is calculated. The comparison of this expression with the Beverloo’s one reveals some differences which are crucial to understanding the mechanism that governs the flow of particles through orifices.

  20. Flow Rate Analysis of 3/2 Directional Pneumatic Valve by Means Of Ansys Cfx Software

    Slawomir BLASIAK


    Full Text Available The main purpose of this paper was to develop a selection method of the pneumatic connectors for directional 3/2 valve. The method was established to minimize resistance and loss of pressure in the valve with mounted pneumatic connections for the selected pipe diameters. Directional valve was modeled in 3D CAD software SolidWorks while 3D models of the air connections have been downloaded from the website of one of the leading suppliers of pneumatic. Based on developed solid model the simulation of compressed air flow in the software for computational fluid dynamics Ansys CFX was conducted. The studies using CFD methods helped to determine which air connections best meet the assumptions. Performed numerical tests enable proper selection of items to the newly designed pneumatic systems for a particular group of valves. As a consequence, this translates into a reduction in energy consumption and improve the efficiency of the entire pneumatic complex system.

  1. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    Kirby, S.H.; Raleigh, C.B.


    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  2. Response Rate as a Regulatory End Point in Single-Arm Studies of Advanced Solid Tumors

    Oxnard, Geoffrey R.; Wilcox, Katharine H.; Gonen, Mithat; Polotsky, Mikhael; Hirsch, Bradford R.; Schwartz, Lawrence H.


    IMPORTANCE Objective response rate (ORR) is an increasingly important end point for accelerated development of highly active anticancer therapies, yet its relationship to regulatory approval is not well characterized. OBJECTIVE To identify circumstances in which a high ORR is associated with regulatory approval, and therefore might be an appropriate end point for definitive single-arm studies of anticancer therapies. DATA SOURCE A database of all oncology clinical trials registered at between October 1, 2007, and September 30, 2010. STUDY SELECTION Trials of palliative systemic therapies for 4 measurable solid tumor types, limited to those with trial arms of at least 20 patients reporting ORR per Response Evaluation Criteria in Solid Tumors (RECIST). DATA EXTRACTION AND SYNTHESIS A systematic search was used to identify the reported ORR for each eligible treatment arm that had been presented publicly. MAIN OUTCOMES AND MEASURES For each treatment regimen, defined as a single-agent or unique combination of agents for 1 cancer type, the mean ORR and the maximum ORR statistically exceeded were calculated, and their association with regulatory approval was studied. A regimen was considered approved for a specific cancer type if it had received regulatory approval in any country for treatment of advanced cancer of that type. RESULTS From 1800 trials, 874 eligible trial arms in 578 eligible trials were identified; 542 arms had ORR data available for 294 regimens. Maximum ORR and mean ORR were significantly associated with regulatory approval (τ = 0.27, P < .001; τ = 0.12, P = .01); this relationship was stronger for single-agent therapies (τ = 0.49; τ = 0.41) than for combination regimens (τ = 0.28; τ = 0.17). Evaluation of ORR thresholds between 20% and 60% as potential trial end points demonstrated that ORR statistically exceeding 30% with a single agent had 98% specificity and 89% positive predictive value for identifying regimens achieving

  3. Propellant flow rate through simulated liquid-core nuclear rocket fuel bed.

    Mcguirk, J. P.; Park, C.


    Experimental investigation of the validity of Zuber and Finlay's (1965) gas flow-rate formula for a two-phase flow in a rotating cylinder under high centrifugal acceleration. This formula was originally derived from tests in a 1-g environment in pipes. In the light of the investigation results obtained, the formula is valid also for a high-g environment in the rotating chamber tested.

  4. Time Decay Rates of the Isotropic Non-Newtonian Flows in Rn

    Bo-Qing Dong


    This paper is concerned with time decay rates for weak solutions to a class system of isotropic incompressible non-Newtonian fluid motion in Rn. With the use of the spectral decomposition methods of Stokes operator, the optimal decay estimates of weak solutions in L2 norm are derived under the different conditions on the initial velocity. Moreover, the error estimates of the difference between non-Newtonian flow and Navier-Stokes flow are also investigated.

  5. Contribution to the study of the behaviour of solid particles in a confined turbulent flow using direct numerical simulation; Contribution a l'etude du comportement de particules solides en ecoulement turbulent confine par simulation numerique directe

    Rambaud, P.


    also directly used for non-homogeneous and non-isotropic turbulence. In our study, we are checking the relevance of such a direct application. At this purpose, on the half-channel, all the moving Eulerian integral times and the fluid Lagrangian integral times are computed in order to estimate the integral times of the turbulence seen. These valuations are compared with the direct computations of the integral times of the turbulence seen thanks to the Lagrangian tracking of a huge number of particles. Besides the dispersion study, this code is also presented in a configuration allowing to deal with dispersed flow with no more passive but active particles on the turbulence. The invariant of the simulation being the Reynolds number based on the bulk velocity, a forcing scheme keeping the overall flow rate is used. In spite of the validation of this scheme in single phase turbulence, it is not yet able to work efficiently in vertical turbulent downward or upward coupled two-phase flows. This problem is not met in weightlessness state, for which the macroscopic effects on the turbulence due to the solid particles are presented. (authors)

  6. Laminar flow at a three-dimensional stagnation point with large rates of injection

    Libby, P. A.


    Exact calculations of the titled flow are presented and compared to the predictions of an asymptotic analysis for large rates of injection. The inner layer of the boundary layer is found to involve outflow in both orthogonal directions whether the external flow along the y axis is inward or outward. As a result, the flow at a nearly two-dimensional stagnation point involves drastic changes as a weak outflow changes to a weak inflow. It is also found that the velocity profiles in the two directions in the inner layer are quite different.

  7. Unsteady Unidirectional Flow of Voigt Fluid through the Parallel Microgap Plates with Wall Slip and Given Inlet Volume Flow Rate Variations

    Yinwei Lin; Chen, C. K.


    In order to solve the velocity profile and pressure gradient of the unsteady unidirectional slip flow of Voigt fluid, Laplace transform method is adopted in this research. Between the parallel microgap plates, the flow motion is induced by a prescribed arbitrary inlet volume flow rate which varies with time. The velocity slip condition on the wall and the flow conditions are known. In this paper, two basic flow situations are solved, which are a suddenly started and a constant acc...

  8. Mass flow-rate control unit to calibrate hot-wire sensors

    Durst, F.; Uensal, B. [FMP Technology GmbH, Erlangen (Germany); Haddad, K. [FMP Technology GmbH, Erlangen (Germany); Friedrich-Alexander-Universitaet Erlangen-Nuernberg, LSTM-Erlangen, Institute of Fluid Mechanics, Erlangen (Germany); Al-Salaymeh, A.; Eid, Shadi [University of Jordan, Mechanical Engineering Department, Faculty of Engineering and Technology, Amman (Jordan)


    Hot-wire anemometry is a measuring technique that is widely employed in fluid mechanics research to study the velocity fields of gas flows. It is general practice to calibrate hot-wire sensors against velocity. Calibrations are usually carried out under atmospheric pressure conditions and these suggest that the wire is sensitive to the instantaneous local volume flow rate. It is pointed out, however, that hot wires are sensitive to the instantaneous local mass flow rate and, of course, also to the gas heat conductivity. To calibrate hot wires with respect to mass flow rates per unit area, i.e., with respect to ({rho}U), requires special calibration test rigs. Such a device is described and its application is summarized within the ({rho}U) range 0.1-25 kg/m{sup 2} s. Calibrations are shown to yield the same hot-wire response curves for density variations in the range 1-7 kg/m{sup 3}. The application of the calibrated wires to measure pulsating mass flows is demonstrated, and suggestions are made for carrying out extensive calibrations to yield the ({rho}U) wire response as a basis for advanced fluid mechanics research on ({rho}U) data in density-varying flows. (orig.)

  9. Eulerian numerical simulation of gas-solid flows with several particles species; Modelisation numerique eulerienne des ecoulements gaz-solide avec plusieurs especes de particules

    Patino-Palacios, G


    The simulation of the multiphase flows is currently an important scientific, industrial and economic challenge. The objective of this work is to improve comprehension via simulations of poly-dispersed flows and contribute the modeling and characterizing of its hydrodynamics. The study of gas-solid systems involves the models that takes account the influence of the particles and the effects of the collisions in the context of the momentum transfer. This kind of study is covered on the framework of this thesis. Simulations achieved with the Saturne-polyphasique-Tlse code, developed by Electricite de France and co-worked with the Institut de Mecanique des Fluides de Toulouse, allowed to confirm the feasibility of approach CFD for the hydrodynamic study of the injectors and dense fluidized beds. The stages of validation concern, on the one hand, the placement of the tool for simulation in its current state to make studies of validation and sensitivity of the models and to compare the numerical results with the experimental data. In addition, the development of new physical models and their establishments in the code Saturne will allow the optimization of the industrial process. To carry out this validation in a satisfactory way, a key simulation is made, in particular a monodisperse injection and the radial force of injection in the case of a poly-disperse flow, as well as the fluidization of a column made up of solid particles. In this last case, one approached three configurations of dense fluidized beds, in order to study the influence of the grid on simulations; then, one simulates the operation of a dense fluidized bed with which one characterizes the segregation between two various species of particles. The study of the injection of the poly-disperse flows presents two configurations; a flow Co-current gas-particle in gas (Case Hishida), and in addition, a poly-phase flow in a configuration of the jet type confined with zones of recirculation and stagnation (case

  10. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    Schmidt, K.M.; Menges, C.M.; ,


    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  11. Flow rate and humidification effects on a PEM fuel cell performance and operation

    Guvelioglu, Galip H.; Stenger, Harvey G.

    A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.

  12. Pre-Spud Mud Loss Flow Rate in Steeply Folded Structures

    Wang Zhiyuan


    Full Text Available In this paper, a new method that predicts the pre-spud mud loss flow rate in formations with tectonic fractures of steeply folded structures is proposed. The new method is based on finite element analysis of the palaeo-tectonic and current tectonic stress field and fracture distribution. The steps of the method are as follows. First, palaeo-tectonic stress distribution is simulated through finite element analysis. The tectonic fracture distribution of the region is obtained by combining rock failure criteria with palaeo-tectonic stress distribution. Afterward, the tectonic fracture density, aperture, porosity and permeability are calculated by studying the rebuilding process of current stress to the fracture parameters. Finally, the mud loss flow rate is calculated according to fracture parameters and the basic data of a given well. The new method enables the prediction of the mud loss flow rate before drilling steeply folded structures.

  13. An Experimental Study of Air-Solid Two-Phase Flow in a 90° Bend Using LDV System


    The measurements of he mean streamwise and radial velocities,the associated turbulence and the relative particle densities were made in an air-solid two-phase flow in square sectioned(30mm×30mm) 90° vertical to horizontal bend using laser Doppler velocimetry.The radius ratio of the bedn was 2.0.Glass beads of 100um in diameter were employed to form the solid phase.The measurements of air and solid phases were performed separately at the same bulk velocity 19.34m/s,correaponding to a Reynolds number of 3.87×104.The mass ratio of solid to air was 1.6%,The results indicate that the particle trajectories are very close to straight lines.The streamwise velocity profiles for the gas and the solids cross over near the outer wall with the solids having the higher speed.At θ=30° and 45°,particle-wall collisions happen mostly in the region fromθ=30°to θ=75°,and cause a sudden change in solid velocity,The particles tned to move towards the outer wall in 90°bend,The particle concentration near the outer wall is umch higher than that near the inner wall in the bend,and there are few particles in the inside of the bend.The bend leads to apparent phase separation.atθ=45°,the solids concentrate in the half of the duct near the outer wall,After θ=60° the second peak concentration appears,and goes gradually towards the inner wall.

  14. Effect of transient change in strain rate on plastic flow behaviour of low carbon steel

    A Ray; P Barat; P Mukherjee; A Sarkar; S K Bandyopadhyay


    Plastic flow behaviour of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3 × 10-4 s-1 to a final strain rate ranging from 1.33 × 10-3 s-1 to 2 × 10-3 s-1 at a fixed engineering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with a change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzmann type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed in attaining these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at a higher final strain rate.

  15. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures



    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  16. Motion of cells sedimenting on a solid surface in a laminar shear flow.

    Tissot, O; Pierres, A; Foa, C; Delaage, M; Bongrand, P


    Cell adhesion often occurs under dynamic conditions, as in flowing blood. A quantitative understanding of this process requires accurate knowledge of the topographical relationships between the cell membrane and potentially adhesive surfaces. This report describes an experimental study made on both the translational and rotational velocities of leukocytes sedimenting of a flat surface under laminar shear flow. The main conclusions are as follows: (a) Cells move close to the wall with constant velocity for several tens of seconds. (b) The numerical values of translational and rotational velocities are inconsistent with Goldman's model of a neutrally buoyant sphere in a laminar shear flow, unless a drag force corresponding to contact friction between cells and the chamber floor is added. The phenomenological friction coefficient was 7.4 millinewton.s/m. (c) Using a modified Goldman's theory, the width of the gap separating cells (6 microns radius) from the chamber floor was estimated at 1.4 micron. (d) It is shown that a high value of the cell-to-substrate gap may be accounted for by the presence of cell surface protrusions of a few micrometer length, in accordance with electron microscope observations performed on the same cell population. (e) In association with previously reported data (Tissot, O., C. Foa, C. Capo, H. Brailly, M. Delaage, and P. Bongrand. 1991. Biocolloids and Biosurfaces. In press), these results are consistent with the possibility that cell-substrate attachment be initiated by the formation of a single molecular bond, which might be considered as the rate limiting step.

  17. Evaluation of Bubbler Irrigation System at Different Emission Flow Rates for Young Mango Orchard

    Rajesh Kumar Soothar


    Full Text Available An experiment was conducted on evaluating performance of bubbler irrigation system under young mango plant rows at the Higher Education Commission, research station at Sindh Agriculture University, Tandojam. The experimental station possesses more than 70 mango plants, irrigated by micro and traditional irrigation methods fed by tubewell with average water static level of 9 ft below ground surface. Bubbler irrigation system was designed to irrigate 12 mango plants. The aim of study was to assess the performance of the bubbler irrigation system at different emission flow rates with an installed bubbler irrigation system to improve water distribution uniformity. The result of this study showed that the high pressure losses and the system operated on one gallon per minute flow rate of each bubbler, water distribution uniformity was low, with an average of 68 %. Other hand, comparison with emission (bubbler flow rate was adjusted at half gallon per minute has shown high water emission uniformity of system performed with an average of 92 % distribution uniformity. The reasons for the minimum distribution uniformity of bubblers were observed at one gallon per minute emission flow and this study recommended to improve the bubbler irrigation at dissimilar flow rates.

  18. Investigation of relationship between mental workload and information flow rate of accident diagnosis tasks in NPPs

    Ha, Chang Hoon


    The objective of this study is to investigate experimentally the relationship between an operator's mental workload and the information flow rate of accident diagnosis tasks and further to propose the information flow rate as an analytic method for measuring the mental workload. There are two types of mental workload in the advanced MCR of NPPs: the information processing workload, which is the processing that the human operator must actually perform in order to complete the diagnosis task, and emotional stress workload experienced by the operator. In this study, the focus is on the former. Three kinds of methods are used to measure the operator's workload: information flow rate, subjective methods, and physiological measures. Information flows for eight accident diagnosis tasks are modeled qualitatively using a stage model and are quantified using Conant's model. The eight accident cases are considered here are: Loss Of Coolant Accident (LOCA), Steam Generator Tube Rupture (SGTR), Steam Line Break (SLB), Feedwater Line Break (FLB), Pressurizer (PZR) spray and heater failure, Reactor Coolant Pump (RCP) trip, Main Steam Isolation Valve (MSIV) failure, and PZR spray failure. The information flow rate is obtained for each diagnosis task by imposing time limit restrictions for the tasks. Subjective methods require the operators to respond to questionnaires to rate their level of mental effort. NASA-TLX and MCH scale are selected as subjective methods. NASA-TLX is a subjective method used in the various fields including the aviation, automobile, and nuclear industries. It has a multi-dimensional rating technique and provides an overall workload score based on a weighted average on six subscales using pair-wise comparison tests. MCH, on the other hand, is one-dimensional and uses a 10- point rating technique. As with NASA-TLX, the higher the score is, the higher the subjective workload is. For the physiological measurements, an eye tracking system analyzes

  19. Estimation of Leak Flow Rate during Post-LOCA Using Cascaded Fuzzy Neural Networks

    Kim, Dong Yeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Na, Man Gyun [Chosun University, Gwangju (Korea, Republic of)


    In this study, important parameters such as the break position, size, and leak flow rate of loss of coolant accidents (LOCAs), provide operators with essential information for recovering the cooling capability of the nuclear reactor core, for preventing the reactor core from melting down, and for managing severe accidents effectively. Leak flow rate should consist of break size, differential pressure, temperature, and so on (where differential pressure means difference between internal and external reactor vessel pressure). The leak flow rate is strongly dependent on the break size and the differential pressure, but the break size is not measured and the integrity of pressure sensors is not assured in severe circumstances. In this paper, a cascaded fuzzy neural network (CFNN) model is appropriately proposed to estimate the leak flow rate out of break, which has a direct impact on the important times (time approaching the core exit temperature that exceeds 1200 .deg. F, core uncover time, reactor vessel failure time, etc.). The CFNN is a data-based model, it requires data to develop and verify itself. Because few actual severe accident data exist, it is essential to obtain the data required in the proposed model using numerical simulations. In this study, a CFNN model was developed to predict the leak flow rate before proceeding to severe LOCAs. The simulations showed that the developed CFNN model accurately predicted the leak flow rate with less error than 0.5%. The CFNN model is much better than FNN model under the same conditions, such as the same fuzzy rules. At the result of comparison, the RMS errors of the CFNN model were reduced by approximately 82 ~ 97% of those of the FNN model.

  20. Co-Relationships between Glandular Salivary Flow Rates and Dental Caries

    de Guillory, Carolina Diaz; Schoolfield, John D; Johnson, Dorthea; Yeh, Chih-Ko; Chen, Shuo; Cappelli, David P; Bober-Moken, Irene G; Dang, Howard


    Objective This study was designed to evaluate the relationship of age, gender, ethnicity and salivary flow rates on dental caries in an adult population using data collected from the Oral Health San Antonio Longitudinal Study of Aging (OH:SALSA). Background Saliva is essential to maintain a healthy oral environment and diminished output can result in dental caries. Although gender and age play a role in the quantity of saliva, little is known about the interaction of age, gender and ethnicity on dental caries and salivary flow rates. Materials and Methods Data from the 1,147 participants in the OH: SALSA was analyzed. The dependent variables were the number of teeth with untreated coronal caries, number of teeth with root caries, and the number of coronal and root surfaces with untreated caries. The independent variables were stimulated and unstimulated glandular salivary flow rates along with the age, sex, and ethnicity (e.g. European or Mexican ancestry) of the participants. Results Coronal caries experience was greater in younger participants while root surface caries experience was greater in the older participants. Coronal caries was lower in the older age groups while the root caries experience increased. Men had a statistically significant (p<0.02) higher experience of root caries than women. Values for unstimulated and stimulated parotid salivary flow rates showed no age difference and remained constant with age, whereas the age differences in the unstimulated and stimulated submandibular/sublingual salivary flow rates were significant. The mean number of teeth with coronal and root caries was higher in Mexican-Americans than in European-Americans. Conclusions Over one-fourth of the adults between the ages of 60 and 79 have untreated root caries over one-third having untreated coronal caries. Lower salivary flow rates play a significant role in the both the number of teeth and the number of surfaces developing caries in these adults. Women and individuals